University of
@Southampton

University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any
accompanying data are retained by the author and/or other copyright owners. A
copy can be downloaded for personal non-commercial research or study, without
prior permission or charge. This thesis and the accompanying data cannot be
reproduced or quoted extensively from without first obtaining permission in
writing from the copyright holder/s. The content of the thesis and accompanying
research data (where applicable) must not be changed in any way or sold
commercially in any format or medium without the formal permission of the

copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic

details must be given, e.g.

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton,

name of the University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]






UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering and Physical Sciences
School of Aeronautical and Astronautical Engineering

Design and Optimisation of an Uncrewed

Aerial System Service Framework

by
Robert Entwistle

A thesis for the degree of
Doctor of Philosophy

January 2023


http://www.southampton.ac.uk
https://www.southampton.ac.uk/about/departments/faculties/engineering-and-physical-sciences.page
https://www.southampton.ac.uk/engineering/what_we_do/aeronautics_and_astronautics.page




UNIVERSITY OF SOUTHAMPTON
ABSTRACT

Faculty of Engineering and Physical Sciences

School of Aeronautical and Astronautical Engineering

Doctor of Philosophy

Design and Optimisation of an Uncrewed Aerial System Service Framework

by Robert Entwistle

Creating an effective and competitive uncrewed aerial system (UAS) service requires a
large array of decisions to be made. The solution has to encompass not only the choice
of ucrewed aerial vehicle (UAV), but also the concept of operations, the location of the
operating base(s), the personnel required to fly and maintain the platforms and the effect
of the temporal weather to name a few. Currently, the decisions are made based on little
evidence and previous knowledge of successes and failures. Here, the creation and use
of a simulation tool to aid the decision making process of designing a UAS service is

investigated.

This thesis introduces a mission-based simulation tool that utilises discrete-event simu-
lation techniques to replicate a real-world UAS service proposal. For the given service
the tool models the UASs in terms of performance and reliability, and places them at
operating bases with the required personnel. Missions and weather variables are dynami-
cally generated from predefined probability-distribution functions set out in the service
proposal. The simulation ultimately produces a score that signifies the effectiveness
of the service design along with the cost. With these outputs and the data behind
them, a design-value is produced from a value function. By running the simulation with
different design candidates consisting of different combinations and numbers of UAV
types at different operation bases it is possible to find an optimal service design. This is

demonstrated in a case study applied to the simulation tool.

The general lessons learnt while developing the computational tool are discussed and
the model’s scalability and applicability was explored. The presented tool is capable
of modelling a multitude of UAS service types and mission profiles. The framework
is based on a modular, comprehensible, generic and realistic approach which benefits
the applicability of the tool and the ability to update components. To perform large
optimisation studies the addition of a combinatorial problem solver is recommended and

discussed as future work.
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Chapter 1

Introduction

Due to the increasing capability and availability combined with the decreasing cost of
uncrewed aerial systems (UASs), both the commercial and military UAS markets are
expected to continue to boom. At the beginning of this research some reports expect the
worldwide market to increase from $6.8B in 2016 and reach $36.9B by 2022 [1]. Now, in
2021 the overall UAS market value is estimated to be $27.4B with a new prediction of
$58.4B in 2026 [2]. Therefore, for companies under this market umbrella, it is increasingly
important to offer a product that will stay ahead of the competition. In addition to
these worldwide market values, some market forecasts go on to predict the breakdown of
the market. It is noted that a significant proportion of the small-UAS market will be
driven by the sales of commercial applications and services as opposed to just the sales
of the hardware [3]. Service providers are seen as one of the four key stakeholders of the
UAS market ecosystem alongside platform manufacturers, subsystem manufacturers and

software providers [2].

The applications and services of UASs in the military context range from intelligence,
surveillance and reconnaissance (ISR) assignments to weapon deployment as well as
peace-keeping missions. Military applications were the developing ground for the early
UAS. In 1915 Nikola Tesla had visions that wireless control of aeroplanes at a distance
could be used for attack as well as defence [4]. This was followed up by A. M. Low’s
‘Aerial Target’, built and tested between 1916 - 1917 which was designed to be a remotely

controlled aerial torpedo and is widely regarded as the first uncrewed aerial vehicle (UAV)

[5].

In the commercial, consumer, civil and governmental areas, the most recent surge
of development came from merging hobbyist remote-control model-aircraft with the
advances in the fields of light-weight sensors and electronics, and control algorithms.
Now, there is a vast variety of UAS platforms and an increasing number of applications
in these areas, for example: monitoring agriculture, assisting with search and rescue

(SAR), surveillance, photography, videography, providing aerial surveys and maintenance

1



2 Chapter 1 Introduction

inspections for buildings and structures as well as supporting the emergency services.
In fact, incredibly, the majority of these applications were foreseen in 1898 by Nikola
Tesla who filed a patent which covered wireless controlled vessels (before the first flight)
with the following suggested applications: carrying letters or packages; exploring and
establishing communication with inaccessible regions; other scientific, engineering or

commercial purposes; and warfare [6].

By focusing on the UAS service as a whole, it can be treated as a product in its own
right. This is to say that all the major design aspects of the service need to be carefully
addressed to ensure it achieves the goals originally proposed. For example, which UAV
to use and how many of them or if a combination of different UAVs would give a better
result and where should they be located. Requirements set by all the stakeholders need
to be taken into account to find the optimal service design. Thus, the task of designing

the service becomes a multi-stakeholder, multi-disciplinary problem.

In the context of this thesis, a UAS service is considered to be all that is required to get a
UAS airborne and complete its set of tasks. The tasks are a treated as repetitive events,
but not necessarily structured or consistent in terms of frequency and duration. This
short definition is expanded further in Section 1.1. To help picture this in the meantime,
a service for monitoring the rainforest for wildfires is a simple example. This service
could consist of tasks that include daily surveys of the region but also tasks that need to

respond to fires by monitoring and tracking them over a period of time.

To design a service such that it is effective at completing its tasks, both physical or
virtual models and methods can be used to find an optimal solution. A physical, iterative
(or even trial and error) approach can be used to confirm or refute decisions and refine
the service. However, this technique can be expensive, time consuming or impractical,
due to the expected cost of the service, time constraints, or the size of the service. In
contrast, the use of high-powered computers and mathematical models have allowed
other complex engineering design and optimisation problems to be explored relatively
cheaply and quickly [7]. Either static or dynamic computational models of the UAS
service can be created to represent the problem and simulated to find an optimal design
solution. Nevertheless, it is worth noting that, as quoted in Neumann [8], ‘simulations
are only as good as the assumptions on which they are based’, with Neumann adding ‘in

fact, they may not even be that good’.
With this in mind, Wiese & John [9] state that a generic engineering design process
should encompass:

e A systematic approach in the presentation of the problem and the way potential

solutions are proposed and evaluated.

e An iterative approach via the use of simulations and prototyping to expose the

characteristics of the solutions.
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e A multi-disciplinary approach since several different disciplines are involved in the

decision process.

These best practices should be seen as fundamental practices to all multidisciplinary

design processes and be employed where possible.

1.1 Uncrewed aerial system service

As briefly introduced earlier, in the context of this project, a UAS service is considered
to be all that is required to get a UAS airborne and complete its task. This encompasses
the aspects listed below and has been visualised in Figure 1.1. This list is not exhaustive

but gives a good overview of the building blocks to a service.

1. The UAS equipment. This includes not only the airframe itself, but also all ground
systems such as the ground control station (GCS); launch and recovery systems;
and ground-based communication and data relay systems for data exploitation.
It also includes all air systems such as the payload and air-based communication

systems.

2. The facilities. This comprises of personnel accommodation; power and amenities;

tools and equipment; storage and hangarage; and physical security if required.

3. Consumables. This covers the supply of fuels, batteries and lubricants. Consumables
require either the correct amount for the entire service to be supplied at the

beginning or to top-up supplies when resources run low.

4. Personnel: both operational and maintenance personnel. This incorporates pilots,
technicians, data-analysts, security and managers, all of whom require training

(and, in some roles, qualifications), salaries and personal equipment.

5. Insurance and legal. This includes all paperwork to ensure the flights are conducted
within the laws of the area they are in, and with the correct insurance for all

aspects of the service, such as aviation insurance and medical insurance.

6. The concept of operations (CONOPS). This includes the mission profiles; how
much flying is required, including when, where and the availability of the UAS; how

the payload is used; and how the information is collected, distributed and analysed.

Therefore, it can be seen that a service is much more than just an airframe alone. There
are additional physical, virtual, consumable, and human resources required to make the
airframe perform a useful task and hence provide a service. This is what is considered,

in this project, to be the backbone of an uncrewed aerial system service.
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Operational

Consumables
personnel

- Management
Facilities

\ personnel

UAS managed

service scope

UAS equipment Security equipmen
and personnel

Concept of

i Insurance and legal
operations

Ficure 1.1: Mind map showing the scope of the Uncrewed Aerial System (UAS) service.

Each node has further sub-nodes that have not been shown here but are discussed in

Section 1.1. This mind map is adapted from QinetiQ’s Uncrewed Aerial System (UAS)
Managed Service Price Model document.

1.2 Motivation

The work presented in this document is towards the creation a computational tool that
aims to aid the design of a UAS service based on the requirements set by the client.
The service solution should put the right payload(s) in the right place(s) to deliver the
right information at the right time(s) to the right people at a competitive and realistic
price. Most decisions that are required to be made throughout the design process are
complex trade-offs between multiple parameters resulting in a potentially sensitive design
space: a small change in the inputs could have a large effect on the outputs. This creates
a challenging design and optimisation problem which falls into both the connectivity
sub-type of structural complexity (associated with difficulty deconstructing causes and
effects) and the social and political sub-type (associated with multiple objectives and
multiple stakeholders) [10]. In this study the UAS service can be considered as the sole
logistics system. However, the UAS service may well be integrated into a larger service,

for example providing additional searching capabilities to a search and rescue service.

This leads to the problem of comparing design solutions across multiple attributes to
ascertain which is “better” because “better” is difficult to define formally. However, the
application of the value-centric design framework aims to overcome this challenge. Instead
of setting requirements to attributes (such as a weight requirement), the value-driven

design framework assigns an objective function that converts the full set of attributes
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into a score. Then it is the design team’s task to find or create a design that yields
the highest score [11]. To apply this methodology to the design of a UAS service the
design candidates need to be modelled. For example, the ability of the UAS to fly in
adverse weather conditions might have a high weighting on the objective function to

ensure minimal service disruption.

Presently, this problem is generally tackled in a non-qualitative, non-quantitative manner
through the adaptation of previous service designs. Therefore it is challenging to provide
evidence that the service solution meets the aims set by the client in the request for
proposal (RFP). Instead, by using a computational model of the service it should be
possible to gain a quantitative insight to the composition of the service cost and how
successful the design candidate is at performing the service, thus allowing an optimal

design to emerge from the pool of candidate designs.

1.3 Research aim and objectives

Based on the motivation presented above in Section 1.2, this research aims to

explore the development and application of a mission-based computational
simulation and optimisation environment to have transformational impact on

decision-making when designing an uncrewed aerial system service.

The decision-making element of the service design presented in this work predominately
relates to the choice of operating-base locations and facilities, the choice of UASs and
related equipment (including asset heterogeneity and operational consumables), and the
number of personnel involved in the operation. This covers the technical and operational
elements presented in Figure 1.1, whereas the non-technical and legal components are

out of scope for this work.

This research aim can be broken down into the following objectives. These can be seen

as the path this thesis will explore:

1. to investigate, define and model a UAS and its performance;

2. to develop a computational model and simulation environment to optimise UAS

deployment as a service;

3. to quantify the capabilities of the model through application to a specific case

study in the Solent region;

4. to assess the applicability and scalability of the model to support decision-making

when designing a UAS service.
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The following research questions were formulated from the identified research objectives.

These questions will be central throughout this document:

1. what are the capabilities, critical areas and key findings when applying the model

and simulation to a case study?

2. how applicable and scalable is the model for UAS service design?

1.4 Document structure

The remainder of this document consists of 6 chapters which address the following

content:

e Chapter 2 (Literature review) presents the literature review on the main themes
throughout this project. This includes the definition and categorisation of UAS
and modelling techniques for the performance of the UAS and its payload. It also
covers an overview of simulation and modelling techniques and some best practices.
Finally, it reviews the use of value-centric design methodologies to capture the

value of the system and the stakeholders’ needs.

e Chapter 3 (Developing a UAS decision support framework) contains details on
the framework of the computational model developed within this report. The
requirements and design of the framework are presented along with the assumptions,
simplifications and limitations in the model and this thesis. These are provided
with justification and reasoning and the effect they have on the model and its

output is discussed.

e Chapter 4 (Simulation and modelling) provides details on the simulation and
modelling methods applied. The choice of tools to achieve the requirements of
the model set out in the framework discussion are presented. The selected tool
is identified and the method the UAS service is modelled is explained. This
discusses the flow of the missions through the model’s process and how the UAS

and associated resources respond to the events.

e Chapter 5 (Results and analysis) presents a case study to demonstrate how the
framework models a service and the type of analysis the framework allows the
service designers to perform. The service inputs, including the mission descriptions,
the operating base locations, the UAS platforms modelled and the service policies
applied are presented and the results are analysed. The findings from the simulation

are discussed, highlighting the benefits and shortcomings of the model.
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e Finally, Chapter 6 (Discussion and conclusions) addresses the broader issues around
the tool development and the key findings from this research. The model’s complex-
ity, transparency and computational measures are discussed. Alongside this, the
scalability with operational size and scope, asset heterogeneity and applicability to
a variety of business-models is commented on. Finally, it provides a conclusion to
the work presented in this thesis. It revisits the research aims and objectives and
comments on how the simulation environment has performed. Also discussed in

this chapter is the future work required to further this model.






Chapter 2

Literature review

This chapter contains a review of the literature and research areas relevant to aiding the
design of a UAS service. Section 2.2 presents an overview of uncrewed aerial systems, their
composition and how to categorise and model them for mission based simulations. The
following section, Section 2.3, provides details on modelling and simulation techniques.
Some best practices are described to understand how to achieve better model confidence
with respect to the level of detail. Section 2.4 reviews the design decision and value-centric
design methodologies. Some common techniques used to obtain value functions and rank

attributes in preference order are presented.

2.1 Examples of commercial UAS services

Section 1.1 provided the definition of a UAS service in the context of this thesis. By way
of background information to aid understanding of the topic, a few commercial uncrewed

aerial system services are presented below.

Zipline! is an example of a commercial drone-delivery service that, at the time of writing
have flown more than 27,889,000 miles and completed over 392,800 commercial deliveries
with 3,929,000 products delivered [12]. Zipline currently have 10 distribution centres
active in 4 different countries mostly distributing medical products using an air-drop
method. The distribution centres are purpose built and contain the infrastructure to
launch, land, operate and maintain the UAS. The UAS, which can carry 1.8 kg of payload
and can fly 300 km on a single charge, is launched using an electric catapult and lands
via an aerial arresting gear. Despite the achievable range, the operations are limited to a
80 km radius to build in safety. Other safety measures include two electric motors (with
the ability to fly safely on a single motor), and a ballistic recovery system (parachute) to

reduce the kinetic energy of the system should a serious failure occur and flight is no

!See https://www.flyzipline.com/ for more details on the company.
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longer possible. At the outset of their Rwandan service, Zipline had a fleet of 15 UAS at
one distribution centre that would complete between 50 to 150 on-demand emergency
deliveries per day to the 21 facilities within the 80 km operation radius [13]. These
operations flew pre-planned routes from the distribution centre to the known air-drop

destinations and then returned.

Another example is the UK Maritime Coastguard Agency (MCA) tender for the next
generation Search and Rescue (SAR) aviation programme (known as UKSAR2G) to
provide His Majesty’s Coastguard search and rescue helicopters, planes and remotely
piloted drones [14]. Under the commercial strategy of this tender, the MCA based the
structure of the tender on findings from a data model of UK SAR responses which led to
three lots being allocated. Lot Three focused on ‘fized-wing and potentially UAV, rapid
search only, surveillance and pollution response’. This is the lot for UAS entries, with a
very broad description of rapid deployment capabilities for searching and surveillance
tasks. The key messages presented from the data modelling were that 94% of tasks
occurred within 150 NM of the closest base location, and that a second asset at a base

reduced the average response distance by 3 NM [15].

In this thesis the focus is on the optimisation challenge of selecting the operating base(s)
and the choice of UAS(s) at each operating base. This involves considering and modelling
the UAS performance and reliability, the personnel requirements, the required facilities
and infrastructure, and the CONOPS (all of which were highlighted as the building
blocks of a UAS service in Section 1.1). This optimisation challenge was shown to be
an important element in the UKSAR2G programme’s data modelling and involves the
combination of several different research disciplines. The following sections delve into

these disciplines and present the relevant literature and research to aid this work.

2.2 Uncrewed aerial systems

Uncrewed aerial systems are described by the UK’s Civil Aviation Authority (CAA)
as an ‘evolutionary component of the aviation system’ [16]. They also go on to define
an uncrewed aircraft in the ‘Unmanned Aircraft System Operations in UK Airspace
- Guidance’ (CAP722) document as ‘an aircraft which is intended to operate with no
human pilot on board that is capable of sustained flight by aerodynamic means; is remotely
piloted and/or capable of degrees of automated or autonomous operation; is reusable; and
1s not classified as a guided weapon or similar one-shot device designed for the delivery

of munitions’ [17].

UASs are often used for dull, dirty or dangerous missions. Dull missions are, for example,
extended surveillance where the lapses in concentration in a crewed flight means loss of
mission effectiveness. Dirty missions include crop-spraying with toxic chemicals, and

dangerous missions include military operations as well some civilian operations, such as
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power-inspection and forest fire control [18]. Austin [18] believes that these three roles do
not go far enough and adds three further roles to this list: covert, where is it imperative
not to alert the target; research, where the use a UAV as a test-bed for novel technology
can dramatically reduce costs and risks; and finally, environmentally critical roles, where
using a UAV will reduce pollution or environmental disturbance (the example given in
[18] is regular inspection of power-lines due to reduced noise for local residents and less

disturbance to farm animals from noise and sight).

The removal of the pilot from the aircraft is advantageous in terms of operator safety and
reducing the risk of dangerous missions, yet disadvantageous due to the system needing
to be automated or controlled remotely [19]. Sensors and instrumentation are required to
replace the senses of the on-board pilot as the human operator is still legally responsible
for the aircraft [17]. The level of situational-awareness data provided from these sensors
vary from aircraft to aircraft, with some providing a higher level than a crewed aircraft
[20].

The cost of manufacturing a UAS (both the air vehicle and control station) for a
surveillance task is approximately of the order of 40 - 80% of the cost of a crewed aircraft
for the same task [18]. This comparison is mostly based on the savings made in structure
and volume (and therefore mass) due to the removal or the aircrew, and the replacement
of the aircrew with an electro-optical sensor. It does also include the ground control
station in the costing. The operating costs are also lower than that of a crewed aircraft,
Austin [18] estimates it at 40% or less overall of the crewed aircraft cost, due to lower
maintenance and fuel costs? amongst other factors such as hangarage and crew salaries.
Austin does state that this figure and those behind it are, to some degree, inevitably

subjective.

2.2.1 UAS composition

The UAS is comprised of not only the aircraft but several other systems. The CAA defines
an uncrewed aerial system as being comprised of ‘individual system elements consisting
of the uncrewed aircraft and any other system elements necessary to enable flight, such
as a remote pilot station, communication link and launch and recovery element. There
may be multiple uncrewed aircraft, remote pilot stations or launch and recovery elements
within a UAS’ [17]. This definition is reiterated in Austin [18] and with the addition of

the following elements:

e the payload - ranging from simple camera system to high-power radar systems.

e navigation systems - where the level of sophistication depends on the level of

autonomy.

% Austin [18] puts maintenance and fuel costs at 20% and 5% of the crewed aircraft cost respectively.
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e interfaces - both internally within the total system (i.e. interfacing the control

station with the air vehicle) but also externally, for data dissemination.

e support equipment - ranging from operating and maintenance manuals to tools,

spares and specialist equipment.

e transportation - which needs to be provided for all the sub-systems mentioned

above and depends on the size and operation of the UAS.

Figure 2.1 depicts the functional structure of a UAS as described by Austin [18].

Communications

[ Control station J [ Launch & recovery j

[Other system interfaces}

F1GUuRE 2.1: Functional structure of an unmanned aerial system. Reproduced from

Austin [18]. Solid-straight lines denote physical connections, whereas solid-zig-zag lines

denote other types of connections. The dashed boxes encapsulate those items affected
by that item.

2.2.2 UAS categorisation

UASs have many features by which they have been categorised (fixed wing and rotary
wing, powered and unpowered, lighter-than-air and heavier-than-air, hand-launched and
runway-dependant, to name a few). However, the most common categorisation is based
on the capability or size of the air vehicle although the boundaries can be rather vague.

The categories are as follows [18]:

HALE - high altitude long endurance. These operate at altitudes over 15,000 m
with an endurance over 24 hours. Common operations are extremely long range
ISR and they are runway dependant. An example is the Northrop Grumman RQ-4
Global Hawk with its 39.9 m wingspan and nearly 15,000 kg gross weight [21] (see
Figure 2.2a).
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MALE - medium altitude long endurance. These often have an endurance of around
24 hours and operate at 5,000 - 15,000 m altitude and offer a similar capability to
HALE just with a shorter range. An example is the Israel Aerospace Industries
Heron with a line of sight (LOS) range of approximately 350 km and a beyond line
of sight (BLOS) range of approximately 1000 km [22] (see Figure 2.2b).

Tactical UAV. These typically have a range of between 100 and 300 km and offer
simpler capabilities than MALE and HALE. They have an endurance of normally
less than 24 hours. An example is the Thales Watchkeeper WK450 which can
achieve a LOS range in the region of 140 km [23] (see Figure 2.2c).

Light UAV. The entries above this category are dominated by military, peace-keeping
or governmental UAVs. This category, according to the CAA CAP722 [17], contains
UAVs that provide diverse civilian operations such as cinematic aerial filming, crop
spraying and research. An example is the University of Southampton’s Spotter
Light UAS with a maximum take-off weight of 35 kg [24] (see Figure 2.2d).

Small UAV. This category is heavily populated with civilian recreational UAVs and is
often defined as less than 25 kg gross mass. This civilian presence is most likely due
to more attainable flying permissions for operators and therefore a larger market
audience. Small UAVs also have a presence in military applications due to their
portability. An example of a small UAV is Sulsa (Southampton University Laser
Sintered Aircraft) with a take-off weight of less than 4 kg [25] (see Figure 2.2¢).

Micro UAV. The final category is for UAVs that are operated in urban environments,
particularly within buildings [18]. These generally have an endurance of less than
one hour and fall into the rotary or flapping wing category of UAV due to the
required manoeuvrability in these environments. An example is the sub 33 gram
FLIR Black Hornet PRS [26] (see Figure 2.2f).

Both rotary and fixed-wing UAVs can be classified into these categories. However, it
should be noted that there is an apparent correlation between size and lifting-method,
such that as the size increases, the amount of fixed-wing UAVs compared to rotary-wing
increases. This is mostly due to the need for manoeuvrability at the small scale which is

offered by rotary-wing, and endurance at the large scale which is offered by fixed-wing.

