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The Aharonov-Anandan phase and geometric double-quantum excitation in
strongly-coupled nuclear spin pairs

Christian Bengs,a) Mohamed Sabba,b) and Malcolm H. Levittc)

School of Chemistry, University of Southampton, SO17 1BJ, UK

(Dated: February 1, 2023)

The Aharonov-Anandan phase is a contribution to the phase acquired by cyclic evolution of a quantum state
which depends only on the geometric properties of its trajectory. We report the study and the exploitation of
the Aharonov-Anandan phase by NMR interferometry techniques in homonuclear spin-1/2 pairs in the near-
equivalence limit. We introduce a new method for engineering effective zero-quantum Hamiltonians with
arbitrary phase in the transverse plane. We use this method to generate a variety of cyclic zero-quantum
paths enabling direct study of the geometric Aharonov-Anandan phase to probe the rotational characteristics
of the zero-quantum subspace. We show that the geometric Aharonov-Anandan phase may be used for
efficient double-quantum excitation in strongly coupled spin pairs. We find that geometric double-quantum
excitation outperforms the standard method by a factor of two in experiments performed on a typical case
involving near-equivalent spin pairs.

I. INTRODUCTION

Cyclic evolution of a physical system is typically con-
sidered to be any process that eventually leads to the re-
turn of the systems state to its original value. Although
this intuitive definition might be true in most classical
situations, quantum systems undergoing cyclic evolution
do in general not follow this rule. Instead, the initial and
final state of the quantum system may differ by a mean-
ingful phase factor. This particularly intriguing quantum
phenomenon has first been described by Berry1 in the
context of adiabatic cyclic quantum evolution. Berry has
shown that the final phase of the quantum state is a well-
defined combination of a dynamic phase and a geometric
phase. The geometric phase only depends on the geome-
try of the parameter curve of the adiabatic Hamiltonian,
but not on the detailed dynamics along the curve. This
concept was later generalised by Aharonov and Anan-
dan2, lifting the adiabaticity condition, and rephrasing
the argument in terms of the cyclic evolution of pure
state density operators rather than parameter space tra-
jectories.

Since then experimental demonstrations of the geo-
metric phase have been performed by NMR interferom-
etry3,4. However, so far such demonstrations have only
been performed on isolated or weakly-coupled spin sys-
tems5–11, and without much emphasis on any practi-
cal applications of such phenomena. Here we describe
theoretically, and demonstrate experimentally, the direct
measurement of geometric phase factors in coupled pairs
of 13C nuclei in the near-equivalence regime. This is an
important regime for NMR experiments involving long-
lived spin states such as nuclear singlet order12–19.

Strongly-coupled spin pairs are difficult to manipu-
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late in the near-equivalence limit. The vanishing reso-
nance frequency difference between the spins complicates
the application of local rotations as the spins respond
identically to the application of external magnetic fields.
We address this issue by introducing a new technique
to engineer arbitrary effective Hamiltonians in the zero-
quantum subspace. This method is used to construct a
set of cyclic trajectories in the zero-quantum subspace.
In each case, evolution of the spin system through the
cyclic trajectory generates a geometric, or Aharonov-
Anandan, phase, defined by the geometric properties of
the trajectory, and which is measured by NMR interfer-
ometry. These experiments also reveal the spinor charac-
ter of the zero-quantum subspace of a strongly-coupled
spin-1/2 pair.

We further demonstrate that the geometric phase may
be exploited for efficient double-quantum excitation in
nearly-equivalent spin-1/2 pairs. Double-quantum NMR
methods have been used extensively for spectral edit-
ing20, and for 13C spectral assignment21. In addition,
the relaxation of double-quantum coherences is sensitive
to cross-correlation effects, thereby providing informa-
tion on molecular geometry22–24.

However, most double-quantum excitation schemes are
tailored towards weakly-coupled spin systems. One such
example is the INADEQUATE20,25 experiment (incred-
ible natural abundance double quantum transfer exper-
iment), which was originally developed for the selection
of satellite signals in natural abundance 13C compounds.
The INADEQUATE sequence is also capable of exciting
double-quantum coherences in strongly coupled spin sys-
tems as discussed by Nakai and McDowell 26 . However,
in the near-equivalence limit, the double-quantum exci-
tation time scales as TDQ ∼ J/(∆2), where ∆ represents
the resonance frequency difference, and J the scalar cou-
pling constant between the two spins27. The long double-
quantum excitation time leads to considerable relaxation
losses.

As discussed below, the long double-quantum ex-
citation times may be attributed to an exclusive re-
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liance on the dynamic phases acquired by the quan-
tum states. As shown below, it is possible to design
more efficient double-quantum excitation schemes in the
near-equivalence regime with double-quantum excitation
times on the order of TDQ ∼ π/(2∆), by exploiting the
geometric Aharonov-Anandan phase. We call this ap-
proach geometric double-quantum excitation.

II. THE AHARONOV-ANANDAN PHASE

Consider the evolution of a pure quantum state |ψ(t)〉
returning to its initial value |ψ(0)〉 at time t = T up to
some phase factor φtot

|ψ(T )〉 = exp(+iφtot)|ψ(0)〉. (1)

The evolution of |ψ(t)〉 induces a closed curve C (in ex-
ample a periodic, non-constant curve28) in the projective
Hilbert space P(H).

|ψ(T )〉〈ψ(T )| = |ψ(0)〉〈ψ(0)|. (2)

The evolution time T may be regarded as the period of
the cycle C in P(H).

Aharonov and Anandan2 have shown that the accumu-
lated phase φtot acquired over the cycle C may be split
into a dynamic phase factor φdyn and a geometric phase
factor φgeo

φtot = φdyn + φgeo. (3)

The dynamic phase encodes information about the
Hamiltonian of the system and may be calculated as fol-
lows

φdyn = −i
∫ T

0

〈ψ(t)| d
dt
ψ(t)〉dt. (4)

The geometric phase φgeo does not depend upon the ex-
act dynamics of the system but only on the geometric
properties of the curve traced out in P(H). In the case
of a two-level system, for example, P(H) may be identi-
fied with the Bloch sphere. For a closed curve on S2 the
geometric phase is given up to a sign by one-half of the
solid angle subtended by the cycle C at the origin of the
unit sphere (see supplement)

φgeo(C) = ± 1
2Ω(C), (5)

The sign depends in general on the details of the cyclic
evolution, for example the sense in which the cycle is
traversed.

