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Abstract—In this paper, we consider a multi-view compressed
sensing problem, where each sensor can only obtain a partial
view of the global sparse vector. Here the partial view means
that some arbitrary and unknown indices of the global vector
are unobservable to that sensor and do not contribute to the
measurement outputs. The sensors aim to collaboratively recover
the global state vector in a decentralized manner. We formulate
this recovery problem as a bilinear optimization problem relying
on a factored joint sparsity model (FJSM), in which the vari-
ables are factorized into a node-specific sparse local masking
vector and the desired common sparse global vector. We first
theoretically analyze the general conditions guaranteeing the
global vector’s successful recovery. Then we propose a novel in-
network algorithm based on the powerful distributed alternating
direction method of multipliers (ADMM), which can reconstruct
the vectors and achieve consensus among nodes concerning the
estimation of the global vector. Specifically, each node alternately
updates the common global vector and its local masking vector,
and then it transfers the estimated global vector to its neighboring
nodes for further updates. To avoid potential divergence of the
iterative algorithm, we propose an early stopping rule for the
estimation of the local masking vectors and further conceive an
estimation error-mitigation algorithm. The convergence of the
proposed algorithms is theoretically proved. Finally, extensive
simulations validate their excellent performance both in terms of
the convergence and recovery accuracy.

Index Terms—Sensor network, multi-view sparse vector re-
covery, distributed compressed sensing, distributed optimization,
alternating direction method of multipliers (ADMM).

I. INTRODUCTION

Emerging as a significant theme in the forthcoming B5G and
6G era, Sensing is envisioned as an enabler for learning and
building intelligence in the future smart world [1, 2]. Among
the technological methods for sensing, compressed sensing
(CS) is an efficient framework successfully applied in sensing
scenarios utilizing sparse characteristics [3]. Built on CS and
relying on the increasing storage and computational capacity
of devices, distributed compressed sensing (DCS) [4] is thus
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expected to implement robust large-scale sensing with sensory
data collected by widely-distributed sensors.

In numerous sensing scenarios, multiple sensors cooperate
to recover the global information, which, as shown in Fig. 1,
can be interpreted as the global environment [5–7], the 3D
sculpture or architecture [8, 9], as well as the global state
vector [10, 11]. Through discretizing the environment scatters
or 3D objective into cloud points, all of the three scenarios
can be described by global sparse vectors. However, due to
the occlusion effect and blind spots resulted from sensors’
geographic locations, or the limited sensing capabilities re-
sulted from energy cost, some arbitrary, unknown and different
components of the global vector may be missing or invisible
for them. Consequently, each sensor only has access to a
partial view of the global sparse vector. When there is a lack
of a fusion center which may demand larger communication
and computing power, it is appealing to design an in-network
recovery algorithm for the sensors, so that they can efficiently
and collaboratively recover the global vector relying only on
their partial-view measurements and necessary information
exchange within their neighborhoods.

This in-network recovery problem can be generally mod-
eled as a distributed compressed sensing problem, where the
desired global information has certain structural sparsity and
the observing nodes conduct independent sensing. The pivotal
challenges are threefold, i.e., how to fully model the intrinsic
sparsity among sensors; how to carry out the measurement;
and how to design the recovery problem. An abundance of
authors studied the DCS problem in the literature [4, 12–27].
As a meaningful approach to address the above challenges,
Baron et. al. generalized the distributed compressed sensing
process to the scenario in which the observed vectors of
different nodes share a common component, namely the so-
called Joint Sparsity Model 1 (JSM1). An alternative to that in
which they have the same sparse support was termed as the so-
called JSM2 [4]. Both centralized and decentralized recovery
algorithms have been developed. The centralized schemes
assume that a fusion center (FC) collects the measurement
results as well as the sensing matrices from all the nodes,
and based on these the center rebuilds the vectors. In a
specific case where all the nodes share the same sensing
matrix, the problem can be cast as the multiple measurement
vector (MMV) problem [12–14]. On the other hand, the
decentralized counterparts have no fusion center. Hence, the
neighboring nodes exchange their necessary messages over
the network collaboratively rebuilding the vectors, which is
more robust to the nodes’ failures. These approaches can be
basically classified into three types: convex optimization [15–
21], greedy pursuit [22–24] and Bayesian inference [25–27].

Among them, the optimization-based methods are popu-
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Fig. 1. Illustration of three typical application scenarios with multi-view compressed sensing: (a) is a typical environment sensing problem in
Integrated Sensing and Communications (ISAC), where each device (such as base station in [5] or radar system in [6]) obtains observations of
the environment through wave propagation. (b) describes a 3D-Imaging problem where each sensor (like sonar system [8] or computational
imaging system [9]) measures the objective within its partial view. (c) is a smart industrial IoT system, where distributed sensors monitor
the global state space via compressed measurements [10, 11]. In all these scenarios, each client could only observe a partial view of the
global vector due to geographic locations and the blockage as in (a) and (b), as well as the limited energy and sensing capabilities as in (c).

lar as a benefit of their efficient tractability and theoretical
guarantees. Mateos et al. solved the reconstruction problem
by formulating it as a distributed LASSO problem [15].
Explicitly, upon applying the distributed alternating direction
method of multipliers (ADMM), Mateos et al. demonstrated
the equivalence of the distributed algorithm and its central-
ized counterpart in terms of their convergence. As a further
advance, a communication-efficient implementation of dis-
tributed ADMM, termed as D-ADMM, was proposed in [16]
to recover the sparse vectors, which was further extended to
other separable optimization objectives in [17]. Matamoros et
al. applied distributed ADMM to solve the JSM1 problem in
DCS, quantifying the efficiency of ADMM for the recovery
of both the common and individual components [20].

Although certain differences of node observations have
been considered in the above treatises, each of the nodes’
measurements was assumed to be complete, i.e. it included
contributions from all the different indices of the desired sparse
vector. Thus, the above methods cannot deal with the incom-
plete observations in the sensor network. Explicitly, there is
a paucity of literature on the general multi-view compressed
sensing problem. Although in [28] the authors considered the
case where each node has only partial components of the
global variable, the observable components’ indices are treated
as fully known. However, in practice, the sensors may be
randomly distributed or could be mobile. Consequently, the
observable indices are generally unknown and they have to
be estimated jointly in the recovery process. Authors in [5]
considered the multi-view sensing problem while the recovery
was implemented in a centralized manner.

In this work, we aim at solving the distributed recovery
problem in the multi-view sensing network as shown in Fig. 1.
Given its wide applications and excellent performance in dis-
tributed large-scale optimization problems [29, 30], especially
its proven convergence [31–33], we opt for the distributed
ADMM framework to address the problem. Before doing
that, in order to represent the multi-view vectors observed
by different sensors, we introduce a binary masking vector

for each sensor and propose a factored joint sparsity model
(FJSM). FJSM decouples the local observable vector for each
sensor into the global vector and the local masking vector. This
is inspired by [34], which formulates a bilinear factorization
problem for the presence of missing data in the measurement.
We observe that the factorized model and the corresponding
bilinear problem may cause certain scaling ambiguity, making
the solution non-unique and the problem non-convex [35–
38]. To handle the problem, we constrain the elements of
the masking vectors in the Boolean set similarly to [34, 35].
Moreover, we propose an early-stopping rule to improve the
convergence of the algorithm.

The contributions of our work can thus be summarized as
follows:

• We propose a general factored joint sparsity model for
the multi-view sensing problem, which decouples the
local vector into a global vector and a node-specific
local masking vector. Based on the FJSM, we cast this
problem as a bilinear factorization problem, which can be
solved in a distributed manner. Additionally, we derive
the theoretical measurement bounds for this problem
under noiseless ℓ0 norm optimization.

• Based on ADMM, a distributed optimization algorithm
is proposed for solving the problem, in which each node
iteratively updates both its masking vector and the global
vector. A penalty term is added in the updating of the
masking vectors, which allows solutions to approach the
Boolean distribution. To guarantee the convergence, the
updating of the masking vectors is terminated at some
point guided by an early-stopping rule. An error-reduction
step is carried out after that for mitigating the potential
recovery error of the local vectors.

• Both the convergence and recovery performances are the-
oretically analyzed. Extensive simulations are conducted
for comparing the proposed algorithms to other methods,
validating their excellent performances both in terms of
convergence and recovery accuracy. Moreover, we show
that independent recovery at each sensor outperforms
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the collaborative ones under severe blockage conditions,
both theoretically and experimentally. Simulations are
also conducted for evaluating the impact of the penalty
term and guide its selection.

This paper is organized as follows. In Section II, we outline
the system model and formulate the optimization problem.
Section III gives the fundamental measurement bounds for ℓ0
norm recovery. In Section IV, we develop our distributed algo-
rithm for solving the problem, and propose an error-mitigation
algorithm. Section V provides theoretical analysis w.r.t. the
convergence and recovery results. Our numerical experiments
are discussed in Section VI for validating the performance of
the proposed algorithms. Section VII concludes the paper and
discusses promising future research avenues.

Some notations: Given a vector x, its support is denoted by
S(x), which contains the indices of its nonzero entries. Its t-th
entry is denoted by x(t). The cardinality of a given set Γ is
denoted by |Γ|. Let [1]N×1 (resp. [0.5]N×1) be the N×1 vector
with elements equal to 1 (resp. 0.5). We write IN as the N×N
identity matrix. The operator ⊙ is the Hadamard product and
⊗ denotes the Kronecker product. The corresponding diagonal
matrix of x is defined as diag(x), whose diagonal elements
are components in x. Likewise, the diagonal matrix for a set
of matrices {Xi ∈ Rm×n, i = 1, ..., N} is defined as

diag({Xi}) =


X1 0 · · · 0
0 X2 · · · 0

0 0
. . . 0

0 0 · · · XN

 ∈ RmN×nN .