Recently, at the end of 2020, the UK’s CAA moved away from regulating UAVs mostly
by mass limits and now include regulations that are proportionate to the level of risk
that the operation presents along side mass limits [17]. In doing so, they increased the
mass limits in the lower category (now defined as the Open Category) from 20 kg (not

including fuel) to 25 kg (maximum take-off mass) [27].

Throughout this thesis, the focus is set on fixed-wing aircraft that fall into the small

and light UAS categories. This is because the service types being modelled require an
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(A) HALE: Northrop Grumman Global Hawk (B) MALE: Israel Aerospace Industries Heron.
(follow link to image source). (follow link to image source).

(c) Tactical UAV: Thales Watchkeeper (follow (D) Light UAV: University of Southampton

link to image source). Spotter Light UAS (follow link to image source).
-

(E) Small UAV: Southampton University Laser (F) Micro UAV: FLIR Black Hornet PRS (follow
Sintered Aircraft (SULSA) (follow link to image link to image source).
source).

F1GURE 2.2: Examples of the UAV categorisation provided in Section 2.2.2.

endurance and range that are generally closely matched fixed-wing UAS performances.
However, there are rotary-wing aircraft that are capable of meeting these performance
levels, for example the Schiebel CAMCOPTER S-100% which is currently being trialled

in civilian services similar to those studied in the case study of this thesis.

3For more information on the Schiebel CAMCOPTER, S-100 please see https://schiebel.net/
products/camcopter-s-100/
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2.2.3 UAS cost engineering

When considering the design of a UAS service, a critical component in the decision
making is the cost of the UAS. Cost engineering is described by Humpherys and Wellman
[28] as ‘the application of scientific and engineering principles and techniques to problems
of cost estimation, cost control, business planning and management science’. Life-cycle
costing of a product has been categorised by Asiedu and Gu [29] to include: research and
development cost, production and construction cost, operations and maintenance cost,
and retirement and disposal cost. In the case of a commercial off the shelf (COTS) UAV
being costed for a service, the latter two categories are the most important (along with
acquisition cost). Asiedu and Gu [29] go on to deconstruct these categories further, known
as a cost breakdown structure (CBS), which is an important method for establishing the

cost goals [30].

Operations and maintenance cost is a major contributor to the total life-cycle cost of
the UAS. Maintenance is simply defined as ‘ensuring that physical assets continue to do
what their users want them to do’ by Moubray [31]. Papageorgiou [19] depicts a general

maintenance programme to include:

e daily or routine inspections and preparation for flight;

e scheduled maintenance, based on a time interval (e.g. flight hours) and replacement

of life-limited components;

e unscheduled maintenance generated by failures and findings during inspections.

All aspects of the maintenance programme generates costs. These costs can be either
variable (based on the utilisation of the system), or periodic (based on routine inspections
and the life-time of the components) [19]. This indicates that there is a relationship
between maintenance cost and the Concept of Operations (CONOPS). Also, as the
utilisation time increases, the maintenance cost is expected to rise as well. The failure
mode associated with this is known as age-related failure and is often due to fatigue and
corrosion. But most modern, complex systems have many different patterns of failure

[31]. Therefore, the maintenance cost is also related to the reliability of the system.

Reliability is defined by Lewis [32] as ‘the probability a system will perform its intended
function for a specified period of time under a given set of conditions’. From this
definition it seems beneficial to create an optimal maintenance schedule based on the
reliability of the system to reduce maintenance and inspection costs. This is known
as reliability-centred maintenance (RCM) and is described by Moubray [31]. Several

maintenance policies exist, for example:

e preventive - perform component overhauls or component replacement at a specific

age limit regardless of its condition;
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e condition-based - inspection of components periodically and replace them if they

give identifiable indication that they are about to fail;

e run-to-failure - make no effort to anticipate or prevent failure and replace or repair

when they do happen.

The problem of reliability optimisation and maintenance policy choice has been the subject
of several studies, for example Bartholomew-Biggs et al. [33] studied the modelling of
sequential imperfect preventive maintenance using age-reduction models* [34] to optimise
the maintenance schedule. This demonstrates that not only the choice of policy can
have a significant effect on the cost of a service, but also the schedule of maintenance.
However, it is beyond the scope of this study to optimise the maintenance policy and its

schedule.

To model the maintenance cost of a UAS, the system needs to be broken down into
components and their reliability-behaviour translated to a suitable probability distribution.
From this and a model of the chosen maintenance policy, a Monte Carlo simulation (MCS)
can be performed to model failure times and maintenance times for individual components
and the entire system. This can then be translated into a life-cycle maintenance cost
and the uncertainty involved [19]. Both Schumann [35] and Papageorgiou [19] apply this
technique using Weibull probability distributions of component-reliability when modelling

the life-cycle maintenance cost of a UAS.

2.2.4 UAS modelling

To model the UAS to meet the needs of the optimisation challenge described at the end of
Section 2.1, several performance metrics are required such as aerodynamic characteristics,
engine characteristics and reliability characteristics. Depending on the level of detail
required, the quantity of metrics vary. For low fidelity models the use of aerodynamic
forces and moments to determine the acceleration of an aircraft is unnecessarily compli-
cated and the source data may be difficult to obtain [36]. Duquette [36] offers a simple
kinematics-based model of vehicle motion for UAV flight that requires minimal inputs®
and can be tailored with additional inputs to determine acoustic signature and energy
consumption rate. However, this model was designed for the purpose of testing the
effectiveness of UAV command and control algorithms, not the energy consumption
performance and reliability characteristics. The model is a time-driven simulation which

gives continuous feedback on where the UAV is at any given time. This allows detailed

4Age-reduction models aim to fill the gap between a perfect repair and a minimal repair in the
modelling of the stochastic behaviour of repairable systems [34].

°In the Duquette’s paper [36] it states for forward flight it only requires airspeed, vertical speed, pitch
angle and wind velocity. It goes on to state that, however, to include turning behaviour the addition of
bank angle and headings is required.
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data to be collected on performance throughout the mission with the knowledge of exactly

when a value is reached (say, the level of fuel reaches 30%).

Goerzen [37] presented a motion planning algorithm which utilises the capability of the
on-board sensors to guide a vehicle through an environment space to avoid obstacles and
plan its own path. However, this method is unnecessary for the modelling of the UAV
for the design of the UAS service. Moreover, the use of a time-driven simulation may
not be the most efficient method (in terms of entire simulation run-time) for the entire

scope of the problem (see Section 2.3 for more information on simulation methods).

Schumann [35] adopts an event-driven method for modelling the UAV. The simulation
lines up an event, such as move the UAV along a path to the next discrete point and then
it calculates the effect that event (the step from one point on the path the next) will
have on the UAV based on, for example, linear interpolations of speed against power
relationships or other performance models. If the UAV is capable of completing the
event, it will go ahead and move on to the next event and so on. If it is not capable, then
other actions are taken, such as refuelling. The inclusion of component-reliability using
probability distributions can still be used as interrupt-events. However, even though this
method does not provide continuous information, if the changes are constant between
events and the same model has been used the result should not differ from a time-driven
simulation. For example, if the energy consumption rate is constant, then the change
in value between path segments will be the same as that calculated in the continuous

version.

However, discrete-event simulation modelling is not well suited to a model of a payload

with a continuous-sensor®

can become an issue. If the sensor is required to find a target,
for example during a SAR mission, ideally the user wants to know when the target is
found rather than just which section of the path it was found on. One way to achieve this
is to increase the number of sections of the path, but as this goes towards infinite points
the discrete simulation becomes a continuous simulation and thus loses the advantages
of it being discrete events. Alternatively, as the position of the target is known by the
simulation, a calculation can be made to determine if the target will be detected by the
sensor during that section (this is similar to the above method of determining if the
UAV can complete the event). Then an interrupt-event can be scheduled for the target

acquisition.

For event-driven modelling the performance of the UAS and payload need to be modelled
to some effect. The following section delves into some of the possible methods, focusing

on modelling the propulsion performance.

SHere, a continuous-sensor is used to describe one that is constantly acquiring data, such as an
electro-optical (EO) sensor providing a video feed.
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2.2.4.1 UAS propulsion performance

A generic propulsion performance model adopted by Schumann [35] linked energy con-
sumption with speed. Then using the velocity as an input and linear interpolation
between data points, the energy consumption value could be obtained. For example,
Figure 2.3 displays the speed versus power of a small electric powered UAV (reproduced
from a study by Ostler et al. [38]). From this a simple conversion to the desired unit can

be performed, such as obtaining the mass of fuel used (by using its calorific value).
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F1GURE 2.3: Example speed versus power graph of an electric powered small UAV.
Graph reproduced from a study by Ostler et al. [38].

Schumann [35] lists the availability of data on various vehicle’s energy consumption
as an advantage of this method. However, he states there are many assumptions and
simplifications made for this approach. Firstly, speed is not the only factor energy
consumption depends on: drag, temperature, wind and other environmental factors also
play a role in the energy consumption. Secondly, in the case of hydrocarbon fuel based
UAVs, as fuel is used up and causes a reduction in the vehicle’s weight” the energy
consumption rate changes and should be taken account of using the Breguet range

equation [39].
Internal combustion engine powered

To take this into account for an internal combustion engine (ICE) powered UAS the
Breguet range equation for propeller driven aircraft, see Equation (2.1), can be applied
[40] where R is the range, 7 is the propeller efficiency, SF'C' is the specific fuel consumption
of the engine (the rate of fuel consumption divided by the power produced). This is

usually given with the units g kW~ h™!, therefore requiring a conversion factor to match

"The reduction of weight as fuel is used is mostly applicable to vehicles that consume hydrocarbon
fuel oils (such as avgas, petrol and diesel) where the change in weight compared to total vehicle weight is
significant. On the other hand, as batteries are discharged, the change in weight is negligible compared
to the total vehicle weight.
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the standard units in the equation), % is the lift to drag ratio and W is the weight of

the aircraft:

aerodynamics

L W
n 7
R= —_ = 1 . 2.1
SFC D <Wf) 21)
~—— ——
propulsion structural

The equation can be split into three main components: g7z represents the effective

propulsion of the aircraft; % represents the flight regime and aerodynamics of the aircraft;
and finally I‘//VV; represents the structural properties of the aircraft (subscript ¢ and f

indicate initial and final respectively).

Commonly this equation is used to calculate maximum range by keeping the lift to drag
ratio constant while flying at a constant speed. One way to achieve this is to make the
cruise altitude steadily increase (hence air density will decrease) as fuel is consumed to
keep L = W and is known as the Breguet cruise-climb. However, in the case of UAVs
the more common operational procedure is to maintain a constant altitude and constant
speed due to the requirements of sensors and flight planning. Peckham [41] derives the

range performance for these conditions using a drag polar of the form

Cp = Cp, + kC? (2.2)

where Cp is the drag coefficient, Cp, is the zero-lift drag coeflicient, C', is the lift
coefficient and k is the lift-induced drag factor. By maintaining constant altitude and

constant speed in the range equation becomes

R= " ! tan ! W) tan ™! W (2.3)
SEC \ \/Cp,k gS+/Cp,k ¢S+/Cp,k
where S is the wing area and ¢ is the dynamic pressure such that
1
q=5pU% (2.4)

where p is the air density and U is the speed. From these equations (Equation (2.3)
and Equation (2.4)) it is possible to see that the range, R, is a function of the following

parameters
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flight
regime structural

= —
R n, SFC, U,p,CDO,k‘,S,VVZ',Wf (2.5)
—— —_———

engine aerodynamics
performance

By rearranging Equation 2.3 and assuming SFC and the propulsive efficiency, 7, are
constant it is possible to find the weight of fuel required for the UAV to fly a given
distance at constant speed U and constant altitude corresponding to the air density p.
However, Peckham [41] and Ferraro [42] note that there is an error in the assumption of
constant SF'C and n because when the aircraft reduces in weight due to fuel burn, the

throttle setting must be adjusted to maintain constant speed and altitude.
Battery powered

In the case of battery powered UAVs the weight of the vehicle does not reduce as battery
power is converted (see Footnote 7 on page 18). Therefore, a simpler equation can used
to predict the range and endurance. Methods have been put forward in several ways, for
example by Retana and Rodriguez-Cortés [43], but as pointed out by Traub [44], they
often are not presented in a manner consistent with the normal methods adopted by
the aeronautical community. In order to do this, Traub introduces an equation that is
based on the power delivered by the propulsion system being equal to the power required
to overcome the drag [44]. Traub also accounts for the Peukert effect [45] on battery
capacity [46]. This is where the effective capacity of the battery is dependant on the
current draw. The significance of this effect is discussed in [44] and is further validated
in [47].

To implement the equation introduced by Traub, using the same drag polar presented in

Equation (2.2), the power required P,¢q, assuming steady level flight, can be stated as

2W2k
pUS -~

1
Preq = ipU?)CDO +

(2.6)

Then, using a modified Peukert equation [44] which accounts for the effect of discharge

rate in the form of

() )

where ¢ is the time in hours, ¢ is the discharge current in amperes, C' is the battery
capacity in ampere-hours, n is the discharge parameter dependent on battery chemistry

and temperature and Rt is the battery hour rating in hours.

This can be substituted into the equation for battery output power Pp such that
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C (R\'"

where V' is the battery voltage. From here the two power equations (Equation (2.6) and
Equation (2.8)) can be equated while taking into account the efficiency of the propulsion

system as 7, and this can be solved for ¢ resulting in

(2.9)

t= Rt {T’“tvc} '

Preq

where ¢ represents the endurance in hours. Finally, the range can be found by multiplying
Equation (2.9) by the speed, U.

However, this method does not account for the drop in voltage as the battery is discharged
and during a validation experiment the predicted endurance was found to be 10 - 14%
higher than the experiment when the initial voltage was used. When the average voltage
during discharge was used the error was reduced to approximately 3% [47]. Therefore, if
only the initial voltage is known then a reduction of ~ 12% should be used for predicting

the endurance and range (this reduction method was demonstrated in [48] to good effect).

Finally, the battery discharge parameter, n, needs to be known or assumed. This can vary
between models and manufacturers. Lithium-polymer batteries typically have a discharge
parameter n = 1.3. Although in [49] it is suggested that lithium-ion batteries act closer
to an ideal battery (therefore, n = 1) and that the Peukert equation is only applicable
when the battery is discharged at a constant temperature and constant discharge current

otherwise the result is an underestimation of the remaining capacity?®.

2.2.5 UAS payload performance

The payload which is defined by Austin [18] as ‘only that part of an aircraft which is
specifically carried to achieve the mission’ is also an important component to model: its
performance influences the outcomes of the mission. Therefore, it is important to model

the payload’s capabilities as best as possible.

Firstly, it is worth considering the range of payload types. The most common UAS
payload types are EO sensors for ISR, aerial filming, SAR missions. However, other pay-
loads applications include atmosphere/pollution monitoring systems, radio-relay systems,
public-address systems, disposable payloads (such as crop-spraying, fire-fighting, releasing
research equipment [50] or humanitarian-aid drop systems [51]) and cargo/transportation

[18, 35]. All the aforementioned payloads can be defined as either active or inactive

8Doerffel [49] suggests that the capacity obtained from a lithium-ion battery is strongly dependent on
temperature which, in turn, is dependent on the rate of discharge and therefore it is this factor that can
increase the available capacity. Nevertheless, the validity of this is questioned by Traub [44].
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where inactive corresponds to those that only being transported (for example cargo),

and active refers to those that gather data or have an effective area, volume or field of
view (FOV)Y.

Austin [18] states that there are several factors which can drive the design of an active

payload (focusing solely on EO sensors) such as

e the range, endurance and altitude of the platform;

the range and area of surveillance needed;

the resolution of the imagery;

the need for tracking;

the need for on-screen display (OSD) of latitude/longitude, date and time data.

Moreover, these design factors can often become requested features by the clients and
stakeholders creating the RFP.

When considering EO sensors Schumann [35], Ferraro [42] and Surendra [52] all base
their modelling on the works from Leachtenauer & Driggers [53] and Gundlach [54]. The
EO system is a collection of individual detector elements in an array, known as the focal
plane array (FPA) with Hyix horizontal detector elements and Vi« vertical detector

elements. The FOV in a given direction is defined as

FOV = 2tan™! (?) (2.10)

where d is the length of the focal plane array and f is the focal length (see Figure 2.4a).

The image resolution is governed by the ground sample distance (GSD) parameter which
is a function of the camera FPA, optics, and collection geometry (see Figure 2.4a). GSD
is the distance between pixels projected on the ground (collection plane) at slant-range

R which can be obtained as

R= 12+ GR? (2.11)

where h is the UAV altitude and GR is the ground range from the target to the UAV
(refer to Figure 2.4b for geometries). As the FPA is usually rectangular the GSD for

9To clarify, EO sensors and pollution monitoring systems gather data and have a specific FOV or
volume respectively in which they are effective (i.e. contribute to the success of the mission). However,
for example, crop-spraying does not gather data, but once spraying is commenced it has an effective area
on the ground. Therefore, it can be considered active.
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Focal plane array p

eLook

— k= .
GSD Collection plane \ target
(A) Basic optics geometry. (B) Basic geometry for remote sensing.
FIGURE 2.4: Diagrams defining parameters regarding optical payload modelling. Both

diagrams reproduced from Gundlach [54].

horizontal and vertical can be calculated separately with the horizontal GSD at the

centre of the image, GS Dy, as

GSDy = ?R (2.12)

where p is the detector element pitch, the distance between the detector elements’ centres
(sometimes known as the pixel pitch), assuming the horizontal row in the FPA is aligned
with the horizon. Similarly, the vertical GSD at the centre of the image, GSDy, is

o p
GSDy = 4R (2.13)

where 0p00k is the look angle. By rearranging Equation (2.10) and substituting into
Equations (2.12) and (2.13) we get

FOVy
GSDpy = 2tan ( )R (2.14a)
2 Hpix
2 tan (£
GSDy = <”‘“X>R. (2.14b)

COS ( eLook )

This gives a measure of resolution of the imagery. However, to predict the quality and

utility of the imagery an image quality metric has to be introduced. In previous works
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[35, 42, 52] the Johnson criteria was adopted to predict the probability the object of
interest (labelled target in Figure 2.4b) will be detected, recognised and identified based
on the sensor’s resolution. The Johnson criteria creates a characteristic dimension, d.,
for the target such that

de = \/Whgt Higt (2.15)

where Wiy is the target’s width and Higis the target’s height (assuming the target is
seen by the UAV as a bi-dimensional object). Using this and the sensors average GSD,

the number of cycles, N, across the target can be calculated as

de

N=—_°__
2 GSDgug

(2.16)

The number of cycles of a target is derived by substituting the target image with pairs
of black and white lines along the target’s characteristic dimension. Each cycle is two
pixels (one for black, one for white) where a pixel is the GSD, hence can be treated as
2 GSDgyy. Using this idea of cycles, the probability of achieving the discrimination task
for a given number of cycles is given by the empirically found equation

<l) 2.740.7x(N/Nsg)
Nso

P(N) =
1+ (]ﬁo

(2.17)

) 2.7+0.7><(N/N50)

where N5 is the number of cycles that corresponds to a 50% discrimination probability

[54]. Nsg is given as 0.75 for detection, 3.0 for recognition and 6.0 for identification”.

However, it is common to get a sensory requirement in the RFP given in terms of a
NIIRS (national imagery interpretability rating scale) performance value [55] - ‘a series of
government standard qualitative metrics that help characterise the intelligence value of
an optical system under collection conditions’ [54]. Therefore, this image-quality metric

will be considered here too.

Irvine [55] present the full set of scales and ratings in his paper. However, the scale is
subjective and may vary among analysts, for example an attribute of NIIRS rating 7
is ‘Identify fitments and fairings on a fighter-sized aircraft’ [55]. Therefore, the general
image quality equation (GIQE) was developed as a tool to provide NIIRS performance
predictions for new equipment still under design [56]. The GIQE is expressed as

0Detection is define in Gundlach [64] as a reasonable probability that an imagery feature is of a general
group (i.e. an aircraft); recognition as a class of the group (i.e. a fighter aircraft); and identification as
object discrimination (i.e. Tornado GR4)
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G
NIIRS = co+ c1 logyg (GSD) + ¢z log;y (RER) + c3 SNE +cs H (2.18)

where

co — ¢4 = constants defined in Table 2.1,
GSD = geometric mean ground sample distance (in inches),
RER = geometric mean normalised relative edge response,
GG = post-processing noise gain,
SN R = signal-to-noise ratio of the unprocessed imagery,

H = geometric mean system post-processing edge overshoot factor.

TABLE 2.1: Table of NIIRS constants. Reproduced from Gundlach [54].

CO Cl 02 03 C4
RER >0.9 . 332 1.559
RER < 0.9 10.251 (visible) 316 2817 20334 -0.656

The issue with the GIQE is that several of the parameters require detailed knowledge
of the imagery system performance and the collection environment [54]. To aid this,
Leachtenauer et al. [56] provides a table of the range of values in the overall NIIRS data
set that was used to develop the GIQE and Gundlach comments on the parameters that
have a small impact on the NIIRS value, such as the H range given in [56] gave a range
of 0.321 NIIRS.

2.2.6 UAS modelling summary

The sections above have presented ways that the cost and performance of a UAS can be
modelled. All that has been presented is relevant to the work in this thesis. The model
and simulation created to assist in the design of a UAS service should take all these areas
into account at the appropriate level of detail and fidelity for the model based on the

available inputs.

The performance of the payload was also presented above. The main focus was on the
use of EO sensors due to their common use in UAS applications. The NIIRS rating was
discussed due to its prevalence in RFPs. However, the ability to apply this rating to
a model can be a challenge if the sensors details are limited. Therefore, the Johnson
criteria should be used as the basic model to enable the payload sensor model to mimic

the detection of targets.

In Chapter 5, the UAS service simulation tool developed using the UAS modelling

techniques discussed above is demonstrated via a case study. In the case study, the
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UAS service modelled represents a maritime search service where the UAS flies from its
operating base to a mission location, performs a task, and then returns to its operating
base. By implementing the propulsion performance models described in Section 2.2.4
it also allows for specific constraints to be included, such as weather conditions (e.g.
wind speed) and energy limitations (e.g. fueling policies). The effect of these constraints
then feed into the operational and maintenance costs in the life-cycling costing model

presented in Section 2.2.3.

2.3 Overview of modelling and simulation

This section provides an overview of modelling techniques, concepts and categorisation.
Modelling was described by Maria [57] as ‘the process of producing a model; a model
s a representation of the construction and working of some system of interest’. These
systems of interest could be ‘ideas, objects, events, systems or processes’ according to
Gilbert et al. [58]. Law and Kelton [59] provide an objective overview of the ways to
study a system as shown in Figure 2.5. This overview highlights that models can be
either a physical model or a mathematical model with either an analytical solution or

one that requires simulation.
L System }

{Experiment WithJ LExperiment with a}

the actual system | | model of the system

Physical Mathematical
model model

solution

[ Analytical } [ Simulation }

FIGURE 2.5: System modelling overview. Reproduced from Law and Kelton [59].

