An international multidisciplinary consensus statement on MAFLD and the risk
of CVD

5 Short title: MAFLD and risk of CVD

6 Authors' names

- 7 Xiao-Dong Zhou^{1#}, Giovanni Targher^{2#}, Christopher D. Byrne^{3#}, Virend Somers⁴,
- 8 Seung Up Kim⁵, C. Anwar A. Chahal^{6,4,7}, Vincent Wai-Sun Wong⁸, Jingjing Cai⁹,
- 9 Michael D. Shapiro¹⁰, Mohammed Eslam¹¹, Philippe Gabriel Steg¹², Ki-Chul Sung¹³,

10 Anoop Misra¹⁴, Jian-Jun Li¹⁵, Carlos Brotons¹⁶, Yuli Huang¹⁷, George V

- 11 Papatheodoridis¹⁸, Aijun Sun¹⁹, Yusuf Yilmaz^{20,21}, Wah Kheong Chan²², Hui
- 12 Huang²³, Nahum Méndez-Sánchez²⁴, Saleh A Alqahtani^{25,26}, Helena Cortez-Pinto²⁷,
- 13 Gregory Y. H. Lip^{28,29}, Robert J de Knegt³⁰, Ponsiano Ocama³¹, Manuel Romero-
- 14 Gomez³², Marat Fudim^{33,34}, Giada Sebastiani³⁵, Jang Won Son³⁶, John D. Ryan³⁷,
- 15 Ignatios Ikonomidis³⁸, Sombat Treeprasertsuk³⁹, Daniele Pastori⁴⁰, Monica Lupsor-
- 16 Platon⁴¹, Herbert Tilg⁴², Hasmik Ghazinyan⁴³, Jerome Boursier⁴⁴, Masahide
- 17 Hamaguchi⁴⁵, Mindie H. Nguyen^{46,47}, Jian-Gao Fan⁴⁸, George Boon-Bee Goh⁴⁹,
- 18 Mamun Al Mahtab⁵⁰, Saeed Hamid⁵¹, Nilanka Perera⁵², Jacob George^{11*}, Ming-Hua

19 Zheng^{53,54,55*}

20

21 Affiliations

- ¹Department of Cardiovascular Medicine, the Heart Center, the First Affiliated
- 23 Hospital of Wenzhou Medical University, Wenzhou, China;
- ²Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism,
- 25 University of Verona, Verona, Italy;
- ³Southampton National Institute for Health and Care Research Biomedical Research
- 27 Centre, University Hospital Southampton, and University of Southampton,
- 28 Southampton General Hospital, Southampton, UK;
- ⁴Department of Cardiovascular Medicine, Mayo Clinic College of Medicine,
- 30 Rochester, USA;
- ⁵Department of Internal Medicine, Institute of Gastroenterology, Yonsei University
- 32 College of Medicine, Seoul, South Korea;
- ⁶Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, PA,
- 34 United States;
- ⁷Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London,
- 36 West Smithfield, EC1A 7BE, United Kingdom;
- ⁸State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong,
- 38 Hong Kong, China;
- ⁹Department of Cardiology, the Third Xiangya Hospital, Central South University,
- 40 Changsha, China;
- 41 ¹⁰Center for Prevention of Cardiovascular Disease, Section on Cardiovascular
- 42 Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA;

43	¹¹ Storr Liver Centre.	Westmead Ins	titute for Medica	l Research	, Westmead Hos	pital
----	-----------------------------------	--------------	-------------------	------------	----------------	-------

- 44 and University of Sydney, NSW, Australia;
- 45 ¹²Université Paris -Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat,
- 46 FACT (French Alliance for Cardiovascular Trials), INSERM U1148, Paris, France;
- 47 ¹³Department of Internal Medicine, Division of Cardiology, Kangbuk Samsung
- 48 Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea;
- 49 ¹⁴Fortis C-DOC Centre of Excellence for Diabetes, Metabolic Diseases and
- 50 Endocrinology, Chirag Enclave, National Diabetes Obesity and Cholesterol
- 51 Foundation and Diabetes Foundation (India), New Delhi, India;
- 52 ¹⁵State Key Laboratory of Cardiovascular Diseases, Fu Wai Hospital, National Center
- 53 for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking
- 54 Union Medical College, Beijing, China;
- ¹⁶Biomedical Research Institute Sant Pau (IIB Sant Pau). Sardenya Primary Health
- 56 Care Center, Barcelona, Spain;
- ¹⁷Department of Cardiology, Shunde Hospital, Southern Medical University, Jiazi
- 58 Road, Lunjiao Town, Shunde District, Foshan, China;
- ¹⁸Department of Gastroenterology, Medical School of National and Kapodistrian
- 60 University of Athens, General Hospital of Athens "Laiko", Athens, Greece;
- 61 ¹⁹Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan
- 62 University, Shanghai, China;
- ⁶³²⁰Institute of Gastroenterology, Marmara University, Istanbul, Turkey;

- 64 ²¹Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan
- 65 University, Rize, Turkey;
- ²²Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of
- 67 Medicine, University of Malaya, Kuala Lumpur, Malaysia;
- ²³Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen
- 69 University, 3025 Shennan Middle Road, Shenzhen, China;
- 70 ²⁴Liver Research Unit, Medica Sur Clinic & Foundation and Faculty of Medicine,
- 71 National Autonomous University of Mexico, Mexico;
- 72 ²⁵Liver Transplantation Unit, King Faisal Specialist Hospital & Research Center,
- 73 Riyadh, Saudi Arabia;
- ²⁶Division of Gastroenterology and Hepatology, Johns Hopkins University School of
- 75 Medicine, 720 Rutland Avenue, Baltimore, Maryland, USA;
- 76 ²⁷Clínica Universitária de Gastrenterologia, Laboratório de Nutrição e Metabolismo,
- 77 Faculdade de Medicina, Universidade de Lisboa, Portugal;
- 78 ²⁸Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool
- 79 John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United
- 80 Kingdom;
- 81 ²⁹Danish Center for Clinical Health Services Research, Department of Clinical
- 82 Medicine, Aalborg University, Aalborg, Denmark;
- 83 ³⁰Department of Gastroenterology and Hepatology, Erasmus MC University Medical
- 84 Center Rotterdam, Gravendijkwal 230, Room Ha 206, Rotterdam, The Netherlands;

85	³¹ Department of Internal	Medicine, Makerere	University (College of Health	Sciences,

- 86 School of Medicine, Kampala, Uganda;
- 87 ³²Department of Digestive and Liver Diseases, University Hospital Virgen del Rocio,
- 88 Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain;
- ³³Department of Cardiology, Duke University School of Medicine, Durham, NC,
- 90 USA;
- ³⁴Duke Clinical Research Institute, Duke University School of Medicine, Durham,
- 92 NC, USA;
- ³⁵Division of Gastroenterology and Hepatology, Chronic Viral Illness Service,
- 94 McGill University Health Centre, Royal Victoria Hospital, 1001 Blvd. Décarie,
- 95 Montreal, Canada;
- ³⁶Division of Endocrinology and Metabolism, Department of Internal Medicine,
- 97 College of Medicine, The Catholic University of Korea, Seoul, Korea;
- 98 ³⁷Department of Hepatology, RCSI School of Medicine and Medical Sciences,
- 99 Dublin/Beaumont Hospital, Dublin, Ireland;
- 100 ³⁸Preventive Cardiology Laboratory and Cardiometabolic Clinic, Second Cardiology
- 101 Department, Attikon Hospital, Medical School, National and Kapodistrian University
- 102 of Athens, Greece;
- ³⁹Division of Gastroenterology, Department of Medicine, Faculty of Medicine,
- 104 Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red
- 105 Cross Society, Bangkok, Thailand;

- ⁴⁰Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences,
- 107 Sapienza University of Rome, Rome, Italy;
- ⁴¹Department of Medical Imaging, "Prof. Dr. Octavian Fodor" Regional Institute of
- 109 Gastroenterology and Hepathology, "Iuliu Hațieganu" University of Medicine and
- 110 Pharmacy, Cluj-Napoca, Romania;
- ⁴²Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology
- 112 & Metabolism, Medical University Innsbruck, Innsbruck, Austria;
- ⁴³Department of Hepatology, Nork Clinical Hospital of Infectious Disease, Yerevan,
- 114 Armenia;
- ⁴⁴Hepato-Gastroenterology Department, University Hospital, 4 Larrey street, 49933
- 116 Angers Cedex 09, France; HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM
- 117 University, Angers, France;
- ⁴⁵Department of Endocrinology and Metabolism, Graduate School of Medical
- 119 Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-
- 120 Hirokoji, Kamigyo-ku, Kyoto, Japan;
- ⁴⁶Division of Gastroenterology and Hepatology, Stanford University Medical Center,
- 122 Palo Alto, California, USA;
- ⁴⁷Department of Epidemiology and Population Health, Stanford University Medical
- 124 Center, Palo Alto, California, USA;
- ⁴⁸Center for Fatty Liver, Department of Gastroenterology, Xin Hua Hospital
- 126 Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China;

- ⁴⁹Department of Gastroenterology and Hepatology, Singapore General Hospital,
- 128 Singapore;
- ⁵⁰Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka,
- 130 Bangladesh;
- ⁵¹Department of Medicine, Aga Khan University, Stadium Road, Karachi, 74800,
- 132 Pakistan;
- ⁵²Department of Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka;
- ⁵³MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital
- 135 of Wenzhou Medical University, Wenzhou, China;
- ⁵⁴Institute of Hepatology, Wenzhou Medical University, Wenzhou, China;
- 137 ⁵⁵Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver
- 138 Disease in Zhejiang Province, Wenzhou, China.
- 139
- 140 **#Co-first authors**: Xiao-Dong Zhou, Giovanni Targher, and Christopher D. Byrne
- 141 ***Co-corresponding authors:**
- 142 Prof. Ming-Hua Zheng, MD, PhD
- 143 MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of
- 144 Wenzhou Medical University; No. 2 Fuxue Lane, Wenzhou 325000, China.
- 145 E-mail: zhengmh@wmu.edu.cn; tel: (86) 577-55579611; fax: (86) 577-55578522.
- 146
- 147 Prof. Jacob George, MD, PhD

- 148 Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital,
- 149 University of Sydney, Sydney, NSW, 2145, Australia.
- 150 E-mail: jacob.george@sydney.edu.au

151 Abstract

152 Fatty liver disease in the absence of excessive alcohol consumption is an increasingly 153 common condition with a global prevalence of ~25-30% and is also associated with 154 cardiovascular disease (CVD). Since systemic metabolic dysfunction underlies its 155 pathogenesis, the term metabolic (dysfunction)-associated fatty liver disease 156 (MAFLD) has been proposed for this condition. MAFLD is closely intertwined with 157 obesity, type 2 diabetes mellitus and atherogenic dyslipidemia, which are established 158 cardiovascular risk factors. Unlike CVD, which has received attention in the literature 159 on fatty liver disease, the CVD risk associated with MAFLD is often underestimated, 160 especially among Cardiologists. A multidisciplinary panel of fifty-two international 161 experts comprising Hepatologists, Endocrinologists, Diabetologists, Cardiologists and 162 Family Physicians from six continents (Asia, Europe, North America, South America, 163 Africa and Oceania) participated in a formal Delphi survey and developed consensus 164 statements on the association between MAFLD and the risk of CVD. Statements were 165 developed on different aspects of CVD risk, ranging from epidemiology to 166 mechanisms, screening, and management. The expert panel identified important 167 clinical associations between MAFLD and the risk of CVD that could serve to 168 increase awareness of the adverse metabolic and cardiovascular outcomes of MAFLD. 169 Finally, the expert panel also suggests potential areas for future research. 170

- 171 Keywords: metabolic (dysfunction)-associated fatty liver disease, MAFLD, non-
- 172 alcoholic fatty liver disease, cardiovascular disease, consensus, Delphi survey

174 Introduction

175 Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver condition worldwide, with an estimated global prevalence of 25-30%.¹ Although it is recognized 176 177 that NAFLD is linked to insulin resistance, overweight/obesity and type 2 diabetes 178 mellitus (T2DM), NAFLD remains a diagnosis of exclusion that exists when all other 179 competing causes of chronic liver disease have been tested for and excluded.² 180 Moreover, the lack of any positive diagnostic criteria for NAFLD has not helped with 181 disease characterization, public awareness or agreement on relevant clinical 182 endpoints. In 2020, an international expert consensus recommended that the term 183 "NAFLD" should be changed to the new term "metabolic (dysfunction)-associated fatty liver disease" (MAFLD), proposing a set of specific diagnostic criteria.^{3, 4} In 184 185 particular, the diagnosis of MAFLD is based on the presence of excess liver fat in 186 combination with any of the following: overweight/obesity, T2DM, or evidence of at least two metabolic risk abnormalities (typically featuring the metabolic syndrome).⁵ 187 188 This proposed change of terminology and definition aligns with the pathophysiology 189 of MAFLD and emphasizes the key role of metabolic dysregulation in disease pathogenesis.6-9 190

Although MAFLD and traditional risk factors for cardiovascular disease (CVD) can
have a significant overlap, recent studies have shown that MAFLD is a predictor of
adverse CVD outcomes, independent of traditional risk factors.¹⁰ Increasing evidence

195	now supports a link between MAFLD and CVD, and the importance of this
196	association is well recognized among Hepatologists. ¹¹⁻¹⁴ However, MAFLD as a
197	novel CVD risk factor remains underappreciated and underdiagnosed, unlike many
198	other traditional CVD risk factors. ¹⁰ Given that nearly three-quarters of global deaths
199	are now caused by chronic, lifestyle-associated diseases (such as obesity,
200	hypertension and diabetes), collaboration between medical specialties is essential to
201	improve patient outcomes. ¹⁵ In this regard, increasing awareness of the adverse
202	metabolic and cardiovascular effects of MAFLD among Cardiologists might help to
203	decrease the global burden of chronic, lifestyle-associated diseases.
204	
205	We have developed consensus statements using a two-round Delphi survey
206	methodology among a large multidisciplinary group of international experts to shed
207	light on the current opinion on the link between MAFLD and the risk of CVD. The
208	consensus statements explore issues ranging from epidemiological data and clinical
209	features to pathophysiological mechanisms, surveillance and management of this
210	common and burdensome liver disease.
211	
212	Methods
213	Study design
214	The consensus process used a Delphi procedure via two rounds of online surveys to
215	obtain responses to questions about MAFLD and its association with CVD risk that

216 require more unanimity (**Figure 1**).

217

218	We (Xiao-Dong Zhou, Giovanni Targher, Christopher D. Byrne, Jacob George and
219	Ming-Hua Zheng) selected expert panelists by identifying representative members
220	from scientific societies of Cardiology, Hepatology, Diabetes/Endocrinology and
221	Family Medicine, as well as core members of MAIDEN (Metabolic fAtty lIver
222	DiseasE coNsortium) or corresponding authors of published articles on the association
223	between MAFLD and CVD. To achieve global representation, we selected expert
224	panelists from six continents: Asia, Europe, North America, South America, Africa
225	and Oceania (Table 1). We created an email template outlining the research project
226	and explaining the requirements of prospective panelists. Experts were included if
227	they replied citing interest in involvement.
228	
229	In the first phase, we systematically reviewed the relevant literature published up to
230	July 2022 and developed a set of statements for a structured first-round questionnaire.
231	The systematic review took six months. Finally, five domains and 29 draft statements
232	were included in the Round 1 (R1) survey, which was conducted using Google forms
233	(link for R1: https://forms.gle/r2EVVntJkr1eJ1iq6). Experts were asked to score each
234	statement across a four-scale range ('Agree'/ 'Somewhat agree'/ 'Somewhat

235 disagree'/ 'Disagree'), with each question having a free text comment section.

