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A generic solver in a parallel Cartesian adaptive mesh refinement framework is extended to simulate 
detonations on three-dimensional structured curvilinear meshes. A second-order accurate finite volume 
method is used with grid-aligned Riemann solvers for thermally perfect gas mixtures. Detailed, multi-
step chemical kinetic mechanisms are employed and numerically incorporated with a splitting approach. 
The adaptive mesh refinement technique is applied to a mapped mesh using modified prolongation and 
restriction operators. The flux along the coarse-fine interface is considered in a correction procedure 
to ensure the conservation of the solver. The numerical accuracy, conservation and robustness of the 
simulations are verified and validated with suitable benchmark tests. The new solver is then used to 
simulate detonation problems in non-Cartesian geometries. A simulation is conducted of the three-
dimensional detonation propagation in a 90-degree pipe bend. A detonation in a round tube is also 
simulated in a Galilean frame of reference. Both a rectangular mode and a spinning mode are observed 
in the simulations. In addition, the fundamental problem of detonation wave/boundary layer interaction 
is studied. The results show that the new solver can simulate high-speed reactive flows efficiently by the 
combined use of a curvilinear mapping with mesh adaptation.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

A detonation is a type of reactive phenomenon where a su-
personic combustion wave drives a leading shock wave, resulting 
in the coupled propagation of both [1]. The thermodynamic states 
change sharply across a detonation, which is accompanied by fast 
energy release. A detonation is also considered as a pressure-gain 
and self-sustaining chemical reaction and is hence essentially dif-
ferent from a subsonic deflagration [2]. Theoretical calculations 
indicate that the Fickett-Jacobs cycle, that employs a pressure-gain 
detonation, can provide a higher thermal efficiency compared with 
the Brayton cycle, which is based on pressure-constant combus-
tion [3]. Devices powered by detonations [4–7] have been pro-
posed as promising replacements for the current propulsion and 
power generation systems that employ pressure-constant combus-
tion.

A detonation travels at high temperature, high pressure and 
high speed. As a result, it is challenging to measure the detailed 
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physical quantities in the flow field of a detonation by experimen-
tal methods [5,8]. CFD (Computational Fluid Dynamics) is a feasible 
way to predict results especially for reactive flows under extreme 
thermal conditions [8–10]. Numerical simulations therefore play an 
increasingly important role in detonation studies. Yet, an accurate 
and predictive detonation simulation is difficult in itself as a deto-
nation is a supersonic combustion phenomenon that inherently in-
volves a discontinuous shock wave [11]. Adequate mesh resolution 
is essential to resolve the chemical characteristic length [12,13], 
but large-scale numerical simulations of high-speed reacting flows 
are normally prohibitively expensive.

An effective approach for capturing supersonic combustion 
and discontinuous flow structures is adaptive mesh refinement 
(AMR) [14]. The AMR technique employs a strategy in which the 
grid is dynamically refined at specific places where the physi-
cal states change dramatically. It provides a balance between the 
numerical accuracy and computational costs. AMROC (Blockstruc-
tured Adaptive Mesh Refinement in object-orientated C++) [15]
is a parallel open-source framework implemented on a Cartesian 
mesh. The Clawpack package [16] has been incorporated into AM-
ROC with an extended detailed chemical-kinetic model for multi-
species thermally perfect gas mixtures. The generic solvers have 
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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been widely used to study supersonic combustion and detonation 
problems [17–20].

In AMROC, the ghost-fluid method [21] has been used previ-
ously to deal with non-Cartesian boundaries. States in ghost cells 
are set before the original numerical update to model the bound-
ary conditions [22]. The actual boundary is considered by em-
ploying a scalar level set function [23,24]. Another strategy is the 
application of a quadrilateral but non-Cartesian mesh by adopt-
ing the mapping method with a capacity function as proposed 
in Ref. [16]. Using a body-fitted mesh can also avoid extremely 
small time steps, which may occur in some small cut-cells if no 
additional measures are taken. In this work, a previously devel-
oped two-dimensional AMROC inviscid solver [25] is extended to 
three spatial dimensions for viscous multi-species reactive prob-
lems based on curvilinear adaptive meshes.

A second-order finite volume scheme with shock-capturing ca-
pability and fluxes reconstruction is implemented for simulations 
of detonation with an arbitrary number of species and arbitrary 
chemical reaction systems. Benchmark test cases of 2-D and 3-
D configurations are conducted to verify the performance of the 
proposed solver within the mesh adaptation framework. Then, the 
solver is applied to simulate various cases involving detonation 
waves. Thanks to the present solver’s capabilities, such test cases 
show the robustness and efficiency of the implemented numerical 
methods in handling multi-scale reactive flows in a non-Cartesian 
geometry.

This paper is organised as follows: In Section 2, numerical 
methods and implementation details of the framework of AMROC–
Clawpack are introduced. Section 3 first quantifies the numerical 
errors with the method of manufactured solutions and verifies the 
flux correction method by a conservation test. Then, results are 
presented for shock tube and shock bubble combustion problems 
by solving multi-component Navier-Stokes equations on mapped 
grids. In Section 4, the present solver is used to simulate the 
hydrogen-oxygen-argon detonation propagation in a pipe bend and 
in a round tube. The cellular structure of the respective 3-D det-
onation is analysed. The interaction between a detonation and 
boundary layers is also studied. Finally, concluding remarks and 
future work are discussed in Section 5.

2. Methodology

2.1. Governing equations

The multi-species Navier-Stokes equations with a detailed 
chemical model in three-dimensional form are solved as governing 
equations. They read

∂t(ρY ) + ∇ · (ρuY ) − ∇ · j = ω̇,

∂t(ρu) + ∇ · (ρuu + p I) − ∇ · τ = 0, (1)

∂t(ρE) + ∇ · (ρu(E + p/ρ)) − ∇ · (q + u · τ ) = 0,

where Y is the vector of species mass fractions. The total density 
is computed from the species conservation: ρ =∑Nsp

i=1 ρYi , and Nsp

is the total number of species. u = [u, v, w]T is the velocity vector, 
and ω̇ is the vector of species production rates. p is the pressure, 
I is the 3 × 3 identity matrix, and E is the total specific energy. 
The multi-species ideal gas state equation, p =∑Nsp

i=1 ρi T Ru/W i , is 
used to close system (1).

As shown in (2), the species diffusion fluxes j are computed 
by Fick’s law. X is the vector of species mole fractions, and D is 
the vector of the mixture-averaged diffusion coefficients. The vis-
cous stress tensor τ is calculated using Newton’s law, and μ is the 
dynamic viscosity. The heat-flux vector is modelled using Fourier’s 
law, and κ is the thermal conductivity.
2

j = ρY D(∇ X + (X − Y )∇p/p)/X,

τ = −2

3
μ(∇ · u)I + μ

[
∇u + (∇u)T

]
,

q = κ∇T +
Nsp∑
i=1

hi ji .

(2)

The total specific energy in (1) can be computed by

E =
Nsp∑
i=1

Yi(h
0
ref +

T∫
Tref

cpi dT ) − p

ρ
+ 1

2
u2. (3)

The constant pressure specific heat cpi is dependent on tempera-
ture and calculated by the polynomial functions in the CHEMKIN II 
library [26]. The species production rates are calculated by a chem-
ical reaction mechanism of J steps as,

ω̇i =
J∑

j=1

(
νr

ji − ν
f
ji

)⎡⎣k f
j

Nsp∏
n=1

(
ρn

Wn

)ν
f
jn − kr

j

Nsp∏
n=1

(
ρn

Wn

)νr
jn

⎤
⎦ ,

i = 1, . . . Nsp. (4)

The rate constant of forward and reverse chemical reactions is 
given by the Arrhenius formula:

k f /r
j (T ) = A f /r

j T β
f /r
j exp

⎛
⎝− E f /r

j

RT

⎞
⎠ . (5)

The chemical kinetics are integrated by a semi-implicit gen-
eralised Runge–Kutta method of fourth order (GRK4A) [15]. A 
second-order accurate Strang splitting method is adopted for the 
stiff source term treatment.