The use of modelling has become common practice in many research disciplines today;
management and social sciences, economics, engineering, chemistry, biology, physics,
medicine and healthcare to name a few. For example, with the world becoming more
interconnected, models are required for international commercial operations to run

efficiently, for targeted advertising to be effective and for financial risk to be understood.
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Computational modelling has allowed the study of problems where actual experimentation
is impractical, inefficient or has a disproportionately high cost, and where the problem
can not be solved directly [60]. Many of these problems are complex systems where
modelling is often the only tool available for understanding how they work [7]. To develop
models of these complex systems the selection of the correct modelling paradigm, its

development, integration and implementation need to be carefully thought through.

2.3.1 Simulation categorisation

Simulation, or ‘numerically exercising the model’ as put by Law and Kelton [59], has
many different methods which can be categorised in several ways. Rubinstein [61] and
Law & Kelton [59] offer up the same three classifications, two of which are: static versus
dynamic and deterministic versus stochastic. However, the third and most common
categorisation amongst journal papers and textbooks is the representation of time and
state in the simulation model as put forward by Nance and Sargent [62], or described as
continuous versus discrete by Rubinstein [61] and Law & Kelton [59]. This classification
can be seen in Shannon’s [63] 1977 layout of simulation techniques, adapted in Figure 2.6,

which was originally used as a diagram for assigning programming languages to simulation

Simulation
Techniques

techniques.

Digital

Discrete
change

Continuous
change

Differential Activity Event Process Transaction
equations oriented oriented oriented flow

FIGURE 2.6: Simulation techniques. Adapted from Shannon [63].

Adapted versions of Shannon’s diagram focused on digital techniques, combined with the

categorised modelling paradigms from Borshchev and Filippov [64], can be seen in Yu [7],
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Jinks [65] and Schumann [35] with Jinks’ adaptation shown in Figure 2.7. This version
clearly lays out the two classifications, ‘time-driven’ and ‘event-driven’ (which correspond
to ‘continuous change’ and ‘discrete change’ in Shannon’s diagram respectively), under

which the four modelling approaches are headed: system dynamics, continuous'!

, agent

based and discrete event.

Simulation

classification Event-driven

Time-driven

Modelling
methods

System ) Agent Discrete
. Continuous
dynamics based event

FIGURE 2.7: Simulation classification and modelling methods. Reproduced from Jinks
[65], an adaptation from Yu [7].

2.3.2 Time-driven methods

Time-driven modelling methods are where the time component of the simulation is
advanced at fixed, regular intervals and the state variables are recalculated at each
time step giving the appearance of continuous change. On a technical point, due to the
nature of digital computing, continuous changes are not physically possible as the time
component has to be discretised. However, the size of the discrete interval will be set

such that in a simulation it would be considered continuous [7].

As mentioned in Section 2.3.1 and Footnote 11, continuous modelling involves differential
equations of the state variables over time, such that their values can be predicted with
certainty [64, 7]. This method is commonly used when a high level of output detail is

required, such as the finding the velocity and position of a bouncing ball.

System dynamics, on the other hand, is where real-word processes are characterised in
terms of stocks, flows and feedback loops. This method, developed by Jay Forrester [66],
deals with high levels of abstraction to model, for example, the dynamics of a global
population where the causal relationships are presented using differential equations to

form interacting feedback loops.

1115 Borshchev and Filippov the ‘continuous’ approach is entitled ‘dynamic systems’ and is described
as ‘used to model and design “physical” systems’. This means that the state variables of the dynamic
system relate to a direct physical meaning: location, velocity, pressure, etc. and hence are inherently
continuous [64].
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2.3.3 Event-driven methods

Event-driven modelling methods are where the simulation advances from event to event
in variable time steps such that the state variables change instantaneously at separate
points in time [59]. The event is defined by Law and Kelton [59] as ‘an instantaneous
occurrence that may change the state of the system’. They go on to say that the word
may is used because the event might not actually result in a change in the state of the

system, for example, the event might trigger the end of a simulation run at a set time.

2.3.3.1 Discrete event modelling

Discrete event modelling (DEM) is based on the concept of entities, resources, constraints
and block-charts describing entity flow and resource sharing [64]. It can be seen as logical
sequences of possible activities, where the entities can represent parts, people, messages,
etc. These activities are often abstracted as time delays, such as a customer talking
to a shop assistant, thus using a resource (the shop assistant) and possibly creating a
queue. The block-charts consist of activities such as queues, delays, processes, seizing of
resources, releasing resources, etc. Between events, the underlying assumption of discrete
event modelling is that nothing of consequence occurs [7]. Because of this DEM is often
used for the study of manufacturing plant operations (Sajadi et al. [67]) and supply
chain design (Chen et al. [68]).

DEM is suited to models with a medium level of abstraction [64] where the process can
be described as top-down flowcharts. The fundamental concepts behind DEM are the
simulation objects - which include the entities and the activities (such as queues and
timers); and the event - which acts on the simulation object (such as changing its state
or scheduling future events) [7]. In complex models where the number of events is large,
the processing, storing, sorting and accessing of these events becomes significant in terms
of computational time. Therefore, careful selection of how the event list is handled is

required.

One solution to decrease the computational time to run a large discrete event simulation
(DES) is to paralellise the program (i.e. run a single simulation program across multiple
processors). However, this is challenging due to the precedence constraints (that dictate
which event must be performed before which others) are quite complex and highly data
dependent. This is also known as the synchronisation problem [69]. This is well explained
by Fujimoto [70], and in [69] some of the recent research into parallel and distributed
simulation programs are reviewed: the two main methods used are conservative algorithms

and optimistic algorithms.
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2.3.3.2 Agent based modelling

Agent based modelling (ABM) is where the control of the model is decentralised and
distributed among the agents. Rather than define the global system behaviour, the mod-
eller defines how the individuals behave using rules to control reactions to environmental
inputs, self-learning and communication [64]. This creates a level autonomy which can
lead to unpredictable emergent behaviour which may be of interest in some areas of
research such as the study of a social science problem. Yu [7] notes that unpredictable
emergent behaviour may not be of benefit to engineering problems as repeatability and

predictability are wanted characteristics from a simulation.

There appears to be no fully agreed upon description of an agent across the disciplines [64].
However, the one offered by Jennings [71] based on Wooldridge’s [72] description is concise:
‘an agent is an encapsulated computer system that is situated in some environment and
s capable of flexible, autonomous action in that environment in order to meet its design
objectives’ [71]. The use of the term autonomous is one of the key characteristics that
distinguishes an agent from an object. An object will respond predictably and will be
completely obedient, whereas an agent (which has control over its internal state and
its own actions) will make a choice on its action following an event that best suits its
objectives [71]. A more recent paper by Macal [73] offers up four informal definitions
based on applications appear in literature in a bid to distinguish ABM from other
modelling and analytical approaches. These step though the features and requirements
generally acknowledged as components of an ABM (individual, autonomous, interactive

and adaptive).

For a deeper understanding of ABM, both Macal [73] and Wooldridge and Jennings [74]
provide overviews of the important theoretical and practical issues associated with ABM.
In Wooldridge and Jennings’ overview, agent architectures are discussed and sorted into
two main categories: deliberative and reactive (with the possibility of hybrid architecture
t00).

Deliberative architectures (also described as classical approaches by Wooldridge and
Jennings [74]) contains agents that behave more like they are thinking and there is a
consideration of alternative courses of action before an action is taken [75]. This is a
common technique for social science modelling due to its ability to effectively model
human behaviour [76]. Whereas in a reactive architecture (highlighted as an alternative
approach in Wooldridge and Jennings [74]) the agents respond to events that occur in
the environment without engaging in complex reasoning [74]. This approach was used by
Schumann as it allowed intuitive model building for real systems with limited system

knowledge and agents within the work only follow operational rules [35].
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2.3.4 The vehicle routing problems

The family of vehicle routing problems (VRPs) is defined succinctly in Irnich, Toth and
Vigo [77] (in terms of the generic problem) as: given a set of transportation requests and
a fleet of vehicles, the task is to determine a set of vehicle routes to perform all (or some)
transportation requests with the given vehicle fleet at minimum cost; in particular decide
which vehicle handles which requests in which sequence so that all vehicle routes can be

feasibly executed [77].

This set of problems is well researched, partially due to the notorious difficulty in solving
combinatorial optimization problems, and partially due to their increasing appearance
in real-world applications (e.g. providing a next-day delivery service). The VRP was
introduced in 1959 by Dantzig and Ramser [78] as a practical application and since then
many groups have research this field, presenting exact or heuristic (and meta-heuristic)

solutions to the multiple variants of the problem.

A basic variant of the VRP is the capacitated vehicle routing problem (CVRP) in which
the transportation requests consist of the delivery of goods from a single depot to a given
set of locations and then back to the depot, and each location has a given amount of goods
to be delivered (e.g. the weight of the goods). The fleet in this basic variant is assumed
to be homogeneous and therefore all the vehicles have the same capacity. An example of
this would be a fleet of equivalent vans from one warehouse supplying medical supplies
to pharmacies of different sizes. The problem statement of this variant is mathematically

defined in [77] and the important mathematical programming formulations are presented.

Several variants and constraints can be applied to this basic variant to tailor the problem
to real-world applications. In the case of this thesis, the most relevant variant of the
VRP is the Heterogeneous or mixed Fleet VRP (HFVRP) - see Baldacci et al. [79] for a
survey of the research and work on this variant. In the HFVRP each vehicle in the fleet
has a potentially different capacity and cost. This variant combined with the additional
constraint of multiple depots is a generic description of the layout of UAS assets, mission
locations and operating bases in case study presented in Chapter 5. Irnich, Schneider
and Vigo [80] breaks the HFVRP into two strains, one focused on the strategic issue
of finding the best assortment of vehicles to be used for the long term sizing of the
fleet (often referred as Fleet Size and Mix (FSM) problems), and the other focused on
the tactical issue of using the most appropriate vehicle from a limited fleet (referred as
Heterogeneous VRP (HVRP)).

However, one of the major issues of applying a VRP model to a UAS service model is that
the majority of VRP models require prior knowledge of the locations of the transport
requests (mission locations in the context of this thesis) to build up the routing and
provide a solution to the problem. The main type of UAS service being modelled in this

thesis is that of dynamically generated transport requests (both in location and frequency).



32 Chapter 2 Literature review

For example, Zipline’s response to a request for medical delivery discussed in Section 1.1.
There is research towards dynamic VRP (DVRP) and Ojeda Rios et al. [81] provides
a survey of the literature produced between 2015 and 2021 focusing on applications
and solution methods. One interesting metric produced by Ojeda Rios et al. when
categorising the articles related to applications was that 17.5% were related to studying
services. This could be worth exploring as an alternative method to tackle the problem.
Some issues of non time-based models can be overcome by existing non-dynamic variants
of the VRP by tailoring them to the real-world application under consideration. For
example, missions overlapping in time can be included through time-window constraints
to force multiple vehicles to become utilised. This type of UAS service often has multiple
depots (i.e. operating bases in the case study presented in Chapter 5), and very few
transport requests active at any one time (7.e. missions in the case study presented in
Chapter 5). Therefore, the routing element of the VRP in this type of UAS service is not
the main difficulty. Instead, the challenge is combining the strategic issue of fleet size

and mix with the tactical issue of using the most appropriate vehicle from a limited fleet.

VRPs, their variants and associated models could be applied within the UAS service
model as a means to determine the daily tasking of the UAS if the service required asset
routing. However, this type of UAS service was not the focus of this thesis, but could be
included in the mission-generation architecture. This would allow a greater variation in
the type of UAS services that could be studied using the decision tool being developed

here.

2.3.5 Comments on simulations

Using a simulation has both advantages and disadvantages. This section aims to provide
a few comments on the use of simulations. Firstly, it should be noted that despite
the obvious cost advantage of simulation over physical modelling, simulation is time-
consuming in design, implementation and analysis, and often requires experts throughout
the whole process [57, 61]. Moreover, both time and experts come at a cost. This needs
to be accounted for when considering the need for a model and simulation, and setting

the level of complexity and scope of the model.

Several textbooks and journals advise that the simulation model should be kept as simple
as possible: this allows them to be more understandable - in both model structure and
result interpretation, faster to develop, more flexible and faster to run [82, 83, 84]. Simple
is defined in a handful of ways by Innis and Rexstad [83]: shorter, more transparent and
more efficient. Following this, several journal papers have attempted to show or report
on the relationship between model confidence (or effectiveness) and the level of details
(or articulation) [85, 86, 87, 84]. The illustrative diagram in Figure 2.8 reproduced from
Lobao and Porto [86] demonstrates the relationship. The general consensus is that there

is an optimum effectiveness for models where the model is not too simple nor too detailed.
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FIGURE 2.8: Relationship between level of detail and model confidence. Reproduced
from Chwif et al. [84], original from Lobao and Porto [86].

A simulation technique, which opposes some of the gains simplicity offers, is the use of
an animated simulation. Amiry [88] is identified by several papers and books as being
amongst the first to add animation to his simulation of information flow in a steel-making
plant to aid the user (in his 1965 paper). Hurrion [89] published his PhD thesis on the
potential for simulations that are both visual and interactive. This has now become
a common method in most modelling software (Extend, AnyLogic, etc.), allowing the
user to visualise the workings of the model and to interact with it, for example select an
entity and obtain more information on its status. Robinson [82] highlights some benefits
of visual interactive simulations as: greater understanding of the model; easier model
verification; improved understanding of the results; and more intuitive to non-simulation
experts. Therefore, it not only benefits the developer with visualising modelling errors,
but it also benefits those for whom the simulation was designed to inform [90]. However,
as mentioned earlier, animation will increase the complexity of the model and make the
simulation run slower. Although, once the developer is satisfied by the model and how
it is working, the animation can be switched off which should improve the simulation

run-time.

2.3.6 Modelling and simulation summary

Modelling can be achieved in a variety of ways (for example, physical, analytical or
simulation models) each with their advantages and disadvantages. Often, simulation
techniques are chosen due to the other options being impractical, inefficient (in both cost

and time) or impossible. They also offer an insight into how a complex system works.

Simulations can be categorised based on the representation of time and state in the
model, which leads to continuous and discrete models or time-driven and event-driven
simulations. Both model paradigms have their advantages and disadvantages as presented
above. The choice of modelling method should usually be based on the closest conceptual
match and an inappropriate choice may result in inaccurate results and possible computer

inefficiencies [7].
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In the case of modelling a UAS service, the use of a discrete event simulation is preferable
due to the system consisting of events and resources. It would be computationally
inefficient to model this with a time-driven model. Therefore, an event-based model has
been pursued in the work for this thesis. This has been combined with an agent-based
model using a reactive agent architecture (i.e. no complex reasoning, purely following

operational rules).

Care needs to be taken when formulating the model to ensure it contains the correct
level of detail to ensure the model is understandable, easier to develop and more flexible
to adjust. It should also be designed such that the results can be easily interpreted and
the model is as transparent as possible - for both debugging and verification purposes.
To achieve this, simple animations or visual representations are a useful tool. However,
this introduces computational inefficiencies, therefore the simulation should be able to

run with them switched off.

2.4 Overview of design decision methodologies

The design of a UAS service involves the comparison and ranking of design alternatives,
each comprised of multiple attributes with corresponding objectives. Inevitably, improving
one of these objectives may worsen another. The links and trade-offs between attributes
are often not straightforward. Hence, the design process becomes a multi-attribute
decision methodology (MADM) problem, where the attributes need to be well-defined,
such that the objectives can be fully represented [52]. The development of system-value-
models aimed to aid this process and guide the decision maker to reach a final solution
in a systematic way by integrating all these performance and characteristics into a
single figure of merit [42]. A comprehensive review of value-centric design methodologies
(VCDMs) is provided by Ross et al. [91] and a survey of aerospace value models is given
by Collopy [92].

This section will introduce the concept of value-centric design (VCD) and provide a
overview of different MADMs and VCDMSs that are available in the literature. It is
worth pointing out that both MADM and VCDM are inherently the same, as both aim
to find the best solution from a set of alternatives based on the system’s attributes and
preference structure, but with slight differences when comparing the choice of objective
function as described in Surendra [52]. Also, it should be noted that some authors in
the literature use different terminology for VCDMs (value-centric [93], value-driven [11]
and value-based [94] methodologies) and assign slightly different meanings to each. Here,

however, they will be used interchangeably.
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2.4.1 Value centric design methodologies

Value centric design uses economic theory to improve the design of large systems through
optimisation [11]. The main improvement of VCDMs in comparison to traditional systems
engineering approach is due to its ability to systematically evaluate design alternatives
in terms of cost and benefits [91, 42]. For example, a traditional systems engineering
approach may be to optimise the system to achieve minimum cost while meeting a desired
performance level (see Figure 2.9a). These high level requirements will cause certain high
level parameters to become fixed in order to meet the requirements. Therefore, when it
comes to designing the subsystems there is very little room for manoeuvre in the design
space [95]. This means if a high level requirement is not met (or is changed) the program
could require an extensive redesign which costs time and money. Real-world examples of

this problem occurring are given in Collopy & Hollingsworth [11].
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FigurE 2.9: Comparison of a traditional systems engineering approach where the

design space is defined by requirements, against a value-centric design (VCD) approach

where the design space is defined by values and technology. Figure adapted from Collopy
[96] and Cheung et al. [97].

In comparison, a VCD approach would aim to capture the complex interactions between
each sub-system as design changes are made. This is achieved by assigning a value to a
given design as a score of ‘goodness’ with the aim to maximise this score [97]. The value
is calculated through the system value model which involves the identification of the
stakeholders’ needs and the figures of merit that describes the design (i.e. an objective
function). This value can then be used to compare and rank all the design alternatives

possible within the design space [98] (see Figure 2.9b).

To illustrate this, see the example drawn in Figure 2.9. Here, the example has been
tailored from [96, 97] to suit the problem discussed in this thesis. By plotting the
design space of total service cost against a score of mission-success we can place every
possible design. If we then, using the traditional requirements-based approach, state
some requirements we form an area where our designs have to sit but with no indication
on where in the area the design should be. Therefore, it can be seen that by using the

traditional approach we can select a design that meets both requirements, see Figure 2.9a
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. However, by using the value-based approach, we can assign a value to each design
based on a value function and use this to compare designs. The resultant plot of design
and value is shown in Figure 2.9b and provides an optimal design and a value gradient.
The value gradient is produced by the partial derivative of the design value with respect
to the components that formed the value function (i.e. service cost and mission-success
score in this case). The optimal design falls marginally short of the requirement of
mission-success score, but yet costs nearly half the price. The line indicated as the ‘limit
of feasibility’ represents the Pareto front. This is where none of the attributes can be
improved with out worsening at least another. The candidate designs that sit on this

front are known as the Pareto set and this will contain the optimal design.

2.4.2 TImplementation of value-centric design

There are several different methods to implement VCD but all follow the same general
framework [97, 42, 19]:

1. Define the problem and identify the stakeholders.

2. Define what ‘value’ means to the stakeholders (and define stakeholders hierarchy if

necessary [92]).
3. Define the system to be designed in terms of quantifiable attributes.
4. Create the value model to coherently measure the value of the design alternatives.
5. Generate the candidate systems through component models.
6. Measure the value of the candidates using the value model.

7. Perform design optimisation and trade-off studies to find the ‘optimal’ solution.

2.4.3 Stakeholders

The stakeholders of a UAS service are all those involved in the requisition, design,
implementation, or interaction of the service'?. Often, the stakeholders will be interested
in different attributes of the system. Therefore, it is desirable to aggregate the preferences,
however this has its problems as stated by Arrow’s general impossibility theorem [99].
The use of game-theory to aggregate the preference of multiple stakeholders has been
studied by Papageorgiou et al. [100]. Other methods have included taking the geometric

mean of the groups preferences [101].

12This could include people in the environment in which the service will operate. For example, people
under the approach path to the landing-site could have a preference in noise levels and safety during the
higher risk manoeuvres.
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2.4.4 Multi-attribute decision making

To build the objective function the desires and aversions of the stakeholders need to
be established and ranked to provide a weighting to the attributes through the use of
MADMSs. The input data to these methods can be either qualitative or quantitative: for
example, a judgement by the stakeholder, or an evaluation through a model respectively.
The task of formulating a single, overall objective function of multiple-attributes is very
challenging. One way to simplify the problem is to deconstruct the overall objective
function into multiple single-attribute objective functions. Then the overall objective
function can be reconstructed (additive, multiplicative, multilinear) depending on the
assumptions made. Sen & Yang [102] provide a classification of different MADMs based
on the acquisition and representation of preference information which can be seen in

Figure 2.10. Some of these methodologies are described in the following subsections.

2.4.4.1 Analytical hierarchy process

Analytical hierarchy process (AHP) was originally developed by Saaty [103] and is a
widely used multi-attribute decision support tool. It is designed for the selection of the
best from a set of design alternatives by breaking the high-level problem into low-level
problems (hence hierarchical) using simple pairwise comparisons. The decision problem
creates a pairwise-comparison matrix, M, based on the decision criteria and the relative

weighting scale is derived from solving the eigenvector problem

M W = ApaxW (2.19)

where w is the vector of weighting factors and Apax is the highest eigenvalue of M. This
allows the set of alternative designs to be ranked such that the one with the highest
value is the most favourable. Through the eigenvector approach it is possible to measure
the consistency of the pairwise-comparisons, allowing the validity of the answer to be
assessed. However, for a large number of decision criteria, it can be difficult for the user

to maintain consistency.

AHP can be used to aggregate the opinions in groups via voting strategies or forming the
geometric mean as demonstrated in [101]. However, a major criticism of AHP is that it
is subject to the phenomenon called rank reversal [104, 105]. This is where the ranking
order of the alternatives can change if a new alternative is introduced [106]. Also, as the
preferences were captured using a binary scale, the output is also binary. This suggests

there is a linear relationship between preferences which is not always the case.
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AHP - Analytic Hierarchy Process; LIMAP - Linear-programming for Multidimensional
Analysis of Preference; UTA - Utility Additive.)

2.4.4.2 Multi-attribute utility theory

Multi-attribute utility theory (MAUT) introduces the term utility not yet defined here. In
economic theory, utility is defined as a numerical measure of preference relationship. This
can be seen as a measure of benefit, satisfaction or usefulness [91] that a system attribute
provides. Utility theory (also known as ‘the expected utility theorem’ by von Neumann
and Morgenstern [107]) quantifies decisions made under uncertainty, therefore, takes into
account the risk attitude of the decision maker. The utility function, u can be found by
presenting the decision maker with a set of probabilistic lottery scenarios (see Collopy
[92] for a simple example of the lottery). The scenario is set out as a choice between

a certain outcome, say x;, or playing the lottery with u(zp) = p and u(zw) = (1 — p)



Chapter 2 Literature review 39

where z g is the best outcome, xyy is the worst outcome and p is the probability of getting
xp. From this, a particular probability, p;, emerges which represents the probability at

which the decision maker is indifferent to the choice of x; or playing the lottery:

(@) —u(zw)
Pi= o) —u(ew) (2.20)

The development of the MAUT equation (Equation 2.20) depends on the condition of
independence assumed. Keeney & Raiffa [108] demonstrate that a multiplicative form
can be used to combine the utility functions as long as the following conditions are

assumed or are verified:

1. Preferential independence: implying the preference order between two consequences

of an attribute is independent of the level of all the other attributes.

2. Utility independence: implying that the utility function of an attribute is indepen-
dent of the level of all the other attributes.