237	The second phase, completed by 30 th October 2022, included the Round 2 (R2)
238	survey, containing a structured questionnaire in which the experts evaluated and re-
239	evaluated statements until consensus was achieved. The R2 survey questions focused
240	on controversial items identified by analyzing the R1 survey results and opinions (link
241	for R2: https://forms.gle/mTjJvqhAmbvTUgRbA). Statements with agreement more
242	than or equal to 80% were accepted. For questions for which consensus was not
243	achieved in the R1 survey (<80%), re-voting was carried out in the R2 survey after
244	presenting the available evidence. Experts viewed the group results and changed their
245	responses as they deemed appropriate.
246	
247	In the last phase, consensus statements were developed. Each statement and
	In the last phase, consensus statements were developed. Each statement and recommendation was assigned a grade to indicate the level of agreement, using the
247	
247 248	recommendation was assigned a grade to indicate the level of agreement, using the
247 248 249	recommendation was assigned a grade to indicate the level of agreement, using the grading system recorded in other Delphi studies: ^{16, 17} 'U' was unanimous (100%)
247248249250	recommendation was assigned a grade to indicate the level of agreement, using the grading system recorded in other Delphi studies: ^{16, 17} 'U' was unanimous (100%) agreement, 'A' was 90-99% agreement, 'B' 78-89% was agreement, and 'C' was 67-
 247 248 249 250 251 	recommendation was assigned a grade to indicate the level of agreement, using the grading system recorded in other Delphi studies: ^{16, 17} 'U' was unanimous (100%) agreement, 'A' was 90-99% agreement, 'B' 78-89% was agreement, and 'C' was 67-77% agreement. The statements were presented, discussed, and submitted for
 247 248 249 250 251 252 	recommendation was assigned a grade to indicate the level of agreement, using the grading system recorded in other Delphi studies: ^{16, 17} 'U' was unanimous (100%) agreement, 'A' was 90-99% agreement, 'B' 78-89% was agreement, and 'C' was 67-77% agreement. The statements were presented, discussed, and submitted for approval at the final stage. Any disagreements were resolved through discussion until

256 Findings

257	In this Consensus Statement, we report the final statements and recommendations
258	along with a summary of the broader literature relating to the association between
259	MAFLD and the risk of CVD. The consensus for all proposed statements increased
260	across the two-round Delphi surveys. The mean percentage of responses selecting
261	'agree' increased from 67.1% in the R1 survey to 72.4% in the R2 survey (P=0.002)
262	and 'agree or somewhat agree' responses increased from 92.8% to 95.7% (P<0.001)
263	(Figure 2). A grade of 'U' was given for 6/27 statements, 'A' for 18/27 statements,
264	and 'B' on 3/27 statements (Table 2).
265	
266	Consensus statements and recommendations
267	1. Epidemiology of MAFLD and risk of CVD

- 268 Consensus statements 1.1-1.8 (Grade A in 1.1 to 1.3 and 1.6 to 1.8; Grade B in 1.4
- 269 and 1.5) (Table 2).

- Consensus statement 1.1 MAFLD is associated with an increased prevalence of CVD 270
- 271 events compared with the non-MAFLD population (Grade A).
- 272 Consensus statement 1.2 MAFLD is associated with an increased incidence of
- 273 nonfatal CVD events compared with the non-MAFLD population (Grade A).
- CVD is the leading cause of mortality in patients with NAFLD^{1, 18, 19} and NAFLD is 274
- 275 associated with a higher prevalence and incidence of fatal and nonfatal CVD events.
- ²⁰⁻²³ By definition, MAFLD is tightly linked to obesity, T2DM and atherogenic 276
- dyslipidemia, which are established cardiometabolic risk factors.²⁴⁻²⁷ It is, therefore, 277

278	not surprising that MAFLD is associated with a greater prevalence and incidence of
279	adverse cardiovascular events compared to that observed in the non-MAFLD
280	population. In a cohort of 12,183 participants from East China, investigators reported
281	that the CVD burden (defined by Framingham risk score [FRS] or previous CVD) was
282	greater in those with MAFLD than in the non-MAFLD population. ²⁸ In a nationwide
283	cohort of ~ 4.5 million Japanese individuals, Yoneda et al. ²⁹ reported that the
284	incidence rates of CVD were 2.69 (95% CI 2.55-2.83) and 1.01 (95% CI 0.98-1.03)
285	per 1000 person-years in the MAFLD and non-MAFLD groups, respectively. Similar
286	results were reported in other Asian cohort studies. ^{30, 31} Finally, a global meta-analysis
287	by Wen et al. ³² confirmed that the incidence rates of CVD in patients with MAFLD
288	were more than twice compared to those observed in subjects without MAFLD.
289	
290	Consensus statement 1.3 MAFLD is associated with an increased incidence of CVD
291	mortality compared with the non-MAFLD population (Grade A).
292	To date, conflicting data exist on CVD mortality in patients with NAFLD. ^{21, 33, 34}
293	However, the contemporary largest meta-analysis by Mantovani et al. ²³ clearly
294	demonstrated that NAFLD was associated with a higher risk of nonfatal CVD events
295	(pooled random-effects hazard ratio [HR] 1.40; 95% CI 1.20-1.64) and CVD
296	mortality (pooled random-effects HR 1.30; 95% CI 1.08-1.56). Interestingly, the
297	meta-regression analysis showed that pre-existing T2DM was a modifying factor and
298	was associated with increased risk of CVD events. Notably, recent epidemiological

299	data using the MAFLD definition reported that MAFLD was associated with a higher
300	risk of CVD mortality. ^{26, 30} For instance, Kim et al. ³⁵ analyzed data from 7761
301	participants from the Third National Health and Nutrition Examination Survey
302	(NHANES III) and demonstrated that individuals with MAFLD had a nearly 25%
303	higher risk of CVD mortality than those without MAFLD (HR 1.24; 95% CI 1.01-
304	1.51). In a nationwide cohort study from South Korea (9.5 million participants), Lee
305	et al. ³⁰ reported that patients with MAFLD were at higher risk of CVD mortality (HR
306	1.46; 95% CI 1.41-1.52) compared to individuals without either MAFLD or NAFLD,
307	whereas patients with NAFLD were not (HR 1.12; 95% CI 0.96-1.30). The
308	aforementioned meta-analysis by Wen et al. ³² confirmed that CVD mortality was ~1.6
309	times higher in patients with MAFLD than in the control group. Collectively,
310	therefore, accumulating evidence now indicates that MAFLD can identify subjects
311	with poorer "metabolic health status" and higher risk of developing CVD events and
312	mortality.
313	
314	Consensus statement 1.4 The incidence of fatal and/or nonfatal CVD events in
315	individuals with MAFLD is higher compared to that in the NAFLD population (Grade
316	<i>B</i>).
317	Since there is considerable overlap (estimated around 80-90%) between the NAFLD
318	and MAFLD populations, it is expected that those with MAFLD have essentially
319	similar CVD risks to those with NAFLD. ^{13, 14} In line with this, investigators

320	comparing the MAFLD-only and NAFLD-only populations reported that individuals
321	with the MAFLD-only status (i.e. subjects with hepatic steatosis and metabolic risk
322	factors) were at higher risk of CVD events compared with both individuals without
323	MAFLD and those with the NAFLD-only status (i.e. subjects with hepatic steatosis
324	without metabolic risk factors). Indeed, in these cohort studies the association
325	between the NAFLD-only status and risk of CVD events was modest or absent. ^{30 36} In
326	the cohort study by Lee et al., ³⁰ individuals with the MAFLD-only status were at
327	higher risk of incident CVD outcomes (HR 1.43; 95% CI 1.41-1.45) compared with
328	those without MAFLD or NAFLD, whereas the association between the NAFLD-only
329	status and risk of CVD events was modest (HR 1.09; 95% CI 1.03-1.15). Similarly, in
330	a retrospective cohort of 2,985 participants followed for 7 years, Niriella et al. ³⁶
331	showed that the MAFLD-only status was associated with a higher risk of CVD events
332	compared to the control group (HR 7.2; 95% CI 2.4-21.5), whilst the NAFLD-only
333	status was not associated with CVD events compared to the non-steatotic control
334	group (HR 1.90; 95% CI 0.25-14.8). Using data from the NHANES III database,
335	Huang and colleagues ²⁶ were among the first to show that MAFLD was associated
336	with a higher risk of CVD mortality compared to NAFLD (HR 2.01; 95% CI 1.66-
337	2.44 vs. HR 1.53; 95% CI 1.26-1.86, respectively), thus suggesting that the MAFLD
338	definition may better identify subjects with a high-risk of adverse cardiovascular
339	outcomes. In a recent meta-analysis of 7 observational cohort studies (including about
340	13 million individuals), Mantovani et al. ³⁷ examined the differential risk of NAFLD

and MAFLD definitions on fatal and nonfatal CVD events. These authors repo	orted
--	-------

- 342 that each of the two definitions were associated with a higher risk of incident CVD
- 343 events (pooled random-effects HR 1.50, 95% CI 1.30-1.72 for MAFLD vs. no-
- 344 MAFLD; and pooled random-effects HR 1.27, 95% CI 1.12-1.45 for NAFLD vs. no-
- 345 NAFLD, respectively). Although MAFLD identified a greater number of CVD events
- than NAFLD, the risk for fatal and nonfatal CVD events associated with either
- 347 definition was not significantly different.³⁷
- 348
- 349 Consensus statement 1.5 MAFLD predicts better the risk of CVD events than NAFLD
 350 (Grade B).
- 351 Predicting CVD risk is not a trivial task and different risk prediction tools have been
- 352 used in people with MAFLD. Several studies from different countries showed that
- 353 patients with MAFLD had a higher 10-year CVD risk (as estimated by the FRS or
- 354 other CVD risk prediction tools) compared to those with NAFLD, thus confirming
- that MAFLD may identify a greater CVD risk burden. ^{25, 27, 38, 39} For instance, Zhang
- et al.³⁸ analyzed the NHANES 1999-2016 database and reported that patients with
- 357 MAFLD had higher FRS compared to those with NAFLD, thus confirming that
- 358 MAFLD may have a greater CVD risk burden. Kim et al.²⁵ analyzed data from 2,144
- 359 subjects without pre-existing CVD and showed that patients with MAFLD had a
- 360 remarkably higher risk of intermediate to high 10-year CVD risk compared with those
- 361 with NAFLD-only, with adjusted odds ratio (OR) of 8.17 (95% CI 2.40-36.1). It is

362	known that the Suita CVD risk model is a risk prediction tool that can improve CVD
363	risk prediction, relative to the FRS, among Japanese individuals. ³⁹ Using the Suita
364	CVD model, Tsutsumi et al. ²⁷ reported that the MAFLD definition better identified
365	patients at a high risk of developing CVD events than NAFLD definition.
366	
367	Consensus statement 1.6 Increasing severity of liver fibrosis is associated with higher
368	CVD risk (Grade A).
369	The assessment of liver fibrosis is particularly important for prognosis amongst
370	patients with MAFLD because the severity of fibrosis is the strongest predictor of
371	liver disease progression and the risk of CVD events. However, liver fibrosis
372	assessment is often overlooked in relation to risk estimates for CVD events. ^{23, 40} A
373	historical cohort using data from 8,511 health providers reported that patients with
374	advanced liver fibrosis (estimated by Fibrosis-4 (FIB-4) index \geq 2.67) had higher risk
375	of CVD events after adjustment for sociodemographic variables, the European
376	Systematic Coronary Risk Evaluation calculator (SCORE) score and use of statins or
377	aspirin (HR 1.63; 95% CI 1.29-2.06), though not for age. ⁴¹ In a prospective study of
378	nearly 900 patients with the metabolic syndrome who were followed for a median of
379	3.4 years, Baratta et al. ⁴² reported a nearly 4-fold increase in fatal and non-fatal CVD
380	events in those with NAFLD and FIB-4 \geq 2.67 (HR 4.02; 95% CI 1.06-5.74). In the
381	ongoing PLINIO study in Italy, an independent association was also observed
382	between advanced liver fibrosis (as estimated by NAFLD Fibrosis score [NFS], which

383	is primarily driven by metabolic factors) and the risk of CVD (ClinicalTrials.gov no:
384	NCT04036357). ⁴⁰ Again, in a prospective study, involving 3,512 Japanese
385	individuals, the presence of advanced liver fibrosis (as non-invasively assessed by
386	FIB-4 \geq 2.67 and other scores) was associated with higher CVD risk, independent of
387	pre-existing T2DM, hypertension, and dyslipidemia. ⁴³ Han et al. ⁴⁴ analyzed the Korea
388	NHANES 2008-2011 database and showed that individuals with MAFLD and
389	advanced liver fibrosis (defined as FIB-4 \geq 2.67) had a greater chance of high
390	probability atherosclerotic CVD risk (OR 2.40; 95% CI 1.75-3.29) compared to those
391	without MAFLD. Collectively, the evidence from these and other studies suggests that
392	the development of hepatic fibrosis in MAFLD is, at least in part, an epiphenomenon
393	of long-term exposure to common cardiometabolic risk factors, such as T2DM,
394	obesity, and hypertension. These cardiometabolic risk factors closely align to
395	systemic insulin resistance, low-grade inflammation, and increased oxidative stress.
396	This, in turn, can exacerbate hepatocyte damage and results in activation of hepatic
397	stellate and Kupffer cells, thereby driving hepatic fibrosis. ⁴⁵ Thus, the severity of
398	hepatic fibrosis could be considered as a non-lipid marker of CVD risk, while non-
399	invasive fibrosis biomarkers, such as the widely used FIB4 and NFS scores or other
400	newer non-invasive fibrosis biomarkers, such as the Enhanced Liver Fibrosis (ELF)
401	and the PRO-C3 based fibrosis algorithm that included age, pre-existing diabetes,
402	platelet count and serum PRO-C3 concentration (i.e., a marker of type III collagen
403	formation) should be considered in CVD risk assessment. ^{46, 47}

405 Consensus statement 1.7 Hepatic steatosis is associated with an increase in CVD risk
406 (Grade A).

407	Emerging evidence suggests that hepatic steatosis is also associated with increased
408	CVD risk. For example, in a nested cohort study of 3,756 patients from the United
409	States who underwent coronary computerized tomographic angiography, Meyersohn
410	et al. ⁴⁸ showed that hepatic steatosis on ultrasonography was associated with higher
411	risk of developing major adverse CVD events, irrespective of atherosclerotic CVD
412	risk scores, significant coronary stenosis, and metabolic syndrome features (adjusted
413	HR 1.72; 95% CI 1.16-2.54). The PREVEND cohort involving 6,340 participants
414	without pre-existing CVD also reported that hepatic steatosis (defined as fatty liver
415	index [FLI] \geq 60) was associated with higher CVD risk even after adjustment for
416	traditional CVD risk factors. ⁴⁹ Similarly, in a population-based cohort study using the
417	UK Biobank database (196,128 participants), a FLI increase was associated with
418	higher incidence of CVD events. ⁵⁰ Using the Korean National Health Insurance
419	dataset (involving 139,633 patients diagnosed with new-onset T2DM), Park et al. ⁵¹
420	reported that hepatic steatosis was associated with higher risk of CVD events and
421	mortality. An updated meta-analysis of 38 observational studies reported that the
422	prevalence of clinical and subclinical CVD was higher in patients with moderate to
423	severe steatosis on liver ultrasound than those with mild steatosis. ²⁰

425	<i>Consensus statement</i>	1.8 MAFLD is	a risk factor	for CVD	events even after

adjustment for traditional cardiovascular risk factors (Grade A).

427	While evidence for the existence of an association between MAFLD and the risk of
428	developing fatal and nonfatal CVD events is robust, the existence of an independent
429	association between MAFLD and CVD is seemingly conflicting. ^{29, 52 30} In the cohort
430	study by Yoneda et al., ²⁹ the risk of CVD events was higher in patients with MAFLD
431	than in those without MAFLD, even after adjusting for common cardiometabolic risk
432	factors. However, a prospective community-based cohort of South Korean individuals
433	followed for 16 years, Moon et al. ⁵² showed that the association between MAFLD and
434	risk of CVD events disappeared after adjustment for known CVD risk factors.
435	However, it should be noted that this study was conceptually flawed as components of
436	the metabolic syndrome should not be included in a statistical adjustment model for
437	MAFLD, as they are also used to diagnose MAFLD. Removing these metabolic
438	syndrome components invalidates the diagnosis of MAFLD and the resulting
439	estimation only assesses the effect of hepatic steatosis alone on risk of CVD.
440	
441	Although most of published cohort studies investigating associations between fatty
442	liver disease and CVD, adjust for common CVD risk factors (such as T2DM, obesity,
443	dyslipidemia, and hypertension), these CVD risk factors are often collinear in practice
444	and are also part of the diagnostic criteria used for MAFLD. Probably, a more
445	appropriate analysis would be to stratify patients and undertake a comparison between

446	patients with MAFLD only (i.e., a condition always characterized by hepatic steatosis
447	and coexisting metabolic dysregulation) versus patients with hepatic steatosis but
448	without MAFLD (i.e. subjects with the NAFLD-only status who are characterized by
449	the absence of metabolic dysregulation) or healthy controls.

