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NON-DISPLACEABLE LAGRANGIAN LINKS IN
FOUR-MANIFOLDS
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Abstract. Let w denote an area form on S2. Consider the closed symplectic 4-
manifold M = (S? x S?, Aw @ aw) with 0 < a < A. We show that there are families
of displaceable Lagrangian tori Lo 4, L1, C M, for = € [0,1], such that the two-
component link Lo, ULy, is non-displaceable for each x.

1 Introduction

1.1 Context and results.  Let (M,w)) be a symplectic manifold. A Lagrangian
submanifold L C (M,wys) is called (Hamiltonian) displaceable if there exists a
smooth time-dependent Hamiltonian function {H;} = H € C*°(M x [0, 1]) for which
the induced time-one Hamiltonian diffeomorphism ¢ satisfies ¢’ (L) N L = 0. If
L is not displaceable, then it is said to be (Hamiltonian) ‘non-displaceable’. Under-
standing when a Lagrangian submanifold L is displaceable is a central question in
symplectic topology; because of connections to dynamics and integrable systems,
the case in which L is a Lagrangian torus is especially classical. A Lagrangian L is
stably non-displaceable if L x S' € M x T*S" is non-displaceable, where S' c T*S!
denotes the zero-section.

An equator Selq C S? is manifestly non-displaceable, for area considerations. In
higher dimensions, a sufficient way to prove that a Lagrangian L is non-displaceable
is to show that the Floer cohomology H F'(L, L) # 0. Since Floer cohomology behaves
well under taking products, it follows that Selq is stably non-displaceable, and that
a product of equators in (S? x S?, Aw @ A'w) is non-displaceable, for any areas
A, A e R<op.

Consider now two disjoint circles Lo, L1 C S? such that the complement of LgllL;
comprises two discs each of area B and a cylinder of area C'. Area considerations
again show that Lol L is non-displaceable when C' < 2B. In this case, the individual
L; C S? are displaceable (by rotation of the sphere), hence have vanishing Floer
cohomology, and therefore H F'(LoU Ly, Lol L1) = 0 also vanishes. Underscoring this,
Polterovich made the remarkable observation [Pol01] that Lo LI L; is in fact stably
displaceable, i.e. the Lagrangian link (Lox S1)U(Ly x St) € S?xT*S! is displaceable.
(The proof uses a Lagrangian suspension argument, and is recalled in Lemma 1.11
below.) Since the Lagrangians are compact, when a displacing Hamiltonian isotopy
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Figure 1: Displaceable (left) but non-displaceable (right) if 0 < a < B — C.

exists, it can be chosen to be the identity outside a compact set in the cylinder factor
T*S. Tt follows a fortiori that, if one fixes A > 0 sufficiently large, then (Lg x
SiU(L1 x S2,) € (S?x 52, (2B+C)wd Aw) is displaceable. In contrast, whether
(Lo x Sg,)U (L1 x SY,) is non-displaceable or not when A is small compared to B and
C has been a long-standing open question. Surprisingly, it turns out that standard
(orbifold) Floer-theoretical techniques can be applied to resolve the question, but the
particular setting in which they should be applied is inspired by recent developments
in tropical geometry and mirror symmetry.
Our main theorem is as follows.

Theorem 1.1. Let M = (5*xS?, (2B+C)w®(2a)w). Let L; = Lix S}, in M, where
Selq C S? is the equator in the second factor. Let L := Lo U L. If0 < a < B — C,
then for both i = 0,1, we have ¢p(L;) NL # O for any Hamiltonian diffeomorphism
¢ of M. In particular, L is non-displaceable.

As a consequence,

COROLLARY 1.2. Let M = (S? x S?, Aw @ aw). If a < A, there are families of dis-
placeable Lagrangian tori Lo 5, L1, C M, for x € [0,1], such that the two-component
link Lo, U Ly 4 1s non-displaceable for each x.

Proof. For any B close to A and C > 0 close to 0 such that 2B + C' = 2A and
B —C > a, we get a non-displaceable Lagrangian link Lo UL, C (M, 2Aw @ 2aw) by
Theorem 1.1. We can vary B to get a family of non-displaceable Lagrangian links.

As far as we know, this is the first example in higher dimensions (where area con-
siderations do not pertain) of a non-displaceable Lagrangian link whose constituent
components are displaceable.

REMARK 1.3. Floer theory for non-monotone symplectic manifolds such as M, and
its Hamiltonian invariance, has been constructed in two different settings. For ratio-
nal symplectic forms, i.e. when [w] € H2,(M) lies in the image of H*(M;Q), there
is a detailed construction of the Fukaya algebra HF*(L, L) of a Lagrangian, with
its Aso-structure and Maurer-Cartan theory, due to Charest and Woodward [CW15]
based on the technique of ‘stabilizing divisors’ due to Cieliebak and Mohnke [CMO7].
(An important structural feature of the Fukaya algebra, on which our argument re-
lies, is the ‘boundary divisor axiom’. Charest-Woodward prove a weak boundary
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divisor axiom but not the full one, see Remark 2.5.) For general symplectic forms,
and for Floer cohomology of a pair of distinct Lagrangians, the construction relies
on virtual perturbation technology. Our proof uses rather formal properties of bulk
deformation theory and bulk-deformed A..-algebras for Lagrangian tori in symplec-
tic orbifolds. A complete development in the language of Kuranishi spaces has been
given by Fukaya, Oh, Ohta and Ono [FOOO09a, FOOO09b, FOOO18, MTFJ19];
their work was extended to the setting of orbifolds by Cho and Poddar [CP14]. A
reader uncomfortable with Kuranishi spaces should take Theorems 2.3 and 2.12 as
axioms.

1.2 Idea of proof. We will write S2 for the sphere of area . Let X := Sym? (M)
be the 2-fold symmetric product of M, i.e. the quotient of M x M by the Z/2
action which exchanges the factors. By definition, X is equipped with the structure
of a symplectic orbifold, where the set of orbifold points is precisely the image of
the diagonal. The product Lagrangian Ly x L7 lies away from the diagonal, so it
descends to a smooth Lagrangian submanifold in X, which we denote by Sym(L).
Hamiltonian functions and Hamiltonian diffeomorphisms make sense in a symplectic
orbifold. Moreover, given a Hamiltonian function H € C*°(M x [0,1]) and (21, 22) €
M x M, the function H (z1,t)+ H (22, ) is Z/2-invariant and hence induces a function
Sym(H) € C*°(X x [0, 1]) defined by

Sym(H)([z1, 22],1) := H(z1,t) + H(z2,1). (1)
The induced Hamiltonian diffeomorphism defines a map
Ham(M) — Ham(X)
¢ = ([21, 22] = [0(21), (22)])- (2)

REMARK 1.4. Any Hamiltonian function on a symplectic orbifold admits a smooth
lift to local uniformization charts, so any smooth lift near an orbifold point is in-
variant under the corresponding isotropy group. It follows that every Hamiltonian
diffeomorphism of a symplectic orbifold preserves the orbifold strata (this is obvious
for elements in the image of (2)).

An immediate consequence of the existence of the map (2) is that:

LEMMA 1.5. If Sym(L) is non-displaceable, then for bothi = 1,2 and for any Hamil-
tonian diffeomorphism ¢ of M, we have ¢(L;) N L # ().

Thus, Theorem 1.1 will be a consequence of Lemma 1.5, via:
Theorem 1.6. Under the assumptions of Theorem 1.1, Sym(L) is non-displaceable.

The Proof of Theorem 1.6 uses a bulk deformed superpotential argument (cf.
[FOOOL11, CP14]), and should be compared with the main result of [FOOO12]
which proved the existence of continuum families of non-displaceable Lagrangian
tori T2 C (5% x S%,w@w). The calculation of the superpotential is motivated by the
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Figure 2: The tropical picture of an annulus contributing to the bulk deformed superpoten-
tial.

‘tropical-holomorphic’ correspondence, which relates holomorphic curves in the total
space of a Lagrangian torus fibration with tropical curves in the base; the actual
computation appeals to the ‘tautological’ correspondence, which relates holomorphic
discs in Sym(M) with holomorphic branched covers of discs mapping to M itself.

In a little more detail, the main ideas can be summarised as follows. Each L;
bounds 4 families of Maslov 2 discs, say in classes 3, for j = 1,2,3,4. By (a rather
trivial instance of) the tautological correspondence, the disjoint union of a disc in
class 3/ and a constant map from a disc to £1_; lifts to a Maslov 2 holomorphic
disc in X with boundary on Sym(L). Keeping track of their areas, these 8 families
of discs contribute the following terms to the superpotential of Sym(£L):

T“(a;2_1 + yg_l +x2+y2) + TB(azl +y1) + TB+C(331_1 + yl_l). (3)

The function (3) has no critical point in the units of the Novikov ring, but the
Laurent polynomial x5 Ty Yo Y4 29 + o does.

We introduce a bulk deformation such that certain holomorphic annuli in M
with boundary on L contribute to the bulk deformed superpotential of Sym(L).
The tropical picture of one of these annuli is depicted in Figure 2, where pg and
p1 are the projection of Ly and L7 under the Log map; they have been slightly
perturbed to ease visualisation.

REMARK 1.7. The product annulus given by the annulus bound by Lg U L; in the
S2s +c factor and a constant in the S3, factor is not directly helpful to prove non-
displaceability of L (for instance any argument only using such annuli would trans-
late to S35, x T*S1). The annuli we use are different, and project onto a disc in
the S3, factor. In particular, the annuli which contribute to the superpotential have
Maslov index 2, while the ‘small’ visible annuli have Maslov index 0.

REMARK 1.8. There is not yet a general ‘tropical-holomorphic’ correspondence for
holomorphic curves with Lagrangian boundary conditions. Note that without some
hypotheses, analytic curves in (C*)? do not Gromov-Hausdorff converge to tropical
curves under the rescaled logarithm maps, cf. [MN15]; for instance the curve (z, e*) C
(C*)? has logarithmic limit set containing an interval (while the logarithmic limit set
of an algebraic curve is a finite set). In the sequel, we will give explicit constructions
of the holomorphic annuli we require in Section 3.3, but we believe it is helpful
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to explain how these constructions were motivated by tropical analogues; those are
given first, in Section 3.2.

After appropriate deformation, we can take the two lowest order terms of the
superpotential to be

Tzt +yy '+ a0 +y2) + TP (x1 +y1 + (x1y1) " (22 + 12)). (4)

This is possible only when B —a — C > 0, which leads to the corresponding assump-
tion in Theorem 1.1. The leading order term equations for the critical points of (4)
in the sense of [FOOOL11] are

—m2_2 +1
—yp° + 1
1—a7%y; o + o)
1— 2y 'y (2 + 4o)

()

Il
coc oo

which admit 6 solutions of the form xs = y2 # 0 and 1 = y1 # 0. We will indeed
prove that there are at least 6 critical points for the appropriate bulk deformed
superpotential. Combining this existence result for critical points with the general
machinery developed in [FOOO09a, FOOO09b, CP14], we obtain Theorem 1.6.

REMARK 1.9. The Lagrangian Sym(L) lies in the smooth locus of X. It can there-
fore be lifted to a Lagrangian in Hilb?(M), the Hilbert scheme of zero dimensional
subschemes of length 2 in M. Our argument can be applied to show that Sym(L)
is non-displaceable in Hilb?(M) when a > B — C and the size of the blow-up is
a— (B —C) (see Remark 4.7).

REMARK 1.10. It is natural to ask for examples of Lagrangian links with more
than two components. For a trivial source of examples, one can take Lg,..., Ly
to be parallel circles in S§B+(d_1)c such that, for ¢ = 1,...,d, L;—1 and L; are
the respective boundary components of an area C' cylinder which does not meet
any other L;. The corresponding LI?ZOLZ- is non-displaceable in 5223+(d—1)0 x S2 for
appropriate a > 0. However, there are proper subsets of the link {£L;} which are
already non-displaceable.