2.2. Mapping method

A mapping method [16] for 2-D geometry transformations has 
recently been implemented into AMROC [25]. This method en-
ables the numerical algorithms based on a Cartesian mesh to be 
applied to a body-fitted mesh, which is beneficial to modelling 
the near-wall region of non-Cartesian geometries. The coordinates 
of a uniform Cartesian mesh in computational space (x, y, z) are 
firstly mapped onto the coordinates of a non-uniform, curvilinear 
structured mesh (ξ, η, ζ ) in physical space by a mapping function. 
The method is working in the physical space and derives the cell-
centred finite volume method on the non-uniform mesh with a 
capacity function 

∣∣Cijk
∣∣ [16],

Q n+1
i jk =Q n

ijk − �t∣∣Cijk
∣∣�ξ

[(
F̃ − F̃v

)n

i+ 1
2 , j,k

·
Ãi+ 1

2 , j,k

�η�ζ

−
(
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)n

i− 1
2 , j,k

·
Ãi− 1

2 , j,k

�η�ζ

]

− �t∣∣Cijk
∣∣�η

[(
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)n

i, j+ 1
2 ,k

·
Ãi, j+ 1

2 ,k

�ξ�ζ

−
(
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)n

i, j− 1
2 ,k

·
Ãi, j− 1

2 ,k

�ξ�ζ

]

− �t∣∣Cijk
∣∣�ζ
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2

·
Ãi, j,k+ 1

2

�ξ�η

−
(
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2

·
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2
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]

(6)
+ �t · S.
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For the 3-D solver, the capacity function 
∣∣Cijk

∣∣ represents the 
volume ratio of the physical cell to the computational cell. The in-
viscid fluxes [ F̃ , G̃, H̃]T and the viscous fluxes [ F̃v, G̃v, H̃v]T are cal-
culated separately and the details are introduced in the following 
subsections. The coefficient terms behind the numerical fluxes are 
the ratio of the area of the respective facet. The dimensional split-
ting method [27] is used to numerically handle multi-dimensional 
problems.

2.3. Fluxes evaluations

2.3.1. Inviscid fluxes
A hybrid Roe/HLL scheme [15] is used in this work to calcu-

late the inviscid flux. This scheme incorporates the Roe method 
with multi-dimensional entropy correction, mass fraction positiv-
ity correction and the HLL (Harten-Lax-Van Leer) method. It is a 
robust and reliable scheme when simulating detonation problems. 
Further on, the standard HLLC method [27] has also been imple-
mented with pressure–based wave speed estimates to solve the 
inviscid flux on the interface. The pressure in the star region is 
estimated by the primitive variable Riemann solver (PVRS).

The detailed steps of the multi-component Roe/HLL scheme and 
the HLLC scheme on the mapped structured mesh are given in Ap-
pendix A. Facet-dependent rotation matrices Ts are used to rotate 
the velocities aligning with the grid. The rotation matrices used for 
the 3-D multi-component equations are given in Appendix A. After 
computing the fluxes by the standard Riemann solver, the inverse 
matrix T −1

s is employed to rotate the flux back to the Cartesian 
coordinate system in physical space. The overall mapped flux com-
putation reads

F̃ n
i+ 1

2 , j,k
= T −1

s F

(
Ts Q n,l

i+ 1
2 , j,k

, Ts Q n,r
i+ 1

2 , j,k

)
. (7)

2.3.2. Viscous fluxes
The viscous fluxes on mapped structured meshes are calculated 

at each face in physical space through the coordinate transforma-
tion. For instance, the derivative of a variable in physical space is 
calculated through the chain rule:

∂ϕ

∂x
=
(

∂ϕ

∂ξ

)(
∂ξ

∂x

)
+
(

∂ϕ

∂η

)(
∂η

∂x

)
+
(

∂ϕ

∂ζ

)(
∂ζ

∂x

)
. (8)

The derivatives of the variables ϕ with respect to the computa-
tional coordinates (ξ, η, ζ ) are calculated by a second-order central 
difference. The derivatives of the computational coordinates with 
respect to the physical coordinates (x, y, z) are calculated either 
from the analytic mapping functions or using second-order accu-
rate finite difference numerical derivatives.

2.3.3. CFL conditions
In addition, both the effects of inviscid fluxes and viscous fluxes 

should be considered when calculating the CFL condition given in 
Eq. (9). The global CFL number is defined by the maximum value 
in the three spatial dimensions and evaluated for system (1) as

C F L = max

[
(|u| + a)

�t

�x

+ max

(
8μ

3ρ
,

2k

Cvρ
, D1, ..., D Nsp

)
�t

�x2

]
. (9)

The next global time step is calculated from the CFL number 
of the previous time step and a user-specified target CFL number. 
Since the method is strictly explicit, a target CFL number less than 
1 is used in all the cases. Decreasing the CFL number can improve 
the stability of a computation, but it is more expensive.
3

2.4. Reconstruction

A second-order accurate MUSCL-Hancock scheme with limiter 
is used for the inviscid flux reconstruction. The MUSCL part re-
constructs primitive variables or conservative variables in space 
and the Hancock part is used to update the reconstructed vari-
ables by half a time step. The variables Q in the physical space 
are transformed to computational space Q = J Q by using the Ja-
cobian determinant of the grid J = det |∂ (x, y, z) /∂ (ξ,η, ζ )|. The 
standard MUSCL reconstruction is conducted in the computational 
space as

Q l,n
i, j,k = Q n

i, j,k − 1

4
εi(1 + ω)

(
Q i, j,k − Q i−1, j,k

)
− 1

4
εi(1 − ω)

(
Q i+1, j,k − Q i, j,k

)
,

Q r,n
i, j,k = Q n

i, j,k + 1

4
εi(1 − ω)

(
Q i, j,k − Q i−1, j,k

)
+ 1

4
εi(1 + ω)

(
Q i+1, j,k − Q i, j,k

)
.

(10)

In the latter, εi denotes the limiter and the Minmod limiter has 
been used for all the cases in the present work. The value of ω
is set to 0 as a linear reconstruction. After the reconstruction, the 
variables are transformed back to the physical space and are inte-
grated by half a time step before being used for the flux estimation 
in a Riemann solver.

2.5. Adaptive mesh refinement

AMROC adopts the block-structured adaptive mesh refinement 
technique (SAMR) after Berger and Colella [14]. This method em-
ploys a patch-wise refinement approach. The meshes are dynam-
ically flagged by using specified refinement criteria. These flagged 
cells are then grouped into a region of various-sized rectangular 
blocks. By successively creating refined meshes from respectively 
coarser parents, a multi-level hierarchy of embedded grid patches 
is created.

Using the Berger-Colella AMR method, the main finite volume 
integrator is effectively separated from the adaptive strategy. The 
numerical schemes are employed simultaneously on grids at differ-
ent levels. The curvilinear structured mesh can be applied to the 
entire AMR technique since the AMROC structured data layout is 
preserved in the present solver. For instance, to generate the coor-
dinates of grids at a higher level (l + 1) or a lower level (l − 1), 
the coordinates of the flagged uniform Cartesian mesh in com-
putational space at level l are refined or coarsened, respectively. 
By using the same mapping strategy (see Appendix B) on each 
level, the new coordinates in computational space (ξl±1, ηl±1, ζl±1)

are used to generate curvilinear structured grids in physical space 
(xl±1, yl±1, zl±1) at the new level.