II. SYSTEM MODELING AND PROBLEM FORMULATION

We consider a decentralized multi-sensor network and
represent it by an undirected network G = (V, E), where
V = {1, ..., N} denotes the set of N distributed sensors and
the edge set E = {εij}i,j∈V indicates the communication links
between them. Furthermore, Ni denotes the set of sensor i’s
neighboring sensors. The adjacency matrix of G is defined as
W, where W(i, j) = 1 if εij ∈ E and W(i, j) = 0 otherwise.
The diagonal degree matrix of G is denoted by D, whose i-th
diagonal element is the degree of node i, i.e., D(i, i) = |Ni|.

We denote the global state vector by x ∈ RT and the
observable local vector of sensor i by zi ∈ RT . The support of
x is denoted by S(x) and its sparsity is |S(x)| = K,K ≪ T .
Each sensor in the network can only observe a partial view of
the state vector and the missing or blocked entries become 0.
Note that the blockage can happen in the zero entries, which
however makes no impact on the results. So here to clarify,
the blockage refers to those blocking the nonzero entries and
leading to the loss of information. We can decouple each
observable local vector zi into the common global vector
and the binary masking vector vi ∈ RT , where vi(t) = 1
indicates x(t), t ∈ S(x) is observable for node i and vi(t) = 0
otherwise. Then we have

zi = vi ⊙ x,

which we term as the factored joint sparsity model. Here the
global vector x is common for all sensors, while each sensor
has its own masking vector vi.

The sensor i in the network individually senses its ob-
servable sparse vector zi through a set of linear and local
measurements, i.e.,

yi = Aizi +wi = Ai(vi ⊙ x) +wi, (1)
where Ai ∈ RMi×T (Mi ≪ T ) denotes the measurement
matrix in sensor i and wi ∈ RMi is the additive noise. Here
Mi is the number of measurements made by sensor i, and we
employ the random i.i.d. Gaussian matrices [39] as the mea-
surement matrix Ai. Note that (1) is a bilinear model, where
the observations are influenced by the two factors vi and x
with bilinear relationship. A practical example of such a model
can be found in [5] (see also Fig.1 (a)) where a distributed
ISAC scenario is considered. In this context, several base sta-
tions (BS) collaboratively sense the environment through EM-
wave illumination during the communication process. Here x
denotes the desired reflection coefficients of the cloud points
discretizing the region of interest, vi depicts user i’s locally
observable set of the cloud points, and Ai here is user i’s
observation matrix with each row represents the channel gains
of all the path through the cloud points in an illumination.
Refer to [5] for details.

The ultimate goal for each sensor is to reconstruct the global
vector with the aid of its own measurements and the messages
received from other nodes, in which process, the observable
local vector could also be recovered. Additionally, through
cooperation, the number of measurements in each sensor is
expected to be much lower than that would be required for re-
covering the vectors independently. To achieve this ambitious
goal, we formulate the following optimization problem (2) for
estimating the common global vector x through cooperation
among the nodes, as well as the local masking vector vi in
each sensor:

min
xi,vi

N∑
i=1

[
∥yi − Ai(vi ⊙ xi)∥22 + λ∥xi∥1

]
,

s.t. xi = xj , ∀i ∈ V, j ∈ Ni,

vi ∈ {0, 1}T , ∀i ∈ V,

(2)

where {0, 1}T denotes the set of length-T vectors with each
entry equal to 0 or 1. We have the following assumptions:

Assumption 1. The sensor network is connected, i.e., there
exists a path between any pair of sensors.

Assumption 2. We assume that each nonzero entry of the
global vector can be observed by at least one sensor, i.e.,

S(z1) ∪ ... ∪ S(zN ) = S(x).

Before developing a practical algorithm, we first analyze the
fundamental theoretical bounds on the measurement require-
ments for this multi-view sensing scenario, which are based
on noiseless ℓ0 norm minimization.

III. CONDITIONS TO GUARANTEE ℓ0 NORM RECOVERY

For representing the vectors and measurements compactly in
each node, we introduce M̃ =

∑
i∈V Mi and define Y ∈ RM̃ ,
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Z ∈ RTN , Φ ∈ RM̃×TN respectively as

Y =


y1

y2

...
yN

 , Z =


z1

z2
...

zN

 , Φ =


A1 0 ... 0
0 A2 ... 0
...

...
. . .

...
0 0 ... AN

 .

(3)
Then in the noiseless condition, we have Y = ΦZ.

Let us now define the stacked configuration matrix for all
nodes as P̃ = [PT

1 , ...,PT
N ]

T
. Here Pi is a T×K matrix, where

K = |S(x)|. We construct Pi in the following way. First, we
delete (T−K) columns from the T×T identity matrix outside
the support of x and get P̌i. If the k-th index of the support
is blocked for node i, then the k-th column of P̌i is set to all-
zero and we get Pi. Under this definition, we have Y = ΦP̃θ,
where θ ∈ RK consists of the non-zero values of the global
signal x. Let us define the visible set Π(Γ, P̃) as follows, to
represent the indices of x that can only be observed by the
nodes in the subset Γ.

Π(Γ, P̃) = {t ∈ 1, ..., T, ∃i ∈ Γ,vi(t) ̸= 0

& ∀j ∈ V − Γ,vj(t) = 0},

where Γ is an arbitrary subset of the node set V .
Then we can formulate the theoretical measurement bounds

for ℓ0 norm recovery by Theorem 1.

Theorem 1. Assume that the global vector x is partially
observed by each node. Let furthermore M = (M1, ...,MN )
be the measurement tuple containing the measurement sizes
of all nodes and Ai be the random matrix for node i with Mi

rows having i.i.d. Gaussian entries. Then we have:
a) (Achievable, known P̃) If P̃ is known and the measure-

ment tuple satisfies: ∑
j∈Γ

Mj ≥ |Π(Γ, P̃)| (4)

for all Γ ⊆ V , then there exists a unique solution θ̂ to
Y = ΦP̃θ with probability one over {Ai}i∈V . Given the
configuration matrix P̃, both the global x and local zi vectors
can be uniquely recovered.

b) (Achievable, unknown P̃) If P̃ is unknown and the
measurement tuple satisfies:∑

j∈Γ

Mj ≥ |Π(Γ, P̃)|+ |Γ| (5)

for all Γ ⊆ V , then the global x and local zi vectors can be
uniquely recovered with probability one over {Ai}i∈V .

c) (Converse) If the measurement tuple satisfies:∑
j∈Γ

Mj < |Π(Γ, P̃)| (6)

for any Γ ⊆ V , then the global vector and the local vector
cannot be uniquely recovered.

Proof. See Appendix A.

Proposition 1. We assume furthermore that the probabilities
of blockage for all the nodes are the same, namely p. Provided
that p ≤ 1 − 1

N under Assumption 2, for larger p, each
node needs more measurements for collaboratively recovering
the global and local vectors in expectation, compared with
smaller p.

Proof. Let Γ contain a single one node. Then we have

E
[
|Π(Γ,P)|

]
= K × (1− p)× p(N−1).

With p ≤ 1 − 1
N , it may be readily shown that

∂E[|Π(Γ,P)|]/∂p ≥ 0. Thus the proposition is proven.

Theorem 1 gives the fundamental recovery bounds of noise-
less measurements based on ℓ0 norm minimization. Specif-
ically, Theorem 1 a) and b) reveal the effect of the local
masking vector on the measurement complexity of the ℓ0 norm
based recovery. Theorem 1 c) gives the lower bound of the
number of measurements, below which the vectors cannot be
recovered with either ℓ0 norm or ℓ1 norm method. Moreover,
Theorem 1 rigorously proves one information-theoretic intu-
ition that the number of measurements required for each sensor
must account for the observable features unique to that sensor,
while at the same time, features observable among multiple
sensors should be amortized over the group. Such rule is also
partly validated by the simulations in Section VI-G. All of
these remarks on Theorem 1 may serve as the rules of thumb,
offering guidance on technological applications.

To circumvent the NP-hardness and intractability of ℓ0 norm
minimization, in the next section, we will develop algorithms
based on ℓ1 norm optimization as in Problem (2).

IV. ALGORITHM DERIVATION

To solve the optimization problem (2), in this section,
we develop our algorithm based on the powerful distributed
ADMM framework. Moreover, we design an estimation error-
mitigation method.

A. Distributed ADMM with Value Penalty

We refer readers to [31, 40, 41] for a general discussion on
applying ADMM for solving a set of non-convex programs
and to [15] for its implementation in a decentralized network.
Based on ADMM, each node alternately updates the primal
variables {xi,vi} and the dual variable. The challenges arise
from two aspects. First, the Boolean constraints of vi make
the optimization problem non-convex and NP-hard; Secondly,
the bilinear relationship between the two primal variables
{xi,vi} makes the problem non-convex and the distributed
ADMM algorithm struggles to converge. Hence we will focus
on addressing these two issues.