If both assumptions hold, then the multi-attribute utility function, u(x), for N attributes

1S:

N
Ku(x) + 1 =[] (Kkaui(z:) + 1) (2.21)
=1

where k; is a scaling factor in the range 0 < k; < 1 for the it attribute, and K is the
multiplicative scaling constant. To find K an iterative process is required as shown in
Keeney & Raiffa [108]. Further more, if the additive condition is verified then S-N | k; = 1,

the utility function becomes a simple weighted sum of the form

N
u(z) =) ku(x;). (2.22)
=1

The advantages of using MAUT are that it can capture uncertainty and risk in the
decision making process and allows the decision-maker to establish difficult to make trade-
offs between attributes. Because of these advantages and its comprehensive theoretical
structure, it has been used in several research and real-world problems (for example,

space system design [109] and dairy farming systems [110]).

However, MAUT has its limitations. The first is that the validity of the preferential
and utility independence does not always hold in real situations as it asserts a person’s
preference should vary linearly with the probability of its occurrence which is often found

not to be the case. The second limitation is that it is inappropriate when trying to
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aggregate the preferences of a group of individuals due to Arrow’s impossibility theorem
[99]. Finally, Collopy [92] notes that utilities are abstract dimensionless metrics, whose
meanings are difficult to comprehend. Therefore, translating them to a certain equivalent

worth (i.e. a monetary value) is recommended.

2.4.5 Worth based models

Techniques that involve quantifying the monetary value of a system are different ways to
rank the alternative designs. Sometimes it seems viable to model the value of a system
by defining the value as the system’s performance divided by its cost, which avoids
assigning a monetary value to the system performance [92]. However, Collopy [92] points
out through the use of a simple example this metric generally leads to being incorrect.

Therefore, monetising the value of a system is often required.

Net present value (NPV) method is a measure of the profitability of an investment,

taking into account the time value of money through the use of discount rates:

t;

NPV = Dy Z +< )) (2.23)

where Dy is the initial investment, D(t) is the future cash flow, t; to t; is time period
considered and r is the discount rate. The choice of discount rate has a large influence
on the final value [91]. However, there is no definite method to select it [42]. This
method assumes that the stakeholders only perceive value in monetary terms. The
advantages of NPV are that it makes the comparison of design alternatives meaningful
and straightforward [11] and the stakeholder’s risk attitude can be incorporated [92].
On the other hand, NPV requires all the design attributes to be converted to monetary
worth which is a challenging task. Also, NPV assumes all cash-flow and discount rates

are known a priori, but in reality they are prone to fluctuations and uncertainties [91].

Cost-benefit analysis (CBA) is another value-centric tool that is useful for quantifying
the net benefits yielded by a system to its respective net costs [91]. In the cases where
the effectiveness of a UAS mission cannot be readily translated into a monetary value,
the goodness of the system can be measured in terms of performance. This, combined
with a cost model of the service (acquisition, maintenance and operational costs), is the
basis of CBA. The generalised governing equation, where the benefit value (once found)

is assigned a monetary value as

CBA = (Z By Co) + f: Bt f: et (2.24)

t:O t:O
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where By and Cj are the initial monetary benefit and cost of the system respectively, B(t)
and C(t) are the monetary benefits and costs with respect to time in the time period t; to
t; and r is the discount rate. However, the conversion from benefit to monetary benefit
is not required. Instead, the decision maker can be presented with a graph depicting the
different levels of mission effective against associated costs [42], allowing the Pareto set

of design-alternatives to be identified.

2.4.6 Design decision summary

The use of a VCDM removes the limitations put in place by the requirements set in
traditional systems engineering approaches. This increases the design space and also
eases changes to the design if the objectives shift. The philosophy behind VCD is to
maximise a value assigned to a design through a value function which takes into account
the needs of the stakeholders.

Methods like the AHP allow the decision maker to rank the importance of the attributes
thus a value can built up using these weightings in the value function. However, this
neglects decisions made under uncertainty and the risk attitude of the stakeholder. This
can be achieved using the MAUT which allows the individual utility functions for each
attribute to be combined. The problem with this, assuming the necessary assumptions
hold, is that the output is a dimensionless measure and therefore is hard to understand

its meaning compared to the alternatives.

Worth based models, such as the CBA method, overcome the issue with dimensionless
measures by representing attributes or performances with a monetary value. However,
the act of assigning worth to benefit is in itself difficult and assumes the stakeholder is
only interested in monetary value. An alternative to this, where the system’s performance
is of importance, is the comparison of the system’s effectiveness to its cost. Rather than
convert the performance metric to a monetary value, it is kept in a meaningful unit and

presented graphically to show the effects.

The choice of which model to adopt very much depends on the application of the system
and the market environment it falls in, along with the stakeholders’ views. This means
the choice needs to be made as a design decision with the assumptions and limitations
of the model understood [42]. The final considerations for value models are a set of

desirable properties presented by Collopy [92]

e Repeatability - once the model is set, if you were to return to it later with the

same set of attributes you would get the same value out.

e Transparency - Once a value is given, you need to be able to understand how that

value was produced; what attributes made it good or bad.
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e Differentiability - If the value function is to be used in an optimisation algorithm,
often it will need to be differentiable. Therefore, it is advantageous to build the

model from polynomials, ratios and transcendental functions.



Chapter 3

Developing a UAS decision

support framework

This chapter presents the development of the framework designed to support decision
making and optimisation when designing a UAS service. The decision support framework
allows the user to input the specific service definitions (based on the requirements set out
in the RFP) and also capture the stakeholders’ needs. The weightings on the attributes
of the service are then used to find the values of the candidate designs created from
the database of COTS UAVs and payloads. To obtain its value each candidate UAS
service design is exercised through the operational simulation to gain an understanding
of the design’s resource usage, mission performance and costs. The accumulated outputs
should provide the user with an optimal solution along with other alternative designs.
The reasoning for the optimal design should be transparent, such that the user can trace

backwards to see exactly how the selected design is defined as the optimal one.

The following sections detail how the framework is built up, what is in scope and the

framework’s underlying requirements.

3.1 Requirements

For the framework to survive as a tool for those who design UAS services, it needs to be
useful to them and meet their requirements. Nurminen et al. [111] empirically evaluated
several expert systems to determine what made them survive over 10 years of application.
The conclusion reached by the study showed that, firstly, as the users are generally
experts themselves, the expert-system should complement rather than replace the user.
Secondly, the usability of the system should take precedence over automation as usability
is considered more important. Finally, the development of the system should be fast

and agile to cope with the changing environment often associated with the disciplines
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expert systems are found in. However, these findings are based on empirical observations
and do not take in to account factors such as the development team’s culture and the

sensitivity to type of industry or application [111].

Schumann [35] identifies four main requirements, all interconnected, that are demanded
from his conceptual design phase, mission-modelling framework: comprehensible and
simple, generic, modular and realistic. These are shown in Figure 3.1 with how they
relate to each other by either supporting or opposing. These four requirements are also

applicable to this framework.
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FIGURE 3.1: Framework requirements and interconnecting relationships (either they
support or oppose the other requirement). Reproduced from Schumann [35].

In this thesis, the framework needs to be understood by the users. If the user can
comprehend how the framework produces its output then they will be better able to
judge the validity of the output and how the assigned assumptions and limitations affect
it. As the framework aims to support the decision making process, it must integrate into
the current methods to provide a smooth transition and be simple to use. It should not
require a steep learning curve. However, if it is too simple this can oppose the model’s

realism and not produce acceptable results.

As indicated in Chapter 1, there are many different applications of UAVs. In addition,
there are many different COTS models of UAVs and payloads. The framework needs to
be able to recreate these different applications and missions so that the optimal design of
the service can be found from the pool of assets. To do this, the framework must be able
to accept a variety of different inputs and hence it is required to have generic options

that can be applied to build up the specific service model.

To achieve a generic framework that can accommodate many different mission scenarios,
the framework design should be modular. In other words, the framework should be
compatible with any extensions and add-ons that may be desired later in its life, or
required to keep the framework current. This can improve the realism of the simulation.
For example, the extension could be an improved payload model or the addition of a

communication link model. Also, the ability to modularise the framework based on
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physical boundaries is recommended as this can make it more intuitive and easier to

adapt.

Finally, realistic results are desired here. However, due to the lack of information and
knowledge of the exact CONOPS of the service and the exact performance metrics of the
systems, the level of realism should reflect the level of knowledge available. This links
to the thinking behind Figure 2.8 in Section 2.3.5, where there is an optimum level of
detail with regard to model confidence. Similarly, if the framework produces high fidelity
results, but the inputs are not known exactly and are limited, then there will be a lack

of confidence in the model as the output should reflect the level of certainty of the input.

3.2 Service framework

With the requirements presented in Section 3.1 in mind, the overall framework is defined
in the following sections. To start with, the high level scope of the framework is considered
in Section 3.2.1. The scope of the model is also considered at the different levels and
is described as the sections progress. The framework is broken down in a similar way
as to how the service is modelled. This mostly follows the physical boundaries that
form the modular components of the model. These modules comprise of the mission
framework (Section 3.2.2), the operating base framework (Section 3.2.3), the UAS
framework (Section 3.2.4), the payload framework (Section 3.2.5) and finally the weather

framework (Section 3.2.6).

3.2.1 Framework scope

Firstly, this thesis focuses explicitly on the modelling of UAS based services. Although
the model produced is capable of introducing different vehicle types (for example a
land-based vehicle) to the service by creating a new module, this is not considered here.
However, the inclusion of this is discussed in Section 6.2.2 (Application of tool to different
UAS service types). Chapter 1 introduced several different types of services currently
using UASs. These ranged from military weapon deployment to civilian aerial surveys
and maintenance inspections for buildings and structures. The service examples listed
were categorised by the user-group, for example military, commercial and governmental
applications. However, this categorisation method is only beneficial in terms of visualising
the type of task the service may be involved in and not how they are setup. Instead,
it is proposed that UAS services are categorised as either deployed or stationed'. A
deployed service signifies one where the UAS is transported to a temporary location

near (or at) the task location and then activated. On the other hand, a stationed service

! Deployed and stationed are often used to describe the service location of military personnel. In the
military context deployment can be considered a temporary location of service, whereas stationed is the
more permanent assignment.
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signifies the UAS having a permanent location and is activated such that it transits to
the location of the task under its own power. This can be thought of as the operating
base being mobile or static. Examples of deployed services would include aerial surveys
of individual buildings, entertainment videography and military personal reconnaissance.
Whereas examples of stationed services include long range ISR assignments, cargo and
transportation, and assisting with SAR or the emergency services. Often, those services
that fall under the stationed category conduct frequent missions and there can be multiple
missions occurring simultaneously. They also are active as a service for time periods of

months to years.

This thesis is concerned with the services that fall under the stationed category. These
have operating bases that are permanent (for the duration of the service). It is also
possible for them to have multiple operating bases to allow the service to cover a particular

geographical region.

The UAVs considered within the model are expected to be COTS platforms. This means
that the parameters that define the platform (i.e. performance values) are known or
can be well estimated as opposed to allowing them to be variables. The justification to
this limitation is that when responding to a service’s RFP the amount of time given by
the client to submit and action the tendered service design is often insufficient to take a
UAV design from concept stage to production. However, although this is out of scope for
the work in this thesis, the framework is capable of supporting decision making based on

service performance during the concept stage of UAV design.

Finally, the model aims to allow CONOPS and policies to be defined or set by the
designer. For example, a service could have the policy of always flying on full fuel?
regardless of the expected range or endurance of the mission. However, an alternative
policy could be to ensure there is only enough fuel for the expected mission plus a set
reserve to allow for potential delays or uncertainty in the expected mission duration.
These policies and concepts of operation can have a significant influence on how the
service is performed. They can also be unique to the specific service and therefore it is

hard to incorporate them all in a generic model.

3.2.2 Mission framework

The mission framework defines when, where and what tasks the UAS platform will have
to perform within the service. A service can be built up of any number of mission
definitions, each with unique details. The mission definition can be broken down into

two main components, the scheduling component and the task component.

2Read fuel here as the platform’s energy source and therefore this example policy covers both
hydrocarbon fuels and batteries, as well as other energy sources.
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Firstly, the scheduling component of the mission framework is considered. Services can
either have missions that follow a routine where the time of the task is planned, or the
task can be random and the mission is reactive to an event or occurrence. An example
of the first type is an hourly, daily or even weekly task such as a photogrammetry survey
of a coastline looking at the effect of erosion. Whereas, an example of the second is a
randomly generated task such as a response to an incident (such as a SAR assignment or
monitoring a wildfire). The mission framework allows for both of the scheduling types to

be set by the use of probability distribution functions describing the frequency.

The task component describes the where and what aspects of the mission. Due to
the geospatial nature of the missions, the majority of the task component is described
geographically. Similar to the scheduling component, the where aspect of the task
component has two major types. The location is either known and planned, or it is
randomly located. In fact, the planned type is just a unique version of the randomly
located (i.e. where there is no variability in the location). However, in this framework
they are classed as different types. An example of a task at a known location is performing
an air-drop of medical equipment over a remote clinic. On the other hand, an example

of a randomly located task could be, as before, responding to an incident.

So far, the mission location has been described as a location or a point. However, the
task (i.e. the what aspect of the mission) on arrival at the mission location varies in
complexity. The type of tasks considered in this thesis are described as follows. Firstly,
the most simple task type is a point mission. This is where the UAS transits to a
location and then returns after completing an instantaneous task such as the air drop
example above. Expanding on this type is a loiter mission. Here, on arrival to the
location, the UAS will loiter for a period of time (i.e. remain in the vicinity of the
specified location). For a fixed wing UAS this could be performed by flying a circular
pattern, for example. The amount of time spent at the location loitering can be fixed or

varied. All point and loiter tasks are specified by a latitude and longitude coordinate.

The next set of task types involves a series of waypoints to define the task. The waypoints,
given by latitude and longitude coordinates, create a path mission. The UAS transits to
the start waypoint and then moves to each of the waypoints in the series of waypoints
following the sequence. Once the UAS reaches the final waypoint it transits back to its
operating base. The series of waypoints can be of any length but the order matters. In
addition, the series of waypoints can be predefined, therefore the path coordinates are
known in advance, or they can be dynamically allocated (i.e. as the mission proceeds).
The ability to dynamically allocate the waypoints allows the coordinates to be set based
on external parameters. An example application of this is the creation of search patterns
or surveys (e.g. an expanding square search pattern) where the swath width on the
ground is required to overlap slightly to ensure full coverage of the area. The dynamic
path is the final task type considered in this thesis. However, it is possible to adapt the

model and add new types as they are required.
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By setting out the types of tasks that the UAS can perform during a service the importance
of the geospatial modelling becomes apparent. The importance is demonstrated when the
locations are randomly generated as often they need to follow some form of distribution
but also remain within the region the service is covering. An example of this could be
a service for monitoring and responding to wildfires. In this scenario, the wildfires are
likely to follow a random distribution with areas of higher likelihood over particular
vegetation types. However, they are not expected to be found over the sea. Also, the
stakeholders may only have permission to operate in a particular area restricted by,
for example, political boundaries. This thesis introduces these geographical region as
either include polygons or exclude polygons. One way to visualise this is to treat
the exclude polygon as a hole in the include polygon. There can be multiple exclude
polygons in one include polygon. A polygon is defined by a list of latitude and longitude
coordinates, similar to the path task type described above. However, the polygon differs

as the list must form a closed loop, encapsulating the region.

3.2.3 Operating base framework

An operating base is defined as a static, geographically located site that has UAS and
resources assigned to it. As described in Section 3.2.1, this thesis focuses on static
operating bases with locations that are permanent for the duration of the service. This
allows the resources associated with the UAS to be situated there, for example, the
maintenance equipment, consumables and refueling equipment. It is assumed that the
operating bases are capable of facilitating the launch of the UAS types that are assigned
to it. Each operating base is assigned a daily cost to account for the rent and use of the

facilities.

The operating base can be assigned any number of UASs and any number of UAS types.
Therefore, it is assumed that the operating base has been selected such that it can store
the amount assigned. It is also assumed that each UAS assigned to an operating base is
operated exclusively by the personnel at that operating base. This means that the UAS
will require the personnel at its operating base to be available before it can fly. It can
not use personnel from a different operating base, nor can it land at a different operating
base. This does introduce a few restrictions to some of the CONOPS that might be
considered. For example, if an in-flight emergency occurred, the UAS will return to base
rather than seek out an alternative (potentially nearer) operating base. However, by
restricting this type of operation, it means each operating base will always have access to
the UAS assigned to it. Also, it means that the operating base is always suitable for the
UAS to take-off and land (via the assumption laid out in the above paragraph). Finally,
it also removes the need to include several complex logistical methods to deal with these
scenarios, for example, in the case of the emergency landing, the logistics of returning

the equipment to the original operating base.
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The operating base also has personnel assigned to it. Here, this is demonstrated by
the assignment of pilots. However, the inclusion of other personnel, such as engineers
or technicians can also be accommodated. This would just require integrating their
interaction with the service and equipment into the model. Alternatively, if these roles
interact with the service in the same way then they can be combined and ‘a personnel’
can be thought of as ‘a crew’ required to operate the platform. In the case of pilots, each
operating base can set the maximum number of pilots assigned to it. Then the number
of pilots at the operating base follows the number of UAS units assigned to it up to this

limit. This allows the effect of personnel limitation to be studied.

The basic setting for personnel assigned to an operating base is that they are assumed to
be available 24 hours a day, 7 days a week. A more complex model can be implemented
that considers the working hours and shift patterns of the personnel. Although, while
experimenting with applying this complex model it was found to introduce unnecessary
complexity and policies with regards to shift handovers. Therefore, the basic setting
is deemed acceptable and can account for these ideas through different methods. For
example, if the missions are only scheduled to occur during the working hours of the
personnel, this would be accurately represented. Alternatively, if the missions are
randomly scheduled to occur at any time of the day, the salary of that personnel role

can be set to account for the number of people required to cover the availability.

3.2.4 UAS framework

The UAS framework captures the performance and the reliability of the platform. It
also contains the platform’s state throughout the service simulation. The UAS model
presented in this thesis is focused on fixed wing platforms as justified in Section 2.2.2.
Currently, the performance models of the UAS covers both internal combustion engine
(ICE) and battery powered platforms using the equations described in Section 2.2.4.1.
These equations require knowledge of the UAS’s aerodynamics, mass and propulsion
system. It is assumed that these values are available or can be well estimated. These
two performance equations allow the UAS model to account for weight change due to
fuel being burnt in the case of the ICE powered platforms, and account for the effective

capacity of batteries in the case of electric powered platforms.

By using the performance equations described in Section 2.2.4.1 (Equations (2.3) and
(2.9)), the UAS range and endurance can be found. These values are used to determine
if the platform can attend the mission and how much it can complete before having
to refuel. However, it is not just energy supply that limits the range of a UAS in the
real world. There are two other factors that come into play; the communication range
and the legal range. Firstly, the communication range is the distance after which the
command and control link to the platform is no longer effective. This is often calculated

using the link-budget equation which takes into account transmitter power, antenna
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gains, hardware losses, miscellaneous losses and importantly the path loss. The path
loss component contains the terms for the wavelength of the radio frequency used and
the distance between the transmitter and the receiver. The link-budget equation can be
arranged to find the distance at which the system can be deemed reliable (i.e. setting the
received power to an appropriate margin to account for real-world noise, for example 10
dB). Although this is an important consideration, it was decided to be out of scope for the
model presented in this thesis. Instead, it will be assumed that the UAS will be equipped
with a communication system that is capable of a reliable link at the maximum range
the UAS can travel before returning to base. To compensate for this limitation, the cost
associated with the UAS flight hours can be adjusted to account for the communication

system used.

The second factor was the legal range. This is the legally permitted distance between
the UAS and remote pilot in command set out by the governing aviation authority (e.g.
the CAA in the UK). Current civil regulations in the UK, for which guidance is provided
in CAP 722 [27], restrict UAS general operations to 500 m from the remote pilot in
command without any additional exemptions. However, the Basic Regulation [112] (on
which the civil regulations are based) lists aerial activities to which these regulations
do not apply. Within this list are aircraft carrying out military, customs, police, search
and rescue, firefighting, coastguard or similar activities or services (which are known
as ‘State aircraft’) with the caveat that the state must ‘ensure such services have due
regard as far as possible to the objectives of the Regulation’ [27]. As the listed services
align with the targeted services of this model the legal range is not included as a UAS
limitation. In fact, this model could be used to gain an insight into the expected range
of the UAS for the optimal service design and use this data to build and strengthen an
operating safety case. However, the financial implications associated with the creation
and maintenance of the operating safety case and legal-based cost need to be considered.

This was taken into account through the cost per flight hour.

The reliability aspect of the platform model is broken into two main elements. The
first is a system failure which leads to maintenance, and the second is a system failure
which leads to a critical failure and total loss of the platform. Both failures use flight
hours as a measure of when a failure will occur. The time-to-fail values are generated
on creation (and replacement) of the UAS platform and are randomly selected from a
Weibull distribution. Weibull distributions are commonly used for modelling reliability
performance of systems [113] [114] and the basic distribution can be described using two
parameters, « and 8 where « is the shape parameter and S is the scale parameter.

can be set if the mean, u, and shape parameter are known by rearranging

= al <1 + ;) (3.1)
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to find B (note that the gamma function®, I'(z), will produce two possible values of 3
and therefore care needs to be taken to ensure it is compatible with the mean). This
model treats the system as a whole in terms of time-to-failure and therefore the Weibull

parameters should reflect this.

The two reliability elements differ with regards to how the platform reacts to a failure.
In the case of a critical failure the platform is considered a total loss and a replacement
is required. On replacement a new time-to-fail for the critical failure is generated and the
process is repeated. The length of time to complete the UAS replacement can be set (e.g.
this could be instantaneous or require days to get the replacement operational). No other
factors influence the time-to-fail and therefore the parameters of the Weibull distribution
should reflect the reliability of the platform, the in-built redundancy of components, and

the effect of the maintenance programme? on the active lifetime of the platform.

On the other hand, when a system failure occurs, the platform is able to return to base
but requires immediate maintenance. Once the maintenance operation is complete, a
new time-to-fail value is generated and the UAS is made available for operations again.
The model also includes a basic maintenance schedule option that can be turned on and
represent preventive maintenance, or turned off to represent run-to-failure maintenance.
If in preventive maintenance mode, an extra parameter is required to state the number of
flight hours between scheduled maintenance. This is often set such that it is just before

the mean-time-to-failure.

The reliability and maintenance policies are simplifications of the real process. However,
for the fidelity of the model, this level of simplification is deemed acceptable. It also
allows for a simple study into the effect of varying the maintenance policies should this

be of interest.

3.2.5 Payload framework

The payload framework presented as part of this model and thesis focuses mostly on
electro-optical (EO) sensors as described in Section 2.2.5. The justification for this is
that most services that are covered by the scope of this model use electro-optical sensors.
The payload can be modelled as an inactive payload (i.e. a constant weight for the
duration of the mission), a releasable payload (i.e. medical aid delivered by air drop) or
a stabilised static electro-optical sensor (i.e. a forward and down facing camera stabilised
in pitch and roll). These assumptions dramatically reduce the complexity of the model
and allow it to still capture the importance of the payload functionality. This also allows

the study of payload choice.

