
1
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Abstract—The Probabilities linguistic term set (PLTS) is an

efficient tool to represent sentimental intensities hidden in
unstructured text reviews which are useful for multi-criteria
online product ranking. Traditional machine learning-based
sentiment analysis methods adopted in existing studies to obtain
PLTSs often result in unsatisfying prediction accuracy and thus
inevitably affect product ranking results. To overcome this
limitation, in this study, we propose a deep learning-based
sentiment analysis approach to produce PLTSs from online
product reviews to rank online products. A natural language
processing-based method is first applied to extract product
features and corresponding feature texts from online reviews.
Then, state-of-the-art deep learning-based models are
implemented to conduct the sentiment classification for online
product/feature review texts. To ensure classification accuracy, we
propose an experimental matching mechanism to identify the level
of sentiment tendency for all rating labels of a review dataset and
then match each label with the most appropriate linguistic term.
The experiment results reveal: 1) our matching mechanism can
benefit the training of a text classification model to identify
sentiment tendencies from review texts with high prediction
accuracy; 2) with the help of the trained classification model, our
approach can predict sentimental intensities of the extracted
features' texts in the form of PLTSs with competitive accuracy. A
case study of applying PLTSs output from our approach to an
online product decision-making problem is also provided to
validate the applicability of our approach.

Index Terms— Sentiment analysis, Text reviews, Text
classification, Deep learning, Probabilistic linguistic term set.

I. INTRODUCTION
NLINE review systems in current e-commerce platforms
become an important information source to affect

customers’ decisions regarding online shopping [1]. To support
customers with extracting useful information from large
amounts of reviews and making a purchase decision from a set
of products/services regarding multiple criteria, the accurate
measurement of online reviews is worth investigating [2], [3].

Manuscript received November 14, 2022; revised April 04, 2023; accepted

April 25, 2023. This work was supported by the National Natural Science
Foundation of China under Grant 71971145 and 72171158. (Corresponding
Author: Huchang Liao).

Z.X. Liu is with the Southampton Business School, University of
Southampton, Southampton, SO17 1BJ, UK (e-mail: Zixu.Liu@soton.ac.uk).

Probabilities linguistic term set (PLTS) [4], which combines
linguistic terms with probabilities to enhance the flexibility and
comprehensiveness of uncertain information expression, is an
efficient tool to represent sentimental intensities hidden in
unstructured text reviews. PLTS has been widely applied to
represent linguistic evaluations for text online reviews in multi-
criteria online product ranking problems under uncertainty [2],
[3], [5]–[8].

A. Challenges and Research Questions
In the current research [1], [9], the common way to address

the problem of product ranking based on online reviews is
composed of three stages: 1) product features extraction from
online reviews, 2) sentiment analysis for calculating the overall
sentiment scores of sentiment words of review texts, 3) ranking
alternative products based on the results of the first two stages.
A.1 Research of Feature Extraction

Apart from the overall comment for a product, online
reviews always contain descriptions and preferences for
different product features that will affect the purchasing
behavior of a customer. Thus, product features and
corresponding sentiment tendencies need to be considered
when ranking products. How to effectively extract product
features from a large set of online reviews is the basis and an
important step of the online review analysis problem [10]. The
most widely used method in current research to extract
production features is the statistical-based method. The Latent
Dirichlet Allocation (LDA) model is a typically generative
statistical model. For instance, Tirunillai and Tellis [11] used
the LDA to extract the key latent dimensions of consumer
satisfaction with quality. Guo et al. [12] and Bi et al. [13] used
LDA to extract the features of products/services from online
reviews to identify the preferences of customers. The LDA
model could identify a number of topics from text documents,
where each topic contains several words that are representative
of that topic. In other words, the output of the LDA model is the
sparse representation of a text, it only keeps the key features
which are not related to each other and ignores the irrelevant

H. C. Liao and Q. Yang are with the Business School, Sichuan University,
Chengdu 610064, China (e-mail: liaohuchang@163.com;
yangqianscu@163.com).

M.L. Li and F.L. Meng are with the Department of Computer Science and
Alliance Manchester Business School, respectively, The University of
Manchester, Manchester, M13 9PL, UK (e-mail:
limaomao.maolin@gmail.com; fanlin.meng@manchester.ac.uk).

A Deep Learning-based Sentiment Analysis
Approach for Online Product Ranking with

Probabilistic Linguistic Term Sets
Zixu Liu, Huchang Liao, Senior Member, IEEE, Maolin Li, Qian Yang, Fanlin Meng

O

mailto:Zixu.Liu@soton.ac.uk
mailto:yangqianscu@163.com
mailto:limaomao.maolin@gmail.com

2
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

information. Consequently, the LDA model cannot be applied
or extended to retrieve sentiment phrases or sub-sentences that
describe a particular feature in a straightforward manner.

Other statistical-based methods for feature extraction
include association rule mining [14], hidden Markov model
[15], and conditional random fields [16]. However, the results
of these kinds of methods heavily depend on the training
corpus, which is often time-consuming, expensive, and difficult
to construct. The above-mentioned studies chose to avoid
building a new corpus but use existing public corpora to train
their tools. However, the source of raw texts in most of the
corpora is news, which is quite different from online reviews of
products [1]. Such a limitation lowers the accuracy of the
product feature extraction and further sentiment analysis
results, which limits the utilization of statistical-based methods
in online review analysis. By identifying this research gap, our
first research objective is to develop an approach to extract
product features and corresponding sentiment phrases or
sentences efficiently and accurately from online reviews, and
then analyze the sentiment tendencies of the reviews from each
product concerning each product feature.
A.2 Sentiment Classification on Review Texts

In the second stage, sentiment analysis methods for the
review texts and extracted features’ corresponding texts or sub-
sentences are needed. The commonly used sentiment analysis
methods to calculate the sentiment score of each product feature
and overall product satisfaction from the review text are based
on machine learning (ML). The basic idea of these methods is
to treat the sentiment analysis of online reviews as a text
classification problem [1]. In ML, the text classification aims to
determine the category (or label, class) of a given text, and the
classification result can be a binary classification or multi-class
classification results [17]. Note that the probabilistic
distribution on all possible labels or classes from the
classification result matches the mathematical form of PLTSs
perfectly. Many studies [2], [3], [5] used the rule-based
sentiment analysis tool in a software package called Stanford
CoreNLP to produce PLTSs from online reviews, with
classified labels and the corresponding posterior probability of
each label. Different from ML methods, the rule-based
sentiment analysis methods do not require additional annotator
efforts to collect new training data. The rule-based sentiment
analysis tool in the Stanford CoreNLP is an already well-trained
compositional model over trees using deep learning (DL) [18],
which enables to get linguistic annotations quickly and
painlessly from a text. The tool provides conveniences for users
to use by calling their application programming interface.
However, its flexibility and scalability are insufficient for
producing PLTSs since it was not designed specifically for
PLTS generation but to provide a general sentiment analysis
toolkit with a lightweight framework. To implement the rule-
based sentiment analysis method, the sentiment toolkit was pre-
trained on a particular dataset which is different from online
product reviews regarding customer preferences. Thus,
sentiment analysis results from this tool are not quite accurate,
which inevitably affects the final stage of product ranking.

Although re-pre-training the sentiment toolkit is possible by
using a new dataset, the construction of such a corpus,
especially annotating the sentiment scores for all the text spans
or product features in a text, requires extensive manual efforts
which can be expensive and time-consuming.

As we discussed before, the production of PLTSs from online
text reviews can be considered as a sentiment classification
problem. Supervised ML-based sentiment analysis methods are
the primary choices by current research since they can enrich
the semantic expression. The biggest advantage of such kind of
method is that different supervised ML methods can be used for
different problems of sentiment classification (i.e., categories
of ranking products in different problems are different), which
improves the accuracy of classification results [1]. Naive Bayes
is a probability-based classification method used in some
studies [19], [20] to do sentiment analysis for online reviews.
This classifier can determine the sentiment category/class of a
text according to the joint probability of text feature items and
sentiment categories. The main drawback of this method lies in
the assumption that all features in the text are independent,
which limits the classification performance because usually, the
words in a text are not totally independent. Support vector
machine (SVM) is another supervised ML algorithm used in
many studies for sentiment classification [21]–[24]. The SVM
classifier works by deciding a classifying hyperplane where
data points are above or below it. In other words, there is no
probabilistic explanation for the classification. Therefore, only
sentiment orientations of online reviews are predicted, and
PLTSs cannot be obtained by this classifier. Furthermore, the
SVM algorithm is not suitable for large data sets, especially for
online review text data, since their target classes are inevitably
overlapping which makes it harder for the SVM to predict the
hyperplane for classification. Decision tree-based ensemble
algorithms, such as random forest and gradient boosting
decision tree algorithms, were also discussed and applied in a
few studies [9], [25], [26] to solve the problem of sentiment
classification. Onan et al. [27], [28] conducted a comprehensive
analysis to show that Decision tree-based ensemble algorithms
could get a higher classification accuracy compared with base-
learning algorithms (SVM, Naive Bayes) in text classification.
However, such kind of algorithms are not suitable for tabular
data, such as image and text data with the same meaning in all
properties or dimensions [29]. From the above-mentioned
literature, we find that the lack of the training dataset is the main
barrier to implementing a general supervised ML-based
sentiment classification method for online reviews. More
specifically, as Onan and Korukoglu mentioned in [30], the lack
of an abundant amount of training data makes it difficult to train
ML-based sentiment classification algorithms in a feasible time
and degrades the classification accuracy of the built model. The
reason for lack of the data is that the dataset of labelled training
samples with sentiment orientations for a kind of products is
usually hard to find, since only the reviews of products in the
exact same product category can be used for training [1].
Furthermore, the supervised ML-based methods cannot
generate a convinced classification accuracy for the sentiment

3
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

classification problem because they cannot efficiently process
a large text dataset as discussed before.

Aspect-Based Sentiment Analysis (ABSA) is a sentiment
classification method which has been researched in many
studies [31]–[33]. It receives a set of texts such as product
reviews discussing a particular product as input, then attempts
to detect the main or the most frequently discussed aspects
(features) of the product (e.g., ‘screen’) and estimate the
average sentiment of the texts per aspect. However, it has the
following drawbacks. First, product reviews normally contain a
few short sentences, therefore some important features from the
other aspects may be omitted by ABSA if a review text
mentions several aspects of the product (which always happens
in product reviews). Second, if combining all reviews as a
single document to input to ABSA, only an average sentimental
score of all reviews for each identified feature is classified and
output. In this scenario, the output cannot be used to do the third
stage of product ranking mentioned before, as the sentiment
score of a feature for each mentioned review text is required in
this stage. Solely classic text classification ML methods were
applied in most ABSA models [32], [33] which cannot perform
the sentiment classification-related tasks well.
A.3 Implementation of DL Models on Text Classification

The implementation of DL is growing fast in recent years for
supervised learning tasks. DL has been proven to improve the
defects such as data sparsity, dimension explosion, and poor
generalization ability of traditional ML methods on text
classification [34], [35]. Classifiers based on DL avoid the
cumbersome pre-processing process and have strong learning
abilities and higher prediction accuracy [17]. Efficiently
managing emerging technologies, especially DL in artificial
intelligence, could bring significant opportunities by
automatically identifying customers' needs to enable
innovation, profit and growth [36], [37]. Lu et al. [38] proposed
a patent citation classification model which integrated state-of-
art DL models. The experimental results show that the model
effect based on deep learning is significantly better than the
traditional text representation and classification method. Based
on state-of-art DL text classification models, Jiang et al. [39]
proposed a model TechDoc for the accurate automated
classification of technical documents. Wang et al. build a CNN-
based text classification model to map customers' needs to
production specifications by sentiment analyzing customers'
product reviews [40]. As far as we know, studies of
implementing DL models for generating PLTSs have not been
well-studied. Except for mentioned studies, only a few studies
in ABSA [32], [33] and sentiment analysis on text reviews
[41]–[43] employed general DL models such as the Deep
Neural Network and convolutional neural network (CNN) but
still neglected the state-of-art DL models. In addition, we also
notice that most of the existing studies on sentiment analysis
with PLTSs lack of large training datasets. Therefore, one
cannot explore the capacity of DL models in generating PLTSs
for online product ranking problems. Besides, most online
shopping websites ask their customers to rate products in the
range of 1-5 stars. How to match these rating labels with correct

linguistic terms is still an open problem. Due to individualized
cognition, the same word may mean differently to different
people, especially for sentiment words in text reviews that are
posted by different reviewers with different linguistic and
cultural backgrounds [2], [44]. As the example shown in [2],
two reviewers both use the same sentiment word "great" for a
TV but provide different rating scores. In this case, “great”
approximately means 0.75 in the cognition of the reviewer with
a lower score but implies 1 for the reviewer with a higher score.
The phenomenon indicates that the rating score represents the
sentiment tendencies and only roughly coarse-grained
sentiment intensities of the review text but cannot precisely
reflect fine-grained sentiment intensities in the review text.
Therefore, directly using the 1-5 rating scores as the supervised
labelling information of review texts in the training process is
inappropriate and cannot get a text classification model with
high prediction accuracy. Since the PLTSs represent
sentimental intensities hidden in unstructured text reviews, we
conclude that directly matching 1-5 rating labels with 5
linguistic terms {“very negative”, “negative”, “neutral”,
“positive”, “very positive”} is inappropriate that cannot help to
train a model to generate the correct PLTSs from text reviews.
The field of sentiment analysis generally aims to classify texts
as negative, neutral and positive [45]. But the existing work
only divided reviews as “positive” or “negative” to match with
linguistic terms, which was not accurate enough and only
provided a rough sentiment tendency [19], [21], [22]. Hence,
identifying the level of the sentiment intensities of the review
text and matching it with the LST {“negative”, “neutral”,
“positive”} is more reasonable and could generate more
accurate PLTSs. Identifying the above research gaps, we will
explore our second, third, and fourth research problems: how to
obtain a large enough dataset consisting of labelled training
samples with sentiment orientations for different products
under different categories? How to apply state-of-the-art DL
models to solve the problem of sentiment classification and
obtain PLSTs from review texts for the product and its features?
Which model has the best performance in what kind of case?