To begin with, a popular technique of tackling the elemen-
twise Boolean constraint vi(t) ∈ {0, 1} is to relax it into
the inequality constraint 0 ≤ vi(t) ≤ 1 and then project the
result into the integer solution. In our algorithm, inspired by
the ADMM penalized decoding method introduced in [42], we
add the objective a penalty term gi(vi) into the optimization
of vi, which aims for making the non-integer vertices more
costly. In particular, the value of the penalty function is lower
both at 0 and 1 compared to any other point in the interval
(0, 1). We slack the Boolean constraint and the optimization
problem can be modified as (7):

min
xi,vi

N∑
i=1

[
ϕi(vi,xi) + gi(vi)

]
,

s.t. xi = tij , ∀i ∈ V, j ∈ Ni, (7)
xj = tij , ∀i ∈ V, j ∈ Ni,
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vi ∈ [0, 1]
T
, ∀i ∈ V,

where ϕi(vi,xi) = ∥yi − Ai(vi ⊙ xi)∥22 + λ∥xi∥1. Here the
slack variable tij is introduced for the consensus constraint
xi = xj between node i and its neighboring node j ∈ Ni.
Based on that, the augmented Lagrangian function of Problem
(7) can be formulated as:

L =

N∑
i=1

[
ϕi(vi,xi) + gi(vi)

]
+

N∑
i=1

∑
j∈Ni

[
ūij(xi − tij)+

ŭij(xj − tij)
]
+

c

2

N∑
i=1

∑
j∈Ni

[
∥xi − tij∥22 + ∥xj − tij∥22

]
,

where ūij and ŭij are dual variables. Let us define qi ≜∑
j∈Ni

(ūij + ŭji) and initialize ū
(0)
ij + ŭ

(0)
ij = 0,∀i, j.

We apply the Gauss-Seidel strategy [20, 33] to solve the
subproblem corresponding to the primal variables {xi,vi} as
follows.

(x
(k)
i ,v

(k)
i ) = argmin

0≤vi(t)≤1

L(q(k)
i ,x

(k−1)
i ,v

(k−1)
i ),

where the update of v
(k)
i is based on the updating result of

x
(k)
i . Then the update rules of qi and the primal variables

{xi,vi} are:
q
(k)
i = q

(k−1)
i + c

∑
j∈Ni

(
x
(k−1)
i − x

(k−1)
j

)
, (8a)

x
(k)
i =argmin

xi

{
ϕi(v

(k−1)
i ,xi) + xT

i q
(k)
i

+ c
∑
j∈Ni

∥∥xi −
x
(k−1)
i + x

(k−1)
j

2

∥∥2
2

}
,

(8b)

v
(k)
i = argmin

0≤vi(t)≤1

[∥∥yi − B(k)
i vi

∥∥2
2
+ gi(vi)

]
, (8c)

where B(k)
i = Ai · diag(x(k)

i ). Note that the slack variables
{tij}i∈V,j∈Ni

do not appear in (8) because they can be
expressed by {xi}i∈V ; we refer readers to Appendix A in [15]
for details. To retain the convexity of the subproblem (8c), we
apply the ℓ2 penalty function and define it as follows :

gi(vi) = −
∥∥∥R(k)

i (vi − [0.5]T×1)
∥∥∥2
2
.

Given a well-designed parameter R(k)
i , where R(k)

i

T
R(k)

i =

αB(k)
i

T
B(k)
i , 0 ≤ α < 1, the optimization problem in (8c)

is convex. This is designed to make the variables’ update
mathematically tractable in the same way as [42]. On the other
hand, such penalization is standard to account for a relaxed
binary variable without limitation on the penalty parameter.
The authors in [43, 44] formulated non-convex optimization
problems based on the concave penalization to account for
a relaxed binary variable and proposed solutions under mild
conditions. Compared with [43, 44], a drawback may arise
from the limited penalty effect because of the relatively small
penalty parameter of 0 ≤ α < 1. However, under the
bilinear relationship between the two primal variables, the
convexity of the subproblem is vital for the tractability and
computational complexity. Moreover, we do not strictly require
the distribution of vi to be Boolean in the early iterations for
the stability of the algorithm. Rather, we would use a soft

heuristic penalty term, which can enhance the tendency for the
elements of vi to approximate 0 or 1, making this a rational
design. We can then obtain coordinate-wise update rule for vi:

v
(k)
i =

∏
[0,1]

{ 1

1− α

[
B(k)
i

†
yi − α(B(k)

i

†
B(k)
i )T [0.5]T×1

]}
,

(9)
where

∏
[0,1] : R → [0, 1] is the elementwise projection to

the interval by mapping the elements smaller than 0 to 0 and
those larger than 1 to 1. Note that the optimal solution of
(8c) has to be obtained through KKT conditions with multiple
inner iterations and unbearable computation cost. Thus, we
apply the coordinate-wise approximated result (9) as that in
[42]. It can be observed from (9) that the effect of the penalty
term may be viewed as an elementwise soft mapping from
the original solution B(k)

i

†
yi towards {0, 1}. With respect to

the updating complexity, the pseudo inverse of Ai, denoted
by A†

i , can be pre-computed at the beginning and stored in

each node. Then B(k)
i

†
can be readily computed at a modest

computational cost, where diag(x(k)
i )

†
is easy to acquire with

the reciprocal of each non-zero diagonal element.
In the algorithm, if vi is mapped into {0, 1}T at the very

beginning of iterations, then the process becomes unstable and
prone to divergence. On the other hand, the scaling ambiguity
problem still exits due to the bilinear relationship and the
limited penalty parameter, implying that a hard projection into
the binary set is necessary so as to narrow down the solution
set. Hence we map the masking vector into the Boolean set
after a few iterations. In the following we will discuss when to
carry out the hard mapping for each node. We characterise the
distribution of v(k)

i by the distance of v(k)
i from the Boolean

subspace, defined as
d
(k)
i =

∥∥v(k)
i ⊙ ([1]T×1 − v

(k)
i )

∥∥2
2
. (10)

This is affected by the penalty parameter and furthermore as
found by simulations, the value of d(k)i is expected to decrease
until the estimated value of vi approaches some stationary
point, where we narrow down the solution set of vi into
the Boolean set. Each node individually decides its instant
of discretizing vi. Additionally, for the sake of stability, we
set the minimum number Kmin of iterations to be used before
discretization, explicitly, if k > Kmin and d

(k)
i > d

(k−1)
i , the

solution set of vi in node i is ready to be mapped into the
Boolean set.

Upon projecting the solutions into the Boolean set using
a hard mapping, we effectively remove the penalty term by
setting α = 0. This assumes that the soft mapping effect is not
necessary, which may lead to sub-optimal solutions instead.
Then the update of vi can be formulated as:

v
(k)
i =

∏
{0,1}

(
B(k)
i

†
yi

)
, (11)

where the projection
∏

{0,1} : R → {0, 1} rounds each entry
to 0 or 1, whichever is closer.

Having addressed the problem of Boolean constraints, we
now turn to the challenge of convergence. When applied
in bilinear optimization problems, distributed ADMM lacks
theoretical convergence guarantees and indeed, it often ex-
hibits poor convergence in real implementations, and becomes
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divergent after finding a local optimum. We observe that in the
distributed implementations, the poor convergence typically
owning to specific nodes exhibiting divergent tendency, even
if the other nodes are converging. Inspired by the iterative
water-filling algorithm of [45] that allocates more power to
better channels in support of efficient power allocation, we also
intend to focus on the strongly convergent nodes. Specifically,
we propose to curtail the updating of the masking vectors in
the poor-performance nodes, so as to concentrate the iterative
process on the convergent nodes. Note that the updating
of the global vector should continue so as to harness the
measurement results from all nodes.

To decide whether the node achieves a local minimum point
or prone to divergence, an early stopping rule is introduced,
inspired by the Residual Balancing method of the ADMM
algorithm [46]. The rule proves that the magnitude gap be-
tween the primal residual and the dual residual indicates the
convergence rate of the algorithm. The authors of [47] further
extended the method into distributed ADMM and formulated
the expressions of primal and dual residuals as follows:

∥r(k)i ∥22 = ∥x(k)
i − x̄

(k)
i ∥22, j ∈ Ni (12a)

∥s(k)i ∥22 = c2∥x̄(k)
i − x̄

(k−1)
i ∥22, j ∈ Ni (12b)

where x̄i ≜ 1
|Ni|

∑
j∈Ni

xj . The basic idea is that a larger
difference between the two magnitudes indicates the slower
convergence rate of the algorithm. When the difference is large
enough, the convergence rate becomes sufficiently slow, which
is indicative of approaching nearby a local minimum point. So
the stopping rule of vi’s update is formulated as:

∥r(k)i ∥22 ≥ δ∥s(k)i ∥22 or ∥s(k)i ∥22 ≥ δ∥r(k)i ∥22, (13)
where the value of δ is chosen by experiments. A beneficial
choice for the parameter is suggested to be δ = 10 [47] for
most situations. Additionally, for the sake of synchronization
and stability, we set a maximum number of iterations Kmax
before early stopping for the nodes.

The proposed distributed ADMM associated with value
penalty (VPD-ADMM), may thus be summarized in Algo-
rithm 1. Here x̂i and v̂i denote the updated results of the
primal variables xi,vi respectively. ai is the indicator on
the early stopping of vi while bi is the indicator on the
discretization of vi.

Through cooperation among nodes, the recovery of the
global vector x can be guaranteed with a high probability,
as illustrated by Theorem 3 of the next section. However, the
recovery accuracy of the local vector, expressed as x̂i ⊙ v̂i,
is highly dependent on that of the masking vector v̂i, which
may be curtailed prematurely and thus cannot guarantee its
accuracy. To this end, after the early stopping of vi, we de-
sign an error-mitigation procedure for improving the recovery
accuracy of the local vector and for further enhancing the
estimation of the global vector, albeit at the expense of slightly
increasing the computational cost.

B. Error Mitigation Algorithm

Although VPD-ADMM promises good performance for
the recovery of the global vector, it cannot guarantee the
estimation accuracy of the local vectors as discussed above. As

Algorithm 1: VPD-ADMM
1 for node i = 1, 2, ..., N do
2 Initialize: q(0)

i = 0, x(0)
i = 0, v(0)

i = 1, k = 0.
3 Set Indicator: ai = 1, bi = 1.

4 while not converge do
5 k = k + 1
6 for node i = 1, 2, ...N do
7 Update q

(k)
i according to (8a).