It would be more interesting to find a ‘Borromean’ example, i.e. a non-displaceable
(d + 1)-component Lagrangian link such that any d-component sublink is displace-
able. We hope to give such examples, based on a more systematic formulation of the
tropical-holomorphic correspondence, in a sequel.

1.3 Stable displaceability. For completeness, we recall the statement and
proof of Polterovich’s stable displaceability result, mentioned previously. The ar-
gument presented here is a modification of Example 6.3.C in [Pol01].

LEMMA 1.11. Let Lo, L1 C S35, be as above. Then (Lo U Ly) x S* is displaceable
m S§B+C x T*S1, where S C T*S' is the zero section.
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Proof. Let M = {z% +4? + 22 = R} C R3 with the induced round metric and area
form. Let Lo = {# = n} and L1 = {z = —n} for some n > 0 such that the com-
plement of Lo L L1 consists of two discs with area B and a cylinder of area C. Let
H: M — R be H(z,y,z) = 4nz. The Hamiltonian flow of H rotates the sphere,
and the induced time one Hamiltonian diffeomorphism QS{{ is the identity arising as
twice the full rotation of M. The loop of Hamiltonian diffeomorphisms (¢ )tel0,1]
is homotopic to the constant loop relative to the identity map, the homotopy tak-
ing place in SO(3) C Ham(M). Therefore, the Lagrangian suspensions of these two
Hamiltonian loops are exact Lagrangian isotopic. For the constant loop at the iden-
tity, the Lagrangian suspension is (Lo Ll L1) x S*. For the original loop (Qb{{)te[(],l]u
the Lagrangian suspension is

{(¢t'(p), H(p),t) € M x R x S" |p € LoU L1} (6)

where R x S! is identified with T*S'. Since H(p) # 0 for all p € Lo Ll Ly, the two
Lagrangian suspensions are disjoint. O

2 Superpotentials and bulk deformation

We summarise the theory of superpotentials for Lagrangian Floer cohomology, to
establish notation which will recur later in the paper. More details can be found in
[FOO0O09a, FOOO09b, FOOO10, FOOO11, FOOO12].

2.1 Lagrangian Floer theory on symplectic manifolds.  Let M} 414 be the
moduli space of closed unit discs S with k£ 4+ 1 boundary marked points zg, ..., 2,
ordered counterclockwise, and [ interior marked points zf . .z;r. We denote the tu-
ples (20, ...,2) and (21, ...2") by z and 2™, respectively. The moduli space My
can be compactified by semi-stable nodal curves, and we denote the compactification
by Mj.1,. By slight abuse of notation, a typical element in My, is also denoted
by (S,z,27).

Let (X,wx) be a closed symplectic manifold, and L C X a closed, oriented and
spin Lagrangian submanifold. For an wx-tamed almost complex structure J and a
class 8 € Hyo(X, L), a J-holomorphic stable map with k+ 1 boundary marked points
and [ interior marked points in class § consists of ((S,z,2"),u) such that

(1) (S7§7§+) € Mk-‘rl,lv
(2) w:(S,08) — (X, L) is J-holomorphic and u.[S,dS] = 3,
(3) the automorphism group of ((5,z,27),u) is finite.

We denote the set of isomorphism classes of ((S,z,z"),u) by My41,(X, L; J, B), or
Myq1,(L; B) for simplicity.

REMARK 2.1. This space is denoted by Mznfif}l(X, L; J, 3) in [FOOO09a, FOOO09b].
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There is a Kuranishi structure on My ,(X, L; J, 5) such that the evaluation
maps

evi: Myy1(L; ) — L, i=0,...,k, ev;r:Mk+17l(L;ﬂ)—>X, j=1,...,1
(7)

defined by ev;((S,z,27),u) = u(z;) and evj((S, z,27),u) = u(z;') are weakly sub-
mersive. We can take fiber products with smooth singular simplices g; : Q; — X for
j=1,...;0and f; : P, — L for i = 1,...,k to obtain a space My11,(L;3;Q, P),
where Q@ = (g1,...,g1) and P = (f1,..., fx). By a multi-valued perturbation of
the Kuranishi structure and a suitable triangulation of its zero locus, we obtain a
singular chain

evo : Myy1(L; 3;Q,P) — L (8)

which is called the wvirtual fundamental chain and we denote it by

(Mpg1(L; 85 Q, P), evy).
Let

71— 00

AO = {i aiT’\i

a; € (C,O <\ < )‘i—i-la ‘hm N = OO}
=0

be the Novikov ring and A be its maximal ideal. Let C'(L; C) be the singular cochain
complex! of L, and C(L; Ag) be the completion of C'(L; C) ®c Ag with respect to the
R-filtration on Ag.

The Ao, operations my : C(L; Ag)®*¥ — C(L; Ag) are defined as follows:

mes(P1, .o Pr) = (Mig1o(L; 85 Py .. Pr),evo) if B#0or k#0,1  (9)

ml’(](P) =0P and Mmoo = 0 (10)
my = kaﬂ@T“’X(m. (11)
B

The right hand side of (9) is the virtual fundamental chain
evg : Myr10(L; 85 Pr,...,Py) — L, which is a special case of (8). These make
(C(L; Ag), {my}72,) a filtered A algebra. It is quasi-isomorphic to an A, algebra
on the cohomology (H(L;Ag), {m{*"}22), which is called a canonical or minimal
model for (C(L; Ag), {mr}32,)- By abuse of notation, we denote m$* by my,.

The Ay structure can be deformed by one or both of a choice of b € H.(X,Ay)
and b € H'(L, Ag). We first discuss the deformation by b. The deformation by b is

L Strictly, it is necessary to work with a countably generated subcomplex of the smooth singular
chain complex, which we grade cohomologically, i.e. by codimension. In a slight abuse of notation,
we use er, to denote both a simplicial representative of the fundamental class in CO(L)7 and the
unit 1 € HO(L) after we take a minimal model and pass to cohomology.
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explained in (18) to (21). Given singular simplices g; : Q; — X for j =1,...,1, we
define

Ukp(Q P) = %(Mk+1,l<L§/3§Qy P),evo) (12)

The right hand side of (12) is ll, multiples of the virtual fundamental chain evq :
Miq10(L; 3;Q, P) — L, which is a special case of (8). By linear extension, we get
a map

Gt (Co(X,A0))% x C(L, Ag)®F — C(L, Ao) (13)

There is a subspace Ej(Cy(X,A})) of (C,(X,Ay))®" consisting of chains that are
invariant under the action of the [-th symmetric group permuting the factors; we
denote the restriction of g 5 to Ej(Ci(X, A1) x C(L, Ao)®* by ¢ 5. More explic-
itly, given Q := E;Zl(gj :Q — X) € C.(X,Ay) representing b, Q¥ is a chain
inside Ej(Cy(X,A+)) and we define

@3(Q% P) = q 1, 5(Q%; P), (14)
Qi = Z Qip @ ToxP), (15)
B

One can again use homological perturbation to pass to (co)homology, obtaining
maps

H (X, Ay) @ (H(L,Ag))®* — H(L, Ag), (16)
(b,x1,...,z) — mg(xl, CeTE) = Z ql7k(b®l,:v1, ce TR (17)
=0

We can define mE,ﬁ similarly by replacing ¢, in (17) with ¢; ;. The collection of
maps {mpP}?°, defines a filtered A, algebra.

Given b € HY(L,Ap), we can write b = by + by with by € H'(L,C) and
by € HY(L,Ay). Here we combine Poincaré duality on L with the convention that
H(L,Ay) denotes the smooth singular chain complex graded cohomologically, to
view by as a singular 1-cocycle and b4 as a A-coefficient codimension one smooth
singular cycle. For v € Hi(L,Z), we define py, () as exp(bo(y)) € C*. Then we define

m::go = pbo(aﬁ)m}s,ﬁ7 (18)
= S 07 (19
B
m::g(ajl,...,mk)zz Z mzfﬁﬂ(b+,...,b+,x1,b+,...,b+,x2,...,mk,b+,...,b+), (20)
k
bt = S o 7o) (21

B
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Note that m:’b = mz’b, if ¥ —b € HY(L,2r\/—1Z). The collection {mz’b}zozo also

defines a filtered A, algebra.

DEFINITION 2.2 (Definition 2.3 of [FOO012]). Letb € H(X,Ay) be a cycle of even
codimension. A weak bounding cochain for mP is an element b = by+b, € H'(L, Ap)
such that

Zmz’bg(b_;_,...,b_;_) =cC-ey (22)
k=1

for some ¢ € Ay, where er, is the cohomological unit. Let Mweak(L; mP) be the set
of all weak bounding cochains modulo the equivalence b ~ b if and only if ¥’ — b €
HY(L,27\/=1Z). The potential function W : Myear (L, mP) — A, is defined by

> mpt(bg, . by) = WPD) ep (23)
k=1

The hypothesis that b has even codimension in Definition 2.2 guarantees that
the cohomological degree of mZ’bO (by,...,by) is even for each k, which is obviously
a necessary condition for (22) to hold.

Theorem 2.3 ([FOOO09b, FOOO10, FOOO11] for the original references, see also
Theorem 2.3 of [FOOO12] for a more accessible reference). Suppose that L is a
Lagrangian torus and

H' (L, Ao)/H" (L, 21v/—17Z) C Myear(L, mP). (24)
Ifbe H'(L,\y) is a critical point of the potential function
WP HY (L, Ao)/H (L, 2mv/—1Z) ~ (Ag \ A)" — Ay (25)
bb

then my” = 0, and hence the (b,b)-deformed Floer cohomology is isomorphic to
H(L,Ao). In particular, L is non-displaceable.

In (25), the identification between H'(L, Ag)/H'(L,2m/—1Z) = (Ao/27/—1Z)"
and (Ag \ A4)™ is via the exponential map.

REMARK 2.4. In Section 11 of [FOOOL11], b is taken to lie inside the subspace gener-
ated by the fundamental chains of the toric invariant divisors. This condition enters
their argument in ensuring that (24) is satisfied (see Proposition 2.1 of [FOOO012)).
It is explained in [FOOO12] that, for the special case in which L is a Lagrangian
torus, Theorem 2.3 holds as long as (24) holds.

For computational purposes, we recall the divisor axioms (see [FOOO11, Lemma
7.1], [FOOO10, Lemma 11.8] and [Fuk10]). Fix b € H'(L, Ao) as before. Let b be
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a chain representing a codimension 2 cycle in in H (X, Ay) that is disjoint from L.
Then we have

by (08))F
a1k, (b BYF) = (Jr(k,))qhoﬁ(b@la 1) (26)
b - 3)!
ql,k”g(b‘gl, Tlyen,Tp) = ( l'ﬁ) Qorps(l,z1,...,78) (27)

The geometric reason behind (26) is that if w is a J-holomorphic disc in
My 1,1(L; 35 Q, P) contributing to ql’k’ﬁ(b‘@l7 b?k), then taking the fiber product be-
tween one of the evaluation maps at a boundary marked point of My 1,(L; 5; Q, P)
and the Poincaré dual of by in L, the resulting moduli space will consist of J-
holomorphic discs with k£ boundary marked points contributing to ql7k_1,5(b®l, b%kil).
Therefore, when the perturbation scheme in the construction of the Kuranish struc-
tures is equivariant with respect to the cyclic group action permuting the boundary

marked points, we would have
b1 (9B)
k

The construction of such Kuranishi structures is carried out in the references above,
and clearly (26) can be obtained by inductively applying (28). Similarly, we have

b -
( lﬂ) QIfl,k,B(

Qurp (D% 05F) = Qe—1,5(b%, bTF. (28)

ql,kﬂ(b@ﬂvxlv"'amk‘) = b®l_17x17"'7$k) (29)

because the perturbation scheme can also be made equivariant with respect to the
cyclic group action permuting the interior marked points, and again (27) can be
obtained by inductively applying (29).