B. Motivation and Contributions
To solve the above-mentioned research problems, this paper

presents a DL-based sentiment analysis approach to produce
PLSTs from online reviews to rank online products. The state-
of-the-art DL-based text classification models are implemented
as a backbone of the proposed approach to solve the sentiment
classification problem. We then map the classification results
to the PLSTs which can be directly used in the product ranking.
A comparative analysis of reviewed literature (Table XII) is
provided in Section VI to demonstrate the advantages of our
proposed approach and help the reader to better understand our
contributions. We summarize the main contributions of this
study as follows:
1) We provide a general algorithm which can be easily

generalized to various PLTS scenarios to exact and collect
products’ information and corresponding review texts from
a data source (e.g., a public data source or private dataset).
It can output the training dataset that includes labelled

4
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

training text samples with sentiment orientations for
different products under different product categories.

2) We propose a natural language processing (NLP)-based
method to extract product features from online reviews and
retrieve the corresponding text or sub-sentences that only
describe a particular product feature.

3) We experiment and prove the way of matching rating
labels with linguistic terms directly cannot provide
accurate PLTSs in identifying the correct sentiment
tendencies from online reviews. The existing works [19],
[21], [22] simply divided reviews as “positive” or
“negative” to match with linguistic terms was not accurate
enough and only provided a rough sentiment tendency. An
experimental solution to this problem is proposed in our
work which is to match the rating scores 1-5 with the LST
{“negative”, “neutral”, “positive”} to generate more
accurate PLTSs.

4) Several different state-of-the-art DL and ML-based text
classification models are implemented and tested in our
framework to generate PLSTs for the product and its
features from input review texts. Experiment results
demonstrate the high prediction accuracy and competitive
performance of our approach with DL models in sentiment
classification and extracting PLTSs from online reviews.

C. Organization of the Paper
The rest of the paper is organized as follows: In Section II,

several state-of-the-art DL-based classification models are
reviewed. The detail of our proposed approach is depicted in
Section III. In Section IV, we present and analyze the results of
our designed experiments. A case study is presented in Section
V to illustrate how to apply the PLSTs output by our approach
to the problem of product ranking based on online reviews.
Section VI discusses the management implication of our work
and concludes the paper.

II. SHORT REVIEW ON PLTS AND DEEP LEARNING MODELS
To facilitate further presentation, this section reviews the

concept of PLTSs used in online product ranking and several
state-of-art text classification models based on DL methods
which will be used in this study.

A. Definition of PLTSs
Here we provide the formal definition of PLTS first.
A set of possible values, 𝑆𝑆 = {𝑠𝑠0, 𝑠𝑠1, … , 𝑠𝑠𝑞𝑞}, of a linguistic

variable is called a linguistic term set (LTS), where 𝑠𝑠𝛼𝛼 is a
linguistic term in 𝑆𝑆,𝛼𝛼 ∈ {0,1, … , 𝑞𝑞} and 𝑠𝑠𝛼𝛼 > 𝑠𝑠𝛽𝛽 if 𝛼𝛼 > 𝛽𝛽. To
describe the complex linguistic evaluation information with
hesitancy or uncertainty given by experts, Pang et al. [4]
proposed the concept of PLTS as ℎ𝑆𝑆(𝑝𝑝) = {𝑠𝑠𝛼𝛼(𝑝𝑝𝛼𝛼)|𝛼𝛼 =
{0,1, … , 𝑞𝑞} } by associating each linguistic term in S with a
probability. Later, Wu and Liao [2] enhanced the representation
of the PLTS to the form expressed as Eq. (1):

 ℎ𝑆𝑆(𝑝𝑝) = {𝑠𝑠0(𝑝𝑝0), 𝑠𝑠1(𝑝𝑝1), … , 𝑠𝑠𝑞𝑞�𝑝𝑝𝑞𝑞�, 𝑠𝑠𝑠𝑠(𝑝𝑝𝑠𝑠)} (1)
In Eq. (1), 𝑝𝑝𝛼𝛼 (𝑝𝑝𝛼𝛼 ≥ 0) is the probability of the linguistic term

𝑠𝑠𝛼𝛼, 𝑠𝑠𝑠𝑠 refers to the universal set of 𝑆𝑆, and 𝑝𝑝𝑠𝑠 is the ignorance

part of the probability such that ∑ 𝑝𝑝𝛼𝛼
𝑞𝑞
𝛼𝛼=0 + 𝑝𝑝𝑠𝑠 = 1. Considering

the ignorance part of probability is important for deriving a
correct decision-making result under uncertainty [2].

As an emerging tool of complex information representation,
PLTSs have been applied to represent the evaluation
information extracted from online reviews [2], [3], [5]–[8].
These studies can be divided into two categories: one relied on
specific technologies (e.g., the cloud model) to summarize
numerical online ratings into PLTSs [6]; the other kind of
methods depended on different techniques of attribute
extraction and sentiment analysis to transform sentiment
tendencies and intensities contained in text reviews into PLTSs
[2], [3], [5], [7], [8].

B. Deep Learning Models in Text Classification
In this section, several state-of-art text classification models

based on DL methods are reviewed.
CNN is a specialized kind of neural network that employs a

mathematical operation called convolution. The convolution is
used in place of general matrix multiplication and in at least one
of the layers in the CNN [35]. TextCNN [46] used CNN to
extract key information similar to n-gram in sentences. All parts
of the model and their functionalities include: 1) input layer,
which inputs the text data into the model, 2) embedding layer,
which extracts the text feature representation, 3) convolution
layer, which is built by filters of different size and transfers the
input data to a feature map, 4) max-pooling layer, which
reduces the dimension of the data from the convolution layer,
5) fully connected SoftMax layer, which contains few full
connected layers that comply the data extracted by previous
layers to form the final output, i.e., the probability of each
category/class in binary or multi-class.

Different from the TextCNN which segments the input text
data into words, the CharCNN proposed by Zhang et al. [47]
accepts a sequence of encoded characters as input. It is the
character-level CNN that aims to learn language representation
directly from characters. The character encoding in CharCNN
was achieved by predefining an alphabet of size m which is the
number of unique characters in a language, and then randomly
initializing an mⅹd look-up table matrix, where d is the
dimension size of a character vector representation. This look-
up table matrix will be updated during training. According to
the look-up table, the input of a sequence of characters was then
encoded to an 𝑙𝑙0 × 𝑑𝑑 matrix, where 𝑙𝑙0 is the maximum length
of the character sequence and the characters exceeding this
length was ignored.

One problem of CNN is regarding the fixed size of the filter.
It is hard to capture the global information since the fixed size
of the filter can only model the local information. Focusing on
this, Liu et al. [48] developed the TextRNN or bi-directional
long short-term memory (bi-LSTM) to capture bi-directional
information with the variable length for text classification
problems. This model can capture richer context information
than conventional LSTM. This is achieved by concatenating the
outputs of two individual LSTM units in the architecture of
TextRNN where one LSTM processes the sequence from left to

5
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

right, and the other from right to left.
Sequence to Sequence (Seq2Seq) is another DL-based

classification model within an Encoder-Decoder framework
[49]. In the Encoder-Decoder network, the whole source of
sentences is compressed by the encoder (e.g., an LSTM) into a
single vector and the decoder (e.g., another LSTM) extracts the
relevant information from the encoder output and generates a
new sequence. However, different parts of the source sentence
can be more useful than others. To solve the problem of the
long-term dependence on text, the attention mechanism [50]
was added to the Seq2Seq model. At each decoding step, this
mechanism decides which source parts are important, which
allows the model to learn to “focus” on the most relevant source
parts for each step. This mechanism can also benefit the
Seq2Seq-based classification performance [51].

Like the Seq2Seq, Transformer [52] designed by Google
Brain is also based on an encoder-decoder architecture. The
main advantage of the Google transformer is to adopt the self-
attention mechanism that weights the significance of each part
of the input data differentially. Although this model was
originally proposed for the task of machine translation, with the
development of pre-trained systems such as BERT
(Bidirectional Encoder Representations from Transformers)
[53], the transformer becomes the most popular architecture for
various NLP tasks (e.g., text classification), having generated
state-of-the-art results [53], [54]. In [53], it is shown that BERT
can be fine-tuned for specific NLP tasks after pre-training with
large datasets of English Wikipedia and BooksCorpus [55].

FastText, created by Facebook’s AI research lab [56], is a
DL-based classification model for efficient learning of word
embedding and text classification. The main principle behind
this model is that the morphological structure of a word carries
important information about the meaning of the word. Such a
structure is not considered by traditional word embedding.
Despite its lightweight baseline, Joulin et al. [56] showed that
fastText has the competitive result in terms of accuracy for
training and evaluation, but magnitude faster compared with
other DL classifiers.

All the above-mentioned models will be implemented and
experimented with in our proposed approach. Transformers,
fastText and Seq2Seq are popular sentiment analysis models
and have been used in many of current research [57]–[59],

which is also why we choose them. The relatively "old" NN-
based models -TextCNN, TextRNN and CharNN- which are
used in some works of ABBS [32], [33] are chosen to run the
comparative experiment.

III. A NOVEL SENTIMENT ANALYSIS APPROACH WITH PLTSS
In this section, we depict our proposed DL-based sentiment

analysis approach to generate PLTSs from online product reviews.
Fig. I shows the diagram of the approach. The input of the proposed
approach is the review texts of the products that need to be ranked.
Before training a sentiment classification model, we need to
collect the training data from a data source. The training data is
the review texts of all products that belong to the same category
as the product of the input reviews. Then, state-of-the-art DL
text classification models are selected and used as the backbone
model in our approach. Production feature extraction is also an
important part of our approach. Compared with the sentimental
distribution of the overall review text, the sentiment distribution
of the feature contained by the text is more commonly used in
ranking products because different features usually have
different importance and weight. The input review texts that
contain a selected feature from the experts are extracted and
retrieve the corresponding sentences that only represent this
selected feature. These sentences and input review texts are
then fed into the trained model to predict the probabilities
distribution among different levels of sentiment tendency. The
output can be represented as the PLTSs that be used in the latter
stage of product ranking. In the following, Section A presents the
part of data collection in our approach, Section B discuss
production feature extraction, and Section C illustrates text
classification.

A. Data Collection
In this subsection, we describe the method of collecting the

training data for different categories of products by adapting
existing online product reviews from a public data source. This
method could serve as a reference method to help people create
a customized review text dataset.

With the fast development of ML and DL, many advanced
and sophisticated models have been built for the NLP. The bias
of the training result normally can be controlled in an acceptable
range under these complex models. That is because these

Fig. I. The diagram of the proposed DL-based sentiment analysis approach to generate PLTSs from online reviews

6
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

models have a robust text features extraction process to transfer
the input texts to the machine-readable format, normally vector
representation. Therefore, the variance of the training results is
one of the main factors that need to be considered. Generally,
there are two commonly used methods to deal with the large
variance and tackle overfitting: regularization that is to
introduce additional terms in the training loss function to
penalize extreme parameter values or adding more data [60].
The first one has already been implemented in almost all
sophisticated ML models. Hence, applying the second method-
collecting more data to get a better training result is the first
problem we must solve in our approach.