8 Update x
(k)
i according to (8b).

9 Compute∥r(k)i ∥22 and ∥s(k)i ∥22.
10 if ai = 0 or k > Kmax or ((13) is satisfied)

then
11 Stop updating vi and ai = 0.

12 else
13 Compute d

(k)
i according to (10).

14 if bi = 0 or (k ≤ Kmin and d
(k)
i > d

(k−1)
i )

then
15 Update v

(k)
i according to (11) and set

bi = 0.
16 else
17 Update v

(k)
i according to (9).

18 Transmit x(k)
i to neighboring nodes j ∈ Ni.

19 Output the estimation of global vector by x̂i and the
local vector by x̂i ⊙ v̂i for all node i.

a remedy, we propose an error-mitigation method applied by
each node after the early-stopping of the iterations recovering
the masking vector vi. The fixed estimated masking vector
is denoted by v̂i, whose diagonal representation is defined
as V̂i = diag(v̂i). Upon denoting the real masking vector
of node i by v∗

i and its corresponding diagonal matrix by
V∗

i = diag(v∗
i ), we have

yi = AiV∗
ix+wi = AiV̂ix+ Ai(V∗

i − V̂i)x+wi. (14)

Based on (14), we define βi = (V∗
i − V̂i)x as the error

associated with the inequality V∗
i ̸= V̂i. Then it may be

deduced that when the estimated entry is the correct one, i.e.,
v̂i(t) = v∗

i (t), the corresponding entry βi(t) = 0. Through
our experiments, we observed that the accuracy of v̂i can be
as high as 90%, which indicates the sparsity of the error vector
βi. Introduce zi as the local vector and we have zi = V̂ix+βi.
Then for the specific nodes which stop updating vi, the local
optimization problem can be formulated as:

min
zi,βi,xi

∥yi − Aizi∥22 + ϵ1∥zi∥1 + ϵ2∥βi∥1 + ϵ3∥xi∥1,

s.t. xi = xj , j ∈ Ni,

zi = V̂ix+ βi.
(15)

Then the local Lagrangian function for these nodes is:

Li =∥yi − Aizi∥22 + ϵ1∥zi∥1 + ϵ2∥βi∥1 + ϵ3∥xi∥1
+

ρ

2
∥zi − V̂ixi − βi∥22 + τT

i (zi − V̂ixi − βi)
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+
θ

2

∑
j∈Ni

[
∥xi − tij∥22 + ∥xj − tij∥22

]
+

∑
j∈Ni

[
ūT
ij(xi − tij) + ŭT

ij(xj − tij)
]
. (16)

Let us now define qi ≜
∑

j∈Ni
(ūij + ŭij). Upon applying

the distributed ADMM, we update the pair of dual variables
{qi, τi}, and the three primal variables {zi,βi,xi} in an
alternative manner using the following rules:

q
(k)
i = q

(k−1)
i + θ

∑
j∈Ni

(x
(k−1)
i − x

(k−1)
j ), (17a)

τ
(k)
i = τ

(k−1)
i + ρ(z

(k−1)
i − V̂ix

(k−1)
i − β

(k−1)
i ). (17b)

z
(k)
i = argmin

zi

{
Li(q

(k)
i , τ

(k)
i , zi,β

(k−1)
i ,x

(k−1)
i )

}
, (18a)

β
(k)
i = argmin

βi

{
Li(q

(k)
i , τ

(k)
i , z

(k)
i ,βi,x

(k−1)
i )

}
, (18b)

x
(k)
i = argmin

xi

{
Li(q

(k)
i , τ

(k)
i , z

(k)
i ,β

(k)
i ,xi)

}
. (18c)

Under these updating rules, the VPD-ADMM relying on error
mitigation (VPD-EM) is summarized as follows, which has
two stages in each node: the first bilinear optimization stage
and the second error-mitigation stage.

By introducing Stage Two, VPD-EM takes the estima-
tion error of the masking vectors into consideration, which
improves the recovery accuracy of the local vector. This
procedure, however, increases the computational cost, because
three sparse vectors have to be recovered in each iteration.

V. CONVERGENCE AND RECOVERY PERFORMANCE
ANALYSIS

In this section, we provide the theoretical analysis of the
convergence properties as well as compressed sensing recovery
of the VPD-ADMM algorithm. Furthermore, the convergence
guarantee of the VPD-EM algorithm is also analyzed.

We commence the analysis of the VPD-ADMM’s conver-
gence properties. To the best of our knowledge, there lack
theoretical guarantees for distributed ADMM with the two
bilinear primal variables. Moreover, the update of distributed
ADMM with two bilinear variables can be unstable and subject
to diverge as shown in Section VI-A. For this reason, we
propose an early-stopping rule to timely stop the updating of
vi. Based on the early-stopping mechanism, we consider the
convergence properties with the resultant vi at all nodes, i.e.,
the eventual convergence after all the nodes stop updating their
masking vectors. Let us define the corresponding centralized
optimization problem as:

x̂Lasso = argmin
x

{∥Y −ΦṼx∥+ λ∥x∥1}, (19)

where Y and Φ was previously defined in (3) of Section III,
with Ṽ = [VT

1 , ...,VT
N ]

T
and Vi = diag(vi).

According to Proposition 2 in [15], it is easy to deduce the
following Theorem 2 to build the equivalence between VPD-
ADMM and its centralized counterpart, which represents the
conditional convergence guarantee of the VPD-ADMM.

Algorithm 2: VPD-EM
1 for node i = 1, 2, ..., N do
2 Initialize: q(0)

i = 0, x(0)
i = 0, v(0)

i = 1, k = 0.
3 Set Indicator: bi = 1, StageOnei = True,

StageTwoi = False.

4 while not converge do
5 k = k + 1
6 for node i = 1, 2, ...N do
7 if StageOnei then
8 Update q

(k)
i according to (8a).

9 Update x
(k)
i according to (8b).

10 Compute∥r(k)i ∥22 and ∥s(k)i ∥22.
11 if k > Kmax or (13) is satisfied then
12 Stop updating vi and initialize

β
(k)
i = 0, z(k)

i = v
(k)
i ⊙ x

(k)
i + β

(k)
i

13 StageOnei = False, StageTwoi = True.

14 else
15 Compute d

(k)
i according to (10).

16 if bi = 0 or (k ≤ Kmin and
d
(k)
i > d

(k−1)
i ) then

17 Update v
(k)
i according to (11) and

set bi = 0.
18 else
19 Update v

(k)
i according to (9).

20 else
21 Update q

(k)
i , τ

(k)
i according to (17a-b).

22 Update z
(k)
i ,β

(k)
i and x

(k)
i according to

(18a-c).

23 Transmit x(k)
i to neighboring nodes j ∈ Ni.

24 Output the estimation of global vector by x̂i and the
local vector by ẑi for all node i.

Theorem 2. (Conditional Convergence Guarantee) Denote by
v̂i the final result of vi when early-stopping occurs. Then
under Assumption 1, the updated results x

(k)
i of VPD-ADMM

converge to the solution of the corresponding centralized
problem (19) as k → ∞, i.e.,

lim
k→∞

x
(k)
i = x̂Lasso,∀i ∈ V,

where Ṽ = Ṽ
△
≜ [V̂

T

1 , ..., V̂
T

N ]
T

, V̂i = diag(v̂i).

Theorem 2 illustrates that the convergence result of VPD-
ADMM is equivalent to the solution of its centralized LASSO
problem (19) under the fixed estimation of Ṽ. Moreover, it
validates the robustness and stability of the VPD-ADMM
under the proposed early-stopping rule. Building on Theorem
2, we will then formulate Theorem 3 as follows to provide its
recovery guarantee. Since we do not focus on the measurement
budget partitioning among nodes, in the following we assume
that the number of measurements M in each node is identical.
We clarify some of the definitions for a concise presentation of
Theorem 3. Let R = {rS1

, rS2
, ...rSK

}, where Sk denotes the
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k-th element in the support S(x) and rSk
denotes the number

of nodes whose corresponding entry of v̂i is 1. The smallest
value in R is denoted by Rmin. Let

C = ΦṼ
△
=


A1V̂1

...

AN V̂N

 ∈ RMN×T . (20)

Upon using the subscript S to denote the sub-matrix con-
catenating the selected columns corresponding to the sup-
port S(x), we have CS = ΦSṼ

△
S ∈ RMN×K , where

ΦS = diag({AiS}), Ṽ
△
S = [V̂

T

1S , ..., V̂
T

NS ]
T

. Similarly, we
define CSc = ΦScṼ

△
Sc , where the subscript Sc denotes the

complement of the support set.

Theorem 3. (Recovery Guarantee) Consider the linear sens-
ing model (1) and the measurement matrix Ai ∈ RM×T

with i.i.d. random Gaussian entries obeying N(0, 1/M). The
additive noise is wi ∼ N(0, σ2IM ).

Define Cmin as the smallest eigenvalue of 1
MN CT

SCS . If
Rmin ≥ 1 and the regularization parameter λ satisfies λ >

2
√

2ζ2logT
MN with ζ2 ≜ σ2 + 1

M maxi ∥(V∗
i − V̂i)x∥22, then as

MN → ∞ the following properties hold true with probability
higher than 1− 4e−c1MNλ2 → 1 for some constant c1:

a) The VPD-ADMM converges to a unique solution x̂ with
consensus achieved by nodes, i.e., x̂1 = .. = x̂N = x̂. The
solution satisfies S(x̂) ⊆ S(x) and the ℓ∞ bound

∥x̂S − xS∥∞ ≤ λ
[∥∥(CT

SCS/MN)
−1∥∥

∞ +
4ζ√
Cmin

]
= h(λ).