In the case of adiabatic cyclic transformations of spin
states, for example by a slow variation in the direc-
tion of a magnetic field, the geometric or Aharonov-
Anandan phase is identical to Berry’s phase1,2. How-
ever, the Aharonov-Anandan phase is more general
than Berry’s phase, since adiabaticity is not required.
The experiments described in this paper do not involve
adiabatic transformations, and exploit the Aharonov-
Anandan phase, not Berry’s phase.

Figure 1. General pulse sequences for NMR interferome-
try and double-quantum experiments on near-equivalent spin
pairs. (a) NMR interferometry. The initial z-magnetisation is
converted into single-quantum triplet-triplet spin coherences.
A zero-quantum cycle C (equation 2) gives the pair of triplet-
triplet coherences a phase difference φtot given by the sum of
the dynamic phase φdyn and the geometric phase φgeo (equa-
tion 3) for the cycle. Interference between the coherences
leads to an amplitude modulation of the transverse magneti-
sation. The signal amplitude is proportional to cos(φtot).
(b) Double-quantum excitation. The additional (π/2)y pulse
excites double quantum coherences with an amplitude pro-
portional to sin(φtot). (c) Double-quantum filtration. The
first pulse sequence block excites double-quantum terms in
the density operator with the phases of all pulse elements
being shifted by ΦA. For the reconversion step all pulse se-
quence elements are shifted by ΦB with the final π/2 pulse
omitted. This has the effect of converting double-quantum
terms into observable magnetisation. Lastly, the phase of the
receiver is set to Φrec. Double-quantum filtration is achieved
by averaging over individual transients in combination with
a suitable choice of the phases ΦA, ΦB, Φrec a typical exam-
ple being the four-step phase cycle given by ΦA = {0, 0, 0, 0},
ΦB = {0, 1

2
π, π, 3

2
π} and Φrec = {0, 3

2
π, π, 1

2
π}29,30.

III. MANIPULATIONS OF STRONGLY COUPLED
SPIN-1/2 PAIRS

A. NMR interferometry

The Aharonov-Anandan phase may be studied by
NMR interferometry3,4,6. Consider for example the pulse
sequence shown in figure 1a. The pulse sequence consists
of an initial (π/2)y pulse followed by a cyclic pulse se-
quence element C, and a detection period. This works
as follows: Initially the spins are at thermal equilibrium
(figure 2a). The density operator for a thermally equili-
brated ensemble of near-equivalent spin-1/2 pairs in the
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Figure 2. Spin-state evolution under the NMR interferome-
try experiment shown in figure 1. (a) Excess populations of
the spin system in thermal equilibrium. (b) Single-quantum
triplet-triplet coherences excited by the initial (π/2) pulse are
indicated by a curvy arrow. Cyclic evolution in the |T0〉-|S0〉
subspace (see inset) imposes a phase factor on the |T0〉 state.
(c) The opposite phase factors for the two (-1)-quantum co-
herences are indicated by colours. This phase difference is
observable as a modulation of the spectral intensity.

high temperature limit is given approximately by29

ρeq ' 1
41 +Meq(I1z + I2z)

= 1
41 +Meq(|T+1〉〈T+1| − |T−1〉〈T−1|),

(6)

where the nuclear singlet and triplet states, and their
numbering, are given by

|1〉 = |S0〉 = (|αβ〉 − |βα〉)/
√

2,
|2〉 = |T+1〉 = |αα〉 ,
|3〉 = |T0〉 = (|αβ〉+ |βα〉)/

√
2,

|4〉 = |T−1〉 = |ββ〉 ,

(7)

and Meq represents the equilibrium magnetization of the
spin ensemble.

An initial (π/2)y-pulse generates a pair of coherences
between the outer triplet states and the central triplet
state (see figure 2b)

ρ(0) = 1
41 +Meq(I1x + I2x)

= 1
41 +Meq{|T0〉(〈T+1|+ 〈T−1|) + h.c.},

(8)

where h.c. refers to the hermitian conjugate. Suppose
now that we are able to generate a unitary operation
V (T ) of the type

V (T )|S0〉 = exp(+iξ)|S0〉,
V (T )|T0〉 = exp(+iφtot)|T0〉,
V (T )(|T+1〉+ |T−1〉) = |T+1〉+ |T−1〉.

(9)

The unitary operation V (T ) has no net effect on the
outer triplet states but imposes phase factors on the cen-
tral triplet state and the singlet state. As indicated in
figure 2c the operation V (T ) generates a cyclic evolu-
tion within the {|S0〉, |T0〉} subspace, leading in general

to a phase change in the observable single-quantum co-
herence. Focusing on the traceless part of the density
operator, the action of V (T ) may be expressed as follows

ρ(T ) = V (T )(I1x + I2x)V †(T )

= 2−1/2 exp(+iφtot)|T0〉(〈T+1|+ 〈T−1|) + h.c.

= cos(φtot)(I1x + I2x) + 2 sin(φtot)(I1yI2z + I1zI2y),
(10)

and the total phase acquired by the |T0〉 state is encoded
as an amplitude modulation of the transverse magneti-
zation. This is in contrast to the original interferometry
experiments performed by Suter et al. 4 where the ac-
quired phase is encoded as a phase shift of the transverse
magnetization. The modulation of the triplet signal am-
plitude by a rotation in the zero-quantum subspace was
previously demonstrated in the context of singlet NMR
by Tayler and Levitt 31 . In that case, the effect was ex-
ploited to optimize the pulse sequence parameters for the
generation of nuclear singlet order.