In this study, we take the use of reviews on the Amazon
platform as an example to demonstrate how to use such large
data to benefit the research of PLTS generation. The data we
used was taken from Ni et al. [61] that included reviews in the
range of May 1996 – Oct 2018. This data source contains 233.1
million reviews (34GB) and 15.5 million products (24GB).1
Two types of files in the dataset are critical to build our own
dataset for our approach: complete review data and products
metadata. The data format used here is one-review (product)-
per-line in JSON2 in which the data consists of attribute-value
pairs and arrays that make the data human-readable. Fig. A.I in
the Appendix file Section A shows the data structure of the
review data and product metadata. From the product metadata,
we use the content of ‘category’ to match our search query to
get the product’s ‘asin’. ‘asin’ is the Amazon standard
identification number. Then, based on ‘asin’, we could get all
reviews for this product, and the contents of ‘overall’ and
‘reviewText’ are extracted to create our training samples. For
instance, we can get the following training sample from the
sample review in Fig. A.I: ‘Text’: ‘Love this TV and great buy’;
‘lable’:5.

Algorithm I describes the method to extract a training dataset
based on the category information of a product. The category
information of a product can be checked on Amazon.com. If
this product is not available on the website, searching for a
similar product could also obtain the category information. The
extra filter condition can be added to Step 4.1 in Algorithm I to
filter the unwanted data (e.g., only return the reviews published
after 2010) and create a customized training dataset.
Algorithm I: training review data extraction
Input: The main category and list of categories of product(s)
Output: Review data of all products that have the same categories information.
1. Load the JSON file of product metadata for the main category as list JP;

create an empty list P.
2. Parallel read all the contents (products’ metadata) in JP.

2.1. If the value of the ‘category’ of this product equals the input list of
categories:

2.1.1. Append the values of ‘asin’ to the list P.
3. Load the JSON file of review data for the main category as list RJ; create

an empty list R.
4. Parallel read all the contents (review data) in RJ.

1 It can be noticed that the size of the JSON files is quite large for a single
machine, especially a personal computer. Reading the data from them requires
considerable memory that a personal computer may not fulfil. Furthermore,
filtering data based on the requirements to create the training dataset on a single
machine with a single running thread is time-consuming due to the enormous
number of review texts and products. To solve these two problems, we use the

4.1. If the value of the ‘asin’ of this review data in the list P:
4.1.1. Append an array that contains the values of ‘revewText’ and

‘overall’ to the list R.
5. Save the R to a CSV file and output it.

Although the time complexity of Algorithm I, without using
parallel processing, is O(n), n is an extremely large number in
our case (e.g., 30 million review texts and 0.7 million products
in the categories of Electronics). Through using package
“multiprocessing” in Python, the asynchronous parallel
processing is implemented in Steps 2 and 4. Different from
synchronous execution blocking the main program to ensure the
processes are completed in the same order in which it was
started, asynchronous does not consider the sequence of the
results of the processes and usually finishes the task faster. The
output review data file is used in the latter stage of training the
sentiment classification model. The time complexity of
Algorithm I using parallel processing is O(n/c), where c is the
number of CPU cores used in computing.

B. Production feature extraction from online reviews
To make full use of the features and sentiment tendencies of

the input reviews in our approach, we propose an NLP-based
method to extract product features and retrieve corresponding
texts that only represent the selected features and the irrelevant
information is eliminated. The proposed method is illustrated in
Fig. II. The detail of each step is explained in the following.

Step 1: Separate each review text into sub-sentences. A
customer’s review may include multiple sentiments (e.g.,
positive, neutral, negative) to a product’s different features.
Therefore, we cut each of the input reviews into sub-sentences
to minimize the number of features mentioned in a single text
fragment (i.e., a sub-sentence) as much as possible. Ideally,
each sub-sentence only describes a particular product feature.
In more detail, the reviews are normally short texts with one or
two paragraphs due to the concise and brief style of online
reviews. The words expressing strong feelings or sentimental
tendencies of a particular feature in a review are usually
followed by words or sentences which might be redundant text
and not be associated with customer tendencies, such as
commonly detailed feature descriptions. This redundant
information can introduce noise to our approach when using

High-Performance Computing (HPC) cluster to read the data and implement
parallel processing during the data filtering.
2 JOSN was driven from JavaScript but many modern programming languages
include code to generate and parse JSON-format data, which means the JSON
is a language-independent data format.

Fig. II. The process of production feature extraction

7
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

text classification models to identify sentiment tendencies.

Step 2: Pre-process the data: tokenize a sentence to words
and then use NLTK3 for part-of-speech tagging.

Although Amazon does not provide an emojis input option
on its review system, some reviewers still could input emojis to
present their sentiments via the tool provide by the input
methods installed in phone or PC systems. Since emojis convey
a fruitful sentiment tendency and information, understanding
the meaning of the emojis during sentiment analysis is very
useful [62]. In our approach, we use a python package called
"emot4" to identify the emojis from the input product reviews
and convert them to the description texts, for example, ':-)' to
"Happy face smiley".

To efficiently identify the most representative words as
features from the review texts, we only keep noun words and
delete the rest under the 1-gram method or keep noun and
adjective words under the 2-gram method (the details are
explained in Step 3 and Note 1). The reason for this is that
almost all features extracted for product ranking are nouns from
the aspect of semantics [2], [3], [5]–[8], therefore we do not
need to consider the words which may contain sentimental
tendency in the current step. For the convenience of word count
in the latter stage, we convert all the noun words to lower case.
To minimize the noise and improve the efficiency, the Porter
stemming algorithm [63] is used to reduce words to their root
form, e.g., swimming will be stemmed to its root form, swim,
after applying this algorithm. Some sentences may be totally
deleted since they may not contain any noun word. An index is
then allocated to each sentence, indicating which review the
sentence belongs to. There could be more than 1 sentence
having the same index if all sub-sentences are taken from the
same review. Table I shows examples of texts after these pre-
processing steps. Due to the space limitation, we provided the
corresponding original review texts of Table I in Section D of
the Appendix to help the reader better understand our method.

TABLE I
EXAMPLE RESULTS OF REVIEW TEXT PRE-PROCESSING

Index Result texts
1 samsung box people
1 store screw wall mount inform booklet

1 setup painless friend tv wall footage enthusiast care quality
look flaw picture

… …
1 pack job hole box back mark present
2 input lag samsung game

Step 3: Feature extraction and selection: apply the bag-of-
words and Term Frequency-Inverse Document Frequency (TF-
IDF) algorithms to transform words into sparse feature vectors.
We can use the CountVectorizer class implemented in the
scikit-learn package5 to construct the vocabulary of the text
documents obtained in Step 2, then count the word frequency
in respective text documents, and transfer it to term frequency-
inverse document frequency (tf-idf). To filter out the feature
words with lower frequency from the review documents, the

3 NLTK: https://www.nltk.org/
4 https://github.com/NeelShah18/emot

invited experts who will carry out the product ranking in the
later stage will give a threshold which indicates a minimum
word frequency or a sum of tf-idf. A sum of word tf-idf in the
feature vectors represents the value of the word total frequency
divides its idf: ∑ 𝑡𝑡𝑡𝑡– 𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡,𝑑𝑑)𝑛𝑛𝑑𝑑

𝑑𝑑=1 = ∑ 𝑡𝑡𝑡𝑡(𝑡𝑡,𝑑𝑑)𝑛𝑛𝑑𝑑
𝑑𝑑=1 ×

log 𝑛𝑛𝑑𝑑
1+𝑑𝑑𝑑𝑑(𝑑𝑑,𝑡𝑡)

 (The concept of tf-idf is reviewed and
demonstrated in the Appendix file Section B). Noun words
whose sum of frequency or tf-idf in the feature vectors are above
the threshold are kept in our dictionary. The experts choose the
most important feature words and eliminate irrelative words
concerning the products. In more detail, the invited experts
select the most representative words from the list of high
frequency or summed tf-idf words for a feature and regard the
selected words as a set of linguistic terms for the feature.

Note 1. In NLP, the contiguous sequence of items like words,
letters, or symbols is called n-grams [60]. When applying the
CountVectorizer to count the word frequency, the 1-gram and
2-gram are both implemented in our approach. The 1-gram
means each item or token in the vocabulary represents a single
word. The 2-gram is also applied to avoid missing product
attributes. Observing that some noun phrases include adjective
(JJ) words, e.g., ‘operational performance’, we keep the JJ
word to ensure accurate noun phrase tagging.

Note 2. Due to the personalized expression from customers,
different keywords could be used to express the same attribute
in a text review. For example, the attribute “price” could have
the following relative keyword: “money”, “value for money”,
“expensive”, “costly”. Most of these related words can be
obtained by our model, e.g., money can be obtained by the 1-
gram with noun method, “value (for) money” can be obtained
by the 2-gram with noun method (“for” is an English stop word
and it will be deleted. Thus, the word is detected as “value
money”), and JJ method. The 1-gram with JJ method can obtain
JJ properties such as “expensive” and “costly”.

Note 3. Online product ranking is one kind of decision-
making problem. Nowadays, the decision environment such as
online shopping platforms is becoming highly complex with the
increasing social and economic development [2]. It is difficult
for a single decision-maker to obtain an optimal solution to a
complex decision-making problem. Hence, serval experts with
related professional knowledge and experience are always
invited to reach an optimal solution through dynamic discussion
and learning [64]. In our case, the experts are invited to identify
the product features from our extracted high-frequency words
and create a feature corpus for this product. Once the corpus is
created, it can be used to automatically select useful feature
words and filter out irrelative words for similar products (in the
same product sub-category) without the extra need for experts’
involvement. Also, note that the usefulness of this corpus is not
limited to our work in this paper. Its usefulness can be extended
to more scenarios. For example, the feature words in the corpus
could be the keyword for customer search and product
recommendations in a shopping platform. In practical

5 Scikit-learn: https://scikit-learn.org/stable/

https://www.nltk.org/
https://github.com/NeelShah18/emot
https://scikit-learn.org/stable/

8
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

applications such as integrating our approach to an online
shopping platform, these experts from linguistics could create a
feature corpus for a new product without the reviews (e.g., no
sales happen yet). Experts from e-commerce could then use our
feature extract method to create or update the corpus for the
product with a certain number of reviews.

Step 4. Cleaning text by only keeping retrieved feature texts
from reviews. After the experts’ selection, several sets of
linguistic terms of feature (each feature represented by one or
more words/phrases) could be obtained. Then, we clean the
review texts by only keeping the sentences which represent
sentiment tendencies for each feature from the original review
text. This can be achieved by the obtained tokenized sentences
listed in Step 2 (e.g., Table I) and the feature vector in Step 3
(e.g., Table A.I in Appendix B). Based on the latter one, the
reviews that contain the linguistic terms of the selected feature
can be located by their text indexes. Then for each of these
reviews, we can get index(es) of the sentence(es) that contain
the selected feature by segmented sentence list (e.g., Table I).
For the resulting sentences having the same review index, we
could combine these sentences together since they are from one
review. The new list of review texts is then sent to our trained
text classification model and returns the probability distribution
on class label set such as {“negative”, “neutral”, “positive”}.

Note 3. Since we cut review texts to sentences at the start, the
risk of multiple features being mentioned in a single text from
our output list is decreased. Therefore, the noise texts for the
selected feature are eliminated as much as possible before the
sentiment analysis process. The corresponding cleaned texts for
each feature are directly derived from the texts of the original
reviews not from texts obtained from Step 2. Therefore, all
types of words are included in the cleaned texts, such as
adjectives and adverbs. These kinds of words cover a huge part
of the sentimental values of the feature word. In addition, the
particular word indicating the relationship between the other
two words, which has an enormous impact if our method can
successfully capture the correct sentiment expressed in a
sentence is also included.

Example 1. The following provides an example regarding the
output of reviews from the product “Samsung Flat 55-inch 4k 8
Series UHD smart TV with HDR and Alexa Compatibility” in
Amazon.com6. Since LDA is a commonly used statistic feature-
extracting method used in current research of product ranking
based on online reviews, we compare our proposed feature-
extraction method with it. The results are shown in Table II.
The output of LDA is under the setting of having 5 topics,
removing English stop words, and excluding words that occur
too frequently across reviews (top 10 percentage of frequency
words which normally contain no or very less useful or
discriminatory information), these parameters are optimized by
trial-and-error strategy. From Table II, we can see the words for
some of the common features of TV to affect the user’s ratings
are identified by our method: “picture” and “colour” for picture

6 https://www.amazon.com/Samsung-UN55RU8000FXZA-FLAT-UHD-
Smart/dp/B07NC9XWG5/ref=sr_1_2?keywords=Samsung&qid=1575553046
&s=tv&sr=1-2&th=1

quality. In contrast, the feature is hard to guess based on reading
the five most important words of each topic output by LDA.
There are much fewer product feature-related words identified
by LDA than by our method. That is because the LDA is a topic
modelling method that has better performance with long texts
that have different topics. However, online reviews of products
are short and initially limit the topic to focusing on one item.
Furthermore, LDA can only extract features from reviews but
doesn't provide the functionality to keep the information of
which sentences contain these features, which is inconvenient
for analysing product features with PLTSs. All these imply that
the LDA is not suitable for features and corresponding texts
extraction.

