Supplementary Material

Omics biomarkers and an approach for their practical implementation to delineate health status for personalized nutrition strategies.

Jaap Keijer¹, Xavier Escoté², Sebastià Galmés^{3,4,5,6}, Andreu Palou-March^{3,4,5,6}, Francisca Serra^{3,4,5,6}, Mona Adnan Aldubayan^{7,8}, Kristina Pigsborg⁷, Faidon Magkos⁷, Ella J. Baker⁹, Philip C. Calder^{9,10}, Joanna Góralska¹¹, Urszula Razny¹¹, Malgorzata Malczewska-Malec¹¹, David Suñol¹², Mar Galofré¹², Miguel A. Rodríguez¹³, Núria Canela¹³, Radu G. Malcic¹⁴, Montse Bosch¹⁵, Claudia Favari¹⁶, Pedro Mena¹⁶, Daniele Del Rio¹⁶, Antoni Caimari¹⁷, Biotza Gutierrez¹⁸, Josep M del Bas^{17,*}, members of the PREVENTOMICS Consortium: Empowering Consumers to Prevent diet-related diseases through -OMIC sciences.

¹*Human and Animal Physiology, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, the Netherlands.*

²EURECAT, Centre Tecnològic de Catalunya, Nutrition and Health, 43204 Reus, Spain.

³Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation – NuBE), University of the Balearic Islands, 07122 Palma, Spain.

⁴Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain.

⁵Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.

⁶Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain.

⁷Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark. ⁸Department of Clinical Nutrition, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.

⁹School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.

¹⁰NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK.

¹¹Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland.

¹²Eurecat, Centre Tecnològic de Catalunya, Digital Health, Barcelona, Spain.

¹³Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204 Reus, Spain.

¹⁴Health and Biomedicine, LEITAT Technological Centre, 08005 Barcelona, Spain.

¹⁵ Applied Microbiology and Biotechnologies, LEITAT Technological Centre, 08225 Terrassa, Spain.

¹⁶Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy

¹⁷Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, Reus, Spain.
*Correspondence: Josep Maria del Bas. Eurecat, Centre Tecnològic de Catalunya,
Biotechnology Area. Reus 43204, Avd Universitat,1. E-mail: josep.delbas@eurecat.org

; technical@preventomics.eu

Supplementary Table 1: Some of biomarkers of health included in the

PREVENTOMICS platform

Biomarker	Scientific substantiation	References				
	The adipose tissues of obese individuals contain an increased number of					
	classically activated macrophages (in a pro-inflammatory state). Once	(Choe et al				
IL6	activated, these macrophages secrete cytokines such as TNFA and IL6. IL-6	(Choe et al.				
CRP	strongly stimulates hepatocytes to produce and release CRP. MCP1 is a potent	2016: Skrypnik				
TNFA	chemoattractant playing a role in the recruitment of monocytes/macrophages	2010, 5 Kryplink				
CCL2 (MCP1)	from the blood stream into the adipose tissue. The chronic, low-grade	Vykoukal and				
	inflammatory state associated with visceral obesity induces insulin resistance	Davies 2011)				
	in the liver. Uncontrolled inflammation generates high levels of free radical	Davies 2011)				
	production by the immune cells as part of the immune response.					
	Intercellular Adhesion Molecule 1 (ICAM1) is an intercellular adhesion	(Sprague and				
	molecule continuously present in low concentrations in the membranes of	Khalil 2009)				
	leukocytes and endothelial cells. Upon cytokine stimulation, the concentrations					
soluble ICAM1	greatly increase. ICAM1 can be induced by IL1 and TNFA and is expressed by					
	the vascular endothelium, macrophages, and lymphocytes, thereby promoting					
	the vascular adhesion and activation of inflammatory cells. ICAM1 can be					
	cleaved from activated cells and circulates in the bloodstream.					
	Soluble Cluster of Differentiation 14 (sCD14) is expressed as an acute phase	(de Courten et				
	protein in response to LPS in other tissues and cells, including liver and	al. 2016)				
	adipocytes. It has been shown that non-obese participants have lower					
soluble CD14	circulating sCD14 concentrations compared to obese. Circulating sCD14					
soluble CD14	concentrations have been positively associated with percent body fat, waist					
	circumference and white blood cell count and negatively associated with					
	insulin sensitivity. In contrast, circulating sCD14 has been positively					
	associated with insulin sensitivity in morbidly obese participants.					
	Glycosylation is one of the most common posttranslational modifications of	(Arnold et al.				
N-acetyl-	secreted proteins. Glycoproteins are generally modified by the attachment and	2008; Harpole,				
glycoproteins	processing of a diversity of glycans at each glycosylation site. Several	Davis, and				
Siycoproteins	glycosylated markers have been linked to chronic inflammatory diseases,	Espina 2016)				
	promoting questions about the links between inflammation and cancer.					