The phase of the |T0〉 state may therefore be inferred
from the observed signal intensity of the NMR spectrum
S(ω). Since the intensity of the imaginary part of the
spectrum is given by the first “point” of the NMR signal
s(t) we simply have

〈S(ω)〉 =

∫ +∞

−∞
Im{S(ω)}dω = Im{s(0)} = cos(φtot).

(11)
The total phase φtot is the sum of the dynamic phase

φdyn and the geometric phase φgeo (equation 3). Hence,
the geometric phase φgeo may be estimated for any cyclic
trajectory in the {|S0〉, |T0〉} subspace, providing that
the dynamic phase contribution φdyn is known. In some
cases, the dynamic phase φdyn vanishes, so that the sig-
nal amplitude only depends on the geometric phase φgeo.
Some specific cases are discussed in detail below.

B. Geometric Double-Quantum Excitation

The NMR interferometry experiment may be extended
to achieve double-quantum excitation in strongly coupled
spin-1/2 pairs, by appending a (π/2)y pulse, as shown in
figure 1b. To see how double-quantum excitation occurs
consider the last term in equation 10. Application of
a π/2 pulse along the rotating frame y-axis transforms
these spin operators into double-quantum coherence op-
erators:

2Ry(π/2)(I1yI2z + I1zI2y)R†y(π/2) = 2(I1yI2x + I1zI2x)

= i(I−1 I
−
2 − I

+
1 I

+
2 ).
(12)

The observed double-quantum amplitude aDQ is thus di-
rectly related to the total phase φtot as follows

aDQ = sin(φtot). (13)

This observation indicates that the cycle C should be cho-
sen to generate a total phase of φtot = π/2 in order to
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provide double-quantum excitation in nearly-equivalent
spin pairs.

In conventional double-quantum excitation schemes on
weakly-coupled spin systems, such as the INADEQUATE
pulse sequence, the total phase φtot ' π/2 is dominated
by the dynamic phase φdyn, with the geometric phase
φgeo playing a negligible role. However, this approach be-
comes ineffective in the case of near-equivalent spin-1/2
pairs, since very long evolution intervals are required to
build up a sufficient dynamic phase angle26,27. Fortu-
nately, as shown below, the geometric phase φgeo may
be exploited in this regime, leading to efficient double-
quantum excitation even when the chemical shift differ-
ence is much smaller than the J-coupling. We call this
approach geometric double-quantum excitation.

C. Double-Quantum Filtration

Geometric double-quantum excitation blocks may be
incorporated into double-quantum filtration schemes as
shown in figure 1c. The basic filtration scheme con-
sists of double-quantum excitation blocks in combination
with a suitable phase cycle. The first block has all its
pulses shifted by an overall ΦA, and is responsible for
double-quantum excitation. The second block has all its
phases shifted by ΦB, and is responsible for reconversion
of double-quantum terms into observable magnetisation,
which explains the absence of the final 90◦. The receiver
phase Φrec represents an additional degree of freedom.
For the current case double-quantum filtration occurs be-
tween the two excitation blocks.

Consider now the application of the double-quantum
excitation block with all phases shifted by ΦA. Utilising
equation 10 the resulting density operator ρA takes the
form

ρA =i sin(φtot){e−2iΦAI−1 I
−
2 − e+2iΦAI+

1 I
+
2 }+ . . .

(14)
Application of a second double-quantum excitation block
phase-shifted by ΦB and missing its final 90◦ pulse leads
to

ρB =
i

4
sin2(φtot)e

−i(2ΦA+ΦB)(ei4ΦA + ei4ΦB)(I−1 + I−2 )

+ . . . .
(15)

Taking the receiver phase into account the resulting sig-
nal amplitude may be expressed as follows

a(Φ) =
i

4
sin2(φtot)e

−i(2ΦA+ΦB+Φrec)(ei4ΦA + ei4ΦB).

(16)
For a four-step double-quantum phase cycle (an example
is given in the caption of figure 1) the double-quantum
filtered signal amplitude reduces to

aDQF = 2i sin2(φtot), (17)

and is thus proportional to sin2(φtot). Any signals deriv-
ing from undesirable coherences generated by the double-
quantum excitation step are suppressed by the phase cy-
cle.

IV. ZERO-QUANTUM HAMILTONIAN ENGINEERING

We now consider the construction of the unitary op-
eration V (T ) given by equation 9. The rotating-frame
Hamiltonian for a strongly coupled spin-1/2 pair in solu-
tion may be expressed as follows29

H0 =
1

2
ω∆(I1z − I2z) + ωJI1 · I2,

ω∆ = ω0
1 − ω0

2 = 2π∆,

ωJ = 2πJ,

(18)

where we assumed the reference frequency to be cen-
tred between the resonance frequencies of the two spins.
The (rotating-frame) resonance frequency difference of
the spins is given by ω∆, while ωJ represents the mutual
scalar coupling.

We may express the Hamiltonian of the system as fol-
lows

H0 = Ω

(
1

2
sin(θST)(I1z − I2z) + cos(θST)(I1 · I2)

)
,

(19)
where Ω represents the effective frequency of the system

Ω = 2π
√
J2 + ∆2 (20)

and the angle θST quantifies the mixing of the central
triplet state and the singlet state

θST = arctan(
∆

J
). (21)

The mixing angle measures how much the singlet and
triplet states deviate from the true eigenstates of the
Hamiltonian H0

|S0〉
′

= cos( 1
2θST)|S0〉+ sin( 1

2θST)|T0〉,

|T0〉
′

= sin( 1
2θST)|S0〉 − cos( 1

2θST)|T0〉.
(22)

For convenience we introduce the energy shift operator
∆E

∆E = −1

4
Ω cos(θST)1, (23)

and define the energy-shifted Hamiltonian H
′

0 as follows

H
′

0 = H0 + ∆E. (24)

The dynamics remain unchanged by this transformation,
but the Hamiltonian H

′

0 has the advantage that it does
not contain any trivial phase evolution of the triplet
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states. By making use of single transition operators Irsµ
as described by Wokaun and Ernst 32 , and Vega 33 .