TABLE II
COMPARISON OF FEATURE EXTRACTION RESULTS BETWEEN OURS AND

LDA
Our method LDA

Words tf tf-idf Index Top 5 important words
picture 123 34.43

Topic 1 box home room new movie
tv 113 33.60

samsung 105 27.08
Topic 2 settings does refresh rate turn

great 81 35.11

set 67 17.99
Topic 3 oled color beautiful did best

remote 65 18.87

quality 55 18.39
Topic 4

used work little clear
recommend app 48 13.92

smart 45 13.75
Topic 5

settings audio hdmi menu
work good 42 16.80

sound 41 12.00

feature 38 12.09

color 36 12.77
screen 32 11.53

C. Backbone text classification models
In the previous two subsections, we obtained the training data

for a specific category of product and extracted feature texts for
different features from online reviews of two or more products
under this category. This subsection presents how we need to
implement the grey parts in Fig. I – training a DL-based text
classification model and inputting these feature texts to
generate PLTSs on different features for these products.
Therefore, the obtained PLTSs can be used to rank products
based on different features. In this subsection, the following
problems are addressed: 1) how to match review rating labels
with linguistic terms? 2) is it reasonable to use such a trained
DL-based model to generate PLTSs by inputting extracted
feature texts?

Since most of the online-shopping websites ask customers to
rate products in the range of 1 to 5 stars or scores, the sentiment
words of text reviews can be dived into 3 parts {“negative”,
“neutral”, “positive”}, or 5 parts {“very negative”,
“negative”, “neutral”, “positive”, “very positive”}. This is
deemed as a linguistic term set (LTS) and each part of it is a

https://www.amazon.com/Samsung-UN55RU8000FXZA-FLAT-UHD-Smart/dp/B07NC9XWG5/ref=sr_1_2?keywords=Samsung&qid=1575553046&s=tv&sr=1-2&th=1
https://www.amazon.com/Samsung-UN55RU8000FXZA-FLAT-UHD-Smart/dp/B07NC9XWG5/ref=sr_1_2?keywords=Samsung&qid=1575553046&s=tv&sr=1-2&th=1
https://www.amazon.com/Samsung-UN55RU8000FXZA-FLAT-UHD-Smart/dp/B07NC9XWG5/ref=sr_1_2?keywords=Samsung&qid=1575553046&s=tv&sr=1-2&th=1

9
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

linguistic term (LT). As aforementioned in the Introduction, the
probabilistic distribution on all labels or classes from the
classification result can match the mathematical form of PLTSs.
That is because the LTs such as "neutral" can be directly
formulated as labels for the classification models. Therefore,
the output of a text classification model can be considered as
PLTSs straightforwardly in our approach. For example, the
output PLTS for the input sentence of “disappointed with the
picture quality” is {“negative” (0.33), “neutral” (0.66),
“positive” (0.01)}.7 In this subsection, the implementation of
state-of-the-art DL-based models to generate PLTSs is detailed.
In our approach, we use the review dataset obtained in Section
III.A to train DL-based text classification models. Then, we
apply these trained models to carry out the sentiment analysis
for the input texts, that is inputting the review texts of each
selected product feature (obtained from the original input
reviews by Section III.B) to predict the probability distributions
among all labels. Fig. III depicts the unified problem of multi-
class text classification in our approach.

Note that how to match review rating labels (star/score) with
linguistic terms is still an open problem. As said before, the
exiting work [19], [21], [22] divided reviews as “positive” or
“negative” to match with linguistic terms, which was not
accurate enough and only provided a rough sentiment tendency.
Another straightforward solution is to match them with 5 parts’
LTS since most websites such as Amazon.com ask customers
to rate products in a range of 1-5 stars/scores. We have already
analyzed in Section I.A that this method is not reasonable. The
sentiment intensities represented by the rating scores are not
equivalent to the sentiment intensities hidden from the
unstructured review texts. A rating score is only a single
number to summarize the overall satisfaction of a
product/service, but the sentimental words used to describe the
satisfaction level of different aspects of a product are far more
informative and fine-grained. These sentimental words can be
distributed in review texts with different rating scores, like the
example shown in the Introduction. Based on these reasons, we
argue that rating score labels can only represent the sentiment
tendencies and rough sentiment intensities but cannot precisely
reflect the sentiment intensities. Therefore, matching rating
labels with linguistic terms directly cannot provide accurate
PLTSs in identifying the correct sentiment tendencies from
online reviews. In our approach, we use the overall review texts
to train a text classification model, and then to generate PLTSs
for the input feature texts (extracted from previous steps),
because most of the online website does not have a customized
rating system for different categories of products to rate on
different features. To ensure prediction accuracy and training
efficiency, it is essential to relabel the training review texts to
optimize the supervised information in the training dataset. In
this scenario, classifying the level of sentiment tendency for all
rating score labels based on their corresponding review texts
and matching them with appropriate linguistic terms needs to

7 It is noted that the PLTSs extracted from text reviews from our approach are
complete, that means, 𝑝𝑝𝑠𝑠 = 0. Hence, we simplify the PLTS as ℎ𝑆𝑆(𝑝𝑝) =
{𝑠𝑠𝛼𝛼(𝑝𝑝𝛼𝛼)|𝛼𝛼 = {0,1, … , 𝑞𝑞} } in this study.

be implemented before training the model in our approach.
Another research question which might also be interesting is,

how the performance of DL-based text classification models for
the texts of extracted features. Our idea of using the same
trained model to classify sentiment tendencies for the extracted
feature texts is similar to transfer learning (TL). TL is a ML
problem that focuses on storing gained knowledge while
solving one problem and applying it to a different but related
problem in the same or similar domain [65]. In our approach,
we borrow the similar idea from TL. We believe more and more
robust prior knowledge is gained by the model while using the
big data obtained in Section III.A to do the training [66], [67].
After the training process, the model is equipped with strong
prior knowledge to do the sentiment classification for the texts
of extracted features without the need for further feature-text-
specified training. This is because the domain of the new
problem (sentiment classification for the extracted feature texts)
is the same as the original one, both focusing on analyzing
review texts from the similar products. More precisely, we use
the trained model to solve a new problem that is the sub-
problem of the original one, which is a different part from TL.

After obtaining PLTSs from the review texts of products, we
could rank these products by related extracted product features.
This is a typical multi-criteria decision making problem [2]. In
Section V, we show how to apply the PLSTs generated by our
approach to the problem of product ranking based on online
reviews.

Fig. III. A unified problem of multi-class text classification

10
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

IV. EXPERIMENTS FOR SENTIMENT CLASSIFICATION TO
PRODUCE PLTSS

Although the performance of all mentioned DL models for
text classification has been tested in many studies, in order to
find the most suitable backbone models for our approach, it is
necessary to design and implement experiments to test the
performance of various DL models in our scenario. We use the
metrics, including accuracy, precision, recall, and F1-score
used in previous studies [35], [60] to evaluate the performance
of each model mentioned in Section II, including TextCNN,
CharCNN, TextRNN, Seq2Seq, transformer, and fastText. The
last three metrics are shown in Appendix file Section C.

A. Experimental Settings
To prepare the training data, we extract the review data of all

TVs under the category of TV from the Amazon review dataset
[61]. For all labels (rate scores in the range of 1 to 5), the
numbers of review texts are around 25k, 9k, 13k, 36k and 116k,
respectively. Based on this dataset, all the models are trained
and well fine-tuned before applying the models to the test set
and analyzing results by grid search. We also extract the three
features picture quality, remote control, and sound quality, and
the corresponding feature texts (292 in total) from the reviews
(353 in total) of TVs “Samsung Flat 55-inch 4k 8 Series UHD
smart TV with HDR and Alexa Compatibility” and “LG
65SM8600PUA Alexa Built-in Nano 8 Series 65 4k Ultra HD
smart LED Nano Cell TV”8. Two TVs will be ranked in Section
V based on PLTSs of three extracted features. Therefore, we
use these 292 feature texts to perform the final test for the
trained different text classifiers.

TABLE III
GENERAL PARAMETER SETTING FOR DIFFERENT CLASSIFIERS

Classifier Optimizer Activation &
Loss function

Initial
LR

Drop
rate

Maximum
epochs

Dynamic
LR

TextCNN SGD ReLU & NLL 0.3 0.8 20 Y

CharCNN Adam ReLU & cross-
entropy 0.001 0.5 100 Y

TextRNN SGD N/A & NLL 0.75 0.8 60 Y

Seq2Seq SGD N/A & NLL 0.3 0.8 20 Y

Transformer AdamW N/A 4e-5 N/A 1 Y

fastText N/A N/A & SoftMax 1 N/A 25 Y

Table III describes some of the general parameter setting for
different classifiers. The rest of the parameters of each classifier
are depicted as follows. For the model of TextCNN, pre-trained
Glove Embeddings [68] for encoding words are used, and the
vector size of Glove Word Embeddings is 300. The learning
rate (LR) is set to 0.3 and reduced by a factor 0.5 after every 1/3
of the maximum epochs. The model can always converge after
around 10 epochs for all test experiments; thus, we finally set
the maximum epochs to 20. The dropout rate with kept
probability is set as 0.8 to prevent the over-fitting during the
training.

8https://www.amazon.com/LG-65SM8600PUA-Alexa-Built-
NanoCell/dp/B07PQ97CRW/ref=sr_1_1?keywords=LG&qid=1575553310&s
=tv&sr=1-1

For the model of CharCNN, the initial learning rate is set as
0.001 and it is halved at every 3 epochs. The maximum epochs
and dropout rate are set as 100 and 0.5, respectively.

In the TextRNN, 2 layers of bi-LSTM are set and each one
has 32 hidden units. The maximum sequence length for bi-
LSTM is set as 30. The initial learning rate is 0.75 and it is
halved after every 1/3 of the maximum epochs. The maximum
epochs and dropout rate are set as 60 and 0.8, respectively. Pre-
trained Glove Embeddings for encoding words are used in the
model, the vector size is 300.

We use single bi-LSTM with 32 hidden units as Encoder in
Seq2Seq, and set no restrictions with the sequence length,
which means that the sequence length is determined by batch.
Pre-trained Glove Embeddings for encoding words are also
used. The settings of the learning rate, maximum epochs,
dropout rate and vector size for word embedding are the same
as those in TextCNN.

In the Transformer, a pre-trained model on English language
BERT-based-cased is employed. The initial learning rate is set
as 4e-5 and the number of training epoch is 1. L2 penalty for
the weight decay is added to the model to prevent overfitting.
The “AdmaW” optimizer is employed to decouple the weight
decay from the optimization step, which means, the learning
rate and weight decay are optimized, separately. The maximum
sequence length supported by the model is 128.

In the fastText, each word is treated as composed of n-grams
when preparing the word vectors. We set the word n-gram as 2,
the vector size for word Embeddings is 100. The initial learning
rate and the maximum number of epochs are set as 1 and 25.
The SoftMax function is employed as the loss function.

All the results shown in the following subsections are the
mean of experiment results from the multiple running (3-5
times). The reason for it is to avoid possible bias. The results
from the different runs are quite close and the result variance is
small. The potential reason is that the dataset used in our
experiments is large enough to eliminate the bias and another
possible reason is all the DL-based models we implemented are
well-designed, robust and confident enough to make similar
decisions in every run. Also due to the space limitation, we only
give the mean value here. Our approach is implemented in
PyTorch [69] and the source code and our experiment data are
publicly available9.

B. Experiment of Matching Rating Labels with Linguistic Terms
In this subsection, we first test the way of matching the rating

scores of 1-5 with the 5 parts’ LTS. Each rating score is a label
in the text classification model. Two datasets derived from the
Amazon TV dataset are used to train all models: 20k and 40k
reviews in total, in which each label contains 4k and 8k reviews,
respectively. The test dataset used in the experiments contains
1.5k review texts for each label and 7.5 k in total. The reason
why we use two different size datasets is, the review datasets
for different products derived from the Amazon review dataset
have different sizes and therefore we want to investigate the
performance of different models under different numbers of
training review texts. We do not use the whole TV review

9 https://github.com/liulei1260/A-DL-based-Sentiment-Analysis-Approach-
for-online-producting-ranking-with-PLTSs

https://www.amazon.com/LG-65SM8600PUA-Alexa-Built-NanoCell/dp/B07PQ97CRW/ref=sr_1_1?keywords=LG&qid=1575553310&s=tv&sr=1-1
https://www.amazon.com/LG-65SM8600PUA-Alexa-Built-NanoCell/dp/B07PQ97CRW/ref=sr_1_1?keywords=LG&qid=1575553310&s=tv&sr=1-1
https://www.amazon.com/LG-65SM8600PUA-Alexa-Built-NanoCell/dp/B07PQ97CRW/ref=sr_1_1?keywords=LG&qid=1575553310&s=tv&sr=1-1
https://github.com/liulei1260/A-DL-based-Sentiment-Analysis-Approach-for-online-producting-ranking-with-PLTSs
https://github.com/liulei1260/A-DL-based-Sentiment-Analysis-Approach-for-online-producting-ranking-with-PLTSs

11
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

dataset to train the model because it is unbalanced. Using
balanced training and test dataset can prevent a false sense of a
highly accurate model [70]. The disparity of classes in the
variables will mislead the algorithm to category the test instance
into the class with more instances (majority class) in a high
probability. This kind of model cannot predict the rare event,
the minority class, but still get a higher predict accuracy [70],
[71].