Furthermore, if we assume that
∥∥(CT

SCS/MN)
−1∥∥

∞ = O(1)

for simplicity and choose λ = O(
√

logT
MN ), the ℓ∞ bound can

be formulated as the ℓ2 norm expression of

∥x̂S − xS∥2 = O(λ
√
K) = O(

√
K log T

MN
).

b) If the minimum magnitude of x is bounded by |x|min >
h(λ), then we have S(x̂) = S(x) with correct sign.

Proof. See Appendix B.

To recover the global vector x, Theorem 3 gives the neces-
sary condition Rmin ≥ 1 imposed on the estimated masking
vector v̂i, requiring that the entries of v̂i corresponding to the
support S(x) should necessarily be 1 in at least one node.
Theorem 3 a) gives the upper bound of the global vector’s
ℓ∞ estimation error, which is positively correlated with the
estimation error of V̂i as indicated by the expression of ζ.
More specifically, due to the sparsity of x, the upper bound
can be further reduced to be only related to the estimation
error of V̂i within the support. Moreover, if we assume the
total power of the global vector is bounded by ∥x∥22 ≤ P ,
then the expression of ζ2 can be simplified to σ2 + P

M . Note
that we consider the Gaussian sensing matrix for this problem,
which is typical in the analysis of compressed sensing. The
performance on other sensing matrices should be considered
in the case of specific applications, since it is tightly related
to the specific structures of the matrices.

Theorem 2 and 3 show the effectiveness of the VPD-ADMM
algorithm. We now turn to the analysis of the convergence
property of the VPD-EM error-mitigation algorithm, also
considering the eventual convergence where all the nodes step
into Stage Two. We formulate Theorem 4 as follows.

Theorem 4. Provided that the stepsize of the dual variables
ρ = θ is sufficiently small. We define the Laplacian matrix of
the communication network as L ≜ D − W. If the matrix
diag({V̂i}) + L ⊗ IT has full rank, the primal and dual
variables optimized by the VPD-EM algorithm converge to an
optimal primal-dual solution for problem (15) for each node.

Proof. See Appendix C.

VI. EXPERIMENTS

In this section, we evaluate the performance of the proposed
algorithms in the multi-view sensing scenario. Consider the
linear measurement model of (1). Again, since we do not focus
on managing the measurement budget among sensors, we set
M1 = M2 = ... = MN = M for simplicity. For all of our
experiments, the entries of the sensing matrices Ai ∈ RM×T

are generated randomly according to the Gaussian distribution
N(0, 1/M). We fix the length of the global state vector to T =
500 and its sparsity to K = 50. Its support S(x) is generated
uniformly at random and the nonzero values are drawn from a
standard Gaussian distribution. The probability of blockage is
identical for all sensors and denoted by p. In the support S(x),
vi’s entries are generated using a binomial distribution with
probability 1− p. The other entries of vi outside the support
are set to 0. Then the local observable vector zi is derived
along with zi = x ⊙ vi. The additive noise wi ∈ RM is
drawn from N(0, σ2). We define SNRi ≜ 1

T ∥zi∥
2
2/σ

2, which
is identical for all sensors.

As there is no existing approach applicable to this scenario,
we consider the standard LASSO with ADMM solver and
design another two baselines for comparison:

• Standard LASSO with Distributed ADMM (D-LASSO):
Each sensor ignores the its unobservable components,
which are considered as an additive noise on the measure-
ments. The problem is formulated as standard LASSO
and solved via distributed ADMM.

• Independent Recovery and Average Scheme (IRAS):
Each sensor independently estimates the locally observ-
able vector zi using a conventional compressed sensing
algorithm (solving ℓ1 optimization). To recover the global
state vector, we assume a fusion center collecting all
the estimated ẑi. The support of the global vector is
recovered by the union of the supports of ẑi, i ∈ V ,
and its value is recovered by averaging the corresponding
non-zero values in ẑi, i ∈ V .

• Distributed Optimization with Additive Joint Sparsity
Model (D-AJSM) [20]: Assume that the missing or
blocked entries resulted from the additive noise ei, which
is sparse and has negative values of the blocked entries of
x, i.e., zi = ei+x. Then the problem is formulated into
a modified conventional JSM-1 problem, with additional
sparsity constraints subject to the locally observable vec-
tors zi. Applying the distributed algorithm proposed in
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[20] with the additional sparsity constraints, we have our
second baseline scheme, namely D-AJSM.

We define a pair of metrics for characterizing the recovery
performance: the average mean square error (AMSE) of the
global vector and AMSE of the local vector as:

Glo AMSE =
1

N

∑
i∈V

1

T
∥x̂i − x∥22,

Loc AMSE =
1

N

∑
i∈V

1

T
∥ẑi − zi∥22.

The network is generated randomly relying on the Er-
dos Renyi network model using networkx package in Python,
where the number of nodes is set to N = 6 and the probability
of connectivity is 0.8.

A. Convergence Curve

In this part we characterize the convergence curves of both
VPD-ADMM and VPD-EM algorithms and compare them to
D-AJSM. We fix the number of measurements in each node
to M = 80 and the probability of blockage in each node
to p = 0.2 using SNR = 12dB. The penalty parameter
in (9) is chosen either as α = 0.2 or α = 0.8. For a
concise representation, we plot the convergence curves of
VPD-ADMM and VPD-EM in two figures respectively, as
seen in Fig. 2.

(a) Convergence Curves of VPD-ADMM v.s. D-AJSM

(b) Convergence Curves of VPD-EM v.s. D-AJSM

Fig. 2. Convergence Curves

Observe from Fig. 2 that both of the proposed algorithms
perform better than D-AJSM w.r.t. their final convergence
results. Additionally, Fig. 2(a) shows that the selection of α
has an impact on the convergence result of VPD-ADMM,
where α = 0.2 outperforms α = 0.8 in this setting. A more

comprehensive comparison of different penalty parameters will
be given in Section VI-F. In contrast to VPD-ADMM, VPD-
EM is less sensitive to the selection of α and compensates for
the estimation error imposed by the early stopping on the local
vector, which benefits from its error-mitigation mechanism. A
comparison between the enlarged excerpts in Fig. 2(a) and (b)
indicates that VPD-EM has lower recovery error.

In addition, to represent the effectiveness and necessity
of the discretization and early-stopping rule of vi as pro-
posed in Section IV-A, the convergence curves of the pro-
posed algorithms are compared with the implementation with-
out discretization (termed as NoDiscre) and another one
with discretization but without early-stopping (termed as
NoEarlyStop). The results are shown in Fig. 3. It could be
observed that there exist two key points in the convergence
curves, one is the discretization point and another one is
the early-stopping point. Without discretization of vi deter-
mined by the metric in (10), the implementation NoDiscre
tends to become divergent since then. Meanwhile, without
the early-stopping rule decided by (13), the implementation
NoEarlyStop is divergent and unstable since then. This com-
parison also validates the effectiveness of the determination
rule in (10) and (13).

Fig. 3. Comparison of Convergence Curves

B. Performance Under Different Number of Measurements

In this subsection, we evaluate the performance of the
proposed algorithms for different number M of measurements
in each node. The two baseline methods (IRAS and D-AJSM)
described above are also evaluated for comparison. We fix
p = 0.2 and set SNR = 12dB. For each node, we generate 5
different Ai for each M , 2 different x and 4 different vi for
each x. The results are averaged over the 5×2×4 = 40 trials
and are shown in Fig. 4(a).

It can be observed from Fig. 4(a) that the recovery error
decreases upon increasing the number of measurements in
each node, both for the global and the local vectors. Among
all the five algorithms, IRAS has the worst recovery accuracy
when M is small, which is resulted from its independent
estimation in each node, i.e., without making any use of the
measurements gleaned from other nodes. This highlights the
effectiveness of the cooperation among nodes. On the other
hand, the standard LASSO shows poor performance when
M is large, especially for the estimation of local vector.
This is because that the standard LASSO simply ignores the
blocked components without considering the individual local
vector in each sensor. Thus D-LASSO cannot be applied
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Fig. 4. AMSE under different conditions

in effectively estimating the local vector. Additionally, the
proposed algorithms have better performance than the D-
AJSM as also shown in Section VI-A. The main reason lies
in the different joint sparsity models of D-AJSM and the
proposed FJSM. By exploiting a more explicit relationship
between the local observable vector zi and the global vector
x, FJSM actually puts more constraints on the data space of
zi, compared with the simple summation of two independent
variables ei and x in D-AJSM. Thus, the proposed algorithms
are more efficient than D-AJSM, while D-AJSM needs more
measurements to recover the vectors.

Meanwhile, compared to VPD-ADMM, VPD-EM shows a
better performance, which is notable w.r.t. the local recovery,
but not so pronounced w.r.t. the global recovery. The reason
lies in the error-mitigation mechanism, which is designed
mainly for reducing the local estimation error. Furthermore,
both Theorem 2 and 3 guarantee a good recovery of the global
vector for VPD-ADMM, even under inaccurate v̂i. Last but
not least, the performance difference between VPD-ADMM
and VPD-EM becomes smaller upon increasing M , which is
as expected because a larger M gives a more accurate v̂i for
VPD-ADMM and the estimation error becomes smaller.

C. Performance Under Different Probability of Blockage

In this subsection, we compare the recovery performance of
the four algorithms for different probability of blockage p. We
fix the number of measurements in each node as M = 100
and set SNR = 12dB. We generate 5 different Ai, 2 different
x and 4 different vi for each x and each p. The results are
averaged over 40 trials and shown in Fig. 4(b).

