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Abstract
Atom interferometers that employ atoms in superpositions of different electronic states are
sensitive to any noise that affects these superposed states differently. Resilience to such noise
results from using superpositions where the atomic states differ in momentum only, but
implementation of such ‘state-symmetric’ diffraction can lead to population loss into
unwanted states and restricts the atomic velocity acceptance of the interferometer. In this
paper, by varying the laser intensities and phases as functions of time, we present optimized
pulses designed for use in state-symmetric interferometers that overcome these restrictions.
We extend this optimization to multi-pulse sequences designed to increase the interferometer
area and demonstrate significant improvements in the fringe visibility compared with
sequences of π/2 and π pulses. We discuss the limits on the temperature of the atomic source
required for efficient atomic diffraction and show how optimized pulse sequences enable
efficient diffraction with considerably warmer clouds, hence reducing the need for velocity
selection and increasing the measurement signal-to-noise ratio.

Keywords: atom interferometry, atomic physics, optimal control

(Some figures may appear in colour only in the online journal)

1. Introduction

Atom interferometers [1, 2], many of which use sequences
of laser pulses to diffract and interfere atomic matter-waves,
are extremely sensitive inertial sensors and key components of
quantum gravimeters [3–5], gradiometers [6–8], accelerom-
eters [9], and gyroscopes [10–12]. The laser pulses in these
devices typically effect multi-photon transitions between elec-
tronic ground levels in either Raman [13] or Bragg [14] diffrac-
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tion regimes. Each regime has its advantages: Bragg pulses
leave atoms in the same electronic state throughout, making
the interferometer robust to magnetic field and laser phase
noise between pulses [15] and, provided that the atomic sample
is cold enough [16], are able to create large momentum super-
positions in a single interaction. Raman pulses, meanwhile,
are effective for much broader thermal distributions [17] and
leave atoms in a superposition of different electronic states,
sacrificing noise-resilience in favour of easy and rapid read-out
[18].

Efforts have been made to combine the benefits of both
approaches. Raman double-diffraction [17, 19, 20] utilizes
simultaneous interaction between counter-propagating Raman
beams to keep atoms in the same electronic state during the
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interferometer, suppressing noise while still enabling elec-
tronic read-out. However, such interferometers suffer from
losses to higher-order momentum states if the two-photon Rabi
frequency is too high [21], in effect still limiting the technique
to sub-recoil cloud temperatures, and are not extensible with-
out fidelity loss [17] to the larger momentum transfer (and thus
sensitivity) afforded by Bragg diffraction.

Another promising approach, introduced by Berg et al [22],
replaces the single Raman π/2 (beamsplitter) and π (mirror)
pulses with composite sequences of velocity-selective versions
of these pulses in which the wave-vector direction is reversed.
This state-symmetric Raman-based interferometer again ben-
efits from the noise-resilience that comes from keeping atoms
in the same electronic state between pulses and, unlike Bragg
diffraction, still allows electronic-state detection while, unlike
double-diffraction schemes, the interferometer fringe may be
scanned by varying the laser phase during the final pulse and
no additional frequency component in the Raman beams is
required to compensate the Doppler shift in a gravimeter [20].
However, since the velocity-selective pulses added in the sym-
metric interferometer must address just one interferometer arm
at any one time, the velocity acceptance of the interferometer
is limited to sub-recoil distributions so that fewer atoms from
a given source can participate in a measurement, lowering the
signal-to-noise (SNR) ratio.

The limitations of all these techniques are fundamentally
determined by the recoil momentum imparted by each pulsed
interaction: the initial thermal distribution must be narrower
than the momentum superposition created by the diffraction
process. However, they are also limited by the efficiency of the
laser pulses that perform the atomic diffraction. As we will see,
the constraints put on the Rabi frequency by the requirement
to discriminate between interferometer arms, combined with
the large wings in the lineshape of typical π and π/2 pulses,
mean that variations in atomic velocity can quickly reduce
the pulse efficiency and hence measurement contrast, which
falls particularly rapidly if extra pulses are added to increase
the interferometer area. This makes field deployment of such
devices a delicate balancing act between sensitivity and SNR
ratio, making it common to filter out all but the coldest atoms
and restrict the number of laser pulses.

