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Abstract—In this paper, we consider a multi-view compressed
sensing problem, where each sensor can only obtain a partial
view of the global sparse vector. Here the partial view means
that some arbitrary and unknown indices of the global vector
are unobservable to that sensor and do not contribute to the
measurement outputs. The sensors aim to collaboratively recover
the global state vector in a decentralized manner. We formulate
this recovery problem as a bilinear optimization problem relying
on a factored joint sparsity model (FJSM), in which the vari-
ables are factorized into a node-specific sparse local masking
vector and the desired common sparse global vector. We first
theoretically analyze the general conditions guaranteeing the
global vector’s successful recovery. Then we propose a novel in-
network algorithm based on the powerful distributed alternating
direction method of multipliers (ADMM), which can reconstruct
the vectors and achieve consensus among nodes concerning the
estimation of the global vector. Specifically, each node alternately
updates the common global vector and its local masking vector,
and then it transfers the estimated global vector to its neighboring
nodes for further updates. To avoid potential divergence of the
iterative algorithm, we propose an early stopping rule for the
estimation of the local masking vectors and further conceive an
estimation error-mitigation algorithm. The convergence of the
proposed algorithms is theoretically proved. Finally, extensive
simulations validate their excellent performance both in terms of
the convergence and recovery accuracy.

Index Terms—Sensor network, multi-view sparse vector re-
covery, distributed compressed sensing, distributed optimization,
alternating direction method of multipliers (ADMM).

I. INTRODUCTION

Emerging as a significant theme in the forthcoming B5G and
6G era, Sensing is envisioned as an enabler for learning and
building intelligence in the future smart world [1, 2]. Among
the technological methods for sensing, compressed sensing
(CS) is an efficient framework successfully applied in sensing
scenarios utilizing sparse characteristics [3]. Built on CS and
relying on the increasing storage and computational capacity
of devices, distributed compressed sensing (DCS) [4] is thus
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expected to implement robust large-scale sensing with sensory
data collected by widely-distributed sensors.

In numerous sensing scenarios, multiple sensors cooperate
to recover the global information, which, as shown in Fig. 1,
can be interpreted as the global environment [5–7], the 3D
sculpture or architecture [8, 9], as well as the global state
vector [10, 11]. Through discretizing the environment scatters
or 3D objective into cloud points, all of the three scenarios
can be described by global sparse vectors. However, due to
the occlusion effect and blind spots resulted from sensors’
geographic locations, or the limited sensing capabilities re-
sulted from energy cost, some arbitrary, unknown and different
components of the global vector may be missing or invisible
for them. Consequently, each sensor only has access to a
partial view of the global sparse vector. When there is a lack
of a fusion center which may demand larger communication
and computing power, it is appealing to design an in-network
recovery algorithm for the sensors, so that they can efficiently
and collaboratively recover the global vector relying only on
their partial-view measurements and necessary information
exchange within their neighborhoods.

This in-network recovery problem can be generally mod-
eled as a distributed compressed sensing problem, where the
desired global information has certain structural sparsity and
the observing nodes conduct independent sensing. The pivotal
challenges are threefold, i.e., how to fully model the intrinsic
sparsity among sensors; how to carry out the measurement;
and how to design the recovery problem. An abundance of
authors studied the DCS problem in the literature [4, 12–27].
As a meaningful approach to address the above challenges,
Baron et. al. generalized the distributed compressed sensing
process to the scenario in which the observed vectors of
different nodes share a common component, namely the so-
called Joint Sparsity Model 1 (JSM1). An alternative to that in
which they have the same sparse support was termed as the so-
called JSM2 [4]. Both centralized and decentralized recovery
algorithms have been developed. The centralized schemes
assume that a fusion center (FC) collects the measurement
results as well as the sensing matrices from all the nodes,
and based on these the center rebuilds the vectors. In a
specific case where all the nodes share the same sensing
matrix, the problem can be cast as the multiple measurement
vector (MMV) problem [12–14]. On the other hand, the
decentralized counterparts have no fusion center. Hence, the
neighboring nodes exchange their necessary messages over
the network collaboratively rebuilding the vectors, which is
more robust to the nodes’ failures. These approaches can be
basically classified into three types: convex optimization [15–
21], greedy pursuit [22–24] and Bayesian inference [25–27].

Among them, the optimization-based methods are popu-
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Fig. 1. Illustration of three typical application scenarios with multi-view compressed sensing: (a) is a typical environment sensing problem in
Integrated Sensing and Communications (ISAC), where each device (such as base station in [5] or radar system in [6]) obtains observations of
the environment through wave propagation. (b) describes a 3D-Imaging problem where each sensor (like sonar system [8] or computational
imaging system [9]) measures the objective within its partial view. (c) is a smart industrial IoT system, where distributed sensors monitor
the global state space via compressed measurements [10, 11]. In all these scenarios, each client could only observe a partial view of the
global vector due to geographic locations and the blockage as in (a) and (b), as well as the limited energy and sensing capabilities as in (c).

lar as a benefit of their efficient tractability and theoretical
guarantees. Mateos et al. solved the reconstruction problem
by formulating it as a distributed LASSO problem [15].
Explicitly, upon applying the distributed alternating direction
method of multipliers (ADMM), Mateos et al. demonstrated
the equivalence of the distributed algorithm and its central-
ized counterpart in terms of their convergence. As a further
advance, a communication-efficient implementation of dis-
tributed ADMM, termed as D-ADMM, was proposed in [16]
to recover the sparse vectors, which was further extended to
other separable optimization objectives in [17]. Matamoros et
al. applied distributed ADMM to solve the JSM1 problem in
DCS, quantifying the efficiency of ADMM for the recovery
of both the common and individual components [20].

Although certain differences of node observations have
been considered in the above treatises, each of the nodes’
measurements was assumed to be complete, i.e. it included
contributions from all the different indices of the desired sparse
vector. Thus, the above methods cannot deal with the incom-
plete observations in the sensor network. Explicitly, there is
a paucity of literature on the general multi-view compressed
sensing problem. Although in [28] the authors considered the
case where each node has only partial components of the
global variable, the observable components’ indices are treated
as fully known. However, in practice, the sensors may be
randomly distributed or could be mobile. Consequently, the
observable indices are generally unknown and they have to
be estimated jointly in the recovery process. Authors in [5]
considered the multi-view sensing problem while the recovery
was implemented in a centralized manner.

