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Abstract
Purpose – The purpose of this paper is to propose a novel methodology based on budget constrained Min-
Cut theorem to solve constrained topology optimization (TO).
Design/methodology/approach – This paper establishes a weighted network with budget, which is
derived from the sensitivity with respect to the constraint function. The total budget carried by the topology
evaluates the extent to which the constraint is satisfied. By finding the Min-Cut under budget constraint in
each step, the proposedmethod is able to solve constrained TO problem.
Findings – The results obtained from a magnetic actuator including a yoke, a coil and an armature have
demonstrated that the proposed method is effective to solve constrained TO problem.
Originality/value – A novel methodology based on budget constrained Min-Cut is proposed to solve
constrained TO problem.
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Design optimization methodology
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1. Introduction
Topology optimization (TO) is to find the optimal material distribution of a device under
some performance criteria in the initial stage of product manufacturing process. Thanks to
the rapid advancement and maturation of TO theory, TO approach is currently being
applied to different industrial problems. In practical engineering, TO problem often includes
variant constraints. Basically, there are two types of constraint in TO. In the first case, for
example, constraint imposed on the maximum stress of the element in the design domain
(Holmberg et al., 2013), the number of the constraint is equal to the number of the design
variable. The second type of constraint, called global constraint, evaluates the overall
performance of the model. This paper focuses on the second type, i.e. the global constraint.

One fundamental constraint handling technique is to use augmented Lagrange or
penalty methods (Pereira et al., 2004; Senhora et al., 2020) in which the constraints are added
to the objective function multiplied by a penalty function/constant. Following this strategy,
one solves a sequence of unconstrained problems, which only requires the solution to one
additional adjoint problem. Several issues exist in this type of method. Firstly, the optimized
result is sensitive to the step size. Improper tuning of step size can result in unsuccessful
convergence and local minima trap. Secondly, checkerboard pattern (Diaz and Sigmund,
1995) is one common by-product in the outcome of the TO, which could cause

Topology
optimization
methodology

81

Received 26 January 2022
Revised 13April 2022
Accepted 8May 2022

COMPEL - The international
journal for computation and
mathematics in electrical and

electronic engineering
Vol. 42 No. 1, 2023

pp. 81-89
© EmeraldPublishingLimited

0332-1649
DOI 10.1108/COMPEL-01-2022-0056

The current issue and full text archive of this journal is available on Emerald Insight at:
https://www.emerald.com/insight/0332-1649.htm

http://dx.doi.org/10.1108/COMPEL-01-2022-0056


manufacturing difficulty. To hinder checkerboard pattern, the sensitivity value, the
derivative with respect to the objective function, is usually filtered so that the topology could
be smoothened. When dealing with constraints, the primary objective function is usually
combined with augmented Lagrange or penalty function. This modification of the objective
function will, to some degree, weaken the suppression of checkerboard pattern.

To overcome the aforementioned issues, a budget constrained min-cut theorem (BCMC)
is used to solve constrained TO. A Min-Cut theory based TO method has proved its
efficiency to simultaneously enhance the performance parameter and constrain
checkerboard pattern (Xia et al., 2021). However, this method deals with constraints in a
primitive way. It does not involve the constraints in the process of optimization, while
terminates when the constraint is violated and selects the best topology satisfying the
constraints as the final solution. For the sake of brevity, this mechanism to tackle with
constraint will be referred to as method for nonconstraint TO. Based on previous work, this
paper establishes a weighted network with budget, which is derived from the sensitivity
with respect to the constraint function. The total budget carried by the topology evaluates
the extent to which the constraint is satisfied. By finding the Min-Cut under budget
constraint in each step, the proposed method is able to solve constrained TO problem
efficiently and effectively without checkerboard pattern.