451	2 Epidemiology of MAFLD and CVD outcomes
452	Consensus statements 2.1-2.4 (Grade U in 2.2; Grade A in 2.1, 2.3 and 2.4) (Table 2).
453	Consensus statement 2.1 MAFLD is associated with greater carotid-artery intima-
454	media thickness and increased risk of carotid atherosclerotic plaques (Grade A).
455	NAFLD is closely associated with several markers of subclinical atherosclerosis. ^{24 53}
456	²⁰ There is also accumulating evidence to support an association between MAFLD
457	and subclinical atherosclerosis markers, including higher carotid intima-media
458	thickness (IMT), greater coronary artery calcification (CAC), as well as greater high-
459	risk obstructive plaques and non-calcified plaques of coronary arteries. For instance,
460	in a cross-sectional study of 890 Japanese subjects who underwent health check-ups,
461	Rieko Bessho et al. ⁵⁴ showed that patients with MAFLD (especially if T2DM was
462	present) had higher odds for CAC compared to both patients with NAFLD and those
463	without hepatic steatosis. In a prospective cohort study of 4,507 participants with
464	normal brachial-ankle pulse wave velocity (baPWV) followed for 4.3 years, Wang et
465	al.55 reported that MAFLD was associated with higher risk of developing elevated
466	baPWV (>1773 cm/s). In another prospective community-based cohort of 6,232

467	participants, who were followed for a median of 4.3 years, Liu et al. ⁵⁶ reported that
468	MAFLD was associated with a greater risk of developing subclinical atherosclerosis.
469	In addition, in a subsequent study, the same authors also reported that regression of
470	MAFLD was associated with a lower risk of developing subclinical atherosclerosis,
471	especially among those with a low probability of liver fibrosis or fewer metabolic risk
472	factors. ⁵⁶ Using the Kanbguk Samsung Health Study cohort database, Sung et al.
473	reported that both NAFLD and MAFLD were associated with higher risk of
474	developing incident CAC, even after adjusting for age, sex, educational level,
475	smoking, physical activity, pre-existing coronary artery disease, plasma low-density
476	lipoprtoein (LDL)-cholesterol concentrations, or use of lipid-lowering agents.
477	However, these associations were stronger for MAFLD. ⁵⁷
478	
479	Consensus statement 2.2 MAFLD is associated with atherosclerotic CVD events such
480	as acute coronary syndromes (Grade U).
481	Recent evidence also indicates that MAFLD may be associated with acute or chronic
482	coronary syndromes. In a cohort study of 3,306 patients with chronic coronary
483	syndrome, Liu et al.58 reported that patients with MAFLD had a higher risk of adverse
484	CVD outcomes compared to their counterparts without MAFLD. In a prospective

- 485 analysis of nearly 500 hospitalized patients with acute coronary syndrome and hepatic
- 486 steatosis, Noda et al.⁵⁹ found that the coexistence of MAFLD and impaired physical
- 487 function tests independently predicted the risk of adverse CVD outcomes. Finally,

488	some cohort studies found that the MAFLD-only status was more strongly associated
489	with risk of nonfatal CVD events than the NAFLD-only status. ^{10, 35, 36, 60} These
490	findings suggest that the MAFLD definition is better than the NAFLD definition for
491	identifying patients who are at high risk of developing major CVD events.
492	
493	Consensus statement 2.3 MAFLD is associated with increased risk of cardiac
494	arrhythmias (mainly permanent atrial fibrillation) (Grade A).
495	Growing evidence also suggests that MAFLD is associated with an increased risk of
496	cardiac arrhythmias, mainly permanent atrial fibrillation (AF) and certain ventricular
497	tachyarrhythmias. A meta-analysis of 19 observational studies (involving about 7
498	million individuals) showed that MAFLD was closely associated with increased
499	prevalence and incidence of permanent AF, QTc interval prolongation and some
500	cardiac conduction defects. ⁶¹ In a nationwide health check-up population in China
501	(including more than 2 million individuals), Lei et al. found that MAFLD was
502	associated with a higher risk of having and developing permanent AF. ⁶² Decoin et
503	al. ⁶³ analyzed a cohort of United States patients after AF ablation and found that
504	advanced liver fibrosis (estimated by non-invasive fibrosis biomarkers) in those with
505	MAFLD was associated with adverse atrial remodeling and AF recurrence following
506	catheter ablation.
507	

508 Consensus statement 2.4 MAFLD is associated with abnormal myocardial function

and structure (Grade A).

510	MAFLD is also associated with abnormal cardiac function and structure. The
511	magnitude of this risk increases with the severity of liver disease in MAFLD. A meta-
512	analysis by Leite-Moreira et al. ⁶⁴ reported that MAFLD was associated with adverse
513	structural alterations and cardiac dysfunction (mainly left ventricular diastolic
514	dysfunction). Another updated meta-analysis ⁶⁵ of observational studies confirmed that
515	MAFLD was associated with impaired systolic and diastolic functions associated with
516	cardiac structural changes. This meta-analysis also found that concomitant metabolic
517	risk factors and liver disease severity were independently associated with
518	abnormalities in cardiac function. Finally, Peng et al. ⁶⁶ found that MAFLD was
519	associated with left ventricular diastolic dysfunction and cardiac remodeling
520	(including greater inter-ventricular septum thickness and left ventricular posterior wall
521	thickness, as well as larger left atrial diameter and greater left ventricular
522	hypertrophy), especially in patients with coexisting T2DM or obesity and in those
523	with moderate-to-severe hepatic steatosis.
524	
525	As discussed below in more detail, there are multiple potential pathophysiological
526	mechanisms by which MAFLD may increase the risk of cardiac remodeling and
527	hypertrophy and arrhythmic complications (mostly permanent AF). ^{67, 68}
528	
529	3 Pathophysiological mechanisms linking MAFLD with CVD

530 Consensus statements 3.1-3.4 (Grade A in 3.1 to 3.4) (Table 2).

531	Consensus statement 3.1 MAFLD and CVD share multiple cardiometabolic risk
532	factors, such as systemic low-grade inflammation, endothelial dysfunction, increased
533	oxidative stress, insulin resistance and an atherogenic lipoprotein profile (Grade A).
534	Multiple shared cardiometabolic risk factors linked to MAFLD may synergistically
535	promote the development of CVD. ¹⁰ Abnormal glucose and lipid metabolism and
536	increased oxidative stress play key roles in the pathogenesis of metabolic
537	dysregulation in both MAFLD and CVD. First, increased oxidative stress, low-grade
538	inflammation and endothelial dysfunction have been shown to promote a pro-
539	atherogenic milieu that induces the development of CVD. ⁶⁹ Increased oxidative stress
540	may contribute to low-grade inflammation by inducing endothelial dysfunction that in
541	turn increases platelet activation and vascular plaque formation, thus promoting CVD
542	development in patients with MAFLD. ⁷⁰ Second, MAFLD predisposes to atherogenic
543	dyslipidemia, which is typically characterized by high levels of triglycerides and very
544	low density lipoprotein (VLDL) remnant lipoproteins, and low levels of high-density
545	lipoprotein (HDL)-cholesterol. ⁷¹ Patients with obesity, T2DM or metabolic syndrome
546	have high levels of remnant lipoproteins due to activation of hormone sensitive lipase,
547	which in turns causes increased hydrolysis of triglycerides from adipose tissue, thus
548	inducing elevated plasma free fatty acid levels and hepatic fat accumulation. ⁷² This
549	altered serum lipoprotein profile associated with MAFLD is typical of the atherogenic
550	dyslipidemia that is characterized by high LDL particle concentration (with normal to

551	modestly elevated LDL-cholesterol levels) and a greater abundance of small dense
552	low density lipoprotein (sd-LDL), as well as increased remnant lipoproteins and
553	decreased HDL particle concentration. ⁷³ This lipid phenotype likely may contribute to
554	the increased CVD risk observed in MAFLD. Lastly, MAFLD is strongly associated
555	with greater insulin resistance which is also involved in CVD development. ⁷⁴ Insulin
556	resistance increases hyperglycemia, triggers oxidative stress, increases low-grade
557	inflammation, and causes endothelial dysfunction, possibly through the release of
558	several pro-atherogenic, pro-coagulant, and pro-inflammatory mediators. ⁷⁵
559	
560	Consensus statement 3.2 Activation of the renin-angiotensin system is one of the
561	mechanistic links between MAFLD and CVD risk (Grade A).
562	Additional mechanisms contributing to CVD in patients with MAFLD may also
563	include activation of the renin-angiotensin system (RAAS), intestinal dysbiosis and
564	presence of certain genetic polymorphisms. RAAS activation is implicated in the
565	pathophysiology of both MAFLD and CVD. ⁷⁶ In fact, RAAS activation in
566	metabolically active tissues can exert pro-inflammatory effects, mainly via
567	angiotensin II, and is associated with multiple dysfunctional cellular processes,
568	leading to hepatic necro-inflammation and fibrosis. ⁷⁷⁻⁷⁹ In a retrospective, territory-
569	wide cohort study of 12,327 patients with NAFLD, the authors found that treatment
570	with RAAS inhibitors was associated with a lower risk of liver-related events, liver
571	cancer and cirrhotic complications, though the indication for use of RAAS inhibitors

572	was for vascular and not liver disease. ⁸⁰ Given the current evidence, it could be
573	speculated that RAAS inhibitors may exert some beneficial effects on hepatic fibrosis
574	and its related complications in MAFLD, but larger prospectively designed
575	intervention studies are needed to provide high quality data on this topic. ⁸¹
576	
577	Consensus statement 3.3 Some shared genetic polymorphisms (e.g., PNPLA3 I148M,
578	and TM6SF2 E167K) may affect the risk of both MAFLD and CVD (Grade A).
579	Some shared genetic polymorphisms associated with MAFLD may contribute to CVD
580	development. ⁸² Patatin-like phospholipase domain-containing protein 3 (PNPLA3)
581	and trans-membrane 6 superfamily 2 (TM6SF2) are two susceptibility genes for
582	MAFLD that have been shown to be associated with all histologic stages of
583	MAFLD. ^{83, 84} Interestingly, both of these genes have shown opposite effects on the
584	risk of MAFLD and CVD. Some studies reported that PNPLA3 and TM6SF2 genetic
585	variants are associated with higher risk of fatty liver and steatohepatitis, but with a
586	lower risk of CVD. ^{85, 86} The current concept is that genetic variants in <i>PNPLA3</i> and
587	TM6SF2 can regulate the production of VLDL particles by reducing hydrolytic
588	activity and the breakdown of triglycerides in the liver, thereby resulting in intra-
589	hepatic triglyceride accumulation, but reducing circulating levels of VLDL, and by
590	extension, plasma triglycerides and LDL-cholesterol levels, thereby preventing
591	CVD. ^{85, 87} Some studies showed that carriers of the p.I148M variant in <i>PNPLA3</i> and
592	p.E167K in <i>TM6SF2</i> have a lower incidence of CVD. ⁸⁵ Future prospective studies are

required to better understand whether the knowledge on these genetic risk factors can
be also translated into CVD risk reduction.⁸⁸

595

596 Consensus statement 3.4 Gut microbiota may play a role in both MAFLD and CVD

597 (Grade A).

598 MAFLD may also contribute to CVD development because this liver disease is

sociated with dysregulated gut microbiota, leading to intestinal bacterial

600 dysfunction and altered microbial-derived metabolites.^{89, 90 91, 92 93} However, it is also

601 likely that dietary factors are the primary cause of dysregulated gut microbiota in

602 MAFLD. A meta-analysis reported abnormalities in gut microbiota composition in

603 patients with MAFLD compared to healthy controls.⁹⁴ Studies have also shown that

604 specific intestinal microbiome signatures in MAFLD, liver fibrosis, and cirrhosis

605 could be used as non-invasive diagnostic biomarkers for liver disease diagnosis.⁹⁵

606 Intestinal bacterial dysfunction and metabolic product alterations may contribute to

607 the production of pathogen-associated molecular patterns, increased mucosal barrier

608 permeability and impaired mucosal barrier permeability that lead to increased

609 systemic low-grade inflammation, insulin resistance and obesity, thus promoting

610 MAFLD progression and CVD development.^{93, 96} Gut microbiota independent of

611 MAFLD can also influence the development and progression of CVD.⁹⁷

612

613 4. MAFLD and primary prevention of CVD

614 Consensus statements 4.1-4.3 (Grade A in 4.2 and 4.3; Grade B in 4.1
--

615 Consensus statement 4.1 Carotid ultrasonography should be considered in most

- 617 Current guidelines highlight the importance of CVD risk assessment in MAFLD.^{98, 99}
- 618 However, two key questions still remain: 1) which patients with MAFLD should be
- 619 screened for CVD, and 2) what screening tests should be used for CVD risk

620 assessment. The advantages of screening and thus prevention of a disease depend on

- baseline risk. As discussed above, MAFLD is associated with several markers of
- 622 subclinical atherosclerosis (for example, increased carotid IMT, CAC, and

623 atherosclerotic carotid plaques) which are associated with a higher risk of developing

624 major CVD events.²⁰ Thus, since patients with MAFLD are at higher risk for CVD

625 morbidity and mortality, monitoring subclinical atherosclerosis markers may be of

626 benefit for CVD risk prediction and reduction.¹⁰⁰ Markers of subclinical

627 atherosclerosis should be considered in high-risk individuals, such as computed

628 tomography scanning to assess CAC, or carotid IMT and carotid atherosclerotic

629 plaques. Assessment of carotid artery ultrasound is a widely used, reliable and cost-

- 630 effective screening tool that can be routinely employed in the clinic with incremental
- 631 prognostic value over traditional CVD risk factors in patients with MAFLD, who are
- 632 typically asymptomatic.¹⁰¹ A recent meta-analysis suggested that the pooled

633 prevalence of subclinical and clinical CVD in NAFLD was 38.7% and 55.4%,

634 respectively.¹⁰²

⁶¹⁶ patients with MAFLD to improve CVD risk assessment (Grade B).