In this work, we aim at solving the distributed recovery
problem in the multi-view sensing network as shown in Fig. 1.
Given its wide applications and excellent performance in dis-
tributed large-scale optimization problems [29, 30], especially
its proven convergence [31–33], we opt for the distributed
ADMM framework to address the problem. Before doing
that, in order to represent the multi-view vectors observed
by different sensors, we introduce a binary masking vector

for each sensor and propose a factored joint sparsity model
(FJSM). FJSM decouples the local observable vector for each
sensor into the global vector and the local masking vector. This
is inspired by [34], which formulates a bilinear factorization
problem for the presence of missing data in the measurement.
We observe that the factorized model and the corresponding
bilinear problem may cause certain scaling ambiguity, making
the solution non-unique and the problem non-convex [35–
38]. To handle the problem, we constrain the elements of
the masking vectors in the Boolean set similarly to [34, 35].
Moreover, we propose an early-stopping rule to improve the
convergence of the algorithm.

The contributions of our work can thus be summarized as
follows:

� We propose a general factored joint sparsity model for
the multi-view sensing problem, which decouples the
local vector into a global vector and a node-specific
local masking vector. Based on the FJSM, we cast this
problem as a bilinear factorization problem, which can be
solved in a distributed manner. Additionally, we derive
the theoretical measurement bounds for this problem
under noiseless ‘0 norm optimization.

� Based on ADMM, a distributed optimization algorithm
is proposed for solving the problem, in which each node
iteratively updates both its masking vector and the global
vector. A penalty term is added in the updating of the
masking vectors, which allows solutions to approach the
Boolean distribution. To guarantee the convergence, the
updating of the masking vectors is terminated at some
point guided by an early-stopping rule. An error-reduction
step is carried out after that for mitigating the potential
recovery error of the local vectors.

� Both the convergence and recovery performances are the-
oretically analyzed. Extensive simulations are conducted
for comparing the proposed algorithms to other methods,
validating their excellent performances both in terms of
convergence and recovery accuracy. Moreover, we show
that independent recovery at each sensor outperforms
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the collaborative ones under severe blockage conditions,
both theoretically and experimentally. Simulations are
also conducted for evaluating the impact of the penalty
term and guide its selection.

This paper is organized as follows. In Section II, we outline
the system model and formulate the optimization problem.
Section III gives the fundamental measurement bounds for ‘0
norm recovery. In Section IV, we develop our distributed algo-
rithm for solving the problem, and propose an error-mitigation
algorithm. Section V provides theoretical analysis w.r.t. the
convergence and recovery results. Our numerical experiments
are discussed in Section VI for validating the performance of
the proposed algorithms. Section VII concludes the paper and
discusses promising future research avenues.

Some notations: Given a vector x, its support is denoted by
S(x), which contains the indices of its nonzero entries. Its t-th
entry is denoted by x(t). The cardinality of a given set � is
denoted by j�j. Let [1]N�1 (resp. [0.5]N�1) be the N�1 vector
with elements equal to 1 (resp. 0:5). We write IN as the N�N
identity matrix. The operator � is the Hadamard product and

 denotes the Kronecker product. The corresponding diagonal
matrix of x is defined as diag(x), whose diagonal elements
are components in x. Likewise, the diagonal matrix for a set
of matrices fXi 2 Rm�n; i = 1; :::; Ng is defined as

diag(fXig) =

266664
X1 0 � � � 0
0 X2 � � � 0

0 0
. . . 0

0 0 � � � XN

377775 2 RmN�nN :

II. SYSTEM MODELING AND PROBLEM FORMULATION

We consider a decentralized multi-sensor network and
represent it by an undirected network G = (V; E), where
V = f1; :::; Ng denotes the set of N distributed sensors and
the edge set E = f"ijgi;j2V indicates the communication links
between them. Furthermore, Ni denotes the set of sensor i’s
neighboring sensors. The adjacency matrix of G is defined as
W, where W(i; j) = 1 if "ij 2 E and W(i; j) = 0 otherwise.
The diagonal degree matrix of G is denoted by D, whose i-th
diagonal element is the degree of node i, i.e., D(i; i) = jNij.

We denote the global state vector by x 2 RT and the
observable local vector of sensor i by zi 2 RT . The support of
x is denoted by S(x) and its sparsity is jS(x)j = K;K � T .
Each sensor in the network can only observe a partial view of
the state vector and the missing or blocked entries become 0.
Note that the blockage can happen in the zero entries, which
however makes no impact on the results. So here to clarify,
the blockage refers to those blocking the nonzero entries and
leading to the loss of information. We can decouple each
observable local vector zi into the common global vector
and the binary masking vector vi 2 RT , where vi(t) = 1
indicates x(t); t 2 S(x) is observable for node i and vi(t) = 0
otherwise. Then we have

zi = vi � x;
which we term as the factored joint sparsity model. Here the
global vector x is common for all sensors, while each sensor
has its own masking vector vi.

The sensor i in the network individually senses its ob-
servable sparse vector zi through a set of linear and local
measurements, i.e.,

yi = Aizi +wi = Ai(vi � x) +wi; (1)
where Ai 2 RMi�T (Mi � T ) denotes the measurement
matrix in sensor i and wi 2 RMi is the additive noise. Here
Mi is the number of measurements made by sensor i, and we
employ the random i.i.d. Gaussian matrices [39] as the mea-
surement matrix Ai. Note that (1) is a bilinear model, where
the observations are influenced by the two factors vi and x
with bilinear relationship. A practical example of such a model
can be found in [5] (see also Fig.1 (a)) where a distributed
ISAC scenario is considered. In this context, several base sta-
tions (BS) collaboratively sense the environment through EM-
wave illumination during the communication process. Here x
denotes the desired reflection coefficients of the cloud points
discretizing the region of interest, vi depicts user i’s locally
observable set of the cloud points, and Ai here is user i’s
observation matrix with each row represents the channel gains
of all the path through the cloud points in an illumination.
Refer to [5] for details.