	Acetate is an end-product of bacterial fermentation. Its levels can be increased	(Gonzalez-
Acetate	in obesity and in type 2 diabetes (T2D). In morbidly obese subjects, the reletave	Franquesa et
	abundance of Firmicutes was negatively correlated with HbA1c and positively	al. 2016;
	associated with plasma acetate levels, indicating that gut microbiota	Moreno-
	composition is linked to insulin action in morbidly obese subjects, possibly	Navarrete et al.
	through circulating acetate.	2017)
	Lactic acid plays a role in several biochemical processes and is produced in the	(Gonzalez-
	muscles during intense activity. It is also an end-product of bacterial	Franquesa et
Lactate	fermentation and is increased by dysfunction of metabolic tissues. Elevations	al. 2016)
Lactate	in lactate have been consistently associated with T2D and obesity. Changes in	
	plasma lactate during an oral glucose tolerance test (OGTT) are inversely	
	correlated with fasting insulin.	
	L-Carnitine and choline, compounds that are found in red meat, are	(Chhibber-
	metabolized into TMAs that are oxidized further into trimethylamine N-oxide	Goel et al.
	(TMAO) by the enzyme flavin-containing monooxygenase 3 (FMO3) in the	2017;
	liver. Plasma levels of TMAO are strongly correlated with cardiovascular	Gonzalez-
	disease (CVD). Chronic consumption of some foods, such as pistachios, are	Franquesa et
	also able to modulate the urinary levels of TMAO in prediabetic subjects.	al. 2016;
IMAO	TMAO is also associated with microbial dysbiosis.	Hernández-
		Alonso et al.
		2017;
		Sonnenburg
		and Bäckhed
		2016)
	The microbial metabolism of phosphatidylcholine and of L-carnitine produces	(Chhibber-
	high levels of trimethylamine (TMA). Once it has been absorbed from the gut	Goel et al.
	into the bloodstream, TMA circulates to the liver and is enzymatically oxidized	2016;
ТМА	to TMAO. A number of other diseases are associated with abnormal levels of	Sonnenburg
	TMA, including renal disorders, cancer, obesity, diabetes, cardiovascular	and Bäckhed
	diseases and neuropsychiatric disorders.	2016)
	The urinary levels of the gut microbial metabolite dimethylamine (DMA)	(Hernández-
DMA	changed in subjects with cardiometabolic risk factors in response to the	Alonso et al.

	consumption of soy isoflavones consumption and in pre-diabetic individuals	2017; Reverri								
	after the intake of pistachios.	et al. 2017)								
	Fasting plasma glucose level is a traditional biomarker used to assess	(Aleksandrova,								
	alterations in carbohydrate metabolism and high levels are associated with risk	Mozaffarian,								
Glucose	of diabetes and insulin resistance.	and Pischon								
		2018)								
	High fasting and postprandial plasma insulin levels are considered as an	(Aleksandrova,								
	indirect clinical feature of insulin resistance. Hyperinsulinemia is a key element	Mozaffarian,								
Insulin	of the metabolic syndrome and is suggested to mediate the association between	and Pischon								
	visceral obesity and dyslipidemia, hypertension, type 2 diabetes,	2018)								
	atherosclerosis, and cancer.									
HOMA-IR	The most frequently used index to determine insulin resistance based on fasting									
	blood levels of glucose and insulin.	al. 2017)								
Leptin	Leptin and adiponectin are produced by adipose tissue and have opposing	(Finucane et al.								
	effects on insulin sensitivity, subclinical inflammation, endothelial function	2009; López-								
	and atherosclerosis. Elevated levels of leptin contribute to the development of	Jaramillo et al.								
Adiponectin	insulin resistance and chronic inflammation whereas adiponectin exerts anti-	2014)								
	inflammatory and cardioprotective effects.									
	$\alpha\text{-hydroxybutyrate}\;(\alpha\text{-HB})$ is an organic acid by-product produced during the	(Dorcely et al.								
	synthesis of α -ketobutyrate (α -KB), a product of amino acid metabolism	2017)								
a-hydroxybutyrate	(threonine and methionine) and glutathione anabolism in hepatic tissue. In									
u-nyuroxyouryrure	insulin resistance, increased oxidative stress and lipid oxidation may cause									
	chronic shifts in glutathione synthesis leading to elevated α -HB levels. This is									
	demonstrated by increased urinary α -HB excretion in IR.									
	Succinate is a citric acid cycle intermediate. Decreases in urinary fumarate and	(Gonzalez-								
Succinate	succinate contribute to the differentiation of patients with T2D from healthy	Franquesa et								
	individuals in a principal component analysis.	al. 2016)								
Total cholesterol	These metabolites are altered in typical dyslipidaemia. Elevated fasting plasma	(Klop, Elte,								
I.D. shelestarol	triglycerides, high LDL-cholesterol and low HDL-cholesterol are risk factors	and Cabezas								
LDL-cholesteror	for CDV. In obesity, enhanced lipolysis in adipose tissue, elevated plasma free	2013; Perla et								
HDL-cholesterol	fatty acid (FFA) levels and high levels of lipid metabolites in non-adipose	al. 2017;								
	tissues act as metabolic mediators of insulin resistance and inflammation,	Suárez et al.								
Triglycerides	which, in turn, induce altered lipoprotein metabolism in the liver. The	2017)								