A number of general parameters are prescribed in the AMR 
algorithm. Unless otherwise mentioned, the following adaptive re-
finement settings are used in all of the computations in this work. 
The refinement flags are always set, and the grid hierarchy is re-
composed at each coarser level time step. The buffer width is set 
to 2 in order to mark two more cells in all directions around 
each flagged cell. The clustering algorithm’s threshold is set to 0.7, 
which indicates that the programme generates successively smaller 
grids until the ratio between flagged and all cells in each new grid 
exceeds this given threshold. Scaled gradients [25] are used as re-
finement criteria in the present solver. The differences of adjacent 
cells are computed in terms of scalar quantities derived from the 
vector of state. A cell is flagged for further refinement when one of 
its scaled gradients is beyond the given threshold in any directions.
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Fig. 1. Schematic of the restriction (left) and prolongation (right) operation.
2.5.1. Prolongation and restriction
Transferring values from fine to coarse cells is called restric-

tion in AMR algorithms. Fig. 1 is an example of the restriction 
operation between grids on adjacent hierarchies with a refinement 
factor of 2. The restriction strategy is such that the value of the 
coarse element (displayed by the blue dot) is determined by its n3

fine sub-elements (displayed by the red dots) through

Q c =
n3∑

k=1

V f,k Q f,k/V c, (11)

where subscript c denotes the coarse cell and subscript f denotes 
the fine cell. The n is the refinement factor between these two 
levels.

To illustrate the prolongation operation, the locations of the 
centroid of each cell are extracted in Fig. 1. A new element is gen-
erated by connecting the centroids of each coarse cell. The value in 
the refined cell can be computed by its closest n3 coarse elements,

Q f = (1 − f3){(1 − f2)[(1 − f1)Q c1 + f1 Q c2]
+ f2[(1 − f1)Q c3 + f1 Q c4]}
+ f3{(1 − f2)[(1 − f1)Q c5 + f1 Q c6]
+ f2[(1 − f1)Q c7 + f1 Q c8]}.

(12)

A trilinear interpolation is applied for the coarse-to-fine grid 
prolongation, which involves a local nonlinear system solved by 
a Newton-Raphson method [28]. If this method is not convergent 
within a given number of iteration steps, the gradient descent al-
gorithm would be used.

2.5.2. Fluxes correction
It is well known that the flux across coarse-fine interfaces in 

the Berger-Colella algorithm is not automatically strictly conserva-
tive. Hence, a flux correction or namely a flux fix-up is used before 
updating the states. In the updated formula of all cells, the coarse 
flux is approximated with all modified neighbouring cells by the 
sum of all overlying fine-level fluxes. For simplicity, only the 2-D 
fix-up process is described here, as depicted in Fig. 2, and the 3-
D method can be deduced naturally by canonical extension. As an 
example on Cartesian grids [15], the correct update for Q in cell 
( j, k) on level i is given as

δF d,i+1
j− 1

2 ,k
= −F d,i

j− 1
2 ,k

,

δF d,i+1
j− 1

2 ,k
= δF d,i+1

j− 1
2 ,k

+ 1

ri+12

ri+1−1∑
l=0

ri+1−1∑
n=0

F d,i+1
v+ 1

2 ,w+l

(
t + n�ti+1

)
,

Q̌ i
jk

(
t + �ti

)
= Q i

jk

(
t + �ti

)
+ �ti

i
δF d,i+1

1 .

�x j− 2 ,k

4

(13)

As shown in Fig. 2, the shaded cells at the coarse level are mod-
ified with the correction term δF on the interface. An analogous 
correction method is used to update Q on a mapped mesh. The 
flux difference on a mapped grid is computed as

δF d,i+1
j−1/2,k = −F d,i

j−1/2,k

�yi

�ηi
,

δF d,i+1
j−1/2,k = δF d,i+1

j−1/2,k

+ 1

ri+12

ri+1−1∑
l=0

ri+1−1∑
n=0

F d,i+1
v+1/2,w+l

(
t + n�ti+1

) �yi+1

�ηi+1
.

(14)

If the refinement factor ri+1 is set to 2 between level i and level 
i + 1, this term δF d,i+1

j−1/2,k can be expanded as

δF d,i+1
j−1/2,k = −F d,i

j−1/2,k

�yi

�ηi

+ 1

4

[
F d,i+1

v+1/2,w(t)
�yi+1

w

�ηi+1
+ F d,i+1

v+1/2,w+1(t)
�yi+1

w+1

�ηi+1

+F d,i+1
v+1/2,w

(
t + �ti+1

) �yi+1
w

�ηi+1

+F d,i+1
v+1/2,w+1

(
t + �ti+1

) �yi+1
w+1

�ηi+1

]
.

(15)

The difference on the coarse-fine interface is finally integrated 
into the state vectors by using the capacity function in the respec-
tive coarse grid cell by applying

Q̌ i
jk

(
t + �ti

)
= Q i

jk

(
t + �ti

)
+ �ti∣∣C jk

∣∣i �ξ i
δF d,i+1

j− 1
2 ,k

. (16)

The conservation of the entire scheme is hence maintained.

2.6. Boundary condition

In AMROC, the boundary conditions are specified by using ghost 
cells around a Cartesian mesh (see Ref. [15]). In the present solver, 
the state vectors are initialised in the physical space, where the 
velocities are orthonormal to the Cartesian coordinate system. As a 
result, the inflow and outflow boundary conditions are the same 
as those based on the Cartesian mesh. However, the symmetry 
and reflected wall boundary conditions need to be modified. For 
a symmetry or reflecting wall boundary condition, the normal ve-
locity on the physical boundary should be zero and there is no 
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Fig. 2. Schematic of the flux correction on a Cartesian mesh (left) and on a mapped mesh (right).

Fig. 3. The meshes used for 3-D MMS and corresponding density distribution at t = 0.01 s.
flow across the boundary. The transformation matrix is used to 
rotate the velocity of inner domain cells to align with the phys-
ical boundary. Then, the normal and tangential velocities on the 
boundary are eliminated by setting the value of the velocity in the 
ghost cell to be equal and opposite to the velocity in the domain 
cell. After that, the velocity in ghost cells is transformed back to 
the orthonormal direction of the Cartesian coordinate, respectively.

3. Numerical tests

3.1. Method of manufactured solutions

To verify the present solver, the method of manufactured solu-
tions (MMS) [29,30] is first applied to different mapped meshes. 
The MMS is commonly used to verify CFD codes and test a solver’s 
accuracy. In this case, the governing equations are constructed 
with manufactured solutions by replacing the chemical source 
5

terms with analytical source terms. Then, an error analysis is per-
formed to compare the analytical solutions to the numerical re-
sults. The general form of the solutions is given as

φ(x, y, z) = φ0 + φx fs,x
(
aφxπx

)+ φy fs,y
(
aφy π y

)
+ φz fs,z

(
aφzπ z

)
. (17)

φ indicates the initial states in terms of density, tempera-
ture, velocity and viscosity, etc. f s,x, f s,y, f s,z are trigonometric 
functions, and other parameters are constants (see Table C.1). A 
smoothly varying flow field is constructed by using the continuous 
functions.

Generally, in a supersonic case, the influence of the diffusion 
terms is relatively minor compared with the dominant convec-
tion terms. The MMS enables the use of a user-defined diffusive 
solution for the Navier-Stokes equations. In this case, the diffu-
sive parameters are increased artificially O (103) ∼ O (105) times 
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Fig. 4. L2-norm of (a) density of oxygen, (b) density of nitrogen, (c) x-momentum, (d) y-momentum, (e) z-momentum, (f) total energy density when using the MMS on 
different mapped meshes.
to produce viscous fluxes of comparable magnitude to the invis-
cid fluxes. To simplify the derivation in terms of enthalpy in the 
analytical source terms, the specific heat ratio is assumed to be a 
constant.