Irsx =
1

2

(
|r〉 〈s|+ |s〉 〈r|

)
,

Irsy =
1

2i

(
|r〉 〈s| − |s〉 〈r|

)
,

Irsz =
1

2

(
|r〉 〈r| − |s〉 〈s|

)
,

1
rs =

(
|r〉 〈r|+ |s〉 〈s|

)
, (25)

the Hamiltonian H
′

0 takes the form13,14,34,35

H
′

0 = Ω(sin(θST)I13
x − cos(θST)I13

z − 1
2 cos(θST)113),

(26)
acting only on states 1 and 3, i.e. the singlet state |S0〉
and the central triplet state |T0〉.

Consider now a time-shifted spin echo (TSSE) se-
quence of duration τe = 2τ + δτ consisting of two de-
lays bracketing a single π pulse along the rotating frame
y-axis:

TSSE = (τ + δτ)− (πy)− (τ). (27)

Here, δτ represents a temporal shift of the π-pulse from
an ideal spin echo and (π)y is a 180◦ pulse along the
rotating frame y-axis. Within the single-transition op-
erator formalism the total spin-echo propagator may be
written as34

UTSSE =(i124)R24
x (π)×

(i113) exp(−iH
′

0τ)R13
z (π) exp(−iH

′

0(τ + δτ)).
(28)

Suppose the interval τ takes one of the two values

τ± = Ω−1{π − 1
2Ωδτ ± arccos (cos ( 1

2Ωδτ) tan2 (θST)},
(29)

and the time shift δτ is constrained to the closed interval

δτ ∈ 2π/Ω× [− 1/2,+1/2]. (30)

To first order in θST the total echo duration is then given
by

τ±e = 2τ± + δτ = π/Ω(2∓ 1) +O(θ2
ST), (31)

and the action of the shifted echo propagator may be
described by an effective Hamiltonian of the form

Heff(τ±) = ω13
± I

13
φ − 1

2Ω cos (θST)113 +O(θ2
ST), (32)

where I13
φ represents a spin operator with φ in the trans-

verse plane

I13
φ = cos (φ)I13

x + sin (φ)I13
y . (33)

The angular frequencies ω13
± are given by

ω13
+ = 2θST/(2τ+ + δτ),

ω13
− = (2π − 2θST)/(2τ− + δτ),

(34)

Figure 3. Rotation phase of the effective Hamiltonian of a
time-shifted spin echo (equation 27) as a function of the echo
shift δτ . The τ+ condition may be used to cover phases in
the range φ ∈ [ − π/2,+π/2], whereas the τ− condition may
be used to cover phases in the range φ ∈ [ + π/2,+3π/2]. A
complete covering of the circle requires switching between the
two conditions.

whereas the phase φ is given by

φ =
1

2
Ωδτ. (35)

Equation 35 indicates that the phase of the effective
Hamiltonian may be manipulated by choosing a suitable
echo shift δτ

δτ = 2
φ

Ω
. (36)

where Ω is given by equation 20.
From equation 30 it follows that the phase is restricted

to the interval

φ ∈ [− π/2,+π/2]. (37)

Angular frequencies ω13
+ correspond to anti-clockwise ro-

tations and angular frequencies ω13
− correspond to clock-

wise rotations (ignoring the factor of 2π). By switching
between the τ+ and τ− condition it is thus possible to
generate effective Hamiltonians pointing along any axis
in the x-y plane of the zero-quantum subspace (see fig-
ure 3). Hence the time-shifted echo propagator in the
{|S0〉, |T0〉} subspace is as follows

U± =± i113 exp(+iπJ(2τ± + δτ)113)R13
φ (∓2θST),

(38)
where R13

φ (θ) represents a rotation with phase φ through

an angle θ in the {|S0〉, |T0〉} subspace

R13
φ (θ) = exp(−iθI13

φ ). (39)

The n-fold repetition of a time-shifted echo takes the sim-
ple form

Un± = (±i)n113 exp(+inπJ(2τ± + δτ)113)R13
φ (∓2nθST).

(40)

V. ZERO-QUANTUM CYCLES

Since the {|S0〉, |T0〉} subspace comprises a fictitious
spin-1/2 system, any pure state may be represented by
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Figure 4. Bloch sphere trajectory in the {|S0〉, |T0〉} subspace
tracing out the path of a spherical lune with opening angle
γ = π/4. The initial (π)y rotation (orange path) transforms
the central triplet state into the singlet state. The second (π)
rotation (blue path) with phase φ = γ − π/2 completes the
cycle by returning the singlet state to the triplet state.

a point on the Bloch sphere29. As a result, trajectories
forming a closed curves on the Bloch sphere generate a
cycle in the sense of equations 1 and 2. States taken
through such trajectories acquire a dynamic phase φdyn

(equation 4) and a geometric Aharonov-Anandan phase
φgeo (equation 5).

A. Spherical lune

Suppose that the Bloch sphere trajectory of the ficti-
tious spin-1/2 system traces out the path of a spherical
lune with opening angle γ generated by the following se-
quence of rotations (see figure 4)

V γlune(T ) = R13
γ−π/2(π)R13

y (π). (41)

The solid angle subtended by a lune of opening angle γ,
which is equal to the enclosed surface area on the unit
sphere, is given by

Ω(Cγlune) = 2γ. (42)

It follows that the geometric phase generated by a tra-
jectory which follows the boundary of the lune is given
by

φgeo(Cγlune) = ±γ. (43)

where the sign depends on the sense of the traverse. As
shown in the SI, the dynamic phase vanishes for the cycle
Cγlune

φdyn(Cγlune) = 0. (44)

Figure 5. Pulse sequence for generating a spherical lune in the
{|S0〉, |T0〉} subspace (figure 4). The number of repetitions n
of the two parts of the sequence are equal and chosen to satisfy
2nθST = π. The sequence shown in (a) applies for phases
within the range −π/2 < φ < +π/2. The first echo block
generates an effective y-rotation in the {|S0〉, |T0〉} subspace
as described by equation 32. The second echo block generates
an effective rotation with phase φ = γ − π/2 and generates
the second half of the spherical lune with opening angle γ =
φ+π/2. The sequence shown in (b) applies for phases within
the range +π/2 < φ < +3π/2. The first echo block generates
an effective y-rotation in the {|S0〉, |T0〉} subspace, whereas
the second echo block generates an effective Hamiltonian with
phase φ = γ − π/2 completing a spherical lune with opening
angle γ = φ + π/2. In each case the entire pulse sequence is
deployed as a cycle C in the schemes of figure 1.