REMARK 2.5. The boundary divisor axiom has not been proved in the Charest-
Woodward setup. Instead, they prove a ‘weak boundary divisor axiom’ in [CW15,
Proposition 4.33], and show that is sufficient to obtain the analogue of Theorem 2.3
in [CW15, Proposition 4.34] if one replaces the potential function above by the ‘disc
potential function’ W (defined in [CW15, Equation (4.44)]). The disc potential func-
tion equals the potential function when the boundary divisor axiom holds (see the
discussion before [CW15, Lemma 4.39]). It is defined without boundary insertions
and takes into account the local system directly. For example, in the computation
below, (34) would be the definition of the disc potential function.

Since qo k,8(1, 21, ..., xk) is precisely my g(z1,...,2) and go 0 5(1,1) is mo (1),
we have

WPb) e, =D 3 Tx@OmPlo(by, ... by) (30)
k=1 S
=3 1Oy (98)ymR (b, - -, by) (31)

k=1 g
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M T

00 b- l
ZZTwX(ﬁ)pr(aﬁ)(l!ﬁ)q07k76(1,b+,...,b+) (32)

B l=1
o Y k
_ Z Twx (/B)pbo (65) (b l'ﬁ> (b+ (;35)) moﬁ(l) (33)
k=1 B8 I=1 ’ ’
7<) exp(b - 8) exp(b(dB) mo,5(1) (34)

®

where the first equality comes from the definitions (23) and (19), the second equality
comes from definition (18), the third equality comes from (27), the fourth equality
comes from (26) (for the case [ = 0), and the last equality comes from summing over
k and .

If X is a Fano toric manifold, L is a Lagrangian torus fiber and g is a disc
class such that mg3(1) = ey (this happens when (3 is a ‘basic disc class’ in the
sense of [FOOO10]), then the family of Maslov 2 discs in class § contributes the
term 79X (%) exp(b - 3) exp(b(0B)) to WP(b). We can write 93 as Y7, a;X;, where
{Xi}, is a basis of Hy(L,Z). Letting Y; := exp(b(X;)), we then have the familiar
formula

n

WP(Y1,. ., Ya) = WP(h) =Y TP exp(b - 8) [[ V" (35)
B i=1

2.2 Lagrangian Floer theory on symplectic orbifolds. @ We need a gener-
alization of Theorem 2.3 to the case that X is an effective symplectic orbifold, but
L C X is assumed to be disjoint from the orbifold strata, i.e. L C X" is contained
in the locus of smooth points of X. This generalization is carried out in [CP14]. For
background on symplectic orbifolds, and in particular their symplectic forms and
(contractible) spaces of compatible almost complex structures, we refer the reader
to [CRO2]. For background on orbifolds, including inertia orbifolds, orbifold mor-
phisms, groupoids, etc. we refer the reader to the book [ALRO7] and references
therein.

In the orbifold case, the construction of the As-structure goes through without
substantive changes provided we consider J-holomorphic stable maps from My,
for which all irreducible components are smooth. More interestingly, in the orb-
ifold case there are new bulk deformation directions for the superpotential coming
from cycles in other components of the inertia orbifold I X of X, as probed by J-
holomorphic stable orbifold discs. This flexibility increases the chance of finding a
bulk deformed superpotential that has a critical point. We briefly recall the definition
of the inertia orbifold I X, and how orbifold discs enter the story.

As a set, the inertia orbifold of an orbifold X is

IX :={(z,9) : v € X, g a conjugacy class in G} (36)
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where G, is the isotropy group of x. It has an induced orbifold structure from X
(see [CR04, Lemma 3.1.1]; note that /X need not be connected even when X is
connected). The orbifold we are going to consider in this paper is a global quotient
of a smooth manifold M by a finite group G. In this case, there is a simpler way
to describe the orbifold structure on its inertia orbifold, which we now recall (see
[CRO4, Example 3.1.3]). For each conjugacy class g in G, we pick an element h € g
and define the orbifold

X, = M"/C(h) (37)

where M" C M is the set of fixed points of h and C(h) is the centralizer of h.
As suggested by the notation, up to isomorphism X, is independent of the choice
of h in g. In particular, for e € G being the identity element, we have M® = M
and C(e) = G so X, = M/G. The inertia orbifold /X is the disjoint union of the
orbifolds

IX =X, (38)

where g runs over the conjugacy classes of G; each X, is called an inertia component
of IX. We denote X, by X. Note that /X only depends on X.
An orbifold disc with k+ 1 boundary marked points and [ interior marked points

is a tuple (S, 2,27, m), where (S,z,27) € My, and m = (mq,...,my) is a tuple
of positive integers. We equip S with the unique orbifold structure such that the
set of orbifold points is contained in z™, and for each j = 1,...,l, there is a disc

neighborhood Uj; of z;r which is uniformized by the branched covering map z —
2. The last condition means that there is an open subset V; C C invariant with
respect to the G+ 1= Zy,, action z — zexp(2my/—1/m;), together with a surjective
sz—invariant cofnplex analytic map 7 : V; — Uj, such that the the induced map
g Vj/Gz;r — Uj is bijective. When m; = 1, z;-r is a smooth point. For a fixed m,
we denote the moduli of such orbifold discs by M}, .. It can be compactified by
semi-stable nodal orbifold curves My.1 . The union of My, over all possible
m is denoted by M 1;. By abuse of notation, a typical element in My, is also
denoted by (S, z,27,m).

REMARK 2.6. Under the classical differential-geometric definitions of orbifold, or-
bibundle etc as in [Sat56, Sat57], a smooth orbifold map does not give sufficient
information to define the pull-back of an orbifold vector bundle. (This issue arises
for maps into the orbifold strata X\X". It can be traced to the fact that orb-
ifolds should form a 2-category rather than a 1-category. A better formulation of
orbifolds as groupoids avoids these difficulties, see [Ler10]; however, these are not
the approaches taken by the references for Floer theory on orbifolds.) To linearise
the J-operator at an orbifold map requires one to pull back the tangent bundle, so
some restriction on the orbifold maps under consideration is essential for contructing
the moduli space of J-holomorphic stable orbifold discs.
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The extra information required to define the pullback is a choice of a ‘compatible
system’ in the sense of [CR02, Definition 4.4.1], [CP14, Definition 16.12]. It is pos-
sible that a smooth orbifold map has no compatible system, or has more than one
isomorphism class of compatible systems. (Two compatible systems for an orbifold
map u are isomorphic precisely when they give rise to isomorphic pullback orbifold
bundles v*E for all orbifold bundles E on the target, cf. [CP14, Lemma 16.1].) A
smooth orbifold map that has a compatible system is called good.

A compatible system comprises an indexing set I and a covering of the domain
and an open neighbourhood of the range of the given orbifold map by charts indexed
by I (in particular the charts are in bijection in domain and range), satisfying a
number of compatibilities under inclusion maps and with respect to prescribed local
uniformizers. The precise definition of compatible system will not play a role in the
sequel, so we defer such to the references. One fact we shall need is that a compatible
system induces a group homomorphism between the isotropy groups G, — G;)
for z € S, see Definition 16.11 (2)(b) of [CP14] and the subsequent paragraph,
or the paragraph before [CR02, Definition 4.4.1], and the (non-)injectivity of this
homomorphism depends only on the isomorphism class of &.

Despite the differences in appearance, it turns out that the definitions of ‘good
maps’ and ‘morphisms of orbifolds as groupoids’ are equivalent (see [ALRO7, Section
2.4]).

DEFINITION 2.7 (Definition 2.5 of [CP14], see also Definition 2.3.3 of [CR04]).
Let J be an almost complex structure on X. A J-holomorphic stable map from
(S,z,2%,m) to (X, L) is a pair (u,&) such that

(1) u : (S,2z,27,m) — X is a J-holomorphic map (i.e. J-holomorphic on each
irreducible component) and u(0S) C L;

(2) u is a good smooth orbifold map and & is an isomorphism class of compatible
system;

(3) the group homomorphism G+ — G ) induced by & at each orbifold point

z;r €z is injective, where G+ and Gu(zf) are the isotropy groups of z;r and
u(z;.“), respectively;
(4) the set of ¢ : S — S satisfying the following properties is finite: ¢ is biholo-

morphic, ¢(z;) = z; for all 1, ¢(zj+) = z;r for all j and uwo ¢ = u.

Note that if z € S\ 27, G, is the trivial group and the injectivity in the third
condition of Definition 2.7 is automatic.

In the sequel, we will encounter J-holomorphic orbifold discs with Lagrangian
boundary conditions (lying in the regular locus) and with no bubble components.
The following Lemma 2.8 will ensure that such are good.

LEMMA 2.8 (Lemma 4.4.11 of [CR02]). Let u: S — X be a smooth orbifold map. If
S is irreducible and u=1(X"°8) is connected and dense, then u is good with a unique
choice of isomorphism class of compatible system.
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Let IX be the inertia orbifold of X. We denote the index set of the inertia
components by T' = {0} UT’, and for g € T, we write X, for the corresponding
component, with Xg = X. Elements z € X, are written as (z, g).

Let ((S,z,2"7,m),u,&) be a J-holomorphic stable map. For each z;-L €zt &
determines a conjugacy class g in Gu(zf) (see Remark 2.9). We define

evl (82,2, m),u,€§) = (u(z]),9) € IX. (39)

Fix a map x : {1,...,l} — T. A J-holomorphic stable map ((S,z,z",m),u, &) is of
‘type’ x if

vy ((S,z,2%,m),u, €) € Xy;) (40)
forall j =1,...,1.

REMARK 2.9. Around each zj, we consider the local fundamental group 71 (U _+ \z;r)
J
where U,+ C S is a small disc neighborhood of z;f. The isomorphism class of &
J
determines a group homomorphism (which is not a group isomorphism)

which is well-defined up to conjugation in Gu(z;r) (see [CRO2, Lemma 2.2.4] and the
paragraph before it; in the groupoid language, see the ‘Chen-Ruan characteristic’ in

[ALRO7, Section 2.5]). The conjugacy class g in Gu(zj) determined by ¢ is the con-
jugacy class containing the image of the positive generator of m (U o \z;') (positive
with respect to the orientation induced by the complex structure) under the map
O¢.

‘ Equivalently, if (V+,G - 7) is a uniformizing chart of U, 2 then the positive
generator of 7r1(U \ z; i deﬁnes a deck transformation of V+ There is a unique
element h € G+ Whose action on V+ coincides with the deck transformatmn The
conjugacy class] gin G u(zh) is the conJugacy class containing the image of A under
the map G, + G u(zh) induced by £. As a result, the injectivity in Definition 2.7

(3), implies that elements in g have order m;.

DEFINITION 2.10. Let f € Ho(X,L). The moduli space of isomorphism classes of
J-holomorphic stable maps ((S,z,2z%,m),u,&) to (X,L) of type x and such that

us[S, 08| = B is denoted by My1,(L, J, 5,x).
REMARK 2.11. This space is denoted by M (L, J, 3,x) in [CP14].

We refer readers to [CP14, Section 3, 8, 10] (see also [CR02, Section 3]) for
the dimension formulae and Fredholm theory in the orbifold setting. The upshot
is that we can define my g and my as before to obtain a filtered A algebra
(C(L,Ao), {m}32,)- As in the manifold case, bulk deformation in the orbifold case
is defined using the fiber product between My, 1,(L, J, 5,x) and appropriate cycles
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under the evaluation maps evj. The crucial difference is that the codomain of ev;-F is
now the inertia orbifold /X, so the cycles used to cut down the image of evaluation
are taken in IX instead of in X. For example, if x(j) = 0 for all j, then a stable
map ((S,z, 27, m),u, &) in My1,(L, J, ,x) must have m; = 1 for all j, because the
local group homomorphism induced by & is required to be injective. This forces all
the points z;-r to be smooth points, and bulk insertions by cycles in X, ;) = Xo = X
are defined as before. If x(j) # 0 for some j, then J-holomorphic orbifold discs can
appear in the moduli space My1,(L, J, 3,%), and hence contribute to the deformed
filtered A, structure.