Fig. 4(b) gives us valuable insights. To begin with, we
compare the performance of the four algorithms in Fig. 4(b).
It can be seen that in the cases of 0 < p < 0.7, both the VPD-
ADMM and VPD-EM outperform the other three methods,

and as p increases, the two proposed algorithms have more
remarkable advantages over the D-AJSM and D-LASSO. In
fact, even under the severe blockage condition where p = 0.5,
both of the proposed algorithms have remarkable recovery per-
formance. This indicates that our proposed methods are more
efficient and stable in hostile blocking scenario than D-AJSM
or D-LASSO. This accrues from the specifically designed
FJSM, resulting in better exploitation of the measurements
in each node. Furthermore, similar to the results and analysis
of Subsection VI-B, VPD-EM has lower estimation error than
VPD-ADMM.

Secondly, we now consider the specific trends of the dif-
ferent algorithms. In Fig. 4(b), the curves of IRAS show
different trends from the other four algorithms. This is because
the IRAS recovers the local vector independently in each
node, and the local vector’s sparsity increases with larger p,
hence resulting in more accurate estimation under the same
M . Thus the global vector, estimated by the union of all
the nodes’ recovered local vector, has lower recovery error
for larger p. Under hostile blockage conditions, where the
observable entries of nodes have limited overlap and the
information gleaned from other nodes is not useful enough
for local estimation, the individual recovery based IRAS
naturally has better performance than the collaborative ones.
In the following proposition, we theoretically formulate the
conditions, where the independent recovery outperforms the
proposed algorithms w.r.t. the upper bound of the recovery
error, providing guidance for selecting the most appropriate
algorithm under realistic conditions.

Proposition 2. When the probability of blockage is higher
than 1− c·ζ2

σ2N , i.e., 1− c·ζ2

σ2N ≤ p ≤ 1− 1
N , the upper bound of

the recovery error of IRAS is smaller than that of the proposed
collaborative methods. Here ζ, σ are defined in Theorem 3,
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and c is a constant concerned with the sensing matrix.

Proof. See Appendix D.

On the other hand, Fig. 4(b) shows that all of the other
four algorithms exhibit increased recovery error for the global
vector for larger p. This can be understood by Proposition 1 or
from the perspective of the amount of information available.
As p increases, under the same M in nodes, each entry of
the global vector has a reduced number of observations, hence
leading to increased errors. Compared to D-AJSM, as shown in
Fig. 4(b), both VPD-ADMM and VPD-EM exhibit a relatively
flat trend under larger p, while D-AJSM has escalating errors.

Last but not least, we can observe that under the perfectly
non-blocked scenario of p = 0, D-AJSM and D-LASSO out-
perform our two proposed methods. This is because D-AJSM
is based on the additive model and the recovery can be readily
accomplished with the additive noise equal to 0. Meanwhile,
when p = 0, the problem degrades into the standard distributed
LASSO problem with each sensor observing the global vector,
which can be efficiently solved by D-LASSO. while the pair
of proposed methods are specifically designed for scenarios of
missing entries and the estimation error of vi leads to increased
recovery error.

D. Performance Under Different SNRs

In this subsection, we fix M = 100 and p = 0.3, while
the SNR is set to [0, 5, 10, 15, 20, 25] in dB. The results are
averaged over 40 trials and are shown in Fig. 4(c).

Observe from Fig. 4(c) that the estimation error reduces
upon increasing the SNR. As shown in Fig. 4(c), in the case
of SNR = 0, compared to D-AJSM, VPD-ADMM has a higher
estimation error w.r.t. the local vectors, which is caused by the
inaccurate estimation of the masking vectors at low SNRs. The
error-mitigation method VPD-EM overcomes this drawback
and attains better performance than D-AJSM. Additionally,
as the SNR increases, the estimation errors of IRAS, D-
AJSM and D-LASSO converge to higher values than those
of the proposed algorithms. This is because IRAS recovers
the vector in each node independently, while D-AJSM does
not fully exploit the measurements among nodes due to the
additive joint sparsity model. D-LASSO treats the blockage
as measurement noise, which increases the power of noise
and cannot make good estimation of the local vector. Thus
the three baseline methods are inefficient for this multi-view
scenario.

E. Performance Under Different Number of Sensors

In this part, we evaluate the performance under different
number of sensors, to show their effectiveness under larger
scale of network. Specifically, we fix the number of measure-
ments in each sensor as M = 60 and the connectivity proba-
bility between sensors as 0.5. The probability of blockage is
fixed as p = 0.4 and SNR = 12dB. The network topology
is generated using the same way as illustrated before and the
results after averaging 40 trials are shown as Fig. 4(d).

As shown in Fig. 4(d), with the number of sensors in-
creasing, the collaborative methods shows better performance
while the independent recovery cannot benefit from the larger

number of sensors. Meanwhile, compared with the baseline
methods, the proposed methods shows a greater advantage
with more sensors. Moreover, as N increases, the effectiveness
of VPD-EM reduces, due to more accurate estimation of the
masking vectors in VPD-ADMM.

F. Impact of the Penalty Term

Before mapping the estimated masking vectors into the
Boolean set, the penalty term gi(vi) is added in the updating
to make the non-integer values more costly. As discussed in
Section IV-A, the effect of the penalty term may be viewed
as a soft mapping towards the Boolean set {0, 1}, accelerating
the process for vi to approximate the Boolean distribution. As
it transpires from our analysis, a larger value of α leads to
faster convergence. However, the analysis of the penalty term
on the final estimation accuracy remains an open problem, but
we evaluate its impact experimentally in this subsection.

We select the penalty parameter α from the set of
{0, 0.3, 0.6, 0.9, 0.99}, where the last term is added for consid-
ering α < 1. Let SNR = 10dB. We compare the resultant re-
covery errors of VPD-ADMM under these penalty parameters,
given different number of measurements M . We set p = 0.2
and p = 0.4 respectively. The results are averaged over 40
trials and are shown in Table I and II.

We can observe from Table I that the gain obtained by
the penalty term reduces for larger M . Specifically, when
M = 60, the reduction of the estimation error is approximately
4 × 10−3 for the global vector and 6 × 10−3 for the local
vector. However, the reduction for M = 90 is as small as
0.6 × 10−3. This is because with more measurements, the
calculated values of vi are located nearer to the boolean set
with higher probability and thus the benefit of the penalty term
reduces. Moreover, we can see that the best penalty parameter
reduces upon increasing M . For example, α = 0.9 performs
best for M = 60 and 70, while α = 0.6 for M = 80. It is
indeed expected since having more measurements diminishes
the benefit of penalty term, as mentioned before, and a smaller
penalty parameter works better with less bias.

Secondly, comparing Table I and II, we can observe that the
best-performed penalty parameter reduces with larger p. This
is because a larger p indicates a larger sparsity of the local
vector, whose recovery accuracy increases and the estimated
masking vectors are closer to the boolean set. As analyzed
before, a smaller α works better in such conditions. In general,
the results show that the penalty term is more beneficial in the
condition of fewer measurements or smaller blockage, which
also gives us insights about selecting the penalty parameter
α. As M or p increases, α is suggested to be reduced. When
M or p is large enough, the penalty term can be removed by
letting α = 0.

G. Performance Under Unbalanced Number of Measurements
Among Sensors

The above simulations consider the simple condition where
the number of measurements is equal among sensors. To
provide a comprehensive evaluation, we investigate the perfor-
mance of the algorithms under unbalanced number of measure-
ments. Specifically, for each node i ∈ V , it randomly chooses
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TABLE I. Recovery AMSE comparison under p = 0.2 (10−3)

M = 60 M = 70 M = 80 M = 90
α Glo AMSE Loc AMSE Glo AMSE Loc AMSE Glo AMSE Loc AMSE Glo AMSE Loc AMSE
0 19.08 26.57 13.26 17.92 7.31 7.15 6.47 4.70
0.3 19.64 26.38 12.73 16.52 6.97 6.32 5.88 4.22
0.6 18.78 23.98 10.66 13.98 7.66 6.87 6.76 4.45
0.9 15.49 20.08 10.44 14.09 7.66 7.61 8.22 6.08
0.99 15.93 21.42 10.42 13.80 9.08 8.01 8.43 6.13

TABLE II. Recovery AMSE comparison under p = 0.4 (10−3)

M = 60 M = 70 M = 80 M = 90
α Glo AMSE Loc AMSE Glo AMSE Loc AMSE Glo AMSE Loc AMSE Glo AMSE Loc AMSE
0 29.58 24.74 18.34 15.99 11.28 7.34 9.00 4.59
0.3 28.31 23.08 17.80 15.92 10.85 6.55 10.07 5.08
0.6 27.10 22.56 19.02 14.28 12.68 7.45 10.82 5.40
0.9 29.18 20.27 19.38 13.84 15.04 9.14 13.15 7.04
0.99 28.86 23.05 20.43 15.08 14.92 9.62 14.78 7.91

its Mi from the Number set [50, 60, 70, 80, 90, 100] for 5 times
and generates 5 different Ai. The probability of blockage is
set to p = 0.2, equal for all sensors and we set SNR = 12dB.
The results are averaged over 40 trailswith 5 different Ai, 2
different x and 4 different vi, and are shown in Table III. Table
III verifies the effectiveness and efficiency of the proposed
algorithms under unbalanced number of measurement among
sensors.

TABLE III. AMSE Comparison Under Unbalanced Mi (10−2)

IRAS D-LASSO D-AJSM VPD-ADMM VPD-EM
Glo 9.18 3.37 3.00 0.89 0.84
Loc 6.40 3.53 3.10 0.71 0.64

Additionally, the measurement budget among sensors is an-
other important problem to be considered, where Mi could be
unbalanced among sensors. The measurement budget should
be highly related to the sensing capability of each sensor, as
proved rigorously in Theorem 1, i.e., the number of measure-
ments required for each sensor must account for the observable
features unique to that sensor. To give a simple yet effective
investigation of this rule, we simulate on an extreme condition.
Specifically, we suppose that there are a certain number of
indices in x only observable to sensor 0, and this number
is denoted by |Π({0})| as defined in Section III. We set the
number as 5, 15, 20, 25 respectively, and simulate the recovery
results under them. Meanwhile, to ensure that the recovery
performance reflects the impact of M0, we set Mi = 100,
enough for other sensors. The averaged recovery accuracy of
the global vector over 40 trails is shown in Fig. 5.