3The gamma function expands the domain of factorials to non-integer values
4This refers to those maintenance programmes suggested in Section 2.2.3, such as daily inspections or
replacement of life-limited components.
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For services that require target detection, work was put in to implement a model that
can set the flight regime to achieve a particular NIIRS rating of the expected targets
(e.g. search and rescue victims). However, eventually this was deemed out of scope
due to the complexity of predicting NIIRS performance and the lack of data on the
parameters required for the general image quality equation (Equation (2.18) presented
in Section 2.2.5). Instead, the Johnson criteria described in Section 2.2.5 was used which

relies on more tangible parameters for the EO sensor.

3.2.6 Weather framework

The weather framework introduces a real-world variable to the model. In this thesis, the
weather framework contains information about the temporal wind. However, through
the modular design further weather categories can be added, for example visibility which
would have an impact on the payload’s functionality. Wind was selected as it has a
significant effect on the range and performance of a UAS. By applying a global wind layer
to the geographic region and varying it with time to match the historic distributions, a

more realistic model is produced.

The wind component models the wind using historic values for the wind direction and
wind speed to build custom distributions for each month of the year. These distributions
can then be sampled and the resultant vector can be used to calculate the effective range

of the UAS. Also the ground speed and flight distance can be adjusted accordingly.

The assumptions made by using this method are that the wind vector is constant between
sampling times and is uniform across the whole region modelled in the service. Also
it is assumed there is no hysteresis in the vector (i.e. the next sample is not affected
by the current sample). This simplification can lead to large step changes in the wind

conditions which can be detrimental to realism of the model.

The wind direction data set should consist of a set of compass headings and the probability
the wind came from that heading for each month of the year. Then, through linear
interpolation, a custom distribution can be built for each month. The more compass

headings available in the data set the better.

The wind speed data set should consist of a set of monthly wind speed distributions.
Alternatively, if the distribution data set is not available it is possible to use the monthly
average wind speeds recorded at 10 m above the ground. This can then be applied
to a Rayleigh distribution (a special case of the Weibull distribution, where the shape
parameter o = 2) such that the scale parameter  can be set using the mean p by the

use of the following equation

i
[NE
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This allows the variability in wind speed to be modelled when the shape of the distribution
is not known. Several studies into wind speed distribution predictions have been presented,
mostly due to the rise in using wind as a renewable energy source and the need to assess
wind conditions and the suitability for placement of a wind turbine [115] [116] [117]. In
these studies multiple different distributions are considered and compared but often the
shape parameter of the distribution is calculated from the existing data set. Therefore, if

only the mean wind speed is known, the use of a Rayleigh distribution is sufficient.

Wind speed also varies with altitude so a wind profile was applied. This allows the
altitude of the UAS to scale the wind speed appropriately. The log wind profile [118]

was selected and is applied with the following formula

(3.3)

where u(z) is the wind speed at altitude x; z1 is the reference wind speed altitude (here
10 m); 29 is the UAS’s altitude and zg is the roughness length to account for the effect
of the roughness of a surface on wind flow. zy should be set to match the terrain type
(e.g. grassland typically has the range 0.01 to 0.05). The log profile was selected over
the power law profile due to the ability to fine tune it to suit the terrain type.

3.3 Framework summary

This chapter presented the underlying requirements to improve the chances of this
framework being adopted as a useful tool in supporting UAS service design. Also
presented were the assumptions, simplifications and limitations made in the formulation
of the model and used in this thesis. The reasons and justifications were provided along

with the effect they have on the output of the model.

Some limitations were introduced to remove complexity from the model, thus allowing the
entire framework to reach a status acceptable for testing and to analyse its effectiveness.
However, these limitations can be lifted, due to the modular nature of the framework, by

the creation of additional modules or more complex logic flow.

Other assumptions and simplifications were made due to the availability of data for what
is being modelled. Where data values for a model component were lacking or hard to
obtain from published data, simplifications were made to ensure the overall model was
still able to capture the effect of the component, albeit to a lesser degree of accuracy.
However, one benefit of the simplifications is that a lower level of detail can improve the

model confidence as discussed in Section 2.3.5.






Chapter 4
Simulation and modelling

This chapter presents the simulation and modelling methods for finding an optimal UAS
service design. Firstly, the simulation design is discussed in Section 4.1. Section 4.2 gives
an appraisal of the tools considered in the formulation of the model. Finally, Section 4.3

demonstrates the implementation of the model.

4.1 Design

Based on the literature review and the problem being modelled, an event-driven simulation
was chosen as the basis of this model. The simulation uses a hybrid of discrete event
modelling and reactive agent based architecture. The model is represented in the form
of a high level flow diagram shown in Figure 4.1. There are three main areas to this
diagram: the user inputs, the simulation and the framework outputs. The components

outside these areas are either processes working in the inputs, or storage of data.

The inputs are taken from the RFP as requirements and service details. The requirements
contain information about what the customer and stakeholders desire and these can be
ranked using methods described in Section 2.4.4.2. This leads to weighted preferences,
for example the optimal design candidate should prioritise completing the missions over
the cost. Finally, these weighted preferences contributes to the formation of the value

function using a cost-benefit analysis method described in Section 2.4.5.

The service details outline what the missions comprise of, such as geographical points
of interest (e.g. the operating base locations, geospatial polygons). The service details
also outline the probability distribution of mission attributes that define the service (e.g.
frequency, type, location, duration). These data sets are then used to model the missions
in the service planner. The time period of the service is also defined within the service
details so that the simulation has a start and an end event. Also included are any global

CONOPS or policies that are expected to be followed in the service model.
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FI1GURE 4.1: A high level flow diagram of the framework highlighting the user inputs,

simulation area and outputs. The components outside the dashed boxes are either

processes working on the inputs (for example, preparing it for the simulation), or storage

of data (for example, the database of UAV details). The arrow directions show the

flow of data or information, ultimately arriving at the service value, CBA and resource
utilisation.

The UAVs and payloads have their details stored in external databases. These details
are accessed by the simulation to model them in the service using methods described in
Section 2.2.4. The information stored in these databases include performance metrics,
reliability data, unit costs and operational costs. The simulation also calls on a collection
of databases that contain information on the required resources, for example, personnel
details such as pilot salary, and consumable information such as fuel price. The simulation
can be set such that the service has access to infinite resources. This allows the designer to
evaluate how well the service can perform without any resource restrictions. Alternatively,
it can be set to restrict the resources to see the effect resource limitations can have on

the service, for example the number of pilots available.

The service planner translates the information provided in the service details and the
user requirements to create the mission profiles. These, in turn, define the inputs for the

generators that produce events during the simulation. The key generators within the
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simulation are the “mission generators”. These generate the events that request a UAS
(and the required resources) to become active and fulfil the mission’s objectives. Once a
UAS has been requested it follows through the asset logic flow based on the generated
event (such as take-off, transit, waypoint navigation, landing, refueling, maintenance,
etc.). Within the asset logic flow, and while the UAS is active, other events (via the
event generators) can still be generated that affect the state of the UAS (for example, a

change in weather conditions).

Finally, once the simulation has run for the stated time frame, it outputs the performance
of the candidate design under consideration and the cost generated from the simulation
along with the resource utilisation. These, combined with the ranked requirements, allow
the service value and cost benefit analysis to be calculated. These values are used to

compare the service candidate designs and find an optimal solution.

4.2 Tools

During the early stages of the research, several software tool kits (STKs) were investigated
to see if an off-the-shelf program could usefully provide a computational environment for
the model and simulation. These tools ranged from aircraft simulators (which provided
realistic flight dynamics and environments) to computational simulation suites (for the

design of computational models). There were two areas tools were considered for:

1. A mission simulation environment in which a 3D representation of the mission
can be shown and data collected regarding the sensors and UAS performance (see
Section 4.2.1).

2. A programming environment in which the service model can be designed and
preferably from which the mission simulation environment can be accessed (see
Section 4.2.2).

Several key aspects of the software were considered, such as: is a licence required, is the
software open-source or code-programmable, is the interface a graphical user interface
(GUI) or a command line interface (CLI), can the simulations be automated, and which
aspect of the project does the tool aid. A review of the state-of-art software for agent
based modelling by Abar, Theodoropoulos et al. [119] was also useful for shortlisting
those being considered under the agent-based category. The following sections present a

brief overview and evaluation of each of the STKs that were investigated.
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4.2.1 Mission simulation tools
4.2.1.1 AGI STK

AGI STK (Analytical Graphics, Inc. Systems Tool Kit) is a four-dimensional (3D
space and time), physics-based simulation environment for testing land-, sea-, air- and
space-based systems [120]. Example use-cases are simulating satellite positioning, radio
frequency (RF) communications and radar modelling, aircraft flight modelling and missile
modelling. Aircraft missions can be created and flown in the 3D graphical world to
evaluate the performance of payload sensors and communication equipment while also
monitoring the aircraft’s performance. Many of these features are appealing for the
design of a UAS service because they allow visualisation of the mission performance
relative to the RFP.

However, although the base tool kit is free to download and use, any add-on modules
require the purchase of a licence. To benefit from the power of AGI STK several add-on
modules would be required, for example: Aviator or Aviator Pro - to provide enhanced
aircraft performance-characteristics and route-modelling; Integration - to automate
repetitive tasks from outside the STK application though the use of scripted languages
to manipulate the application programming interface (API); and Analyzer - to allow

parametric studies and probabilistic analysis [121].

Moreover, the suite produces high fidelity results from its time-stepped game-like graphical
mission simulations. This could potentially require a large amount of computational
resources especially when run multiple times. Nonetheless, it is a very capable tool for
mission creation, analysis and operation. It could be a useful tool to use once an optimal
candidate design is generated via a lower fidelity model to verify the findings or continue

designing lower level decisions.

4.2.1.2 Presagis STAGE

Presagis STAGE is a high-realism simulation environment. Its purpose is to create
sophisticated simulation scenarios aimed at military operation testing and training, and
virtual mission rehearsals [122]. The system uses gaming graphics, high fidelity vehicle
models and complex terrain databases to create a dynamic virtual environment with
high levels of detail.

The immersive gaming graphics are impressive and would support training of personnel
in battlefield decision making and mission tactics. However, this quality of graphics
and realism is not essential for the mission simulation aspect and could be considered
inefficient use of computational resources. Also, STAGE requires an expensive licence to

run.
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4.2.1.3 Ternion FLAMES

Ternion FLAMES (Flexible Analysis Modelling and Exercise System) is a similar simu-
lation software tool to Presagis STAGE. It offers a simulation environment for testing,
evaluating and analysis of systems; training personnel and operators; and mission plan-
ning and rehearsals [123], with the target audience being the aerospace and defence

sectors.

FLAMES was used by Cassidy et al. [124] in a conceptual design study of a single military
aircraft by integrating traditional design analysis and optimisation with battlefield simu-
lation techniques to assess the impact of performance parameters on mission effectiveness
[124]. Cassidy et al. comment that the determination of fidelity levels was an important
factor. For simple manoeuvres the built-in movement models were sufficient at modelling
turn-rates and angle of attack (AOA) conditions. However, the more complex manoeuvres
(air-to-air combat and surface-to-air missile avoidance) required the incorporation of a
more accurate model. Again, this high fidelity and quality of visualisation is not essential

for the model being designed in this thesis.

4.2.1.4 NASA World Wind

NASA (National Aeronautics and Space Administration) World Wind is an open-source
3D world model that takes satellite images, elevation data and other geographical
information for users to visualise, manipulate and analyse data in a virtual globe
representation [125]. This software development kit (SDK) has been used to monitor
weather patterns [126], visualise earthquakes and their depths [127] and track satellites
orbiting around Earth [128].

The World Wind application is operating-system independent and can be created as
a desktop application, a web application or even as a mobile-device application. The
geographical rendering is taken care of through the application, leaving the user to
build their own geospatial components and models. Due to the open-source nature of
the application, it offers a lot of freedom and is designed to be extensible. However, it
requires knowledge of coding languages (Java for the desktop application, hyper text
markup language (HTML) and JavaScript for the web based application) as well as an
understanding of their API.

4.2.2 Programming environments
4.2.2.1 AnyLogic

AnyLogic is a tool kit that supports agent-based simulation (ABS), discrete-event

simulation (DES) and system dynamics. The software uses a Java environment to
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allow operating-system independent development of the model. The use of a Java
environment also means that a runtime licence is not required for simulations as applets
and applications can be created. Although there is a free Personal Learning Edition
licence, this comes with a few limitations (most notably on the model size). However, this
can be resolved with either a University Researcher licence or a company Professional

licence.

The tool kit has a clean interface and allows the model to be graphically animated for
better visualisation of the simulation. The target audience differs dramatically from the
mission simulation tools such as AGI STK. AnyLogic is aimed at users who want to
focus on the logic of the problem as opposed to creating a graphically-realistic simulation
environment. Because of this, AnyLogic has a wide range of applications from modelling
passengers’ movement around airports [129] to the logistics of managing rail yard capacity
[130].

AnyLogic was used in Schumann’s thesis [35] which used UAS life-cycle mission modelling
to aid the conceptual design process. AnyLogic provided the base for Schumann’s
framework and required some work to get a geographic information system (GIS) to
model the UAS’s mission spatially. Now, AnyLogic has a built-in GIS method to facilitate,

for example, supply chain transport and delivery route modelling.

4.2.2.2 GAMA Platform

GAMA Platform (GIS Agent-based Modelling Architecture) is an environment for
developing spatially explicit agent-based simulations [131]. It uses its own high-level
agent-based language, GAML (based on Java), to allow the user to create models
across multiple application-domains. Examples are given for transport, urban growth,
epidemiology and environment domains. GAMA can be used for large-scale simulations
and the user interface facilitates different 2D and 3D simulation views and allows the

user to monitor individual agents within the simulation.

The partnering of an ABS environment and the ability to input GIS data in a stand
alone platform is appealing for this project. However, its limitation is that it is only able
to create agent-based models and not other simulation methods such as discrete-event

models or a hybrid model.

4.2.2.3 ExtendSim

ExtendSim is a powerful simulation tool in which the user can develop dynamic models to
study relationships and find an optimum solution [132]. ExtendSim can be used to create

continuous, discrete-event and discrete-rate models as well as Monte Carlo, agent-based
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and state modelling approaches. ExtendSim was used by Yu [7] in the development of a

hybrid agent and discrete-event model of aircraft engine fleet maintenance.

This software requires a licence to build and save models, but once the model is complete
an ‘analysis run-time’ licence can be purchased to run the model for experimentation
and optimisation. An evaluation of DES software, using an evaluation and selection
methodology by Tewoldeberhan et al. [133] in 2002, put ExtendSim in a competitive

shortlist because it scored well against the criteria of a company’s simulation team.

4.2.3 Tools summary

An overview of these tools can be seen in Table 4.1. The majority of the mission
simulation tools investigated came with expensive licences. Also, when noting the level
of detail presented in the RFP (that form the service details), the simulation tools had
unnecessary levels of detail and fidelity which, in turn, would add a computationally
expensive footprint. The exception to this was the NASA World Wind application which

was both open-source and highly adaptable via code.

The programming environments highlighted a few useful tool kits. However, as this
framework aims to use a DES for part of the model, the GAMA platform has to be ruled
out as it only offers agent-based models. This left both the AnyLogic and ExtendSim

COTS software tool kits to be considered as potential candidates.

Another option for the programming environment, which was not explored above, was to
use a library within a coding language. For example, SimPy! [134] is a process-based
DES framework based on standard Python [135] and allows simulations to be created
within a script or Jupyter Notebook?. This option would allow full control over the
design of the model and possibly ease the integration with other applications should this
be required. However, coding all the components from the ground up and integrating
them would increase the work load significantly. It also may fall short of the capabilities
of a COTS software package in terms of verification via animation and quick prototyping
in a tailored software environment with existing code-blocks (i.e. predefined objects for
DES models).

4.2.4 Tool Selection

Based on the results of the tool research, the majority of the tools were tried out.
Attempts were made to utilise the open-source tools (for example, NASA WorldWind
was integrated with a Python-SimPy script to feed inputs to the Java-based world

!For more information about SimPy go to https://simpy.readthedocs.io/en/latest/.
2Jupyter Notebook is an open-source web application that supports over 40 languages and allows the
user to create interactive code, equations, visualisations and explanatory text (see jupyter.org).
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Tool Free Code models* GUI Comments

AGI STK X v v Expensive due to multiple
licences for individual mod-
ules. Requires an add-on
module to automate using
a script.

Presagis STAGE X VR v Expensive and unnecessary
levels of 3D-graphical real-
ism. Tool aimed for a dif-
ferent market.

Ternion FLAMES X X v Tool has high fidelity 3D
graphics. Requires licence
for custom simulations and
additional applications.

NASA WorldWind v v X Open-source Java and web-
based program with 3D
world model. Suitable for
mission modelling.

AnyLogic X v v To make full use, a licence
is required. Supports both
agent based modelling and
discrete event simulations.

GAMA v v v Designed for building spa-
tially explicit agent-based
simulations. It uses its
own high-level language,
GAML.

ExtendSim X v v A multi-method simula-
tion suite with a clean
graphical user interface.

TABLE 4.1: Comparison of software tool kits considered for this project. *The Code

models column covers both tools that are open-source code and tools that allow you to

program the model in a programming language. **The AGI STK Integration add-on
and Presagis STAGE Pro version allows programming and automation.

model). However, laying the foundation and communication channels between the open-
source applications was time consuming and prone to introducing errors which would
affect the entire framework. Also, as discussed in the comments on simulation methods
(Section 2.3.5) and highlighted in the framework requirements (Section 3.1), the model
would greatly benefit from further work to make a user-friendly interface as most the
inputs were through code or command-line operations. Again, time was spent pursuing
the open-source route for the graphical user-interface framework which encapsulated
all the other modules, databases and components. However, it became apparent that
using an existing COTS software tool kit would be very beneficial in terms of rapidly

prototyping ideas and handling the animation and user interface components.
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Therefore, AnyLogic was selected as the software to provide the programming environment.
This was due to it supporting agent-based models, discrete event simulations and GIS
integration. It also allows for a high-level of customisation due to being Java-based.
However, all the work previously done in the open-source Python code provided a
deeper understanding of how to formulate a DES from the basic components and was
very beneficial early work. The AnyLogic model also provides a graphical view of the
simulation environment which aids the model building process as the user can perform a
visual check that the model is behaving correctly when running but also turn this off for
the batch runs.

4.3 Simulation components

The following sections demonstrate the implementation of the model through the AnyLogic
software. The layout of this section aims to present the implementation of the model in
a logical order. To do this, Section 4.3.1 starts with the high level discrete event model
of the mission processing. Then, this is followed by the state-chart logic of the UAS
agents in Section 4.3.2. The objects, events and agents that interact with the UAS are

also presented.

4.3.1 Main discrete event model

The main discrete event model is based around the generation and processing of missions.
This is because all the service types this framework aims to cover are based around the
UAS attending a mission. Figure 4.2 captures the main events in the mission processing.
These are in the left hand column titled event flow. Also included in Figure 4.2 are the
high level actions of the assets that are used to process the mission. These are found
in the middle column titled asset action. Finally, Figure 4.2 shows in the right hand

column the inputs that are required to describe the assets, the actions or the events.

Working down the left hand column, the first item is create simulation environment.
This is where the assets are placed in the simulation environment and allocated to their
respective operating bases using the service details and the particular design candidate’s
variables. Firstly all the operating base agents and the mission generator agents are
created from the data provided in the service details. This includes the assignment of
personnel to each operating base. Other event generators, such as the weather generator,
are also created at this stage. Next, the UAS agents are created and assigned. This is
achieved through a function at startup which creates a blank UAS agent for each of the
platforms in the design. These blank UAS agents are then assigned the details of the
platform they are modelling and the details of which operating base they are assigned

to. This method places the pool of UAS assets on the same hierarchical level as the
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FIGURE 4.2: A simplified flow diagram of the simulation top level events relating to

the mission object. The corresponding asset action for each event flow item is displayed

along with some of the required inputs for each stage. This can be considered as
expanding on the simulation section of the diagram presented in Figure 4.1.

operating bases and generators. The advantage of this is that it allows mission-resource
allocation to easily search the entire pool of UAS agents rather than having to collate
each operating base’s pool of UAS agents and then search through that. It also unlocks

the ability to reassign with ease a UAS to a different operating base if required in future

development. Figure 4.3 shows a simplified diagram of the model hierarchy to clarify

this.
Operating Mission Event
UAS
base generators generators

Personnel Payload

FIGURE 4.3: Diagram of the model hierarchy.

The mission generator agents contain all the information regarding the scheduling,

location and task type of the missions. The location of the mission can be generated from
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either a known latitude and longitude coordinates (i.e. following a data set) or sampled
from a probability distribution. There are two types of probability distributions created
in this framework. First is the regional distribution where a random location within a
geographical polygon (an include polygon) is selected. Exclude polygons, as mentioned
in Section 3.2.2, can be applied to the polygon which can be thought of as holes in the
sample area. An example of this is shown in Figure 4.4. When the simulation is run in
animation mode, the polygons are made visible to confirm correct model setup. The
include polygons are displayed as transparent green polygons and the exclude polygon as
transparent red.
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FIGURE 4.4: Regional distribution for mission generation as seen in the AnyLogic

simulation. The transparent green polygon following the coastline and out into the

English Channel is the include polygon. The exclude polygon follows the coastline of

the Isle of Wight and is displayed as a transparent red polygon. The red symbols are
UAS agents positioned at operating bases.

The second distribution method is an arc-based distribution. This is where an arc is
formed around a longitude and latitude coordinate. This arc has a radial minimum and
maximum as well as a bearing start and finish®. Mission locations can then be generated
using two distribution functions to determine the bearing and radial distance from the
centre. For example, the locations could have a uniform bearing distribution and a
triangular radial distribution (potentially with truncation if the distribution’s limits
exceed the arc’s limits). An example of an arc-based distribution is shown in Figure 4.5.
This example demonstrates the assignment of both radial minimum and maximum and
bearing start and stop values. Exclude polygons are also applicable and are in use in
this image (note that they are hard to see in Figure 4.5 as they cover all the land regions

so there is no obvious distinction).

3The order of the start and finish is important as the arc is swept in a clockwise direction.
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FIGURE 4.5: Arc-based distribution for mission generation as seen in the AnyLogic

simulation. The transparent green arc is the region in which missions will be generated

based on a radial and bearing distribution. Exclude polygons are also used, in this case

two are used, one over the mainland and one over the Isle of Wight. The red symbols
are UAS agents positioned at operating bases.

As the model is dealing with latitude and longitude coordinates, all locations generated
by the arc-based mission location distribution use the great-circle distance calculations.
This assumes a spherical earth and ignores ellipsoidal effects. For example, given the
arc’s centre location, the sampled bearing and the sample radial distance the location of

the mission can be found by

¢9 = arcsin (sin ¢ cos § + cos ¢1 sin d cos 0) (4.1)

A2 = A1 + arctan2 (sinfsin § cos ¢1, cosd — sin ¢y sin ) (4.2)

where ¢ is latitude, A is longitude and the subscripts relate to arc centre (1) and mission
location (2), 6 is the bearing (clockwise from north), § is the angular distance (6 = d/R
where d is the radial mission distance from the arc’s centre and R is the earth’s radius).

The mission generator agents also contain an event trigger. The event trigger is scheduled
based on the settings provided in the mission details input. Once triggered a mission
agent is produced and passed to the DES process flow in the main program of the

simulation. The creation of a mission agent is the generate mission block in Figure 4.2.