The experiment results are listed in Table IV. From this table,
we can see the Transformer achieved the best performance in
both experiments. However, it should be pointed out that the
best performed model only gets 62.57% and 57.18% of training
and test accuracy, which implies that even the best model
cannot perform a precise classification. By doubling the number
of training data does not increase the training and test accuracy
much for each model, which means the lower accuracy is not
relevant to the scale of the training dataset.

TABLE IV
TRAINING AND TEST ACCURACY OF EACH MODEL IN DIFFERENT DATASET

FOR 5 PARTS LTS

Classifier Train AC (%) ↑ Test AC (%) ↑
20k 40k 20k 40k

TextCNN 45.44 43.05 39.38 39.76

CharCNN 60.44 61.73 43.46 45.00

TextRNN 46.17 43.24 41.36 40.36

Seq2Seq 42.56 45.23 31.06 36.02

Transformer 61.17 62.57 56.32 57.18

fastText 53.26 53.61 51.38 52.00

Note. AC in Table IV is short for accuracy. 20k or 40k in the fourth or fifth
column means the test AC of 7.5k test dataset under different models trained by
20k or 40k dataset. The best training/test result for each dataset (each column
in the table) is in bold, and the second-best result is underscored.

Table V shows the detailed results of each label for different
models under the 40k training dataset. From Table V, we can
see the performance of identifying the review texts with scores
2, 3, and 4 is much worse compared with scores 1 and 5 for all
models. It could be explained by the fact that the boundaries of
the data in these three classes are not clear. Besides, even for
scores 1 and 5, the accuracy is not high enough, only at around
60%. Naturally, the text reviews with extreme bad or good
feedback should be classified with high accuracy. The lower
accuracy of score 1 (or 5) might be due to the review texts with
extra bad (or good) feedback may be distributed in both scores
of 1 and 2 (or 4 and 5), in the sense that a relatively unclear
boundary between classes causes the difficulty of multi-class
classification with more classes. Some reviewers are critical
(merciful) and hard to give a score of 5 (1) even with really
positive (negative) feedback on a product.

Based on the above analysis, we could see that matching the
rating score of 1-5 with 5 parts’ LTS cannot train a text
classification model to identify correct sentiment tendencies
from online reviews with a high accuracy, which validates our
previous assumption. Therefore, matching the rating scores
from 1-5 with correct linguistic terms and then classifying
different sentiment tendency levels for the review texts, is the
problem we need to solve.

TABLE V
RESULTS OF EACH LABEL FOR DIFFERENT MODELS IN 40K TRAINING DATASET

Classifier Test Accuracy (%) ↑ Metric Score 1 Score 2 Score 3 Score 4 Score 5

TextCNN 39.76
Precision (%) ↑ 44.63 0 31.92 0 43.72

Recall (%) ↑ 62.20 0 57.30 0 75.30
F1 (%) ↑ 53.32 0 41.00 0 55.32

CharCNN 45.00
Precision (%) ↑ 56.41 38.36 35.72 35.40 57.29

Recall (%) ↑ 59.80 34.50 35.90 35.90 58.90
F1 (%) ↑ 58.58 36.45 35.81 35.65 58.08

TextRNN 40.36
Precision (%) ↑ 38.98 30.49 34.76 39.34 51.30

Recall (%) ↑ 74.70 11.80 31.50 26.60 57.20
F1 (%) ↑ 51.23 17.01 33.05 31.74 54.08

Seq2Seq 36.02
Precision (%) ↑ 53.74 25.00 26.09 0 41.28

Recall (%) ↑ 63.90 0.10 70.6 0 45.50
F1 (%) ↑ 58.38 0.19 38.11 0 43.29

Transformer 57.18
Precision (%) ↑ 64.62 45.57 48.41 59.28 66.86

Recall (%) ↑ 66.50 46.90 47.50 47.90 77.10
F1 (%) ↑ 65.54 46.29 47.95 52.98 71.62

fastText 52.00
Precision (%) ↑ 60.28 43.53 43.53 48.39 64.63

Recall (%) ↑ 59.50 43.10 46.10 46.60 64.70
F1 (%) ↑ 59.88 43.31 44.77 47.47 64.66

Note. The label with the best result in each model (each row in Table IV) is in bold, and the second-best is in underscored italic.
Our solution for this problem is to match the rating scores 1-

5 with 3 parts’ LST {“negative”, “neutral”, “positive”}. We
investigated three possible combinations of matching solutions
that could help to train a much better prediction model in our
experiment: 1) {“negative”: (1, 2), “neutral” (3), “positive”:
(4, 5)}; 2) {“negative”: (1, 2), “neutral” (3, 4), “positive”:
(5)}; 3) {“negative”: (1), “neutral” (2, 3), “positive”: (4, 5)}.
We do not test the combination of {“negative”: (1), “neutral”
(2, 3, 4), “positive”: (5)} since the texts in data sets of labels 2
and 4 have opposed sentiment tendencies naturally. Three new
datasets are created by re-labelling all 180k TV review texts

based on 3 different matching solutions. The training dataset for
each matching solution contains 24k review texts in which each
label from negative, neutral, and positive contain 8k review
texts. Each corresponding test dataset contains 1k review texts
for each label and 3k in total. Table VI lists the training and test
accuracy of each model under different matching solutions.

Compare with the result in Table IV, we could see that the
training and test accuracy of all models in Table VI are
increased by around 20%. Most of the models have the best
results under the matching solution 3. All models get a better
test accuracy of higher than 60% under this solution, especially

12
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

for the Transformer and fastText which achieves 74.90% and
73.37%, respectively.

TABLE VI
TRAINING AND TEST ACCURACY OF EACH MODEL FOR 3 MATCHING PLANS

Classifier Train AC (%) ↑ Test AC (%) ↑
S 1 S 2 S 3 S 1 S 2 S 3

TextCNN 67.06 66.15 68.01 60.23 61.27 61.57

CharCNN 81.66 82.75 83.01 65.90 65.53 68.33

TextRNN 68.90 67.30 69.68 63.13 61.87 64.60

Seq2Seq 69.09 73.18 73.32 57.47 57.13 62.80

Transformer 83.26 82.05 83.20 75.97 76.03 74.90

fastText 78.09 78.32 78.29 71.43 71.97 73.37
Note. The best training result for each model (each row in the table) is in bold,
and the second-best test result is in underscored italic.

Table VII shows the detailed results of each label from the
LTS {“negative”, “neutral”, “positive”} for different models
under matching solution 3 where the label with the best result
in each model (each row in the table) is in bold. The table shows
that the class of positive and negative can be categorised with
around 70% accuracy in all models and some of the models
could even reach 80% accuracy. Although the prediction
accuracy for the label of neutral is around 60%, considering the
data distribution of three labels in the TV dataset is 11.91%,
11.89%, and 76.23%, we could be assured that the minority
class cannot lower the overall prediction accuracy too much.
Therefore, all models under matching solution 3 could get a
better prediction accuracy for the real-world unbalanced data.

TABLE VII
RESULTS OF EACH LABEL FOR DIFFERENT MODELS IN 24K TRAINING

DATASET

Classifier Test AC (%)
↑ Metrics (%) negative neutral positive

TextCNN 61.57
Precision ↑ 61.46 52.08 68.36

Recall ↑ 66.50 53.70 64.50
F1 ↑ 63.88 52.88 68.36

CharCNN 68.33
Precision ↑ 71.11 54.60 78.73

Recall ↑ 70.09 53.40 80.70
F1 ↑ 71.00 53.99 79.70

TextRNN 64.60
Precision ↑ 65.71 54.93 74.14

Recall ↑ 67.10 57.30 69.40
F1 ↑ 66.40 56.09 71.69

Seq2Seq 62.80
Precision ↑ 68.62 49.92 76.77

Recall ↑ 66.70 63.20 58.50
F1 ↑ 67.64 55.78 66.40

Transformer 74.90
Precision ↑ 73.90 65.39 86.07

Recall ↑ 78.80 61.80 84.10
F1 ↑ 75.84 63.64 85.07

fastText 73.32
Precision ↑ 75.25 62.52 82.44

Recall ↑ 73.60 63.40 83.10
F1 ↑ 74.41 62.95 82.76

In summary, the method of matching the rating scores of 1-5
with 5 parts’ LTS in the current work cannot guarantee a text
classification models to identify the correct sentiment
tendencies from the online reviews with a high accuracy. All
the experiment results in Tables IV-VII provide sufficient
support that our matching solution can solve this problem and

benefit the training of a text classification model to identify
sentiment tendencies from review texts.

C. Experiment on the models and the number of training data
In this part, we compare the performance of different models

trained by different sizes of training text datasets under
matching solution 3. Different types of products may have
different numbers of text reviews. The effect of different sizes
of training data on each model needs to be investigated. Four
datasets are extracted from the TV review dataset and used to
train all models: 12k, 24k, 36k, and 48k reviews in total in
which each label contains 4k, 8k, 12k, and 16k review texts,
respectively. The test dataset used in this experiment is
unbalanced that contains 353 review texts from Samsung and
LG TVs mentioned before. As a comparison, a balanced test
dataset derived from our TV dataset is also used that contains
1k review texts for each label and 3k in total. The experiment
results are listed in Table VIII where the best result in each
column is highlighted in bold and the second-best in
underscored.

From Table VIII, we can see Transformer achieves very
competitive performance for both balanced and unbalanced
datasets with 75.13% and 82.72% accuracy, respectively.
fastText has the second-best results on the balanced dataset
while CharCNN achieves the second-best results on the most of
experiments for the unbalanced dataset. Having a closer look,
we can find that CharCNN has a higher accuracy for classifying
data with labels of negative and positive which are majority
classes in real data. The rest of the models also have acceptable
results on both two datasets, at around 65% accuracy. As a
comparison, we also investigated the use of Stanford CoreNLP
toolkit on our data. However, it only gets 10.19% accuracy on
the original “Samsung and LG TV” dataset. Although after
applying our matching solution method, the accuracy only
increased to 55.52%, which is still much lower than our
experimented DL-based models. This indicates the current
works which use the rule-based sentiment analysis methods
cannot generate accurate PLTSs from the review texts.

By comparing the performance of each model under different
training datasets, we find the test accuracies of TextCNN,
CharCNN, and Transformer increase as the size of the training
data increase. By contrast, the test accuracies of TextRNN, and
Seq2Seq even decrease when the training data is increased in
some cases. Different from others, the test accuracy of fastFast
is more robust with respect to the number of training data.

In summary, we would suggest using Transformer as the first
choice to train a sentiment analysis model to generate PLTSs
from online reviews. Its prediction accuracy can be slightly
increased with the increase of training data. The classifier of
fastFast would be the second choice since it can output a
competitive accuracy result in a short time and less training
data.

TABLE VIII
EXAMPLE FEATURE VECTORS FOR A TEXTS SET

Classifier Test AC on test dataset (%) ↑ Test AC on unbalanced dataset (%) ↑
12k 24k 36k 48k 12k 24k 36k 48k

TextCNN 59.67 61.57 62.10 61.80 59.77 62.89 64.87 67.42

CharCNN 64.27 68.33 69.10 69.20 67.71 76.20 76.77 76.79

13
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

TextRNN 61.77 64.60 64.37 64.67 68.27 64.59 71.95 66.01

Seq2Seq 57.10 62.80 64.80 65.73 66.01 73.35 72.52 67.14

Transformer 73.80 74.90 75.07 75.13 79.60 80.45 82.15 82.72

fastText 72.20 73.37 72.87 74.80 75.64 74.79 73.09 71.67

D. Experiment of sentiment classification for extracted feature
texts

From the literature reviews in Section I.A, we know that DL
has been proven to improve the defects of traditional ML
methods on text classification. However, the research on
implementing DL models for generating PLTSs has not been
well-studied, due to lacking large training data and methods of
matching rating labels of review texts with correct linguistic
terms. After solving these two problems, it is also essential to
conduct a comparative analysis of the performance between DL
and ML models for generating PLTSs under our approach. In
addition, it is necessary to experimentally prove our proposed
assumption in Section III.C, that is, the trained DL model in our
approach has strong prior knowledge to perform the sentiment
classification for extracted feature texts without needing any
further training. Therefore, in this section, we test the
performance of different DL and ML classifiers in our approach
by using the extracted feature texts from product reviews. Same
as before, we use the Grid Search to optimize the parameters
for all ML classifiers. There is no ground truth label for this
dataset since all feature texts are only part of their original
review texts. Therefore, the sentiment tendency of each feature
text piece may be different from the label of its original text. To
solve this problem, we invite three linguistic experts to
manually annotate the texts (292 in total) of three extracted
features, picture quality, remote control, and sound quality,
from the “Samsung and LG TVs” dataset. They vote for each
feature text and the label with the majority vote will be the final
annotation result for this text. Experts will make a discussion
and vote again when facing the same vote for all labels of a
feature text, which is rare in our case. Since all three experts
came from Sichuan University with an English language and
literature study background, their annotations of these feature
texts can be considered as ground truth labels. Specifically
speaking, the identified level of sentiment tendency from the
LTS {“negative”, “neutral”, “positive”} for each feature text
is considered as the ground truth label. All classifiers are trained
by the balanced dataset of 24k reviews from Section IV.C, then
tested on the 3K test dataset and 292 feature texts (third and
fourth column of Table IX respectively).