Optimal control theory [23–29] may be adapted to design
tailored laser pulses where the optical phase, frequency, and
intensity are varied in time to create pulses with desired effi-
ciency, frequency selectivity [30], and robustness to varia-
tions in frequency and coupling strength [31]. We have previ-
ously used optimal control to design individual robust Raman
pulses for atom interferometers [32–35]. In this paper, we
introduce a novel optimal control approach to the design of
beamsplitter and mirror pulse sequences tailored for state-
symmetric Raman interferometers where the π/2 and π pulses
are replaced by alternatives in which the Raman laser phase
and beam intensities vary smoothly with time. We show that
these optimized sequences improve the velocity acceptance
of state-symmetric interferometers significantly, reducing the
need for velocity selection and consequently allowing more
atoms to contribute to a measurement.

We also extend the state-symmetric interferometer design
of Berg et al [22] to enable large-momentum-transfer (LMT)
[36] by optimising extended sequences of robust pulses which
minimize population loss to higher momentum states and
demonstrate that the target momentum separation between the
interferometer arms in a symmetric interferometer provides
a theoretical upper limit on the velocity acceptance of the
pulse sequence. Consequently, we show that by increasing the
target momentum separation, optimized pulse sequences can
simultaneously improve the intrinsic interferometer sensitiv-
ity and the velocity acceptance of symmetric Raman pulse
interferometers.

2. State-symmetric interferometer sequences

In a Raman transition, two ground levels |g〉 and |e〉
(for example the hyperfine ground states |5S1/2, F = 2〉
and |5S1/2, F = 3〉 in 85Rb) are coupled via two counter-
propagating lasers with frequencies ω1 = ck1 and ω2 = ck2

whose frequency difference closely matches the splitting ωeg

between |g〉 and |e〉 [13]. Each laser is individually far-detuned
from an upper intermediate level |i〉, which remains unpop-
ulated, and Rabi flopping can occur between |g〉 and |e〉.
Depending on the direction of each beam relative to the z-axis,
an atom initially in the state |g, p〉 with momentum p in the
z-direction may be coupled either to the state |e, p+ h̄keff〉
(the ‘+h̄keff’ or ‘+’ transition) or to the state |e, p− h̄keff〉
(the ‘−h̄keff’ or ‘−’ transition), where the effective wave-
number keff is given by k1 + k2 [17]. Both Raman transitions
are depicted in figure 1, along with the direction of momentum
transfer. The resonance condition for each Raman transition is
given by [17]

ω1 − ω2 = ωeg + δAC ± δD + δR, (1)

where δAC is the AC Stark shift and δR = h̄k2
eff/2m is the

two-photon recoil shift (≈15 kHz for 85Rb) where m is the
atomic mass. For convenience, we define the laser detuning
δL ≡ ω1 − ω2 − ωeg and ignore the AC Stark shift as this may
be compensated in practice [37]. δD ≡ keffvz is the Doppler
shift, and the + and − in equation (1) correspond to the +h̄keff

and −h̄keff transitions, respectively. When the atom is initially
at rest relative to the lasers, the resonance conditions for each
transition are identical.

By swapping the propagation directions of the two Raman
beams, hence reversing the effective wave-vector, the atom
may be given successive two-photon recoil kicks to access
a ladder of momentum states whose momenta differ by an
integer number n of h̄keff [38]:

|g, p+ nh̄keff〉 ≡ |gn〉 (2)

|e, p+ nh̄keff〉 ≡ |en〉. (3)

For an atom resonant with a particular Raman transition
(− or +), Rabi flopping occurs at a frequency Ω±

R between
any two coupled states, leading to the concept of (rectangular)
π/2 and π pulses, which are realized by keeping the relative
laser phase (φL ≡ φ1 − φ2, where φi is the phase of laser i)
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Figure 1. (a) and (b) Show the laser configurations for the −h̄keff
and +h̄keff Raman transitions. (c) Depicts the energy–momentum
diagram for each Raman transition, where individual photons from
each laser are represented by diagonal lines. Two
counter-propagating lasers with frequencies ω1 and ω2 induce
Raman transitions between ground hyperfine levels |g〉 and |e〉. Both
lasers are far-detuned by an amount Δ from an upper intermediate
level |i〉, such that Δ � ωeg.

and Rabi frequency fixed for durations of π/2Ω±
R and π/Ω±

R ,
respectively. Given an atom initially in |g〉, a π pulse transfers
population to the other coupled state and a π/2 pulse creates
a superposition of the two. The efficiency, or fidelity of these
processes is reduced if the resonance condition is not met, or
if the pulse area (defined as the product of Rabi frequency and
duration) is not precisely π or π/2. As the Rabi frequency is
lowered (pulse length increased) for a single pulse, it becomes
more narrowband: the range of detunings for which good
fidelity is obtained reduces. Conversely, as the Rabi frequency
is increased, it becomes more broadband.