It follows that the total phase is exclusively generated by
the geometric (Aharonov-Anandan) phase in this case,
and is given by

φtot(Cγlune) = ±γ. (45)

The cycle Cγlune may be implemented by a series of re-
peated time-shifted echo blocks as shown in figure 5. The
first set of time-shifted echoes generates a y-rotation in
the {|S0〉, |T0〉} subspace. Since each echo induces a ro-
tation through an angle 2θST, the echo number is chosen
to approximately satisfy

2nθST ' π, (46)

leading to an overall π rotation. The second set of time-
shifted echoes utilises the same number of echoes, but the
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position of the rf-pulse is varied to generate an effective
Hamiltonian with phase φ. As may be seen from figure 5
the phase of the Hamiltonian is related to the opening
angle of the lune as follows

φ = γ − π/2. (47)

Additionally, the sequence has no net effect on the state
|T+1〉+ |T−1〉 thus satisfying the conditions of equation 9
(see supplement). As a result equation 11 in combination
with equation 45 indicate that the geometric phase may
be directly inferred from the observed spectral intensity
in an NMR interferometry experiment:

〈Sγlune(ω)〉 ∝ cos( 1
2Ω(Cγlune)). (48)

A full recovery of the spectral intensity is observed after
application of a cycle Cγlune with a solid angle of 4π. The
spherical lune experiment therefore highlights the char-
acteristic 4π-spinor property of the fictitious {|S0〉, |T0〉}
two-level system. This may also be seen by applying
some simple rotation algebra to equation 41

V γlune(T ) = R13
γ−π/2(π)R13

y (π)

= R13
z (γ − π/2)R13

x (π)R13
z (−γ + π/2)R13

y (π)

= R13
z (2γ − π)R13

x (π)R13
y (π)

= R13
z (2γ − π)R13

z (π)

= R13
z (2γ)

= R13
z (Ω(Cγlune)).

(49)
In particular it follows that each cycle Cγlune takes the
same duration T = 2nπ/Ω to be implemented, which
has a favourable scaling T ∼ π/(2∆) with respect to the
chemical shift difference of the spins. As discussed below,
this property leads to efficient double-quantum excitation
in the near-equivalence regime.

At this stage we’d like to point out that the trajec-
tory in figure 4, and its associated geometric phase, only
strictly applies when the detailed structure of each zero-
quantum rotation is ignored. However we show in the
supplementary material that the geometric picture in fig-
ure 4, and its associated geometric phase, may be recov-
ered by using a suitable interaction frame, even when the
detailed dynamics are taken into account giving a rigor-
ous justification to our approach.

B. Spherical droplet

As a second example we consider a Bloch sphere tra-
jectory tracing out the boundary of a spherical “droplet”,
defined as a combination of a spherical triangle with
opening angle γ and half of a “spherical cap”28 with apex
angle γ (see figure 6). A spherical droplet trajectory may
be generated by the following sequence of rotations

V γdrop(T ) = R13
γ−π/2(π/2)R13

γ/2(π)R13
y (π/2). (50)

Figure 6. Bloch sphere trajectory in the {|S0〉, |T0〉} subspace
tracing out the boundary of a spherical droplet with opening
angle γ = π/4 at the south pole. The initial (π/2)y rota-
tion (black path) transforms the central triplet state into a
singlet-triplet superposition state. A subsequent π rotation
with phase φ = γ/2 sweeps out the semicircular boundary
of the half-cap (orange path). A final rotation through π/2
around a transverse axis with phase φ = γ − π/2 completes
the cycle (blue path).

The solid angle subtended by the spherical droplet with
opening angle γ at the south pole is given by

Ω(Cγdrop) = Ω(Cγtri) + 1
2Ω(Cγcap), (51)

where Ω(Cγtri) = γ is the solid angle of a spherical triangle
with opening angle γ and Ω(Cγcap) = π(1 − cos(γ/2)) is
the solid angle of a spherical cap with apex angle γ. It
follows that the geometric phase for the cyclic trajectory
of a spin-1/2 state which follows the boundary of the
droplet is given by

φgeo(Cγdrop) = ± 1
2 (Ω(Cγtri) + 1

2Ω(Cγcap))

= ± 1
2 (γ + π(1− cos(γ/2))).

(52)

As shown in the SI, the dynamic phase does not vanish
for the cycle Cγdrop, but is instead given by

φdyn(Cγdrop) = ± 1
2π cos(γ/2). (53)

The total phase is thus a combination of dynamic and
geometric contributions

φtot(Cγdrop) = ± 1
2 (γ + π)

= ± 1
2 (Ω(Cγtri) + π),

(54)

which may be seen to be sensitive to the solid angle of
the subtended spherical triangle instead of the complete
spherical droplet.
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Figure 7. (a) Pulse sequence elements for generating a spher-
ical droplet trajectory in the {|S0〉, |T0〉} subspace, as shown
in figure 6. This consists of a sequence of rotations in the
zero-quantum subspace, where the implementation of each
rotation R13

φ (ξ) depends on its rotation angle ξ and phase
angle φ, as follows: (b) If the phase φ of the effective rota-
tion operator falls into the interval [−π/2,+π/2], a rotation
through an angle ξ is implemented by a sequence of n time-
shifted echoes with the indicated timings, where n is chosen
to satisfy 2nθST ' ξ. (c) If the phase φ of the effective rota-
tion operator falls into the interval (+π/2,+3π/2), a rotation
through an angle ξ is implemented by a sequence of n time-
shifted echoes with the indicated timings, where n is chosen
to satisfy 2nθST ' ξ, and the time-shifted echo sequence is
bracketed by two πy pulses.

