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Abstract: Opencast mining has significantly triggered vegetation degradation in many ecologically
sensitive regions across the globe. The detailed spatio-temporal information on mining-induced
vegetation degradation and associated primary production loss are crucial inputs to authorities and
policymakers to frame and implement sustainable development programs in the mining regions
to conserve vegetation ecology. Thus, the present study aimed to decipher the mining-induced
vegetation cover and subsequent productivity losses over the Rajmahal Hills in Jharkhand (India).
The Gross Primary Productivity (GPP), Net Primary Productivity (NPP), and Vegetation Transpiration
(VT) datasets were used for analyzing the mines-induced losses in vegetation cover and associated
productivity. The key findings indicated a loss of vegetation cover by ~340 km2 and an expansion
of the mining area by ~54 km2 over the Rajmahal Hills during 1990–2020. The change detection
analysis at the decadal period revealed that ~3.06 km2, 8.10 km2, and 22.29 km2 of vegetation cover
were lost only due to the mining activity during 2000–2010, 2010–2020, and 2000–2020, respectively.
The replacement of vegetation cover by mining area has caused GPP loss of 0.01 tonnes carbon
(tC) per day, 0.04 tC/day, and 0.09 tC/day; NPP loss of ~1.25 tC, 2.77 tC, and 7.27 tC; VT loss of
5200 mm/day, 13,630 mm/day, and 30,190 mm/day during 2000–2010, 2010–2020, and 2000–2020,
respectively. Hence, the present study revealed that the mining-induced vegetation losses have
caused an alteration of carbon sequestration, carbon stock, and VT over the Rajmahal Hills.

Keywords: stone quarrying; opencast mining; Rajmahal Hills; vegetation loss; landsat data; GPP;
NPP; vegetation transpiration

1. Introduction

Mining activity is one of the main drivers of deforestation, biodiversity loss, forest
degradation, land degradation, land use–land cover (LULC) change, air and water pol-
lution, etc., worldwide [1–3]. The excavation of mining pits results in significant loss of
vegetation in the surrounding areas, reducing biodiversity and ecosystem functions [4].
Several studies across the globe, such as Australia [5], Brazil [6], China [3], India [7],
Malaysia [8], South Africa [2], Indonesia [9], Ghana [10], Peru [11], Russia [12], and United
States [13], revealed remarkable vegetation or forest cover loss due to mining activities.
The Amazon Forest is also a well-known global hotspot for mining-induced deforestation
and vegetation degradation. Sonter et al. [14] reported ~11,670 km2 of deforestation in the
Brazilian Amazon due to mining activity during 2005–2015. Caballero Espejo et al. [11],
Paiva et al. [15], Siqueira-Gay et al. [6], and Siqueira-Gay and Sánchez [1] have also reported
and highlighted the mining-induced forest and biodiversity loss in the Amazonian forest.
Likewise, various mining projects in the eastern and central Indian states (e.g., Jharkhand,
Odisha, Chattisgarh, Andhra Pradesh, Madhya Pradesh, etc.) are linked to landslides and
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other environmental impacts (e.g., vegetation degradation, biodiversity loss, groundwater
scarcity) [16–19]. Similarly, many other ecologically sensitive regions across the globe are
under the threat of large-scale opencast mining activity, which may further damage a
vast amount of ecological wealth and associated services [20–22]. The impact of opencast
mining on vegetation is particularly severe in tropical regions, where the high biodiversity
and endemism of the forests can be irreversibly affected [23–25]. These studies reported
LULC alteration vis-à-vis forest cover losses associated with different kinds of opencast
mining activities (e.g., coal, stone, metal) across India [26,27].

Clearing vegetation cover due to mining activity has several direct or indirect con-
sequences on the terrestrial ecosystem (e.g., soil erosion and degradation, biodiversity
loss, water cycle disruption, greenhouse gas emissions, and albedo effect) [28–30]. Most
importantly, the mining-induced vegetation cover loss significantly causes vegetation pro-
ductivity (e.g., carbon fixation from the atmosphere and carbon stocks) and transpiration
losses, which both are critical components of ecosystem functioning [28,31]. The loss and
alteration of vegetation productivity and transpiration due to vegetation cover loss can
significantly trigger global warming and climate change at a local, regional, and global
scale [30,31]. Decreasing trends in Gross Primary Productivity (GPP), Net Primary Pro-
ductivity (NPP), and increasing trends in Vegetation Transpiration (VT) can have several
undesirable effects on ecosystem functioning. So, it is crucial to continuously monitor and
assess the mining-induced vegetation cover and associated ecological losses. Such studies
shall help to understand the nature of the mining process and how mining operations can
be designed to have the least possible impact on society and the environment. Furthermore,
such studies in the mining regions can provide insight into managing best and conserving
land and ecological resources for mitigating the associated negative changes.

In this context, remote sensing satellite datasets have been widely used for analyzing
and accounting for mining and anthropogenic activity-induced deforestation and subse-
quent losses in vegetation productivity across the globe. For instance, Malaviya et al. [32],
Mishra et al. [25], Ranjan et al. [24], etc., in India; Sonter et al. [33], Basommi et al. [34],
Mi et al. [35], etc., have utilized satellite remote sensing datasets for assessing vegetation
cover loss due to different kinds of opencast mining activities (e.g., coal, stone, metal)
across different regions of the world. Similarly, many studies were conducted to evaluate
the effects of mining-induced vegetation loss on carbon sequestration and carbon stock.
Huang et al. [28] used different satellite products and analyzed the coal mining-induced
carbon stock loss in Datong mining area in China. The study found that mining activities
have drastically reduced biomass and diminished vegetation’s ability to fix atmospheric
CO2. Liao et al. [36] used the Carnegie–Ames–Stanford Approach (CASA) model along
with different satellite products and climatological parameters to assess the NPP (i.e., an
indicator of carbon stock) over mining regions in China. The study found a decrease in
NPP owing to mining-induced vegetation loss and an increase in NPP due to vegetation
recovery in mining sites. Moreover, several studies across the globe have investigated the
impact of mining on vegetation productivity using satellite data [31,37,38]. Overall, the
above-mentioned studies indicated that mining operations have significantly affected plant
productivity in ecologically sensitive locations across the world.