More explicitly, we define M1 x(L; 3;Q, P) to be the fiber product between
Miq10(L, J, 3,x) and @, P under the evaluation maps ev; for i = 1,...,k and eV;r
for j = 1,...,1. Then we define (cf. (12), (14) and (15), see also [CP14, Equation
(12.22)])

1
qlﬁjhk’x (Q7 B) == ﬁ(Mk—l-l,l,x(L; 6; Qa B)a eVO)’ (42)
431k x Q% P) = d3 1 1 (QF'; P), (43)
Qe =Y Qpirx @ T, (44)
B X

The discussion of the deformed filtered A5, structure in the previous section carries
over with this new definition of ¢ .

In this paper, the only cycle in X, for g # 0 that we will consider is the fun-
damental cycle [ X ]. Let H be the C-vector space generated by H,(X;C) and [X]
for all g # 0. Let H ® Ay denote the completion of the tensor product with respect
to the R-filtration. For b € H ® Ay and b € H'(L;Ag), we have a filtered Ay
algebra structure {m;”b}zozl on H(L,Ag). Weak bounding cochains for mP and the
bulk-deformed superpotential are defined as in Definition 2.2. Most importantly, the
exact analogue of Theorem 2.3 holds in the orbifold setting [CP14, Theorem 11.4
and 12.10].

Theorem 2.12. Suppose that L < X" is a Lagrangian torus and
HY(L,Ao)/HY(L,21/—1Z) C Myear(L,mP). If b € HY (L, Ao) is a critical point
of the potential function

WP HY (L, Ao)/H (L, 2nvV/=1Z) ~ (Ao \ A})" — Ay, (45)

then m?’b = 0, the (b,b)-deformed Floer cohomology equals H(L,Ap), and L is
Hamiltonian non-displaceable.

The conclusion implies in particular that L cannot be displaced by Hamiltonian
isotopies in X"¢9.

REMARK 2.13. As in [FOOO09b], the paper [CP14] restricts to bulk deformations
by toric-invariant cycles in a toric orbifold X. However, as in Remark 2.4, their
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formalism applies to any bulk class provided (45) and the (weak) boundary divisor
axiom holds (the proof of this fact in [FOOO12]| uses only formal properties of
filtered A.-algebra and the fact that the cohomology of the torus is generated by
degree one classes). The main advantage of using toric-invariant bulks and a toric-
invariant Lagrangian L, both in the usual and the orbifold case, is that the inclusion
HY(L,Ao)/HY(L,21nv/=1Z) C Myear(L, mP) then holds automatically, once one
has built a T"™-equivariant Kuranishi structure on the moduli space of discs. In
contrast, we will give a direct proof of the inclusion H'(L,Ao)/H'(L,27\/—17Z) C
Mweak(L,mb): see Lemmas 3.12 and 3.25.

Another advantage of the toric setup is that it is easier to prove the boundary
divisor axiom (see [FOOO10, Lemma 11.8]).

REMARK 2.14. The Charest-Woodward framework, establishing transversality via
stabilizing divisors, has not yet been developed for symplectic orbifolds.

In practice, the strategy to compute the superpotential function WP goes as
follows (see [CP14, Section 12.3 and Proposition 13.1]). Let b = bgmooth + borbs
where bgpooth € H(X, A1) represents a codimension 2 cycle in the untwisted sector
X = Xo and bo, = -, ag[Xg] for some ag € Ai. By (35), we can compute
Whemeom by computing mg g(1) (i.e. the algebraic count of smooth Maslov index 2
discs in class 3) for all . Then we need to understand how W bsmoom changes when
we consider b’ = bgyooth + ¢[Xy,| for some ¢ € Ay and some twisted sector g # 0.
In other words, we need to understand the contribution of J-holomorphic orbifold
discs to WP — TW/Psmootn,

In the presence of twisted sectors, the cyclic symmetry for interior marked points
breaks down: there is no divisor axiom for My.1 (L, J, 3,x) which allows one to
reduce the number of interior orbifold points (i.e. we don’t have the analogue of
(27)). However, the cyclic symmetry of the boundary marked points survives and
we still have the following analogue of (26) (see [CP14, Lemma 12.7 and Definition
12.5]: their %PD([L]) correspond to our ;0 x(b%!, 1), their r corresponds to
our by):

(b+(aﬂ))k (b®l7 1)

QI,k,B,x(b®lv bfk) = TQLO,B,X (46)

For example, suppose that | = 2, x(j) = go for both j = 1,2, and the virtual
fundamental chain satisfies

(Mi2x(L; 3; [Xg,]%%, 1), evo) = [L]. (47)

Then the contribution of the curves in Mjax(L;3;[X,]%%1) to

k
O poan((citu o) = LEIL e, 48)
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Recall from (42) that there is a Tl!involved in the definition of ¢; 1, g x, which accounts
for the 2 in the denominator in the equation above. By summing over k£ and taking
into account the area of 3, the total contribution of these curves to W Psmeem+elXao)(p)
is

c 2 =

2
W x — W x ¢ a;
1 exp(b(09)) 5 =T DSV, (49)
=1

where 06 = Y"1 | a;X; and Y; = exp(b(X;)) as in (35).

Note that the meaning of ‘total contribution’ to WPsmeen+clXol(h) means the
total contribution wia the terms ¢ 3x((Dsmooth + C[Xgo])®2,b$k) for all k. It is
possible (and likely) that the same underlying holomorphic curves can contribute to
1.1,3,x ((Psmooth + C[ng])®l, b%k) with [ > 2, for those x such that precisely two x(j)
equal gy and the other x(j) equal the untwisted sector ¢ = 0. Fortunately, these
terms will be of higher order in 7' (because bgmooth + ¢[Xg,] € H(X,A4)) and we
will not have to compute them in practice.

One can add more terms from twisted sectors to bgpeotn and the (partial) calcu-
lation of the corresponding WP will follow the same lines as above.

3 Classification of holomorphic orbifold discs

The two-sphere S? has a standard Lagrangian torus fibration arising from a Hamil-
tonian circle action with moment map image an interval of length «. Let M be
the symplectic manifold in Theorem 1.1. There is a corresponding Hamiltonian 72-
action on M with moment map image a rectangle of side lengths 2B + C' and 2a;
the Lagrangians £; C M of Theorem 1.1 can be taken to be fibres of the Lagrangian
fibration.

We now take X = X = Sym?(M), and take L to be the (symmetric) product
of two distinct Lagrangian torus fibers L' and L£” in M. In particular, we have
L C X', The indexing set T” is a singleton; we denote the unique element in 7" by
1, so that IX = Xy UXy, where Xog = X and X1 = M is the diagonal in M x M. This
section is devoted to the discussion of J-holomorphic stable orbifold discs mapping
to (X, L).

3.1 Tautological correspondence. We endow each S? factor of M with its
unique complex structure. Let Jjp; be the induced product complex structure
on M. The product complex structure on M x M is invariant under the Zo ac-
tion so it decends to a complex structure Jy on X. There is a well-known bijec-
tive correspondence (the ‘tautological” correspondence) between isomorphism classes
of Jx-holomorphic maps v : S — X and isomorphism classes of pairs (v,7y),
where 7y @ X — S is a 2 to 1 branched covering and v : ¥ — M is a Jy-
holomorphic map (X is possibly disconnected). Bijective correspondences of this
form have been used in [DS03, Smi03, OS04, Ush04, Lip06, Cos06, Aurl0, MS19]
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etc. In [DS03, Smi03, Ush04, Cos06], holomorphic maps from closed curves are con-
sidered, either to (families of ) symmetric products of Riemann surfaces or, in [Cos06],
to symmetric product stacks of arbitrary-dimension smooth projective varieties. In
[0S04, Lip06, Aur10, MS19], holomorphic maps from Riemann surfaces with bound-
ary are considered. The papers [0S04, Lip06, Aurl0] consider maps to the symmetric
product of a Riemann surface whilst [MS19] considers maps to the symmetric prod-
uct (or Hilbert scheme) of a complex surface. (However, none of the latter references
endow the domain discs with an orbifold structure, or consider orbifold Floer coho-
mology.)

The correspondence is defined as follows. Given a Jy-holomorphic map u : S —
X, we define ¥ to be the fiber product between v and the quotient M x M — X, so
that we have the pull-back diagram

¥ V. _ MxM
S X.

We define v := m; oV, where m; : M x M — M is the projection to the first
factor. Conversely, given a pair (v, my), the corresponding v is defined by u(z) =

v(rst(2)) € X.
We first note that the areas of v and v agree:

LEMMA 3.1. Let wyps be a symplectic form on M. Let wy be the orbifold symplectic
form on X whose pullback to M x M is wyr & wpr. Then wyr(vi[X]) = wx(ug]S)),
where u and v are related by the tautological correspondence.

Proof. 1t is straightforward to check that (was & war)(Vi[E]) = 2w (v4[X]), where
V¥ — M x M is the Zs-equivariant map in the discussion above. On the other
hand, following directly from the definition of integration of an orbifold form, we
also have

(woar @) (VIZ) = [ V(o o) =2 [ wox =20x(uals)  (50)
P S
so the result follows. O

The following topological fact will be helpful when comparing the Fredholm the-
ories for u and v.

LEMMA 3.2. If (v,7mx) is obtained tautologically from a Jx-holomorphic map u :
S — X with boundary on L, then

Y. has 1or2 connected components. If 3 has2 components, then each component is a disc.

Moreover, 0¥ has2 connected components, mapped undervtoL and L respectively. (51)
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Proof. Since 7y, is a 2 to 1 branched covering, ¥ has either 1 or 2 connected com-
ponents and 0% has either 1 or 2 connected components. Moreover, if ¥ has 2
components, then 7y is an unbranched covering so each component of ¥ is a disc.
Since u(9S) C L, we have V(9X) C L' x L" U L" x L'. We know that L' x L”
is disjoint from L” x L’ because L' N L"” = (). Since V is a Zs-equivariant map,
V(0X) must intersect neither or both of L' x L” and L” x L’; the former case is
excluded because 9% is non-empty. As a result, 03 cannot be connected so it has
2 connected components. Finally, since V is a Zg-equivariant map, we know that
the 2 boundary components of ¥ are mapped under V to L' x L” and L" x L/,
respectively. Therefore, the 2 boundary components of ¥ are mapped under v to L’
and L”, respectively. O

To compare the Fredholm theories between u and (v, 7y), we first explain why
the moduli of S (i.e. My11m,) is canonically isomorphic to a certain moduli space
of double branched coverings 7y, : 3 — S.

If S is a smooth disc (i.e. it is irreducible and has no orbifold point) and w is a Jx-
holomorphic stable map in the sense of Definition 2.7, then the condition that u is a
smooth orbifold map implies that it admits a lift @ : S — M x M (because a smooth
orbifold map is a map that admits a smooth lift to uniformization charts, and hence
a smooth lift to orbifold universal covers). That in turn implies that ¥ = S U S,
7y + 2 — S is the trivial 2-fold covering and V =a U (toa) : ¥ — M x M, where
t: M x M — M x M is the involution swapping the two factors. Thus, when S
is an orbifold disc and u is a Jy-holomorphic stable map in the sense of Definition
2.7, the critical values of ms; are precisely the orbifold points of S. Moreover, the
corresponding m; at each orbifold point is necessarily 2, and the images of the
evaluation maps ev;F at these orbifold points necessarily lie in Xy C IX (see the last
sentence of Remark 2.9). The crucial point here is that the evaluation of an interior
marked point z;-r of S lies in Xy if and only if m; = 1, and it lies in X; if and only
if m; = 2. The former case occurs if and only if zj is not a critical value of 7y and
the latter case occurs if and only if z;“ is a critical value of 7y. In short, the type x
and m determine each other as follows:

_ {2 if x(j) =1 (52)

1 otherwise.