The spherical droplet trajectory may be implemented
by a series of time-shifted spin echo blocks as indicated in
figure 7a. It is convenient to employ rotation phases lying
on the right half of the unit circle (φ ∈ [−π/2,+π/2]). To
cover the whole unit circle we replace effective rotations
with phase π/2 < φ < 3π/2 by a time-shifted spin echo
block with rotation phase φ−π sandwiched between two
180◦ pulses (see figure 7b). With this in mind, the first
echo block is chosen to generate an effective rotation with
phase φ = π/2, the second spin echo block is chosen to
generate an effective rotation with phase φ = γ/2, and
the last spin echo block is chosen to generate an effective
rotation with phase φ = γ − π/2. In all cases the echo
number is chosen to satisfy

2nθST ' π/2, (55)

leading to an approximate π/2 rotation for the first and
last echo block, and an approximate π rotation for the
central echo block.

The total phase given by equation 54 indicates that
the propagator for the cycle Cγdrop may be expressed as
shown below

V γdrop(T ) = R13
z (π + Ω(Cγtri)), (56)

with no net effect on the outer triplet states. The ob-

served spectral intensity is then given by

〈Sγdrop(ω)〉 ∝ cos(Ω(Cγtri)/2 + π/2) = − sin(Ω(Cγtri)/2).
(57)

The last expression highlights two interesting facts.
Firstly, the observed NMR signal for the spherical drop
only depends on the surface area of the enclosed spheri-
cal triangle. As a consequence the observed NMR signal
returns to its original value whenever the surface area of
the spherical triangle equals 4π. In addition, the NMR
signal displays a surface area offset of π/2 when compared
to the spherical lune experiment leading to a sine depen-
dence rather than a cosine dependence. The NMR signal
in an interferometry experiment is therefore expected to
vanish at γ = 0 and then increase with increasing surface
area of the spherical triangle.

VI. EXPERIMENTAL

A. Sample

All experiments were performed on a 30 mM solution
of a 13C2-labelled deutero-alkoxy naphthalene derivative
(13C2-DAND) dissolved in 500 µL isopropanol-d8, con-
tained in a standard Wilmad 5 mM sample tube with-
out deoxygenation of the sample. The synthesis of 13C2-
DAND is described in reference 36. The molecular struc-
ture and relevant NMR parameters are given in table I.
The two 13C sites have a J-coupling of 54.39±0.10 Hz
and a chemical shift difference of 7.50±0.2 Hz in the op-
erating magnetic field of 9.39 T. This leads to an effective
frequency of 54.04 Hz and a singlet-triplet mixing angle
of 7.85◦ as defined in equations 20 and 21.

Table I. Chemical structure of 1,2,3,4,5,6,8-heptakis-
(methoxy-d3)-7-((propan-2-yl-d7)oxy)-naphthalene-4a,8a-
[13C2 ]. Relevant NMR parameters are given for a magnetic
field strength of 9.39 T.

R1 = CD3

R2 = CD(CD3)2

= 13C

J/Hz 54.39± 0.10

∆δ/ppb 75.0± 2.0

ω∆/(2π)/Hz [@9.39 T] 7.50± 0.20

Ω/(2π)/Hz 54.04± 0.10

θST/
◦ 7.85± 0.22
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ωnut/(2π) 25 kHz

τ90 10 µs

π/Ω 9190 µs

π/(2Ω) 4595 µs

3π/(2Ω) 13785 µs

n 12

Table II. Experimental parameters for the spherical lune ex-
periment shown in figure 5. Here, ωnut refers to the radiofre-
quency pulse amplitude, expressed as a nutation frequency;
τ90 is the duration of a 90◦ pulse, Ω refers to the effective fre-
quency of the system in rad s−1, and n refers to the repetition
number of the TSSE blocks.

B. NMR

1. Equipment

The magnetic field of 9.39 T was provided by a wide-
bore Oxford 400 magnet. The data was acquired using
a Bruker AVANCE NEO console equipped with a 5 mm
multinuclear Bruker BBO probe (1H/D/X).

2. Interferometry

Spherical lune. NMR interferometry experiments for
the spherical lune were performed according to figure 5
with the pulse sequence parameters given in table II.
Throughout the experiment the echo number was fixed
to n = 12. The rotation phase of the second TSSE block
was varied throughout the experiment in agreement with
equation 41 to generate a set of opening angles γ. Vari-
ations of the rotation phase for the spherical lune exper-
iment were performed in the following manner:

1. For a given opening angle γ determine the rotation
phase of the second TSSE block through φ = γ −
π/2.

2. If the phase satisfies −π/2 ≤ φ ≤ +π/2 use the
pulse sequence shown in figure 5a.

3. If the phase satisfies +π/2 < φ < 3π/2 use the
pulse sequence shown in figure 5b.

Following the above protocol we measured the geometric
phase for opening angles γ ranging from 0◦ to 360◦ in
increments of 5◦.

Spherical Droplet. NMR interferometry experiments
for the spherical droplet were performed according to
figure 7 with the pulse sequence parameters given in ta-
ble III. Throughout the experiment the echo number was
fixed to n = 6. Following figure 7a the rotation phase for
the first TSSE block was kept fixed at φ1 = π/2. Since
φ1 falls into the interval −π/2 ≤ φ1 ≤ +π/2 the first
TSSE block was implemented with the pulse sequence

element shown in figure 7b. The rotation phase φ2 for
the second TSSE block and the rotation phase φ3 for the
third TSSE block were varied throughout the experiment
in agreement with equation 50 to generate a set of open-
ing angles γ. Variations of the rotation phases φ2 and φ3

were performed in the following manner:

1. For a given opening angle γ determine the rotation
phase φ2 through φ2 = γ/2.

2. If φ2 satisfies −π/2 ≤ φ2 ≤ +π/2 use the TSSE
block shown in figure 7b with φ = φ2.

3. If φ2 satisfies +π/2 < φ2 < +3π/2 use the TSSE

block shown in figure 7c with φ
′

= φ2 − π.