The loss of vegetation transpiration linked to mining-induced vegetation cover re-
duction has received little attention globally. The loss of vegetation production caused by
opencast mining activities is rarely studied, especially in the Indian mining regions. Most
of the previous studies in Indian mining regions were limited to assessing mining-induced
vegetation loss, land cover alteration, and vegetation health assessment [25,39–42]. These
studies demonstrated a large-scale vegetation cover loss caused by mining operations for
the last few decades over a few major mining-dominated states (i.e., Jharkhand, Odisha,
and Chhattisgarh) [7,24,25]. The mining and anthropogenic activity-induced deforestation
in India could be one of the major sources of CO2 and other greenhouse gas emissions.
Moreover, air pollution induced by mining has several local and global implications based
on the type of material extracted and the extraction method [39,43]. In fact, this damage
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from air pollution has repercussions not only on biodiversity but also on the health of living
beings and the local micro-economy. It can have consequences on the local and regional
climate by altering temperature and precipitation patterns. Other than the environmental
impacts and social risks, mining also plays a vital role in the economic development of
several countries by providing employment opportunities, generating revenue, and supply-
ing raw materials for various industries such as construction, manufacturing, and energy
production. The mining sector in India and the world generates significant employment
opportunities, particularly in remote and underdeveloped regions. In 2020, ~1.2 million
people directly and ~8.5 million indirectly were employed in the mining sector in India [44].

The ecologically fragile Rajmahal Hills in the Jharkhand state of India have also
experienced remarkable vegetation cover loss due to large-scale stone quarrying and other
human interferences in the recent few decades (2000–2020) [27]. Therefore, the present
study aimed to evaluate the losses of vegetation cover along with primary production
and transpiration over the Rajmahal Hills due to large-scale stone mining operations.
The present study can assist in identifying changes in plant communities and land use
patterns induced by mining activities, enabling informed decision-making and policy
design to mitigate those consequences by encouraging sustainable land use practices for
protecting ecosystems and biodiversity. Thus, the main objectives of the present study
were (a) to analyze vegetation cover loss due to mining activity over the Rajmahal Hills
during 1990–2020 using the Landsat series satellite dataset and (b) to evaluate vegetation
productivity and transpiration losses using multi-sensor satellite datasets caused due to
mining-induced vegetation cover loss. The study’s outcomes can help policymakers to
develop strategies and measures to safeguard ecosystems, preserve natural resources,
and promote sustainability in the mining sector at multiple levels, including government,
industry, and civil society. By incorporating the study’s findings into policies, regulations,
and guidelines, decision-makers can promote sustainable mining practices that are directly
or indirectly aligned with the United Nations (UN) Sustainable Development Goals (SDGs)
of Goal 15 (Life on Land), Goal 13 (Climate Action), and Goal 12 (Responsible Consumption
and Production). It shall further help in guiding towards sustainable mining practices
that promote ecosystem preservation, responsible natural resource management, and
sustainability for the well-being of current and future generations.

2. Materials and Methods
2.1. Description of the Study Area

The study area was selected as the Rajmahal Hills, situated in the eastern portion
of India (the easternmost part of the Chotanagpur Plateau) (Figure 1). Rajmahal Hills
is prolonged across the four districts (i.e., Sahibganj, Pakur, Godda, and Dumka) of the
Jharkhand state. Rajmahal Hills was formed due to volcanic eruption in the Mesozoic era
of the Jurassic period, ~0.1 billion years ago. The Rajmahal Hills series is extended over
~2600 km2, predominately enclosed with vegetation (~2000–2200 km2 area). The major
vegetation types of Rajmahal Hills belong to the deciduous broadleaf forest (DBF) followed
by savannas (SV), natural vegetation (NV), woody savannas (WSV), and mixed forest
(MF) [27,40]. In the study regions, broadly three seasons—winter: October to February;
monsoon: June to September; and summer: March to May—are recognized as having a
significant impact on the vegetation growth cycle [40]. Typically, the summertime and
wintertime air temperatures range from 10 to 20 ◦C, respectively. Over 75% of the rain-
fall occurred during the monsoon season, with an average annual rainfall of 1500 to
1700 mm [40].

The large extent of vegetation coverage has various socio-ecological importance for
the regions, including local climate governance. However, vegetation coverage over the
Rajmahal Hills has been remarkably disturbed in recent decades due to large-scale stone
quarrying/mining activities and other human interventions (timber cutting, settlement
encroachments, construction works, etc.) [27]. Rajmahal Hills is highly enriched in min-
eral resources, such as coal reserves, kaolin, bentonite, and plant fossils of the Jurassic
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period [45]. The abundant availability of mineral resources seriously threatened the vegeta-
tion cover and land use dynamics due to mining activities over the Rajmahal Hills.
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Figure 1. Location map of the study area Rajmahal Hills in Jharkhand, India. The false color
composite (FCC) is derived using near-infrared, red, and green bands of Landsat-8 satellite data. The
region of interest is highlighted using blue color inside FCC.

2.2. Data Used

In this study, multi-sensor satellite/gridded products were used to achieve the differ-
ent objectives of the present study (Table 1). The satellite/gridded datasets (e.g., Landsat,
gross primary productivity, net primary productivity, and vegetation transpiration) were
pooled and processed in Google Earth Engine (GEE) cloud platform. The specification and
details of the individual datasets are mentioned in further sub-sections.

Table 1. Details of multi-source and multi-sensor satellite data used in the analysis.

Dataset Satellite/Model
(Resolutions) Data Acquisition (Year) Purpose

Surface reflectance Landsat 5-TM, Landsat 8-OLI
(30 m, 16 days) Median image of 1990, 2000, 2010, 2020 LULC change

NPP
MODIS Terra

MOD17A3HGF
(500 m, Yearly)

Yearly data from 2001 to 2020 NPP dynamics

GPP PML_V2
(500 m, Daily) Yearly mean from 2000 to 2020 GPP dynamics

VT PML_V2
(500 m, Daily) Yearly mean from 2000 to 2020 VT dynamics
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2.2.1. Landsat-Series Satellite Data

Surface reflectance datasets of Landsat-series satellite with 30 m spatial resolution
were used for decadal LULC classification (e.g., 1990, 2000, 2010, and 2020) and vegetation
cover loss analysis during the study periods. Based on the data availability, the LULC study
was conducted from 1990–2020. Due to the unavailability of data and different spatial
resolution, data before 1990 was not taken for the study. Landsat-5 Thematic Mapper
(TM) was used for the years 1990, 2000, and 2010, whereas Landsat-8 Operational Land
Imager (OLI) sensor was used for 2020. Landsat-7 Enhanced Thematic Mapper Plus (ETM+)
was not considered due to poor data quality (i.e., scanline errors). Multi-date images (all
available scenes) with 0% cloud cover were only taken to make a single composite image
(using median operation) for particular study years to reduce the spectral inconsistencies
due to seasonal impacts or other factors. The number of cloud-free scenes available for
each year was: 5 scenes (5 January 1990, 21 January 1990, 6 February 1990, 11 April 1990, 23
December 1990) for 1990, 4 scenes (17 January 2000, 21 March 2000, 2 December 2000, 18
December 2000) for 2000, 2 scenes (2 April 2010, 14 December 2010) for 2010, and 4 scenes
(24 January 2020, 23 November 2020, 4 December 2020, 25 December 2020) for 2020. The
satellite scenes were corrected for atmospheric effects using Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) algorithms (Masek et al., 2006) for Landsat-5 and
Land Surface Reflectance Code (LaSRC) algorithms (Vermote et al., 2016) for Landsat-8.
Dark Object Subtraction (DOS) was also performed using QGIS software (version 3.14) to
remove the effects of atmospheric scattering and absorption from satellite imagery (black
spots caused due to shadow).