2. Finding optimal direction using Min-Cut in nonconstraint topology
optimization
2.1 An s-t cut and material assignment in topology optimization
For a weighted network, G(V, E), with two distinguished vertices “s” and “t” called the
terminals, an s-t cut is a set of edges whose removal will disconnect the graph into two
disjoint parts, and leaves the terminals “s” and “t” to be in different parts in the partitioned
graphG(C) = (V, E�C) (Xia et al., 2021). (Figure 1)

To extend Min-Cut theorem to TO, the mesh-grid in the finite element analysis is firstly
transformed to a network. As shown in Figure 2, for a two-dimensional problem, there are
two types of elements in the surroundings of the element of interest in the mesh grid. The
elements connecting with element p by at least two nodes are called eight-neighborhood
elements, and the elements connecting with p by only one node are eight-neighborhood
elements. Accordingly, in the transformed network, the element p is expected to connect

Figure 1.
An example of
an s-t cut

Figure 2.
Eight- and four-
neighborhood
element of the
element p (a) and (b)

p

eight-neighborhood element
four-neighborhood element
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with both its eight-neighborhood elements and four-neighborhood elements (rule I), or solely
four-neighborhood elements (rule II). Figure 3(b) and 3(c) shows the transformation of a
mesh grid to a network based on rule I and rule II, respectively. Compared to rule I, the
adoption of rule II can suppress the checkerboard patterned in the optimized topology to a
larger extent. Then, for a TO problem with material a and b to be reassigned, two terminals
a and b are added in the primary network [as shown in Figure 4(a)]. An s-t cut in TO
problem is a set of edges whose removal will disconnect the network, and each element is
solely connected with either a or b in the partitioned network.
Furthermore, the correspondence between the cut C and the assignment of materials for
each element p is:

fpC ¼
a if tap 2 C

b if tbp 2 C

(
(1)

where fpC is the newmaterial attribute of element p determined by cut C.
According to the definition of an s-t cut, either of the two edges, tap or tbp , has to be

included in the cut C. In other words, each element will be assigned to one material once a
cut C has been established. An arbitrary material distribution could be uniquely represented
by a cut. Figure 3 demonstrates a cut and its correspondingmaterial assignment.

2.2 The best optimal direction
The key to a TO problem is to find the best way to relocate the material distribution in each
iteration. Accuracy and piecewise smoothness are the two critical indicators to evaluate the
quality of the optimized results. The accuracy indicates whether the elements carrying the
same level sensitivity value are assigned to the same material, while the piecewise
smoothness is an evaluation of the checkerboard pattern. In this paper, the two indicators
are measured simultaneously by using the following energy function containing both a
smooth term S(�) and a data termD(�) (Boykov et al., 2001):

Figure 4.
A cut in the network

for TO
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min : E f C
� �

¼
X

fp;qg2N
Sp;q fp; fq
� �þX

p2P
Dp fp
� �

¼ K �
X

fp;qg2N
Connection p;qð Þ þ ð�

X
p2P

SEfp pð ÞÞÞ (2)

where P is the set of elements, N is the set of the interacting pairs of elements, K is the
weight, fp is the updated material state determined by cut C, and Connection is the degree of
connections given by:

Connection p;qð Þ ¼
1 fp 6¼ fq
0 fp 6¼ fq

(
(3)

Obviously, the minimization of the energy function can hinder the checkerboard pattern.
Suppose a and b are two material to be relocated (a has higher material property), then

SEfp(p) is the calibrated sensitivity of the original set:

SEp
a ¼ jsepj; se < 0

�jsepj; se > 0
; SEp

b ¼ �jsepj; se < 0

jsepj; se < 0

((
(4)

where se is the original sensitivity with respect to the objective function [usually calculated
by an adjoint variable method (Hong et al., 2015)], while SEa is the likelihood that the
element is assigned to material a. For an element of material property a, a negative
sensitivity se suggests an increase of the permeability of the element, and thus has a positive
SEa and a negative SEb , and vice versa. As the energy function is minimized, the data term
D (�) is defined in such way that the elements with high tendency of changing to a or b is
accordingly updated to a or b as much as possible.

Therefore, the minimization of this energy function will redistribute the material
distribution accurately and simultaneously reduce the variance of the material assignment
between two interacting elements with a high connectivity degree. Moreover, the weight K
has an impact on the optimized results. Obviously, the checkerboard pattern is barely
constrained if K is small. Nevertheless, a wide range of the values of K has been proved
efficient in paper (Xia et al., 2021).