636	To date, there are insufficient prospective data to support routine use of carotid artery
637	ultrasound for CVD screening in patients with MAFLD. Also, it is uncertain whether
638	carotid IMT measurement may improve CVD risk stratification over current risk
639	stratification scores such as FRS. ¹⁰³ In our two-round Delphi survey, 16% of experts
640	somewhat disagreed or disagreed with this statement in the R2 survey. Thus, we need
641	to consider that assessment of carotid artery ultrasound may pose medical resource
642	challenges in some areas (such as over-referral, increased resource use, costs and
643	over-medication). Future studies should specifically evaluate the cost-effectiveness
644	and feasibility of routine carotid ultrasound performance as part of the MAFLD
645	workup.
646	
646 647	Consensus statement 4.2 In CVD risk assessment, MAFLD may be considered a CVD
	Consensus statement 4.2 In CVD risk assessment, MAFLD may be considered a CVD risk factor (Grade A).
647	
647 648	risk factor (Grade A).
647 648 649	<i>risk factor (Grade A).</i> Since MAFLD may (independently) increase the risk of CVD it could contribute to
647 648 649 650	<i>risk factor (Grade A).</i> Since MAFLD may (independently) increase the risk of CVD it could contribute to CVD prediction risk scores, such as FRS or other scores. However, it remains
647648649650651	risk factor (Grade A).Since MAFLD may (independently) increase the risk of CVD it could contribute toCVD prediction risk scores, such as FRS or other scores. However, it remainsuncertain if the current CVD risk scores could be improved by adding MAFLD. In a
 647 648 649 650 651 652 	 risk factor (Grade A). Since MAFLD may (independently) increase the risk of CVD it could contribute to CVD prediction risk scores, such as FRS or other scores. However, it remains uncertain if the current CVD risk scores could be improved by adding MAFLD. In a setting of clinical suspicion of CVD, MAFLD might be considered as a potential risk-

656	and apolipoprotein profiles improved the prognostic value of CVD risk scores in
657	patients with MAFLD. In this retrospective cohort study, FRS alone did not provide
658	the best prediction of CVD, particularly when differentiating the risk of CVD with
659	mild steatosis from that without MAFLD. FRS could predict people at low risk, but its
660	predictive performance decreased for people at high risk of severe MAFLD. However,
661	individuals with FRS <10% and mild steatosis had a cumulative risk of double to
662	almost triple compared to that predicted by FRS. ¹⁰⁴ Therefore, current CVD risk
663	scores may underestimate the true CVD risk in patients with advanced MAFLD.
664	Further research is needed to examine the extent to which MAFLD may confer an
665	additional CVD risk compared to traditional cardiovascular risk factors.
666	
000	
667	Consensus statement 4.3 Screening for MAFLD should be considered in most patients
	Consensus statement 4.3 Screening for MAFLD should be considered in most patients with CVD (Grade A).
667	
667 668	with CVD (Grade A).
667 668 669	with CVD (Grade A). Currently, with a lack of uniform MAFLD screening guidelines, screening for
667 668 669 670	 <i>with CVD (Grade A).</i> Currently, with a lack of uniform MAFLD screening guidelines, screening for MAFLD is not routinely undertaken in patients with CVD.¹⁰⁵ As for screening for
667 668 669 670 671	 <i>with CVD (Grade A).</i> Currently, with a lack of uniform MAFLD screening guidelines, screening for MAFLD is not routinely undertaken in patients with CVD.¹⁰⁵ As for screening for MAFLD in patients with CVD, this depends on the most appropriate diagnostic test to
 667 668 669 670 671 672 	 with CVD (Grade A). Currently, with a lack of uniform MAFLD screening guidelines, screening for MAFLD is not routinely undertaken in patients with CVD.¹⁰⁵ As for screening for MAFLD in patients with CVD, this depends on the most appropriate diagnostic test to evaluate patients with non-invasive versus invasive techniques. Non-invasive tests
 667 668 669 670 671 672 673 	 with CVD (Grade A). Currently, with a lack of uniform MAFLD screening guidelines, screening for MAFLD is not routinely undertaken in patients with CVD.¹⁰⁵ As for screening for MAFLD in patients with CVD, this depends on the most appropriate diagnostic test to evaluate patients with non-invasive versus invasive techniques. Non-invasive tests have lower accuracy while invasive tests although they are more accurate, are

677	have normal serum liver enzyme levels and early MAFLD might be missed due to the
678	low sensitivity of this test. Thus, we also need to consider whether screening for
679	MAFLD poses medical resource challenges in some regions. The costs involved in
680	undertaking abdominal ultrasound or other imaging modalities, may not be cost-
681	effective without approved pharmacological therapies. Early screening using non-
682	invasive tests in patients with CVD can be considered for evaluating of hepatic
683	fibrosis when multiple CVD risk factors are present, particularly in the context of
684	T2DM. ¹⁰⁶ The independent role of MAFLD-related fibrosis in CVD provides an
685	additional option for CVD primary prevention and may facilitate engagement with
686	advised treatments and lifestyle change. This would enable early detection of
687	advanced liver fibrosis, referral to a liver specialist, and CVD risk assessment. ^{40, 107}
688	

689 5 Managing MAFLD and the risk of CVD

- 690 Consensus statements 5.1-5.8 (Grade U in 5.1, 5.2, 5.4, 5.5 and 5.8; Grade A in 5.3,
- 691 5.6 and 5.7) (Table 2).
- 692 Consensus statement 5.1 Clinicians who manage patients with MAFLD should target
- 693 cardiometabolic risk factors (overweight/obesity, diabetes, dyslipidemia and
- 694 hypertension) (Grade U).
- 695 Consensus statement 5.2 Lifestyle intervention (including a healthy dietary pattern,
- 696 weight loss and regular physical exercise) is associated with improvement in both
- 697 MAFLD and CVD (Grade U).

698	Clinicians managing MAFLD patients should target cardiometabolic risk factors and
699	take into account the recommended behavioral and pharmacotherapy approaches that
700	may have potential benefits (Table 3). MAFLD is a therapeutic area for which many
701	clinical trials are underway; these are summarized in recent reviews. ^{108, 109} Lifestyle
702	intervention (including a healthy dietary pattern, weight loss and regular physical
703	exercise) is associated with MAFLD improvement. ^{110, 111} Intensive lifestyle
704	intervention plays an important role in the primary/secondary prevention of CVD and
705	it is specifically mentioned in guidelines for management of MAFLD. ^{112, 113} A plant-
706	based, Mediterranean type diet is the best cardioprotective approach, with benefits on
707	insulin resistance and oxidative stress and it was also shown to be beneficial in small
708	patient cohorts with MAFLD. ^{114 115} Physical activity, independent of weight loss,
709	could be a promising strategy to reduce the incidence of CVD and hepatic steatosis,
710	mainly through positive modulation of insulin signaling. ¹¹⁶ However, weight loss is
711	still strongly recommended in most patients as it has shown benefits on liver
712	histology, systemic insulin resistance, and low-grade inflammation.98
713	
714	Consensus statement 5.3 Alcohol avoidance of any type or amount is advisable in
715	patients with MAFLD and CVD (Grade A).

716 Heavy alcohol consumption is a risk factor for both progressive MAFLD and CVD.

717 There is debate regarding the effect of moderate drinking on MAFLD and CVD

risk.¹¹⁷ First, there is emerging evidence that even small alcohol amounts are harmful

719	in MAFLD. ^{118, 119} Modest alcohol consumption has also been associated with
720	decreased improvement in histologic steatosis and steatohepatitis. ¹²⁰ A systematic
721	review suggested that any level of alcohol consumption is associated with a doubling
722	of incident liver disease outcomes in MAFLD, even when drinking within
723	recommended limits. ¹²¹ The 2022 AHA scientific statement on NAFLD and CVD risk
724	reported that alcohol avoidance is strongly encouraged. Second, it remains uncertain
725	whether any benefit to CVD risk outweighs any harm to the liver. ¹²² Controversy has
726	surrounded the association between alcohol intake and CVD, in part because alcohol
727	use is difficult to measure and changes over time. Numerous studies have
728	demonstrated an association between moderate alcohol use and lower CVD risk in the
729	general population. ¹²³ However, some or all of the apparent cardiac protective benefits
730	of alcohol intake may be due to the product of residual confounding from favorable
731	lifestyle, socio-economic, and behavioral factors that tend to coincide with modest
732	alcohol intake. ^{124, 125} A cohort study of nearly 370,000 persons from the general
733	population found that after adjustment for healthy lifestyle effects, the apparent
734	cardiovascular benefits of light drinking were substantially reduced. This suggests that
735	any amount of daily alcohol intake is associated with increased CVD risk. ¹²⁶ A cohort
736	study prospectively assessing the CVD risk of alcohol use in patients with MAFLD
737	also suggested the same. In contrast to general population, alcohol use may not reduce
738	the risk of CVD in patients with MAFLD. ¹²⁷ For example, moderate drinking might
739	be associated with progression of hepatic fibrosis and little or no cardiovascular

740	benefit. ¹²⁸ Overall, there remains a need for additional high-quality prospective
741	studies that evaluate both liver-related and CVD outcomes at different stages of
742	fibrosis amongst MAFLD patients with moderate or lower amounts of alcohol intake,
743	including the measurement of phosphatidylethanol (PEth). Currently, based on the
744	synthesis of the most up to date longitudinal evidence, we believe that clinicians
745	seeing patients with MAFLD should advise abstinence from alcohol.
746	
747	Consensus statement 5.4 Treatment with GLP-1RAs is beneficial in MAFLD patients
748	with coexisting T2DM and may reduce CVD outcomes (Grade U).
749	Glucose-lowering agents may be suitable for mitigating progression of histological
750	features of MAFLD and preventing CVD events if their benefit is mainly derived
751	through reductions in body weight in addition to improving long-term glycemic
752	control. ¹²⁹ Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are a class of
753	glucose-lowering agents approved for T2DM treatment (they improve glycemic
754	control, induce weight loss, decrease cholesterol levels and liver fat content) which
755	has gained the attention of guidelines as a therapeutic option for T2DM patients with
756	MAFLD to improve CVD outcomes. ^{2, 130} GLP-1RAs have well-accepted efficacy on
757	improving CVD outcomes. ¹³¹ Cardiovascular safety across all GLP-1RAs on CVD
758	outcome trials has demonstrated that these drugs reduce major adverse CVD events,
759	CVD mortality, and all-cause mortality risk with no significant safety concerns. ¹³²
760	GLP-1RAs also improve some non-invasive markers of MAFLD and have proven

761	effective for reductions in hepatic steatosis and inflammation scores. ^{133, 134} An
762	updated meta-analysis of eleven phase-2 randomized clinical trials found that using
763	GLP-1RAs to specifically treat MAFLD or nonalcoholic steatohepatitis for a median
764	of 26 weeks was associated with a reduction in absolute percentage of liver fat content
765	on magnetic resonance imaging, as well as greater histological resolution of
766	steatohepatitis without worsening of liver fibrosis (pooled random-effects odds ratio
767	4.06, 95% CI 2.52-6.55; for liraglutide and semaglutide only). ¹³⁵ Global phase III
768	clinical trials to test histological endpoints of steatohepatitis are ongoing. There is no
769	indication yet to use this class as a treatment for steatohepatitis and associated liver
770	fibrosis. Thus, further studies on histological benefits are needed to evaluate the
771	potential for improving liver fibrosis in MAFLD.
772	

773 Consensus statement 5.5 Treatment with SGLT-2 inhibitors is beneficial in MAFLD

patients with coexisting T2DM and may reduce CVD outcomes (Grade U).

775 Sodium-glucose cotransporter-2 (SGLT-2) inhibitors are another class of glucose-

176 lowering agents that have been approved for treatment of T2DM, reducing the renal

capacity to reabsorb filtered glucose, increasing renal glycosuria and osmotic diuresis,

thereby improving glucose control. These agents also lead to some weight loss and a

- 179 lowering of blood pressure.¹³⁶ SGLT-2 inhibitors are approved for their favorable
- 780 long-term effects on risk of major CVD events and currently widely used in T2DM
- 781 patients at high risk of CVD.¹³⁷⁻¹³⁹ SGLT2 inhibitors also show improvements in liver

782	fat content and fibrosis markers among T2DM patients with MAFLD. ¹⁴⁰⁻¹⁴² In a small
783	biopsy-proven steatohepatitis trial with nine patients who had T2DM but no
784	contemporaneous control subjects, empagliflozin showed improvements in the
785	histological scores of steatosis, hepatocytes ballooning, and fibrosis.141 However,
786	reports from larger prospective studies are warranted. In this regard, a phase 3 trial of
787	dapagliflozin (DEAN study) based on histological endpoints is now ongoing
788	(NCT03723252). In sum, meta-analyses of recent studies have not reached consensus
789	and the effects of SGLT2 inhibitors on liver fibrosis, especially beyond weight loss,
790	remain to be confirmed. ¹⁴²
701	
791	
791	Consensus statement 5.6 Treatment with pioglitazone is beneficial in MAFLD patients
	Consensus statement 5.6 Treatment with pioglitazone is beneficial in MAFLD patients and may reduce CVD outcomes, but potential adverse effects (e.g. weight gain, edema
792	
792 793	and may reduce CVD outcomes, but potential adverse effects (e.g. weight gain, edema
792 793 794	and may reduce CVD outcomes, but potential adverse effects (e.g. weight gain, edema and worsening of pre-existing congestive heart failure) should be kept in mind (Grade
792 793 794 795	and may reduce CVD outcomes, but potential adverse effects (e.g. weight gain, edema and worsening of pre-existing congestive heart failure) should be kept in mind (Grade A).
 792 793 794 795 796 	and may reduce CVD outcomes, but potential adverse effects (e.g. weight gain, edema and worsening of pre-existing congestive heart failure) should be kept in mind (Grade <i>A</i>). Pioglitazone was proven to improve hepatic histology in steatohepatitis patients with
 792 793 794 795 796 797 	and may reduce CVD outcomes, but potential adverse effects (e.g. weight gain, edema and worsening of pre-existing congestive heart failure) should be kept in mind (Grade A). Pioglitazone was proven to improve hepatic histology in steatohepatitis patients with and without T2DM and recommended for patients with T2DM and biopsy-proven

- 801 effects, including moderate weight gain, risk of fracture, and fluid retention.^{146, 147} The
- 802 development of PXL065 (a novel, proprietary deuterium-stabilized r-stereoisomer of

803	pioglitazone) for metabolic steatohepatitis represents a unique opportunity to enhance
804	the therapeutic benefits of pioglitazone whilst reducing or eliminating PPAR γ -related
805	side effects. ¹⁴⁸ Interestingly, PXL065 at a dose less than 22.5 mg/day for metabolic
806	steatohepatitis is equal to or greater than 45-mg pioglitazone, but without any
807	detrimental weight gain and oedema. ¹⁴⁸
808	
809	Consensus statement 5.7 Statins (if required for the treatment of dyslipidemia or CVD
810	risk reduction) should be prescribed for patients with MAFLD even with modestly
811	elevated serum liver enzyme levels (< 3 ULN) (Grade A).
812	All patients with MAFLD should be considered for statin treatment due to their
813	increased CVD risk. Statins are the first-line to prevent CVD events in patients at risk
814	for atherosclerotic CVD. ¹⁴⁹ Statin treatment in MAFLD patients with mild-to-
815	moderate abnormal serum liver enzymes is safe and may improve liver enzyme levels
816	and reduce CVD morbidity and mortality. ¹⁵⁰ Importantly, clinicians are commonly
817	concerned about drug-induced liver injury, but statin use is not associated with
818	abnormal serum liver enzyme levels in patients with hepatic steatosis. ¹⁵¹⁻¹⁵³ Based on
819	this, statins are thought to reduce the risk of CVD in MAFLD patients with
820	dyslipidemia even without a beneficial effect on liver histology. ^{112, 154}
821	
822	Consensus statement 5.8 Bariatric surgery (if required in severely obese patients with

823 MAFLD) improves liver histology features and reduces CVD risk (Grade U).

824	Lifestyle interventions require long-term adherence, though sustained weight loss is
825	difficult to achieve in patients with long-standing obesity. It has been reported that
826	only 50% of patients can reach 7% weight loss following a 1-year lifestyle
827	intervention. ¹⁵⁵ Bariatric surgery has been shown to achieve significant weight loss of
828	20% to 30% and improves liver histology including fibrosis. ^{156, 157} Bariatric surgery is
829	also associated with significant reduction in CVD risk in individuals with morbid
830	obesity and MAFLD with the risk of primary and secondary composite CVD
831	outcomes reduced by 47% and 50%, respectively. ¹⁵⁸ Hence, bariatric surgery should
832	remain a consideration for selected patients, particularly those without evidence of
833	portal hypertension, with a body mass index (BMI) >35 kg/m ² (BMI> 30 kg/m ² in
834	Asian people) and MAFLD or metabolic steatohepatitis. For morbidly obese patients
835	with MAFLD, especially those who have not responded to lifestyle intervention,
836	bariatric surgery is arguably an attractive and appropriate treatment option that offers
837	promising liver-related outcomes. However, there are not enough data to support the
838	use of bariatric surgery in all patients with MAFLD. Rather it could be an option for
839	those needing it for obesity reduction and MAFLD; early cirrhosis without significant
840	portal hypertension should not be a contraindication for bariatric surgery.
841	

842 Strengths and limitations

Although the Delphi method is a robust consensus-building approach to assess the
levels of agreement on specific issues and for exploring whether a consensus can be

845	reached, it has strengths and limitations. As an important strength, our Delphi survey
846	demonstrated increased consistency in each subsequent round, allowing us to
847	determine whether the feedback improved statements, increased the degree of
848	consensus, and helped reach an agreement. In the two rounds of surveys, the experts'
849	ability to include detailed comments on each draft statement and the integration of
850	feedback into the new statement resulted in a growing level of agreement on the
851	consensus statements, from 92.8% in the R1 survey to 95.7% in the R2 survey. The
852	consistently increasing (mean) levels of agreement with the consensus statements
853	together with the high levels of participation [80.0% (52/65) in the R1 survey and
854	100% (52/52) in the R2 survey] strengthen our confidence in the observed results.
855	Another important strength of the present study is that the resultant consensus
856	statements have been endorsed by representative scientists from 31 countries from six
857	continents globally (involving Hepatologists, Cardiologists, Endocrinologists,
858	Diabetologists and other specialists with extensive research and clinical expertise).
859	This international and multi-disciplinary approach further testifies to its global
860	relevance.
861	
862	We incorporated the risk factors into the preliminary results of our review and
863	translated them into the Delphi survey report. We received and included many open
864	comments in all five data collection components. This feedback provides a
865	mechanism for reconciling differing opinions. However, Delphi studies usually

865 mechanism for reconciling differing opinions. However, Delphi studies usually

866	include face-to-face in-depth discussions and poll surveys. Given the wide geographic
867	distribution of the panel members and COVID-19 travel restrictions, one limitation of
868	this Delphi study is that we conducted the survey rounds online rather than in person.
869	We acknowledge that combining in-person and written feedback might have resulted
870	in more comprehensive contributions. This may have affected the consensus reached.
871	Although there is an overlap between NAFLD and MAFLD populations, we are now
872	beginning to acquire the relevant data about MAFLD and CVD to set a baseline for
873	ongoing improvements in knowledge. Future research will also help in clarifying the
874	most appropriate screening and management of patients currently defined as "lean
875	NAFLD", who do not meet criteria for MAFLD.
876	

877 Conclusions

878 MAFLD and CVD are two highly prevalent global public health challenges. While the

proposed change in nomenclature from NAFLD to MAFLD is new, the available

- 880 evidence provides support for the recommendations of this Delphi-based consensus.
- 881 The panel of experts has developed and endorsed a set of statements on the link
- between MAFLD and CVD risk that can provide a framework for developing
- 883 appropriate guidelines and indicate directions for future research on MAFLD and its
- 884 associated CVD risk.