	catabolism of very low-density lipoproteins (VLDLs) is diminished, while the	
	catabolism HDL is increased. Increased accumulation of fat (TC, TG, and other	
	lipid metabolites) in the liver is associated with increased lipotoxicity and	
	represents the primary insult in the pathogenesis of hepatic steatosis.	
	PUFAs are fatty acids that contain more than one double bond in their	(Calder 2017;
	backbone, and they include some subgroups identified by the position of the	Hammad, Pu,
	last double bond in their structure. PUFA n-3 include alpha linolenic acid	and Jones
DUEAs	(ALA), eicosapentaenoic acid (EPA), decosahexanoic acid (DHA) and	2016; Zock et
PUFAS	derivatives, while PUFA n-6 linoleic acid (LA), arachidonic acid (AA) and	al. 2016)
	derivatives. PUFA consumption has shown beneficial effects for human health.	
	For example, PUFA n-3 consumption has been shown to be inversely	
	correlated with coronary heart diseases (CHD) incidence.	
	DHA is a n-3 fatty acid found in oily fish and fish oil supplements. It is capable	(Calder 2017)
	of partly inhibiting many aspects of inflammation including leucocyte	
DHA	chemotaxis, adhesion molecule expression and leucocyte-endothelial adhesive	
	interactions, production of eicosanoids like prostaglandins and leukotrienes	
	from the n-6 fatty acid AA and production of pro-inflammatory cytokines.	
	LA the predominant n-6 fatty acid. A systematic review and meta-analysis of	(Farvid et al.
	prospective studies demonstrates that higher intake of LA is associated with a	2014; Zock et
ΤΛ	lower CHD risk as compared with saturated fatty acids but also independent of	al. 2016)
LA	what other nutrients it replaces in the diet. ALA is also the precursor of AA	
	and recent publications have questioned the evidence and rationale for dietary	
	recommendations of this n-6 fatty acid.	
	MUFAs are used as substrates for the synthesis of triglycerides, cholesteryl	(Hammad, Pu,
	esters and membrane phospholipids. The saturated to monounsaturated fatty	and Jones
	acid ratio affects membrane phospholipid composition and alteration in this	2016; Zock et
MUFAs	ratio has been implicated in a variety of disease states including cardiovascular	al. 2016)
	disease, obesity, and diabetes. Numerous beneficial physiologic effects have	
	been attributed to unsaturated fatty acids, including protection from obesity,	
	diabetes, cancer, and atherosclerosis.	
	Oleic acid (OA, C18:1n-9) is the predominant dietary MUFA, accounting for	(Hammad, Pu,
Oleic acid	up to 92 % of dietary MUFA. Dietary MUFA consumption has been suggested	and Jones
		2016)