The HLLC scheme is used, and the target CFL number in this 
case is set to 0.2. The whole domain is initialised with a mixture 
of oxygen and nitrogen. A Dirichlet boundary condition is used for 
the inflow boundary, and extrapolation is used for the supersonic 
outflow boundary. The computational domain is set as [0, 1] × [0, 
1] × [0, 1] for the stretched mesh with a physical edge of 1.2 m. 
The domain is set as [-1.5 m, -0.3 m] × [0.3 m, 1.5 m] × [0.5 m, 
1.7 m] for the skewed mesh and the distorted mesh in the compu-
tational space. A three-level refinement is used with a refinement 
factor of two for each level, as shown in Fig. 3.

Fig. 4 visualises the global L2-norms in terms of partial density, 
momentum and energy density on various mapped meshes. This 
figure also depicts the order of accuracy, confirming that the cur-
rent solver can achieve second-order accuracy when simulating a 
3-D smoothly varying viscous flow field on a hierarchically refined 
mapped mesh.

3.2. Conservation test

A conservation test is carried out to verify the flux fix-up pro-
cedures. A uniform inviscid flow goes through a cube domain with 
an edge length of 0.2 m. The velocity is 200 m/s in each direction. 
A base grid of 100 × 100 × 100 cells is centrally distorted and 
supplemented with three levels of refinement. Periodic boundary 
conditions are used for all the boundaries. The target CFL number 
is 0.8 in this case, and it is run up to 0.1 ms, corresponding to 10 
cycles. The total conservative error at time t is computed as

Err(t) =
∣∣∣∣∣
∑Nmax

i=1 [Q i(0) − Q i(t)] V i∑Nmax
i=1 Q i(0)V i

∣∣∣∣∣ . (18)

The volume V i of the cell i is taken into account when com-
puting the difference between the state Q i(t) at t and the initial 
state Q i(0). Nmax is the total number of cells. As shown in Fig. 5, 
in the case without a fix-up on fluxes, the errors in terms of con-
servative variables start at 10−8 and reach 10−3 at the end of the 
calculation. An accumulated conservation error is observed when 
the fix-up is not used. In the case with a fix-up on fluxes, the con-
servation errors are negligible and are close to the machine error. 
6

Fig. 5. Conservation errors in terms of conservative variables versus time.

This case tests the conservation of the inter-level operations, the 
flux fix-up method and confirms that the present solver is globally 
conservative on a multi-level mapped grid.

3.3. Multi-component shocktube

This benchmark is a modified version of Sod’s shock tube con-
sidering a multi-species mixture. It has been used to verify the 
robustness of numerical schemes in previous works [31,32]. In this 
case, a mixture of hydrogen–oxygen–argon at molar ratios 2:1:7 is 
initialised in a shock tube. The detailed Westbrook hydrogen mech-
anism [33] is used in this case, which contains 9 species and 34 
elementary reactions. The size of the computation domain is 25 
mm × 12.5 mm × 12.5 mm with slip wall boundary conditions 
on the side walls. For the adaptive cases, the maximal refinement 
level is set to three with a uniform refinement factor of 2 on each 
level. The respective minimum mesh size is 0.0625 mm in every 
direction. The refinement indicator threshold values for density 
and pressure are ερ = 0.002 kg/m3 and εp = 4 kPa, respectively. 
The CFL number in this case is set to 0.5. The adaptive computa-
tion uses approximately 2.6 M to 5.8 M cells in total instead of 
16 M cells in the uniform case. The detailed initial conditions can 
be found in Ref. [32]. Fig. 6 shows how the grid is refined at the 
locations of the shock wave, contact discontinuity and rarefaction 
wave. The density profiles are extracted along the centre line in 
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Fig. 6. Pseudo-colour image of the refinement levels and the density distribution.
Fig. 7. Computational domain and numerical configuration of the shock bubble com-
bustion problem.

the tube at 10 μs. The numerical results using AMROC are in good 
agreement with the results in Refs. [31,32].

3.4. Shock bubble combustion

The shock-driven combustion problem of a 2-D hydrogen bub-
ble is tested to validate the viscous solver with chemical source 
terms. This validation case demonstrates the evolution of a hydro-
gen bubble and its interaction with a shock wave at Mach 2. The 
numerical configuration is shown in Fig. 7. A hydrogen sphere is 
initialised in the region on the left-hand side of the domain con-
sisting of air. The temperature, pressure and velocity in different 
regions are also shown in the figure.

A distorted mesh is used in this case. The base mesh is set 
to 1024 × 512 cells with three refinement levels, and the refine-
ment factor is 2 for each level. The refinement indicator thresh-
olds are given in terms of the temperature, density and pressure 
εT = 500 K, ερ = 0.05 kg/m3 and εp = 16 kPa. The Jachimowski hy-
drogen/air mechanism [34] is used, which consists of 9 species and 
19 reactions. The target CFL number in this case is set to 0.9.

Fig. 8 is the pseudo-colour image of the hydrogen mass frac-
tions distribution (grey scale) superimposed on the pressure con-
tours with black lines. At t = 1.5 μs, the hydrogen bubble collides 
with the stationary shock wave. The refracted, transmitted, re-
flected and incident pressure waves are all captured by the finest 
meshes as shown in the figure. At t = 3.5 μs, two reflected waves 
form on both sides of the bubble, and a secondary transmitted 
wave can be observed upstream of the bubble. Besides, a vortex is 
generated inside the hydrogen bubble. These features are in good 
agreement with the results in previous studies [35–37].
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Fig. 9 shows a comparison of the pressure profile on the vertical 
central line between the present result and published numerical 
results. The present solver’s numerical result, plotted with a pur-
ple dot line and an orange solid line respectively, agrees well with 
Ref [37] when using a similar distorted grid at the same mesh 
resolution. The strength of the right reflected wave is observed 
to decrease with a coarse mesh in our simulations, and there are 
differences between the results obtained by AMROC and literature 
solutions in terms of the strength and locations of the waves. The 
numerical methods used in the present solver and the literature 
references differ in terms of inviscid and viscous fluxes estimation. 
The discrepancies could also be caused by different approaches to 
modelling the fluid’s transport properties.

4. Detonation simulations

4.1. Detonation in a smooth pipe bend

Simulations of detonation propagation in a smooth pipe bend 
are conducted to test the accuracy of the reactive solver on a 
mapped grid. For small radii and large bending angles, i.e., pipe 
bends of a 90-degree angle, the detonation wave structure is not 
maintained and triple point quenching can be observed at the 
outer side, while the detonation fails with originally regular cellu-
lar structure. The computational domain and initial conditions are 
set according to an experimental configuration [38]. In the present 
configuration, the channel width (4 cm) is at the length of 2.5 cells 
size and the channel height (1.6 cm) is at the length of 1 cell size. 
The computational domain and the numerical configuration are il-
lustrated in Fig. 10.

The pipe is filled with a perfectly stirred stoichiometric hydro-
gen and oxygen mixture with 70% argon as dilution. The initial 
temperature is 298 K and the static pressure is 10 kPa. In order 
to speed up the calculation, the 2-D numerical results of detona-
tion cells under the same conditions are initialised at the start of 
the pipe. Two unreacted sheets at 2086 K and 70 kPa are placed 
behind the detonation front as initial perturbations. The induction 
length Lin of the detonation is computed as 0.875 mm given the 
initial condition.