4. Determine the rotation phases φ3 through φ3 =
γ − π/2.

5. If φ3 satisfies −π/2 ≤ φ3 ≤ +π/2 use the TSSE
block shown in figure 7b with φ = φ3.

6. If φ3 satisfies +π/2 < φ3 < +3π/2 use the TSSE

block shown in figure 7c with φ
′

= φ3 − π.

Following the above protocol we measured the geometric
phase for opening angles γ ranging from 0◦ to 360◦ in
increments of 5◦.

ωnut/(2π) 25 kHz

τ90 10 µs

π/Ω 9190 µs

π/(2Ω) 4595 µs

n 6

Table III. Experimental parameters for the spherical droplet
experiment shown in figure 7. Here, ωnut refers to the radiofre-
quency pulse amplitude, expressed as a nutation frequency,
τ90 is the duration of a 90◦ pulse; Ω refers to the effective fre-
quency of the system in rad s−1, and n refers to the repetition
number of the TSSE block.

3. Double-quantum NMR

Double-quantum excitation experiments followed the
acquisition strategy outlined in figure 8a. Double-
quantum coherences are initially excited via the
pulse block element DQ starting from thermal z-
magnetization. Excited double-quantum coherences are
subsequently reconverted into magnetization via appli-
cation of a second pulse block element DQ. A final
90◦ pulse induces the observation of the free induction
decay. To filter out spin density operator components
that have passed through double-quantum terms after
the first excitation block we employed a standard four-
step phase cycle29,30 as explained in section III C. The
double-quantum excitation blocks DQ were given by a
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Figure 8. Double-quantum pulse sequences. (a) Generic
double-quantum filtered acquisition scheme. (b) Double-
quantum excitation schemes. Left: a standard INADE-
QUATE sequence25,29,30. Right: a geometric double-quantum
excitation scheme consisting of a cycle Cgeo sandwiched be-
tween two 90◦ pulses along a common axis. The cycle Cgeo

confers a geometric phase on the zero-quantum states. (c)

Implementation of the cycle Cgeo = Cπ/2lune for a spherical lune
with opening angle γ = π/2. The echo number is chosen to
satisfy 2nθST = π. Explicit timing parameters for the current
case are given in table V.

standard INADEQUATE sequence or a geometric exci-
tation scheme as shown in figure 8b.

The half-echo duration τDQ for the INADEQUATE
block was optimised experimentally over a window cen-
tered around the theoretically optimal value τopt =

π/(4Ω sin2( 1
2θST)) for nearly-equivalent spin-pairs27 with

the parameters given in table I. The optimised exper-
imental parameters for the INADEQUATE experiment
are summarised in table IV.

A geometric excitation scheme based on a spherical
lune experiment is shown in figure 8c. This sequence

generates the cycle Cπ/2lune with the experimental parame-
ters given in table V.

ωnut/(2π) 25 kHz

τ90 10 µs

τDQ 375 ms

Table IV. Experimentally optimised pulse sequence parame-
ters for the double-quantum filtered INADEQUATE exper-
iment shown in figure 8. ωnut refers to the radiofrequency
pulse amplitude, τ90 is the duration of a 90◦ pulse, and τDQ

refers to the half-echo duration of the INADEQUATE spin
echo.

ωnut/(2π) 25 kHz

τ90 10 µs

π/Ω 9190 µs

π/(2Ω) 4595 µs

n 12

Table V. Experimental parameters for the double-quantum
filtered spherical lune experiment shown in figure 8c, for the
opening angle γ = π/2, leading to optimal geometric double-
quantum excitation. ωnut refers to the radiofrequency pulse
amplitude expressed as a nutation frequency, τ90 is the dura-
tion of a 90◦ pulse, Ω refers to the effective frequency of the
system in rad s−1, and n refers to the repetition number of
the TSSE blocks.

VII. RESULTS

A. NMR Interferometry

Figure 9 shows 13C NMR signal amplitudes for the
13C2-DAND solution in the interferometry experiment of
figure 1(a), where the cycle C generates the spherical lune
zero-quantum trajectory shown in figure 4, and which is
implemented by applying the pulse sequence shown in
figure 5.

The signal amplitudes are acquired by varying the
opening angle γ of the lune, which leads in turn to a vari-
ation of the solid angle Ω(Cγlune), through equation 42. As
explained in section IV, to cover the whole unit circle it
is necessary to make use of the two resonance conditions
τ±. The left half of the data set (orange shaded region)
has been acquired using the τ+ condition utilising the
pulse sequence shown in figure 5a, whereas the right half
of the data set (green shaded region) has been obtained
using the τ− condition utilising the pulse sequence shown
in figure 5b.

In full agreement with equation 48 the signal amplitude
follows a cosine curve as a function of the solid angle
subtended by the spherical lune trajectory. A complete
signal recovery is achieved for a cycle with a solid angle of
Ω(Cπlune) = 4π indicating the invariance of the fictitious
{|S0〉, |T0〉} two-level system to a 4π rotation.

Figure 10 shows 13C NMR signal amplitudes for the
spherical droplet sequence (figure 7) as a function of the
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Figure 9. Experimental 13C signal amplitudes (blue dots) for
the spherical lune sequence shown in figure 5 as a function
of the solid angle subtended by the spherical lune Ω(Cγlune).
Throughout the experiment the rotation phase φ of the sec-
ond TSSE block has been varied to adjust the opening angle
of the lune (top horizontal axis). As indicated in figure 3 the
whole unit circle is covered by exploiting the two resonance
conditions τ±. Data points in the orange shaded region were
acquired with τ+ resonance condition utilising the pulse se-
quence shown in figure 5a. Data points in the green shaded
region were acquired with τ− resonance condition utilising the
pulse sequence shown in figure 5b. The signal amplitudes are
normalized relative to the maximum signal of the data series.

solid angle subtended by the the enclosed spherical tri-
angle.