For this fixed m, and for each element (S, z, 27, m) in M1 1, there is a unique
marked Riemann surface ¥ (up to biholomorphism) with a double branched covering
7y, + X — S for which the critical values of s, are exactly {Z;L|mj = 2} and the
marked points of ¥ are precisely 7y, 1({zj+lm] = 1}). Moreover, if 7y : ¥/ — S is an-
other double branched covering such that the critical values are exactly {z;f|mj =2}
and the marked points of ¥/ are precisely 7r§,1 ({z;L |m; = 1}), then there are precisely
two biholomorphisms f1, fo : ¥ — ¥/ such that 7y o f; = mx. The biholomorphisms
fi are related by the involution on ¥ induced from the double branched covering.
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This is true even if | = 0 and 7y is an unbranched covering (i.e. the requirement
that 7wy o f; = wy distinguishes f; from all other biholomorphisms between disjoint
unions of two discs).

We denote the involution on ¥ by ity so that fo = fi oty. Notice that, in the
tautological correspondence, (v,7y) and (v, 7y o tx) are in the same equivalence
class in the sense that they correspond to the same map u(z) = v(r5'(2)) = v((7s o
15)"1(2)). Therefore, we define an isomorphism from (3, 7s) to (¥/,7s/) to be an
unordered tuple (f1, fo := f1 0tx) such that f; : ¥ — 3’ are biholomorphisms
satisfying ms o f; = ;. We then define the moduli space of covers Mz‘fﬁm as the
moduli space of pairs (3, 7y) up to isomorphism such that ¥ is a marked Riemann
surface and 7y, is a complex analytic double branched covering from ¥ to S, for some
S € Mji1,m, such that ﬂgl({zj]mj = 1}) is precisely the set of marked points

cover

of ¥. By the discussion above, we conclude that the moduli of covers MY | is
canonically isomorphic to M1 1 ,, which has dimension

dim (M7 ) = dim(Myyrm) = k+1+ 20 — 3, (53)

REMARK 3.3. When the right hand side of (53) is negative, it should be interpreted
as the dimension of the moduli space minus the dimension of the generic auto-
morphism group. The bijective correspondence between go_ff’l’m and M 11m is
compatible with automorphism groups in the following sense. Let S € M1, be
a Riemann surface with non-trivial automorphism group (this occurs when [ = 0
and k € {0,1}). For each biholomorphism ¢ : S — S, there are precisely two bi-
holomorphisms fi, fo : ¥ — ¥ such that s o f; = g o wx. Moreover, we have
fo = f1 outx. Therefore g uniquely determines an isomorphism (f1, f2) from (X, 7))
to itself. Conversely, an isomorphism from (X, 7y) to itself uniquely determines an
automorphism of S. Therefore, there is a canonical bijective correspondence between
the automorphism group of (X, 7s) and the automorphism group of S.

REMARK 3.4. If (¥, 7y), (¥, msy) € M%), then ¥ is homeomorphic to ¥'. From
the discussion above, (X, 7y) is isomorphic to (X', 7ry/) if and only if ¥ is biholo-
morphic to ¥’ as marked Riemann surfaces. Therefore, Kt Lm 1S canonically a
subspace of the moduli space of complex structures on the underlying marked topo-
logical surface of ¥ (if ¥ is disconnected, the subspace lies inside the locus in which
the complex structures on the two connected components agree). It is usually a
proper subspace because most Riemann surfaces do not have a biholomorphic invo-
lution. However, as we will see and use, every annulus has a biholomorphic involution,
which gives us an isomorphism from the moduli space of annuli to the moduli space

of discs with two interior marked points (see Remark 3.30).

Let S € Mjq11m and (X, 7y) € ﬁf’f?m be as before. The space of smooth
orbifold maps

C*((,05), (X, L))
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can be identified with the space of Zs-equivariant smooth maps
C®((%,0%),(M x M, L x £"uL"x L))

modulo the relation f ~ f ouy. Indeed, we can take (X, Zo, 7y) as a uniformizing
chart for S and (M x M,Zs, maprxn) as a uniformizing chart for X, where masx s :
M x M — X is the quotient map. By projecting to the first factor of M x M
(as in the tautological correspondence), the space of Zs-equivariant smooth maps
C®((2,0%), (M x M, L x L"UL" x L)) modulo the relation f ~ fouy is isomorphic
to C*°((X,0%), (M, £L"UL")) modulo the relation f ~ fous. Notice that the maps f
and fouy lie in different connected components of C*°((X, %), (M, L'UL")) (because
if £(0'Y) C L', then foux(0'X) C L”, where 'Y is a connected component of 9Y).
Therefore, the involution f — f oy is free.

We can use the same reasoning to compare the Fredholm regularities of a Jy
holomorphic curve v and the corresponding Jj; holomorphic curve v. More precisely,
for any Jy holomorphic stable map u : (5,95) — (X, L) (in the sense of Definition
2.7), the function spaces

WP((S,09), (u*TX,ul3sTL)) and LP((S,dS), (u*TX,u|sTL) @ A%)

are canonically identified with the corresponding function spaces for the pairs
((3,0%), (M, LU L)) modulo the relation — ~ — o ¢vy;. This identification further
identifies the Fredholm sections associated to (S,u) and (X, v), and hence (S, u) is
regular if and only if (X, v) is regular.

We can summarize this discussion as follows. Let M'(X, L' U L", Jyr, 3) be the
moduli space of Jys-holomorphic maps v : ¥ — M such that the two boundary
components of ¥ are mapped to different connected components of £’ LI £”, and for
which u(z) := v(mg'(2)) is in the homotopy class 3. There is a free involution on
M(Z, LU L, Ty, B), given by v +— v o ty; we denote the quotient by M(X, L' U
L", I, B). We define My 11.m(L"UL", Jar, B) to be the moduli space of (3, v, 7y)

such that (X, ;) € M%7, and v € M(E, L U LY, Jur, B). Then:

LEMMA 3.5. The tautological correspondence defines a canonical isomorphism
Mie1,0(Ls T, B,%) = Mypam (LU LY, Ty, B).
Moreover, this isomorphism takes reqular elements to reqular elements.

Proof. The data x is equivalent to the data of m via (52). We can define a map from
Mg m(LU LY T, B) to Myy1,(L, Jur, 3,%x) which sends (3, v, 7x) to u(z) =
v(m5;'(2)). This map is surjective by the paragraph before Lemma 3.1. This map
is also injective because we have quotiented out the involution induced from ¢y in
both the definition of My.y11m (L UL", Jar, f) and in the definition of isomorphism

of elements in kttlm- The regularity was discussed above. O
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REMARK 3.6. A natural question from the point of view of Floer theory is how
the Maslov index of w and v are related. The definition of the Maslov index of a
holomorphic map from an orbifold Riemann surface can be found in [CP14, Section
3]. In our case, we bypass the calculation of the Maslov index of u because the
tautological correspondence allows us to identify the moduli of u with the moduli of
(v, mx), which in turn allow us to compute the virtual dimension using (v, 7y).

REMARK 3.7. By Lemma 3.2, there are two types of (v, 7y), determined by whether
3} is connected or not. We know that ¥ is disconnected if and only if x involves only
the untwisted sector. Therefore, when we study the filtered A, structure my g on
H(L,Ay), it is sufficient to consider the moduli spaces of Jy/-holomorphic maps from
Y= (5,2)U(S, z) to M, where (5, 2) is a semi-stable nodal disc with k+1 boundary
marked points and no interior marked points. In contrast, if we introduce a bulk
deformation b = bgpooth + borb[X1] such that bgneotn € Hi(X, A1) and bo, € Ay,
then the construction of the maps mz 3 will involve additional Jy holomorphic stable

maps ((S, z, 2", m), u, ). Moreover, for each ((S, z, 2", m), u, £) contributing to mzﬁ,

the coefficient of the term it contributes has a factor b’ ., . where [ is the number of

orb?
orbifold points of S [cf. (48), (49)].
We recall the Riemann-Hurwitz and virtual dimension formulae.

LEMMA 3.8 (see Section 7.2.1 of [Donll]). Let 7s; : 3 — S be a k-fold branched cov-
ering between compact Riemann surfaces (possibly with non-empty boundary) such
that all critical points are in the interior of 3. Then

X(E) =kx(S) =Y (ep—1) (54)

peEX

where x(—) denotes the Euler characteristic and ey, is the ramification index at p.
In particular, if k = 2,

X(%) = 2x(5) — | erit(ms)| (55)
where | crit(my)| is the number of critical points of my.

LEMMA 3.9 (see Theorem C.1.10(ii) of [MSO04]). Let ¥ be a (smooth) compact Rie-
mann surface with boundary. Let J be an w-tamed almost complex structure on a
symplectic manifold (M?",w) of dimension 2n. The moduli space of J-holomorphic
maps v : X — M with fized Lagrangian boundary conditions has virtual dimension
n(x(X)) + u(v) where x(X) is the Euler characteristic of ¥ and p(v) is the Maslov
index of v.

More generally, if 32 is allowed to vary in a moduli space of Riemann surfaces of
dimension? d, then the moduli space of J-holomorphic maps v : ¥ — M with fized
Lagrangian boundary conditions has virtual dimension n(x(X)) + p(v) + d.

2 The dimension d should be interpreted as the dimension of the moduli space minus the dimension
of the automorphism group.
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COROLLARY 3.10. Let v e M(X,L'UL", Jur, B) and Bar := vi[X,0%] € Ho(M, L'
L"), The virtual dimension of M(X, L' UL", Iy, B) is given by

2(x(2)) + u(Bar) = 22 = {i[mj = 2}) + p(Bnr)- (56)

Moreover, the virtual dimension of My11.m(L"UL", Jyr, B) (and hence the vir-
tual dimension of Myy1,(L, J, 3,x)) is given by

dim(Mpy1(L, J, 8,%)) = dim(Mp 1,0, (LU LY, Jar, 3)) (57)
=4+ (k+1)+2[{j|m; =1} + u(Bm) — 3. (58)

Proof. The left hand side of (56) is a direct application of Lemma 3.9 and the right
hand side of (56) is obtained from applying Lemma 3.8. Finally, (58) is a direct
application of Lemma 3.9 by adding (53) with (56). O

REMARK 3.11. When x = 0, formula (58) reduces to dim(L)+ (k+1)+20+ pu(5) — 3,
noting u(Byr) = u(B) when the domain is a smooth disc. This recovers the virtual
dimension formula for Jy-holomorphic maps from a disc with k+1 boundary marked
points and [ interior marked points in class .

LEMMA 3.12. Let b = bgmooth + borb[X1], and suppose bgmootn € He(X, At). Sup-
pose that there is mo non-constant Jx holomorphic stable map ((S,z,z",m),u,§)
to (X, L) such that the corresponding vi[%,0%] has vanishing Maslov index. Then
HY(L,Ao)/HY(L,2nv/=1Z) is contained in Myeq(L, mP).

Moreover, given b € HY(L, Ao)/H"(L,2n\/—17Z), every ((S,z,z7,m),u,§) that
contributes to WP(b) has pu(v.[%,0%]) = 2.
Proof. Let 3 € Hy(X,L) and suppose that ((S,z,z%,m),u,&) contributes to
mz’/go (by,...,by). Let By = vi[X,0%]. Since bgmeoth is a codimension 2 cycle in
X and [X;] is codimension 0 in its inertia component, after taking fiber product

between My 1,(L,J,3,x) and these cycles at interior marked points, the virtual
dimension becomes

4+ (k+1) +2[{j [m; = 1} + p(Bar) —3) = 2|{j[m; =1} -0 (59)
=4+ (k+1)+ p(By) — 3 (60)
where the first term of (59) is the dimension of My ;(L, J, 5,x) in (58), the sec-
ond term of (59) comes from the codimension of bgyneotn (taking the fiber product
between an evaluation map and a codimension d cycle drops the vitrual dimension
by d) and the last term of (59) comes from the codimension of [X;] which is 0.
Since b € H' (L, Ag), the cohomological degree of mz’g‘)(bJr, ..., by) is given by

dim(L) — (4 + (k+ 1) + p(Bm) — 3) — k) (61)
=2 — pu(Bum). (62)

This is because the cohomological degree is given by subtracting from the dimension
of L the virtual dimension of the fiber product between the evaluation maps of
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Myq1(L, J, B,x) with the cycles bgmooth, [X1], and the Poincaré dual of b, at all
the interior marked points with m; = 1, all the interior marked points with m; = 2,
and the boundary marked points z1, ..., zg, respectively. The virtual dimension of
this fiber product is nothing but (60) minus k, where k£ comes from the fact that
the Poincaré dual of b is a codimension 1 cycle and there are k boundary points at
which we are evaluating. As a result, we obtain (62).