The DES process flow for the mission agent is shown in Figure 4.6. This image is a

screenshot of the graphical editor in AnyLogic. It can be read from left to right starting
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at the mission_enter block, where the mission agent enters the process flow. The next
block the mission agent reaches is the seize_uas block. This is where the UAS is allocated
to the mission agent. If there are no UASs available then the mission agent will queue
until either a UAS is made available or the mission agent reaches its shelf-life time (i.e.
if the mission is time sensitive and has failed to be allocated a UAS within a certain time
frame). If the latter occurs, the mission agent leaves the queue via the top graphical port

and is recorded as a timed-out mission at the timeout_mission_exit block.

timeout_mission_exit

=»

mission_enter seize_uas { mission_delay release_uas mission_exit
O el
» T O *
Uas exit (7) chooseUAS
.»
uas_prep_enter  uas_seize_pilot uas_release_pilot  uas_prep_exit
O el
S e o
=l O

FIGURE 4.6: Discrete event simulation blocks defining the mission process flow through
the main program of the simulation.

The queue within the seize_uas block is a first in first out (FIFO) queue with priority
enabled. This means the mission agents will be queued in order of generation unless
they have a higher priority value, in which case they will enter the queue in order of
priority. The UAS allocation is determined through the chooseUAS function. This takes
the pool of UASs (i.e. all that are in the service) and for each (if it is idle) the function
calculates if the UAS is suitable in terms of range and endurance to complete the mission
taking into account the current weather conditions. If the mission task has an unknown
or variable duration then a minimum-time-on-task value is added to the calculation to
ensure part of the flight is spent doing the useful element. The minimum-time-on-task
value is set as a policy on the mission agent via its mission generator which, in turn,
is set via the mission details. It can be set as either a value with units of time or a
percentage of the variable duration. Once a list of suitable UAS platforms is found for
the mission agent, the nearest UAS platform to the mission location is selected from the
list to complete the mission*. The chooseUAS function is also called each time a UAS
becomes idle to ensure all suitable UAS platforms are considered for the mission agents

in the queue.

“During analysis of the results obtained in the case study described in Chapter 5, it was found that
this method had an error when the list of suitable UASs were all stationed at the same operating base.
This meant that they all were the same distance away from the mission location and therefore the first in
the list was selected each time. To resolve this, a further policy can be implemented which states which
platform type is preferred when this scenario is presented. This policy could be attached to the mission
agent in a similar way as the minimum-time-on-task policy described above.
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The selected UAS platform is then prepared for the mission. This follows the path
from the lower left of Figure 4.6 starting at uas_prep_enter and ending in the seize_uas
block. During the preparation, the UAS unit seizes a pilot® from the operating base it is
associated with to oversee the mission, or it waits for a pilot to become available. Note
that this queue also has a shelf-life similar to the mission agent queue described above
and will trigger a mission time-out should a pilot not become available in the time limit.
This study has designed the framework such that for a flight to occur a pilot is required
for the duration of the mission (in whatever capacity the service requires i.e. full manual
control, or acting purely as an observer or safety pilot). This design attribute is not
intended to directly determine the level of autonomy by which the UAS performs the

mission.

Once the mission agent is allocated a UAS and the required resources, it proceeds to the
mission_delay block in Figure 4.6. This is the Activate Mission block in Figure 4.2 on
Page 64. The mission delay is controlled by the UAS agents state-chart and only once the
UAS has completed the mission’s task and returned to an idle state is the mission_delay
block exited. The UAS state-chart is described and discussed in Section 4.3.2. The basics
of the state-chart are shown in the asset actions column of Figure 4.2. On exit from
the mission_delay block, the allocated UAS and required resources are released via the
release_uas and uas_release_pilot blocks respectively, and made available for the next
mission agent in the seize_uas and uas_seize_pilot queues. All the relevant data collected
during the mission is stored for the end of the simulation. This completes the mission

process flow.

Multiple mission agents can be in the process at any one time and they can represent
different mission types from different mission generators. The mission agent contains all

the information required to describe the mission and the task.

4.3.2 UAS agent

The UAS agent contains all the parameters required to define the platform in terms of
performance, reliability and maintenance. It also collects all the data associated with its
usage throughout the service. The main component of the UAS agent is the state-chart.
A screenshot of the state-chart taken from the graphical editor in AnyLogic is shown in
Figure 4.7.

Figure 4.7 can be read by starting from the entrance at the top and following the
transitions between states in the direction of the arrows. The green coloured state blocks
indicate those which occur at the operating base. Whereas, the blue coloured state blocks

are when the UAS is airborne.

5Here, a pilot does need to be an individual as discussed in Section 3.2.3 and can represent an entire
crew if required.
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FI1GURE 4.7: The UAS state-chart used to process the actions of the UAS to complete
the assigned mission.

The UAS agent is initialised in the idle state and waits to be allocated for a mission. On
allocation, the state is changed to the waitingForPilot state as described in the main
discrete event model above. Once assigned a pilot, the UAS transits to the mission
location. It can be seen in Figure 4.7 that all the airborne states in the state-chart are
encapsulated in the noCriticalFailure (red block) and fuelAvailable (orange block) states.
Both of these states are exited based on a change in condition which can be triggered
by an event or as a consequence of a calculation, resulting in the UAS being lost and
requiring replacement. This route can be seen in Figure 4.7 by following the left hand
side of the state-chart where the transition arrows lead to the replace UAS state block.
As mentioned in Section 3.2.4 the length of time to complete the UAS replacement can
be set per UAS type and defines the time to transition between the replaceUAS and idle
state blocks.

The transit to mission location and the state blocks for performing the mission’s task are
encapsulated by a noSystemFailure (yellow block) state. When the condition to trigger
the change in this state is met, the UAS is transitioned into the returnToOB state (i.e.

return to operating base) where a maintenance operation is performed.

The failure states are triggered once the time-since-last-failure is equal to greater than

the sampled value from the failure-time distribution (as discussed in Section 3.2.4). Due
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to the event-based nature of this simulation, these conditions are checked before every
event that increases the flight time. This is because the flight time is not increased at
regular time intervals, but just on events. This allows an failure-event to be scheduled if

the failure condition is due to occur within the event’s time step.

On arrival at the mission location the state-chart reaches a branch (symbolised by a
diamond in Figure 4.7). The route that is followed depends on the type of task that has
been assigned to the UAS. Note that the white blocks in the state-chart do not serve
any other function other than indicate the type of task (i.e. they act as a visual aid
when running the simulation in animated mode). The blue state blocks within the white
blocks, for example loiterMission, contain the calculations and logic required for the

UAS to perform that particular task.

Once the task is completed or the UAS cannot continue the task any more due to running
low on energy, the UAS returns to the operating base. If maintenance is required due to
system failure or preventative maintenance scheduling then this is performed. The UAS
is then refuelled and the amount of consumables used are recorded. If the task is still
not complete to a satisfactory level (which can be set in the mission details), the UAS
will recompute the mission and continue the operation by flowing through the states as
described above. Finally, if the mission is complete the UAS is returned to an idle state

and the mission delay in the main discrete event model is exited.

Each state that moves the UAS calculates the range (and endurance) possible using the
given performance values and the state of energy reserve (i.e. fuel or battery capacity
remaining). This range is compare to the range required to complete the next step of the
mission plus the range required to return to its operating base while taking into account
the current wind conditions and any fuel reserve policies. These calculations are also
completed each time new wind conditions are generated. If at any point the UAS does
not have enough fuel available to return to its operating base then the fuelAvailable state
is exited and the UAS is classed as a total loss and requires replacement. This condition

should only be reached due to an adverse change in wind conditions.

The wind conditions are communicated to the UAS agent when the weather event
generator triggers a change in conditions. The wind details are then used to adjust the
ground speed of the UAS and the aerial distance to fly to its destination based on the
resultant vector between the wind and UAS’s current flight regime (i.e airspeed and
altitude). The wind speed value is sent as a measurement at 10 m above ground level so

that it can be adjusted to take into account the wind profile with altitude.

The payload module is linked to the UAS agent as shown in the model hierarchy diagram
presented in Figure 4.3 on page 64. The payload’s parameters are passed to the UAS so
they can be used to calculate the platform’s total mass and, if required, the values to

calculate the dynamic path waypoints.
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In the case where an EO sensor is used to calculate the dynamic path, the average ground
footprint width and path length are used to determine the area scanned. If the task type
requires the payload to trigger the stop-task condition (e.g detecting a target according
to the Johnson criteria) then this condition is assessed at the beginning of each path by
check whether the target is in the polygon drawn by the sensor’s field of view. If it is,
then the path length is recalculated to be the distance at which the target is detected.






Chapter 5
Results and analysis

This chapter presents the findings from running the simulation of the model detailed in
the earlier chapters. The model was set up to run the case study described in Section 5.1
which considers the design of a service to support coastguard operations on the south-
coast of the UK. The results of the case study are presented and discussed in Section 5.2
with focus on the performance of the model and simulation. Finally, the findings from

this case study are summarised in Section 5.4.

5.1 Case study

The case study used to exercise the model and obtain results is based on supporting
coastguard and Search and Rescue operations on the south-coast of the UK. To build up
the definition of the case-study service, some research was completed on these operations.
Recently, the Maritime Coastguard Agency in the UK opened a Request for Proposal
to provide HM Coastguard search and rescue helicopters, planes and remotely piloted
drones under the UK Second Generation Search and Rescue Aviation programme (known
as UKSAR2G) [14]. One of the key innovative solutions under consideration in this RFP

is the use of remotely piloted drones.

The data provided by the UK government on search and rescue helicopter statistics
highlights the usage of the SAR helicopters for their multitude of operations. A snippet
of this data is plotted in Figure 5.1 which captures a year of helicopter tasks! around
the south-coast of the UK. When plotted, this data set clearly shows the spread of task

locations.

The data set also contains additional metadata which can be useful for fine tuning the

service details. The task count displayed in Figure 5.1 equals 226 with 129 of them under

Tt should be noted that the data set plotted spans between 01-04-2020 and 31-03-2021. Therefore,
the figures recorded in April 2020 captures the impact on SAR helicopter tasks of national lockdown in
response to COVID-19.

73
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Search and rescue helicopter tasking locations
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FIGURE 5.1: Search and rescue helicopter task locations between 01-04-2020 and 31-03-

2021 in the UK over the south-coast. This covers all types of task and task outcomes and

is categories on the map by task location. Data available from www.gov.uk/government/
statistical-data-sets/search-and-rescue-helicopter-sarhO1.

the coast and maritime categories. For the purpose of this case study, categorising the
tasks by type (as opposed to location) was also a useful insight. This can be seen in
Figure 5.2. The type of tasks covered were pre-arranged transfer, rescue/recovery, search
only and support. Therefore, by removing pre-arranged transfer from the total count of

226 the remaining types totalled 168 (as this is not a task the drone is expected to fulfil).
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FIGURE 5.2: Search and rescue helicopter tasking breakdown between 01-04-2020
and 31-03-2021 in the UK over the south-coast. Data available from www.gov.uk/
government/statistical-data-sets/search-and-rescue-helicopter-sarhO1.
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Another data set studied to build up the definition of the service was that of the Royal
National Lifeboat Institution (RNLI) [136]. This data set contained the locations of
incidents attended by a lifesaving craft. A snippet of this data is plotted in Figure 5.3
which shows the incidents that occurred around the south-coast of the UK over one
year. This plot shows a total of 829 launches served by 16 lifeboat stations across the
map. It can be seen that the incidents tend to be concentrated in groups around the
coastline matching up to areas of higher population density, water-sport areas and tourist

hot-spots. This is also typically where the RNLI have a lifeboat station.

RNLI call-out locations
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FIGURE 5.3: Royal National Lifeboat Institution (RNLI) lifeboat call-outs between
01-01-2020 and 31-12-2020 where a lifesaving craft has gone to the aid of persons in
need. Data available from rnli.org/about-us/our-research/rnli-open-data.

The combination of these two data sets was used in the formation of this case study’s
inputs. The details of which are described in Section 5.1.1. The locations and frequency
of the historic incidents were used to form multiple probability distribution functions
that represented the data sets, but introduced a stochastic element to the simulation

runs.

The aim of the case study is to ascertain which operating bases to use and what

combination of UASs will create the optimum service based on the value function.

5.1.1 Service Detalils

This section is split into sub-sections to build up the picture of the service.


rnli.org/about-us/our-research/rnli-open-data
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5.1.1.1 Mission generators

After studying the data presented in the two data sets described in Section 5.1, a selection
of mission generators were created. Firstly, a regional polygon-based mission generator
was introduced which covered the entire south-coast region (using an exclude-polygon
over the Isle of Wight). This was used to represent the SAR helicopter data set and
produces random points within the polygon at a defined frequency distribution to match

the data set’s frequency.

Secondly, a further 10 arc-based mission generators were created in an attempt to repro-
duce the localised incident hot-spots seen in the RNLI data set (see Figure 5.3). These
were based at 10 locations across the south coast and had radial-distance distributions
that followed a triangular distribution, each of which were individually specified. These
also each had an individually defined frequency distribution that was set to mimic the

data set frequencies.

The result of all 11 mission generators can be seen in the snapshot of one simulation run
over a 6 month time period shown in Figure 5.4. It is worth noting that the locations and
frequencies are created from probability distributions and therefore when the model’s
random number generation is from a random seed the locations and count will vary

between repetitions. This is one source of the stochastic nature of the model.

The total count of SAR missions during this random seeded 6 month time period was 441.
The total number of tasks and call-outs recorded by combining the supporting data sets
(and dividing to match the time period?) was 499. Therefore the frequency distribution

seems to be acceptably matched.

Finally, one daily mission generator was created to represent a task of pollution monitoring
of the Solent region. This was added to model a component of the UKSAR2G commercial
strategy, focusing on Lot Three which includes surveillance and pollution response [14].
This task was set to be a 40 minute duration actioned at 10:00 every day taking place in

the Solent region between the Isle of Wight and Portsmouth.

Each mission generator was provided with a mission value used to represent the stakehold-
ers’ view of the importance of the mission. This was set highest (400) for the south-coast
region missions, equal (100) for all the RNLI style missions and lowest (75) for the daily
task. In turn, this value was used to prioritise the missions and, ultimately, provide a

mission score which represented how successful the UAS was at completing that mission.

Also, each mission generator was provided with a shelf life for the missions created. This
value was used to determine how long the mission would stay unassigned before it was

cancelled and given a score of zero. This can be thought of as the notice to respond time.

2This took the total of the SAR helicopter data set with the type pre-arranged transfer removed and
the total of the RNLI call-outs from the year period and divided by two to give an estimate of the total
expected in a 6 month period.
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Model’s search and rescue missions locations
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FIGURE 5.4: The model of the case study’s search and rescue mission locations cat-
egorised by the source mission-generator. This is a snapshot of one random-seeded
simulation run and shows a total of 441 missions.

This was set highest, at 120 minutes, for the daily task due to its low urgency, equal at
30 minutes for the RNLI style missions to represent a short notice to respond and finally

60 minutes for the south-coast region missions to represent a longer notice to respond.

5.1.1.2 Operating bases

As this case study was using the data set of RNLI call-outs it was decided to use RNLI
lifeboat stations as the operating bases, or if available, a nearby airfield (to ensure the
correct facilities are in place). Most lifeboat stations have an area of grass or tarmac
large enough to facilitate the launch and recovery of the UAS considered in this case

study.
The following three locations were selected as the candidate operating bases. These can
be seen geographically located in Figure 5.5.

1. Lymington RNLI lifeboat station,

2. Swanage RNLI lifeboat station,

3. Bembridge Airport (near to Bembridge RNLI lifeboat station).
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Model’s operating base locations
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FIGURE 5.5: The operating base locations used in the case study. They are are also
assigned identifying numbers such that Lymington is 1, Swanage is 2 and Bembridge is
3.

These three locations were selected as they provide a good coverage of the entire south
coast region considered in this case study. To account for facility overheads, each
operating base was assigned a daily cost. This was set to be different at each location
and is detailed in Table 5.1.

TABLE 5.1: Operating bases’ daily costs.

Daily cost (£ / day)

Lymingtion 80
Swanage 60
Bembridge 50

The distribution of the UAS platforms to the operating bases for the different candidate
designs was as follows. Each operating base was assigned from zero up to a maximum
of four UAS platforms, comprising of a maximum of two each of two different platform

types. More details on the UAS platform types selected is provided in Section 5.1.2.

The total permutations with repetition, " P,., is given by the formula

"p, =n" (5.1)

where n is the number of possibilities (in this case n = 3 i.e. 0, 1, or 2 units) and r is
the number of choices (in this case r = 2 i.e. UAS 1 and UAS 2). Therefore, the total
number of permutations per operating base is 9. These permutations can be seen in
Table 5.2.
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TABLE 5.2: Individual operating base UAS permutations for the two assigned UAS.

| #1  #2  #3  #4 #5  H#6 H#T #8  #9
UAS 1 0 1 2 0 1 2 0 1 2
UAS 2 0 0 0 1 1 1 2 2 2
Total 0 1 2 1 2 3 2 3 4

Now, using Equation 5.1 again, the total number of permutations with repetition using
the three operating bases can be found. Here, n = 9 (i.e. the number of permutations
per operating base) and r = 3 (i.e. the number of operating bases), therefore this results
in "P,. = 729. Or, put differently, 729 candidate designs.

Additional, was an investigation into restricting the number of pilots available per base on
a global level. This was achieved by setting the maximum number of pilots per operating
base to either 1 or 2. This followed the rule that if there are zero UASs at an operating
base then there will be zero pilots (i.e. the operating base is not used and therefore
incurs no daily costs nor have any personnel assigned to it). Then, the number of pilots
at each operating base will increase with the number of UAS units (at that particular
operating base) up to this set value. This increased the number of candidate designs by
a factor of 2 such that there were 1458.

5.1.2 UAS agents

This case study looked at the combination of two UAS platforms. The platforms
were selected from the pool of UAVs designed and manufactured at the University of
Southampton due to the Author’s in-depth knowledge of the platforms and access to
performance and cost data. The two platforms were selected such that they were varied

in performance, design and cost.
UAS 1 - Spotter

Spotter (which stands for Southampton Platform for Observation, Tracking, Telecommu-
nications and Environmental Reconnaissance) is a twin engine, twin boom monoplane.
The two engines are single cylinder, four-stroke petrol engines mounted in a tractor
configuration (see Figure 5.6). The design of Spotter focuses on component redundancy
and flight safety by doubling up all control surfaces and using two power plants to provide
thrust and generate power for two power buses. The payload is mounted to a pylon
below the fuel tank near the centre of gravity (CoG) to allow for a versatile range of
payload options. Also, by having both the payload and the fuel tank on or near the
CoG, it allows the aircraft to fly at its maximum take-off mass or at its empty mass with
minimal impact on the flight characteristics. It has a maximum take off mass of 35 kg

and and an empty mass of 24 kg which allows for 6 kg of fuel and 5 kg of payload.
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FIGURE 5.6: UAS 1 - Spotter

The design was developed through an iterative process through research projects at the
University of Southampton. The initial design philosophies of Spotter started in the
DECODE project?® which looked at system level trade-offs. After the DECODE project,
the research team developed the 2SEAS-20 platform as part of the 2SEAS-3i project?
which investigated the use of UAVs as a service for coastal zone management. Spotter
was conceived through the iterative development of this platform. More information
about the design and design process using value driven design and additive manufacturing

techniques can be found in Ferraro’s thesis [42].
UAS 2 - Valerie

Valerie (which stands for Vertical Ascent and Landing for Enhanced Research, Innovation
and Exploration) is an all electric power-plant quad-plane design utilising a flying
wing and a pusher configuration capable of vertical take-off and landing (VTOL) (see
Figure 5.7). The design of Valerie stems from the CASCADE (Complex Autonomous
Aircraft Systems Configuration, Analysis and Design Exploratory) programme®. The
platform was designed under the Open Aircraft Project which is an initiative to create
small UAS designs which meet the requirements of the science community when using
fixed-wing drones in challenging remote locations [48]. On the completion of the design

and after further thorough testing the design will be made freely available to all.

The design requirements of the platform were primarily driven by the mission requirements
for volcanic ash sampling [137] over Volcédn de Fuego in Guatemala. Based on previous
flight profiles, this demanded a service ceiling of 5000 m, an endurance of 30 minutes at
altitude (or 60 minutes at sea level) along with a minimum cruise speed of 20 ms~!. Tt

also had to be capable of carrying a payload of 0.8 kg or greater.

The latest iteration of the Valerie platform produced from these requirements, has

a maximum take-off mass of 11.5 kg and an empty (structural) mass of 6.9 kg. It

3The DECODE (Decision Environment for COmplex DEsigns) project concluded in 2012 and investi-
gated design decision making tools and processes in the context of system design. For more information
of the DECODE project go to www.southampton.ac.uk/~decode/.

“For more information on the 2SEAS-3i project visit www.2seas-uav.com.

5For more information on the CASCADE programme please visit www.cascadeuav.com


www.southampton.ac.uk/~decode/
www.2seas-uav.com
www.cascadeuav.com
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accommodates 0.9 kg of VTOL batteries and 2.6 kg of cruise batteries leaving 1.1 kg
for the payload. More information on the configuration choice rational and design

methodology can be found in [48].

FIGURE 5.7: UAS 2 - Valerie

In comparison, UAS 1 is the more expensive platform in terms of unit cost, cost per flight
hour and consumable costs. However, it is also the more capable platform with a higher
range, endurance and payload carrying capability. Also, UAS 1’s design philosophy

regarding component redundancy makes the platform more reliable.

5.1.3 Weather model

The weather model used in this case study consisted of temporal wind speed and direction
data. This was collated from historical data records for Southampton and applied globally
to the simulation. For the wind direction, a custom distribution was created in the
model for each month that followed the historical data set. Based on the month of the
simulation clock, the corresponding distribution was sampled every 6 hours to set the

wind direction. The distributions can be seen in Figure 5.8.

It can be seen in Figure 5.8 that the prevailing wind direction is from the south-west with
slight variations between each month. Note that the radial axis denotes the percentage
of time spent with the wind coming from that direction (i.e. this is not a wind rose
plot and the radial values do not indicate wind speed). The summer months show less
variation in wind direction compared to the other months, with March being the most

variable.

For the wind speed, the monthly average wind speed at 10 m above ground level was used
to create the wind speed distribution. The monthly averages are plotted in Figure 5.9.
The distribution was then formed by using the Rayleigh distribution function. The
sample generated was then used to find the wind speed at altitude using the log wind
profile. Both of these distributions are shown for January in Figure 5.10. Therefore, the
weather model was another stochastic input to the model that has an influence on the

output of the simulation.
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FIGURE 5.8: The monthly distribution of the wind direction in Southampton used in

the case study. The radial-axis denotes the percentage of time spent with the wind

coming from that direction. From this plot it can be seen that the prevailing wind
direction is from the SW.
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FIGURE 5.9: The average wind speed at 10 m above the ground in Southampton per
month used in the case study.

5.1.4 Value model

To demonstrate how the choice of value model can lead to different optimal designs, two
different value models are studied. Due to the challenge of monetising the mission success

score (i.e. the service effectiveness of the design), a cost-benefit analysis approach was
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Wind speed distribution and change with altitude
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FIGURE 5.10: Demonstration of the wind speed distribution and the log wind profile
showing change with altitude (using January’s mean wind speed of 6.50 ms~1).

taken. This allows the user of the model to compare the level of effectiveness against the

associated costs on a bi-dimensional graph.