In agreement with equation 57 the observed NMR sig-
nal for the spherical droplet follows a sine curve rather
than a cosine curve. Additionally, the observed signal
amplitudes clearly display a half period of 2π when plot-
ted against the solid angle Ω(Cγtri) of the spherical triangle
enclosed by the cycle Cγdrop. As expected, a full recov-
ery of the initial signal occurs for a cycle which displays
a solid angle of Ω(Cγtri) = 4π for the spherical triangle
swept out in the process.

The signal does not start out exactly at zero as sug-
gested by equation 57, but is slightly shifted. We at-
tribute this small discrepancy to second order effects in
the mixing angle θST.

B. Geometric double-quantum excitation

To examine the efficiency of geometric double-quantum
excitation we performed double-quantum-filtering exper-
iments according to the scheme in figure 8. A compar-
ison of double-quantum-filtered signals obtained by the
standard INADEQUATE experiment and by geometric
double-quantum excitation using a spherical lune with
opening angle γ = π/2 is shown in figure 11. A 90◦-pulse

Figure 10. Experimental 13C signal amplitudes (blue dots)
for the spherical droplet sequence shown in figure 7 as a func-
tion of the solid angle subtended by the spherical triangle
Ω(Cγtri). The signal amplitudes are normalized relative to the
maximum signal of the data series.

90◦ INADEQUATE Cπ/2lune

norm. int. 1 0.36 0.73

Table VI. Integrated signal amplitudes for the double-
quantum filtered spectra shown in figure 11. The amplitudes
are normalised with respect to the 90◦ reference spectrum.

acquire spectrum averaged over four transients is given
as a reference.

Integrated signal amplitudes normalised with respect
to the integrated signal amplitude of the reference spec-
trum are given in table VI. The geometric double-
quantum excitation scheme retains approximately 73%
percent of the original magnetization, whereas the IN-
ADEQUATE sequence only retains about 36% percent
of the original magnetization. The geometric double-
quantum excitation scheme therefore outperforms the
INADEQUATE sequence by a factor of two in this par-
ticular case.

We attribute this increase in performance to the much
faster excitation of double-quantum coherences for the
geometric schemes, compared to the conventional INAD-
EQUATE method. In the current case, the total double-

quantum excitation time for the geometric cycle Cπ/2lune is
given by T geo

DQ ' 220.56 ms. The experimentally opti-
mized double-quantum excitation time TDQ for the IN-
ADEQUATE sequence, on the other hand, is given by

T INDQ
DQ ' 750 ms. The geometric scheme therefore ex-

cites double-quantum coherences more than three times
faster than the INADEQUATE sequence, considerably
reducing the losses due to T2 relaxation.

We have checked by experiment and simulation that
the geometric double-quantum excitation sequences are
very robust with respect to resonance offset, in the case
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Figure 11. 13C spectra obtained after (a) a single 90◦ pulse
averaged over 4 transients, (b-c) after double-quantum filter-
ing the 13C NMR signal according to the strategy outlined in
figure 8. (a) Standard 13C spectrum obtained with a single
90◦ pulse. (b) Double-quantum filtered spectrum obtained
with the standard INADEQUATE pulse sequence, using the
experimentally optimized pulse sequence parameters given in
table IV. (c) Double-quantum filtered spectrum obtained by

geometric double-quantum excitation, using the cycle Cπ/2lune,
leading to a solid angle of Ω(C) = π for the spherical lune.
The experimental pulse sequence parameters are given in ta-
ble V.

that the number of echoes n is an even number.

VIII. SUMMARY

The Aharonov-Anandan phase applies to any cyclic
evolution of a quantum state, as opposed to the better-
known Berry’s phase, which only applies to adiabatic
transformations1,2. Indeed, the Aharonov-Anandan
phase may be regarded as a generalization of Berry’s
phase, with the two expressions converging in the case
of adiabatic transformations. Since magnetic resonance
experiments often use non-adiabatic transformations, the
Aharonov-Anandan phase deserves to be better known
by magnetic resonance spectroscopists. Despite this, the
authors are not aware of any experimental exploitations
of the Aharonov-Anandan phase in the context of nuclear
magnetic resonance spectroscopy going beyond elemen-
tary demonstrations6.

In this work we have demonstrated NMR interferome-
try experiments involving the zero-quantum subspace of
near-equivalent spin-1/2 pairs. A cyclic trajectory in the
zero-quantum subspace confers opposite phase factors on
the two triplet-triplet coherences which contribute to the
NMR signal. The phase factor is the sum of a dynamic
and a geometric term. The interferometry experiments
are in full agreement with theoretical predictions, pro-

viding that the geometric Aharonov-Anandan phase is
taken into account. Pulse sequences are described which
generate arbitrary Aharonov-Anandan phases for cyclic
trajectories in the zero-quantum subspace. In the case of
the spherical lune trajectory, the dynamic phase contri-
bution vanishes, so that the interferometry experiment
gives a direct read-out of the geometric phase.

We have also demonstrated a practical application of
the Aharonov-Anandan phase. Double-quantum excita-
tion is an important feature of many modern NMR exper-
iments, and is used for a variety of purposes including the
removal of undesirable signals from NMR spectra20,37, for
aiding spectral assignment21,37, and for exploring cross-
correlated relaxation processes22–24. Although double-
quantum excitation is routine for weakly coupled systems
in solution NMR, it is much more difficult to achieve with
good efficiency for strongly coupled systems, especially in
the limit of near-equivalence. We have shown that this
problem may be addressed by exploiting the geometric
Aharonov-Anandan phase. In the case under investiga-
tion, the efficiency of a double-quantum-filtering experi-
ment is more than doubled for near-equivalent spin pairs
by exploiting the geometric Aharonov-Anandan phase.

One application of geometric double-quantum filtra-
tion could be to identify near-equivalent 13C2 spin pairs
in natural abundance, and to measure their singlet life-
times38. Efficient double-quantum excitation should fa-
cilitate such studies, in the case of near-equivalent spin
pairs.

IX. SUPPLEMENTARY MATERIAL

The supplementary material includes further details on
the analytic calculations given in sections IV, V, as well
as information on the geometric phase when taking the
detailed dynamics of the system into account.
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