	as inducing a 20 % reduction in the risk of CVD events, as evidenced by a large			
	body of prospective cohort studies.			
	Acylcarnitines are fatty acid and carnitine esters formed in the cytosol to	(Dorcely et al.		
	transport fatty acids into the mitochondrial matrix for β -oxidation.	2017;		
	Acetylcarnitine is needed for the carnitine-dependent production of energy	Gonzalez-		
Agulagraiting	from different fatty acids and cell membrane structure maintenance. C3 and C5	Franquesa et		
profile	acylcarnitines have been positive significantly associated with diabetes risk	al. 2016)		
prome	and insulin resistance. The combination of C3 and C5 acylcarnitines, together			
	with branched chain amino acids (BCAAs), methionine, and			
	glutamate/glutamine, was most robust for differentiating lean from obese			
	patients.			
	Glutamine has been significantly associated with diabetes risk. Glutamine	(Gonzalez-		
	levels are also reduced in insulin resistance. Glycine and glutamine were	Franquesa et		
Glutamine	inversely associated with type 2 diabetes risk.	al. 2016;		
		Guasch-Ferré		
		et al. 2016)		
	Glycine and glutamine were inversely associated with T2DM risk. Low glycine	(Dorcely et al.		
	is associated with insulin resistance. Glycine levels are decreased in	2017;		
	individuals with prediabetes.	Gonzalez-		
		Franquesa et		
Glycine		al. 2016;		
		Guasch-Ferré		
		et al. 2016;		
		Newgard		
		2017)		
	In a Japanese population, alanine, glutamate, tryptophan, tyrosine, and BCAAs	(Gonzalez-		
Tryptophan	were positively correlated with visceral adiposity, while glycine was inversely	Franquesa et		
	correlated.	al. 2016)		
Leucine	Leucine, isoleucine, and valine are BCAAs. High levels of BCAAs have been	(Dorcely et al.		
Isoleucine	associated with increased diabetes risk and insulin resistance. Plasma levels of	2017; Gannon,		
-	BCAAs also predict risk for developing T2DM in healthy individuals.	Schnuck, and		
Valine		Vaughan 2018;		
		Guasch-Ferré		

		et al. 2016;
		Newgard
		2017)
Phenylalanine	Phenylalanine and tyrosine are aromatic amino acids. High levels of these	(Dorcely et al.
	amino acids have been significantly associated with increased diabetes risk and	2017;
	insulin resistance. Fasting concentrations of these amino acids were already	Gonzalez-
	elevated as early as 12 years before the onset of T2DM.	Franquesa et
		al. 2016;
Tyrosine		Guasch-Ferré
		et al. 2016;
		Newgard
		2017)
	The clustering of glutamate/glutamine, C3 and C5 acylcarnitines with BCAAs	(Gonzalez-
	defined a signature comprising metabolites generated during BCAA	Franquesa et
Glutamate	catabolism, suggesting fundamental alteration of BCAA metabolism in insulin	al. 2016;
	resistant states. The glutamine-to-glutamate ratio are associated with lower risk	Newgard
	of incident diabetes, even after adjustment for body mass index (BMI) and	2017)
	BCAAs. In a Japanese population, glutamate was positively correlated with	
	visceral adiposity.	
	Methionine is increased in insulin-resistant states. The combination of C3 and	(Dorcely et al.
	C5 acylcarnitines, together with BCAAs and aromatic amino acids (AAA),	2017;
Methionine	methionine, and glutamate/glutamine, was particularly most robust for	Gonzalez-
	differentiating lean from obese patients.	Franquesa et
		al. 2016)
	Blood levels of alanine are elevated in obesity and alanine has also been	(Gonzalez-
Alanine	associated with hyperglycaemia and T2D risk.	Franquesa et
		al. 2016)
	Plasma levels of the methyl donor betaine are reduced in individuals with	(Gonzalez-
Betaine	insulin resistance. Plasma levels of choline, betaine and TMAO are strongly	Franquesa et
	correlated with CVD.	al. 2016)
	Higher baseline levels of urinary alanine, betaine, N,N-dimethylglycine	(Friedrich et al.
DMG	(DMG), creatinine, and trimethylamine were associated with an increase in	2017)
	HbA1c from baseline to follow-up.	

	Plasma levels of choline, betaine and TMAO are strongly correlated with CVD.	(Gonzalez-
Choline		Franquesa et
		al. 2016)
	8-hydroxy-2'-deoxyguanosine (8-OHdG) is a widely-used biomarker of	(Di Minno et
8-OHdG	oxidative DNA damages. It is altered in diabetes, hypertension and in patients	al. 2016)
	with CVD.	
	F2-isoprostane (8-iso-prostaglandin F2 α) is a product of free radical-mediated	(Milne,
8-iso-PGF2α	oxidation of arachidonic acid, mostly in phospholipids. Altered in diabetes,	Musiek, and
	hypercholesterolemia, hypertension and metabolic syndrome.	Morrow 2005)
	It is an isomer of the nucleoside uridine in which the uracil is attached via a	(Zhang and
Decudouridino	carbon-carbon instead of a nitrogen-carbon glycosidic bond. It is the most	Zhang 2015)
Pseudouridine	prevalent of the over one hundred different modified nucleosides found in	
	RNA. It is a marker of RNA damage.	