2.2.2. Gross Primary Productivity (GPP) and Vegetation Transpiration (VT) Data

The Penman-Monteith-Leuning version 2 (PML-V2) model is a water–carbon coupled
diagnostic biophysical model [46,47]. PML_V2 products offer evapotranspiration (ET), its
three components (i.e., vegetation transpiration (hereafter, VT), soil evaporation, and an
interception from vegetation canopy), and gross primary productivity (GPP) data at 500 m
and 8-day resolution. The key benefits of the PML_V2 products are that it estimates the
transpiration and GPP via canopy conductance [47,48]. On the other hand, it separates
evapotranspiration (ET) into three components (i.e., transpiration from vegetation, direct
evaporation from the soil, and vaporization of intercepted rainfall from vegetation) [46].
The PML_V2-based products have exhibited more robust competency with the flux site
observations globally than the MODIS-based GPP [46,47]. Nevertheless, PML_V2 products
are similar to or noticeably better than major state-of-the-art ET and GPP products widely
used by water and ecology science communities [47]. The details on PML_V2-based GPP
and VT datasets can be found in Zhang et al. [47].

Gross primary production (GPP) is an essential component of carbon balance and
indicates the total carbon intake (carbon sequestration) through photosynthesis per unit of
time and per unit of area. It is crucial to analyze variations in long-term estimates of the
CO2, including the atmosphere fluxes, to determine the global or regional carbon balance,
especially in forest ecosystems, which are the primary sinks of atmospheric carbon in the
biosphere. To better understand ecosystem carbon dynamics, agricultural productivity,
and climate change, accurate GPP estimations are decisive [49–51]. Thus, the present study
intended to deploy the annual GPP product to analyze the impacts of mining activity on
the rate of atmospheric carbon dioxide uptake by the vegetation during photosynthesis.

VT is a vital process in the water cycle and is responsible for most of the water vapor
present in the atmosphere. VT is a process in which water is mainly evaporated through the
stomata of plant leaves and released into the atmosphere. This process is called evaporative
cooling, which helps to regulate the foliage’s temperature and the surrounding air. Hence,
the VT has a significant role in the local and global water vapor budget. Thus, the present
study used a PML_V2-based VT dataset for analyzing the losses in VT caused by the
mines-induced vegetation cover loss in the study area during 2001–2021.
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2.2.3. Net Primary Productivity (NPP) Datasets

The Terra Moderate Resolution Imaging Spectroradiometer (MODIS)-based NPP
product (MOD17A3HGF) was used for analyzing vegetation production affected due to
mining operations. The MOD17A3HGF (version 6.1) products provide gap-filled annual
NPP at 500 m spatial resolution. The MOD17A3HGF is derived from the sum of all 8-day
net photosynthesis (PSN) products (MOD17A2H). The gap-filled MOD17A3HGF is an
upgraded version of MOD17 that has removed the low-quality inputs from the 8-day Leaf
Area Index and Fraction of Photosynthetically Active Radiation (LAI/FPAR) based on the
Quality Control (QC) label for each pixel. The details on MODIS NPP can be found in
Running and Zhao [52].

NPP is the initial tangible stage in transferring atmospheric carbon to the biosphere.
NPP is vegetation’s net carbon gain (stock), equivalent to the difference between photo-
synthetic gains and plant respiration (losses). Additionally, it is the key process in carbon
cycling and the main direct product for human society from the vegetation ecosystem.
As an essential indicator of ecosystem functioning, NPP change has been widely used to
reflect the environmental problems caused by anthropogenic activities, such as mining,
urbanization, deforestation, etc. [53,54]. Thus, the present study used annual NPP datasets
to approximate the loss of vegetation carbon stock (i.e., indirect CO2 emission) due to
mining activity over the Rajmahal Hills from 2001 to 2021.

2.3. Methods

The workflow of the present includes satellite/gridded data acquisition, data pre-
processing, image classification, geographic information system (GIS) operations, and
result analysis). The flowchart is shown in Figure 2. The present study is mainly divided
into two parts:

(a) The first part of the study focuses on assessing vegetation cover loss due to the
expansion of mining areas during the study periods (e.g., 1990–2000, 2000–2010,
2010–2020, and 1990–2020) using multi-temporal Landsat series satellite datasets;

(b) The second part of the study focuses on accounting for vegetation GPP, NPP, and
VT losses due to mines-induced vegetation cover loss by using MODIS and PML_V2
satellite-based products.

The details of a few key steps of the present study are discussed in further sub-sections.

2.3.1. Land Use–Land Cover (LULC) Classification and Change Detection Analysis

In the present study, the land use–land cover (LULC) dynamic was assessed based on
the classification of multi-temporal Landsat imageries using the Random Forest (RF) classi-
fication method. RF is a powerful and robust machine-learning method widely used for
classifying LULC from remote-sensing satellite datasets. RF yields higher classification ac-
curacy than some well-known classifiers, such as support vector machine (SVM), k-nearest
neighbors (kNN), and maximum likelihood classification (MLC), among others [55–58].
The random forest algorithm is the non-parametric supervised classification algorithm
that uses sets of decision trees to obtain the utmost classification accuracy. It studies the
training sets of each class and forms a classified raster for identical reflectance as output by
averaging multiple deep decision trees.

As the present study focused on vegetation loss due to mining activity, the LULC was
broadly classified into four classes, namely mining, vegetation, water body, and others.
The mining class includes coal and stone mining, while vegetation comprises forests,
shrublands, and grasslands. The water body encompasses ponds, river streams, and dams.
Whereas, Other class embraces bare land, sands, and fallow land. The training (150 points)
and validation (50 points) samples for each class were collected based on the false color
composite (FCC) of satellite data and the Google Earth experience. The RF classification
on the Landsat dataset was performed using Sentinel Processing Application (SNAP)
software (version 8.0), developed by European Space Agency (ESA). After performing
the LULC classification, the accuracy assessment was done using the confusion matrix
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wherein the overall accuracy, user’s accuracy, producer’s accuracy, and kappa coefficient
were estimated.