The two values models considered in this case study looked at firstly shifting the emphasis
towards maximising the mission success score and secondly to reducing the total service
cost. The value function defines the gradient along which the value increases and
therefore can be plotted on a bi-dimensional graph (of mission success-score against cost)

to demonstrate the value mapping.

The shift in emphasis is achieved by adjusting the weighting on the parameters that form
the benefit component of the model following Equation (2.24). As the case study only
considers a time period of six months the discount rate has been neglected in the cost

computation.

5.2 Results and discussion

The following sections discuss the results obtained by running the simulation of the case

study described above.



84 Chapter 5 Results and analysis

5.2.1 Convergence study

The simulation produces a vast amount of raw data regarding the service performance.
This includes, for example, the total mission success score, the overall cost (and the
cost breakdown), the total flight time of each UAS in the simulation, the amount of fuel
and electricity consumed. These outputs are used in the value model, but also remain
accessible for the user to analyse the results in more detail. This allows the reasoning for

the optimal design to be transparent and confirm the effect of any assumptions.

The service simulation is influenced by several variables that have randomly generated
inputs (for example, the mission frequency, locations and task period, and the modelled
weather conditions all take input values from probability distributions). Therefore, due
to the stochastic nature of the service simulation, each replication of the simulation for
a particular design candidate will produce different results. The Monte Carlo method
is best suited to this situation and was therefore used to obtain the results from the
simulation. By increasing the number of replications, the sample means of the design
candidates should approach the real means with increasing accuracy. However, there is a

compromise between accuracy and computational cost.

Both the confidence interval method and the graphical study method highlighted in
Robinson [82] were used to assess the number of replications required. The confidence
interval method is a statistical method for showing how accurately the mean is being
estimated. It is based on monitoring the ratio of the confidence interval to the sample
mean as a function of the number of replications. Here, the confidence interval, C1, is

calculated as

CIl=X+ (5.2)

’ o
n—1,5 %
where X is the cumulative mean, n is the number of replications, and th—1,2 is the value
from Student’s t-distribution with n — 1 degrees of freedom and a significance level of 5.

o is the standard deviation of the output data from the replications and is defined as

n—1

- \/Z?zl (‘Xz — X)2 (5.3)

where X; is the result from the ith replication. The significance level o = 5% was used

to give a 95% confidence interval.

Figures 5.11 and 5.12 show the results of the confidence interval method and a graphical
study of the cumulative mean for the mission-success score versus cost outputs respectively

for four randomly selected design candidates. The simulation was run for 850 iterations
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FIGURE 5.11: Graphical study of the cumulative mean and 95% confidence interval (CI)

of the mission-success score for four randomly selected design candidates. The titles of

the plots refer to the distribution of platforms: the first three numbers relate to UAS 1

and signify the distribution to Lymington, Swanage and Bembridge respectively; the
last three are with respect to UAS 2.

and the graphs show the 95% confidence interval and £ 1% with respect to the asymptotic

value of the cumulative mean.

The titles of the subplots in the figures introduce the candidate design naming scheme.
They refer to the distribution of platforms at the operating bases: the first three numbers
relate to UAS 1 and signify the distribution to Lymington, Swanage, and Bembridge
respectively; the last three numbers are with respect to UAS 2. For example, 0, 0, 1, 2,
0, 0 in the top left plot in Figure 5.12 signifies one UAS 1 at Bembridge and two UAS 2s
at Lymington.

The graphical method proposed by Robinson [82] uses the plots shown in Figure 5.11
and 5.12. As more replications are performed the plot of the cumulative mean should
become a flat line, with minimal variability and no upward or downward trend. The
number of replications required is defined as the point where the line becomes flat, and

performing further replications will only give marginal improvements to the mean value

82].
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FIGURE 5.12: Graphical study of the cumulative mean and 95% confidence interval

(CI) of the total cost for four randomly selected design candidates. The titles of the

plots refer to the distribution of platforms: the first three numbers relate to UAS 1 and

signify the distribution to Lymington, Swanage and Bembridge respectively; the last
three are with respect to UAS 2.

On analysis of Figure 5.11 (number of replications against mission-success score), it
can be seen that around the 100 replications mark all the 95% confidence intervals are
within the + 1% error of the converged mean and therefore it should be sufficient to
stop the replications there. However, the plot of the cumulative mean has not reached a
sufficiently flat profile. It can be seen still rising in the top left subplot at around 100
replications. Therefore, based on Figure 5.11, the number of replications should be set
at 250.

By applying the same analysis technique on the plots shown in Figure 5.12 (number
of replications versus service cost), it can be seen that the top left plot stands out as
being significantly different to the others. These show a sufficiently flat cumulative mean
after 250 repetitions and the 95% confidence interval is within the 4+ 1% error within a
very small number of replications. The top left plot of Figure 5.12, on the other hand,
shows that the 95% confidence interval width is just within the + 1% error bounds by
200 replications, but the cumulative mean has not fully settled to a flat line. Due to
this outlier further analysis was completed on the full set of design candidates after 250

replications to ensure the cumulative means had acceptable levels of accuracy.
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FIGURE 5.14: Histogram and cumulative distribution plot of the total cost confidence
interval width as a percentage of Xo5¢ for the 728 design candidates after 250 replications
(excluding the zero UAS 1 and UAS 2 candidate due to it skewing the histogram).

Once all design candidates were simulated with 250 replications, histograms were produced
of the 95% confidence interval width as a percentage of Xo50 of two important outputs:
the mission-success score and the total cost. These histograms are shown in Figure 5.13
and Figure 5.14. The number of bins in the histograms was chosen using the Freedman-
Diaconis rule as it takes into account the number of samples and the spread of the samples.
However, there are some shortcomings of using histograms to show distributions (namely

the bin count and width, and the distribution’s maximum and minimum). Therefore,
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in an attempt to combat these problems, the cumulative distribution plot for the data
is also displayed on the graphs. The data used in these plots is from only the design
candidates where the maximum number of pilots per operating base was set to two
(and excluded the candidate that had no UAS assigned as this unnecessarily skewed the
distributions). However, when the maximum number of pilots per operating base was

limited to one, the histograms show a similar distribution of data.

Figure 5.13 shows a unimodal, symmetric distribution (with a few outliers) of the 95%
confidence interval width as a percentage with respect to the asymptotic sample means.
The percentage error is small with 98.9% of the design candidates having a 95% confidence
interval width less than 0.4% of their sample mean at 250 replications. Also, when plotted
as the 95% confidence interval width (i.e. not as a percentage of the sample mean) the
distribution formed a normal distribution. Therefore, the outliers are mostly due the
design candidates having a lower mission-success score and thus raising the percentage

error. From this analysis, 250 replications is deemed an acceptable number.

Figure 5.14, which shows the 95% confidence interval width as a percentage of the
sample mean for the total service cost, appears to follow closer to a Poisson distribution®.
The percentage error is still small with 95.7% of the design candidates having a 95%
confidence interval width less than 1% of their sample mean at 250 replications. However,
the reason for the distribution shape and the increased number of design candidates with

entries above 2% error was investigated.

To investigate the spread of 95% confidence interval width for the total service cost the
furthest outlier in Figure 5.14 was selected and studied. This outlier was the design
candidate for zero UAS 1 and one UAS 2 based at Bembridge. The title given to this
design candidate is 0,0,0,0,0, 1 as per the naming scheme described on page 85. One
reason for this design candidate being an outlier is due to the fact that the total service
cost is the lowest of all design candidates (with only one operating base and only one
of the low-cost UAS) therefore any variation in cost due to the stochastic nature of the

model will be accentuated.

The convergence study for design candidate 0,0,0,0,0,1 is shown in Figure 5.15 and
displays the cumulative mean and the 95% confidence interval of the total service cost
against the number of repetitions. Also plotted are the raw costs of each repetition of

the simulation for this design candidate.

The raw points plotted in Figure 5.15 show grouping into bands of total cost where
the bands increase roughly by the cost of a UAS 2. This indicates that the UAS was
replaced due to a loss of the platform a certain number of times where that number is
represented by the height (or level) of the band. This is confirmed by plotting the count

of the number of times the UAS 2 unit was replaced in each replication as shown in

SThis distribution shape was also seen when the data entries were not presented as a percentage of
the sample mean, but just as the 95% confidence interval width.
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FIGURE 5.15: Convergence study for the total service cost outlier. The cumulative
mean and 95% confidence interval is plotted along with the raw data points. Bands of
raw data can be seen forming separated on average by the cost of the UAS 2 unit.

Figure 5.16. The total of each bar matches the count of data points in each band formed

in Figure 5.15.

There are several possible reasons built into the model for why the loss of a platform could
occur. In this study, the loss of platform was due to either a catastrophic component
failure (i.e. the platform could not continue flying) as determined by the reliability
and maintenance model for the UAS, or a discrete adverse change in wind conditions
resulting in a depletion of energy (i.e. low fuel or battery). In the case of design candidate
0,0,0,0,0,1 which had only one UAS 2 platform (which has reduced range and endurance
compared with a UAS 1), there is a greater chance of it making multiple trips to a task
location due to needing to refuel, thus increasing the platform’s total flight time. This in
turn leads to a higher risk of a critical component failure and the higher time in the air
also increases the likelihood of the platform being caught out by a change in the weather

conditions.

Therefore, the reason for the slightly increased spread in the 95% confidence interval
width for the total cost of the service compared with that for the mission success score is
because if the design candidate does not perform well at the service (i.e. it results in
multiple replacements of the UAS units) it can incur large costs. However, these outliers
should only be a concern if they are found to be an optimal solution and then more

replications might be required to ensure the sample means have tended towards the real
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F1GURE 5.16: Bar chart showing the count of how many times the UAS 2 unit was
replaced in each replication for the 0,0,0,0,0, 1 design candidate for the 250 replications.
These counts match the number of raw data points per band in Figure 5.15.

mean. Otherwise, the distribution displayed in Figure 5.14 suggests that 250 replications

is also an acceptable amount of replications.

5.2.2 Effect of pilot limiting

One of the investigations in this case study was the effect of limiting the number of pilots
available per base. This number of pilots per base was limited to either 1 or 2. The
number of pilots was set to follow the total number of UAS platforms at the operating
base up to the set limit. If there were no UAS assigned to an operating base then there

would be no pilots assigned to it either.

The mission success score is plotted against the total service cost in Figure 5.17 with the
data points categorised by the pilot limit. This is also the first time the full set of design
candidates have been shown on the bi-dimensional graph that will be used to find the
optimal design via the value function. From Figure 5.17 we can see the limit of feasibility
form, where to increase the mission success score, the total service cost must increase.
This is where the optimal design will sit because the value function used in this case
study only uses these two parameters. However, if another parameter was introduced to
the value function, for example the stakeholders want to reduce the amount of fuel used
(i.e. favour electric over petrol), then, when plotted as a three dimensional graph, the
optimal design will sit on the limit of feasibility surface. Beyond three dimensions it is
hard to effectively communicated this visually to the end-user. One suggestion is through
pair-wise plots. The data set plotted in Figure 5.17 will be used in the background of
the plots used for further analysis to highlight the overall data set.
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FIGURE 5.17: Plot of mission-success score against total service cost for all design
candidates. The design candidates are categorised in the plot by the maximum number
of pilots available at each operating base.

Figure 5.17 shows that by limiting the number of pilots to only one per operating base has
a significant effect on the mission-success score. This is demonstrated by the spread of
blue points along the x-axis compared to the grouping of the red points at the upper-end
of the x-axis. The plot also shows that there is an upper limit to the mission-success
score. This suggests that the design candidates that sit on the right-hand-side of the
graph cannot improve the mission-success score any further. This could be due to the
number of pilots being limited to two, or it could be because the design candidates have

achieved the maximum mission-success score available for the service.

Another interesting feature that emerges from Figure 5.17 is the towers that form (i.e.
similar mission-success score but increasing cost). These are most notable in the design
candidates that are limited to one pilot. Further analysis of the data set led to the plots

shown in Figure 5.18.

Figure 5.18 pulls out the design candidates that only use one operating base and plots
them on separate graphs graphs for the different bases (i.e. Lymington, Swanage,
Bembridge). Within each graph the design candidates are categorised by the pilot
limitation (using the data point symbol) and the number of each UAS assigned (using
the colour of the data point). The legend can be read where the first number represents

the number of UAS 1 and the second number represents the number of UAS 2.
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FIGURE 5.18: Plots of mission-success score against total service cost for the design
candidates that use only one operating base. Design candidates are categorised by the
pilot limitation (using data point symbol) and by UAS assignment (using data point
colour) where the legend entries can be read as number of UAS 1, number of UAS 2.
The grey markers display all the design candidates.
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The first observation to note from Figure 5.18 is that at all three operating bases,
the design candidates that only have UAS 2 units assigned to them (the blue and
orange markers) perform poorly in terms of mission-success compared to all other design
candidates plotted. The reason behind this is discussed earlier in Section 5.2.1 and points
to the range and endurance of this platform not being able to service the entire region
effectively. This is most notable in the Swanage plot and the high cost indicates high
flight time caused by the need to refuel and multiple units replaced. Swanage is the
furthest operating base from the daily task and this is potentially a major contributor to
this.

All three plots in Figure 5.18 show that the cost and mission-success score for the single
UAS options (indicated by the blue and green data points) are unaffected by the pilot
limitation (i.e. both the 1 pilot and the 2 pilot data points are on top of each other).
This was expected as, if there is only one UAS at the operating base, there will only be

one pilot.

The investigation into the formation of the towers found a flaw in the resource allocation
formula. The towers form above the data point for one UAS 1 unit (the green data point)
at each operating base and increase in price, but each data point in the tower shows no
significant change in mission-success score. This occurs for all design candidates that
have at least one UAS 1 unit and are limited to one pilot. From these plots, this suggests
that the missions are always allocated to the same UAS unit regardless of the range or
endurance expected for the mission and therefore there is fault in the resource allocation.
This theory was confirmed by the analysis of the resource allocation data set that stated
that only the first UAS unit listed at the operating base was allocated. This is speculated
to also be the case when the number of pilots limit is raised to two. However, in this
case, the second UAS is able to be operated by the second pilot while the first is still
active. Therefore, these design candidates are capable of responding to simultaneous
missions. This resource allocation formula flaw is discussed further in Section 5.4 and a

potential solution to the problem is presented.

The final observation from Figure 5.18 is that the introduction of a second platform
with the availability of two pilots significantly increased the mission-success score. This
improvement is increased by the capability of the second UAS”. This is demonstrated by
the distinct grouping of the design candidates based on their combination of UAS units
and where, as the number of UAS 1 units increase, so does the mission-success score

increases.

Overall, these results show that limiting the number of pilots does have a direct effect on

the mission-success score. This is because having the availability of a second platform

"The author believes this observation is not affected by the flaw found in the resource allocation
formula. However, this cannot be confirmed until the simulation is repeated with a new formula.
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with a pilot unlocks the ability to attend simultaneous missions and thus is of great
benefit.

5.2.3 Dual operating bases

The next set of design candidates that were analysed were those that used two operating
bases. This analysis was limited to candidates that had up to 1 of each type of UAS type
per operating base. This limitation produced 9 candidates for each pair of operating
bases. Therefore a total of 27 design candidates are considered here. These are shown
in Figure 5.19 where the pair of operating bases is distinguished using the data point

symbol. The permutation of the UAS assignment is signified using the data point colour.

Candidates with dual operating bases
(limited to 1 of each UAS type per operating base)
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F1GURE 5.19: Plot of mission-success score against total service cost for the design

candidates that use two operating bases and are limited to one of each UAS type per

operating base. Design candidates are categorised by the pair of operating bases (using

data point symbol) and the UAS assignment (using data point colour). The UAS

assignment is read as UAS 1, UAS 2 at the left-hand operating base followed by the —

and then UAS 1, UAS 2 at the right-hand operating base. The grey markers display all
the design candidates.

The plot continues to highlight that only using the less capable platform, UAS 2 (blue
data points), the mission-success score is not as high at those candidates that include a
UAS 1 unit. However, by spreading the two UAS 2 units across the region (i.e. not just

using one operating base as shown in Figure 5.18) the mission-success score is improved.
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Figure 5.19 also shows grouping where the total number of each UAS in the service is
the same. For example, the orange and red data points both have one UAS 1 and one
UAS 2. However, the permutation of which UAS is assigned to which operating base
has a significant effect. This is highlighted the most by comparing the orange and red
data points of the Swanage and Bembridge design candidates. Here, it is shown that it
is more beneficial in both parameters (cost and mission-success score) to place the UAS
1 unit at Swanage and the UAS 2 unit at Bembridge.

The combination of operating bases that produced the more favourable design candidates
was Swanage and Bembridge (where favourable is considered here as a lower cost against
mission score). This appears to be followed by the combination of Lymington and
Bembridge. Therefore, this shows it is likely that an optimal design candidate will
include Bembridge as one of the operating bases (especially when considering dual
operating bases). Logically, these findings make sense as the daily task is performed near
Bembridge and ensuring maximum coverage of the region makes choosing Swanage a

sensible pairing.

The flaw in the resource allocation is not so significant here as the resources are spread
between operating bases therefore the ‘closest unit’ policy will be in effect. Also, the
operating bases are not limited to one pilot so simultaneous missions will be available

from the nearest operating base if there are two UAS units allocated.

5.2.4 Optimal designs

The value models described in Section 5.1.4 were used on the design candidates in order
to find the optimal design with respect to the stakeholders’ requirements. The first
value model put more emphasis on maximising the mission-success score by increasing
the weighting of the mission-success score in the CBA. The result of this is shown in
Figure 5.20.

In Figure 5.20 the value gradient, shown by the colour map, indicates the direction of
improving value, where blue represents a low design value and red represents a high
design value. It ultimately reaches a maximum on the design candidate that places two
UAS 1 units at the Bembridge operating base with two pilots available. This service
design uses two of the more expensive and more capable UAS units. However, it reduces
costs by locating them at one operating base. The selected operating base, Bembridge,
was found through the earlier analysis (refer to Figure 5.18 and Figure 5.19) to be the

more favourable operating base.

Figure 5.21 shows the result of the second value model where the emphasis was on
reducing cost. This was achieved by reducing the the weighting of the mission-success
score in the benefit component of the CBA and thus giving the cost more influence on

the design’s value.
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FI1GURE 5.20: Plot of mission-success score against total service cost for all the design
candidates highlighting their design value by the colour scale where blue represents a low
design value and red represents a high design value. The value model is set to promote
mission-success score. The value gradient is included to indicate the direction of the
value model. The optimal design is annotated on the graph and was found to be the
design candidate with two UAS 1 units based at Bembridge with two pilots available.

The value gradient is displayed in Figure 5.21 in the same way as in Figure 5.20. By
comparison of the two figures, it can be seen that the value gradient is shallower in the
graph for minimising cost (Figure 5.21). This leads to the design candidate with the
maximum value being a different candidate. However, it still is found on the Pareto front
(also previously described as the limit of feasibility). The optimal design candidate for a
value model minimising cost was where one UAS 1 unit was operated from Swanage and

one UAS 2 unit operated from Bembridge.

Both of these optimal design candidates make logical sense. However, without the data
obtained by this model and the simulation, it would be extremely difficult to justify
which matched up to the stakeholders’ needs or how they compared. The other advantage
demonstrated here is the ability to find an alternative design if the stakeholders’ needs
changed. Simply by adjusting the value function to suit the new needs of the stakeholders,

a new optimal design can be found.
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FI1GURE 5.21: Plot of mission-success score against total service cost for all the design

candidates highlighting their design value by the colour scale where blue represents

a low design value and red represents a high design value. The value model is set to

promote minimising the total service cost. The value gradient is included to indicate

the direction of the value model. The optimal design is annotated on the graph and was

found to be the design candidate with one UAS 1 unit based at Swanage and one UAS
2 unit based at Bembridge.

5.3 Benchmarking the model

The model required benchmarking using an independent algorithm as a means to sys-
tematically compare the solutions produced and provide confidence in the model. Due
to the model developed in this thesis being an amalgamation of UAS performance
models, discrete event models, value centric design implementation, and asset allocation
algorithms, (and therefore creating a novel model) it is difficult and challenging to
benchmark the entire model against an independent algorithm without heavily tailoring
the algorithm to the problem and thus losing its independence. A review of academic
methods that may be employed to best benchmark a new model found that the research
performed on computational tools in biological and biomedical sciences are often subject
to benchmarking and this has generated a large number of publications discussing the
methods, issues, pressures and standards towards benchmarking [138, 139, 140, 141, 142].
In these academic outputs advice is given as to how to handle the introduction of a new
method or model: it is suggested the focus of the benchmark should be on evaluating the
relative merits of the new method. However, some advantages, benefits or sophistication
of the new model might fall out of the scope of the benchmark. For this reason the

benchmark needs to be carefully designed to ensure it is a fair comparison [138].



98 Chapter 5 Results and analysis

In the case the model presented in this thesis, it was decided to focus the benchmarking
on the resource-allocation and variable-costing elements of the model, as these were the
key components that drove the solution. The independently developed algorithm selected
as a benchmark model was from the open source OR-Tools® optimisation software suite
which is developed by Google and is tuned for tackling vehicle routing problems, network

flow problems, integer and linear programming, and constraint programming [143].

The selected benchmark algorithm was based on the Capacitated Vehicle Routing Problem
(CVRP) where the capacitated value (also known as demand in the CVRP model) is the
distance travelled during the task of the mission. Due to the type of UAS service the
presented model in this thesis was designed handle, the CVRP was set up as a many
depot (operating base), single customer (mission) problem. The vehicles were modelled
to have the capacity matching that of the range of the UAS. This allowed the CVRP
algorithm to state if the vehicle could complete the mission. This was similar to how
the presented model operated. The CVRP solver used the path_cheapest_arc as its first
solution strategy. It also applied the guided_local_search strategy to allow the solver to
escape potential local minimums to find a better solution. The mission demands and the
distance matrix, describing the distances between nodes (each operating base and the
individual missions), used in the CVRP model were calculated from the output of the
presented model’s mission generators (taking into account a static version of the UAS

and payload performance models).

The inputs and methods described above created a simplified resource allocation solver
that could be used to compare the findings with the presented model. The main
simplifications of the implemented CVRP model were that: (1) it was not time-based
and therefore it was not set up to dynamically update the calculated distances due to
changing weather conditions, and it was not aware of missions overlapping in time; (2)
if none of the UAS platforms had the range to complete the entire mission, it would
not allocate an asset to that mission, whereas the presented model would provide a
UAS platform to complete some of the mission task within reason or perform multiple
trips to complete the entire mission task (a policy set by user input); (3) the CVRP
model had no component-reliability model which meant that all platforms modelled were
available throughout the service - this is unlike the presented model where maintenance
tasks or platform loss would temporarily remove a UAS from availability (again, another
time-based element of the presented model). It was possible to run the solver to find the
best UAS for each mission and compare the resource allocation to the presented model,

but the simplifications needed to be taken into account when interpreting the results.