Since L' and L are Lagrangian torus fibers of M, u(8) is twice the intersection
number between (s and the toric boundary divisor of M; in particular, u(B8y) >
0 by positivity of intersections, and p(Bas) is even. We also know by (62) that
2 — u(Brr) > 0, because we have assumed that ((S,z,27,m),u,&) contributes to
mz”g" (by,...,bs) and there are no negative degree cochains on L. Together with

the assumption that u(Bar) # 0, we deduce that u(8y) = 2 and mz’g“(bJr, .o, by)

is necessarily of cohomological degree 0. That means that mz’gf’ (byy...,by) is a
multiple of the unit e;,. Summing over all possible 3, the result follows. O

Therefore, the hypotheses of Theorem 2.12 will hold whenever Lemma 3.12 is
applicable.

3.2 Tropical picture. To compute the superpotential WP of L for b as in
Lemma 3.12, it is sufficient to classify Maslov index two Jj;-holomorphic curves
with boundary on L' U L". Since L’ and L are product Lagrangians and Jy; is a
product complex structure, we can study Jys-holomorphic curves with boundary on
L'UL" by projecting to the two P! factors of M. In other words, we want to classify
holomorphic maps v = (v, vs) for vy, vs : ¥ — P! with boundary on the respective
projections of £’ and L” such that the sum of the Maslov indices of v; and vy is 2.
This classification is undertaken in Section 3.3, but in preparation, we find it helpful
to give a tropical picture which motivates the result.

Let Log : (C*)?2 — R? be Log(z1, 22) = (log|z1|,10g |22|). Let p’ = Log(L') and
p" = Log(L") be two points in R?. The expected paradigm is (see [Gro10, GPS10]):

Philosophy 3.13. The tropicalization of a connected Jyr-holomorphic curve with
boundary on L'UL" should give a ‘broken’ tropical curve v with boundary on p'Up”.
That is, v is the tmage of a continuous map h from a connected weighted finite graph
without bivalent vertices T’ to R? such that:

(1) if v is a vertex of T' such that h(v) =p’ (orp”), then v is univalent;

(2) for every edge e of T, hle is an embedding and h(e) is a line segment of rational
slope;

(3) at every vertex v of T' such that h(v) & {p’, p"}, the balancing condition® holds;

(4) if h(e) has infinite length (i.e. is an unbounded edge), then the primitive direc-
tion of h(e) belongs to {(£1,0),(0,+1)}.

3 e > adjacent to v WeSe = 0, where we is the weight of e and s, is the primitive direction of h(e)

pointing towards h(v).
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Figure 3: A broken tropical curve with boundary on p’ U p”.

Vertices and edges of v are defined to be the images of the vertices and edges of
I'. The Maslov index of v is defined to be twice the number of unbounded edges of
~ (counted with multiplicity). The genus of 7 is defined to be the rank of H(T).

EXAMPLE 3.14. Suppose the z-coordinate of p’ is smaller than that of p”. Then there
is a genus 0 broken tropical curve v with 3 edges eq, e1, e2 such that eg is adjacent
to p’ with primitive direction (1, —1), e; is adjacent to p” with primitive direction
(—1,—1) and e9 is a multiplicity 2 unbounded edge whose primitive direction is (0, 1)
(see Figure 3).

In our situation, due to Lemma 3.2 (or more specifically (51)), we are interested
in two cases:

(1) unions of two broken tropical curves 7/ and ", such that p’ is a vertex of 7/
but not v”; and p” is a vertex of v but not 7/;
(2) broken tropical curves 7 such that both p’ and p” are vertices of .

It will be useful to impose the following ‘tropical general position’ assumption.

AssUuMPTION 3.15. The slope of the straight line joining p’ and p” is irrational (here
oo is regarded as rational).

LEMMA 3.16. If Assumption 3.15 is satisfied, then there is no non-constant Maslov
index zero broken tropical curve with boundary on p' Up”.

Proof. By definition, a Maslov index zero broken tropical curve admits no unbounded
edges. If such a tropical curve is not a constant, the balancing condition shows that
it must be a straight line with rational slope joining p’ and p”, which does not exist
by assumption. O

REMARK 3.17. We define the Maslov index of a union of broken tropical curves to
be the sum of the Maslov indices of the components. Therefore, by Lemma 3.16, if
the union has Maslov index 2 then it is composed of exactly one Maslov 2 broken
tropical curve and some number of constant tropical curves.

We now study the possible Maslov index two broken tropical curves with bound-
ary on p’ Up”.
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Figure 4: A genus 0 broken tropical curve as in case (2) of Lemma 3.18.

LEMMA 3.18. Let v be a Maslov 2 broken tropical curve with boundary on p’ U p”.

(1) If p" ¢ ~ (resp. p' & ~), then v consists of one unbounded edge of multiplic-
ity one emanating from p’ (resp. p''); this edge has primitive direction (1,0),
(_17 O): (07 1) or (07 _1>'

(2) If p'Up” € v and ey, 1, e2 are edges such that eq is adjacent to p', ey is adjacent
to p" and ey is the unbounded edge (necessarily) with multiplicity one, then the
sum of the weighted directions of eg, e1, e is 0.

Proof. Since v has Maslov index 2, it has exactly one unbounded edge, necessarily
of multiplicity 1. Statement (1) follows.

If p’Up” € ~, then clearly the edges eg, e1, €2 are distinct. The sum of the weighted
directions of eq, €1, e is the sum of the balancing conditions at all vertices of v other
than p’ and p”. Therefore, it must vanish. O

We need to further analyse case (2) in Lemma 3.18. Suppose from now on that
p is in the third quadrant and p” is in the first quadrant of R2.

LEMMA 3.19. Suppose that Assumption 3.15 is satisfied. Let v be a broken tropi-
cal curve as in case (2) of Lemma 3.18. If es has direction (1,0), ey has weighted
direction (p,q) and ey has weighted direction (—(p+ 1), —q), then we have

q q
——<m< = 63
P » (63)
where m is the slope between the line joining p' and p”.
Conversely, for every pair of integers (p,q) such that (63) is satisfied, there is a
unique genus 0 broken tropical curve with boundary on p',p”, consisting of the edges

€o, €1, €2 with weighted directions (p,q), (—(p + 1), —q) and (1,0), respectively.
Proof. We leave the proof as an exercise. See Figure 4. O
Similarly, we have

LEMMA 3.20. Suppose that Assumption 3.15 is satisfied. Let v be a broken tropi-
cal curve as in case (2) of Lemma 3.18. If es has direction (0,1), ey has weighted
direction (p,q) and ey has weighted direction (—p, —(q + 1)), then we have
1
q < q+

- <m

» » (64)

where m is the slope between the line joining p' and p”.
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Figure 5: A genus 1 broken tropical curve as in case (2) of Lemma 3.18.

Conwversely, for every pair of integers (p,q) such that (64) is satisfied, there is a
unique genus 0 broken tropical curve with boundary on p',p”, consisting of the edges
€o, €1, ez with weighted directions (p,q), (—p, —(q¢ + 1)) and (0, 1), respectively.

ExXAMPLE 3.21. When 0 < m < 1, the tropical curve in Lemma 3.20 with the
smallest p has p = 1 and ¢ = 0 (see Figure 2 with py and p; understood as p’ and
p”, respectively).

By symmetry, there are analogous results when eg has direction (—1,0) or (0, —1).

REMARK 3.22. There are higher genus Maslov 2 broken tropical curves with bound-
ary on p' Up” (see Figure 5). However, we will see that they only contribute higher
order terms (in the adic filtration) to the bulk deformed superpotential, which will
mean we do not need a classification of these curves to prove existence of critical
points for the superpotential.

3.3 Maslov two holomorphic curves. The tropical picture is heuristic, for
two reasons. First, we have not justified that the Log,-images of a Jjs-holomorphic
curve with boundary on L' U L” converge to a broken tropical curve. More impor-
tantly, given a broken tropical curve 7, we have not proved that there is a Jys-
holomorphic curve with boundary on £’ and L” whose tropicalization is . In this
section, we use the tropical picture as a guide to help us locate and study holomor-
phic curves of Maslov index two.

We write L' = L] x L} and L = L] x L. We identify M with P! x P! in such a
way that L' = {|z] = 7|} x {Jw| =74} and L = {|z| = r{} x {|w| = r§}. We assume
that

i< 1<r! and rh<1<rh,

which correspond to the assumption that p’ and p” are in the in the third respec-
tively first quadrants. Let C; denote the cylinder bound by L) and L7, for i = 1,2.
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Moreover, we assume that

o rh
T o

which corresponds to the slope condition 0 < m < 1, cf. Example 3.21.
Assumption 3.15 translates to the following.

ASSUMPTION 3.23. There are no integers a,b # 0 such that (1} /r])® = (v} /r5)°.
For the reader’s convenience, we recall the following well-known fact.

LEMMA 3.24. Let ¥ be a compact Riemann surface with boundary and let Pa be
a smooth toric variety. Let v : ¥ — Pa be a holomorphic map such that v(0X) is
contained in a finite union of Lagrangian torus fibers. Then the Maslov index of v
is given by p(v) = 2(v4[X]) - D, where D is the toric boundary divisor. In particular,
if Pa = P! and v(9%) is contained in a finite union of circles {|z| = r;} for some
ri > 0, then p(v) = 2(v[X]) - [{0, 00}].

The following lemma explains the importance of Assumption 3.23.

LEMMA 3.25 (cf. Lemma 3.16). Suppose v : ¥ — M is a Jy-holomorphic map
satisfying (51). If Assumption 3.23 holds, then u(v) # 0.

Proof. Suppose not. Let v = (v1,v2) : 3 — M be a Jy-holomorphic curve satisfying
(51) such that p(v) = 0. Since p(v) = 0 and Jys is split, we have p(v1) = pu(vy) =0
by positivity of intersections. If 3 has two connected components Yo and X1, then
at least one of v|y,, say v|y,, is not a constant. Since ¥y has only one boundary
component, then either v;|y, or va|y, surjects to a disc and has p > 2. This gives a
contradiction. Therefore, > is connected.

By the boundary conditions, neither v; nor vy can be a constant map. Therefore,
we must have that vy and vy surject onto the cylinders C; and Cs, respectively. This
is a contradiction because it is well-known that no 3 can simultaneously surject onto
two annuli {r] <|z| </} and {r} < |w| < rf} which satisfy Assumption 3.23.

We present a proof here for the sake of completeness.

Let the two boundary components of 2 be dy and 0;. To simplify notation, let
the two annuli be {1 < |z| < R; := :—/1{} and {1 < |z| < Ry := %} Without loss of
generality, we can assume that |v;|g,| = 1 for both i = 1,2. Let

9(2) = log |v1(2)|* — alog [v2(2)[* = 2(log [v1(2)| — alog |va(2)]) (66)

where o = log(R32)/log(R1). Clearly, g is a harmonic function which vanishes on 0%.
Therefore g vanishes everywhere. Note that g is the real part of the (multi-valued)
holomorphic function

h(z) = log(v1(2)%) — alog(va(2)?). (67)
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Therefore, " is a (single-valued) constant function. By taking derivative, we have

e"h'(2) = 0 and hence h/(z) = 0.
Taking the derivative of (67), we get

W) _ b)) o)

By integrating that identity over a closed curve parallel to dyp and applying the
residue theorem, we see that « is rational. This contradicts Assumption 3.23.

LEMMA 3.26 (cf. Lemma 3.18 and Remark 3.17). Suppose that Assumption 3.23
holds, and that v = (vi,v2) : ¥ — M is a Maslov index two Jyz-holomorphic map
satisfying (51).

(1) If ¥ is disconnected with connected components ¥y and X1, then one of vy,
say vly,, is a constant. Then for ¥, one vi|s, is a degree one map to a disc
and the other is a constant.