885

886 Acknowledgements: The authors thank two Delphi study methodologists Prof. Joey

887	S.W. Kwong (S	St. Luke's International	University, Japan)	and Prof. Zubing Mei
-----	---------------	--------------------------	--------------------	----------------------

- 888 (Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai,
- 889 China) for methodological assistance. Seung Up Kim, Vincent Wai-Sun Wong,
- 890 Mohammed Eslam, Yusuf Yilmaz, Wah Kheong Chan, Sombat Treeprasertsuk,
- 891 Hasmik Ghazinyan, Jian-Gao Fan, George Boon-Bee Goh, Saeed Hamid, Jacob
- 892 George and Ming-Hua Zheng are members of the APASL MAIDEN.
- 893 Conflicts of Interest:
- 894 George V Papatheodoridis: Advisor: Abbvie, Albireo, Amgen, Dicerna, Gilead,
- 895 GlaxoSmithKline, Ipsen, Janssen, Novo Nordisk, Roche and Takeda; Lectures:
- 896 Abbvie, Gilead, GlaxoSmithKline, Ipsen, Novo Nordisk, Sobi; Research grants:
- 897 Abbvie, Gilead; Investigator in clinical trials: Abbvie, Astellas, Bayer, Eiger, Gilead,
- 898 GlaxoSmithKline, Janssen, Merck Sharp & Dohme, Noorik, Novartis, Novo Nordisk,
- 899 Regulus, Roche, Takeda. Giada Sebastiani: Speaker: Merck, Gilead, Abbvie,
- 900 Novonordisk, Novartis and Pfizer; Advisory board member: Pfizer, Merck,
- 901 Novonordisk, Gilead and Intercept; Unrestricted research funding: Theratecnologies
- 902 Inc. Gregory Y. H. Lip: Consultant and speaker for BMS/Pfizer, Boehringer
- 903 Ingelheim, Daiichi-Sankyo, Anthem. No fees are received personally. GYHL is co-
- 904 principal investigator of the AFFIRMO project on multimorbidity in AF, which has
- 905 received funding from the European Union's Horizon 2020 research and innovation
- 906 programme under grant agreement No 899871. Jian-Gao Fan: Speaker, a consultant
- 907 and an advisory for Sanofi, Abbott, EchoSens, Novartis, Hisky, Gilead, Allergan,

908	Terns and MADAUS GMBH. John D. Ryan: None related to MAFLD. Consulting:
909	Bond Biosciences, Pfizer, Gilead; Lectures: Kyowa kirin, Falk
910	Marat Fudim: Dr Fudim was supported by Bayer. He receives consulting fees from
911	Bayer, Merck, NovoNordisk. Michael D. Shapiro: Research Grants (paid to my
912	institution): AHA, NIH, Amgen, Novartis, Ionis, Esperion; Consultant: Ionis,
913	Novartis, Regeneron; Scientific Advisory Boards: Amgen, Novartis, Precision
914	Bioscience. Mindie H. Nguyen: Last 36 months: Research support: Pfizer, Enanta,
915	Astra Zeneca, Innogen, Exact Science, CurveBio, Delfi Biotech, Gilead, Exact
916	Sciences, Vir Biotech, Helio Health, National Cancer Institute, Glycotest, B.K. Kee
917	Foundation. Consulting and/or Advisory Board: Intercept, Exact Science, Gilead,
918	GSK, Eli Lilly, Laboratory of Advanced Medicine, Exelixis Research grants. Ming-
919	Hua Zheng: Lectures: Hisky Medical. Philippe Gabriel Steg: Research grants :
920	Amarin, Bayer, Sanofi, and Servier; Clinical Trials (Steering committee, CEC,
921	DSMB): Amarin, AstraZeneca, Bayer, Bristol-Myers Squibb, Idorsia, Novartis,
922	PhaseBio, Pfizer, Sanofi, Servier; Consulting or speaking: Amarin, Amgen,
923	BMS/Myokardia, Merck, Novo-Nordisk, Regeneron; Senior Associate Editor at
924	Circulation. Seung Up Kim: Seung Up Kim has served as an advisory committee
925	member Gilead Sciences, Bayer, Eisai, and Novo Nordisk. He is a speaker for Gilead
926	Sciences, GSK, Bayer, Eisai, Abbvie, EchoSens, MSD, Eisai, Otsuka, and Bristol-
927	Myers Squibb. He has also received a research grant from Abbvie and Bristol-Myers
928	Squibb. Vincent Wai-Sun Wong: Consultancy: AbbVie, Boehringer Ingelheim,

929	Echosens, Gilead Sciences, Intercept, Inventiva, Novo Nordisk, Pfizer, Sagimet
930	Biosciences, TARGET PharmaSolutions; Lectures: Abbott, AbbVie, Gilead Sciences,
931	Novo Nordisk; Research grants: Gilead Sciences; Stock: Co-founder of Illuminatio
932	Medical Technology Limited. Wah Kheong Chan: Consultant or advisory board
933	member for Roche, Abbvie, Boehringer Ingelheim and Novo Nordisk; speaker for
934	Viatris and Hisky Medical. Yusuf Yilmaz: Yusuf Yilmaz has served as consultant to
935	Cymabay, Zydus, Novo Nordisk, and Echosens. The other authors have no conflicts
936	of interest to declare.

937 Author contributions

Name	Design the study	Participate the Delphi study	Review the data and draft the statement	Review the full draft
Xiao-Dong Zhou	×	×	×	x
Giovanni Targher	×	×	x	x
Christopher D. Byrne	×	×	x	x
Michael D. Shapiro		×		x
Seung Up Kim		×		x
C. Anwar A. Chahal		×		x
Jingjing Cai		×		x
Virend K. Somers		×		x
Masahide Hamaguchi		×		×
Philippe Gabriel Steg		×		×

Ki-Chul Sung	×	×
Anoop Misra	×	×
Vincent Wai-Sun Wong	×	×
Jian-Jun Li	×	×
Jian-Gao Fan	×	×
Carlos Brotons	×	×
Yuli Huang	×	×
George V	×	×
Papatheodoridis		
Aijun Sun	×	×
Yusuf Yilmaz	×	×
Wah Kheong Chan	×	×

Hui Huang	×	×
Nahum Méndez-	×	×
Sánchez		
Saleh A Alqahtani	×	×
Helena Cortez-Pinto	×	×
Gregory Y. H. Lip	×	×
Robert J de Knegt	×	×
Ponsiano Ocama	×	×
Manuel Romero-	×	×
Gomez		
Sombat Treeprasertsuk	×	×
Giada Sebastiani	×	×

Jang Won Son	×	×
John D. Ryan	×	×
Ignatios Ikonomidis	×	×
Marat Fudim	×	×
Daniele Pastori	×	×
Monica Lupsor-Platon	×	×
Herbert Tilg	×	×
Hasmik Ghazinyan	×	×
Jerome Boursier	×	×
Mohammed Eslam	×	×
Mindie H. Nguyen	×	×
George Boon-Bee Goh	×	×

Mamun Al Mahtab		×		×
Saeed Hamid		×		x
Nilanka Perera		×		×
Jacob George	×	×	×	×
Ming-Hua Zheng	×	×	×	x

939 **References:**

- 940 1. Younossi, Z. et al. Global epidemiology of nonalcoholic fatty liver disease-
- 941 Meta-analytic assessment of prevalence, incidence, and outcomes. *Hepatology*
- 942 (Baltimore, Md.) **64**, 73-84 (2016).
- 943 2. Chalasani, N. et al. The diagnosis and management of nonalcoholic fatty liver
- 944 disease: Practice guidance from the American Association for the Study of
- 945 Liver Diseases. *Hepatology (Baltimore, Md.)* **67**, 328-357 (2018).
- 946 3. Eslam, M. et al. A new definition for metabolic dysfunction-associated fatty
- 947 liver disease: An international expert consensus statement. *Journal of*
- 948 *hepatology* **73**, 202-209 (2020).
- 949 4. Zhang, X.L., Fan, J.G., Wei, L., Shi, J.P. & Zheng, M.H. Promoting the term
- 950 MAFLD: China in action. *Lancet Gastroenterol Hepatol* 7, 598 (2022).
- 951 5. Eslam, M., Sanyal, A.J. & George, J. MAFLD: A Consensus-Driven Proposed
- 952 Nomenclature for Metabolic Associated Fatty Liver Disease.
- 953 *Gastroenterology* **158**, 1999-2014.e1 (2020).
- 954 6. Zheng, K. et al. From NAFLD to MAFLD: a "redefining" moment for fatty
 955 liver disease. *Chinese medical journal* 133, 2271-2273 (2020).
- 956 7. Fouad, Y. et al. The NAFLD-MAFLD debate: Eminence vs evidence. *Liver*
- 957 *international : official journal of the International Association for the Study of*
- 958 *the Liver* **41**, 255-260 (2021).

959	8.	Wang, T., George, J. & Zheng, M. Metabolic (dysfunction) associated fatty
960		liver disease: more evidence and a bright future. Hepatobiliary surgery and
961		nutrition 10, 849-852 (2021).
962	9.	Tilg, H. & Effenberger, M. From NAFLD to MAFLD: when pathophysiology
963		succeeds. Nat Rev Gastroenterol Hepatol 17, 387-388 (2020).
964	10.	Zhou, X.D. et al. Metabolic dysfunction-associated fatty liver disease and
965		implications for cardiovascular risk and disease prevention. Cardiovasc
966		<i>Diabetol</i> 21 , 270 (2022).
967	11.	Chan, W. & Wong, V. Meaning of non-overlapping patients between the
968		MAFLD and NAFLD definitions. Liver international : official journal of the
969		International Association for the Study of the Liver 42 , 271-273 (2022).
970	12.	Wong, V.W. et al. Impact of the New Definition of Metabolic Associated
971		Fatty Liver Disease on the Epidemiology of the Disease. Clin Gastroenterol
972		Hepatol 19, 2161-2171.e5 (2021).
973	13.	Sun, D.Q. et al. MAFLD and risk of CKD. Metabolism 115, 154433 (2021).
974	14.	Zheng, K.I., Sun, D.Q., Jin, Y., Zhu, P.W. & Zheng, M.H. Clinical utility of
975		the MAFLD definition. J Hepatol 74, 989-991 (2021).
976	15.	Das, M. WHO urges immediate action to tackle non-communicable diseases.
977		Lancet Oncol 23, 1361 (2022).
978	16.	Lazarus, J. et al. Advancing the global public health agenda for NAFLD: a
979		consensus statement. Nature reviews. Gastroenterology & hepatology 19, 60-
980		78 (2022).

981	17.	Rubino, F. et al. Joint international consensus statement for ending stigma of
982		obesity. Nature medicine 26, 485-497 (2020).
983	18.	Targher, G., Day, C.P. & Bonora, E. Risk of cardiovascular disease in patients
984		with nonalcoholic fatty liver disease. N Engl J Med 363, 1341-50 (2010).
985	19.	Targher, G., Byrne, C. & Tilg, H. NAFLD and increased risk of
986		cardiovascular disease: clinical associations, pathophysiological mechanisms
987		and pharmacological implications. Gut 69, 1691-1705 (2020).
988	20.	Toh, J. et al. A Meta-Analysis on the Global Prevalence, Risk factors and
989		Screening of Coronary Heart Disease in Nonalcoholic Fatty Liver Disease.
990		Clinical gastroenterology and hepatology : the official clinical practice
991		journal of the American Gastroenterological Association 20, 2462-2473.e10
992		(2022).
993	21.	Wu, S. et al. Association of non-alcoholic fatty liver disease with major
994		adverse cardiovascular events: A systematic review and meta-analysis. Sci Rep
995		6 , 33386 (2016).
996	22.	Targher, G., Tilg, H. & Byrne, C.D. Non-alcoholic fatty liver disease: a
997		multisystem disease requiring a multidisciplinary and holistic approach.
998		Lancet Gastroenterol Hepatol 6, 578-588 (2021).
999	23.	Mantovani, A. et al. Non-alcoholic fatty liver disease and risk of fatal and non-
1000		fatal cardiovascular events: an updated systematic review and meta-analysis.
1001		The lancet. Gastroenterology & hepatology 6, 903-913 (2021).

1003		atherosclerosis: A systematic review and meta-analysis. Hepatology
1004		communications 2, 376-392 (2018).
1005	25.	Kim, H. et al. MAFLD Predicts the Risk of Cardiovascular Disease Better
1006		than NAFLD in Asymptomatic Subjects with Health Check-Ups. Digestive
1007		diseases and sciences (2022).
1008	26.	Huang, Q., Zou, X., Wen, X., Zhou, X. & Ji, L. NAFLD or MAFLD: Which
1009		Has Closer Association With All-Cause and Cause-Specific Mortality?-
1010		Results From NHANES III. Frontiers in medicine 8, 693507 (2021).
1011	27.	Tsutsumi, T. et al. MAFLD better predicts the progression of atherosclerotic
1012		cardiovascular risk than NAFLD: Generalized estimating equation approach.
1013		Hepatology research : the official journal of the Japan Society of Hepatology
1014		51 , 1115-1128 (2021).
1015	28.	Wang, Y. et al. Cardiovascular and renal burdens among patients with
1016		MAFLD and NAFLD in China. Front Endocrinol (Lausanne) 13, 968766
1017		(2022).
1018	29.	Yoneda, M. et al. Risk of cardiovascular disease in patients with fatty liver
1019		disease as defined from the metabolic dysfunction associated fatty liver

Zhou, Y. et al. Nonalcoholic fatty liver disease contributes to subclinical

- 1020 disease or nonalcoholic fatty liver disease point of view: a retrospective
- 1021 nationwide claims database study in Japan. *Journal of gastroenterology* **56**,

1022 1022-1032 (2021).

1002

24.