Furthermore, the land cover dynamics were evaluated using the cross-tabulation
change detection approach between two study years (e.g., 1990–2000, 2000–2010, 2010–2020,
and 1990–2020). The LULC transformation between different LULC classes (conversion of
one class into another) was also estimated by preparing the LULC change matrix. A change
matrix makes it possible to identify the primary sorts of changes or directions among the
LULC classes in the study region. Later, the annual rate of change in LULC class was
estimated using Equation (1), as suggested by Puyravaud et al. [59].

r =
(

1
t2 − t1

)
× ln

(
A2

A1

)
(1)

where r = the rate of change for each class per year, A2 and A1 = the class areas at the end
and the beginning, respectively, for the period being evaluated, and t is the number of years
spanning that period.
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2.3.2. Loss of GPP, NPP, and Transpiration Due to Mining-Induced Vegetation Cover Loss

The intersection GIS operation was performed between mining and vegetation classes
during two study years/periods to estimate the mining-induced vegetation cover loss
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(Figure A1). The mining and vegetation patches were converted into vector data format
from the raster before performing the intersection operation. Finally, the overall NPP,
GPP, and VT loss over mines-induced vegetation loss patches were then estimated using
Equation (2).

LX = Xt − Xt−1 (2)

where LX = loss of GPP, NPP, VT between two study years/periods; Xt = total GPP/NPP/VT
of polygons where the vegetation converted into mining area at time t (later period); and
Xt−1 = total GPP/NPP/VT of polygons where the vegetation converted into mining area
at time t − 1 (earlier period). In the present study, the value of Xt was taken as 0, as we
assumed that there is no more GPP, NPP, and VT due to vegetation cover loss (i.e., clean
out) caused by mining expansion in the later period.

2.3.3. GPP, NPP, and VT Trend Analysis

Theil-Sen’s slope analysis was performed to depict the long-term (2001–2020) annual
GPP, NPP, and VT trends over the mining patches across Rajmahal Hills. Theil-slope Sen’s
is a non-parametric method that determines the linear trend by estimating the median
slope between all data points [60,61]. The Theil-Sen’s slope method is effective because it
produces correct confidence intervals for data with skewed behavior and heteroscedasticity
and is insensitive to outliers [62]. Thus, Theil-slope Sen’s analysis has been utilized more
frequently to comprehend long-term trends in a variety of investigations pertaining to
climatology, ecology, and hydrology [18,63]. The ‘spatialEco’ Package in R was used for
trend analysis of vegetation productivity indicators [64]. The “spatialEco” Package can
handle autocorrelation and seasonality effects in the data, accounting for more significant
uncertainty in trend estimations for a time series of atmospheric parameters.

β = Median
(Xj − Xi

j − i

)
, j > i (3)

where β is the tendency of the vegetation productivity indicators sequence, xi, xj are
the sequences of vegetation productivity indicators, i, and j is the year of the vegetation
productivity indicators. When β > 0, the time series shows an upward (increasing) trend;
when β < 0, the time series shows a downward (decreasing) trend.

The unitary linear regression approach was also used to analyze the long-term annual
trends of GPP, NPP, and VT according to the Ordinary Least Squares (OLS) over different
mining locations in Rajmahal Hills. The slope of trends was estimated using Equation (4).

θslope =
n × ∑n

i=1 i × Pi − ∑n
i=1 i∑n

1 Pi

n × ∑n
i=1 i2 − (∑n

i=1 i)2 (4)

where θslope = the increasing or decreasing rate of NPP/GPP/VT; n = the total number of
observations (21), i = the year order from 1 to 21 in the study period; and Pi = NPP/GPP/VT
in the ith year. When θslope > 0, then the trend increases; When θslope < 0, then the
trend decreases.

3. Results
3.1. Land Use–Land Cover (LULC) Classification and Accuracy Assessment

The spatiotemporal distribution of different LULC features, namely Vegetation, Min-
ing, Water body, and Others, is presented in Figure 3a–d for the study years 1990, 2000,
2010, and 2020, respectively. Before analyzing and assessing the LULC transformation,
it was essential to evaluate the accuracy of classified LULC maps. The confusion matrix
table (Table 2) revealed that the LULC maps were classified with considerable classification
accuracy, wherein the overall classification accuracy was observed as ~94%, 95%, 93.50%,
and 95.50% for the years 1990, 2000, 2010, and 2020, respectively. The kappa coefficient
for these years was found to be 0.92, 0.93, 0.91, and 0.94, respectively. Besides, the user’s
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accuracy of mining and vegetation class was found considerable for further use (84–90%
for mining and 94–96% for vegetation). The details of the accuracy assessment using the
confusion matrix are provided in Table 2.

Table 2. Confusion matrix of classified LULC maps at 10 years interval. User’s accuracy, producer’s
accuracy, and overall accuracy are in percentage (%).

Year—1990

LULC Classes Waterbody Mining Vegetation Others Total User’s Accuracy

Waterbody 49 0 0 1 50 98
Mining 0 43 1 6 50 86

Vegetation 0 0 48 2 50 96
Others 0 2 0 48 50 96
Total 49 45 49 57 200

Producers accuracy 100 95.56 97.95 84.21

Overall accuracy 94

Year—2000

LULC classes Waterbody Mining Vegetation Others Total User’s accuracy

Waterbody 49 0 0 1 50 98
Mining 0 44 1 5 50 88

Vegetation 0 0 47 3 50 94
Others 0 0 0 50 50 100
Total 49 44 48 59 200

Producers accuracy 100 100 97.92 84.75

Overall accuracy 95

Year—2010

LULC classes Waterbody Mining Vegetation Others Total User’s accuracy

Waterbody 48 0 1 1 50 96
Mining 0 42 1 7 50 84

Vegetation 0 0 47 3 50 94
Others 0 0 0 50 50 100
Total 48 42 49 61 200

Producers accuracy 100 100 96 81.96

Overall accuracy 93.50

Year—2020

LULC classes Waterbody Mining Vegetation Others Total User’s accuracy

Waterbody 50 0 0 0 50 100
Mining 0 45 0 5 50 90

Vegetation 0 0 48 2 50 96
Others 0 0 2 48 50 96
Total 50 45 50 55 200

Producers accuracy 100 100 96 87.27

Overall accuracy 95.50

The LULC maps of the Rajmahal Hills during 1990–2020 showed that vegetation
coverage significantly decreased (Figure 3). On the other hand, a significant increment
in the mining area was noted (zoomed regions in Figure 3). Especially from 2010–2020, a
drastic rise in the mining areas was seen, which caused a loss in vegetation cover over the
Rajmahal Hills. The top northern, eastern, western, and lower regions of the Rajmahal Hills
were found to have notable stone and coal mining clusters (Figure 3, Zoomed regions).
Before 2000, the stone mining patches were less, while they remarkably increased in the
last two decades (from 2010), as shown in Figure 3 (Z1, Z2, Z4, Z5).



Sustainability 2023, 15, 8005 10 of 22

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 24 
 

 

Mining 0 42 1 7 50 84 

Vegetation 0 0 47 3 50 94 

Others 0 0 0 50 50 100 

Total 48 42 49 61 200  

Producers accuracy 100 100 96 81.96   

Overall accuracy 93.50 

Year—2020 

LULC classes Waterbody Mining Vegetation Others Total 
User’s accu-

racy 

Waterbody 50 0 0 0 50 100 

Mining 0 45 0 5 50 90 

Vegetation 0 0 48 2 50 96 

Others 0 0 2 48 50 96 

Total 50 45 50 55 200  

Producers accuracy 100 100 96 87.27   

Overall accuracy 95.50 

 

Figure 3. Spatial distribution of LULC features over the Rajmahal Hills for the years (a) 1990, (b) 

2000, (c) 2010, (d) 2020. The zoomed regions show the selected mining zones. 