(2) If ¥ is connected, then either vy or ve is a (possibly unramified) branched
covering of a cylinder, and the other surjects to a disc.

Proof. If ¥ has two connected components ¥y and X1, then 0X; is connected. There-
fore, if v;|x;, is not a constant, then p(v;) > 2. That means that 3 of the 4 maps
{vils, }i,; have Maslov zero and are hence constant (by Lemma 3.25). Suppose v;|s,
is not a constant; then it is either a branched covering of a disc or it surjects onto
P!. However, if it surjects to P!, then it must have p(v;) > 4. Since u(v;) = 2, we
know that v;|y, has degree 1 and surjects to a disc.

Now asssume that > is connected with 2 boundary components. Without loss
of generality, we assume that p(v1) = 0 and p(v2) = 2. Since pu(vy) = 0, it has to
surject onto the cylinder bounded by L} and L. On the other hand, u(ve) = 2
implies that the image of vy is not the entire P' and not the cylinder bounded by
Lh and Lf. Therefore, vy surjects to a disc. O

Let v be a holomorphic curve as in case (2) of Lemma 3.26, such that v surjects
to a disc D. Let D° be the interior of D. By the Lagrangian boundary conditions
for v, there are two possibilities:

(1) D° is the component of the complement of L that contains L5;
(2) D° is the component of the complement of L/, that contains L.

By the obvious symmetry, it is sufficient to analyse the first situation. In this case,
we have

(01)«[%,0%] = p[C1]  and  (v2).[%,9%] = [D] + ¢[C2] (69)

for some integers p > 1 and ¢ > 0, where the relative classes are in Hg(S%B er LU
L) and Hs(S3,, L5 U LY), respectively. Let A,, € Ho(M,L" U L") be the class
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characterized by the property that the projection to the two P! factors are p[Ci]
and [D] + ¢[C4], respectively, so

0.3, 05 = Ay, (70)

for some integers p > 1 and ¢ > 0.
We can give a classification of such v when (p,q) = (1,0) (cf. Example 3.21).

LEMMA 3.27. There exists a Jyr-holomorphic curve v : X — M with boundary on
L'UL" in class Ay o. Moreover, for a generic pair of points ¢ € L' and ¢" € L,
the algebraic count of unparametrized holomorphic curves in Ay such that ¢',q" €
v(0X) is £1.

Proof. First, we prove the existence of v. Let % be the annulus C'; and define vy :
¥ — C; C P! to be the inclusion map.

By rescaling, we identify D with the unit disc, L with the unit circle and L
with the circle of radius ry := :—é’, Let I & LY be a closed arc (usually called a ‘slit’
in the literature, cf. [Ahl78, Chapter 6], [Neh52, Chapter 7]) and define D; := D°\ .

In Lemmas 3.28 and 3.29, we provide proofs of the following classical facts:

(1) For every 0 < r < rg, there is a biholomorphism from {r < |z| < 1} to D; for
some | C Lf,. Moreover, the biholomorphism can be smoothly extended up to
its closure.

(2) Given two slits 1,1y C L), the domain Dy, is conformally isomorphic to Dy, if
any only if [; and ls are of the same length.

By assumption, ¥ = {:—,j, < |z] < 1} and :—,15, < %‘, = 1o (see (65)). Therefore, we
have a holomorphic map vy : ¥ — S3, such that the two boundary components are
mapped to L] and | C L), for some [, respectively. This proves the existence.

Conversely, let v = (v1,v2) be a holomorphic curve in class A; . Since vy is a
degree one map with the boundary components of 3 going to £} and LY, respectively,
v1 must be a biholomorphism. Therefore, we can identify ¥ with C7 via vy.

On the other hand, vy is a degree 1 map onto the disc D. Therefore vas) gy is a
biholomorphism, so v2(X \ 0%) is D; for some [.

Now, let ¢’ = (q},¢5) € L' and ¢" = (¢{,q)) € L". By identifying ¥ with the
annulus bound between L] and L/, we can suppose that ¢}, q] € 9%. To prove the
last statement, it suffices to show that the algebraic count of ve such that va(q}) = ¢}
and va(qf) = ¢4 is 1.

Let vy : ¥ — D be a degree 1 holomorphic map with boundary on £} and L] as
above. By the classification, all other degree 1 holomorphic maps with boundary on

L and LY are given by

2,0,,0,(2) = € %va(e 2) (71)

for some 61,05 € [0,27]. Moreover, by automatic regularity, vs g, g, is regular for all
0, and 5. Therefore, to show that the algebraic count is £1, it suffices to show that
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Stx st — L x Lh (72)
(01,02) — (ev1(01,02),eva(01,02)) := (v26,.0,(d1)s v2,6,.6,(q))) (73)

is a degree 1 map.

Let f : S — S! be the smooth function given by f(0;) = arg(¢y)—arg(va(e?*¢)).
By (71), it is clear that for each 6, there is a unique 03 such that eva(61,62) = ¢5,
indeed that 6 is given by f(#1). Moreover, since va|cr : L — L§ is a diffeomor-
phism, vg(ewlq’f ) and hence f has degree +1. The problem now reduces to showing
that

St ol (74)
01— evi(01, f(01)) = vag, (o) (1) (75)

is a degree 1 map. Since v2(9X) N L, is contractible, the map (75) is homotopic to
f, which has degree (plus or minus) one. Therefore, the algebraic count of ve such
that va(q}) = ¢4 and va(¢}) = ¢4 is indeed £1. This completes the proof. O

We now address the two classical facts used in the proof of Lemma 3.27. Recall
from the second paragraph of the proof of Lemma 3.27 that ro := :—Z, which is the

radius of L/, when we identify L4 with the unit circle.

LEMMA 3.28. Let r1 € (0,r9). There is a biholomorphism from A = {r; < |z| < 1}
to Dy for some | C LY. Moreover, the biholomorphism can be smoothly extended up
to its closure.

Proof. Let a € A and G(z,a) be the Green’s function, i.e. the unique function
determined by the conditions:

(1) G(z,a)|52 = 0;
(2) G(z,a) +log|z — a| is harmonic and smooth everywhere on A.

We denote the inner and outer boundary components of 9A by dy and 0;. Let w; for
i = 0,1 be the corresponding harmonic measures. That is, w; is the unique smooth
harmonic function on A such that wils, = 1 and wiyz s, = 0. More explicitly,

i) = 2]

Since AG(z,a) = —2md,, for any harmonic function w : A — R, we have the
identity (see e.g. [Neh52, Chapter 1))

wi) =57 [ w()*E (76)

T o

and w1 = 1 — wy.

where a% refers to the outward normal derivative. When w = 1, it gives

/80 6G(§2, a) N /81 GGéZ, a) _ o (77
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When w = w; for i =0, 1, it gives

-1 0G(z,a) -1 [ 0G(z,a)
wi(a) = P /6A wl(z)ian =3 /& o (78)
Therefore, we have 3 := — fé‘l aGa(fL’G) = 2nwi(a) € (0,27).
On the other hand, a direct calculation gives
/ Owo(z) o _/ Owo(z) (79)
5 on log(r1) s, On
For ¢ = %W, we have
0(—G(z,a) + cwg) 2r
/1 o =B+ clog(rl) = 2m; (80)
0(—G(z,a) + cwg) 2r
/0 o =2r—f Clog(rl) = 0. (81)

That means that the harmonic conjugate H(z) of —G(z,a) + cwy is a multi-valued
function with period 27 on 0 and period 0 on Jj.

The map F(z) = e GEa)tewotill(2) jg therefore a single valued holomorphic
function which maps a to the origin, dy to {|z| = e°} with degree 0 and 9; to
{lz| = 1} with degree 1. By a routine argument (see e.g. [Ahl78, Theorem 10 of
Section 5 of Chapter 6]), one can check that F' is a biholomorphism from A to the
slit domain D \ {F (o)}

Since 0 < 3 < 2w, we have log(r1) < ¢ < 0. On the other hand, for any value
Bo between 0 and 27, there is a unique a (up to automorphism of A) such that
8 = 2mwi(a) = By. Since r1 < rg, we can pick the a such that the corresponding ¢
is log(ro), so F(dy) C LS.

Finally, since the boundary components of A are smooth analytic curves, we
claim that F' can be extended smoothly up to the boundary. More precisely, for
each point zg € A, the Riemann mapping theorem implies that we can find a small
neighborhood U C A of zy such that U is biholomorphic to the upper half of the unit
disc by a biholomorphism sending U N A and 2 to the interval [~1, 1] and the origin,
respectively. We can assume U is sufficiently small that log F'(z) is single-valued and
its real part —G/(z, a)+cwp tends to a real constant as z approaches UNA. Therefore,
by the reflection principle, log F'(z) and hence F'(z) can be extended over z. O

LEMMA 3.29. Given two slits 11,1y C LY, the domain Dy, is conformally isomorphic
to Dy, if and only if l; and ly are of the same length.

Proof. By the classification of multi-connected domains, D;, is biholomorphic to
A :={r <|z| < 1} for some r1. Let F} : A — D, be a biholomorphism such that
the smooth extension of F; maps {|z| = 1} to the unit circle. Let a; € A be the
point such that Fi(a;) = 0. Then log |Fi(z)| is a harmonic function which is smooth
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everywhere except having a log pole at a;. Moreover, it maps {|z| = 1} to 0 and
{]z] = 71} to log(rp). These conditions uniquely characterise log |F(z)|, and so we
have

log |F1(2)| = —G(2,a1) + log(ro)wo (82)

where G(z,a1) and wq are the Green’s function and harmonic measure introduced
in the Proof of Lemma 3.28.

It follows that if D, is biholomorphic to D;, and hence to A, then the biholo-
morpism Fh : A — Dy, satisfies

log |Fa(z)| = —G(z,a2) + log(ro)wo (83)

for the as € A such that Fy(as) = 0.

Moreover, we know the periods of the harmonic conjugates of (82) and (83) are
the same, namely 27 on the outer boundary and 0 on the inner boundary. In other
words, we have

/ | 0(—G(z,a1)az log(ro)wo) _ / | 8(—G(z,a1)a: log(ro)uwo) _ 5. (84)
/ 0 (=G (z, a2)6: log(ro)wo) _ / 0 (9(—6‘(2,&22: log(ro)wo) _ (85)

It implies that

0G(z,a1) [ 0G(z,a1)
/61 on : _/31 on - (86)

By (78) and the equation afterwards, it means that wi(a;) = wi(az2). Since wy(z) =
1 — los(z])

log(ry)
is an automorphism ¢ of A (a rotation) which sends a; to az. As a result, the

biholomorphism F} := Fy 0 ¢ : A — D), satisfies

, we have wi(a;) = wi(ag) if and only if |a1| = |ag|. Therefore, there

log |F}(2)| = —G(z, a1) + log(ro)wo (87)

because it sends a; to the origin. It follows that F} and F} only differ by a choice of
harmonic conjugate of —G(z,a1) + log(rg)wo, and are hence related by F} = e'®F}
for some «. It follows that /1 and [l have the same length. O

REMARK 3.30. For a circular cylinder {1/r < |z| <}, any involution swapping the
boundary components belongs to the family (z — %)ge[mﬂ. Consequently, there
is a 1-dimensional family of 2 to 1 branched coverings of the cylinder over the unit
disc. In other words, the 1 dimensional moduli space of cylinders can be identified
with the 1 dimensional moduli space of double branched coverings of a disc with 2
interior orbifold marked points (see Remark 3.3 and the paragraph before), which is
in turn isomorphic to the 1 dimensional moduli space of discs with 2 interior marked
points.
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Let v be as in Lemma 3.27, and let 2/, 2" € 93 be such that v(z') = ¢’ and v(2") =
q". If we choose the involution of ¥ which exchanges 2z’ and z”, the corresponding 2
to 1 branched covering of the unit disc together with v will tautologically correspond
to a Jy-holomorphic orbifold disc u : S — X such that [¢, ¢"] € u(9S).