1023	30.	Lee, H., Lee, Y.H., Kim, S.U. & Kim, H.C. Metabolic Dysfunction-
1024		Associated Fatty Liver Disease and Incident Cardiovascular Disease Risk: A
1025		Nationwide Cohort Study. Clin Gastroenterol Hepatol 19, 2138-2147.e10
1026		(2021).
1027	31.	Liang, Y. et al. Association of MAFLD With Diabetes, Chronic Kidney
1028		Disease, and Cardiovascular Disease: A 4.6-Year Cohort Study in China. The
1029		Journal of clinical endocrinology and metabolism 107, 88-97 (2022).
1030	32.	Wen, W. et al. Metabolic dysfunction-associated fatty liver disease and
1031		cardiovascular disease: A meta-analysis. Front Endocrinol (Lausanne) 13,
1032		934225 (2022).
1033	33.	Targher, G., Byrne, C.D., Lonardo, A., Zoppini, G. & Barbui, C. Non-
1034		alcoholic fatty liver disease and risk of incident cardiovascular disease: A
1035		meta-analysis. J Hepatol 65, 589-600 (2016).
1036	34.	Liu, Y., Zhong, G.C., Tan, H.Y., Hao, F.B. & Hu, J.J. Nonalcoholic fatty liver
1037		disease and mortality from all causes, cardiovascular disease, and cancer: a
1038		meta-analysis. Sci Rep 9, 11124 (2019).
1039	35.	Kim, D. et al. Metabolic dysfunction-associated fatty liver disease is
1040		associated with increased all-cause mortality in the United States. J Hepatol
1041		75, 1284-1291 (2021).
1042	36.	Niriella, M. et al. Outcomes of NAFLD and MAFLD: Results from a
1043		community-based, prospective cohort study. PloS one 16, e0245762 (2021).

1044	37.	Mantovani, A., Csermely, A., Tilg, H., Byrne, C. & Targher, G. Comparative
1045		effects of non-alcoholic fatty liver disease and metabolic dysfunction-
1046		associated fatty liver disease on risk of incident cardiovascular events: a meta-
1047		analysis of about 13 million individuals. Gut (2022).
1048	38.	Zhang, H., Wang, Y., Chen, C., Lu, Y. & Wang, N. Cardiovascular and renal
1049		burdens of metabolic associated fatty liver disease from serial US national
1050		surveys, 1999-2016. Chinese medical journal 134, 1593-1601 (2021).
1051	39.	Nishimura, K. et al. Predicting Coronary Heart Disease Using Risk Factor
1052		Categories for a Japanese Urban Population, and Comparison with the
1053		Framingham Risk Score: The Suita Study. Journal of atherosclerosis and
1054		thrombosis 23 , 1138-9 (2016).
1055	40.	Angelico, F., Baratta, F., Pastori, D. & Ben, M.D. Assessment of hepatic
1056		fibrosis in MAFLD: A new player in the evaluation of residual cardiovascular
1057		risk? Dig Liver Dis 53, 383-384 (2021).
1058	41.	Schonmann, Y., Yeshua, H., Bentov, I. & Zelber-Sagi, S. Liver fibrosis
1059		marker is an independent predictor of cardiovascular morbidity and mortality
1060		in the general population. Dig Liver Dis 53, 79-85 (2021).
1061	42.	Baratta, F. et al. Nonalcoholic Fatty Liver Disease and Fibrosis
1062		Associated With Increased Risk of Cardiovascular Events in a Prospective
1063		Study. Clin Gastroenterol Hepatol 18, 2324-2331.e4 (2020).

1064	43.	Tamaki, N. et al. Liver fibrosis and fatty liver as independent risk factors for
1065		cardiovascular disease. Journal of gastroenterology and hepatology 36, 2960-
1066		2966 (2021).
1067	44.	Han, E. et al. Fibrotic Burden Determines Cardiovascular Risk among
1068		Subjects with Metabolic Dysfunction-Associated Fatty Liver Disease. Gut and
1069		liver 16, 786-797 (2022).
1070	45.	Ferro, D. et al. New Insights into the Pathogenesis of Non-Alcoholic Fatty
1071		Liver Disease: Gut-Derived Lipopolysaccharides and Oxidative Stress.
1072		Nutrients 12 (2020).
1073	46.	Daniels, S.J. et al. ADAPT: An Algorithm Incorporating PRO-C3 Accurately
1074		Identifies Patients With NAFLD and Advanced Fibrosis. Hepatology 69,
1075		1075-1086 (2019).
1076	47.	Parkes, J. et al. Enhanced liver fibrosis test can predict clinical outcomes in
1077		patients with chronic liver disease. Gut 59, 1245-51 (2010).
1078	48.	Meyersohn, N.M. et al. Association of Hepatic Steatosis With Major Adverse
1079		Cardiovascular Events, Independent of Coronary Artery Disease. Clin
1080		Gastroenterol Hepatol 19, 1480-1488.e14 (2021).
1081	49.	Kunutsor, S.K., Bakker, S.J.L., Blokzijl, H. & Dullaart, R.P.F. Associations of
1082		the fatty liver and hepatic steatosis indices with risk of cardiovascular disease:
1083		Interrelationship with age. Clin Chim Acta 466, 54-60 (2017).

1084	50.	Zou, B., Yeo, Y., Cheung, R., Ingelsson, E. & Nguyen, M. Fatty Liver Index
1085		and Development of Cardiovascular Disease: Findings from the UK Biobank.
1086		Digestive diseases and sciences 66, 2092-2100 (2021).
1087	51.	Park, J. et al. The associations of hepatic steatosis and fibrosis using fatty liver
1088		index and BARD score with cardiovascular outcomes and mortality in patients
1089		with new-onset type 2 diabetes: a nationwide cohort study. Cardiovasc
1090		<i>Diabetol</i> 21 , 53 (2022).
1091	52.	Moon, J.H. & Kim, W. Metabolic Dysfunction-Associated Fatty Liver Disease
1092		Predicts Long-term Mortality and Cardiovascular Disease. Gut and liver 16,
1093		433-442 (2022).
1094	53.	Tang, A.S.P. et al. Non-alcoholic fatty liver disease increases risk of carotid
1095		atherosclerosis and ischemic stroke: An updated meta-analysis with 135,602
1096		individuals. Clin Mol Hepatol 28, 483-496 (2022).
1097	54.	Bessho, R. et al. A significant risk of metabolic dysfunction-associated fatty
1098		liver disease plus diabetes on subclinical atherosclerosis. PloS one 17,
1099		e0269265 (2022).
1100	55.	Wang, J. et al. New definition of metabolic dysfunction-associated fatty liver
1101		disease with elevated brachial-ankle pulse wave velocity and albuminuria: a
1102		prospective cohort study. Front Med 16, 714-722 (2022).
1103	56.	Liu, S. et al. The progression and regression of metabolic dysfunction-
1104		associated fatty liver disease are associated with the development of

1105 subclinical atherosclerosis: A prospective analysis. Metabolism: clinical and 1106 experimental 120, 154779 (2021). 1107 57. Sung, K. et al. Comparative Associations of Nonalcoholic Fatty Liver Disease 1108 and Metabolic Dysfunction-Associated Fatty Liver Disease With Coronary 1109 Artery Calcification: A Cross-Sectional and Longitudinal Cohort Study. 1110 Arteriosclerosis, thrombosis, and vascular biology (2023). 1111 58. Liu, H. et al. Metabolic-associated fatty liver disease and major adverse 1112 cardiac events in patients with chronic coronary syndrome: a matched case-1113 control study. Hepatology international 15, 1337-1346 (2021). 1114 59. Noda, T. et al. The Prevalence of Metabolic Dysfunction-Associated Fatty 1115 Liver Disease and Its Association with Physical Function and Prognosis in 1116 Patients with Acute Coronary Syndrome. Journal of clinical medicine 11 1117 (2022). 1118 Nguyen, V.H., Le, M.H., Cheung, R.C. & Nguyen, M.H. Differential Clinical 60. Characteristics and Mortality Outcomes in Persons With NAFLD and/or 1119 1120 MAFLD. Clin Gastroenterol Hepatol 19, 2172-2181.e6 (2021). 1121 Gong, H., Liu, X. & Cheng, F. Relationship between non-alcoholic fatty liver 61. 1122 disease and cardiac arrhythmia: a systematic review and meta-analysis. J Int 1123 *Med Res* **49**, 3000605211047074 (2021). Lei, F. et al. The prevalence of MAFLD and its association with atrial 1124 62. 1125 fibrillation in a nationwide health check-up population in China. Front 1126 Endocrinol (Lausanne) 13, 1007171 (2022).

1127	63.	Decoin, R. et al. High liver fibrosis scores in metabolic dysfunction-associated
1128		fatty liver disease patients are associated with adverse atrial remodeling and
1129		atrial fibrillation recurrence following catheter ablation. Front Endocrinol
1130		(Lausanne) 13, 957245 (2022).
1131	64.	Borges-Canha, M. et al. Association between nonalcoholic fatty liver disease
1132		and cardiac function and structure-a meta-analysis. Endocrine 66, 467-476
1133		(2019).
1134	65.	Yong, J. et al. Non-alcoholic fatty liver disease association with structural
1135		heart, systolic and diastolic dysfunction: a meta-analysis. <i>Hepatology</i>
1136		international 16, 269-281 (2022).
1137	66.	Peng, D. et al. Association of Metabolic Dysfunction-Associated Fatty Liver
1138		Disease With Left Ventricular Diastolic Function and Cardiac Morphology.
1139		Front Endocrinol (Lausanne) 13, 935390 (2022).
1140	67.	Anstee, Q., Mantovani, A., Tilg, H. & Targher, G. Risk of cardiomyopathy
1141		and cardiac arrhythmias in patients with nonalcoholic fatty liver disease.
1142		Nature reviews. Gastroenterology & hepatology 15, 425-439 (2018).
1143	68.	Mantovani, A. et al. Risk of Heart Failure in Patients With Nonalcoholic Fatty
1144		Liver Disease: JACC Review Topic of the Week. J Am Coll Cardiol 79, 180-
1145		191 (2022).
1146	69.	Stahl, E.P. et al. Nonalcoholic Fatty Liver Disease and the Heart: JACC State-
1147		of-the-Art Review. J Am Coll Cardiol 73, 948-963 (2019).

1148	70.	Niederseer, D., Wernly, B., Aigner, E., Stickel, F. & Datz, C. NAFLD and
1149		Cardiovascular Diseases: Epidemiological, Mechanistic and Therapeutic
1150		Considerations. Journal of clinical medicine 10 (2021).
1151	71.	Siddiqui, M. et al. Severity of nonalcoholic fatty liver disease and progression
1152		to cirrhosis are associated with atherogenic lipoprotein profile. Clinical
1153		gastroenterology and hepatology : the official clinical practice journal of the
1154		American Gastroenterological Association 13, 1000-8.e3 (2015).
1155	72.	Cusi, K. Role of obesity and lipotoxicity in the development of nonalcoholic
1156		steatohepatitis: pathophysiology and clinical implications. Gastroenterology
1157		142 , 711-725.e6 (2012).
1158	73.	Austin, M.A., King, M.C., Vranizan, K.M. & Krauss, R.M. Atherogenic
1159		lipoprotein phenotype. A proposed genetic marker for coronary heart disease
1160		risk. Circulation 82, 495-506 (1990).
1161	74.	Gutiérrez-Cuevas, J., Santos, A. & Armendariz-Borunda, J.
1162		Pathophysiological Molecular Mechanisms of Obesity: A Link between
1163		MAFLD and NASH with Cardiovascular Diseases. International journal of
1164		molecular sciences 22 (2021).
1165	75.	Ormazabal, V. et al. Association between insulin resistance and the
1166		development of cardiovascular disease. Cardiovascular diabetology 17, 122
1167		(2018).

1168	76.	Goh, G. et al. Renin-angiotensin system and fibrosis in non-alcoholic fatty
1169		liver disease. Liver international : official journal of the International
1170		Association for the Study of the Liver 35, 979-85 (2015).
1171	77.	Paschos, P. & Tziomalos, K. Nonalcoholic fatty liver disease and the renin-
1172		angiotensin system: Implications for treatment. World J Hepatol 4, 327-31
1173		(2012).
1174	78.	Attia, H. et al. Chrysin Attenuates Fructose-Induced Nonalcoholic Fatty Liver
1175		in Rats via Antioxidant and Anti-Inflammatory Effects: The Role of
1176		Angiotensin-Converting Enzyme 2/Angiotensin (1-7)/Mas Receptor Axis.
1177		Oxidative medicine and cellular longevity 2022 , 9479456 (2022).
1178	79.	Goh, G.B. et al. Renin-angiotensin system and fibrosis in non-alcoholic fatty
1179		liver disease. Liver Int 35, 979-85 (2015).
1180	80.	Zhang, X. et al. Angiotensin-converting enzyme inhibitors prevent liver-
1181		related events in nonalcoholic fatty liver disease. Hepatology (Baltimore, Md.)
1182		76, 469-482 (2022).
1183	81.	Mantovani, A. & Dalbeni, A. Treatments for NAFLD: State of Art.
1184		International journal of molecular sciences 22 (2021).
1185	82.	Chew, N.W.S. et al. The genetic interactions between non-alcoholic fatty liver
1186		disease and cardiovascular diseases. Front Genet 13, 971484 (2022).
1187	83.	Anstee, Q.M. & Day, C.P. The Genetics of Nonalcoholic Fatty Liver Disease:
1188		Spotlight on PNPLA3 and TM6SF2. Semin Liver Dis 35, 270-90 (2015).

1189	84.	Sookoian, S. & Pirola, C.J. Meta-analysis of the influence of I148M variant of
1190		patatin-like phospholipase domain containing 3 gene (PNPLA3) on the
1191		susceptibility and histological severity of nonalcoholic fatty liver disease.
1192		<i>Hepatology</i> 53 , 1883-94 (2011).
1193	85.	Simons, N. et al. PNPLA3, TM6SF2, and MBOAT7 Genotypes and Coronary
1194		Artery Disease. Gastroenterology 152, 912-913 (2017).
1195	86.	Rüschenbaum, S. et al. Patatin-like phospholipase domain containing 3
1196		variants differentially impact metabolic traits in individuals at high risk for
1197		cardiovascular events. Hepatol Commun 2, 798-806 (2018).
1198	87.	Liu, D. et al. Exome-wide association study of plasma lipids in >300,000
1199		individuals. Nature genetics 49, 1758-1766 (2017).
1200	88.	Kessler, T. & Schunkert, H. Coronary Artery Disease Genetics Enlightened by
1201		Genome-Wide Association Studies. JACC Basic Transl Sci 6, 610-623 (2021).
1202	89.	Cai, J. et al. Nonalcoholic Fatty Liver Disease Pandemic Fuels the Upsurge in
1203		Cardiovascular Diseases. Circulation research 126, 679-704 (2020).
1204	90.	Drożdż, K. et al. Metabolic-Associated Fatty Liver Disease (MAFLD),
1205		Diabetes, and Cardiovascular Disease: Associations with Fructose Metabolism
1206		and Gut Microbiota. Nutrients 14 (2021).
1207	91.	Tang, W.H.W., Bäckhed, F., Landmesser, U. & Hazen, S.L. Intestinal
1208		Microbiota in Cardiovascular Health and Disease: JACC State-of-the-Art
1209		Review. J Am Coll Cardiol 73, 2089-2105 (2019).

1210	92.	Reinhardt, C. The Gut Microbiota as an Influencing Factor of Arterial
1211		Thrombosis. <i>Hamostaseologie</i> 39 , 173-179 (2019).
1212	93.	Albillos, A., de Gottardi, A. & Rescigno, M. The gut-liver axis in liver
1213		disease: Pathophysiological basis for therapy. J Hepatol 72, 558-577 (2020).
1214	94.	Li, F., Ye, J., Shao, C. & Zhong, B. Compositional alterations of gut
1215		microbiota in nonalcoholic fatty liver disease patients: a systematic review and
1216		Meta-analysis. Lipids in health and disease 20, 22 (2021).
1217	95.	Aron-Wisnewsky, J. et al. Gut microbiota and human NAFLD: disentangling
1218		microbial signatures from metabolic disorders. Nature reviews.
1219		Gastroenterology & hepatology 17, 279-297 (2020).
1220	96.	Hu, H. et al. Intestinal microbiome and NAFLD: molecular insights and
1221		therapeutic perspectives. Journal of gastroenterology 55, 142-158 (2020).
1222	97.	Witkowski, M., Weeks, T.L. & Hazen, S.L. Gut Microbiota and
1223		Cardiovascular Disease. Circ Res 127, 553-570 (2020).
1224	98.	EASL-EASD-EASO Clinical Practice Guidelines for the management of non-
1225		alcoholic fatty liver disease. J Hepatol 64, 1388-402 (2016).
1226	99.	Choudhary, N.S. & Duseja, A. Screening of Cardiovascular Disease in
1227		Nonalcoholic Fatty Liver Disease: Whom and How? J Clin Exp Hepatol 9,
1228		506-514 (2019).
1229	100.	Hassen, G. et al. Nonalcoholic Fatty Liver Disease: An Emerging Modern-
1230		Day Risk Factor for Cardiovascular Disease. Cureus 14, e25495 (2022).