The ultimate goal for each sensor is to reconstruct the global
vector with the aid of its own measurements and the messages
received from other nodes, in which process, the observable
local vector could also be recovered. Additionally, through
cooperation, the number of measurements in each sensor is
expected to be much lower than that would be required for re-
covering the vectors independently. To achieve this ambitious
goal, we formulate the following optimization problem (2) for
estimating the common global vector x through cooperation
among the nodes, as well as the local masking vector vi in
each sensor:

min
xi;vi

NX
i=1

h
kyi � Ai(vi � xi)k22 + �kxik1

i
;

s:t: xi = xj ; 8i 2 V; j 2 Ni;
vi 2 f0; 1gT ; 8i 2 V;

(2)

where f0; 1gT denotes the set of length-T vectors with each
entry equal to 0 or 1. We have the following assumptions:

Assumption 1. The sensor network is connected, i.e., there
exists a path between any pair of sensors.

Assumption 2. We assume that each nonzero entry of the
global vector can be observed by at least one sensor, i.e.,

S(z1) [ ::: [ S(zN ) = S(x):

Before developing a practical algorithm, we first analyze the
fundamental theoretical bounds on the measurement require-
ments for this multi-view sensing scenario, which are based
on noiseless ‘0 norm minimization.

III. CONDITIONS TO GUARANTEE ‘0 NORM RECOVERY

For representing the vectors and measurements compactly in
each node, we introduce ~M =

P
i2VMi and define Y 2 R ~M ,
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Z 2 RTN , � 2 R ~M�TN respectively as

Y =

266664
y1

y2

...
yN

377775 ; Z =

266664
z1

z2

...
zN

377775 ; � =

266664
A1 0 ::: 0
0 A2 ::: 0
...

...
. . .

...
0 0 ::: AN

377775 :
(3)

Then in the noiseless condition, we have Y = �Z.
Let us now define the stacked configuration matrix for all

nodes as ~P = [PT1 ; :::;P
T
N ]
T

. Here Pi is a T�K matrix, where
K = jS(x)j. We construct Pi in the following way. First, we
delete (T�K) columns from the T�T identity matrix outside
the support of x and get �Pi. If the k-th index of the support
is blocked for node i, then the k-th column of �Pi is set to all-
zero and we get Pi. Under this definition, we have Y = �~P�,
where � 2 RK consists of the non-zero values of the global
signal x. Let us define the visible set �(�; ~P) as follows, to
represent the indices of x that can only be observed by the
nodes in the subset �.

�(�; ~P) = ft 2 1; :::; T; 9i 2 �;vi(t) 6= 0

& 8j 2 V � �;vj(t) = 0g;

where � is an arbitrary subset of the node set V .
Then we can formulate the theoretical measurement bounds

for ‘0 norm recovery by Theorem 1.

Theorem 1. Assume that the global vector x is partially
observed by each node. Let furthermore M = (M1; :::;MN )
be the measurement tuple containing the measurement sizes
of all nodes and Ai be the random matrix for node i with Mi

rows having i.i.d. Gaussian entries. Then we have:
a) (Achievable, known ~P) If ~P is known and the measure-

ment tuple satisfies: X
j2�

Mj � j�(�; ~P)j (4)

for all � � V , then there exists a unique solution �̂ to
Y = �~P� with probability one over fAigi2V . Given the
configuration matrix ~P, both the global x and local zi vectors
can be uniquely recovered.

b) (Achievable, unknown ~P) If ~P is unknown and the
measurement tuple satisfies:X

j2�

Mj � j�(�; ~P)j+ j�j (5)

for all � � V , then the global x and local zi vectors can be
uniquely recovered with probability one over fAigi2V .

c) (Converse) If the measurement tuple satisfies:X
j2�

Mj < j�(�; ~P)j (6)

for any � � V , then the global vector and the local vector
cannot be uniquely recovered.

Proof. See Appendix A.

Proposition 1. We assume furthermore that the probabilities
of blockage for all the nodes are the same, namely p. Provided
that p � 1 � 1

N under Assumption 2, for larger p, each
node needs more measurements for collaboratively recovering
the global and local vectors in expectation, compared with
smaller p.

Proof. Let � contain a single one node. Then we have

E
�
j�(�;P)j

�
= K � (1� p)� p(N�1):

With p � 1 � 1
N , it may be readily shown that

@E[j�(�;P)j]=@p � 0. Thus the proposition is proven.

Theorem 1 gives the fundamental recovery bounds of noise-
less measurements based on ‘0 norm minimization. Specif-
ically, Theorem 1 a) and b) reveal the effect of the local
masking vector on the measurement complexity of the ‘0 norm
based recovery. Theorem 1 c) gives the lower bound of the
number of measurements, below which the vectors cannot be
recovered with either ‘0 norm or ‘1 norm method. Moreover,
Theorem 1 rigorously proves one information-theoretic intu-
ition that the number of measurements required for each sensor
must account for the observable features unique to that sensor,
while at the same time, features observable among multiple
sensors should be amortized over the group. Such rule is also
partly validated by the simulations in Section VI-G. All of
these remarks on Theorem 1 may serve as the rules of thumb,
offering guidance on technological applications.

To circumvent the NP-hardness and intractability of ‘0 norm
minimization, in the next section, we will develop algorithms
based on ‘1 norm optimization as in Problem (2).

IV. ALGORITHM DERIVATION

To solve the optimization problem (2), in this section,
we develop our algorithm based on the powerful distributed
ADMM framework. Moreover, we design an estimation error-
mitigation method.

A. Distributed ADMM with Value Penalty

We refer readers to [31, 40, 41] for a general discussion on
applying ADMM for solving a set of non-convex programs
and to [15] for its implementation in a decentralized network.
Based on ADMM, each node alternately updates the primal
variables fxi;vig and the dual variable. The challenges arise
from two aspects. First, the Boolean constraints of vi make
the optimization problem non-convex and NP-hard; Secondly,
the bilinear relationship between the two primal variables
fxi;vig makes the problem non-convex and the distributed
ADMM algorithm struggles to converge. Hence we will focus
on addressing these two issues.