A four-level grid is used in this case and the refinement fac-
tor for each level is 2. The base mesh size is 0.25 mm (3.5 pts/Lin) 
in the η- and ζ -direction using 160 × 960 × 64 cells. In the ξ -
direction, the base mesh size is around 0.242 mm along the central 
line, 0.363 mm on the outer wall, and 0.121 mm on the inner wall 
of the pipe bend. The mesh size at the finest level is 0.03025 mm 
(29 pts/Lin) on the central plane and changes from 0.015 mm (58 
pts/Lin) to 0.045 mm (19.4 pts/Lin) in the bend. The refinement cri-
teria for temperature, density and pressure are given as εT = 500 K, 
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Fig. 8. Pseudo-colour image of the hydrogen mass fraction (grey scale) sup
Fig. 9. Pressure profiles on the vertical central line compared with results in 
Ref. [35–37].

Fig. 10. Computational domain and numerical configuration of the detonation in a 
smooth pipe bend.

ερ = 0.05 kg/m3 and εp = 40 kPa, respectively. The adaptive com-
putation uses approximately 86.1 M to 118.5 M instead of 5033.16 
M cells in a uniform case. The calculations are performed on 480 
cores (Intel Xeon E5-2670 2.0 GHz). Typical run times for a simu-
lated time of 120 μs were approximately 6.5 days wall clock time.

Fig. 11 shows the accumulative results of the maximum pres-
sure in the flow field on the base grid. The triple point is formed 
in the third direction after a short time and the 3-D cellular struc-
ture can be observed. When the detonation travels through the 
90-degree bend, the cellular structure disappears near the inner 
wall, indicating that the detonation fails to be self-sustained. On 
the outer wall, the detonation is highly overdriven and transverse 
waves are generated after being reflected by the wall.

The detonation cellular front is visualised by the iso-volume 
of the OH mass fraction and the iso-surfaces of the pressure as 
shown in Fig. 12. The temporal development of the triple point 
line (TPL) structure is given in the schematic diagram. The front of 
the cellular structure can be divided into three different types of 
8

erposed on line contours of pressure (1–7.4 bar) at 1.5 μs and 3.5 μs.

Fig. 11. Image of the numerical soot on the base grid.

Fig. 12. Snapshots of the iso-volume of the OH mass fraction, overlapped by the 
pressure iso-surfaces (blue) at 20 kPa of 80% opacity (left) in the pipe and schematic 
front view of the periodic triple point line structure (right); Mach stem-Mach stem 
(MM), Mach stem–incident shock (MI), and incident shock–incident shock (II).
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Fig. 13. Snapshots of the iso-volume of the OH mass fraction, overlapped by the 
pressure iso-surfaces (blue) at 20 kPa of 80% opacity (left) in the pipe bend and 
schematic front view of the periodic triple point line structure (right); Mach stem-
Mach stem (MM), Mach stem–incident shock (MI), and incident shock–incident 
shock (II).

region [39]. The M-M region is constructed by both sets of Mach 
stems. The I-I region is constructed by both sets of incident shock 
waves and the M-I region is mixed, showing both types of waves. 
The cellular structure of the front was not recorded in the exper-
iment [38], but the straight part of the pipe can be considered a 
rectangular channel. In Fig. 12, the TPLs on the detonation front 
in both dimensions do not collide with each other simultaneously, 
presenting a rectangular type out of phase [40–42].

Fig. 13 presents the decouple phenomena of the leading shock 
wave and the reaction front in the bend. The TPLs are not paral-
lel to the wall because of the different local velocities at different 
radii, and the reaction front detaches from the shock near the in-
ner wall. At 90 μs, the cellular structure finally disappears. Two 
formed transverse waves move along the radial direction. A large 
unburned and preheated region is observed at 105 μs. The detona-
tion only is sustained near the outer wall in an over-driven state.

The slices on the bottom wall are extracted to make a com-
parison with the experimental results. As depicted in Fig. 14, the 
locations of the decoupled leading shock wave and the reaction 
front are in good agreement with the experimental schlieren im-
ages. The figures also show that the main features, including the 
leading shock waves and the flame front, are dynamically captured 
by the finest meshes.

4.2. Detonation in round tubes

In addition to the rectangular channel, the 3-D detonation 
structure is also simulated in a round tube to test the capability of 
the present solver. Experimental studies [43] and numerical simu-
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lations [44] both show that the cross-section shape and geometry 
confinement have effects on the detonation propagation mode and 
characteristics. Besides, the experimental observed spinning deto-
nation [45–47] is a unique phenomenon in the round tube and it 
still has attracted researchers’ attention in recent years [48,49].

However, there have been only a limited number of 3-D numer-
ical studies on these problems over the past decades [44,50–53], 
because the combination of detailed chemistry models and high-
resolution simulation is computationally quite expensive. The use 
of the adaptive mesh refinement technique can be particularly 
beneficial for this problem. In this section, the detonation is nu-
merically studied in round tubes with two different diameters. 
These 3-D simulations are aimed at estimating the performance 
of the AMR technique for simulations of detonations in round tube 
problems.

To establish a cylindrical body-fitted grid without singularity in 
the centre, a convex combination mapping strategy [54] based on 
a single block hierarchy is used in the present case. A perfectly 
stirred stoichiometric hydrogen and oxygen mixture with 70% ar-
gon is filled into a round tube at 298 K and 10 kPa. The diameter of 
the tube D is 16 mm, corresponding to one detonation cell size λ. 
In order to decrease the computational cost, a nearly stationary re-
action front under Galilean transformation is studied by setting the 
inflow velocity of the unburned gas as C-J velocity. The length of 
the tube is 30 mm and a 1-D ZND structure is initialised from 0 to 
20 mm. An unreacted rectangular pocket is initially placed behind 
the reaction front at 2086 K and 70 kPa. The slip and adiabatic 
boundary condition is set for the wall. Extrapolation boundary con-
ditions are employed for both the inlet and outlet.

A three-level grid is used in this case and the refinement fac-
tor for each level is 2. The base mesh uses 240 × 128 × 128 
cells, resulting in a base mesh size of 0.125 mm (7 pts/Lin) in 
the ξ -direction, and a base mesh size ranging from 0.198 mm 
(4.4 pts/Lin) to 0.063 mm (13.9 pts/Lin) in both η-direction and 
ζ -direction. The corresponding mesh size at the finest level is 
0.03125 mm (28 pts/Lin) in the ξ -direction, 0.0495 mm (17.6 
pts/Lin) to 0.01575 mm (55.6 pts/Lin) in η- and ζ -direction. The 
refinement criteria for temperature, density and pressure are given 
as εT = 500 K, ερ = 0.05 kg/m3 and εp = 40 kPa, respectively. The 
adaptive computation uses approximately 11.0 M to 38.2 M instead 
of 251.7 M cells in a uniform case. The calculations are performed 
on 240 cores (Intel Xeon E5-2670 2.0 GHz). Typical run times for 
a simulated time of 200 μs were approximately 4 days wall clock 
time.

Fig. 15 shows the slices of the temperature gradients in a deto-
nation cell evolution period. At 123 μs, the triple points on the y-
and z-planes are observed where the Mach stems, incident shock 
wave and transverse wave interact. The slip lines curl into vor-
tices and embedded jets behind the incident shock [55]. The triple 
points on both planes all move towards the centre of the tube. At 
127 μs, the triple points collide and new triple points are gen-
erated, which then move towards the wall. The jet behind the 
detonation front is detached from the leading shock. A new jet is 
formed after the collision in the centre. New triple points are re-
flected by the wall and finally travel towards the centre again at 
137 μs, resulting in a similar structure compared with that at 123 
μs. A whole period of the cellular structure evolution is completed 
and the duration is around 14 μs.