- 1231 101. Zaidi, N.R., Gilani, S.A., Mehboob, R., Waseem, H. & Hassan, A. Diagnostic
 1232 accuracy of carotid intima media thickness by B-mode ultrasonography in
 1233 coronary artery disease patients. *Arch Med Sci Atheroscler Dis* 5, e79-e84
- 1234 (2020).
- 1235 102. Toh, J.Z.K. et al. A Meta-Analysis on the Global Prevalence, Risk factors and
 1236 Screening of Coronary Heart Disease in Nonalcoholic Fatty Liver Disease.

1237 *Clin Gastroenterol Hepatol* **20**, 2462-2473.e10 (2022).

- 1238 103. den Ruijter, H.M. et al. Common carotid intima-media thickness does not add
- to Framingham risk score in individuals with diabetes mellitus: the USE-IMT
 initiative. *Diabetologia* 56, 1494-502 (2013).
- 1241 104. Wu, T. et al. Apolipoproteins and liver parameters optimize cardiovascular
- 1242 disease risk-stratification in nonalcoholic fatty liver disease. *Digestive and*
- 1243 *liver disease : official journal of the Italian Society of Gastroenterology and*

1244 *the Italian Association for the Study of the Liver* **53**, 1610-1619 (2021).

1245 105. Pandyarajan, V., Gish, R.G., Alkhouri, N. & Noureddin, M. Screening for

1246 Nonalcoholic Fatty Liver Disease in the Primary Care Clinic. *Gastroenterol*1247 *Hepatol (N Y)* 15, 357-365 (2019).

1248 106. Zelber-Sagi, S., Schonmann, Y., Yeshua, H. & Bentov, I. Reply to:

- 1249 "Assessment of hepatic fibrosis in MAFLD: a new player in the evaluation of
- 1250 residual cardiovascular risk?". Digestive and liver disease : official journal of
- 1251 the Italian Society of Gastroenterology and the Italian Association for the
- 1252 *Study of the Liver* **53**, 385-386 (2021).

1253	107.	Srivastava, A. et al. Prospective evaluation of a primary care referral pathway
1254		for patients with non-alcoholic fatty liver disease. J Hepatol 71, 371-378
1255		(2019).
1256	108.	Harrison, S., Allen, A., Dubourg, J., Noureddin, M. & Alkhouri, N.
1257		Challenges and opportunities in NASH drug development. Nature medicine
1258		29 , 562-573 (2023).
1259	109.	Rivera-Esteban, J., Armandi, A., Augustin, S. & Bugianesi, E. Outcomes and
1260		potential surrogate markers for future clinical trials of non-alcoholic
1261		steatohepatitis cirrhosis. Liver international : official journal of the
1262		International Association for the Study of the Liver 41 , 1999-2008 (2021).
1263	110.	Zhang, X.L., Wang, T.Y., Targher, G., Byrne, C.D. & Zheng, M.H. Lifestyle
1264		Interventions for Non-Obese Patients Both with, and at Risk, of Non-
1265		Alcoholic Fatty Liver Disease. Diabetes Metab J 46, 391-401 (2022).
1266	111.	Zou, T.T. et al. Lifestyle interventions for patients with nonalcoholic fatty
1267		liver disease: a network meta-analysis. Eur J Gastroenterol Hepatol 30, 747-
1268		755 (2018).
1269	112.	Eslam, M. et al. The Asian Pacific Association for the Study of the Liver
1270		clinical practice guidelines for the diagnosis and management of metabolic
1271		associated fatty liver disease. Hepatol Int 14, 889-919 (2020).
1272	113.	Petroni, M.L., Brodosi, L., Bugianesi, E. & Marchesini, G. Management of
1273		non-alcoholic fatty liver disease. Bmj 372, m4747 (2021).

1274	114.	Baratta, F. et al. Adherence to Mediterranean Diet and Non-Alcoholic Fatty
1275		Liver Disease: Effect on Insulin Resistance. Am J Gastroenterol 112, 1832-
1276		1839 (2017).
1277	115.	Baratta, F. et al. Poor Adherence to Mediterranean Diet and Serum
1278		Lipopolysaccharide are Associated with Oxidative Stress in Patients with
1279		Non-Alcoholic Fatty Liver Disease. Nutrients 12 (2020).
1280	116.	von Loeffelholz, C., Roth, J., Coldewey, S.M. & Birkenfeld, A.L. The Role of
1281		Physical Activity in Nonalcoholic and Metabolic Dysfunction Associated
1282		Fatty Liver Disease. Biomedicines 9 (2021).
1283	117.	Ajmera, V.H., Terrault, N.A. & Harrison, S.A. Is moderate alcohol use in
1284		nonalcoholic fatty liver disease good or bad? A critical review. Hepatology 65,
1285		2090-2099 (2017).
1286	118.	Chang, Y. et al. Nonheavy Drinking and Worsening of Noninvasive Fibrosis
1287		Markers in Nonalcoholic Fatty Liver Disease: A Cohort Study. Hepatology
1288		(Baltimore, Md.) 69, 64-75 (2019).
1289	119.	Rice, B.A., Naimi, T.S. & Long, M.T. Nonheavy Alcohol Use Associates
1290		With Liver Fibrosis and Nonalcoholic Steatohepatitis in the Framingham
1291		Heart Study. Clin Gastroenterol Hepatol (2022).
1292	120.	Ajmera, V. et al. Among Patients With Nonalcoholic Fatty Liver Disease,
1293		Modest Alcohol Use Is Associated With Less Improvement in Histologic

1294 Steatosis and Steatohepatitis. *Clinical gastroenterology and hepatology : the*

- 1295 official clinical practice journal of the American Gastroenterological
- 1296 *Association* **16**, 1511-1520.e5 (2018).
- 1297 121. Jarvis, H. et al. Does moderate alcohol consumption accelerate the progression
- of liver disease in NAFLD? A systematic review and narrative synthesis. *BMJ open* 12, e049767 (2022).
- 1300 122. Costanzo, S., Di Castelnuovo, A., Donati, M.B., Iacoviello, L. & de Gaetano,
- G. Alcohol consumption and mortality in patients with cardiovascular disease:
 a meta-analysis. *J Am Coll Cardiol* 55, 1339-47 (2010).
- 1303 123. Wood, A.M. et al. Risk thresholds for alcohol consumption: combined
- analysis of individual-participant data for 599 912 current drinkers in 83
 prospective studies. *Lancet* 391, 1513-1523 (2018).
- 1306 124. Hansel, B. et al. Relationship between alcohol intake, health and social status
- 1307 and cardiovascular risk factors in the Urban Paris-Ile-de-France Cohort: is the
- 1308 cardioprotective action of alcohol a myth? *Eur J Clin Nutr* **64**, 561-8 (2010).
- 1309 125. Naimi, T.S. et al. Cardiovascular risk factors and confounders among
- 1310 nondrinking and moderate-drinking U.S. adults. *Am J Prev Med* 28, 369-73
- 1311 (2005).
- 1312 126. Biddinger, K.J. et al. Association of Habitual Alcohol Intake With Risk of
 1313 Cardiovascular Disease. *JAMA Netw Open* 5, e223849 (2022).
- 1314 127. VanWagner, L.B. et al. Alcohol Use and Cardiovascular Disease Risk in
- 1315 Patients With Nonalcoholic Fatty Liver Disease. *Gastroenterology* **153**, 1260-
- 1316 1272.e3 (2017).

1317	128.	Kashiwagi, K. et al. Moderate alcohol consumption is not associated with
1318		subclinical cardiovascular damage but with hepatic fibrosis in non-alcoholic
1319		fatty liver disease. Alcohol 89, 1-7 (2020).
1320	129.	Moon, J. et al. SGLT-2 inhibitors and GLP-1 receptor agonists in metabolic
1321		dysfunction-associated fatty liver disease. Trends in endocrinology and
1322		metabolism: TEM 33 , 424-442 (2022).
1323	130.	Yan, J. et al. Liraglutide, Sitagliptin, and Insulin Glargine Added to
1324		Metformin: The Effect on Body Weight and Intrahepatic Lipid in Patients
1325		With Type 2 Diabetes Mellitus and Nonalcoholic Fatty Liver Disease.
1326		Hepatology (Baltimore, Md.) 69, 2414-2426 (2019).
1327	131.	Kristensen, S.L. et al. Cardiovascular, mortality, and kidney outcomes with
1328		GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review
1329		and meta-analysis of cardiovascular outcome trials. Lancet Diabetes
1330		Endocrinol 7, 776-785 (2019).
1331	132.	Bethel, M.A. et al. Cardiovascular outcomes with glucagon-like peptide-1
1332		receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet
1333		Diabetes Endocrinol 6, 105-113 (2018).

- 1334 133. Armstrong, M.J. et al. Liraglutide safety and efficacy in patients with non-
- 1335 alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised,
- 1336 placebo-controlled phase 2 study. *Lancet* **387**, 679-690 (2016).

1337	134.	Newsome, P.N. et al. A Placebo-Controlled Trial of Subcutaneous
1338		Semaglutide in Nonalcoholic Steatohepatitis. N Engl J Med 384, 1113-1124
1339		(2021).
1340	135.	Mantovani, A. et al. Glucagon-Like Peptide-1 Receptor Agonists for
1341		Treatment of Nonalcoholic Fatty Liver Disease and Nonalcoholic
1342		Steatohepatitis: An Updated Meta-Analysis of Randomized Controlled Trials.
1343		<i>Metabolites</i> 11 (2021).
1344	136.	Scheen, A.J. Sodium-glucose cotransporter type 2 inhibitors for the treatment
1345		of type 2 diabetes mellitus. Nat Rev Endocrinol 16, 556-577 (2020).
1346	137.	Zelniker, T.A. & Braunwald, E. Clinical Benefit of Cardiorenal Effects of
1347		Sodium-Glucose Cotransporter 2 Inhibitors: JACC State-of-the-Art Review. J
1348		Am Coll Cardiol 75 , 435-447 (2020).
1349	138.	Zelniker, T.A. et al. Comparison of the Effects of Glucagon-Like Peptide
1350		Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors for
1351		Prevention of Major Adverse Cardiovascular and Renal Outcomes in Type 2
1352		Diabetes Mellitus. Circulation 139, 2022-2031 (2019).
1353	139.	Zelniker, T.A. & Braunwald, E. Mechanisms of Cardiorenal Effects of
1354		Sodium-Glucose Cotransporter 2 Inhibitors: JACC State-of-the-Art Review. J
1355		Am Coll Cardiol 75 , 422-434 (2020).
1356	140.	Bolinder, J. et al. Effects of dapagliflozin on body weight, total fat mass, and

regional adipose tissue distribution in patients with type 2 diabetes mellitus

1358		with inadequate glycemic control on metformin. J Clin Endocrinol Metab 97,
1359		1020-31 (2012).
1360	141.	Lai, L.L., Vethakkan, S.R., Nik Mustapha, N.R., Mahadeva, S. & Chan, W.K.
1361		Empagliflozin for the Treatment of Nonalcoholic Steatohepatitis in Patients
1362		with Type 2 Diabetes Mellitus. Dig Dis Sci 65, 623-631 (2020).
1363	142.	Mantovani, A., Petracca, G., Csermely, A., Beatrice, G. & Targher, G.
1364		Sodium-Glucose Cotransporter-2 Inhibitors for Treatment of Nonalcoholic
1365		Fatty Liver Disease: A Meta-Analysis of Randomized Controlled Trials.
1366		<i>Metabolites</i> 11 (2020).
1367	143.	Belfort, R. et al. A placebo-controlled trial of pioglitazone in subjects with
1368		nonalcoholic steatohepatitis. N Engl J Med 355, 2297-307 (2006).
1369	144.	Young, L.H. et al. Cardiac Outcomes After Ischemic Stroke or Transient
1370		Ischemic Attack: Effects of Pioglitazone in Patients With Insulin Resistance
1371		Without Diabetes Mellitus. Circulation 135, 1882-1893 (2017).
1372	145.	Young, L.H. et al. Heart Failure After Ischemic Stroke or Transient Ischemic
1373		Attack in Insulin-Resistant Patients Without Diabetes Mellitus Treated With
1374		Pioglitazone. Circulation 138, 1210-1220 (2018).
1375	146.	Mehtälä, J. et al. Pioglitazone use and risk of bladder cancer: a systematic
1376		literature review and meta-analysis of observational studies. Diabetology
1377		international 10, 24-36 (2019).

1378	147.	Portillo-Sanchez, P. et al. Effect of pioglitazone on bone mineral density in
1379		patients with nonalcoholic steatohepatitis: A 36-month clinical trial. Journal of
1380		diabetes 11, 223-231 (2019).
1381	148.	Jacques, V. et al. Deuterium-Stabilized (R)-Pioglitazone (PXL065) Is
1382		Responsible for Pioglitazone Efficacy in NASH yet Exhibits Little to No
1383		PPARγ Activity. <i>Hepatol Commun</i> 5 , 1412-1425 (2021).
1384	149.	Grundy, S.M. et al. 2018
1385		AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PC
1386		NA Guideline on the Management of Blood Cholesterol: A Report of the
1387		American College of Cardiology/American Heart Association Task Force on
1388		Clinical Practice Guidelines. Circulation 139, e1082-e1143 (2019).
1389	150.	Pastori, D. et al. Statin liver safety in non-alcoholic fatty liver disease: A
1390		systematic review and metanalysis. Br J Clin Pharmacol 88, 441-451 (2022).
1391	151.	Athyros, V.G. et al. Safety and efficacy of long-term statin treatment for
1392		cardiovascular events in patients with coronary heart disease and abnormal
1393		liver tests in the Greek Atorvastatin and Coronary Heart Disease Evaluation
1394		(GREACE) Study: a post-hoc analysis. <i>Lancet</i> 376 , 1916-22 (2010).
1395	152.	Fatima, K. et al. Efficacy of statins in treatment and development of non-
1396		alcoholic fatty liver disease and steatohepatitis: A systematic review and meta-
1397		analysis. Clinics and research in hepatology and gastroenterology 46, 101816
1398		(2021).

1399	153.	Khoo, S. et al. Suboptimal treatment of dyslipidemia in patients with
1400		nonalcoholic fatty liver disease. Journal of gastroenterology and hepatology
1401		35 , 320-325 (2020).
1402	154.	Du, J., Ma, Y.Y., Yu, C.H. & Li, Y.M. Effects of pentoxifylline on
1403		nonalcoholic fatty liver disease: a meta-analysis. World J Gastroenterol 20,
1404		569-77 (2014).
1405	155.	Vilar-Gomez, E. et al. Weight Loss Through Lifestyle Modification
1406		Significantly Reduces Features of Nonalcoholic Steatohepatitis.
1407		Gastroenterology 149, 367-78.e5; quiz e14-5 (2015).
1408	156.	Arterburn, D.E., Telem, D.A., Kushner, R.F. & Courcoulas, A.P. Benefits and
1409		Risks of Bariatric Surgery in Adults: A Review. Jama 324, 879-887 (2020).
1410	157.	Aminian, A. et al. Association of Bariatric Surgery With Major Adverse Liver
1411		and Cardiovascular Outcomes in Patients With Biopsy-Proven Nonalcoholic
1412		Steatohepatitis. JAMA 326, 2031-2042 (2021).
1413	158.	Elsaid, M. et al. Association of Bariatric Surgery With Cardiovascular
1414		Outcomes in Adults With Severe Obesity and Nonalcoholic Fatty Liver
1415		Disease. JAMA network open 5, e2235003 (2022).
1416		

- **Table legends**
- **Table 1.** Demographic composition of the expert panel.
- **Table 2.** Consensus statements on MAFLD and risk of CVD.
- **Table 3.** Recommended behavioral and pharmacotherapy approaches for patients with
- 1421 MAFLD and CVD.
- 1422 Supplementary table 1. Results of Round 1 of the Delphi process.
- 1423 Supplementary table 2. Results of Round 2 of the Delphi process.