An initial comparison took place for replications of the design candidate 1,1,1,0,0,0
(i.e. a single UAS 1 at each operating base). Of the total number of missions within

each replication in the data sets, 90.90% resource allocations were the match between

8See https://developers.google.com/optimization for more information about OR-Tools and how
to use it.
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the CVRP and presented model, leaving 9.10% different. These were analysed to see the
reasons for deviations. Firstly, it was found that 2.49% of the missions were classed as
not possible by the CVRP model due to it not having the functionally to allow partial
completion or multiple trips. Of the remaining different results, 6.57% were found to
be due to missions overlapping in time in the presented model and therefore the list of
available resources was reduced and did not include the otherwise optimal UAS (i.e. as
it was already performing another mission). This left the final 0.05% difference between
the two models unaccounted for. On investigation it was found that the mission location
fell almost equidistance between two operating bases in these cases and therefore the
difference in resource allocation was most likely to be due to the weather conditions which
are taken account of in the presented model but not in the CVRP model. This refinement
in the presented model would account for why the geographically more distant operating
base would be favoured. These results are visualised in Figure 5.22. The majority of
the results provided a good match but where differences occurred they were due to the
limitations of the implementation of the benchmark model and could reasonably be
expected. This is of no criticism to the CVRP model.

Comparison of resource allocation between
presented model and CVRP benchmarking algorithm
for design canditate 1,1,1,0,0,0

Matched

0.05% Unaccounted

Time overlap

Range limited

FIGURE 5.22: Pie chart showing the comparison between the resource allocation results

of the benchmark CVRP model and the presented model for the 1,1,1,0,0,0 design

candidate (a single UAS 1 at each operating base). The values shown are calculated as

a percentage of the total number of missions per replication and then averaged over the
data set.

As further design candidates were replicated, it was noted the resource-allocation matches
between presented and benchmark models reduced as the number of UASs decreased,

and/or as the number of UAS 2 platforms increased. This was due to the reduced range



100 Chapter 5 Results and analysis

of the UAS 2 platform resulting in either more range limited differences or the CVRP
model selecting a UAS 1 due to its improved range capabilities. This effect of this can
be seen in the comparison of models for the design candidate 0,1,1,1,0,0 (i.e. one UAS
2 platform at operating base 1, and one UAS 1 platform at each of operating base 2 and
3). The results are shown in Figure 5.23. In this example, deviations between the two
models can be seen regarding resource-allocation due to the range limitations of UAS
2 and the simplifications made in the benchmark model. The CVRP model provided
different resource allocation solutions for 9.07% of the missions due to lesser capabilities

of the UAS 2 and the model not allowing partial completion or multiple trips.

Comparison of resource allocation between
presented model and CVRP benchmarking algorithm
for design canditate 0,1,1,1,0,0

Matched

UAS 2
replaced with
UAS 1

Time overlap
Range limited

FIGURE 5.23: Pie chart showing the comparison between the resource allocation results

of the benchmark CVRP model and the presented model for the 0,1,1,1,0,0 design

candidate (one UAS 2 at operating base 1 and a UAS 1 and the others). The values

shown are calculated as a percentage of the total number of missions per replication
and then averaged over the data set.

The chosen benchmark model was not wholly suitable due to the limitations described,
but with further research it may be possible to find a more adapted variant of the
CVRP that better represents the real-world application of a UAS service. This would
be expected to result in a better comparison to the presented model. The adaptations
required would need to cover the ability to fragment the mission task, handle time-
overlapping missions, and account for the stochastic variables (i.e. component-reliability
and weather conditions). However, the benchmarking exercise highlighted some positive
points relating to the presented model. Firstly, the comparison analysis of the two models
was relatively easy to conduct due to the transparency of the results produced by the

presented model. With the wide spectrum of data produced and recorded it was possible



Chapter 5 Results and analysis 101

to drill down into the data to categorise the deviations and confirm the hypothesised
reasons for them. Secondly, the benchmarking exercise demonstrated the effects and
benefits of the complexities built into the presented model which enabled it to better
represent the real-world application. The presented model was developed in a modular,
generic, and graphically-enhanced way and produced rigorous results in an uncomplicated

manner.

5.4 Summary

This chapter has demonstrated the capabilities of the model as a UAS service design
decision support tool. It has shown that using data sets that describe the service tasks and
regional weather it is possible to create model inputs that define the mission and weather
generators. It was also shown that the input of UAS parameters and the location of the
proposed operating bases allows the designer to create a large pool of design candidates.
Finally, after running the simulation for the number of replications that provides a
sufficient estimate of the output mean, it is possible to analyse the performance of the
design candidates. Through the use of a value function that represents the stakeholders’
needs it is possible to obtain an optimal design for the service. The full collection of
output data produced by the simulation allows the designer to understand the reasoning

behind the choice. It can also allow the designer to see areas of high cost or risk.

Through the analysis of the results produced in this case study, a error in the resource
allocation function was identified. This presented itself when there were two or more
UAS units stationed at one operating base and was highlighted when the number of
pilots was limited to one. The resource allocation function defaulted to always use the
first UAS unit listed at that operating base that was capable of attending the mission.
This did not affect design candidates where multiple bases had an individual UAS unit
as the resource allocation function had a policy set to choose the closest UAS unit to
attend. In this case study, if the operating base had a UAS 1 assigned, then this would
be the first UAS unit in the list and therefore would be the first choice (i.e. because
of UAS 1’s greater range and endurance compared to UAS 2, if it was not capable of
attending then the UAS 2 unit would also not be able to). Therefore, to improve this
the intra-operating base UAS allocation should be a settable Concept of Operations
(CONOPS) policy. This could then be used to select the UAS unit that is not excessive
for the task. For example, this policy could sort the capable units in order of range or

cost per flight hour.

This case study also highlighted the importance of setting appropriate CONOPS and
other policies for each UAS unit. During the convergence study in Section 5.2.1 it was

found that the increased 95% confidence interval width for a design candidate with a
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UAS 2 unit was mostly brought about due to losing the UAS unit. These losses were

due to both critical failures and weather related incidents.

An example of setting an appropriate CONOPS policy in this case study can be demon-
strated by considering the reserve fuel. The overall UAS service had a global policy
in place regarding reserve fuel. This policy was used to define which UAS units were
capable of attending and performing the task (by calculating the range without including
the reserve fuel amount in the range equation) and when the UAS unit should return
to refuel if the mission was not yet complete. If the reserve fuel amount (stated as a
percentage of the total fuel) was set high, then the UAS would have a reduced operational
range and hence could potentially require more refuelling trips to complete the mission,
thus increase the consumable and operational costs. This increase in flight hours also
increases the chance of a component failure (which leads to increased maintenance cost
or critical failure). However, this fuel reserve might prevent the losses caused by the
discrete change in wind that occurs in the simulation (i.e. the UAS will have reserved
range to overcome an increase in the effective range caused by an unfavourable wind

direction and speed).

Alternatively, if the reserve fuel amount was set low then the number of refuelling trips
would reduce and hence the number of flight hours would reduce (i.e. fewer transits
between base and mission location). This, in turn, would result in fewer critical failures
as they are based on the mean time to failure metric which references the number of flight
hours. It would also have an effect on the number of maintenance operations and cost
as this is also reliant on the number of flight hours. An improvement to the simulation
would be to move the fuel reserve amount from a global policy and introduce it at a UAS

unit level policy.

The effect of adjusting the CONOPS was not part of this case study, but is possible
through the model and simulation presented in this thesis. However, by increasing the
number of variables to the simulation, it also increases the number of design candidate
produced. The computational time to run all 1458 design candidates presented in the
case study took in the region of 12 hours using a high performance desktop®. The results
can be visualised quickly. However, a further 24 to 32 hours of work is required for
full analysis and final quantification of the design decisions. Therefore if a CONOPS
study is required, it is suggested that the service design optimisation is completed in
stages to reduce the number of design candidates. This can be achieved by completing
an exhaustive search to find the design candidates that sit on or near to the Pareto front
(i.e. optimal designs and design alternatives). From here, a CONOPS study can be

performed on this limited pool of high performing design candidates.

9The desktop used to run the simulations had 4 cores, 8 logical processors, 3.60 GHz CPU and 32.0
GB of RAM. The simulation’s replications utilised parallel computing through the AnyLogic software.



Chapter 6

Discussion and conclusions

This chapter starts by providing a summary of the work presented in this thesis in
Section 6.1. This is followed by Section 6.2 which addresses the broader issues around
the tool development and the key findings from this research. The model’s complexity,
transparency and computational measures are discussed. Alongside this, the scalability
with operational size and scope, asset heterogeneity and applicability to a variety of
business-models is commented on. The research aims and objectives are revisited in
Section 6.3 and discussed. Finally, Section 6.4 presents suggestions towards further
and future work to develop and refine the model, extend the research and build on the

achievements to date.

6.1 Thesis summary

This thesis has described how a UAS service can be modelled such that design candidates
for the requested service can be compared and an optimal solution found. This has been
achieved by the use of discrete event based simulations of the missions and tasks of a
UAS service and modelling how the UASs respond. The model captures accurately the
performance and reliability of the UAS platforms and the performance of EO payload
sensors. It also takes into account some real-world factors that influence the UAS’s
response to the tasks, for example the geospatial nature of the UAS service and the local
and temporal wind conditions. The model was designed in a modular way that allows
it be further developed and new features added. It also included an animated view of
the simulation which can be used to provide confidence in the model setup and debug
any problems arising from the logic of the model. This can be turned off to save the

computational cost when completing batch runs.

A case study has demonstrated how the service details which are used to describe the

missions and tasks in the simulation are formulated. A large set of design candidates
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(generated by varying the number, type and base location of the UASs) was evaluated
through the simulation and their results were analysed. The presentation of the outputs
gave a clear rational for the results allowing them to be traceable and understood. The
results of the case study produced sensible and logical solutions, and importantly, they

provided auditable evidence of their costs and effectiveness.

However, as with all models and simulations, the model created is only as good as the
inputs provided. Therefore, the fidelity of the model was set to match the expected
level of detail in the inputs. This benefited the computational cost of the model by not

including unnecessary levels of detail.

It became apparent during the design of the model that a comprehensive list of CONOPS
and policies needs to be drawn up and agreed as any omissions could lead to a less
effective optimal solution. For example, in the case study the policies that could have lead
to a different optimal solution were: the amount of fuel reserve to account for emergencies
(e.g. an adverse change in wind conditions); and the selection of the platform type best
suited to the mission (i.e not selecting an overly capable platform which would increase
costs and remove it from the pool of platforms available for subsequent missions requiring

its capability).

6.2 Discussion

6.2.1 Tool development

In Section 3.1, the four high level requirements for the framework of the decision-support
tool were stated. These were that the model produced should be comprehensible and
simple, generic, modular, and realistic. The adherence to these principles throughout
the design and development of the model greatly helped bring together the multitude of
disciplines and elements of the complex real-world application into a relatively succinct
model. The requirements also provide key points to discuss the general lessons learnt

during the tool development.

The modular design of the model meant that additional extensions could be turned on
or off (e.g. the inclusion or exclusion of the weather conditions). This served as a way
to test the base model and the effect of each individual extension in isolation and as
a whole. It also allowed the overall realism of the model to be improved and adjusted.
From the experience gained by designing a model of this scope, it is highly recommended
to follow a modular approach as it breaks the big picture into manageable portions, each
of which can build up the complexity and realism as required but still have a functioning
base model. The challenges of implementing modularity in this thesis stemmed partially
from defining the boundaries and level of detail for each module and then integrating

them into the base model. The intuitive approach to the boundaries was to align them
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with the physical boundaries being modelled. This was progressed by forming a tree-like
structure of modules and sub-modules to reduce the number of integrations required with
the base model — the act of integrating is often a source of error and programming bugs,
and therefore minimising the number of times this has to be performed is favourable.
For example, the weather module was categorised as its own entity which then had the
capability to contain multiple sub-modules (e.g. the wind conditions). This aided the
integration process as only one module was required to be integrated into the base model,

rather than several modules defining the individual weather elements.

Another challenge in the development of the model was the need to make the model
comprehensible and simple. This was facilitated by keeping the inputs and outputs
at the forefront of the design. Thus, the level of detail and knowledge the user had
to supply for the model to produce meaningful and acceptable results was constantly
assessed. The same approach was taken for the results being produced by the model with
focus on ensuring these were transparent (i.e. the raw values produced were available
alongside the calculated outputs so that the results were traceable and the logic was
clear). By creating traceability within the outputs of the model, the process of analysing
and evaluating the results was made less arduous and more manageable. This means
that the key factors influencing the results were easier to identify, and further studies
could be performed where required (e.g. a sensitivity analysis of a CONOPS policy). It
was also imperative throughout the development of the model to consider and constantly
re-evaluate the assumptions and limitations of the model (and the additional modules)

and provide this to the users to ensure the limitations present are understood.

Developing a model capable of accepting the vast spread of UAS types and UAS service
types as the inputs and descriptors was one of the most challenging elements to the
tool design. As the model increased in sophistication, the interactions between modules
became more complex. In some aspects, the scope of the tool presented in this thesis was
restricted in order to ensure the remainder of the tool could be developed and the tool as
a whole could be demonstrated (e.g. the focus of service types was restricted to UAS only
services and did not include a ground-air asset mix in which a UAS could supplement the
assets of an existing service). The consequence of the restrictions is a reduced genericity
of the presented model and thus the range of applications to the end users at its current
level of development is also affected. However, because the other high level requirements
(modular and comprehensible) were followed in the model development, the updates
required to include these additional elements would be straightforward to incorporate. It
is, though, important to ensure that any increase in the scope and capabilities of the tool

does not reduce the quality of the results nor the confidence in the tool or its ease of use.

Finally, the use of an animated simulation during the development, debugging, discussion,
and presentation of the model was invaluable. This vastly reduced the time to resolve
bugs and programming errors as the entity flow in the discrete event simulation, or asset

location in the geographical view could be used quickly to confirm or refute that the
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model was working correctly. This highly beneficial view of the simulation and model was
made possible through the use of an off-the-shelf programming environment, AnyLogic.
It was also crucial to be able to turn off the visualisations as they are computationally
expensive and unnecessary once confidence is gained in the model and its setup and
batch runs are required. Although it does require additional time and effort to implement

the animations and graphical representation, the advantages pay dividends.

6.2.2 Application of tool to different UAS service types

The decision support tool was designed to model new UAS services that operate from
fixed locations and serve missions individually using a mixed fleet of UASs. This style of
UAS service is typically a surveillance/searching based service or a rapid/urgent delivery
based service. However, the availability and capability of UASs has advanced over the
past decade and new styles of services are emerging. The new types of services include:
(1) logistical delivery services solely using UAVs; (2) logistical delivery services with
UAVs integrated with other ground-based delivery vehicles - both (1) and (2) would
often requiring route planning in the mission-task phase; (3) mobile operations that do
not necessarily require a fixed base (e.g. travelling to different locations to undertake

aerial surveys).

The implementation of mobile operations would require minimal changes to the current
framework. This would likely be through an additional module describing the new

mission logic.

The logistical delivery services solely using UAVs could readily be modelled through the
framework setup in this thesis. The AnyLogic programming environment used for the
model has some built in libraries for routing and is capable of adding external /independent
VRP solvers to the Java library attached. This and the multi-modal delivery service (i.e.
a service being delivery with both UAV and ground-based assets) would be an interesting

direction of further research.

In the case of modelling a multi-modal service, the user of the tool is no longer just
interested in how the mix of UAVs perform, but how the integration of the UAVs into
the full service affects the business as usual (BAU) case. Therefore, to introduce multi-
modal services into this framework such that they can be compared to no-, partial- or
full-integration, the model will have to be capable of modelling and interacting with the
BAU service. This creates the need for more complex user inputs and setup requirements,
and in turn moves the model away from ease of use and genericity. However, this does
increase the range of applications the model can handle, and including the base-line BAU

solution helps compare the effect of integrating UAVs into the service.

It is worth noting that the preliminary analysis stage of a multi-modal service might not

require the fidelity provided by the presented model (e.g. stochastic weather conditions,
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component level reliability, and dynamically calculated range equations). Instead, it
could be adequately served by a bespoke lower fidelity Fleet Size and Mix (FSM) VRP
solver to find a base-line UAS service level. The results of this could then be studied via
the presented model to, firstly improve the accuracy of the costing and value achieved by
the UAS, and secondly explore different CONOPS and policy settings.

6.2.3 Scalability and applicability of the presented model

The presented model in its current form has the complexity class P (in terms of time
complexity) due to the resource-allocation currently being a decision-type problem rather
than an optimisation problem. The UAS services which the current tool has been designed
to model has no internal optimisation problems present, and therefore will scale as a
polynomial time-complex problem with the increase of inputs (e.g. missions, decisions,
and resources). If, however, each mission required optimisation (e.g. included a VRP)
then the model would be N"P-hard. This means it will scale exponentially with the inputs
relating to the optimisation problem. See Hoos and Stutzle [144] for an introduction to

computational complexity in combinatorial problems.

For the case study presented in Chapter 5 the 250 replications of each design candidate
(to account for the stochastic inputs) took on average 33.5 seconds. Therefore, to run
all 1458 design candidates on one processor the simulation would take 48,843 seconds,
which is equivalent to 13.57 hours. This represents when the iterations (i.e. the set of
replications for each design candidate) are solved in series. However, this time can be
reduced by running each iteration on parallel processors. The computer used during this
case study had 8 logical processors (4 cores), 3.6 GHz CPU and 32 GB of RAM. When
overheads (other processes affecting the computers performance - here estimated to be
an additional 20%) are taken into account, the total time to run the entire model for all
design candidates is theoretically around 2 hours. However, in practice, it took in the
region of 12 hours due to running the iterations in batches to ensure the data collected
was complete and uncorrupted, and to mitigate the risk of a computer error or failure

resulting in a loss of data by backing up the data incrementally.

The optimisation study of the UAS service (i.e the choice of operating bases and assign
mix of UAS) presented in the case study is a NP problem. In this thesis, the optimisation
study was tackled by performing an exhaustive search over all the design candidates. This
was made possible by limiting the number of permutations with repetition to manageable
numbers. For example, if an extra operating base was included in the study the total
number of design candidates (ignoring the pilot limitation study) would increase from
729 to 6561. If an exhaustive search was to be performed on all design candidates it
would in theory be expected to take 9 hours (including overheads). This equates to 54

hours if the same 1:6 ratio of theoretic to in-practice time is applied.
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This poor scalability means that the exhaustive search method used in the presented
model is may not be a realistic proposition for larger problems. Therefore, to improve
the applicability of the optimisation study using the model, it is suggested that the use of
optimisation solvers, such as those employed in VRPs or scheduling problems, is explored.
These can be applied as an optimisation wrapper to the current model, with the aim
of minimising the value function by varying the permutations of the inputs. One such
approach is the branch and bound algorithm as it is used for discrete and combinatorial

optimisation problems [145].

Overall, the model in its current form is scalable and applicable to many different
variations of stationed UAS services providing single task missions. This makes it very
suitable for cost and value sensitivity analysis and exploring the service’s CONOPS and
policies. Should the model be required to perform a large design candidate search than
that presented in the case study, then a suitable optimisation solver should be used on

the outputs of the model.

6.3 Review of research aims and objectives
The research aim presented in Section 1.3 was to

explore the development and application of a mission-based computational
simulation and optimisation environment to have transformational impact on

decision-making when designing an uncrewed aerial system service.

The work presented in this thesis has shown how a mission-based computational model
and simulation can be used to test UAS service designs and ascertain their cost and
performance. The results from the simulation were used to lead the user to an optimal
design through the use of value-centric decision methods. Moreover, the simulation
outputs a large collection of data that can be analysed to understand the findings of
the model and more in depth information of the design’s performance. This allows
the reasons behind the optimal solution to be transparent and traceable, thus this can

provide confidence in the solution.

The value of the tool lies in the certainty of the results, and the confidence the user
can place on the service selected with respect to cost and stake-holders values. This
is achieved through the automated assessment of the design candidates and rigorous
treatment of all the design variables. However, the extent of the impact on the decision-
making has not been quantified in the work presented. Therefore, it is recommended that
a validation experiment is performed. This could be achieved by running a workshop
session for UAS service design experts where the decision-support tool could be used

to model a particular service. The optimal solution can be compared to that found by
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traditional methods and the experts can comment on the value of the tool to practices

in the field. This would allow the model to be peer reviewed.

The objectives that formed the path of this research were achieved. The UAS was
modelled so that it could be simulated in terms of its performance, cost and reliability
in a discrete event model. The current research landscape regarding decision making
methodologies was reviewed and a value-centric design methodology was integrated into
the simulation outputs. The computational tool was developed to replicate real-world
applications and was tested in a specific case study. The capabilities and limitations
of the presented model were assessed and discussed along with the applicability and
scalability of the model. Also, general lessons learnt were provided to help with the
development of similar computational tools. Finally, these discussions led the suggestions

of future work and alternative research methods which are presented in the follow section.

6.4 Future work

One of the first areas of future work is to address the error found in the allocation of
UASs to missions as described in Section 5.4. A solution to this was proposed and

involved the introduction of an intra-operating base UAS selection policy.

It was found during the case study that a large percentage of the design candidates
produced were not close to the limit of feasibility. These incurred significant computational
cost despite their lack of suitability in many cases being foreseeable. This is a by-product
of performing an exhaustive search on a large number of variables each with several
choices. If some of these candidates could be eliminated without full analysis, this
would reduce computational cost or allow the saving to be used to vary other influential

parameters of interest, which may result in an improved optimal solution.

One solution to reduce the number of design candidates is to run a more defined or
restricted search which could eliminate the candidates most unlikely to be optimal.
Alternatively, future work can be done to find a suitable optimisation method for
minimising the design candidates studied, as discussed in Section 6.2.3. For example,
the use of a branch and bound optimisation method could be considered as it is used
for discrete and combinatorial optimisation problems. This will require the value model
to be fixed at the beginning of the study to decide which nodes to branch. Also, care
will be required to create the subsets of design candidates such that they do not overly
restrict the solution space. By doing this, it removes the possibility to explore easily
alternative value models as the solution space is tailored to a particular value model.

This would be an interesting area of future work.



110 Chapter 6 Discussion and conclusions

The model should be used to explore the effect of different CONOPS and policies,
including the flight regime of the UASs. This should be treated as a sensitivity study to

determine the influence they have over the value of the design.

To improve the benchmarking of the model, either a more suitable algorithm needs to
be selected for the validation, or the limitations of the CVRP model used need to be
addressed. Firstly, the policies that are affecting the resource-allocation result in the
presented model could be turned off (or avoided in the case of the time-overlapping
missions), allowing for a better comparison. However, this disadvantages the presented
model as it is not demonstrating it at its full potential. Alternatively, it could be
beneficial to research Dynamic VRP (DVRP) and solvers and design a benchmark
algorithm based on this. Ojeda Rios et al. [81] provides a good survey of the research on
DVRP applications and solutions until 2021. The most relatable type of problem is the
dynamic and stochastic category. If a DVRP model is produced, it would be interesting to

compare the accuracy and speed of the presented model and DVRP benchmark algorithm.

Finally, the modules that are considered an important aspect or an influential features
of the service that were deemed out of scope in this thesis should be incorporated.
For example, a communication range module could be included to model the available
communication methods and either switch between them as appropriate for the missions
in the service, or limit the UAS to one method of communication and assess the impact
on cost and capability. This should also include upgrading the presented modules where
required or suggested. For example, the weather module can be upgraded to include
other influencing factors, for instance, precipitation. Also, another upgrade could be to

incorporate a smoother transition between wind states in the wind model.
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