From Table IX, we can see Transformer achieves the best
performance (90.03% accuracy) and fastText has the second-
best (76.98%) on the feature texts. Except for CharCNN and
Seq2Seq, most of the classifiers achieve better performance on
the feature texts (4th column) compared with their performance
on the 3k test dataset (3rd column). The feature text normally
contains only one kind of sentiment tendency since it is a small
part of original review texts and is usually very short.
Therefore, with enough knowledge obtained from the 24k
review dataset, all the models could obtain a good test accuracy
on feature texts. Both the fastText and Transformers obtain high
classification accuracies, and their training time was short (0.7

and 3.55 minutes respectively). In contrast, the training time of
TextCNN, TextRNN, Naive Bayes and KNN was about 1-5
minutes which is relatively shorter, however, their prediction
accuracies are much lower than the rest. Compared with most
of DL classifiers, all conventional ML classifiers obtained
much lower accuracies on both test datasets, (the difference is
around 5-15%). All of these can be because the state-of-art DL
models can improve the defects such as data sparsity,
dimension explosion, and poor generalization ability of
traditional ML methods and better handle the large dataset on
text classification.

TABLE IX
RESULT OF EACH MODEL IN REVIEW TEXTS OF EXTRACTED FEATURES

Classifier Method
Test AC (%) ↑

on 3K test
dataset

Test AC (%) ↑
on 292 feature

texts

Training
time (mins) ↓

TextCNN DL 62.89 71.82 0.9

CharCNN DL 76.20 73.20 12.68

TextRNN DL 64.59 73.54 3.25

Seq2Seq DL 73.35 69.07 18.28

Transformer DL 80.45 90.03 3.55

fastText DL 74.79 76.98 0.7

XGBoost [72] ML 70.67 67.70 10.85

Naïve Bayes ML 69.83 62.20 1.71

SVM ML 69.16 64.26 30.25

KNN ML 58.37 61.51 5.7

In summary, Table IX proves our claim that the trained DL
model in our approach has strong prior knowledge to perform
the sentiment classification for extracted features texts without
needing any further training.

V. CASE STUDY
In this section, we apply the experimental results of the

unbalanced test dataset containing 353 review texts to rank the
Samsung (type name: UN55RU8000FXZA) and LG TV (type
name: 65SM8600PUA). According to our approach, the
original input review texts, and the extracted review texts of the
three features, “picture quality”, “remote control”, “sound
quality”, are sent to the trained DL-based model for text
classification. The results are output in the form of PLTSs
which contain the overall sentiment tendencies and
corresponding probability distribution of each review text and
that of each feature contained in each review text. Compared
with the sentimental distribution of the overall review text, the
sentiment distribution of the feature contained by the text is
more commonly used in ranking products because different
features usually have different importance and weight.

In this study, we represent the sentiment distribution of the
three features in the test dataset in the form of PLTS and then
rank the products. Let Samsung and LG TV be 𝐴𝐴1 and 𝐴𝐴2,
respectively, which are measured by the three features, “picture

14
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

quality” (𝑐𝑐1), “remote control” (𝑐𝑐2), “sound quality” (𝑐𝑐3). The
PLTS ℎ𝑆𝑆

𝑖𝑖𝑖𝑖𝑖𝑖(𝑝𝑝) = �𝑠𝑠𝛼𝛼�𝑝𝑝𝛼𝛼,𝑖𝑖𝑖𝑖𝑖𝑖��𝛼𝛼 = {0,1,2} } represents the
performance of product 𝐴𝐴𝑖𝑖 (𝑖𝑖 ∈ {1,2}) with respect to feature
𝑐𝑐𝑗𝑗 (𝑗𝑗 ∈ {1,2,3}) commented in the review text 𝑡𝑡𝑟𝑟 (𝑟𝑟 ∈
{1,2, … ,𝑛𝑛}). First, we integrate the PLTSs ℎ𝑆𝑆

𝑖𝑖𝑖𝑖𝑖𝑖(𝑝𝑝) =
�𝑠𝑠𝛼𝛼�𝑝𝑝𝛼𝛼,𝑖𝑖𝑖𝑖𝑖𝑖��𝛼𝛼 = {0,1,2} }, 𝑟𝑟 = 1,2, … ,𝑛𝑛, into a collective one
ℎ𝑆𝑆
𝑖𝑖𝑖𝑖(𝑝𝑝) = �𝑠𝑠𝛼𝛼�𝑝𝑝𝛼𝛼,𝑖𝑖𝑖𝑖��𝛼𝛼 = {0,1,2} } to reflect the group opinion

on product 𝐴𝐴1 with respect to feature 𝑐𝑐𝑗𝑗. Each review text is
regarded as equally important. Considering that each text does
not always mention all the three features, Eq. (2) is used to
integrate the probability 𝑝𝑝𝛼𝛼,𝑖𝑖𝑖𝑖 of 𝑠𝑠𝛼𝛼 in ℎ𝑆𝑆

𝑖𝑖𝑖𝑖(𝑝𝑝) = �𝑠𝑠𝛼𝛼�𝑝𝑝𝛼𝛼,𝑖𝑖𝑖𝑖��𝛼𝛼 =
{0,1,2} } [2].

𝑝𝑝𝛼𝛼,𝑖𝑖𝑖𝑖 = 1
𝑄𝑄𝑖𝑖𝑖𝑖
∑ 𝑝𝑝𝛼𝛼,𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛
𝑟𝑟=1 (2)

where 𝑄𝑄𝑖𝑖𝑖𝑖 is the number of reviews for alternative 𝐴𝐴𝑖𝑖 with
respect to feature 𝑐𝑐𝑗𝑗, 𝑄𝑄𝑖𝑖𝑖𝑖 < 𝑛𝑛. The integrated results are shown
in Table X.

TABLE X
RESULTS OF INTEGRATED PLTSS

Features
Products

Samsung LG TV
Picture quality 0.07 0.29 0.64 0.05 0.20 0.75
Remote control 0.09 0.42 0.49 0.08 0.43 0.49
Sound quality 0.08 0.45 0.47 0.04 0.35 0.61

Next, the geometric averaging operator proposed in [2] is
used to determine the comprehensive performance of each
product. The compensation level of the larger probabilities to
smaller probabilities in 𝑠𝑠𝛼𝛼 is considered by adding a
compensation coefficient 𝜃𝜃 (𝜃𝜃 > 0) to the aggregation
operator. By Eq. (3), the PLTSs ℎ𝑆𝑆

𝑖𝑖𝑖𝑖(𝑝𝑝) = �𝑠𝑠𝛼𝛼�𝑝𝑝𝛼𝛼,𝑖𝑖𝑖𝑖��𝛼𝛼 =
{0,1,2} } of product 𝐴𝐴𝑖𝑖 (𝑖𝑖 ∈ {1,2}) under the three features
𝑐𝑐𝑗𝑗 (𝑗𝑗 ∈ {1,2,3}), are aggregated into a comprehensive PLTS
ℎ𝑆𝑆𝑖𝑖 (𝑝𝑝) = �𝑠𝑠𝛼𝛼�𝑝𝑝𝛼𝛼,𝑖𝑖��𝛼𝛼 = {0,1,2} }.

𝑝𝑝𝛼𝛼,𝑖𝑖 = �
0, 𝑖𝑖𝑖𝑖𝑝𝑝𝛼𝛼,𝑖𝑖𝑖𝑖 = 0,∀𝑗𝑗 ∈ {1,2,3}

∏ (𝑝𝑝𝛼𝛼,𝑖𝑖𝑖𝑖 + 𝜃𝜃)𝑤𝑤𝑗𝑗3
𝑗𝑗 − 𝜃𝜃

∑ �∏ (𝑝𝑝𝛼𝛼,𝑖𝑖𝑖𝑖 + 𝜃𝜃)𝑤𝑤𝑗𝑗3
𝑗𝑗 − 𝜃𝜃�2

𝛼𝛼=0

 𝑖𝑖𝑖𝑖∃𝑗𝑗 ∈ {1,2,3},𝑝𝑝𝛼𝛼,𝑖𝑖𝑖𝑖 > 0

 (3)
where 𝑤𝑤𝑗𝑗 (𝑤𝑤𝑗𝑗 > 0, 𝑗𝑗 ∈ {1,2,3}) is the weight (importance) of
feature 𝑐𝑐𝑗𝑗, ∑ 𝑤𝑤𝑗𝑗𝑛𝑛

𝑗𝑗=1 = 1. Here, we assume that the three features
are equally important. The compensation coefficient 𝜃𝜃 is used
to control the compensation level between different
probabilities. The greater the value of 𝜃𝜃 is, the larger the degree
of compensation is. Without loss of generality, we set 𝜃𝜃 to 0.1.
We can compare the two products according to their
comprehensive PLTSs. Let 𝐸𝐸(ℎ𝑆𝑆𝑖𝑖 (𝑝𝑝)) be the expected value of
𝐴𝐴𝑖𝑖 as defined by Eq. (4) [2]. If 𝐸𝐸(ℎ𝑆𝑆1(𝑝𝑝))> 𝐸𝐸�ℎ𝑆𝑆2(𝑝𝑝)�, then
ℎ𝑆𝑆1(𝑝𝑝) > ℎ𝑆𝑆2(𝑝𝑝), and 𝐴𝐴1 is superior to 𝐴𝐴2, denoted as 𝐴𝐴1 ≻ 𝐴𝐴2;
If 𝐸𝐸(ℎ𝑆𝑆1(𝑝𝑝))= 𝐸𝐸�ℎ𝑆𝑆2(𝑝𝑝)�, then ℎ𝑆𝑆1(𝑝𝑝) = ℎ𝑆𝑆2(𝑝𝑝), and 𝐴𝐴1 is
indifferent to 𝐴𝐴2, denoted as 𝐴𝐴1 ∼ 𝐴𝐴2; otherwise, 𝐴𝐴1 is inferior
to 𝐴𝐴2, denoted as 𝐴𝐴1 ≺ 𝐴𝐴2.

𝐸𝐸(ℎ𝑆𝑆𝑖𝑖 (𝑝𝑝)) = ∑ 𝛼𝛼
2

× 𝑝𝑝𝛼𝛼2
𝛼𝛼=0 (4)

The comprehensive PLTSs of the two products and their
utilities are showed in Table XI.

Since 𝐸𝐸(ℎ𝑆𝑆1(𝑝𝑝))< 𝐸𝐸�ℎ𝑆𝑆2(𝑝𝑝)�, then ℎ𝑆𝑆1(𝑝𝑝) < ℎ𝑆𝑆2(𝑝𝑝), that is, the
Samsung product is inferior to the LG TV product. Since we

only consider three features and implement sentiment
classification by the DL-based model, the ranking result of
Samsung and LG TV is different from that determined in [2].
This case study demonstrates how to use the extracted product
features and generated PLTSs from the online reviews in our
approach to solve online product ranking problems.

TABLE XI
THE COMPREHENSIVE PLTSS AND UTILITIES

Products Comprehensive PLTSs Utility Negative Neutral Positive
Samsung 0.12 0.37 0.51 0.70
LG TV 0.10 0.32 0.58 0.74

VI. CONCLUSION

A. Management Implication
The implementation of effective engineering and technology

management (EM&TM) solutions relies on two key elements.
Firstly, management processes which combined tools and
techniques are needed for supporting management decisions
and actions to address specific business problems [37], [64].
Second, conceptual frameworks are needed to guide thinking
about technology management, based on well-founded
theoretical principles [73]. In this part, we illustrate how our
work achieves such requirements to implement effective
EM&TM in practice.

For online product text reviews, reviewers quantitatively
express their overall satisfaction degrees by star ratings, and
qualitatively depict the performance of products/services under
different features. It provides a simple and straightforward way
for online customers to know the quality of products [1].
However, customers may be confused by several inconsistent
reviews caused by different individual preferences, inconsistent
product quality, and unreal praises induced by vendors [2].
Limited by the ability of information processing, customers are
easily misled by biased reviews and consequently make non-
ideal purchase decisions [3]. Our proposed DL-based approach
can solve these problems by mining the quantitative and
qualitative information from text reviews and translating it into
standardized PLTSs. Different from most of the current works
mentioned before which simply presented a review being
positive/neutral/negative, our approach could quantitatively
analyze why this review is positive/neutral/negative and in
which product features. Furthermore, we provided a
comparative analysis of reviewed literature in Table XII to
demonstrate the advantages of our proposed approach. All of
these show our work achieves the goal from the first point of
effective EM&TM.