The LULC maps of the Rajmahal Hills during 1990–2020 showed that vegetation cov-

erage significantly decreased (Figure 3). On the other hand, a significant increment in the 

mining area was noted (zoomed regions in Figure 3). Especially from 2010–2020, a drastic 

rise in the mining areas was seen, which caused a loss in vegetation cover over the Rajma-

hal Hills. The top northern, eastern, western, and lower regions of the Rajmahal Hills were 

found to have notable stone and coal mining clusters (Figure 3, Zoomed regions). Before 

2000, the stone mining patches were less, while they remarkably increased in the last two 

decades (from 2010), as shown in Figure 3 (Z1, Z2, Z4, Z5). 

3.2. Landscape Transformation, Vegetation Cover Loss, and Mining Area Expansion over the 

Rajmahal Hills 

The detailed LULC statistics, such as area coverage, % area of each class out of the 

total area, area change, and the annual rate of change) of different classes are provided in 

Table 3. The LULC statistics indicated a significant loss in vegetation cover and a remark-

able increment in the mining coverage during 1990–2020. Vegetation coverage over the 

Figure 3. Spatial distribution of LULC features over the Rajmahal Hills for the years (a) 1990,
(b) 2000, (c) 2010, (d) 2020. The zoomed regions show the selected mining zones.

3.2. Landscape Transformation, Vegetation Cover Loss, and Mining Area Expansion over the
Rajmahal Hills

The detailed LULC statistics, such as area coverage, % area of each class out of the
total area, area change, and the annual rate of change) of different classes are provided in
Table 3. The LULC statistics indicated a significant loss in vegetation cover and a remarkable
increment in the mining coverage during 1990–2020. Vegetation coverage over the Rajmahal
Hills decreased to ~54% (2020) from 64% (1990), while mining extent increased up to ~2%
(2020) from 0.3% (1990) of the total area. In total, ~340 km2 of vegetation area was lost
at the rate of −0.005% per year from 1990–2020. On the other hand, mining expanded to
~54 km2 with an annual expansion rate of 0.056%. Stone mining has been predominantly
practiced in and around the Rajmahal Hills (Z1, Z2, Z4, Z5, Z7, and Z8 in Figure 4), along
with a few coal mines (Z3 and Z6 in Figure 4).

Table 3. LULC statistics of different classes during 1990–2020. The percentage changes are kept inside
the brackets.

Classes
Area in km2

(The % area of each class out of the total area)
Area change in km2

(The rate of change in %)

1990 2000 2010 2020 1990–2000 2000–2010 2010–2020 1990–2020

Vegetation 2218.33 2159.46 2033.32 1878.86 −58.863 −126.147 −154.453 −339.463
(64.20) (62.50) (58.85) (54.38) (−0.003) (−0.006) (−0.008) (−0.005)

Mining 10.06 13.47 23.56 64.15 3.4083 10.0899 40.5972 54.0954
(0.29) (0.39) (0.68) (1.86) (0.029) (0.056) (0.1) (0.056)

Water
11.61 12.61 9.65 12.80 1.0089 −2.9682 3.15 1.1907
(0.34) (0.37) (0.28) (0.37) (0.008) (−0.027) (0.028) (0.003)

Others
1215.25 1269.70 1388.72 1499.42 54.446 119.025 110.705 284.176
(35.17) (36.75) (40.19) (43.40) (0.004) (0.009) (0.008) (0.006)

The spatiotemporal mining expansion over the Rajmahal Hills is presented in Figure 4.
It was observed that the stone mining areas significantly increased in 2020, which could
be attributed to large-scale stone quarrying in the last decade (after 2010), as demarcated
in several zones in Figure 4 (Z1, Z2, Z4, Z5, Z7, and Z8). A few recent field photographs
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of stone mining areas (Z4 and Z4) can be seen in Figure 5. The utmost increment in the
mining area was estimated during 2010–2020, where nearly 41 km2 of the mining area was
expanded over the Rajmahal Hills with an annual growth rate of 0.1%. The remarkable
rise in the mining patches was mainly seen in Figure 4, especially between 2010 and
2020. Before the 2000s, only the Rajmahal coal mines (Z3; Figure 4) were observed with
significant mining patches during 1990 and 2000. The remaining mining clusters, including
Pachhwara Central Coal Mines, Kathaldih (Z6; Figure 4), seem functional after the 2000s. A
few small mining patches were also seen over a few stone mining regions (Z2, Z4, Z5, Z8;
Figure 4), which were possibly functional before the 2000s with lesser production. Thus, it
can be assumed that the mining activity has been dramatically accelerated in the last two
decades and has caused a significant loss of vegetation cover over the Rajmahal Hills. Rest
vegetation cover loss over the Rajmahal Hills, which was not caused by mining activity, is
supposed to be caused due to other human interferences such as settlement encroachments,
logging, construction works, road networks, etc.). A study by Ranjan and Gorai [44] also
reported same kind of reasons (e.g., mining activity, settlement encroachments, etc.) behind
the vegetation cover loss over the Rajmahal Hills, India.
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Figure 4. Spatial expansion of mining class over the Rajmahal Hills over the years 1990, 2000, 2010,
and 2020. Zones Z1 to Z8 are the zoomed mining locations. Z1: Mundli stone mining region, Z2: stone
mining region, Z3: Rajmahal coal mines, Z4: Chalpahar stone mining region, Z5: Borna stone mining
region, Z6: Pachhwara coal mining region, Z7: Labapara stone mining region, and Z8: Gosainpahari
stone mining region.
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The spatial extent of the waterbody was not dynamic during the study years and
varied between 10–12 km2. The waterbody patches in some years increased mainly due
to waterlogging in the mine areas (Z3 and Z6 in Figure 3), specifically in 2020. Overall
~1 km2 increment in the waterbody was estimated during the study period (1990–2020) at
an annual rate of 0.003%. On the other hand, the Others class also remarkably increased
(~284 km2) over the span of 1990–2020 with an annual rate of 0.006%. The increment
in the Others class could be due to the conversion of vegetation cover into bare land,
settlement, and construction sites. The detailed LULC change statistics are discussed in the
further paragraph.