Fig. 16 displays the iso-surface in terms of the density at differ-
ent times. The iso-surface is coloured by the temperature contours. 
Although the small structures in the wake of the shock are still not 
sharply resolved, the 3-D figure provides a good impression that 
the detonation propagates in the rectangular mode with a single 
cellular structure. The TPLs move to the tube centre and interact 
with the forward vortex ring. The vortex rings are detached and 
propagate downstream. A pair of new forward vortexes are formed 
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Fig. 14. Pseudo-colour image of refinement levels, temperature and experimental schlieren (from [38]).
after the collisions of TPLs, which causes the front to bulge. New 
TPLs are also generated and move to the wall, starting a new pe-
riod of the cellular structure evolution.

Fig. 17 shows that the mesh around the detonation head and 
at the corners is adaptively refined to improve the accuracy of 
simulations. More processors are used in the refined regions with 
higher workloads. The hierarchical mesh is distributed to proces-
sors based on a space-filling curve [15] in computational space. 
Continuous redistribution, while the mesh is changing, is ensuring 
a balanced workload at run time.

In addition to the round tube with a diameter of one detona-
tion cell, a half detonation cell size tube is also simulated with 
the same initial configurations. As displayed in Fig. 18, the deto-
nation propagates in a rectangular mode at the early stage. Similar 
evolution of triple points and jets behind the incident shock is ob-
served. At t = 120 μs, a single head detonation wave is generated at 
the front and the cellular pattern disappears. The detonation spins 
counter-clockwise direction from the right-hand side view. A typi-
cal spinning detonation is observed and propagates spirally to the 
outlet even in the Galilean frame. Compared with the case with D
=0.5 λ, the transverse wave is constrained when the duct diameter 
is smaller than the detonation cell size. Only a single transverse 
wave remains and results in the spinning mode [1,13].

4.3. Detonation wave/boundary layer interaction

In the previously studied configurations, the unburned gases are 
considered stationary with respect to the reaction front, and slip 
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boundary conditions are employed for the walls. However, with 
a high-speed inflow, the effects of bifurcated shock structures on 
shock-flame interactions become obvious [56]. In addition, the in-
teraction of the boundary layer can impact the timing, location, 
and manner in which detonation occurs [57]. These factors are not 
negligible and are referred to as detonation wave/boundary layer 
interactions (DWBLI).

In order to test the capability of the present solver for simulat-
ing reactive boundary flow, a DWBLI case [58] is simulated using 
the solver on an adaptive stretched grid. The computational do-
main is set as a cuboid with a length of 85 mm, a height of 42 mm 
and a width of 16 mm. A high-speed hydrogen-oxygen-nitrogen 
mixture flows through a channel from the right-hand to the left-
hand side. The interaction between the detonation and boundary 
layer is studied.

The initial temperature of the unburned H2/O2/N2 mixture is 
581 K and the pressure is set as 36.1 kPa with the molar ratio 
0.56:1.0:2.9. The induction length Lin of the detonation is com-
puted as 2.15 mm under this condition. The domain is initialised 
with a 1-D ZND solution from x = 0 mm to x = 50 mm. The right-
hand boundary is given a Dirichlet boundary condition. The inflow 
velocity is set as 1532 m/s. The left-hand boundary is set as an ex-
trapolated outflow boundary. The top and bottom boundaries are 
non-slip adiabatic walls from x = 0 mm to x = 80 mm, otherwise 
the boundaries are slip. The front and back boundaries are slip adi-
abatic walls.

A stretched grid is used as the base grid in this case, and the 
grid stretching ratio is set as 1.05 in the boundary layer. The ini-
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Fig. 15. Snapshots of the slices of the gradient of temperature, overlapped by the meshes at 80% opacity.
tial base mesh resolution is 340 × 400 × 64 cells. The height of 
the first layer mesh is 5.61 ×10−6 m and the viscous shear layer 
thickness is estimated as 5.59 ×10−5 m [58]. Hence, around 7 cells 
are distributed in the viscous scale of the boundary layer. The re-
spective first 60 layers of cells from the top and bottom boundary 
are not adaptively refined in the computing process. The coarsest 
base grid in the channel centre is 0.28 mm. With a three-level re-
finement (2, 2), the coarsest grid in the domain is 0.07 mm (30.7 
pts/Lin). The refinement criteria for temperature, density and pres-
sure are given as εT = 500 K, ερ = 0.03 kg/m3 and εp = 40 kPa, 
respectively. A finer resolution is used in the 2-D simulation based 
on a five-level Cartesian grid in Ref. [58], in which 5 cells are en-
sured in the viscous scale but a higher resolution is used for the 
detonation structure (137.8 pts/Lin).

It is noted that the viscous boundary layer and the viscous 
structure are still not fully resolved even under the present resolu-
tion. However, the grid resolution is chosen based on our available 
computing resources for the validation of the prototype solver. 
Using the stretched grid provides an approach to simulate the 
detonation problem involving viscous boundary layers efficiently 
compared to using a uniform grid. In this case, the adaptive com-
putation uses approximately 10.8 M to 88.0 M instead of 557.1 
M cells in a uniform case. The calculations are conducted on 240 
cores (Intel Xeon E5-2670 2.0 GHz). Typical run times for a simu-
lated time of 145 μs were approximately 12 days wall clock time.

Fig. 19 (a) shows the slices of the pseudo-colour image of the 
temperature gradient on the z =0 mm plane. The leading oblique 
shock, boundary layer flame and detonation front are observed in 
the numerical result. The vortex structures in the shear layer in-
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duced by the Kelvin–Helmholtz (KH) instability are also captured. 
Fig. 19 (b) is the mass fraction of OH superposed on pressure con-
tours. The detonation front in the central flow is composed of a 
stand-off Mach stem and the subsequent reaction front. It is de-
scribed as a Mach stem-induced detonation (MSID). The unburned 
pockets are also observed and further confirm the accuracy of the 
present solver when simulating this problem.

As shown in Fig. 19 (c) and (d), the base grid used in this case 
is stretched near the non-slip boundaries. The boundary flow is 
solved by the stretched grid itself, while the AMR is used in the 
domain interior except for the near-boundary region to improve 
the accuracy for solving the shock wave and detonation wave. 
These figures also show that the main features in the central flow 
are captured by the highest-level mesh.

Fig. 20 illustrates the slices of the pseudo-colour image of tem-
perature at various times. At t = 0 μs, the 1-D ZND solution is 
initialised on a Galilean frame. At t = 50 μs, temperature recov-
ery is observed near the non-slip part of the top and bottom wall. 
The oblique shock-induced combustion (OSIC) and boundary auto 
ignition result in a flame in the boundary layer. The Mach stem-
induced detonation (MSID) front stands in the middle main stream. 
The slip lines behind the triple points develop into unstable shear 
layers downstream because of the KH instability. A pair of large-
scale unburned pockets is formed between the MSID and the OSIC. 
Small unburned pockets are also observed in the boundary layer 
flame and are consumed in the following time sequences. The un-
stable combustion in the boundary layer has been considered as 
the main source for the oblique shock fluctuation.
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Fig. 16. Pseudo-colour image of the temperature based on the iso-surfaces of the density at 40% opacity, D = λ.

Fig. 17. Slices of processor distribution and slices of grids at 40% opacity.
The fluctuating oblique shock waves lead to an unsymmetrical 
structure and also enforce the triple points to move towards the 
channel centre. As a result, the height of the Mach stem eventu-
ally decreases and the Mach stem finally vanishes after the two 
oblique shock waves collide. Fig. 20 shows that the reaction front 
behind the Mach stem is detached from the intersection point and 
propagates downstream at t = 50 μs. The OSIC/MSID pattern turns 
into a pure OSIC pattern and only the OSIC is maintained in the 
channel.