Based on existing studies and technologies such as cloud
computing and service/event-based architecture in the business
platform [73], [74] and our research outcomes, our proposed
approach can be smoothly integrated with online shopping
platforms to make online customers’ shopping process
smoother and more efficient. From [75], Jun provided an
empirical data analysis to show a strong correlation between
searches based on the opinions or recommendations available
online and purchase decisions. With our approach, 1) customers
could rank products based on their preferences by selecting

15
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

different product features; 2) the platform could also have an
efficient product recommendation system to better satisfy the
need of customers; 3) the vendors could better understand the
weakness of their products mentioned in reviews. Furthermore,
our approach can bring benefits not only to online shopping but
also to other areas. For example, apart from deploying our

approach in online shopping platforms, the approach can also
be used to build personalized and customized services to
support the operations of enterprises/manufacturers depending
on the needs in different scenarios. All these greatly improve
shopping efficiency and satisfaction, which also show our work
achieves the goal from the second point of effective EM&TM.

TABLE XII
COMPARATIVE ANALYSIS OF REVIEWED LITERATURE

Works in online
product/service ranking

Features
extraction

Feature texts
retrieve

ML-based
method

DL-based
method

Big data
processing

[10], [12]-[16], [27], [28],
[30]-[31] √ × √ × ×

[20-26] × × √ × ×
[32], [33], [39] – [43] × × × √ √

Our approach √ √ √ √ √

B. Discussion and Limitations
Traditional ML-based methods have been used by scholars to

extract PLTSs from online product reviews. However, how to
use large scale datasets and DL models to improve the PLTS
extractions have not yet been well-studied. To overcome the
drawbacks of current research, this paper proposed a DL-based
sentiment analysis approach to generate PLTSs from online
reviews. Based on a large-scale dataset collected from the
reviews of online products on Amazon, an algorithm was
utilized to produce the training dataset for different categories
of products. We also proposed an effective NLP-based method
to extract product features from online reviews and retrieve the
corresponding sentences that only represent each product
feature. In addition, we borrowed the idea of transfer learning
which can equip a model with strong prior knowledge before
applying the model to a new domain. In our case, we explored
various state-of-the-art DL-based methods to build a feature
text sentiment classification model of which the prior
knowledge was learned from the large-scale training review
dataset. Experimental results demonstrate: 1) the methods of
matching the rating scores of 1-5 with 5 parts’ LTS, and
dividing reviews into “positive” and “negative” in existing
work cannot train a text classification models to identify correct
sentiment tendencies from online reviews; 2) our method of
matching the rating scores with the appropriate size of LTS can
overcome this problem and benefit the training of a text
classification model to identify sentiment tendencies from
review texts; 3) our approach achieves high prediction
accuracy and competitive performance in the problem of
sentiment classification for feature text in online reviews.

 In our approach, to fully capture the sentiments conveyed by
emojis, we convert the emojis from the input reviews to their
corresponding text descriptions for the better product review
analysis. However, some of the emojis convey multiple senses
of sentiments such as “smile face with tears”. Moreover, some
emojis may also be used to express more complex semantics
such as irony and sarcasm which has a contradictory sentiment
with the text [76]. For example, the emoji in text “It rained
heavily today, and I missed the bus :-)” has a negative sentiment
which is opposite with its description texts “happy face smiley”.
All these emoji usages in which the sentiments between the
texts and the original meaning of emojis are seriously
inconsistent will most probably cause a lot of confusion for our

method. This kind of case (expressing negative/positive
sentiments with the use of words/emoji with opposite literal
meanings) is called sarcasm in linguistics [77]. In current
research on NLP, sarcasm identification in text documents from
social media data has become an essential research direction
and is one of the most challenging tasks due to the lack of
advanced embedding models to understand the correct meaning
behind sarcasm words/emoji [78]. Therefore, one limitation of
our approach is the meaning of emojis in different linguistic and
culture backgrounds (aka sarcasm) may not be always
identified correctly. Future research may focus on applying
more advanced emoji or word embedding models (e.g.,
Emoji2Vec [79], Topic-enriched word embedding scheme [77],
and Inverse gravity moment-based term weighted word
embedding model [78]) to understand the semantics behind the
emojis and pre-process our review data.

Although we used a large amount of data to train the text
classification models in the experiments, scenarios of limited or
non-training data for a particular product happen from time to
time, e.g.., some unsold or rare products on Amazon. To deal
with such situations, in the future, we could consider small data
learning methods. In addition, oversampling-duplicating
samples from minority classes may be considered to deal with
the unbalanced training dataset directly. Lastly but not least,
how to improve the performance of sentiment tendency
prediction under limited numbers of training reviews for our
approach is another research problem worth investigating. We
plan to explore meta-learning along this direction of research.

APPENDIX
This article has a supplementary appendix file provided by

the authors. Please click the DOI of this paper to access the
journal page to download the file.

ACKNOWLEDGMENT
The authors thank editors and anonymous reviewers for their

conscientious and constructive comments in the review process.

REFERENCES
[1] Z. P. Fan, G. M. Li, and Y. Liu, “Processes and methods of information

fusion for ranking products based on online reviews: An overview,”
Information Fusion, vol. 60, pp. 87–97, Aug. 2020.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

16

[2] X. Wu and H. Liao, “Modeling personalized cognition of customers in
online shopping,” Omega (Westport), vol. 104, p. 102471, Oct. 2021.

[3] X. Wu and H. Liao, “Learning judgment benchmarks of customers from
online reviews,” OR Spectrum, vol. 43, no. 4, pp. 1125–1157, 2021.

[4] Q. Pang, H. Wang, and Z. Xu, “Probabilistic linguistic term sets in multi-
attribute group decision making,” Inf Sci (N Y), vol. 369, pp. 128–143,
Nov. 2016.

[5] M. Zhao, X. Shen, H. Liao, and M. Cai, “Selecting products through text
reviews: An MCDM method incorporating personalized heuristic
judgments in the prospect theory,” Fuzzy Optimization and Decision
Making, 2021.

[6] H. gang Peng, H. yu Zhang, and J. qiang Wang, “Cloud decision support
model for selecting hotels on TripAdvisor.com with probabilistic
linguistic information,” Int J Hosp Manag, vol. 68, pp. 124–138, Jan.
2018.

[7] P. Liu and F. Teng, “Probabilistic linguistic TODIM method for selecting
products through online product reviews,” Inf Sci (N Y), vol. 485, pp. 441–
455, Jun. 2019.

[8] D. Liang, Z. Dai, M. Wang, and J. Li, “Web celebrity shop assessment
and improvement based on online review with probabilistic linguistic
term sets by using sentiment analysis and fuzzy cognitive map,” Fuzzy
Optim Decis Making, vol. 19, pp. 561–586, 2020.

[9] G. Kou et al., “A cross-platform market structure analysis method using
online product reviews,” Technological and Economic Development of
Economy, vol. 27, no. 5, pp. 992–1018, 2021.

[10] Z. Yan, M. Xing, D. Zhang, and B. Ma, “EXPRS: An extended pagerank
method for product feature extraction from online consumer reviews,”
Information & Management, vol. 52, no. 7, pp. 850–858, Nov. 2015.

[11] S. Tirunillai and G. J. Tellis, “Mining Marketing Meaning from Online
Chatter: Strategic Brand Analysis of Big Data Using Latent Dirichlet
Allocation,” Journal of Marketing Research, vol. 51, no. 4, pp. 463–479,
2014.

[12] Y. Guo, S. J. Barnes, and Q. Jia, “Mining meaning from online ratings
and reviews: Tourist satisfaction analysis using latent
dirichlet allocation,” Tour Manag, vol. 59, pp. 467–483, Apr. 2017.

[13] J. W. Bi, Y. Liu, Z. P. Fan, and J. Zhang, “Wisdom of crowds: Conducting
importance-performance analysis (IPA) through online reviews,” Tour
Manag, vol. 70, pp. 460–478, Feb. 2019.

[14] A. Kangale, S. K. Kumar, M. A. Naeem, M. Williams, and M. K. Tiwari,
“Mining consumer reviews to generate ratings of different product
attributes while producing feature-based review-summary,” Int J Syst Sci,
vol. 47, no. 13, pp. 3272–3286, 2016.

[15] T.-L. Wong and W. Lam, “Hot item mining and summarization from
multiple auction web sites,” in Fifth IEEE International Conference on
Data Mining (ICDM’05), 2005, pp. 4—pp.

[16] T.-L. Wong and W. Lam, “Learning to extract and summarize hot item
features from multiple auction web sites,” Knowl Inf Syst, vol. 14, no. 2,
pp. 143–160, 2008.

[17] J. Cai, J. Li, W. Li, and J. Wang, “Deeplearning Model Used in Text
Classification,” in 2018 15th International Computer Conference on
Wavelet Active Media Technology and Information Processing
(ICCWAMTIP), 2018, pp. 123–126.

[18] R. Socher et al., “Recursive deep models for semantic compositionality
over a sentiment treebank,” in Proceedings of the 2013 conference on
empirical methods in natural language processing, 2013, pp. 1631–1642.

[19] Z. Zhang, Q. Ye, Z. Zhang, and Y. Li, “Sentiment classification of
Internet restaurant reviews written in Cantonese,” Expert Syst Appl, vol.
38, no. 6, pp. 7674–7682, Jun. 2011.

[20] Z. P. Fan, Y. J. Che, and Z. Y. Chen, “Product sales forecasting using
online reviews and historical sales data: A method combining the Bass
model and sentiment analysis,” J Bus Res, vol. 74, pp. 90–100, May
2017.

[21] D. Zhang, H. Xu, Z. Su, and Y. Xu, “Chinese comments sentiment
classification based on word2vec and SVMperf,” Expert Syst Appl, vol.
42, no. 4, pp. 1857–1863, Mar. 2015.

[22] F. Tian et al., “A topic sentence-based instance transfer method for
imbalanced sentiment classification of Chinese product reviews,”
Electron Commer Res Appl, vol. 16, pp. 66–76, Mar. 2016.

[23] Y. Liu, J.-W. Bi, and Z.-P. Fan, “A Method for Ranking Products
Through Online Reviews Based on Sentiment Classification and
Interval-Valued Intuitionistic Fuzzy TOPSIS,” Int J Inf Technol Decis
Mak, vol. 16, no. 06, pp. 1497–1522, Sep. 2017.

[24] U. Schmalz, J. Ringbeck, and S. Spinler, “Door-to-door air travel:
Exploring trends in corporate reports using text classification models,”
Technol Forecast Soc Change, vol. 170, p. 120865, Sep. 2021.

[25] Y. Hu and W. Li, “Document sentiment classification by exploring
description model of topical terms,” Comput Speech Lang, vol. 25, no. 2,
pp. 386–403, Apr. 2011.

[26] N. A. Vidya, M. I. Fanany, and I. Budi, “Twitter Sentiment to Analyze
Net Brand Reputation of Mobile Phone Providers,” Procedia Comput
Sci, vol. 72, pp. 519–526, Jan. 2015.

[27] A. Onan, S. Korukoǧlu, and H. Bulut, “Ensemble of keyword extraction
methods and classifiers in text classification,” Expert Syst Appl, vol. 57,
pp. 232–247, Sep. 2016.

[28] A. Onan, “An ensemble scheme based on language function analysis and
feature engineering for text genre classification,” J. Inf. Sci., vol. 44, no.
1, pp. 28–47, Feb. 2018.

[29] Y. Gorishniy, I. Rubachev, V. Khrulkov, and A. Babenko, “Revisiting
Deep Learning Models for Tabular Data,” arXiv preprint
arXiv:2106.11959, 2021.

[30] A. Onan and S. Korukoğlu, “A feature selection model based on genetic
rank aggregation for text sentiment classification,” J. Inf. Sci., vol. 43,
no. 1, pp. 25–38, Feb. 2017.

[31] M. Al-Smadi, O. Qawasmeh, M. Al-Ayyoub, Y. Jararweh, and B.
Gupta, “Deep Recurrent neural network vs. support vector machine for
aspect-based sentiment analysis of Arabic hotels’ reviews,” J Comput
Sci, vol. 27, pp. 386–393, Jul. 2018.

[32] H. H. Do, P. W. C. Prasad, A. Maag, and A. Alsadoon, “Deep Learning
for Aspect-Based Sentiment Analysis: A Comparative Review,” Expert
Syst Appl, vol. 118, pp. 272–299, Mar. 2019.

[33] M. E. Mowlaei, M. Saniee Abadeh, and H. Keshavarz, “Aspect-based
sentiment analysis using adaptive aspect-based lexicons,” Expert Syst
Appl, vol. 148, p. 113234, Jun. 2020.