To begin with, a popular technique of tackling the elemen-
twise Boolean constraint vi(t) 2 f0; 1g is to relax it into
the inequality constraint 0 � vi(t) � 1 and then project the
result into the integer solution. In our algorithm, inspired by
the ADMM penalized decoding method introduced in [42], we
add the objective a penalty term gi(vi) into the optimization
of vi, which aims for making the non-integer vertices more
costly. In particular, the value of the penalty function is lower
both at 0 and 1 compared to any other point in the interval
(0; 1). We slack the Boolean constraint and the optimization
problem can be modified as (7):

min
xi;vi

NX
i=1

�
�i(vi;xi) + gi(vi)

�
;

s:t: xi = tij ; 8i 2 V; j 2 Ni; (7)
xj = tij ; 8i 2 V; j 2 Ni;
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vi 2 [0; 1]
T
; 8i 2 V;

where �i(vi;xi) = kyi � Ai(vi � xi)k22 + �kxik1. Here the
slack variable tij is introduced for the consensus constraint
xi = xj between node i and its neighboring node j 2 Ni.
Based on that, the augmented Lagrangian function of Problem
(7) can be formulated as:

L =

NX
i=1

�
�i(vi;xi) + gi(vi)

�
+

NX
i=1

X
j2Ni

�
�uij(xi � tij)+

�uij(xj � tij)
�

+
c

2

NX
i=1

X
j2Ni

h
kxi � tijk22 + kxj � tijk22

i
;

where �uij and �uij are dual variables. Let us define qi ,P
j2Ni

(�uij + �uji) and initialize �u
(0)
ij + �u

(0)
ij = 0;8i; j.

We apply the Gauss-Seidel strategy [20, 33] to solve the
subproblem corresponding to the primal variables fxi;vig as
follows.

(x
(k)
i ;v

(k)
i ) = arg min

0�vi(t)�1

L(q
(k)
i ;x

(k�1)
i ;v

(k�1)
i );

where the update of v(k)
i is based on the updating result of

x
(k)
i . Then the update rules of qi and the primal variables
fxi;vig are:

q
(k)
i = q

(k�1)
i + c

X
j2Ni

�
x

(k�1)
i � x(k�1)

j

�
; (8a)

x
(k)
i = arg min

xi

n
�i(v

(k�1)
i ;xi) + xTi q

(k)
i

+ c
X
j2Ni



xi � x(k�1)
i + x

(k�1)
j

2



2

2

o
;

(8b)

v
(k)
i = arg min

0�vi(t)�1

h

yi � B(k)
i vi



2

2
+ gi(vi)

i
; (8c)

where B(k)
i = Ai � diag(x

(k)
i ). Note that the slack variables

ftijgi2V;j2Ni
do not appear in (8) because they can be

expressed by fxigi2V ; we refer readers to Appendix A in [15]
for details. To retain the convexity of the subproblem (8c), we
apply the ‘2 penalty function and define it as follows :

gi(vi) = �



R(k)

i (vi � [0.5]T�1)



2

2
:

Given a well-designed parameter R(k)
i , where R(k)

i

T
R(k)
i =

�B(k)
i

T
B(k)
i ; 0 � � < 1, the optimization problem in (8c)

is convex. This is designed to make the variables’ update
mathematically tractable in the same way as [42]. On the other
hand, such penalization is standard to account for a relaxed
binary variable without limitation on the penalty parameter.
The authors in [43, 44] formulated non-convex optimization
problems based on the concave penalization to account for
a relaxed binary variable and proposed solutions under mild
conditions. Compared with [43, 44], a drawback may arise
from the limited penalty effect because of the relatively small
penalty parameter of 0 � � < 1. However, under the
bilinear relationship between the two primal variables, the
convexity of the subproblem is vital for the tractability and
computational complexity. Moreover, we do not strictly require
the distribution of vi to be Boolean in the early iterations for
the stability of the algorithm. Rather, we would use a soft

heuristic penalty term, which can enhance the tendency for the
elements of vi to approximate 0 or 1, making this a rational
design. We can then obtain coordinate-wise update rule for vi:

v
(k)
i =

Y
[0;1]

n 1

1� �
�
B(k)
i

y
yi � �(B(k)

i

y
B(k)
i )T [0.5]T�1

�o
;

(9)
where

Q
[0;1] : R ! [0; 1] is the elementwise projection to

the interval by mapping the elements smaller than 0 to 0 and
those larger than 1 to 1. Note that the optimal solution of
(8c) has to be obtained through KKT conditions with multiple
inner iterations and unbearable computation cost. Thus, we
apply the coordinate-wise approximated result (9) as that in
[42]. It can be observed from (9) that the effect of the penalty
term may be viewed as an elementwise soft mapping from
the original solution B(k)

i

y
yi towards f0; 1g. With respect to

the updating complexity, the pseudo inverse of Ai, denoted
by Ayi , can be pre-computed at the beginning and stored in

each node. Then B(k)
i

y
can be readily computed at a modest

computational cost, where diag(x
(k)
i )
y

is easy to acquire with
the reciprocal of each non-zero diagonal element.

In the algorithm, if vi is mapped into f0; 1gT at the very
beginning of iterations, then the process becomes unstable and
prone to divergence. On the other hand, the scaling ambiguity
problem still exits due to the bilinear relationship and the
limited penalty parameter, implying that a hard projection into
the binary set is necessary so as to narrow down the solution
set. Hence we map the masking vector into the Boolean set
after a few iterations. In the following we will discuss when to
carry out the hard mapping for each node. We characterise the
distribution of v(k)

i by the distance of v(k)
i from the Boolean

subspace, defined as
d

(k)
i =



v(k)
i � ([1]T�1 � v(k)

i )


2

2
: (10)

This is affected by the penalty parameter and furthermore as
found by simulations, the value of d(k)

i is expected to decrease
until the estimated value of vi approaches some stationary
point, where we narrow down the solution set of vi into
the Boolean set. Each node individually decides its instant
of discretizing vi. Additionally, for the sake of stability, we
set the minimum number Kmin of iterations to be used before
discretization, explicitly, if k > Kmin and d

(k)
i > d

(k�1)
i , the

solution set of vi in node i is ready to be mapped into the
Boolean set.