Many Raman-based interferometers employ pulses in the
Mach–Zehnder sequence, π/2 − π − π/2, where only a sin-
gle effective wave-vector direction (e.g. +h̄keff) is used
throughout. Consequently, the atoms remain in superpositions
of |g0〉 and |e+1〉 in the dwell times between the pulses. Extra
pulses with alternating wave-vector directions can be used
to enhance the momentum separation between these states
forming a LMT interferometer [36]. This raises the intrin-
sic interferometer sensitivity (the measurement scale-factor)
by increasing the area enclosed by the atomic wave-packets.
However, as long as the atoms remain in different internal
states during the dwell-times, the interferometer remains sensi-
tive to fluctuations in the laser phase and magnetic field during
these periods [22].

Figure 2(a) shows a space-time diagram for the state-
symmetric atom interferometer pulse sequence first introduced
by Berg et al [22]. For atoms initially prepared in the state |g0〉,
a π/2 pulse in the + direction creates a superposition of |g0〉
and |e+1〉. A subsequent π pulse in the − direction transfers
atoms in |g0〉 to |e−1〉, resulting in a superposition in which
atoms are in different momentum states but the same internal
state—unlike a conventional Raman-based Mach–Zehnder
interferometer.

Figure 2(b) shows the final transition probabilities follow-
ing the symmetric beamsplitter sequence as a function of
the initial atomic momentum (which manifests as a non-zero
Doppler detuning). 85Rb is the atomic species assumed for
all the work in this paper and appendix A provides details

Figure 2. (a) Space-time diagram for a symmetric interferometer
sequence. Beamsplitter and mirror interactions are composed of
multiple Raman pulses, represented with vertical arrows. The arrows
depict the direction of momentum transfer, where up corresponds to
+h̄keff and down corresponds to −h̄keff . Red crosses indicate where
a pulse should not induce a transition. Atomic trajectories are solid
(dashed) lines for atoms in the electronic state |g〉 (|e〉). (b) Shows
the simulated transition probability corresponding to different
possible states following the beamsplitter sequence in (a) for a range
of initial atomic momenta ±2h̄keff simulated for ΩR/2π = 35.6
kHz. (c) Shows how the resonant fidelities of the beamsplitter and
mirror sequence depend on the Rabi frequency, where the largest
peak Rabi frequency 35.6 kHz is shown by a vertical line.

of the simulation method used to calculate state amplitudes.
We see that for atoms with initial momenta much less than
that imparted by a single two-photon recoil, the beamsplitter is
efficient, and atoms are diffracted into an equal superposition
of |e+1〉 and |e−1〉. However, unlike a conventional Raman
beamsplitter (a single π/2 pulse), where the resonant fidelity
of the pulse is unity for any combination of Rabi frequency
and duration that yield a pulse area of π/2, increasing the Rabi
frequency reduces the efficiency of the symmetric beamsplit-
ter because the symmetric beamsplitter requires narrowband
pulses.

In figure 2(c) we have plotted the resonant (zero initial
atomic momentum) fidelity of the symmetric beamsplitter
and mirror sequence for a range of two-photon Rabi fre-
quencies (assuming Ω+

R = Ω−
R ). The mirror fidelity is defined

here as |e+1|2, for an initial state of |e−1〉 (measuring the
population transfer) and the beamsplitter fidelity is defined
as 1 − ‖e+1|2 − 1

2 | − ‖e−1|2 − 1
2 |, for an initial state of |g0〉
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Figure 3. (a) and (b) Show space-time diagrams for two different
LMT N = 3 state-symmetric beamsplitter sequences. Vertical arrows
represent pulses for the two possible Raman transitions (+ and −);
solid (dashed) arrows represent broadband (narrowband) pulses.
Red crosses indicate where a particular pulse should not interact
with a specific arm. (c) Shows the resonant fidelities of the mirror
equivalent of (a), composed of pulses with a rectangular amplitude
profile and fixed phase, as the Rabi frequencies of the narrowband
and broadband pulses (ΩNB

R and ΩBB
R respectively) are varied.