Fig. 21 displays the typical OSIC/MSID pattern in a 3-D density 
iso-surface image coloured by the temperature. The small vortexes 
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are resolved in the boundary layer. The present 3-D results repro-
duce some typical features, which are also observed in previous 
experiments and the 2-D simulations of Ref. [58]. The main differ-
ence between our present numerical result and the 2-D numerical 
result is that our 3-D simulation predicts a faster formation of the 
OSIC/MSID pattern. An OSIC/MSID mode is observed at t = 70 μs 
in the 3-D simulation, whereas a similar structure is formed only 
at t = 235 μs in the 2-D simulation. Besides, a mode change is 
observed in the 3-D results instead of dynamically maintaining it 
as in the 2-D results. A possible reason is that the 3-D simulation 
has more fluctuations in the z-direction. As shown in Fig. 20 and 
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Fig. 18. Pseudo-colour image of the temperature based on the iso-surfaces of the density in 40% opacity, D =0.5 λ.

Fig. 19. Slices of pseudo-colour image of the temperature gradient, mass fraction of OH superposed on line contours of pressure and image of grids at t=60 μs.
Fig. 21, the non-uniform temperature distribution on the bottom 
wall also indicates the 3-D influences.

However, the real 3-D effects on this problem need to be stud-
ied by adopting the non-slip wall boundary conditions on both the 
front and back sides [56]. In addition, the temperature of the wall 
also plays an influential role in the OSIC. These factors are beyond 
the scope of this work and require further study.

5. Conclusion

In the present work, we extend our work on a parallel, adap-
tive high-speed combustion solver on mapped, structured meshes 
to three spatial dimensions, including the coordinate transforma-
tion, the grid-aligned flux scheme, MUSCL-Hancock reconstruction, 
fluxes corrections, restriction and prolongation operators for the 
adaptively refined mapped mesh. Some benchmark tests have been 
carried out to verify and validate the accuracy and robustness of 
the present solver. The numerical solutions obtained by the present 
solver are in good agreement with published numerical results.

The present solver is then used to simulate 3-D detonation 
propagation in a smooth pipe bend. This simulation reproduces 
13
typical features observed by published experimental results. The 
solver’s capabilities are further demonstrated through typical cases, 
including detonation propagation in a smooth round tube and in-
teraction with boundary layers in a channel. The dynamic adaption 
method reduces the total mesh scale from O (108) ∼ O (109) to 
O (106) ∼ O (107) in these 3-D cases without loss of main charac-
teristics. The results confirm that the new 3-D solver is effective in 
adapting the parallel mesh at run time to rapidly propagating lo-
calised combustion fronts. In the future, a mapping strategy based 
on a multi-block hierarchy will be developed and the solver will 
be extended to higher order to improve the accuracy for further 
large-scale simulations of viscous multi-species reactive problems.
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Fig. 20. Slices of pseudo-colour image of the temperature at different times.

Fig. 21. Pseudo-colour image of the temperature based on the iso-surfaces of the density at t=70 μs for the OSIC/MSID structure.
14
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Appendix A. Riemann solver

The multi-component hybrid Roe/HLL scheme is used in this 
work to calculate the inviscid flux. The state vectors are rotated to 
the orthogonal direction of the interface. The flux on the interface 
can be computed by

F = 1

2

[
FL + FR − | Â| (Q R − Q L)

]
. (A.1)

Â is a constant matrix for the Riemann problem that approximates 
the original Jacobian. By projecting the data difference (Q R − Q L)

onto the right eigenvectors of the diagonalizable matrix, the equa-
tion can be rewritten as

F = 1

2

⎛
⎝FL + FR −

Neq∑
m=1

α̂m|λ̂m|rm

⎞
⎠ . (A.2)

In order to compute the flux, one requires the solutions of the 
wave strengths α̂m , the eigenvalues λ̂m and the right eigenvectors 
rm . Neq is the number of equations. The wave strength α̂m for the 
multi-component equations is computed by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αm = (�p ∓ ρ̂â�u)/2â2, m = 1 or m = Nsp + 4,

αm = �ρi − Ŷ i�p/â2, m = 2, . . . , Nsp + 1,

αm = ρ̂�v, m = Nsp + 2,

αm = ρ̂�w, m = Nsp + 3.

(A.3)

The symbol � denotes the difference operator of the quantities 
and the superscript ∧ denotes the Roe average of the quantities. 
The standard Roe averages are given as

ρ̂ = √
ρL + ρR,

q̂ =
√

ρLqL + √
ρRqR√

ρL + √
ρR

, q = u, v, w, H, Yi, T ,
1

W̄
.

(A.4)

Use the average temperature to compute the specific heats for each 
species, then the averaged mixture specific heats at constant pres-
sure and the averaged specific heat ratio can be evaluated as

ĉp =
Nsp∑
i=1

Yiĉpi , γ̂ = Ru

ˆ̄W ĉp − Ru

. (A.5)

The average speed of sound is computed by

â =
Nsp∑
i=1

Ŷ iφ̂i − (γ̂ − 1)Û 2 + (γ̂ − 1)Ĥ, (A.6)

where φ̂i is the average partial derivative of p with respect to Yi , 
and Û 2 is the sum of the square of the average velocities,

φ̂i = (γ̂ −1)

(
Û 2

2
− Ĥ

)
+ γ̂ Ri T̂ , Û 2 =

(
û2 + v̂2 + ŵ2

)
. (A.7)

The matrix of right eigenvectors is given as
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ŷ1 1 0 · · · 0 0 0 Ŷ1
... 0

. . . 0
...

...
...

...
...

... 0
. . . 0

...
...

...

Ŷ Nsp 0 · · · 0 1 0 0 Ŷ Nsp

û − â û · · · · · · û 0 0 û + â
v̂ v̂ · · · · · · v̂ 1 0 v̂
ŵ ŵ · · · · · · ŵ 0 1 ŵ

Ĥ − ûâ Û 2 − φ1
γ̂

· · · · · · Û 2 − φNsp

γ̂
v̂ ŵ Ĥ + ûâ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A.8)

The eigenvalues for the matrix Â are given as

λ̂1 = û − â,

λ̂m = û, m = 2, . . . , Nsp + 3,

λ̂m = û + â, m = Nsp + 4.

(A.9)

Now, the quantities required for calculating the flux on the inter-
face are all available. In addition, the density and pressure in the 
intermediate states of the linearized Riemann problem are evalu-
ated to check their plausibility. If density and pressure are positive, 
the HLL method will not be used. A multi-dimensional entropy 
correction is employed to avoid the violation of the entropy con-
dition. A mass fraction positivity correction is also used to avoid 
unphysical solutions.

If one of the quantities in terms of density and pressure is neg-
ative, the HLL method will be used to recompute the flux. The HLL 
method approximates the solution of the Riemann problem simply 
by two discontinuous waves. The flux on the interface is computed 
by

F =

⎧⎪⎨
⎪⎩

FL, sL > 0
sR FL−sL FR+sRsL(Q R−Q L)

sR−sL
, sL ≤ 0 ≤ sR

FR, sR < 0.