The detailed inter-class transformation of LULC features during three periods (i.e.,
1990–2000, 2000–2010, 2010–2020, and 1990–2020) is provided in Table 4. Most of the
vegetation area was converted into Others or Mining classes. Overall ~22 km2 of vegetation
cover was destroyed (lost) in the last 30 years (1990–2020) and converted into a mining
area. During 1990–2000, ~2 km2 of vegetation area was converted into mining, whereas
~3 km2 and 8 km2 of vegetation area were transformed into mining area during 2000–2010
and 2010–2020, respectively, due to stone and coal mining activity over the Rajmahal
Hills (Table 4). Only very few areas were observed where the mining area was converted
into vegetation owing to the mine’s reclamation activity or afforestation. Only 0.8 km2,
1.12 km2, and 0.47 km2 of mining areas were found to be converted into vegetation from
mining during 1990–2000, 2000–2010, and 2010–2020, respectively. Thus, it can be inferred
that a significant area of vegetation has been lost due to opencast mining activity, whilst a
very small area was ecologically recovered through mine reclamation. It can be noted that
the sum of the changing area of any particular feature/class during 1990–2000, 2000–2010,
and 2010–2020 will not equal to change area during 1990–2020. For example, Table 4 exhibits
that vegetation to mining conversion is 1.64 km2, 3.06 km2, and 8.10 km2 during 1990–2000,
2000–2010, and 2010–2020, respectively, which is not equal to the change area (22.29 km2)
during 1990–2020. This is because, during long-term (1990–2020) change detection, the



Sustainability 2023, 15, 8005 13 of 22

inter-class changes during intermediate study periods are not considered, which is reflected
in decadal change detection.

Table 4. LULC change matrix for the study periods 1990–2000, 2000–2010, 2010–2020, and 1990–2020.
The unit of the area is in km2. Diagonal areas are unchanged areas. The blue color text represents
mining-related changes.

Years
2000

LULC Classes Vegetation Mining Waterbody Others Total

1990

Vegetation 1996.81 1.64 0.65 219.22 2218.3
Mining 0.83 5.4 0.43 3.39 10.05

Waterbody 0.46 0.48 10.29 0.38 11.61
Others 161.37 5.95 1.24 1046.69 1215.30
Total 2159.47 13.47 12.61 1269.68

2000

2010

Vegetation 1899.42 3.06 0.88 256.1 2159.50
Mining 1.12 5.27 2.36 4.72 13.47

Waterbody 1.89 0.43 4.89 5.41 12.62
Others 130.89 14.8 1.51 1122.5 1269.70
Total 2033.32 23.56 9.64 1388.73

2010

2020

Vegetation 1752.42 8.10 1.29 271.5 2033.3
Mining 0.47 16.70 1.24 5.15 23.56

Waterbody 0.56 2.95 5.10 1.04 09.65
Others 125.42 36.40 5.17 1221.73 1388.70
Total 1878.87 64.15 12.8 1499.42

1990

2020

Vegetation 1744.37 22.29 1.24 450.43 2218.30
Mining 1.36 4.68 0.74 3.29 10.07

Waterbody 0.68 0.78 8.69 1.45 11.60
Others 132.46 36.41 2.12 1044.26 1215.30
Total 1878.87 64.16 12.79 1499.43

Apart from converting vegetation to the mining class, remarkable areas of vegetation
were converted into the Others class. Approximately 450 km2 of vegetation area was
converted into the Others class in the last three decades (1990–2020) over the Rajmahal
Hills. While ~219, 256, and 271 km2 of vegetation cover were converted into the Others class
(i.e., bare land, settlement, and construction) during 1990–2000, 2000–2010, and 2010–2020,
respectively. So, it can be presumed that the conversion of vegetation cover into the Others
class could have been influenced by the rise in unsustainable anthropogenic practices
(e.g., deforestation, settlement encroachment, transportation, construction, etc.) over the
Rajmahal Hills. The conversion of the waterbody into a mining area and vice-versa was
also observed. The waterlogging in mining pits was identified as waterbodies in some
years. In contrast, the disappearance of waterlogging from the mining pit in the subsequent
years was identified as a mining class. During 2000–2010 and 2010–2020, some mining areas
were converted into waterbody (~2.36 and 1.24 km2, respectively) because of waterlogging.
Overall, it can be inferred that a significant area of vegetation was lost in the last three
decades across the Rajmahal Hills due to mostly unsustainable anthropogenic activities
(e.g., mining, deforestation, settlement encroachment, transportation construction, etc.).

3.3. Losses in GPP, NPP, and VT Due to Mining-Induced Vegetation Cover Loss

The losses in vegetation carbon sequestration (i.e., GPP), carbon stock (i.e., NPP), and
transpiration (VT) due to mining-induced vegetation cover loss over Rajmahal Hills are
evaluated from 2000/2001 to 2020 and presented in Table 5. It was noted that a significant
amount of GPP, NPP, and VT was lost during the study periods (e.g., 2000–2010, 2010–2020,
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and 2000–2020) due to mining-induced vegetation cover loss (Table 5). During 2000–2010,
~3.06 km2 of vegetation area was lost due to the mining activity, which caused GPP loss
(total or spatial sum) of 0.01 tC/day, NPP loss of ~1.25 tC, and VT loss of 5200 mm/day
(Table 5). These statistics significantly increased in the next decade (2010–2020), wherein
GPP loss of 0.04 tC/day, NPP loss of ~2.77 tC, and VT loss of 13,630 mm/day were estimated
due to loss of 8.10 km2 vegetation cover due to mining. Notably, ~22.29 km2 of vegetation
cover was lost during 2000–2020, which has caused a vast GPP loss of 0.09 tC/m2/day, NPP
loss of ~7.27 tC, and VT loss of 30,190 mm/day. Though the rate of vegetation productivity
loss was relatively less in the last decades (w.r.t. total vegetation cover loss), the total loss
of vegetation productivity was relatively high (Table 5). Hence, it can be concluded that
the mining-induced vegetation cover loss has caused a significant loss in the rate of carbon
sequestration, carbon stock, and vegetation transpiration across the Rajmahal Hills.

Table 5. Total vegetation productivity and transpiration losses caused due to mines-induced vegeta-
tion loss during 2000–2020.

Periods 2000–2010 2010–2020 2000–2020

Mines-induced vegetation loss (km2) 3.06 8.10 22.29
GPP (tC/day) 0.01 0.04 0.09

NPP (tC) 1.25 2.77 7.27
VT (mm/day) 5200 13,630 30,190

3.4. Effects of Vegetation Regrowth in Mining Regions on Vegetation Productivity and Transpiration

Apart from the vegetation cover loss, a few patches of vegetation regrowth were
also seen in the mining clusters, which further helped to increase vegetation productivity
and transpiration over the Rajmahal Hills. The increment in vegetation productivity and
transpiration due to vegetation regrowth in mining clusters is provided in Table 6. During
1990–2000, ~0.83 km2 vegetation regrowth was observed in the mining clusters, which
further established the total (spatial sum) carbon sequestration (GPP) rate of 2.84 KgC/day,
carbon stock of 0.30 tC (NPP), and VT rate of 1000 mm/day. These statistics significantly
increased during 2000–2010, wherein 1.12 km2 of vegetation regrowth was observed. It
contributed to 3.67 KgC/day GPP, 0.37 tC NPP, and 1340 mm/day VT. However, in the
recent decade (2010–2020), the vegetation regrowth statistics were worrying (~0.47 km2),
because of loss of vegetation covers was higher (~8 km2). Nevertheless, 0.47 km2 vegetation
regrowth in the mining clusters contributed to 1.41 KgC/day GPP, 0.22 tC NPP, and
530 mm/day.