Fig. 5. AMSE under different M0

Fig. 5 shows that the number of measurements in sensor
0 is vital for the recovery performance of the global vector,

resulted from the fact that there are some indices in x only
observable to it. Moreover, as |Π({0})| becomes larger, more
measurements are required for sensor 0, which is consistent
with the conclusion in Theorem 1.

H. Performance Enhancement Versus Run time

Although the proposed algorithms show better recovery
performance compared with the standard method D-LASSO,
they are more complex on computational cost Jwith two primal
variables to update. Thus, in the part, we compare the recovery
error of the D-LASSO and the proposed algorithms versus
run time. Specifically, we consider N = 6, p = 0.2 and
SNR = 12dB as the setting in Section VI-A. We set M = 80
and M = 160 respectively to see the impact of M .

After one iteration of local update, each node transmits
the updated results of xi to its neighboring nodes. Since
such transmission mechanism is the same for the algorithms,
including D-LASSO and our proposed algorithms, we fairly
ignore the transmission/communication time and only consider
the computation time. Besides, for each distributed algorithm,
we consider the synchronous setting. Thus, in each iteration,
we take the time consumption of the slowest node as the
time cost in this iteration. The algorithms are implemented
in Python 2.7 with Intel Core 15-9400F CPU with 2.9Hz and
the recovery error comparisons versus run time are shown in
Fig. 6 and Fig. 7.

(a) Glo AMSE versus run time (b) Loc AMSE versus run time

Fig. 6. Performance comparison versus run time (M=80)

It can be observed from Fig. 6 and 7 that the two proposed
algorithms are more efficient than the conventional D-LASSO
method which treats the blocked components as measurement
noise. Moreover, as the number of measurements increases,
all of the algorithms take more time in each iteration, and
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(a) Glo AMSE versus run time (b) Loc AMSE versus run time

Fig. 7. Performance comparison versus run time (M=160)

the enhancement of VPD-EM reduces compared with VPD-
ADMM, due to more accurate estimation of vi.

VII. CONCLUSION

Novel DCS solutions have been conceived for recovering
sparse vectors from multi-view compressed sensing measure-
ments. To tackle the problem, a distributed recovery algorithm
termed as VPD-ADMM was proposed, where each node
alternately updates the local masking vector and the common
global vector. The estimated global vector is shared among
neighboring nodes over the network for achieving consen-
sus. By appropriately curtailing the update of the masking
vectors, the algorithm guarantees convergence, as shown by
our theoretical analysis. However, this early termination way
increases the estimation error of the masking vectors, hence
VPD-EM was specifically designed for the estimation error of
the local vectors and the associated convergence analysis was
also provided. Compared to the independent recovery in each
node and to another baseline method relying on the additive
joint sparsity model, the proposed algorithms make better use
of the measurements in each node and are more efficient in
the specific DCS problem considered. Numerical experiments
validate the superiority of our algorithms.

There are numerous open research topics, such as the study
of the measurement budgets sharing among sensors, taking
into consideration the number of observable entries determined
by sensing ability of each sensor. Moreover, to achieve the
best performance of the sensing system, an integrated pro-
cedure should be designed for striking tradeoff among the
sensing, computation and communication cost. Furthermore, it
is worthwhile applying the proposed algorithms in real sensing
problems and further improving the algorithms by exploiting
specific scenarios.

APPENDIX

A. Proof of Theorem 1

Proof. We prove each part of Theorem 1 sequentially, which
is partially inspired by [4].

a) Since Y = ΦP̃θ, given known P̃, there sufficiently exists
a unique solution θ̂ ∈ RK for this equation, as long as the
rank of ΦP̃ is K. So in the following we only have to prove
the K-rank nature of ΦP̃. Define

Υ = ΦP =


A1P1

...
ANPN

 ∈ RM̃×K .

Naturally, we have rank(Υ) ≤ K. For each node i, we select
mi arbitrary rows from AiPi so that∑

i∈Γ

mi = |Π(Γ,P)|, mi ≤ Mi

for all the subset of nodes Γ ⊆ V . This process is guar-
anteed by the condition (4). Then there exists a mapping
C : {1, 2, ..,K} → V , assigning each element of the support
to one of the sensors. Then we concatenate these rows and
construct another matrix Υ1. Since Υ1 is constructed by
selecting certain rows of Υ, we have rank(Υ) ≥ rank(Υ1).

Now we reordering the columns of Υ1 in the following
way. Let Υ1(k) denote the k-th column of Υ1. Following we
introduce another matrix Υ2 and for better illustration, we
represent Algorithm 3 to show the method to construct it.

Algorithm 3: Construction of Υ2

1 Initialize Υ2 = [],Ψ = {1, 2, ...,K}.
2 for j = 1, ..., N do
3 for k in Ψ do
4 if C(k) = j then
5 Ψ← Ψ− {k},
6 Υ2 ← [Υ2,Υ1(k)].

7 Output Υ2.

It then follows that rank(Υ1) = rank(Υ2). We then observe
three properties of Υ2. Each entry is either 0 or a Gaussian
random variable; All the Gaussian random variables are i.i.d.;
All diagonal entries are Gaussian random variables. The first
two properties hold true naturally with the construction of the
matrix. The last property is confirmed because each diagonal
entry of Υ2 is an entry of some k-th column of AjPj , where
we have C(k) = j according to the construction of Υ2, and
thus it is nonzero and remains Gaussian. Given these three
properties, according to Lemma 3 of [4], Υ2 is of full rank,
i.e., rank(Υ1) = rank(Υ2) = K. So we have rank(Υ) ≥
rank(Υ1) = K and rank(Υ) = K.

b) The unknown P̃ and the corresponding vector θ can
be recovered using the algorithm of Appendix D in [4].
The main idea is to add a step of cross-validation, which
takes the last measurement of each sensor and assembles the
N measurements as a test set for validation. We refer the
motivated readers to Appendix D in [4] for the detailed proof.
This algorithm is akin to ℓ0 norm minimization apart from
an additional validation step, both of which are intractable in
practical implementations and here they are only applied for
the analysis of measurement bounds.

c) In this part, we prove that θ cannot be uniquely recovered
under the condition of (6). This is arranged by showing that
the linear equations Y = ΦP̃θ is under-determined even for a
known P̃. Equally, we prove that rank(Υ) < K.

Assume that Γ ⊆ V is a set which satisfies (6). We then
define Υ1 as the concatenation of |Π(Γ, P̃)| columns selected
from Υ, each of which corresponds to entries of Π(Γ, P̃). To
prove that rank(Υ) < K, we can equally prove that Υ is
not of full column rank. Since Υ1 is constructed by selecting
columns from Υ, we can prove that Υ is not of full column
rank by showing that the columns of Υ1 cannot be linearly
independent.
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By exploiting the construction of Υ1, we can formally show
that the rows corresponding to nodes j, j /∈ Γ have all zero
entries since these nodes cannot observe the indices in Π(Γ, P̃)
according to its definition. So the matrix Υ1 has a total of∑

i∈Γ Mi nonzero rows and |Π(Γ, P̃)| columns. The condition
(6) shows that we have rank(Υ1) ≤

∑
i∈Γ Mi < |v(Γ, P̃)|.

Thus, the |Π(Γ, P̃)| columns of Υ1 cannot be linearly inde-
pendent, which proves that Υ is not of full column rank, i.e.,
we have rank(Υ) < K.

Note that the authors in [3, 39, 48] also gave analysis on the
ℓ0 norm recovery of sparse vector, which are based on other
analytical methods or conditions. We refer readers to these
works for further interest.

B. Proof of Theorem 3

Proof. After terminating the update of vi, we have v̂i as
the estimation result. Upon defining V̂i = diag(v̂i), the
measurement model in node i can be written as:

yi = AiV∗
ix+wi = AiV̂ix+ Ai(V∗

i − V̂i)x+wi. (21)
Let us now define the sum of the last two terms in (21) as

w̃i ≜ Ai(V∗
i − V̂i)x+wi

=

T∑
t=1

Ai,(:,t)(v
∗
i (t)− v̂i(t))x(t) +wi,

(22)

where Ai,(:,t) denotes the t-th column of Ai.
Define furthermore the centralized measurement model as

the stacked measurements of all the nodes as:

Y ≜ ΦṼ
∗
x+ W = ΦṼ

△
x+Φ(Ṽ

∗ − Ṽ
△
)x+ W, (23)

where W = [wT
1 , ...,w

T
N ]

T denotes the stacked noise vector.
Similarly to (22), we define

W̃ ≜ Φ(Ṽ
∗ − Ṽ

△
)x+ W.

Then it may be readily shown that W̃ = [w̃T
1 , ..., w̃

T
N ]T .

The proof of the theorem is built on Theorem 1 of [49].
After the termination of vi’s update, we treat C = ΦṼ

△

defined in (20) as the new measurement matrix along with
the fixed estimated v̂i. Note that the matrix C is determined
after the termination of vi’s update, and it contains some sub-
matrix AiV̂i having some all-zero columns, corresponding to
the diagonal zero values estimated in V̂i. So we harness the
deterministic analysis of Theorem 1 in [49] and prove the
theory asymptotically along with MN → ∞, following three
steps:

• Firstly, by treating the estimation error Φ(Ṽ
∗ − Ṽ

△
)x as

noise, we prove that W̃ is sub-Gaussian satisfying the
distribution of noise in Theorem 1 of [49].