(A.10)

sL and sR denote approximations to the smallest and largest signal 
speed involved in the Riemann problem. The speeds are estimated 
by

sL = min (uL − aL, uR − aR) ,

sR = max (uL + aL, uR + aR) .
(A.11)

In addition to the hybrid Roe/HLL scheme, the HLLC scheme is also 
implemented in the present solver. Compared to the described HLL 
scheme, the HLLC scheme uses a three-wave model and resolves 
the contact discontinuity. Firstly, the pressure at the interface is 
evaluated as

p∗ = max
(
0, ppvrs

)
, ppvrs = 1

2
(pL + pR) − 1

2
(uR − uL) ρ̄ā,

(A.12)

where

ρ̄ = 1

2
(ρL + ρR) , ā = 1

2
(aL + aR) . (A.13)

For the three-wave model, the left, right and intermediate wave 
speeds are estimated as

sL = uL − aLqL,

sR = uR + aRqR,
(A.14)

with

qK =
⎧⎨
⎩

1 if p∗ ≤ pK ,[
1 + γ +1

2γ

(
p∗
p − 1

)]1/2
if p∗ > pK ,

(A.15)

K
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where the subscript K denotes the left or the right state, and

s∗ = pR − pL + ρLuL (sL − uL) − ρRuR (sR − uR)

ρL (sL − uL) − ρR (sR − uR)
. (A.16)

The flux at the interface is then evaluated as

F =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

FL, sL > 0,

FL + sL(Q ∗
L − Q L), sL ≤ 0 < s∗,

FR + sR(Q ∗
R − Q R), s∗ ≤ 0 < sR,

FR, sR ≤ 0,

(A.17)

with the intermediate state vectors

Q ∗
K =

(
sK − uK

sK − s∗

)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρK Y K ,1
...

ρK Y K ,Nsp

ρK s∗
ρK v K

ρK w K

ρK E K + (s∗ − uK )
[
ρK s∗ + pK

(sK −uK )

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A.18)

A 3-D matrix and its inverse matrix are used to rotate the flux be-
fore and after calling the Riemann solver. As introduced in Eq. (7), 
the transformation matrix Ts can be written as

Ts =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0 1 0 0 0 0
0 0 0 ax ay az 0
0 0 0 bx by bz 0
0 0 0 cx c y cz 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.19)

where ax , ay and az are the components of the unit normal vector 
of the physical interface. b and c are the unit tangential vectors, 
which can be computed by an orthogonalization method.

Appendix B. Mapping functions used for the grid generation

The stretched mesh in Section 3.1 is mapped by a clustering 
function as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y = rd ∗ Ly

[
1 + sinh[β(η−A)]

sinh(β A)

]
, A = 1

2β
ln

(
1+(eβ−1

)
rd

1+(e−β−1
)
rd

)
x = ξ ∗ Lx

z = rd ∗ Lz

[
1 + sinh[β(ζ−A)]

sinh(β A)

]
, A = 1

2β
ln

(
1+(eβ−1

)
rd

1+(e−β−1
)
rd

) ,

(B.1)

where the clustering factor β is 6 and the factor rd is 0.5 for this 
case. Lx, Ly and Lz are the total length of the domain in x-, y- and 
z-direction, respectively. The following function is used to generate 
the skewed mesh used in Section 3.1:⎧⎨
⎩

x = ξ + η tan (π/12)

y = η + ζ tan (π/12)

z = ζ + ξ tan (π/12)

. (B.2)

For the distorted mesh in Section 3.1, the mapping function is 
given as
16
⎧⎨
⎩

x = ξ + Lx Sx sin (2πξ/Lx) sin
(
2πη/Ly

)
z = ζ

y = η + Ly Sy sin (2πξ Lx) sin
(
2πη/Ly

) , (B.3)

where the subscripts x and y denote the respective direction. L
is the total length of the domain and S is the scaling factor in the 
respective direction. The scaling factor S is set to 0.075 for each di-
rection. Both of these factors satisfy the constraint 0 ≤ 2π S ≤ 1 to 
ensure that the mesh does not tangle. The same distorted mapping 
is used in Section 3.2, Section 3.3 and Section 3.4 (the z direction 
is not used). The different computational domains in these cases 
result in different physical domains. The use of negative compu-
tational coordinates leads to a distorted boundary as shown in 
Fig. 3, which is beneficial for verification. The non-negative com-
putational coordinates hold the Cartesian boundary and distort the 
grid in the centre as shown in Fig. 8, which can be applied to a 
periodic boundary, i.e. in Section 3.2.

In Section 4.1, the pipe bend with a straight channel is con-
structed based on a piecewise function as

x =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Lx,1 + Lx,1(η − Ly,1)/Ly,1, if η ≤ Ly,1

Lx,1 + (rin + ξ W ) cos(0.5π
η−Ly,1

Ly,2−Ly,1
− 0.5π),

if Ly,1 < η ≤ Ly,2

Lx,1 + rin + ξ W , otherwise

y =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − ξ)W , if η ≤ Ly,1

rout + (rin + ξ W ) sin(0.5π
η−Ly,1

Ly,2−Ly,1
− 0.5π),

if Ly,1 < η ≤ Ly,2

rout + Lx,2
η−Ly,2
1−Ly,2

, otherwise

z = ζ,

(B.4)

where Ly,1 = 0.56 and Ly,2 = 0.83 are the bounds of the straight 
part of the pipe. The length of the horizontal straight pipe Lx,1 is 
13 cm and that of the vertical straight pipe Lx,2 is 4 cm in this 
case. rin and rout are the inner (2 cm) and outer radius (6 cm) 
of the pipe bend. W is the pipe width (4 cm). The computational 
space is set to [0, 1] × [0, 1] × [0, 1.6].

In Section 4.2, a convex combination mapping strategy [54] is 
used that reads

d = max(|η|, |ζ |),
r = max(

√
η2 + ζ 2,1 × 10−10),⎧⎪⎪⎨

⎪⎪⎩
x = ξ

y =
[
d3η/r + (1 − d2)η

√
2
]

r1

z =
[
d3ζ/r + (1 − d2)ζ

√
2
]

r1

.

(B.5)

r1 denotes the radius of the mapped cylinder. The computational 
space is set to [0, 3] × [−1, 1] × [−1, 1].

For the 3-D detonation/boundary flow case in Section 4.3, the 
mesh is only stretched in the y-direction with β as 1.05,⎧⎪⎨
⎪⎩

x = ξ

y = Ly
(β+1)−(β−1)

{[(β+1)/(β−1)]1−η
}

[(β+1)/(β−1)]1−η+1
z = ζ

. (B.6)

Appendix C. Analytical manufactured solution

The parameters for 3-D manufactured solutions are given in Ta-
ble C.1.
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Table C.1
Constants for 3-D Navier-Stokes supersonic manufactured solutions.

φ φ0 φx fs,x aφx φy fs,y aφy φz fs,z aφz

ρY − O2
(
kg/m3

)
0.75 0.1 sin 1.0 0.2 cos 0.75 0.1 sin 0.5

ρY − N2
(
kg/m3

)
1.0 −0.15 cos 0.5 0.1 sin 1.0 0.2 cos 0.75

u(m/s) 800 60 sin 1.5 30 sin 0.75 40 sin 0.5
v(m/s) 850 40 cos 1.0 50 sin 1.25 60 sin 0.5
w(m/s) 800 50 cos 1.25 60 sin 0.75 40 sin 1.0
T (K) 1000 100 cos 1.0 75 cos 0.5 50 cos 0.75
μ(kg/(m · s)) 1.0 0.5 sin 0.5 0.3 cos 1.0 0.2 sin 0.75
κ(W/(m · K)) 1.0 0.3 cos 1.0 0.5 sin 1.0 0.4 cos 0.45
D − O2

(
m2/s

)
1.0 0.25 sin 0.5 0.4 cos 0.75 0.3 cos 1.0

D − N2
(
m2/s

)
1.0 -0.25 cos 0.75 0.5 sin 0.5 0.2 sin 0.75
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