2.3 Min-Cut and energy minimization
The edge weights on the transformed network for TO are defined in Table 1. It has been
proved that the cost of a cut jCj in the weighted network, the sum of the edge weights of it,
equals to the energy function in (2) (Boykov et al., 2001). Furthermore, it has been explained
previously that a cut C in the transformed network for the TO corresponds to a change in
the existing topology. Thus, finding the best way of the material variation based on the

Table 1.
Edge weights of t-
Links and e-Links for
the network in TO

Edge Weight For

tap SEa (p) p [ P

tbp SEb (p) p [ P

e{p, q} K�Connection(p, q) { p, q }[ N
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present topology, evaluated by the energy function in (4), can be achieved by finding the
Min-Cut in the transformed network. A number of polynomial-time algorithms have been
proposed to solve the Min-Cut problem. Therefore, finding the minimum cut in the
transformed network will not bear any additional computational cost.

3. Budget constrained Min-Cut and constrained topology optimization
In the network for unconstrained TO, the weights on t-links are derived from sensitivity
value of objective function. Thus, finding the Min-Cut in each iteration ensures the
enhancement of the objective function. To further satisfy the constraints in constrained TO,
the t-links are additionally assigned with budget value, which is derived from the sensitivity
with respect to constraint function. Considering inequality constraint g(x) # 0, the budgets
on the links tap and t

b
p , respectively, are calculated from:

BEp
a ¼ jbepj; be < 0

�jbepj; be > 0
;BEp

b ¼ �jbepj; be < 0

jbepj; be > 0

((
(5)

where be is the sensitivity with respect to constraint function. Similar to equation (4), BEa

andBEb , respectively, evaluate the reasonability that element p should change to a and b .
When the current solution dissatisfies the constraint g(x) # 0, the elements carrying

negative be should be changed to a, and the elements carrying positive be should be
changed to b as much as possible to decrease g(x). That is to say, the cut set C should
consist of tap links carrying positive BEp

a, and tbp links carrying positive BEp
b as much as

possible. Define Satisfylevel to evaluate the extent to which the updated material distribution
determined by cut C contributes to the satisfaction of constraint:

Satisfylevel ¼ �
X
tap2C

BEp
a þ

X
tbp 2C

BEp
a

 !
(6)

The smaller Satisfylevel is, the higher the contribution is. Obviously, minimization of
Satisfylevel contradicts the minimization of energy function in (2). When all the tap links
carrying positive BEp

a belong to cut C, Satisfylevel is minimized, and is defined as
Satisfylevel_Min. To balance the minimization of (2) and minimization of (6), define the
following equation:

�
X
tap2C

CEp
a þ

X
tbp 2C

CEp
a

 !
< relax*Satisfylevel_Min (7)

where relax is a tuning parameter between [0,1]. Generally, the value of g(x) will increase
gradually in the process of optimization. The closer the g(x) is getting to zero, the higher
tendency that the constraint is violated, then the larger relax should be to ensure the
satisfaction of the constraint. The influence of relax on the optimization results and the
tuningmechanism of it will be elaborated in section 4.

Therefore, by finding the Min-Cut under the budget constraint (7) in each step, the proposed
methodwill find the optimized topology satisfying inequality constraint g(x)# 0 finally.

The aforementioned network could be interpreted as a weighted network with dependent
fixed budget fee. Finding the Min-Cut under budget constraint has been proved a strongly

Topology
optimization
methodology

85



NP-hard problem (Holzhauser et al., 2016). Contrary to Min-Cut problem, for which a number
of polynomial-time algorithms have been proposed, BCMC problem can only be solved by
approximation algorithm. However, most of the approximation algorithms are not
applicable to engineering application because of large approximation ratio. Pablo A. Maya
Duque proposes a strongly polynomial-time algorithm that uses Megiddo’s parametric
search technique, while the technique only works for simple network, such as series parallel
network (Maya Duque et al., 2013).