Table 6. Total increment in vegetation productivity and transpiration due to vegetation regrowth in
mining areas during the study periods.

Periods 1990–2000 (D1) 2000–2010 (D2) 2010–2020 (D3)

Vegetation regrowth in the mining area (km2) 0.83 1.12 0.47
GPP (KgC/day) 2.84 3.67 1.41

NPP (tC) 0.30 0.37 0.22
VT (mm/day) 1000 1340 530

3.5. Trends of Vegetation GPP, NPP, and VT over the Rajmahal Hills

The spatial distribution of the long-term (2001–2021) trend of GPP, NPP, and VT over
Rajmahal Hills is shown in Figure 6, along with the histogram. Overall, increasing GPP
and VT trend over the Rajmahal Hills. Approximately 86% of areas in Rajmahal Hills were
found under the increasing VT trend (up to 0.112 mm/day), whereas ~46% of areas were
found under the increasing GPP trend (up to 0.304 gC/m2/day). Still, >50% of areas over
the Rajmahal Hills were found under the decreasing GPP trend. The overall physiographic
development of vegetation cover, including leaf area index (LAI) and canopy density, could
have influenced increasing GPP and VT trends. On the other hand, comparatively larger
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areas were observed under the decreasing NPP trend was observed over the Rajmahal Hills,
wherein very few areas were observed under the increasing NPP trend. About 93% of the
area of the Rajmahal Hills was found under decreasing NPP trend (up to 0.03 KgC/m2/day)
during 2001–2021, while only 7% area of the Rajmahal Hills was found under an increasing
NPP trend (up to 0.017 KgC/m2/day).
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Rajmahal Hills. (d–f) are the GPP, NPP, and VT histograms, respectively.

The decreasing GPP and NPP trend statistics indicate that both sequestration capacity
and carbon stock of Rajmahal Hills were falling, which is a critical issue. The decreasing
vegetation NPP trend over the Rajmahal Hills seems to have resulted from the gradual loss
of vegetation cover primarily caused by anthropogenic activities (e.g., mining, settlement
encroachments, transportation networks, etc.). The higher respiration fluxes of vegetation
triggered by environmental, soil, and climatic factors could have also affected the vegetation
GPP and trends over Rajmahal Hills. The aspects of higher respiration fluxes of vegetation,
climate change (rising temperatures and changing precipitation patterns), etc., impacts on
decreasing NPP trend over Rajmahal Hills need to be well understood. It’s important to
note that these factors may act in combination or independently. Therefore, it’s essential
to understand the specific context and conduct further research to determine the cause of
decreasing NPP.

It is distinguishable from Figure 7 that the decreasing GPP, NPP, and VT trends were
mainly associated with the mining-induced vegetation cover loss regions over the Rajmahal
Hills. All the mining sites (zoomed regions in Figure 6) are noted with persistent decreasing



Sustainability 2023, 15, 8005 16 of 22

trends of all three variables, which indicates that the gradual vegetation cover loss due to
stone and coal mining activity has triggered a significant loss in vegetation productivity
and transpiration. Apart from the decreasing trend, increasing GPP, NPP, and VT trend
pixels were also observed over the vegetation recovery sites in mining areas (highlighted
in Z3 using a maroon color dotted circle). The oldest mining patches (in 1990) over the
Rajmahal coal mines (Z3) were observed to have some vegetation recovery due to the mine’s
reclamation activity in subsequent years. Undoubtedly, vegetation recovery over reclaimed
mining sites has increased GPP, NPP, and VT trends, as highlighted in Z3 using a maroon
color circle in Figure 6. Apart from the mining regions, some vegetation patches showed
decreasing GPP, NPP, and VT trend pixels across the Rajmahal Hills. However, these patches
were not affected by the mining operations, which could be affected by other factors such
as anthropogenic (e.g., logging, deforestation, settlement encroachments), natural (forest
fires, droughts, etc.), or environmental (e.g., meteorological, soil, topography). Especially,
the contributions of climatic, environmental, and other anthropogenic factors behind the
large area under the decreasing trend needs to be investigated in future studies.
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Figure 7. Long-term (2001–2021) GPP, NPP, and VT trend over respective mining clusters (zoomed
regions) in Rajmahal Hills. A total of eight mining zones (zoomed region) are highlighted in Figure 4.
All zones have four images showing mining extent, NPP, GPP, and VT, respectively, as shown for Z1.
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The linear trend of vegetation productivity and transpiration in two mining sites over
time and space is also shown in Figure 8. These sites comprise both vegetation degrada-
tion as well as vegetation regrowth site. The results exhibited both gradual decreasing
and increasing trends of vegetation GPP, NPP, and VT over a vegetation degradation site
and vegetation regrowth site, respectively, in the mining locations. Eventually, it can be
conferred that increasing mining activity has negatively impacted vegetation productiv-
ity and transpiration over the Rajmahal Hills. In contrast, vegetation regrowth due to
the mine’s reclamation activity has offered increasing trends in vegetation productivity
and transpiration.
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particular mining location in Rajmahal Hills.

4. Discussion

Opencast mining has been increasing over the years across the globe that requires
careful consideration and management. Large-scale mining has been reported in different
mining-dominated countries (e.g., Australia, Brazil, China, Ghana, India, Indonesia, Peru,
Russia, South Africa, United States, etc.). Consequently, their impacts have been observed
in the form of deforestation, losses of vegetation type, changes in LULC, hydrology, and
productivity, among others [1–3,5,9,10,12,13,25]. The mining deeds also increase pressure
on land use and competing demands for natural resources, leading to additional stress on
ecosystems and land cover. This can be especially problematic in areas where mining is the
dominant economic activity and alternative land uses are limited. So, mining companies
and regulatory bodies need to undertake responsible practices and prioritize and ensure
restoration efforts to minimize these negative environmental impacts. Effective land-use
planning and stakeholder engagement can also help ensure that mining activities are
conducted sustainably and socially responsibly, minimizing adverse effects on vegetation
and land cover. Still, the importance of vegetation and LULC studies in mining areas
cannot be overstated, as the mining activity provides a crucial foundation for balancing
economic development with environmental protection, ultimately ensuring a sustainable
future for our planet.