• Secondly, we prove the three necessary conditions of The-
orem 1 in [49] are satisfied in this scenario and thus can
derive the theorem for the centralized implementation.

• Lastly, according to Theorem 2, we arrive at the same
converged solution as the VPD-ADMM algorithm.

We first derive the sub-Gaussian distribution of w̃i, where
w̃i is the sum of T + 1 M -length vectors, where the first T
vectors are denoted by

ai,t = Ai,(:,t)

[
v∗
i (t)− v̂i(t)

]
x(t), t = 1, ..., T

and the last vector is the noise vector wi ∼ N(0, σ2).
Since each entry in Ai obeys N(0, 1/M), each entry in ai,t

obeys N(0, [(v∗
i (t)− v̂i(t))x(t)]

2
/M) with fixed v̂i(t), where

x(t) can be treated as some unknown but fixed values. The
zero-mean Gaussian variable with variance δ2 is sub-Gaussian
with δ. Then according to Lemma 1.7 of [50], w̃i is also sub-
Gaussian along with

T∑
t=1

1

M
[(v∗

i (t)− v̂i(t))x(t)]
2
+σ2 = σ2+

1

M
∥(V∗

i − V̂i)x∥22.

Define ξ2i = σ2 + 1
M ∥(V∗

i − V̂i)x∥22. Then according to the
definition of sub-Gaussian distribution in [49], each entry z in
w̃i satisfies

E[exp(az)] ≤ exp[a2ξ2i /2], for all a ∈ R. (24)

For each w̃i, its entries satisfy the property (24). Hence for
each entry z in W̃, we have:

E[exp(az)] ≤ exp[a2ζ2/2], for all a ∈ R,

where ζ2 ≜ maxi ξi = σ2 + 1
M maxi ∥(V∗

i − V̂i)x∥22. Then it
transpires that each entry in W̃ is sub-Gaussian with ζ2.

Secondly, we prove that the three conditions of Theorem 1
in [49] are satisfied in this scenario. When the total number
of measurements in the network is MN → ∞, we have:

|||CT
ScCS(CT

SCS)
−1|||∞ ≤ (1− γ), (25)

with probability one and γ = 1. For an m× n matrix O, this
norm is given by |||O|||∞ = maxi=1,...,m

∑n
j=1 |Oi,j |. This is

because as MN → ∞, we have CT
ScCS → 0 with probability

one as a result of the i.i.d. Gaussian random Ai and the linear
sparsity.

Furthermore, if CT
SCS ∈ RK×K has K nonzero eigenval-

ues, Condition 2 of [49], namely,

Λmin
( 1

MN
CT

SCS

)
≥ Cmin, (26)

associated with Cmin > 0 is satisfied. We will prove that the
matrix CS ∈ RMN×K is of full column rank, when Rmin ≥ 1,
which means that CS has K nonzero singular values and
equally means that CT

SCS has K nonzero eigenvalues. We
prove this in a similar way to the proof of Theorem 1. Let us
now construct an auxiliary matrix C′

S in the following way.
For k = 1, ...K, select an arbitrary row from the i-th submatrix
of CS (corresponding to node i), where v̂i has the entry of
1 corresponding to k. This process is guaranteed under the
condition Rmin ≥ 1. Then the diagonal entries of C′

S are
non-zero, and the other two properties in Lemma 3 of [4] are
satisfied naturally. According to Lemma 3 of [4], the matrix
C′

S is of full rank and thus rank(CS) = K.
Thirdly, when v̂i(t) = 1 for all t ∈ Sc, we have

∥C:,j∥22 = ∥A1,(:,j)∥22 + ...+ ∥AN,(:,j)∥22,

for all j ∈ Sc. Based on the law of large numbers and
the variance 1

M of Ai’s entries, we have 1
MN ∥C:,j∥22 →

1
M with probability one as MN → ∞. Then we have
(MN)−1/2 maxj∈Sc ∥C:,j∥ → M−1/2 < 1 with probability
one. In any other cases where v̂i(t) = v∗

i (t) = 0, t ∈ Sc, the
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t-th column of Ai is all-zero and we have 1
MN ∥C:,j∥22 < 1

M .
Thus, when MN → ∞, with probability one, we have

(MN)−1/2 max
j∈Sc

∥C:,j∥ < 1. (27)

According to the sub-Gaussian distribution of W̃ and (25-
27), the conditions of Theorem 1 in [49] are all satisfied. Let
us now consider the recovery results of the centralized model
(23), which is the solution of the Lasso problem in (19). By
exploiting the equivalence of the distributed implementation
and its centralized counterpart given in Theorem 2, Theorem
3 is proved.

C. Proof of Theorem 4

Proof. We rely on Theorem 3.1 of [33], which outlines the
convergence properties of the ADMM associated with more
than two blocks of functions or variables. According to
Theorem 3.1 of [33], the variables {qi, τi} and {zi,βi,xi}
converge to an optimal primal-dual solution, if the assumptions
(a)-(g) in [33] hold true. Below we will modify the problem
(15) for all nodes as in [33] and then show that the assumptions
(a)-(g) in [33] are satisfied in the modified problem.

Let us define the vectors z̃ = [zT
1 , ...,z

T
N ], β̃ =

[βT
1 , ...,β

T
N ], x̃ = [xT

1 , ...,x
T
N ] and functions:

f1(z̃) =

N∑
i=1

∥yi − Aizi∥22 + ϵ1∥zi∥1,

f2(β̃) =

N∑
i=1

ϵ2∥βi∥1, f3(x̃) =

N∑
i=1

ϵ3∥xi∥3.

Then the sum of (15) for all nodes can be recast as follows:

min
z̃,β̃,x̃

f1(z̃) + f2(β̃) + f3(x̃),

s.t. E1(z̃) + E2(β̃) + E3(x̃) = 0(N+D)T×1,
(28)

where D = |E| is the number of edges in the network G. Since
the graph is undirected, having D constraints is sufficient to
describe all of the consensus constraints xi = xj , j ∈ Ni.
The matrices E1,E2,E3 are defined as follows to represent
the constraints:

E1 = [ĚT
1 , 0TNT×DT ]

T ,E2 = [ĚT
2 , 0T

NT×DT ]
T ,E3 = [ĚT

3 ,BT ]T .

Here Ě1 is an NT ×NT identity matrix, i.e., Ě1 = INT and
Ě2 = −Ě1. Ě3 = −diag({V̂i}) ∈ RNT×NT , while B is the
DT ×NT matrix defined as

B = [BT
1,: · · ·BT

D,:]
T ⊗ IT ,

where Bt,: is the t-th row of B, associated with a single edge
of the network. In Bt,:, corresponding to the edge εij , i < j,
its i-th entry is set to 1 and j-th entry is −1. The definition
of B describes the consensus constraints of x among nodes.

Then we only have to prove that problem (28) satisfies
the Assumptions (a)-(g) in [33]. A similar proof was adopted
in [20]. With the formulation of (28), we omit the proof of
assumptions (a)-(e) and (g), which are naturally satisfied and
are also discussed in the Appendix of [20]. We now turn to
prove (f) Each submatrix Ek has full column rank.

According to the definition of E1 and E2, it may be readily
seen that they both have full column rank. Based on the
definition of E3, we have

ET
3 E3 =

[
ĚT
3 ,BT

]
·

[
Ě3

B

]
= ĚT

3 Ě3 + BT B

= diag({V̂i}) + (D − W)⊗ IT
= diag({V̂i}) + L ⊗ IT .

Since the matrix diag({V̂i}) + L ⊗ IT is of full rank
according to the condition, it is easy to show that E3 is of
full column rank.

D. Proof of Proposition 2

Proof. According to Theorem 3, we assume that∥∥(CT
SCS/MN)

−1∥∥
∞ ≤ c1 for simplicity and set its

regularization as λ1 then we have

∥x̂S,1 − xS∥2 ≤ λ1

√
K
[
c1 +

4ζ√
Cmin,1

]
.

Here the subscript 1 indicates the recovery result and relative
parameters of VPD-ADMM.

On the other hand, since IRAS works by taking average of
the estimated non-zero values, its recovery performance can
be bounded by that of the single node whose recovery error
is the largest among nodes. Thus we can apply Theorem 1 in
[49] to analyze IRAS, where the sparsity of signal is K(1 −
p) for the local node. We use Ai,S to represent the matrix
composed of the selected columns from the sensing matrix Ai

corresponding to the support set S(zi), for an arbitrary node
i. We assume that for all nodes i ∈ V , there exists a constant
c2 such that

max
i∈V

∥∥(AT
i,SAi,s/M)

−1∥∥
∞ ≤ c2.

If we choose the regularization λ2, according to Theorem 1
in [49], we have

∥x̂S,2 − xS∥2 ≤ λ2

√
K(1− p)

[
c2 +

4σ√
Cmin,2

]
,

where the subscript 2 indicates the recovery result of IRAS.
Here Cmin,2 denotes the minimum value of 1

M AT
i,SAi,S for

all node i.
Note that λ1 > 2

√
2ζ2logT
MN according to Theorem 3 and

λ2 > 2
√

2σ2logT
M . We choose λ1 = c3

√
ζ2logT
MN and λ2 =

c3

√
σ2logT

M where c3 > 2
√
2. Then it may be readily deduced

that when

σ2 × (1− p)× log T ≤ c× ζ2 log T

N
,

i.e., p ≥ 1− c·ζ2

σ2N , the upper bound of ∥x̂S,2−xS∥22 is smaller
than that of ∥x̂S,1−xS∥22. Here c is a constant concerned with
the sensing matrix and it can be explicitly expressed as

c =
c1 +

4ζ√
Cmin,1

c2 +
4σ√

Cmin,2

.
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