IL6: interleukin6; CRP: C-reactive protein; TNFA: tumor necrosis factor alpha; CCL2/MCP1: monocyte chemoattractant protein 1; LDL: low density lipoproteins; HDL: High density lipoproteins. The other abbreviations used are defined the first time that are mentioned in the table, section "Scientific substantiation".

REFERENCES

Aleksandrova, Krasimira, Dariush Mozaffarian, and Tobias Pischon. 2018. Addressing the Perfect Storm: Biomarkers in Obesity and Pathophysiology of Cardiometabolic Risk. *Clinical Chemistry* 64 (1):142–153. doi:10.1373/clinchem.2017.275172.

Arnold, James N, Radka Saldova, Umi M Abd Hamid, and Pauline M Rudd. 2008. Evaluation of the Serum N-Linked Glycome for the Diagnosis of Cancer and Chronic Inflammation. *Proteomics* 8 (16):3284–3293. doi:10.1002/pmic.200800163.

- Calder, Philip C. 2017. Omega-3 Fatty Acids and Inflammatory Processes: From Molecules to Man. *Biochemical Society Transactions* 45 (5):1105–1115. doi:10.1042/BST20160474.
- Chhibber-Goel, Jyoti, Anamika Gaur, Varsha Singhal, Neeraj Parakh, Balram
 Bhargava, and Amit Sharma. 2016. The Complex Metabolism of Trimethylamine
 in Humans: Endogenous and Exogenous Sources. *Expert Reviews in Molecular Medicine* 18 (April):e8. doi:10.1017/erm.2016.6.
- Chhibber-Goel, Jyoti, Varsha Singhal, Neeraj Parakh, Balram Bhargava, and Amit Sharma. 2017. The Metabolite Trimethylamine-N-Oxide Is an Emergent Biomarker of Human Health. *Current Medicinal Chemistry* 24 (36):3942–3953. doi:10.2174/0929867323666160830104025.
- Choe, Sung Sik, Jin Young Huh, In Jae Hwang, Jong In Kim, and Jae Bum Kim. 2016.
 Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic
 Disorders. *Frontiers in Endocrinology* 7 (April):30.
 doi:10.3389/fendo.2016.00030.

de Courten, Barbora, José Maria Moreno-Navarrete, Jasmine Lyons, Georgia Soldatos,

Maximilian de Courten, Sonia Dougherty, Josephine Forbes, and José Manuel Fernández-Real. 2016. Contrasting Association of Circulating SCD14 with Insulin Sensitivity in Non-Obese and Morbidly Obese Subjects. *Molecular Nutrition & Food Research* 60 (1):103–109. doi:10.1002/mnfr.201500102.

- Di Minno, Alessandro, Linda Turnu, Benedetta Porro, Isabella Squellerio, Viviana
 Cavalca, Elena Tremoli, and Matteo Nicola Dario Di Minno. 2016. 8-Hydroxy-2Deoxyguanosine Levels and Cardiovascular Disease: A Systematic Review and
 Meta-Analysis of the Literature. *Antioxidants & Redox Signaling* 24 (10):548–555.
 doi:10.1089/ars.2015.6508.
- Dorcely, Brenda, Karin Katz, Ram Jagannathan, Stephanie S Chiang, Babajide
 Oluwadare, Ira J Goldberg, and Michael Bergman. 2017. Novel Biomarkers for
 Prediabetes, Diabetes, and Associated Complications. *Diabetes, Metabolic Syndrome and Obesity : Targets and Therapy* 10 (August):345–361.
 doi:10.2147/DMSO.S100074.
- Farvid, Maryam S., Ming Ding, An Pan, Qi Sun, Stephanie E. Chiuve, Lyn M. Steffen, Walter C. Willett, and Frank B. Hu. 2014. Dietary Linoleic Acid and Risk of Coronary Heart Disease: A Systematic Review and Meta-Analysis of Prospective Cohort StudiesCLINICAL PERSPECTIVE. *Circulation* 130 (18):1568–1578. doi:10.1161/CIRCULATIONAHA.114.010236.
- Finucane, F. M., J. Luan, N. J. Wareham, S. J. Sharp, S. O'Rahilly, B. Balkau, a. Flyvbjerg, M. Walker, K. Højlund, J. J. Nolan, et al. 2009. Correlation of the Leptin:Adiponectin Ratio with Measures of Insulin Resistance in Non-Diabetic Individuals. *Diabetologia* 52 (11):2345–2349. doi:10.1007/s00125-009-1508-3.
- Friedrich, N., T. Skaaby, M. Pietzner, K. Budde, B.H. Thuesen, M. Nauck, and A. Linneberg. 2017. Identification of Urine Metabolites Associated with 5-Year

Changes in Biomarkers of Glucose Homoeostasis. *Diabetes & Metabolism*, June. doi:10.1016/j.diabet.2017.05.007.