[34] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[35] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[36] C. Mühlroth and M. Grottke, “Artificial Intelligence in Innovation: How
to Spot Emerging Trends and Technologies,” IEEE Trans Eng Manag,
vol. 69, no. 2, pp. 493–510, 2022.

[37] M. Azzam and R. Beckmann, “How AI Helps to Increase Organizations’
Capacity to Manage Complexity - A Research Perspective and Solution
Approach Bridging Different Disciplines,” IEEE Trans Eng Manag, pp.
1–14, 2022.

[38] Y. Lu, X. Xiong, W. Zhang, J. Liu, and R. Zhao, “Research on
classification and similarity of patent citation based on deep learning,”
Scientometrics, vol. 123, no. 2, pp. 813–839, 2020.

[39] S. Jiang, J. Hu, C. L. Magee, and J. Luo, “Deep Learning for Technical
Document Classification,” IEEE Trans Eng Manag, pp. 1–17, 2022.

[40] Y. Wang, L. Luo, and H. Liu, “Bridging the Semantic Gap Between
Customer Needs and Design Specifications Using User-Generated
Content,” IEEE Trans Eng Manag, vol. 69, no. 4, pp. 1622–1634, 2022.

[41] A. Onan, “Sentiment analysis on product reviews based on weighted
word embeddings and deep neural networks,” Concurr Comput, vol. 33,
no. 23, p. e5909, 2021.

[42] A. Onan, “Mining opinions from instructor evaluation reviews: A deep
learning approach,” Computer Applications in Engineering Education,
vol. 28, no. 1, pp. 117–138, 2020.

[43] A. Onan, “Sentiment analysis on massive open online course
evaluations: A text mining and deep learning approach,” Computer
Applications in Engineering Education, vol. 29, no. 3, pp. 572–589,
2021.

[44] C. C. Li, Y. Dong, F. Herrera, E. Herrera-Viedma, and L. Martínez,
“Personalized individual semantics in computing with words for
supporting linguistic group decision making. An application on
consensus reaching,” Information Fusion, vol. 33, pp. 29–40, Jan. 2017.

[45] A. Onan, S. Korukoğlu, and H. Bulut, “A hybrid ensemble pruning
approach based on consensus clustering and multi-objective

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

17

evolutionary algorithm for sentiment classification,” Inf Process Manag,
vol. 53, no. 4, pp. 814–833, Jul. 2017.

[46] Y. Kim, “Convolutional Neural Networks for Sentence Classification,”
in Proceedings of the 2014 conference on empirical methods in natural
language processing, 2014, pp. 1746–1751.

[47] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification,” Adv Neural Inf Process Syst, vol. 28,
pp. 649–657, 2015.

[48] P. Liu, X. Qiu, and X. Huang, “Recurrent Neural Network for Text
Classification with Multi-Task Learning,” in IJCAI, 2016.

[49] I. Sutskever, O. Vinyals, and Q. v Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[50] T. Luong, H. Pham, and C. D. Manning, “Effective Approaches to
Attention-based Neural Machine Translation,” in EMNLP, 2015.

[51] C. Du and L. Huang, “Text Classification Research with Attention-based
Recurrent Neural Networks,” INTERNATIONAL JOURNAL OF
COMPUTERS COMMUNICATIONS & CONTROL, vol. 13, no. 1, pp.
50–61, 2018.

[52] A. Vaswani et al., “Attention is all you need,” in Advances in neural
information processing systems, 2017, pp. 5998–6008.

[53] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of Deep Bidirectional Transformers for Language
Understanding,” in NAACL-HLT (1), 2019, pp. 4171–4186.

[54] Z. Shaheen, G. Wohlgenannt, and E. Filtz, “Large scale legal text
classification using transformer models,” arXiv preprint
arXiv:2010.12871, 2020.

[55] Y. Zhu et al., “Aligning books and movies: Towards story-like visual
explanations by watching movies and reading books,” in Proceedings of
the IEEE international conference on computer vision, 2015, pp. 19–27.

[56] A. Joulin, É. Grave, P. Bojanowski, and T. Mikolov, “Bag of Tricks for
Efficient Text Classification,” in Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers, 2017, pp. 427–431.

[57] T. Yao, Z. Zhai, and B. Gao, “Text Classification Model Based on
fastText,” in 2020 IEEE International Conference on Artificial
Intelligence and Information Systems (ICAIIS), 2020, pp. 154–157.

[58] S. Gao et al., “Limitations of Transformers on Clinical Text
Classification,” IEEE J Biomed Health Inform, vol. 25, no. 9, pp. 3596–
3607, 2021.

[59] B. Rodrawangpai and W. Daungjaiboon, “Improving text classification
with transformers and layer normalization,” Machine Learning with
Applications, vol. 10, p. 100403, 2022.

[60] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine
learning. MIT press, 2018.

[61] J. Ni, J. Li, and J. McAuley, “Justifying recommendations using
distantly-labeled reviews and fine-grained aspects,” in Proceedings of
the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), 2019, pp. 188–197.

[62] M. Fernández-Gavilanes, E. Costa-Montenegro, S. García-Méndez, F. J.
González-Castaño, and J. Juncal-Martínez, “Evaluation of online emoji
description resources for sentiment analysis purposes,” Expert Syst Appl,
vol. 184, p. 115279, Dec. 2021

[63] C. J. van Rijsbergen, S. E. Robertson, and M. F. Porter, New models in
probabilistic information retrieval, vol. 5587. British Library Research
and Development Department London, 1980.

[64] S. Kheybari, F. Mahdi Rezaie, and J. Rezaei, “Measuring the Importance
of Decision-Making Criteria in Biofuel Production Technology
Selection,” IEEE Trans Eng Manag, vol. 68, no. 2, pp. 483–497, 2021.

[65] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans Knowl
Data Eng, vol. 22, no. 10, pp. 1345–1359, 2009.

[66] T. Semwal, P. Yenigalla, G. Mathur, and S. B. Nair, “A Practitioners’
Guide to Transfer Learning for Text Classification using Convolutional
Neural Networks,” in Proceedings of the 2018 SIAM International
Conference on Data Mining (SDM), pp. 513–521.

[67] Z. Liu, Q. Wang, and F. Meng, “A benchmark for multi-class object
counting and size estimation using deep convolutional neural networks,”
Eng Appl Artif Intell, vol. 116, p. 105449, 2022.

[68] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global Vectors for
Word Representation,” in Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1532–1543.

[69] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” Adv Neural Inf Process Syst, vol. 32, 2019.

[70] L. Wang, M. Han, X. Li, N. Zhang, and H. Cheng, “Review of
classification methods on unbalanced data sets,” IEEE Access, vol. 9, pp.
64606–64628, 2021.

[71] A. Kumar, S. Goel, et al. “A Review on Unbalanced Data Classification,”
in Proceedings of International Joint Conference on Advances in
Computational Intelligence, P. K. and B. J. C. Uddin Mohammad Shorif
and Jamwal, Ed., Singapore: Springer Nature Singapore, 2022, pp. 197–
208.

[72] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in
Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[73] S. Ozcan, A. Homayounfard, C. Simms, and J. Wasim, “Technology
Roadmapping Using Text Mining: A Foresight Study for the Retail
Industry,” IEEE Trans Eng Manag, vol. 69, no. 1, pp. 228–244, 2022.

[74] Z. Liu et al., “The architectural design and implementation of a digital
platform for Industry 4.0 SME collaboration,” Comput Ind, vol. 138, p.
103623, Jun. 2022.

[75] S. P. Jun and D. H. Park, “Consumer information search behavior and
purchasing decisions: Empirical evidence from Korea,” Technol Forecast
Soc Change, vol. 107, pp. 97–111, Jun. 2016.

[76] Y. Chen, J. Yuan, Q. You, and J. Luo, “Twitter sentiment analysis via bi-
sense emoji embedding and attention-based LSTM,” in Proceedings of
the 26th ACM international conference on Multimedia, 2018, pp. 117–
125.

[77] A. Onan, “Topic-Enriched word embeddings for sarcasm identification,”
in Software Engineering Methods in Intelligent Algorithms, 2019, pp.
293–304.

[78] A. Onan and MA. Toçoğlu, "A term weighted neural language model and
stacked bidirectional LSTM based framework for sarcasm identification."
IEEE Access, vol. 9, pp. 7701-7722, 2021.

[79] B. Eisner, T. Rocktäschel, I. Augenstein, M. Bosnjak, and S. Riedel,
“emoji2vec: learning emoji representations from their description,” in
Proceedings of The Fourth International Workshop on Natural Language
Processing for Social Media, 2016, pp. 48–54.

Zixu Liu received his PhD in Computer
Science at The University of Manchester,
Manchester, United Kingdom, in 2018, his
MSc in Computation and Game Theory at
the University of Liverpool, Liverpool,
United Kingdom, in 2013 and his BSc in
Computer Science and Technology at Jilin
University, Changchun, China, in 2011.

Dr. Liu is currently a Lecturer in
Decision Analytics and Risk at Southampton Business School,
University of Southampton, Southampton, United Kingdom.
His main research areas are machine learning, information
system, and decision-making. He mainly uses state-of-the-art
computer technics from machine learning, and optimization to
solve the business analytics problems such as multicriteria
decision-making problems, electricity market dynamic pricing,
and object counting and size estimation problems. Also, he
utilizes his programming skills and knowledge of soft
engineering to transfer his research and knowledge to Industry.

Huchang Liao (M’13–SM’17) is a
Research Fellow at the Business School,
Sichuan University, Chengdu, China. He
received his PhD degree in Management
Science and Engineering from the
Shanghai Jiao Tong University, Shanghai,
China, in 2015. He has published 4
monographs, and more than 320 peer-

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

18

reviewed papers, many in high-quality international journals
including Decision Analysis, European Journal of Operational
Research, Omega, IEEE Transactions on Fuzzy Systems, IEEE
Transactions on Engineering Management, IEEE Transactions
on Systems, Man, and Cybernetics: Systems, IEEE Transaction
on Cybernetics, etc. His publications have been cited over
16,000 times, and his h-index is 70. He has been a Highly Cited
Researcher in Computer Science (2019-2022), and a Highly
Cited Chinese Researchers in Management Science (2020-
2022). He ranked within the top 2% Ranking of Scientists in the
World by Stanford University (2020-2022). His main research
interests include multiple criteria decision analysis, group
decision analysis, fuzzy decision analysis, machine learning
based decision analysis and medical decision analysis. Prof.
Liao has been elected to be the Fellow of IET, the Fellow of
BCS, the Fellow of RSA, and the Fellow of IAAM. He is the
Area Editor of International Journal of Information Technology
& Decision Making (SCI), Associate Editor, Guest Editor or
Editorial Board Member for many top-tier international
journals, including IEEE Transactions on Fuzzy Systems,
Information Fusion, Applied Soft Computing, Omega,
Technological and Economic Development of Economy,
International Journal of Strategic Property Management,
Engineering Applications of Artificial Intelligence, and
International Journal of Fuzzy Systems.

Maolin Li received the Ph.D. degree in
computer science from the University of
Manchester, Manchester, United Kingdom,
in 2021. His research interests include
natural language processing and text
mining, with a focus on information
extraction with probabilistic and deep
learning models.

Qian Yang is now pursuing her master’s
degree in management science at Sichuan
University, Sichuan, China. Her current
research interests include multiple attribute
decision making, preference learning.

Fanlin Meng received his PhD in
Computer Science from the University of
Manchester in 2015 where he is currently a
Lecturer in Data Science. He received the
BSc in Automation from China University
of Mining and Technology, China in 2008,
and the MSc in Systems Engineering from
Xiamen University, China in 2011. He is

Fellow of British Computer Society (FBCS), member of
EPSRC Peer Review College, and Senior Member of IEEE. His
primary research interests include Energy Market, Smart

Energy and Mobility, Operations Research, Machine Learning,
Game Theory and Optimization.

	I. INTRODUCTION
	A. Challenges and Research Questions
	A.1 Research of Feature Extraction
	A.2 Sentiment Classification on Review Texts
	A.3 Implementation of DL Models on Text Classification

	B. Motivation and Contributions
	C. Organization of the Paper

	II. Short Review on PLTS and Deep Learning Models
	A. Definition of PLTSs
	B. Deep Learning Models in Text Classification

	III. A Novel Sentiment Analysis Approach with PLTSs
	A. Data Collection
	B. Production feature extraction from online reviews
	C. Backbone text classification models

	IV. Experiments for Sentiment Classification To Produce PLTSs
	A. Experimental Settings
	B. Experiment of Matching Rating Labels with Linguistic Terms
	C. Experiment on the models and the number of training data
	D. Experiment of sentiment classification for extracted feature texts

	V. Case Study
	VI. Conclusion
	A. Management Implication
	B. Discussion and Limitations

	Appendix
	Acknowledgment
	References