Upon projecting the solutions into the Boolean set using
a hard mapping, we effectively remove the penalty term by
setting � = 0. This assumes that the soft mapping effect is not
necessary, which may lead to sub-optimal solutions instead.
Then the update of vi can be formulated as:

v
(k)
i =

Y
f0;1g

�
B(k)
i

y
yi
�
; (11)

where the projection
Q
f0;1g : R ! f0; 1g rounds each entry

to 0 or 1, whichever is closer.
Having addressed the problem of Boolean constraints, we

now turn to the challenge of convergence. When applied
in bilinear optimization problems, distributed ADMM lacks
theoretical convergence guarantees and indeed, it often ex-
hibits poor convergence in real implementations, and becomes
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divergent after finding a local optimum. We observe that in the
distributed implementations, the poor convergence typically
owning to specific nodes exhibiting divergent tendency, even
if the other nodes are converging. Inspired by the iterative
water-filling algorithm of [45] that allocates more power to
better channels in support of efficient power allocation, we also
intend to focus on the strongly convergent nodes. Specifically,
we propose to curtail the updating of the masking vectors in
the poor-performance nodes, so as to concentrate the iterative
process on the convergent nodes. Note that the updating
of the global vector should continue so as to harness the
measurement results from all nodes.

To decide whether the node achieves a local minimum point
or prone to divergence, an early stopping rule is introduced,
inspired by the Residual Balancing method of the ADMM
algorithm [46]. The rule proves that the magnitude gap be-
tween the primal residual and the dual residual indicates the
convergence rate of the algorithm. The authors of [47] further
extended the method into distributed ADMM and formulated
the expressions of primal and dual residuals as follows:

kr(k)
i k

2
2 = kx(k)

i � �x
(k)
i k

2
2; j 2 Ni (12a)

ks(k)
i k

2
2 = c2k�x

(k)
i � �x

(k�1)
i k22; j 2 Ni (12b)

where �xi , 1
jNij

P
j2Ni

xj . The basic idea is that a larger
difference between the two magnitudes indicates the slower
convergence rate of the algorithm. When the difference is large
enough, the convergence rate becomes sufficiently slow, which
is indicative of approaching nearby a local minimum point. So
the stopping rule of vi’s update is formulated as:

kr(k)
i k

2
2 � �ks

(k)
i k

2
2 or ks(k)

i k
2
2 � �kr

(k)
i k

2
2; (13)

where the value of � is chosen by experiments. A beneficial
choice for the parameter is suggested to be � = 10 [47] for
most situations. Additionally, for the sake of synchronization
and stability, we set a maximum number of iterations Kmax
before early stopping for the nodes.

The proposed distributed ADMM associated with value
penalty (VPD-ADMM), may thus be summarized in Algo-
rithm 1. Here x̂i and v̂i denote the updated results of the
primal variables xi;vi respectively. ai is the indicator on
the early stopping of vi while bi is the indicator on the
discretization of vi.

Through cooperation among nodes, the recovery of the
global vector x can be guaranteed with a high probability,
as illustrated by Theorem 3 of the next section. However, the
recovery accuracy of the local vector, expressed as x̂i � v̂i,
is highly dependent on that of the masking vector v̂i, which
may be curtailed prematurely and thus cannot guarantee its
accuracy. To this end, after the early stopping of vi, we de-
sign an error-mitigation procedure for improving the recovery
accuracy of the local vector and for further enhancing the
estimation of the global vector, albeit at the expense of slightly
increasing the computational cost.

B. Error Mitigation Algorithm

Although VPD-ADMM promises good performance for
the recovery of the global vector, it cannot guarantee the
estimation accuracy of the local vectors as discussed above. As

Algorithm 1: VPD-ADMM
1 for node i = 1; 2; :::; N do
2 Initialize: q(0)

i = 0, x(0)
i = 0, v(0)

i = 1, k = 0.
3 Set Indicator: ai = 1, bi = 1.

4 while not converge do
5 k = k + 1
6 for node i = 1; 2; :::N do
7 Update q(k)

i according to (8a).
8 Update x(k)

i according to (8b).
9 Computekr(k)

i k22 and ks(k)
i k22.

10 if ai = 0 or k > Kmax or ((13) is satisfied)
then

11 Stop updating vi and ai = 0.

12 else
13 Compute d(k)

i according to (10).
14 if bi = 0 or (k � Kmin and d(k)

i > d
(k�1)
i )

then
15 Update v(k)

i according to (11) and set
bi = 0.

16 else
17 Update v(k)

i according to (9).

18 Transmit x(k)
i to neighboring nodes j 2 Ni.

19 Output the estimation of global vector by x̂i and the
local vector by x̂i � v̂i for all node i.

a remedy, we propose an error-mitigation method applied by
each node after the early-stopping of the iterations recovering
the masking vector vi. The fixed estimated masking vector
is denoted by v̂i, whose diagonal representation is defined
as V̂i = diag(v̂i). Upon denoting the real masking vector
of node i by v�i and its corresponding diagonal matrix by
V�i = diag(v�i ), we have

yi = AiV�ix+wi = AiV̂ix+ Ai(V�i � V̂i)x+wi: (14)

Based on (14), we define �i = (V�i � V̂i)x as the error
associated with the inequality V�i 6= V̂i. Then it may be
deduced that when the estimated entry is the correct one, i.e.,
v̂i(t) = v�i (t), the corresponding entry �i(t) = 0. Through
our experiments, we observed that the accuracy of v̂i can be
as high as 90%, which indicates the sparsity of the error vector
�i. Introduce zi as the local vector and we have zi = V̂ix+�i.
Then for the specific nodes which stop updating vi, the local
optimization problem can be formulated as:

min
zi;�i;xi

kyi � Aizik22 + �1kzik1 + �2k�ik1 + �3kxik1;

s:t: xi = xj ; j 2 Ni;
zi = V̂ix+ �i:

(15)
Then the local Lagrangian function for these nodes is:

Li =kyi � Aizik22 + �1kzik1 + �2k�ik1 + �3kxik1
+
�

2
kzi � V̂ixi � �ik22 + �Ti (zi � V̂ixi � �i)
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+
�

2

X
j2Ni

�
kxi � tijk22 + kxj � tijk22

�
+
X
j2Ni

�
�uTij(xi � tij) + �uTij(xj � tij)

�
: (16)

Let us now define qi ,
P
j2Ni

(�uij + �uij). Upon applying
the distributed ADMM, we update the pair of dual variables
fqi; �ig, and the three primal variables fzi;�i;xig in an
alternative manner using the following rules:

q
(k)
i = q

(k�1)
i + �

X
j2Ni

(x
(k�1)
i � x(k�1)

j ); (17a)

�
(k)
i = �

(k�1)
i + �(z

(k�1)
i � V̂ix

(k�1)
i � �(k�1)

i ): (17b)

z
(k)
i = arg min

zi

�
Li(q(k)

i ; �
(k)
i ; zi;�

(k�1)
i ;x

(k�1)
i )

	
; (18a)

�
(k)
i = arg min

�i

�
Li(q(k)

i ; �
(k)
i ; z

(k)
i ;�i;x

(k�1)
i )

	
; (18b)

x
(k)
i = arg min

xi

�
Li(q(k)

i ; �
(k)
i ; z

(k)
i ;�

(k)
i ;xi)

	
: (18c)

Under these updating rules, the VPD-ADMM relying on error
mitigation (VPD-EM) is summarized as follows, which has
two stages in each node: the first bilinear optimization stage
and the second error-mitigation stage.

By introducing Stage Two, VPD-EM takes the estima-
tion error of the masking vectors into consideration, which
improves the recovery accuracy of the local vector. This
procedure, however, increases the computational cost, because
three sparse vectors have to be recovered in each iteration.

V. CONVERGENCE AND RECOVERY PERFORMANCE
ANALYSIS

In this section, we provide the theoretical analysis of the
convergence properties as well as compressed sensing recovery
of the VPD-ADMM algorithm. Furthermore, the convergence
guarantee of the VPD-EM algorithm is also analyzed.

We commence the analysis of the VPD-ADMM’s conver-
gence properties. To the best of our knowledge, there lack
theoretical guarantees for distributed ADMM with the two
bilinear primal variables. Moreover, the update of distributed
ADMM with two bilinear variables can be unstable and subject
to diverge as shown in Section VI-A. For this reason, we
propose an early-stopping rule to timely stop the updating of
vi. Based on the early-stopping mechanism, we consider the
convergence properties with the resultant vi at all nodes, i.e.,
the eventual convergence after all the nodes stop updating their
masking vectors. Let us define the corresponding centralized
optimization problem as:

x̂Lasso = arg min
x
fkY��~Vxk+ �kxk1g; (19)

where Y and � was previously defined in (3) of Section III,
with ~V = [VT1 ; :::;V

T
N ]
T

and Vi = diag(vi).
According to Proposition 2 in [15], it is easy to deduce the

following Theorem 2 to build the equivalence between VPD-
ADMM and its centralized counterpart, which represents the
conditional convergence guarantee of the VPD-ADMM.

Algorithm 2: VPD-EM
1 for node i = 1; 2; :::; N do
2 Initialize: q(0)

i = 0, x(0)
i = 0, v(0)

i = 1, k = 0.
3 Set Indicator: bi = 1, StageOnei = True,

StageTwoi = False.

4 while not converge do
5 k = k + 1
6 for node i = 1; 2; :::N do
7 if StageOnei then
8 Update q(k)

i according to (8a).
9 Update x(k)

i according to (8b).
10 Computekr(k)

i k22 and ks(k)
i k22.

11 if k > Kmax or (13) is satisfied then
12 Stop updating vi and initialize

�
(k)
i = 0, z(k)

i = v
(k)
i � x

(k)
i + �

(k)
i

13 StageOnei = False, StageTwoi = True.

14 else
15 Compute d(k)

i according to (10).
16 if bi = 0 or (k � Kmin and

d
(k)
i > d

(k�1)
i ) then

17 Update v(k)
i according to (11) and

set bi = 0.
18 else
19 Update v(k)

i according to (9).

20 else
21 Update q(k)

i ; �
(k)
i according to (17a-b).

22 Update z(k)
i ;�

(k)
i and x(k)

i according to
(18a-c).

23 Transmit x(k)
i to neighboring nodes j 2 Ni.

24 Output the estimation of global vector by x̂i and the
local vector by ẑi for all node i.

Theorem 2. (Conditional Convergence Guarantee) Denote by
v̂i the final result of vi when early-stopping occurs. Then
under Assumption 1, the updated results x(k)

i of VPD-ADMM
converge to the solution of the corresponding centralized
problem (19) as k !1, i.e.,

lim
k!1

x
(k)
i = x̂Lasso;8i 2 V;

where ~V = ~V
M

, [V̂
T

1 ; :::; V̂
T

N ]
T

, V̂i = diag(v̂i).

Theorem 2 illustrates that the convergence result of VPD-
ADMM is equivalent to the solution of its centralized LASSO
problem (19) under the fixed estimation of ~V. Moreover, it
validates the robustness and stability of the VPD-ADMM
under the proposed early-stopping rule. Building on Theorem
2, we will then formulate Theorem 3 as follows to provide its
recovery guarantee. Since we do not focus on the measurement
budget partitioning among nodes, in the following we assume
that the number of measurements M in each node is identical.
We clarify some of the definitions for a concise presentation of
Theorem 3. Let R = frS1

; rS2
; :::rSK

g, where Sk denotes the
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k-th element in the support S(x) and rSk
denotes the number

of nodes whose corresponding entry of v̂i is 1. The smallest
value in R is denoted by Rmin. Let

C = �~V
M

=

2664
A1V̂1

...

AN V̂N

3775 2 RMN�T : (20)

Upon using the subscript S to denote the sub-matrix con-
catenating the selected columns corresponding to the sup-
port S(x), we have CS = �S

~V
M
S 2 RMN�K , where

�S = diag(fAiSg), ~V
M
S = [V̂

T

1S ; :::; V̂
T

NS ]
T

. Similarly, we
define CSc = �Sc ~V

M
Sc , where the subscript Sc denotes the

complement of the support set.