Characteristics	Round 1	Round 2	
Surveys sent, n	65	52	
Total respondents, %	80% (52/65)	100% (52/52)	
Participant type, %			
Cardiologist		27%	
Hepatologist		54%	
Endocrinologist		10%	
Other		10%	
Age group, %			
<40 yrs	8%		
40-65 yrs	87%		
>65 yrs		6%	
Gender, %			
Women		17%	
Men	83%		
Region of practice, %			
Asia	42%		
North America	13%		
South America	2%		
Europe		35%	

 Table 1. Demographic composition of the expert panel

Africa	2%
Oceania	6%

Table 2. Consensus statements on MAFLD and risk of CKD (using a Delphi procedure).

Domain and statements	Grade*	
1. Epidemiology of MAFLD and risk of CVD		
1.1 MAFLD is associated with an increased prevalence of CVD events compared with the non-MAFLD population.	Α	
1.2 MAFLD is associated with an increased incidence of nonfatal CVD events compared with the non-MAFLD population.	Α	
1.3 MAFLD is associated with an increased incidence of CVD mortality compared with the non-MAFLD population.	Α	
1.4 The incidence of fatal and/or nonfatal CVD events in individuals with MAFLD is higher compared to that in the NAFLD		
population.		
1.5 MAFLD predicts better the risk of CVD events than NAFLD.	В	
1.6 Increasing severity of liver fibrosis is associated with higher CVD risk.	Α	
1.7 Hepatic steatosis is associated with an increase in CVD risk.		
1.8 MAFLD is a risk factor for CVD events even after adjustment for traditional cardiovascular risk factors.	Α	

2. Epidemiology of MAFLD and CVD outcomes			
2.1 MAFLD is associated with greater carotid-artery intima-media thickness and increased risk of carotid atherosclerotic			
plaques.			
2.2 MAFLD is associated with atherosclerotic CVD events such as acute coronary syndromes.	U		
2.3 MAFLD is associated with increased risk of cardiac arrhythmias (mainly permanent atrial fibrillation).	Α		
2.4 MAFLD is associated with abnormal myocardial function and structure.			
3. Pathophysiological mechanisms linking MAFLD and CVD			
3.1 MAFLD and CVD share multiple cardiometabolic risk factors, such as systemic low-grade inflammation, endothelial	Α		
dysfunction, increased oxidative stress, insulin resistance and an atherogenic lipoprotein profile.			
3.2 Activation of the renin-angiotensin system is one of the mechanistic links between MAFLD and CVD risk.	Α		
3.3 Some shared genetic polymorphisms (e.g., PNPLA3 I148M, and TM6SF2 E167K) may affect the risk of both MAFLD and	Α		
CVD.			

3.4 Gut microbiota may play a role in both MAFLD and CVD.	Α
4. MAFLD and primary prevention of CVD	
4.1 Carotid ultrasonography should be considered in most patients with MAFLD to improve CVD risk assessment.	В
4.2 In CVD risk assessment, MAFLD may be considered a CVD risk factor.	Α
4.3 Screening for MAFLD should be considered in most patients with CVD.	Α
5. Managing MAFLD and the risk of CVD	
5.1 Clinicians who manage patients with MAFLD should target cardiometabolic risk factors (overweight/obesity, diabetes,	U
dyslipidemia and hypertension).	
5.2 Lifestyle intervention (including a healthy dietary pattern, weight loss and regular physical exercise) is associated with	U
improvement in both MAFLD and CVD.	
5.3 Alcohol avoidance of any type or amount is advisable in patients with MAFLD and CVD.	Α
5.4 Treatment with GLP-1RAs is beneficial in MAFLD patients with coexisting T2DM and may reduce CVD outcomes.	U

5.5 Treatment with SGLT-2 inhibitors is beneficial in MAFLD patients with coexisting T2DM and may reduce CVD outcomes.	U	
5.6 Treatment with pioglitazone is beneficial in MAFLD patients and may reduce CVD outcomes, but potential adverse effects	Α	
(e.g. weight gain, edema and worsening of pre-existing congestive heart failure) should be kept in mind.		
5.7 Statins (if required for the treatment of dyslipidemia or CVD risk reduction) should be prescribed for patients with MAFLD		
even with modestly elevated serum liver enzyme levels (< 3 ULN).		
5.8 Bariatric surgery (if required in severely obese patients with MAFLD) improves liver histology features and reduces CVD	U	
risk.		

Abbreviations: CVD = cardiovascular disease; GLP-1RAs = glucagon-like peptide-1 receptor agonists; MAFLD = metabolic (dysfunction)

associated fatty liver disease; PNPLA3 = patatin-like phospholipase domain-containing protein 3; SGLT-2 = sodium-glucose cotransporter-2;

T2DM = type 2 diabetes mellitus; TM6SF2 = trans-membrane 6 superfamily 2; ULN = upper limit of normal

*Grade: *Abbreviations*: U = unanimous (100%) agreement; A = 90-99% agreement; B = 78-89% agreement, and C = 67-77% agreement.

	Target population	CVD	Metabolic	Liver fibrosis
			steatohepatitis (MeSH)	
Healthy dietary pattern	Most	++	++	++
Weight loss	Most	++	++	++
Regular physical exercise	Most	++	++	++
Alcohol avoidance	Most	++	++	++
GLP-1RAs	T2DM	++	++*	+*
SGLT-2 inhibitors	T2DM	++	++*	±*
Pioglitazone	T2DM	++	++*	+*
Statins	In the context of dyslipidaemia	++	±*	±*
Bariatric surgery	Appropriately selected patients	++	++*	++*

Abbreviations: CVD = cardiovascular disease; GLP-1RAs = glucagon-like peptide-1 receptor agonists; MAFLD = metabolic (dysfunction) associated fatty liver disease; SGLT-2 = sodium-glucose cotransporter-2; T2DM = type 2 diabetes mellitus; "++" = benefit; "+" = potential benefit; "±" = limited data.*No phase III clinical trials data in this population

Supplementary table 1. Results of Round 1 of the Delphi process

Domain and statements	Agree	Somewhat	Somewhat	Disagree
		agree	disagree	
1. Epidemiology of MAFLD and risk of CVD				
1.1 MAFLD is associated with an increased prevalence of CVD events	90%	8%	2%	-
compared with the non-MAFLD population.				
1.2 MAFLD is associated with an increased incidence of CVD events	90%	8%	2%	-
compared with the non-MAFLD population.				
1.3 Increasing severity of liver fibrosis is associated with higher CVD risk	69%	27%	4%	-
1.4 Hepatic steatosis is associated with an increase in CVD risk.	54%	40%	6%	-
1.5 MAFLD is a risk factor for CVD events in patients even after adjustment	69%	25%	4%	2%
for traditional cardiovascular risk factors.				

1.6 MAFLD is associated with an increased incidence of CVD mortality.	75%	23%	-	2%
1.7 The prevalence of CVD in individuals with MAFLD is higher compared to	69%	25%	4%	2%
that in the NAFLD population.				
1.8 The incidence of CVD in individuals with MAFLD is higher compared to	69%	25%	4%	2%
that in the NAFLD population.				
1.9 MAFLD predicts better the risk of CVD events than NAFLD.	62%	31%	2%	6%
4. Epidemiology of MAFLD and CVD outcomes				
2.1 MAFLD is associated with increased carotid-artery intima-media thickness	73%	21%	6%	-
and greater carotid atherosclerotic plaques.				
2.2 MAFLD is associated with atherosclerotic CVD events such as acute	73%	21%	6%	-
coronary syndrome.				

2.3 MAFLD is associated with increased risk of cardiac arrhythmias (mainly	56%	31%	12%	2%
permanent atrial fibrillation).				
2.4 MAFLD is associated with abnormal cardiac function and structure.	62%	25%	12%	2%
5. Pathophysiological mechanisms linking MAFLD and CVD				
3.1 MAFLD and CVD share multiple cardiometabolic risk factors, such as	92%	8%	-	-
systemic low-grade inflammation, endothelial dysfunction, oxidative stress,				
insulin resistance and an atherogenic lipoprotein profile.				
3.2 Activation of the renin-angiotensin-aldosterone pathway is one of the	52%	38%	10%	-
mechanistic links between MAFLD and CVD risk.				
3.3 Some shared genetic polymorphisms (e.g. PNPLA3 I148M, and TM6SF2	58%	37%	6%	-
E167K) may affect the risk of both MAFLD and CVD.				
3.4 Gut microbiota may play a role in both MAFLD and CVD.	58%	35%	6%	2%

4. MAFLD and primary prevention of CVD				
4.1 Assessment of carotid artery ultrasound should be considered in most	44%	33%	17%	6%
patients with MAFLD.				
4.2 In CVD risk assessment, MAFLD may be considered a CVD risk factor.	65%	33%	-	2%
4.3 Screening for MAFLD should be undertaken in patients with CVD.	65%	25%	6%	4%
4.4 During CVD risk assessment, the severity of liver disease should be	63%	21%	13%	2%
assessed irrespective of serum liver enzyme levels.				
5. Managing MAFLD and the risk of CVD				
5.1 Clinicians who manage patients with MAFLD should target	96%	4%	-	-
cardiometabolic risk factors (overweight/obesity, diabetes, dyslipidemia and				
hypertension).				

5.2 Lifestyle intervention including a healthy dietary pattern, weight loss and	94%	6%	-	-
regular physical exercise is associated with improvements in both MAFLD				
and CVD.				
5.3 Alcohol avoidance of any type or amount is recommended in patients with	50%	40%	10%	-
MAFLD and CVD.				
5.4 Treatment with GLP-1RAs is beneficial in MAFLD patients with	69%	31%	-	-
coexisting T2DM and improves CVD outcomes.				
5.5 Treatment with SGLT-2 inhibitors is beneficial in MAFLD patients with	67%	29%	4%	-
coexisting T2DM and improves CVD outcomes.				
5.6 Treatment with pioglitazone is beneficial in MAFLD patients (regardless	29%	38%	23%	10%
of the presence of T2DM) and improves CVD outcomes.				

5.7 Statins (if required for the treatment of dyslipidemia or secondary	65%	25%	10%	-
prevention of CVD) should be prescribed for patients with MAFLD even with				
elevated serum liver enzyme levels.				
5.8 Bariatric surgery (if required in severely obese patients with MAFLD)	65%	33%	2%	-
leads to an improvement in liver histology features and a significant CVD risk				
reduction.				

Abbreviations: CVD = cardiovascular disease; GLP-1RAs = glucagon-like peptide-1 receptor agonists; MAFLD = metabolic (dysfunction)

associated fatty liver disease; PNPLA3 = patatin-like phospholipase domain-containing protein 3; SGLT-2 = sodium-glucose cotransporter-2;

T2DM = type 2 diabetes mellitus; TM6SF2 = trans-membrane 6 superfamily 2.

Supplementary table 2. Results of Round 2 of the Delphi process

Domain and statements	Agree	Somewhat	Somewhat	Disagree
		agree	disagree	
1. Epidemiology of MAFLD and risk of CVD				
1.1 MAFLD is associated with an increased prevalence of CVD events	94%	4%	2%	-
compared with the non-MAFLD population.				
1.2 MAFLD is associated with an increased incidence of nonfatal CVD events	90%	8%	2%	-
compared with the non-MAFLD population.				
1.3 MAFLD is associated with an increased incidence of CVD mortality	75%	21%	4%	-
compared with the non-MAFLD population.				
1.4 The incidence of fatal and/or nonfatal CVD events in individuals with	62%	27%	8%	4%
MAFLD is higher compared to that in the NAFLD population.				

1.5 MAFLD predicts better the risk of CVD events than NAFLD.	58%	29%	8%	6%
1.6 Increasing severity of liver fibrosis is associated with higher CVD risk.	81%	17%	2%	-
1.7 Hepatic steatosis is associated with an increase in CVD risk.	56%	40%	2%	2%
1.8 MAFLD is a risk factor for CVD events even after adjustment for	71%	25%	2%	2%
traditional cardiovascular risk factors.				
6. Epidemiology of MAFLD and CVD outcomes				
2.1 MAFLD is associated with greater carotid-artery intima-media thickness	65%	29%	4%	2%
and increased risk of carotid atherosclerotic plaques.				
2.2 MAFLD is associated with atherosclerotic CVD events such as acute	75%	25%	-	-
coronary syndrome.				
2.3 MAFLD is associated with increased risk of cardiac arrhythmias (mainly	56%	37%	8%	-
permanent atrial fibrillation).				

2.4 MAFLD is associated with abnormal myocardial function and structure.	62%	31%	6%	2%
7. Pathophysiological mechanisms linking MAFLD and CVD				
3.1 MAFLD and CVD share multiple cardiometabolic risk factors, such as	94%	4%	2%	-
systemic low-grade inflammation, endothelial dysfunction, increased oxidative				
stress, insulin resistance and an atherogenic lipoprotein profile.				
3.2 Activation of the renin-angiotensin-aldosterone system is one of the	58%	38%	2%	2%
mechanistic links between MAFLD and CVD risk.				
3.3 Some shared genetic polymorphisms (e.g. PNPLA3 I148M, and TM6SF2	62%	35%	4%	-
E167K) may affect the risk of both MAFLD and CVD.				
3.4 Gut microbiota may play a role in both MAFLD and CVD.	60%	35%	6%	-
4. MAFLD and primary prevention of CVD				

4.1 Carotid ultrasonography should be considered in most patients with	48%	37%	6%	10%
MAFLD to improve CVD risk assessment.				
4.2 In CVD risk assessment, MAFLD may be considered a CVD risk factor.	77%	19%	2%	2%
4.3 Screening for MAFLD should be considered in most patients with CVD.	65%	31%	-	4%
5. Managing MAFLD and the risk of CVD				
5.1 Clinicians who manage patients with MAFLD should target	98%	2%	-	-
cardiometabolic risk factors (overweight/obesity, diabetes, dyslipidemia and				
hypertension).				
5.2 Lifestyle intervention (including a healthy dietary pattern, weight loss and	96%	4%	-	-
regular physical exercise) is associated with improvement in both MAFLD and				
CVD.				

5.3 Alcohol avoidance of any type or amount is advisable in patients with	67%	27%	2%	4%
MAFLD and CVD.				
5.4 Treatment with GLP-1RAs is beneficial in MAFLD patients with	81%	19%	-	-
coexisting T2DM and may reduce CVD outcomes.				
5.5 Treatment with SGLT-2 inhibitors is beneficial in MAFLD patients with	81%	19%	-	-
coexisting T2DM and may reduce CVD outcomes.				
5.6 Treatment with pioglitazone is beneficial in MAFLD patients and may	65%	27%	8%	-
reduce CVD outcomes, but potential adverse effects (e.g. weight gain, edema				
and worsening of pre-existing congestive heart failure) should be kept in mind.				
5.7 Statins (if required for the treatment of dyslipidemia or CVD risk	81%	17%	2%	-
reduction) should be prescribed for patients with MAFLD even with modestly				
elevated serum liver enzyme levels (< 3ULN).				

5.8 Bariatric surgery (if required in severely obese patients with MAFLD)	79%	21%	-	-
improves liver histology features and reduces CVD risk.				

Abbreviations: CVD = cardiovascular disease; GLP-1RAs = glucagon-like peptide-1 receptor agonists; MAFLD = metabolic (dysfunction)

associated fatty liver disease; PNPLA3 = patatin-like phospholipase domain-containing protein 3; SGLT-2 = sodium-glucose cotransporter-2;

T2DM = type 2 diabetes mellitus; TM6SF2 = trans-membrane 6 superfamily 2; ULN = upper limit of normal

1430 Figure legends

- 1431 **Figure 1:** Flowchart of the Delphi procedure adopted for developing a consensus
- 1432 statement on MAFLD and risk of CVD.
- 1433 **Figure 2.** Proportion of experts replying "agree" by experts in Round 1 and Round 2
- 1434 (A); and total proportion of experts replying "agree or somewhat agree" by experts in
- 1435 Round 1 and Round 2 (B).