The harsh conditions of vegetation caused due to mining activities are one of seri-
ous concern in many ecologically sensitive regions of Indian states, especially Jharkhand,
Odisha, Chhattisgarh, etc. [7,25]. The present study also found a significant alteration
in land use pattern and a remarkable vegetation loss over the Rajmahal Hills in the last
three decades (1990–2020) due to extensive stone quarrying. Furthermore, the vegetation
restoration over the mining regions across the Rajmahal Hills was observed to be signifi-
cantly less and perturbing. In line with the above findings, Ranjan et al. [18] and Ranjan
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and Gorai [27] have also reported the mining-induced harsh conditions of the vegetation
ecosystem in Rajmahal Hills. Biodiversity and many unique medicinal and rare species
plants are endangered due to destructive and unsustainable mining practices in Rajmahal
Hills [65]. The extended spatial coverage of vegetation over Rajmahal Hills (>2000 km2

area) significantly influences the local climate, biodiversity, and ecological settings. So,
the destruction and loss of vegetation over Rajmahal Hills due to huge stone quarrying
and human interferences may significantly alter the local climate (rainfall, temperature)
pattern and associated ecological services. Thereby, the protection of vegetation ecological
condition along with sustainable mining practices over Rajmahal Hills is needed to preserve
and restore the environmental conditions.

On the other hand, mineral exploration and mining activities are expected to rise
globally to fulfill the ever-increasing industrial and human requirements [66]. However,
it is not easy to choose between the environment and industry when both play crucial
roles in the development and survival of human society. The increasing demand for non-
metallic, metallic, and fuel minerals has driven the mining sector’s drastic rise in recent
decades. According to the Indian Ministry of Mines [44], the mining sector in India is
expected to grow at a Compound Annual Growth Rate (CAGR) of 6.5% from 2020–2025.
These demands will further lead to significant environmental degradation, including
the loss of vegetation, irreversible biodiversity loss, loss of gas and energy exchange
between atmosphere and biosphere, loss of ecological services, and habitat destruction.
In this context, many past studies have reported a significant loss in vegetation carbon
sequestration and sink linked to mining-induced vegetation cover loss [28,29,31]. The
present study also exhibited a significant loss in the carbon and vegetation transpiration
associated with mining-induced vegetation cover loss. As a result, it can significantly
elevate atmospheric CO2 and other greenhouse gases [29,67], which may further cause a
climatic or atmospheric imbalance with many negative consequences (e.g., temperature
rise, rainfall pattern alteration, air pollution, etc.). The VT losses can also significantly affect
the water cycle and alter precipitation patterns.

The potential impacts of mining on vegetation productivity, transpiration, and other
services are enormous. Hence, better planning of mining operations is of utmost im-
portance for implementing effective rehabilitation efforts to restore vegetation and the
overall ecosystem functions. This can be achieved by implementing proper regulations,
monitoring, and mitigation measures. However, the status of mines reclamation or eco-
logical restoration in closed mines across the globe is disappointing [68,69]. In a study,
Ranjan et al. [18] also reported that the restoration of ecological conditions in eastern Indian
mining regions was inferior. Only a few of the mines were observed with notable vegetation
regrowth in abandoned mines. Hence, strict and adequate mines closure plans need to be
formulated and implemented in abandoned mines across the globe to restore vegetation
cover and post-mining land use over the mining area. Mine reclamation is a critical process
with significant environmental, economic, and social benefits for local communities and
the broader society. In this regard, the Indian government has initiated several policies
and regulations to ensure sustainable mining practices, including the Mines and Minerals
(Development and Regulation) Act, 1957; Forest Conservation Act, 1980; Environmental
Impact Assessment (EIA) Notification, 2006; Mineral Conservation and Development Rules,
2017; and National Mineral Policy, 2019 [70]. Overall, these rules and regulations aim to
ensure that mining activities in India are carried out sustainably; that mine reclamation is
an integral part of the mining process.

However, several global challenges remain to achieve successful mines restoration,
rehabilitation, or ecological restoration. One of the main challenges is the lack of a clear
legal framework and regulations that require mining companies to restore the areas they
have impacted. This lack of regulation has resulted in many mining companies avoiding
the costs and responsibilities of restoring the land they have exploited. Illegal mining
activity and overlooking of mines closure plans are also major concerns in the context
of successful mines reclamation. With the right policies, regulations, and technologies,
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achieving successful mines restoration and creating a more sustainable and resilient future
for our planet is possible. Several emerging technologies could make mines restoration
more cost-effective and efficient. These include the usage of drones and satellite data to
monitor restoration progress and bioremediation techniques to ensure the progress and
restoration of the mine in terms of ecology, soil, water quality, etc.

5. Conclusions

Vegetation destruction and land use alteration due to mining activity and lack of
mines restoration are critical global issues requiring a concerted effort from governments,
industry, and civil society to address the challenges. The present study utilized the benefits
of various satellite/gridded remote sensing datasets and exhibited the mining-induced land
cover alteration, vegetation destruction, and vegetation regrowth due to mining practices.
The satellite-based approaches have shown to be the most cost-effective, efficient, and
reliable data source for continuous, detailed, and robust monitoring of mining operations
(e.g., LULC change, vegetation dynamics, mines reclamation monitoring, and vegetation
regrowth analysis). The study further accounted for the losses in the vegetation carbon
sink, sequestration, and transpiration due to vegetation loss in the mining regions. Based
on the comprehensive study, the following remarks are drawn:

i. Development in the remote sensing-based satellite/gridded datasets assisted in mak-
ing the latest contribution in monitoring and addressing the mining-induced environ-
mental issues (land cover dynamics, vegetation loss, vegetation productivity loss) at
the local scale;

ii. Mining activity, especially stone quarrying, has negatively affected the land use
pattern and significant vegetation clearance in the Rajmahal Hills during the last
decades (2010–2020);

iii. The mining-induced vegetation destruction in the Rajmahal Hills was responsible for
the remarkable loss in carbon and transpiration, which have negative impacts on the
local environment;

iv. Due to the lack of proper mine reclamation practices, vegetation regrowth over the
mining clusters across the Rajmahal Hills was found to be worrying. Only Rajmahal
coal mines in the Godda district have shown remarkable vegetation regrowth;

v. The vegetation regrowth over the Rajmahal coal mines in Godda district owing to
mine reclamation activity has positively assisted in restoring the ecological condition,
which improves vegetation productivity and transpiration;

vi. Though vegetation regrowth due to mine reclamation may help to substitute the losses
of vegetation cover and associated productivity up to some extent, the biodiversity
loss due to mining activity is still irreversible, which could greatly threaten to maintain
the ecological equilibrium;

vii. The outcomes of the present study shall be helpful to the policy and decision-makers,
stakeholders, mining authorities, and regulatory bodies for policy and sustainable
mining plan-making. So that the mine’s reclamation actions can be properly imple-
mented and executed to ensure the restoration of the abandoned mines. It can directly
and indirectly impact the ecosystem functioning in the Rajmahal Hills.
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