Theorem 3. (Recovery Guarantee) Consider the linear sens-
ing model (1) and the measurement matrix Ai 2 RM�T
with i.i.d. random Gaussian entries obeying N(0; 1=M). The
additive noise is wi � N(0; �2IM ).

Define Cmin as the smallest eigenvalue of 1
MN CTSCS . If

Rmin � 1 and the regularization parameter � satisfies � >

2
q

2�2logT
MN with �2 , �2 + 1

M maxi k(V�i � V̂i)xk22, then as
MN !1 the following properties hold true with probability
higher than 1� 4e�c1MN�2 ! 1 for some constant c1:

a) The VPD-ADMM converges to a unique solution x̂ with
consensus achieved by nodes, i.e., x̂1 = :: = x̂N = x̂. The
solution satisfies S(x̂) � S(x) and the ‘1 bound

kx̂S � xSk1 � �
h

(CTSCS=MN)

�1


1 +

4�p
Cmin

i
= h(�):

Furthermore, if we assume that


(CTSCS=MN)

�1


1 = O(1)

for simplicity and choose � = O(
q

logT
MN ), the ‘1 bound can

be formulated as the ‘2 norm expression of

kx̂S � xSk2 = O(�
p
K) = O(

r
K log T

MN
):

b) If the minimum magnitude of x is bounded by jxjmin >
h(�), then we have S(x̂) = S(x) with correct sign.

Proof. See Appendix B.

To recover the global vector x, Theorem 3 gives the neces-
sary condition Rmin � 1 imposed on the estimated masking
vector v̂i, requiring that the entries of v̂i corresponding to the
support S(x) should necessarily be 1 in at least one node.
Theorem 3 a) gives the upper bound of the global vector’s
‘1 estimation error, which is positively correlated with the
estimation error of V̂i as indicated by the expression of �.
More specifically, due to the sparsity of x, the upper bound
can be further reduced to be only related to the estimation
error of V̂i within the support. Moreover, if we assume the
total power of the global vector is bounded by kxk22 � P ,
then the expression of �2 can be simplified to �2 + P

M . Note
that we consider the Gaussian sensing matrix for this problem,
which is typical in the analysis of compressed sensing. The
performance on other sensing matrices should be considered
in the case of specific applications, since it is tightly related
to the specific structures of the matrices.

Theorem 2 and 3 show the effectiveness of the VPD-ADMM
algorithm. We now turn to the analysis of the convergence
property of the VPD-EM error-mitigation algorithm, also
considering the eventual convergence where all the nodes step
into Stage Two. We formulate Theorem 4 as follows.

Theorem 4. Provided that the stepsize of the dual variables
� = � is sufficiently small. We define the Laplacian matrix of
the communication network as L , D � W. If the matrix
diag(fV̂ig) + L 
 IT has full rank, the primal and dual
variables optimized by the VPD-EM algorithm converge to an
optimal primal-dual solution for problem (15) for each node.

Proof. See Appendix C.

VI. EXPERIMENTS

In this section, we evaluate the performance of the proposed
algorithms in the multi-view sensing scenario. Consider the
linear measurement model of (1). Again, since we do not focus
on managing the measurement budget among sensors, we set
M1 = M2 = ::: = MN = M for simplicity. For all of our
experiments, the entries of the sensing matrices Ai 2 RM�T
are generated randomly according to the Gaussian distribution
N(0; 1=M). We fix the length of the global state vector to T =
500 and its sparsity to K = 50. Its support S(x) is generated
uniformly at random and the nonzero values are drawn from a
standard Gaussian distribution. The probability of blockage is
identical for all sensors and denoted by p. In the support S(x),
vi’s entries are generated using a binomial distribution with
probability 1� p. The other entries of vi outside the support
are set to 0. Then the local observable vector zi is derived
along with zi = x � vi. The additive noise wi 2 RM is
drawn from N(0; �2). We define SNRi , 1

T kzik
2
2=�

2, which
is identical for all sensors.

As there is no existing approach applicable to this scenario,
we consider the standard LASSO with ADMM solver and
design another two baselines for comparison:
� Standard LASSO with Distributed ADMM (D-LASSO):

Each sensor ignores the its unobservable components,
which are considered as an additive noise on the measure-
ments. The problem is formulated as standard LASSO
and solved via distributed ADMM.

� Independent Recovery and Average Scheme (IRAS):
Each sensor independently estimates the locally observ-
able vector zi using a conventional compressed sensing
algorithm (solving ‘1 optimization). To recover the global
state vector, we assume a fusion center collecting all
the estimated ẑi. The support of the global vector is
recovered by the union of the supports of ẑi; i 2 V ,
and its value is recovered by averaging the corresponding
non-zero values in ẑi; i 2 V .

� Distributed Optimization with Additive Joint Sparsity
Model (D-AJSM) [20]: Assume that the missing or
blocked entries resulted from the additive noise ei, which
is sparse and has negative values of the blocked entries of
x, i.e., zi = ei+x. Then the problem is formulated into
a modified conventional JSM-1 problem, with additional
sparsity constraints subject to the locally observable vec-
tors zi. Applying the distributed algorithm proposed in
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[20] with the additional sparsity constraints, we have our
second baseline scheme, namely D-AJSM.

We define a pair of metrics for characterizing the recovery
performance: the average mean square error (AMSE) of the
global vector and AMSE of the local vector as:

Glo AMSE =
1

N

X
i2V

1

T
kx̂i � xk22;

Loc AMSE =
1

N

X
i2V

1

T
kẑi � zik22:

The network is generated randomly relying on the Er-
dos Renyi network model using networkx package in Python,
where the number of nodes is set to N = 6 and the probability
of connectivity is 0:8.

A. Convergence Curve

In this part we characterize the convergence curves of both
VPD-ADMM and VPD-EM algorithms and compare them to
D-AJSM. We fix the number of measurements in each node
to M = 80 and the probability of blockage in each node
to p = 0:2 using SNR = 12dB. The penalty parameter
in (9) is chosen either as � = 0:2 or � = 0:8. For a
concise representation, we plot the convergence curves of
VPD-ADMM and VPD-EM in two figures respectively, as
seen in Fig. 2.