- Gannon, Nicholas P., Jamie K. Schnuck, and Roger A. Vaughan. 2018. BCAA Metabolism and Insulin Sensitivity - Dysregulated by Metabolic Status? *Molecular Nutrition & Food Research*, January, 1700756. doi:10.1002/mnfr.201700756.
- Gonzalez-Franquesa, Alba, Alison M Burkart, Elvira Isganaitis, and Mary-Elizabeth
 Patti. 2016. What Have Metabolomics Approaches Taught Us About Type 2
 Diabetes? *Current Diabetes Reports* 16 (8):74. doi:10.1007/s11892-016-0763-1.
- Guasch-Ferré, Marta, Adela Hruby, Estefanía Toledo, Clary B. Clish, Miguel A.
 Martínez-González, Jordi Salas-Salvadó, and Frank B. Hu. 2016. Metabolomics in
 Prediabetes and Diabetes: A Systematic Review and Meta-Analysis. *Diabetes Care* 39 (5):833–846. doi:10.2337/dc15-2251.
- Hammad, Shatha, Shuaihua Pu, and Peter J. Jones. 2016. Current Evidence Supporting the Link Between Dietary Fatty Acids and Cardiovascular Disease. *Lipids*. Springer Verlag. doi:10.1007/s11745-015-4113-x.
- Harpole, Michael, Justin Davis, and Virginia Espina. 2016. Current State of the Art for Enhancing Urine Biomarker Discovery. *Expert Review of Proteomics* 13 (6):609– 626. doi:10.1080/14789450.2016.1190651.
- Hernández-Alonso, Pablo, Daniel Cañueto, Simona Giardina, Jordi Salas-Salvadó,
 Nicolau Cañellas, Xavier Correig, and Mònica Bulló. 2017. Effect of Pistachio
 Consumption on the Modulation of Urinary Gut Microbiota-Related Metabolites in
 Prediabetic Subjects. *The Journal of Nutritional Biochemistry* 45 (July):48–53.
 doi:10.1016/j.jnutbio.2017.04.002.
- Klop, Boudewijn, Jan Willem F Elte, and Manuel Castro Cabezas. 2013. Dyslipidemia in Obesity: Mechanisms and Potential Targets. *Nutrients* 5 (4):1218–1240.

doi:10.3390/nu5041218.

- Liu, Chenxiao, Xiu Feng, Qi Li, Ying Wang, Qian Li, and Majian Hua. 2016.
 Adiponectin, TNF-α and Inflammatory Cytokines and Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis. *Cytokine* 86 (October):100–109.
 doi:10.1016/j.cyto.2016.06.028.
- López-Jaramillo, Patricio, Diego Gómez-Arbeláez, Jose López-López, Cristina López-López, Javier Martínez-Ortega, Andrea Gómez-Rodríguez, and Stefany Triana-Cubillos. 2014. The Role of Leptin/Adiponectin Ratio in Metabolic Syndrome and Diabetes. *Hormone Molecular Biology and Clinical Investigation* 18 (1):37–45. doi:10.1515/hmbci-2013-0053.
- Milne, Ginger L, Erik S Musiek, and Jason D Morrow. 2005. F2-Isoprostanes as Markers of Oxidative Stress in Vivo: An Overview. *Biomarkers : Biochemical Indicators of Exposure, Response, and Susceptibility to Chemicals* 10 Suppl 1 (sup1):S10-23. doi:10.1080/13547500500216546.
- Moreno-Navarrete, José María, Matteo Serino, Vincent Blasco-Baque, Vincent
 Azalbert, Richard H. Barton, Marina Cardellini, Jèssica Latorre, Francisco Ortega,
 Mònica Sabater-Masdeu, Rémy Burcelin, et al. 2017. Gut Microbiota Interacts
 with Markers of Adipose Tissue Browning, Insulin Action and Plasma Acetate in
 Morbid Obesity. *Molecular Nutrition & Food Research*, December, 1700721.
 doi:10.1002/mnfr.201700721.
- Newgard, Christopher B. 2017. Metabolomics and Metabolic Diseases: Where Do We Stand? *Cell Metabolism* 25 (1):43–56. doi:10.1016/j.cmet.2016.09.018.
- Perla, Francesco, Maurizia Prelati, Michela Lavorato, Daniele Visicchio, and Caterina Anania. 2017. The Role of Lipid and Lipoprotein Metabolism in Non-Alcoholic Fatty Liver Disease. *Children* 4 (6):46. doi:10.3390/children4060046.