Notice that, since the complex structure splits, we can write v = (vy,v2). It is
easy to check that each v; is regular and hence v is regular. Alternatively, one can
apply automatic regularity in dimension 4 (see [HLS97, Theorem 2]), which in this
case says that u(v) =2 > 1 = 4g + 20 — 3 and hence v is regular. (Here, g = 0 is
the genus of the domain and o = 2 is the number of boundary components of the
domain.) By Lemma 3.5, we infer that the corresponding holomorphic orbidisc w is
also regular. In particular, v will contribute to mz’b whenever by, # 0. Moreover, the
unparametrized algebraic count in Lemma 3.27 implies that the virtual fundamental
chain of the moduli containing u (i.e. M1 2.x(Sym(L UL"); u.[S]; [X1]%2,1)) satisfies

(M1 2.5(Sym(L" U L"); u[S]; [X01]%%)1), evg) = = 2[Sym (L' U L")] (88)

where x(j) = 1 for both j = 1,2, and where the factor of 2 in (88) comes from the
possible orderings of the interior marked points.

On the other hand, we can prove the non-existence of maps v as in (70) when
p=1and ¢ > 0.

LEMMA 3.31. There is no holomorphic curve with boundary on L'UL" in class Aj 4
for g > 0.

Proof. Suppose that such a curve exists. The hypothesis p = 1 implies that vy is a
biholomorphism to C;. Therefore, ¥ is a cylinder; we identify it with {:—3, <|z| <1}
As before, we identify D with the unit disc and L), with {|z| = ro < 1}.

By the definition of A; 4, the holomorphic map vs has degree 1 to the disc {|z| <
ro} and degree g + 1 to the cylinder {ro < |z| < 1}. Let a € ¥ be the point such
that ve(a) = 0. The harmonic function log |vs| is smooth everywhere except at a,
where it has a log pole. Moreover, it maps {|z| = 1} to 0 and {|z]| = :—,j,} to log(ro).
Therefore, we have

log [v2| = —G(z, a) + log(ro)wo (89)

where G(z,a) and wy are the Green’s function and harmonic measure respectively.
As in Lemma 3.28, we have
9(=G(2, a) + log(ro)wo) 2
= B +log(ro):————~ (90)
/, o B
Ty _
=

for some (8 € (0,27). By our assumption, we have :—11/ ro < 1 so the quantity
in (90) is less than 4.

However, this is a contradiction. Indeed, the harmonic conjugate of —G(z,a) +
log(rp)wo, which is the harmonic conjugate of log |vs|, must have period (¢+ 1)27 >

47, because vg\{|z|:1} has degree g + 1. This completes the proof. O
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REMARK 3.32. Lemma 3.31 corresponds to the fact that in Lemma 3.20, there is
no broken tropical curve with p =1 and ¢ > 0 when 0 < m < 1.

By symmetry, the analogues of Lemmas 3.27 and 3.31 hold when v is a holomor-
phic curve as in case (2) of Lemma 3.26 (one for which vy surjects to the comple-
mentary component of L/, that contains L%).

4 Concluding the proof

So far, we have been using Assumption 3.23. However, the fibres Ly and L in
Theorem 1.1 do not satisfy this assumption, because their second factors coincide.
Therefore, we cannot apply the previous results directly to Sym(L). We remedy this
issue by applying what is commonly referred to as ‘Fukaya’s trick’.

As in the previous section, let L' and L” be Lagrangian torus fibers in M such
that Assumption 3.23 is satisfied. Without loss of generality we may assume that
L' and L” are close enough to Lo and L such that there is a diffeomorphism
d : M — M satisfying

(1) (L) =L"UL” and
(2) ©*Jps is wps-tamed.

Tautologically, the pull-back of .Jj;-holomorphic curves with boundary on L' U L”
under ® are ®*.Jy;-holomorphic curves with boundary on L, and vice versa. There-
fore, we can apply the previous discussion to study the superpotential of Sym(L)
with respect to the symmetric product of (the integrable complex structure) ®*.Jy,
on X.

REMARK 4.1. The superpotential will be different for different choices of L’ and L”.
That is because the corresponding almost complex structures ®*J, differ, and there
is wall-crossing when one interpolates between them (cf. [Aur07] and the scattering
diagrams in [Boul9]).

Now, we give a brief summary of the terms of the superpotential to which the
Jyr-holomorphic curves in Lemmas 3.26 and 3.27 contribute.
Let By, By, B3, and B3, be the open discs depicted in Figure 6, such that

(1) B, is the connected component of the complement of £7 not containing L
(2) Bf, is the connected component of the complement of L5 not containing L5;
(3) B3, is the connected component of the complement of L7 not containing £7;
is the connected component of the complement o not containing L.

4) B3, is th ted t of th 1 t of L4 not containing L5
Let B;; be the closure of Bicjj. Let (1,1,081,2, 82,1, 02,2,01,02 be the classes in
Hy (M, L) such that their pushforward in Ha(M,L" U L") by & are the classes de-

termined by

(m1)«®@+f1,1 = B11 and  (m2)«P.011 = 0, (91)
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oLy

Figure 6: Labellings for disc classes.

q)*BZ,Z

(D*Bl,l p. Q)*Bz'l
pll

q)*Bl,Z

Figure 7: A tropical picture of the four disc classes in the homology basis. The rectangle
represents the moment map image of the toric boundary.

(m1)+®@:f12=0 and (m).P.f12 = Bio, (92)
(m1)«®efB21 = Bay  and  (m2)«Puf21 = 0, (93)
(m1)«®sfa2 =0 and (m2)Psfa2 = Bapa, (94)
(1) @01 = and  (m2).P.01 =0, (95)
(m)*@*ag 0 (72). B0y = Co, (96)

where 71 : M — S§B+C and 79 : M — 53, are the projection to the two factors. In
particular, the class A, , in (70) is given by ®.(pdi + B12 + (¢ + 1)d2).

Note that, Ho(M,L) is freely generated by these six classes. Their symplectic
areas are given by

wr (Br,1) = wr(P2,1) = B, (97)
wr (Br,2) = wm(f22) = a, (98)
wpm(01) =C, wp(d2) =0. (99)

By Lemma 3.26, to compute the superpotential of Sym(L), there are two classes
of ®*.Jps-holomorphic maps v : (3,0%) — (M,L) we want to consider, namely,
those such that ¥ is a disjoint union of two discs ¥y U X1 and those such that X
is connected. We consider the former case first. By Lemma 3.26, three of the maps
vily, (for ¢ = 1,2, j = 0,1) are constants mapping to a point on the respective
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Lagrangian (boundary conditions) and the remaining one is a biholomorphism onto
a disc. Therefore for each (3} ;, the Maslov index 2 elements in M (X, L, ®*Jas, k1)
are precisely those v in Lemma 3.26(1) such that the only non-constant map v;|s,
is in class (. Together with the trivial 2 to 1 covering from ¥ to the disc, these v
lift to a Maslov 2 holomorphic disc v in X with boundary on Sym(L). Moreover, by
looking at the algebraic count of these v as in Lemma 3.27, it is easy to see that the
virtual fundamental chain of the moduli containing u satisfies

(M1o(Sym(L), Brss 1,1),evg) = +[Sym(L)] (100)

where Bk,l € Hy(X,Sym(L)) is the class corresponding to fi; (i.e. us[S] = Bk,l when
04[X] = Bi,1). Equation (100) holds because all the elements in (M o(Sym(L), Bk,la 1,1)
are regular (which can be proved directly or by applying automatic regularity to v,
cf. Remark 3.30) and it is easy to check that evq is a degree £1 map to Sym(L) (see
Remark 4.2 below for the discussion of orientation).

We fix coordinates (1, ¥2,y1, y2) on H(Sym(L), Ag)/H*(Sym(L), 27+/—1Z) (play-
ing the role of ¥; in (35)) such that the 4 families of holomorphic discs in classes
51,1,5172,52,1 and @72 contribute the terms TBa:l, T“a:;l, TBy1 and T“”yQ_1 in the
superpotential, respectively (the areas of the discs and hence the T-powers are as
stated by an application of Lemma 3.1).

REMARK 4.2. The coordinates (z1, z2,y1,y2) are obtained as follows. We have iden-
tified L' with {|z| = r{} x {|Jw| = r4} C C2. We apply the involution w ~ 1/w
to the second factor to identify L' with {|z| = 7]} x {Jw| = 1/r5} C C2. In this
description, we give each factor the counterclockwise orientation induced from C,
and we use these orientations to define x1, 2. We identify each factor of L' with
R/Z by 0 +— € and use the natural trivialization TR = R? to induce a trivialization
of T(R/Z), which we call the translation-invariant trivialization. The trivialization
of TL' that we use to orient the moduli spaces of holomorphic discs is the product
of the translation-invariant trivializations in the factors of this chart C2, compare to
[Cho04, Section 8] (whose conventions we are following). Similarly, we apply z — 1/z
to the first factor to identify L” with {|z| = 1/r{} x {|w| = 7§} C C? and take the
induced orientation and translation-invariant trivialization on the factors.

We now arrange that (z,w) — (1/2,1/w) maps L’ to L”; this amounts to saying
that the torus fibres L’ and L” are swapped by a m-rotation of the moment rectangle;
this can be done without violating the ‘irrational slope’ Assumption 3.23 because the
‘slope’ varies continuously when we vary r},75. By construction this map respects
the orientations and trivializations chosen.

There are 4 more families of holomorphic discs contributing to W. They are in
classes (32,1 + 01, B2,2+ 02, $1,1+61 and (1 2+ d2 (or more precisely, their correspond-
ing classes in Ho(X,Sym(L))), and the terms they contribute are TB+Cx 1 Ty,
TB+Cy 1 and T respectively.
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From the discussion above, we conclude that the part of the superpotential of
Sym(L) arising from the contributions of smooth discs is given by

Wiamooth = T (x5 " +y5 ' + o +y2) + TP (x1 +31) + TP (a7t +47h). (101)

Note that (101) precisely takes into account all the Maslov 2 holomorphic curves of
case (1) of Lemma 3.26.

We now consider a bulk deformation by, [X1] for by, € Ay At this point, the
Maslov 2 holomorphic curves from case (2) of Lemma 3.26 can also contribute to
the bulk deformed superpotential.

Let v : ¥ — M be a genus g Maslov 2 holomorphic curve as in Lemma 3.26, case
(2), and view v as a ®*Jys-holomorphic map with boundary on £. By Lemma 3.26,
we have

0,[2,0%] = B + mo1 + 1202 (102)

for some 71,12 > 1 and 4,5 € {1,2}. If there is a 2 to 1 branched covering map
7y, from ¥ to the unit disc S, then 7y has 2g + 2 critical values (see Lemma 3.8).
Therefore, the term of WP of Sym(L) to which it contributes, via the tautological
correspondence, is (cf. the end of Section 2.2)
b2g+2 B o
c—2b__qn(Bi)tmC (g )12 (19 )~ (2, 103
29 +2)1 (2y2)"™ (x191) " f (2, y) (103)
for some ¢ € C, where f(x,y) = xl,xgl, Y1 Or y;l depending on f; ;.

LEMMA 4.3. The lowest order contribution to WPX1] from Maslov 2 holomorphic
curves in Lemma 3.26 case (2) is given by

+ b3, T (z1y1) " (w2 + 12). (104)

Proof. Note that, the smallest possible exponent of 7" in (103) is achieved when
g =20, B;; = P12 or B22, and 1 = 1. We proved in Lemma 3.31 that when n; =1
and ; ; € {B1,2, 022}, there is no v such that 7 > 1. When 1y = 1, the holomorphic
curves v are classified in Lemma 3.27. More precisely, they are regular and the
algebraic count in each of the classes 812 + 61 + 62 and (a2 + 01 + 62 is 1, and
the two counts have the same sign by the symmetry of our choice of orientation and
trivialization (see Remark 4.2, and also Remark 4.6).

In other words, for 3/t € Hy(X,Sym(L)) being the corresponding lift of 315 +
61+ 02 or Baa + 61 + J2, the elements in M o 5 (Sym(L)