(measuring how equal the resulting superposition state is).
Throughout this paper, we refer to these two quantities as
state-transfer fidelities. The resonant state-transfer fidelities
of both the mirror and beamsplitter generally decrease with
increasing Rabi frequency and hence bandwidth because the
individual pulses are less able to distinguish between the two
interferometer arms, the only exceptions being when, as shown
in figure 2(c), the unwanted arm undergoes an integer number
of Rabi cycles.

2.1. Large-momentum-transfer in state-symmetric
interferometers

Like non-symmetric Raman pulse atom interferometers, the
state-symmetric interferometer design may be extended to
enable LMT, where the beamsplitter pulse sequence is
designed to create a superposition of states with momenta
±Nh̄keff , where N is the LMT ‘order’. Figure 3 depicts two
different ways of creating a large momentum state-symmetric
beamsplitter using sequences of Raman pulses. In figure 3(a),
the N = 1 beamsplitter sequence from figure 2 is extended
by two additional high-power (broadband) π pulses in alter-
nating directions. These two pulses should ideally be resonant
with—and impart recoil kicks to—both arms simultaneously.
Alternatively, in figure 3(b), these two extra broadband pulses
are instead split into 4 low-power (narrowband) pulses which
are intended to impart kicks to individual arms only.

When using rectangular π pulses, each beamsplitter design
has significant drawbacks. For example, in the broadband
pulse design in figure 3(a), the fidelity of the extra π pulses
drops as the arms separate in momentum and hence reso-
nance frequency. This is shown in figure 3(c), where we have
depicted the N = 3 resonant mirror pulse sequence fidelity as
the Rabi frequencies of the two broadband pulses are varied.
We see that high Rabi frequencies and hence laser powers are
required to maintain 100% pulse fidelity even on resonance.
We also observe that if the broadband Rabi frequency is high
enough, the Rabi frequency of the single narrowband pulse
may be higher than is possible with the N = 1 beamsplitter
sequence without incurring fidelity loss. This is because the
arms are separated by a larger amount in detuning in the
N = 3 interferometer.

In comparison, the alternative design employing only nar-
rowband pulses permits 100% efficiency on resonance without
requiring prohibitively high Rabi frequencies. However, the
velocity acceptance of any order N beamsplitter sequence
using this design is limited by that of the first narrowband π
pulse in the sequence, which must be sufficiently selective in
detuning to avoid exciting the |e+1〉 → |g+2〉 transition.

3. Indistinguishable momenta and temperature
limits

In all atom interferometers, atoms are initially prepared in
a single internal state with individual momenta distributed
according to the temperature of the atomic cloud. In a general
state-symmetric atom interferometer, the beamsplitter diffracts
each atom into a superposition of two equal and opposite
momenta and the same internal state:

|g0〉 →
1√
2

(
|e−N〉+ |e+N〉

)
. (4)

The mirror, after a period of free evolution, must swap each
part of the superposition, providing a +2Nh̄keff momentum
kick to the lower arm |e−N〉, and a −2Nh̄keff momentum kick
to the upper arm |e+N〉. This means that the mirror must be
able to distinguish both parts of the superposition produced
by the beamsplitter and hence that the momentum distribution
must be sufficiently narrow to avoid overlap between the two
arms [39]. There is therefore an upper limit on the velocity
acceptance of any symmetric interferometer, which depends
on the size of the separation in momentum produced by the
beamsplitter (the momentum order N). This means that by
increasing the momentum separation, one can theoretically
allow more atoms from a higher temperature source to par-
ticipate in the interferometer, removing the need for velocity
selection using ‘blow-away’ pulses. This is because symmet-
ric Raman interferometers of the type described in section 2
require a pulse to selectively address one arm of the interfer-
ometer, which becomes easier when the momentum difference
between the arms is larger.