(a) Convergence Curves of VPD-ADMM v.s. D-AJSM

(b) Convergence Curves of VPD-EM v.s. D-AJSM

Fig. 2. Convergence Curves

Observe from Fig. 2 that both of the proposed algorithms
perform better than D-AJSM w.r.t. their final convergence
results. Additionally, Fig. 2(a) shows that the selection of �
has an impact on the convergence result of VPD-ADMM,
where � = 0:2 outperforms � = 0:8 in this setting. A more

comprehensive comparison of different penalty parameters will
be given in Section VI-F. In contrast to VPD-ADMM, VPD-
EM is less sensitive to the selection of � and compensates for
the estimation error imposed by the early stopping on the local
vector, which benefits from its error-mitigation mechanism. A
comparison between the enlarged excerpts in Fig. 2(a) and (b)
indicates that VPD-EM has lower recovery error.

In addition, to represent the effectiveness and necessity
of the discretization and early-stopping rule of vi as pro-
posed in Section IV-A, the convergence curves of the pro-
posed algorithms are compared with the implementation with-
out discretization (termed as NoDiscre) and another one
with discretization but without early-stopping (termed as
NoEarlyStop). The results are shown in Fig. 3. It could be
observed that there exist two key points in the convergence
curves, one is the discretization point and another one is
the early-stopping point. Without discretization of vi deter-
mined by the metric in (10), the implementation NoDiscre
tends to become divergent since then. Meanwhile, without
the early-stopping rule decided by (13), the implementation
NoEarlyStop is divergent and unstable since then. This com-
parison also validates the effectiveness of the determination
rule in (10) and (13).

Fig. 3. Comparison of Convergence Curves

B. Performance Under Different Number of Measurements

In this subsection, we evaluate the performance of the
proposed algorithms for different number M of measurements
in each node. The two baseline methods (IRAS and D-AJSM)
described above are also evaluated for comparison. We fix
p = 0:2 and set SNR = 12dB. For each node, we generate 5
different Ai for each M , 2 different x and 4 different vi for
each x. The results are averaged over the 5�2�4 = 40 trials
and are shown in Fig. 4(a).

It can be observed from Fig. 4(a) that the recovery error
decreases upon increasing the number of measurements in
each node, both for the global and the local vectors. Among
all the five algorithms, IRAS has the worst recovery accuracy
when M is small, which is resulted from its independent
estimation in each node, i.e., without making any use of the
measurements gleaned from other nodes. This highlights the
effectiveness of the cooperation among nodes. On the other
hand, the standard LASSO shows poor performance when
M is large, especially for the estimation of local vector.
This is because that the standard LASSO simply ignores the
blocked components without considering the individual local
vector in each sensor. Thus D-LASSO cannot be applied
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Fig. 4. AMSE under different conditions

in effectively estimating the local vector. Additionally, the
proposed algorithms have better performance than the D-
AJSM as also shown in Section VI-A. The main reason lies
in the different joint sparsity models of D-AJSM and the
proposed FJSM. By exploiting a more explicit relationship
between the local observable vector zi and the global vector
x, FJSM actually puts more constraints on the data space of
zi, compared with the simple summation of two independent
variables ei and x in D-AJSM. Thus, the proposed algorithms
are more efficient than D-AJSM, while D-AJSM needs more
measurements to recover the vectors.

Meanwhile, compared to VPD-ADMM, VPD-EM shows a
better performance, which is notable w.r.t. the local recovery,
but not so pronounced w.r.t. the global recovery. The reason
lies in the error-mitigation mechanism, which is designed
mainly for reducing the local estimation error. Furthermore,
both Theorem 2 and 3 guarantee a good recovery of the global
vector for VPD-ADMM, even under inaccurate v̂i. Last but
not least, the performance difference between VPD-ADMM
and VPD-EM becomes smaller upon increasing M , which is
as expected because a larger M gives a more accurate v̂i for
VPD-ADMM and the estimation error becomes smaller.

C. Performance Under Different Probability of Blockage

In this subsection, we compare the recovery performance of
the four algorithms for different probability of blockage p. We
fix the number of measurements in each node as M = 100
and set SNR = 12dB. We generate 5 different Ai, 2 different
x and 4 different vi for each x and each p. The results are
averaged over 40 trials and shown in Fig. 4(b).

Fig. 4(b) gives us valuable insights. To begin with, we
compare the performance of the four algorithms in Fig. 4(b).
It can be seen that in the cases of 0 < p < 0:7, both the VPD-
ADMM and VPD-EM outperform the other three methods,

and as p increases, the two proposed algorithms have more
remarkable advantages over the D-AJSM and D-LASSO. In
fact, even under the severe blockage condition where p = 0:5,
both of the proposed algorithms have remarkable recovery per-
formance. This indicates that our proposed methods are more
efficient and stable in hostile blocking scenario than D-AJSM
or D-LASSO. This accrues from the specifically designed
FJSM, resulting in better exploitation of the measurements
in each node. Furthermore, similar to the results and analysis
of Subsection VI-B, VPD-EM has lower estimation error than
VPD-ADMM.

Secondly, we now consider the specific trends of the dif-
ferent algorithms. In Fig. 4(b), the curves of IRAS show
different trends from the other four algorithms. This is because
the IRAS recovers the local vector independently in each
node, and the local vector’s sparsity increases with larger p,
hence resulting in more accurate estimation under the same
M . Thus the global vector, estimated by the union of all
the nodes’ recovered local vector, has lower recovery error
for larger p. Under hostile blockage conditions, where the
observable entries of nodes have limited overlap and the
information gleaned from other nodes is not useful enough
for local estimation, the individual recovery based IRAS
naturally has better performance than the collaborative ones.
In the following proposition, we theoretically formulate the
conditions, where the independent recovery outperforms the
proposed algorithms w.r.t. the upper bound of the recovery
error, providing guidance for selecting the most appropriate
algorithm under realistic conditions.

Proposition 2. When the probability of blockage is higher
than 1� c��2

�2N , i.e., 1� c��2

�2N � p � 1� 1
N , the upper bound of

the recovery error of IRAS is smaller than that of the proposed
collaborative methods. Here �; � are defined in Theorem 3,