Reverri, Elizabeth J, Carolyn M Slupsky, Darya O Mishchuk, and Francene M
Steinberg. 2017. Metabolomics Reveals Differences between Three Daidzein
Metabolizing Phenotypes in Adults with Cardiometabolic Risk Factors. *Molecular Nutrition & Food Research* 61 (1):1600132. doi:10.1002/mnfr.201600132.

Skrypnik, Katarzyna, Joanna Suliburska, Damian Skrypnik, Łukasz Pilarski, Julita
Reguła, and Paweł Bogdański. 2017. The Genetic Basis of Obesity Complications. *Acta Scientiarum Polonorum Technologia Alimentaria* 16 (1):83–91.
doi:10.17306/J.AFS.2017.0442.

- Sonnenburg, Justin L., and Fredrik Bäckhed. 2016. Diet–Microbiota Interactions as Moderators of Human Metabolism. *Nature* 535 (7610):56–64. doi:10.1038/nature18846.
- Sprague, Alexander H., and Raouf A. Khalil. 2009. Inflammatory Cytokines in Vascular Dysfunction and Vascular Disease. *Biochemical Pharmacology* 78 (6):539–552. doi:10.1016/j.bcp.2009.04.029.
- Suárez, Manuel, Noemí Boqué, Josep M Del Bas, Jordi Mayneris-Perxachs, Lluís
 Arola, and Antoni Caimari. 2017. Mediterranean Diet and Multi-Ingredient-Based
 Interventions for the Management of Non-Alcoholic Fatty Liver Disease. *Nutrients*9 (10):1052. doi:10.3390/nu9101052.
- van der Aa, Marloes P, Catherijne A J Knibbe, Anthonius de Boer, and Marja M J van der Vorst. 2017. Definition of Insulin Resistance Affects Prevalence Rate in Pediatric Patients: A Systematic Review and Call for Consensus. *Journal of Pediatric Endocrinology & Metabolism : JPEM* 30 (2):123–131. doi:10.1515/jpem-2016-0242.
- Vykoukal, Daynene, and Mark G. Davies. 2011. Vascular Biology of Metabolic Syndrome. *Journal of Vascular Surgery* 54 (3):819–831.

doi:10.1016/j.jvs.2011.01.003.

- Zhang, Wei, and Xin-An Zhang. 2015. A Novel Urinary Metabolite Signature for Non-Invasive Post-Stroke Depression Diagnosis. *Cell Biochemistry and Biophysics* 72 (3):661–667. doi:10.1007/s12013-014-0472-9.
- Zock, Peter L., Wendy A M Blom, Joyce A. Nettleton, and Gerard Hornstra. 2016.
 Progressing Insights into the Role of Dietary Fats in the Prevention of
 Cardiovascular Disease. *Current Cardiology Reports* 18 (11). Current Cardiology
 Reports. doi:10.1007/s11886-016-0793-y.

Supplementary table 2

References in alphabetical order

1-(Aulchenko et al. 2009); 2-(Comuzzie et al. 2012); 3-(Dastani et al. 2012); 4-(Dorajoo et al. 2015); 5-(Draisma et al. 2015); 6-(Hartiala et al. 2016); 7-(Hoffmann et al. 2018); 8-(Illig et al. 2010); 9-(Imaizumi et al. 2019); 10-(J. H. Y. Wu et al. 2013); 11-(Jerotic et al. 2019); 12-(Kathiresan et al. 2009); 13-(Kettunen et al. 2016); 14-(Kilpeläinen et al. 2016); 15-(Klarin et al. 2018); 16-(Kulminski et al. 2018); 17-(Ligthart et al. 2018); 18-(Ljungman et al. 2009); 19-(Lotta et al. 2016); 20-(Mahajan et al. 2015); 21-(Manning et al. 2012); 22-(Nagy et al. 2017); 23-(Peloso et al. 2014); 24-(Shin et al. 2014); 25-(Spracklen et al. 2017); 26-(Sun et al. 2018); 27-(Tin et al. 2016); 28-(Tintle et al. 2015); 29-(van Meurs et al. 2013); 30-(Wessel et al. 2015)