In figure 4, we have plotted atomic momentum distributions
corresponding to two different temperatures following N = 1
and N = 3 beamsplitter operations to illustrate how larger
momentum separations enable the mirror pulse to distinguish
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Figure 4. Post-beamsplitter momentum distributions shown
following ideal (a) N = 1 and (b) N = 3 beamsplitters for
temperatures of 0.37 μK and 3.33 μK. The large-momentum N = 3
beamsplitter places the hotter distribution into a superposition where
the two arms are distinguishable, but in the first-order beamsplitter
the same temperature results in considerable overlap between the
two arms.

between interferometer arms at higher temperatures. We have
made the simplification that each beamsplitter produces the
desired superposition state irrespective of the initial atomic
velocity as we are interested in highlighting the theoretical
upper-limit of the process. The momentum distributions for
each arm are taken to be Gaussian and are shown for the largest
temperatures for which 96% of the atoms have distinguishable
velocities in each case.

Even though we have shown that the theoretical limit of the
initial momentum width increases for large-momentum sym-
metric beamsplitters, producing large-momentum superposi-
tions using Raman pulses requires a combination of multiple
broadband and/or selective pulses. The broadband pulses must
simultaneously transfer momentum to all atoms in each arm as
the resonance conditions separate, and the narrowband pulses
must transfer all atoms in one arm but not interact with those
in another.

4. Optimal control methods

In this section, we explain how we design tailored beamsplit-
ter and mirror pulse sequences with alternating wave-vector
directions for any momentum order N symmetric interferom-
eter. These sequences are found by adapting open-loop opti-
mal control theory—specifically the Gradient Ascent Pulse
Engineering (GRAPE) algorithm [24]—and are designed to
produce high-contrast interferometer fringes for significantly
broader initial atomic momentum distributions than is possible

when using sequences of rectangular π/2 and π pulses. In
comparison with rectangular pulses where the laser phase and
intensity remain fixed during each interaction, we exploit the
fact that it is possible to vary the laser phase and intensity as a
function of time in our optimization.

Suppose we have a pulse sequence with a specific order
of wave-vector directions, e.g. +−+−, where the relative
laser phase φL and Rabi frequencyΩ±

R are piece-wise constant
functions of time with a common time-step duration Δt such
that the total number of time-steps in the pulse is M. This
means each constituent + and − subpulse is specified by a
vector of laser phases and Rabi frequencies (amplitudes). Dur-
ing a +(−) subpulse, the controls for the −(+) direction are
constrained to be zero to avoid double-diffraction. For a given
pulse sequence we therefore have four Cartesian control vec-
tors c j = {X+(tk), Y+(tk), X−(tk), Y−(tk)} where k = 1, . . . , M,
X(t) ≡ ΩR cosφL, and Y(t) ≡ ΩR sinφL. For convenience, we
flatten these into a single control vector c of length 4M.

The specific order of wave-vector directions in the overall
sequence determines the dimension of the state-space and
allows us to find an explicit form for the Hamiltonian during a
given time-step within a + or − subpulse respectively (shown
in appendix A). We can then compute the pulse propagator,
representing the time-evolution of the entire sequence,

Û(c) = ÛMÛM−1 . . . Ûk . . . Û2Û1, (5)

where Ûk is the propagator for the kth time-step.
GRAPE allows us to find waveforms of phase φL(t) and

amplitude Ω±
R (t) that maximize fidelities of the general form

F (c) = f (〈ψT|Û(c)|ψ0〉), (6)

where |ψT〉 is the target state, |ψ0〉 is the initial state, and f is
some differentiable function of the overlap between the final
and target states. For example, if f is the modulus-square, then
the fidelity represents how well the pulse sequence transfers a
given atom from initial to target states. Penalties such as those
that enforce smooth solutions or limit the maximum amplitude
during a pulse may easily be subtracted from F [40]. If we
require a pulse that maximizes the chosen fidelity under a
range of conditions, e.g. for a range of initial momenta, then we
can engineer robustness by performing ensemble optimization
[31, 41] where the ensemble includes the variations in those
conditions.

At its heart, GRAPE is simply an efficient method of com-
puting the local gradient of F with respect to each phase and
amplitude value in the entire control vector. Once the gradient
is computed, one can ascend the fidelity landscape towards a
peak: an optimized pulse of high fidelity. Second derivatives
of the fidelity with respect to the controls provide curva-
ture information which enables enhanced convergence through
Newton-type methods [42, 43]. Computing second deriva-
tives is generally computationally expensive, so quasi-Newton
approaches—which approximate them through a history of
gradients—are generally preferred. One popular example
is the limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) method [44], which we use for the optimization in
this work.