To solve BCMC problem in each iteration effectively and efficiently, this paper uses
particle swarm optimization (PSO) method (Wang et al., 2018). The chromosome can be
represented as a binary string of n bits, X = x1 x2 · · · xn, where n is the total number of edges
in the weighted network. xi is defined as

xi ¼ 1 ; edge i belongs to the cut set
0 ; edge i does not belong to the cut set

�
(8)

The efficiency of employing PSO to solve BCMC problemwill be demonstrated in Section 4.
The pseudo code of the algorithm for constrained TO based on BCMC is given below.
The pseudo code of the algorithm
AlgorithmBCMC

Input: relax, k, stopCriterion
Output: Material distribution f * satisfying constraint
1. While (! stopCriterion)

2. Analyze sensitivity of objective function se
3. Analyze sensitivity of constraint function be
4. Construct weighted network G with budget
5. Calculate Satisfylevel_Min, and relax
6. Find Min-Cut in G under budget constraint (7), and update the

topology to f *
7. End

4. Numerical results
To testify the proposed methodology, a magnetic actuator including a yoke, a coil and an
armature (Xia et al., 2020) is topologically optimized to maximize the magnetic force in a
specific direction. In the finite element analysis, the design domain is discretized into 30� 9
quadrilateral elements, and the input current of 1A is applied to the coils with 400 turns.
Meanwhile, to maintain the structural stability, the percentage of air volume Volume_air in
the design domain is constrained to be smaller than a user-defined value V_set. The
constraint function is thus: (Figure 5)

g xð Þ ¼ Volume_air � V_set < 0 (9)

Firstly, to explore the impact of parameter relax on the satisfaction of constraint, relax
ranging from 0.2 to 1 are set to find the budget constrained Min-Cut in the weighted network
established based on the initial topology. V_set is 0.2. Figure 6 shows the corresponding
material distribution of the optimized constrained Min-Cut after the first iteration under
different relax. Clearly, the higher the relax is, the better the updated material distribution
satisfies the constraint. In this paper, the adjustment of relax is ruled by
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relax ¼ tan�1 g xð Þ þ Advance
� �

0̂:2 g xð Þ > �Advance

0:2 g xð Þ < �Advance

(
(10)

where Advance is a predefined positive value to alert the violation of constraint. In this
numerical example,Advance is set as half of theV_set.

Next, the proposed method is used to maximize the magnetic force under three
constraint: V_set = 0.17, 0.2 and 0.23. The three constraints with different V_set are all well-
satisfied. Figure 7(a) and 7(b) records the iterative process of g(x) and magnetic force
obtained from BCMC under three values of V_set, respectively. Table 2 shows the
comparison of g(x) and magnetic force obtained from BCMC and the method for
nonconstrained TO (old method), respectively. It is clear that BCMC has better ability to
enhance the objective function and satisfy the constraint properly. On the contrary, when
using the nonconstrained method, the process of optimization indeed terminates inside of
the feasible region, but too distant to the boundary, and results in insufficient search of
design domain, lower force, in other words. Figure 8 illustrates the corresponding optimized
topology, where no obvious checkerboard pattern is presented.

5. Conclusion
This paper proposes a novel methodology BCMC for constrained TO. Based on previously
proposed method for nonconstrained TO based onMin-Cut theorem, this paper establishes a
weighted network with budget, which is derived from the sensitivity with respect to the
constraint function. The total budget carried by the topology evaluates the extent to which
the constraint is satisfied. By finding the Min-Cut under budget constraint in each step, the
proposed method is able to solve constrained TO problem efficiently and effectively without
checkerboard pattern.

Figure 6.
One-step material

distribution updation
using different values

of relax

Initial topology g(x) = 0.2963

relax = 0.2
g(x) = 0.084656

relax = 0.4

g(x) = -0.12698

relax = 0.6
g(x) = -0.10053

relax = 0.8

g(x) =-0.021164

relax = 1

Figure 5.
Schematic diagram of

the actuator
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