	IIDL	SFA	10	IU.	LDL	IUFA	LIUS	LA	UA	Lepun	Auipoq	MUTA	Acylcarintine	DIIA
ADIPOQ (rs182052)											3			
APOA5 (rs12272004)			1	1	1									
APOA5 (rs662799)	25		25											
APOE (rs429358)	15													
APOE (rs7412)	7			7	7									
ASCL1 (rs17450122)														
CADM3 (rs12075)														
COMT (rs4680)														
CPS1 (rs715)														
CUX1 (rs409224)						4								4
FADS1 (rs174547)			12	16		13	5	4						
FADS12 (rs174550)														
FGF21 (rs838133)														
GCKR (rs1260326)			7											
GCKR (rs780093)		10								14				
GLS2 (rs2657879)														
GSTP1 (rs1695)														
HFE (rs1800562)				7	7									
ICAM1 (rs5498)														
IL-6 (rs1800795)														
LEP (rs10487505)										14				
LPL (rs268)	23													
LPL (rs326)	7		7											
MTHFR (rs1801133)														
PNPLA3 (rs738409)				15										
PPARG (rs1801282)														
PPID (rs8396)												8		
SLC16A10 (rs14399)														
SLC16A9 (rs1171614)													5	
SLC2A2 (rs8192675)														
SOD2 (rs4880)														
TCF7L2 (rs7903146)														
TIMP3 (rs12678919)	7		7											
TRIM58 (rs3811444)									28					

HDL SFA TG TC LDL PUFA LPCs LA OA Leptin Adipoq MUFA Acylcarnitine DHA

LIPID

CARBOHYDRATES

	Glucose	Ile	Gln	Phe	Insulin	Tyr	Leptin	Adipoq	Acylcarnitine	Lactate
ADIPOQ (rs182052)								3		
APOA5 (rs12272004)										
APOA5 (rs662799)										
APOE (rs429358)										
APOE (rs7412)										
ASCL1 (rs17450122)				9						
CADM3 (rs12075)										
COMT (rs4680)										
CPS1 (rs715)										
CUX1 (rs409224)										
FADS1 (rs174547)										
FADS12 (rs174550)	30									
FGF21 (rs838133)										
GCKR (rs1260326)	24	19								27
GCKR (rs780093)							14			
GLS2 (rs2657879)			24							
GSTP1 (rs1695)										
HFE (rs1800562)										
ICAM1 (rs5498)										
IL-6 (rs1800795)										
LEP (rs10487505)							14			
LPL (rs268)										
LPL (rs326)										
MTHFR (rs1801133)										
PNPLA3 (rs738409)										
PPARG (rs1801282)					20					
PPID (rs8396)										
SLC16A10 (rs14399)						13				
SLC16A9 (rs1171614)									5	
SLC2A2 (rs8192675)	22									
SOD2 (rs4880)										
TCF7L2 (rs7903146)	21				21					
TIMP3 (rs12678919)										
TRIM58 (rs3811444)										

Val, Leu,

OXIDATIVE STRESS

INFLAMMATION

	Ox. Fragility	Betaine	CRP	IL6	SFA	CCL2	ICAM1	PUFA	LPCs	LA	DHA
ADIPOQ (rs182052)											
APOA5 (rs12272004)											
APOA5 (rs662799)											
APOE (rs429358)			17								
APOE (rs7412)											
ASCL1 (rs17450122)											
CADM3 (rs12075)						2					
COMT (rs4680)	24										
CPS1 (rs715)		6									
CUX1 (rs409224)								4			4
FADS1 (rs174547)								13	5	4	
FADS12 (rs174550)											
FGF21 (rs838133)	29										
GCKR (rs1260326)			17								
GCKR (rs780093)					10						
GLS2 (rs2657879)											
GSTP1 (rs1695)	26										
HFE (rs1800562)											
ICAM1 (rs5498)							26				
IL-6 (rs1800795)				18							
LEP (rs10487505)											
LPL (rs268)											
LPL (rs326)											
MTHFR (rs1801133)	29										
PNPLA3 (rs738409)											
PPARG (rs1801282)											
PPID (rs8396)											
SLC16A10 (rs14399)											
SLC16A9 (rs1171614)											
SLC2A2 (rs8192675)										ļ	
SOD2 (rs4880)	11	ļ								ļ	
TCF7L2 (rs7903146)											
TIMP3 (rs12678919)											
TRIM58 (rs3811444)											