5
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4.1. Measures of performance and velocity-acceptance

In order to optimize the pulses in our interferometer, we must
first specify the correct fidelities for the beamsplitters, mirrors,
and recombiners. Our order-N beamsplitter pulse sequence,
represented by the pulse propagator Ûbs must transfer atoms
initially in the state |g0〉 to an equal superposition of |e−N〉 and
|e+N〉 for odd N (|g−N〉 and |g+N〉 for even N). We therefore
define the following individual-atom fidelity

FN
bs(c, v) = |〈ψT(v)|Ûbs(c, v)|g0〉|2, (7)

where the target state (for odd N) is given by

|ψT(v)〉 = 1√
2

(|e−N〉+ eiφ(v)|e+N〉), (8)

where φ is the target superposition phase. In order to obtain
high fidelities in the optimization, we have found it necessary
to define the target phase to be a linear function of the initial
atomic velocity, such that φ(v) = 2Nkeffvτ , where τ is the total
pulse duration. This way, after the pulse, a given atom ends
up in a superposition whose phase is equivalent to that which
would have accrued in a period of free evolution equal to the
pulse duration.

Our mirror pulse sequences must swap the two arms of the
interferometer, performing the operation

1√
2

(eiφ|e−N〉+ |e+N〉) →
1√
2

(|e−N〉+ eiφ|e+N〉), (9)

for all possible input superposition phases φ. It is vital that
the phase of the input superposition state is not modified in a
different way for different atoms, because to do so would
scramble any interferometric measurement. We therefore
simultaneously optimize a series of state-to-state fidelities and
average them

FN
m (c, v) =

1
Nφ

Nφ∑
i=1

|〈ψT(φi)|Ûm(c, v)|ψi(φi)〉|2, (10)

where the initial and target states (|ψi(φ)〉 and |ψT(φ)〉) are
those appearing in equation (9) and the individual fidelities
are averaged over a range of Nφ input superposition phases
between −π and π.

The recombiner pulse sequence may be obtained from the
beamsplitter sequence by using the ‘flip-reverse’ construc-
tion procedure [33, 45], where the beamsplitter phase and
amplitude profiles are time-reversed and the phase profile is
inverted (φL(t) →−φL(τ − t)). This also involves reversing
the order of wave-vector directions. This ‘flip-reverse’ pro-
cedure produces a pulse that cancels the velocity-dependent
phase introduced by the beamsplitter and correctly converts
any relative phase accumulated between the ±Nh̄keff states
into a population difference between the states |g0〉 and |e+1〉.

Since our aim is to find pulses that improve the velocity
acceptance of the interferometer, for each pulse we maximize
an ensemble fidelity Φbs,m where the ensemble is defined by
a symmetric range of Nv input velocities (Doppler shifts)
{−vmax, . . . , vmax} and hence engineer robustness to variations

in the initial atomic momenta. The larger the range of input
momenta included in this ensemble, the larger the velocity
acceptance of the optimized pulse.

It is also important that while reducing the sensitivity of
the pulses to variations in the initial atomic velocity we do
not make the pulse sequences more sensitive to variations in
laser intensity (which manifest as variations in the two-photon
Rabi frequency). We therefore also average our fidelities over
a range of Nε amplitude errors {εmin, . . . , εmax} (assumed con-
stant for the duration of individual sequences). We define an
amplitude error as ε ≡ Ωmax

R /Ωeff where Ωmax
R is the actual

maximum Rabi frequency and Ωeff is the intended maximum
Rabi frequency during the pulse [46].

We therefore arrive at the following ensemble fidelities for
our beamsplitter and mirror pulses:

Φbs,m(c) =
1

NvNε

vmax∑
v=−vmax

εmax∑
ε=εmin

FN
bs,m(c, v, ε). (11)

We subtract two weighted penalty terms [40] from our
ensemble-averaged fidelity: a derivative-norm-square (DNS)
penalty to constrain waveform smoothness, and a spillout-
norm-square (SNS) penalty to constrain the maximum Rabi
frequency to Ωeff . These penalty terms may be written as:

PDNS(c j) =
1
M

M∑
k=1

(
M∑

l=1

D̂klc
j
l

)2

, (12)

PSNS(c) =

⎧⎪⎨
⎪⎩

1
2M

4M∑
k=1

(|ck| − A)2, |ck| > A

0, |ck| � A

. (13)

D̂ is a finite-difference operator which computes the second-
order derivative of a control vector with respect to time and
A ≡ Ωeff/

√
2.

5. Results

We have optimized three separate symmetric interferometer
sequences corresponding to momentum orders of N = 1, 2, and
3. For each momentum order, we constructed our optimized
pulses from the smallest number of subpulses with alternating
wave-vector directions necessary to reach the target states.
For example, the N = 3 beamsplitter sequence was +−+−
and the corresponding mirror sequence was +−+−+−+.
Furthermore, we restricted the duration of each + and −
subpulse to be identical and optimized our pulses with no time
delay between the wave-vector switching [47].

For each momentum order, we have optimized our pulses
to be robust to different ranges of input momenta such that the
desired velocity-acceptance increases with N. vmax = 0.5, 1
and 1.5 (units of h̄keff/m) for N = 1, 2, and 3 respectively.
εmin = 0.95 and εmax = 1.05 for all optimizations carried out
in this work.

We have optimized our pulses allowing the Rabi frequency
and relative laser phase to vary with time, subject to penalties

6
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Figure 5. Simulated state-transfer fidelities of rectangular ((a), (c), (e), (g), (i) and (k)) and optimized ((b), (d), (f), (h), ( j) and (l))
symmetric Raman pulses for momentum orders of N = 1, 2, and 3 shown as a function of initial atomic momentum on the x-axis and the
amplitude error on the y-axis. Beamsplitter (bs) pulses are shown in the first two columns; mirror (m) pulses are shown in the final two. For
the optimized pulses the region of optimization is indicated by the red dashed box. The contours are at 0.2, 0.4, 0.6, 0.8, 0.9, and 0.95. Axis
labels include the total duration of each composite pulse sequence showing that, as N is increased, optimized sequences can be significantly
shorter than their rectangular counterparts.

on the waveform smoothness and maximum Rabi frequency
(applied above an experimentally feasible limit of 200 kHz).
Furthermore, we restricted the Rabi frequency at the begin-
ning and end of each pulse sequence to be zero, to prevent
spikes in amplitude appearing at the beginning and end of
the sequences. The pulses were optimized using the L-BFGS
GRAPE algorithm implemented in the nuclear magnetic reso-
nance (NMR) Spinach spin dynamics toolbox [48]. The initial
guess for the waveforms was a random phase and amplitude
profile, and the algorithm was set to terminate either following
1000 iterations or if the norm of the gradient fell below 10−6.
The update step size used in a given iteration of the L-BFGS
optimization is calculated using the cubic line search algorithm
detailed in [40]. Due to the nature of numerical optimization,
there is no guarantee we have found the best pulses for the cho-
sen parameters, and more exploration of the fidelity landscape
may be required to do this.

5.1. Optimized state-symmetric pulse sequences

Figure 5 shows the simulated state-transfer efficiency of rect-
angular and optimized pulse sequences for symmetric beam-
splitter and mirror pulses, respectively. The fidelities are shown
as a function of initial atomic momentum and amplitude error.
The red dashed boxes correspond to the target velocity accep-
tance and amplitude error robustness of the optimized pulses.

The rectangular pulse sequences were composed entirely of
narrowbandπ and π/2 pulses (the design shown in figure 3(b))
with Rabi frequencies chosen such that the unwanted transi-
tions for each π pulse in the sequence occur at the first zero
in the π pulse sinc-squared spectrum. We observe a signif-
icant increase in the velocity acceptance with the optimized
pulses and, further, that this increases as the momentum order
is increased. In comparison, the velocity acceptance of the
rectangular pulse sequences is limited for all N by that of the
N = 1 sequence.

Figure 5 also indicates the total duration of each pulse
sequence; we observe that the duration of the optimized
sequences does not increase significantly with momentum
order—indeed the durations of the N = 1 and N = 3 beam-
splitters are identical. This is because it becomes easier to
optimize symmetric beamsplitter and mirror sequences as N
is increased.

The amplitude and phase profiles for the optimized pulses
simulated in the contour plots are displayed in figure 6 along
with their ensemble fidelities (equation (11)). It is hard to
discern a clear pattern to the results of the optimization, but
we notice that sometimes the mirror pulse is optimized with
a time-symmetric amplitude profile and a time anti-symmetric
phase profile and that these properties preserve the superposi-
tion phase in the transformation of equation (9). The sudden
2π jumps apparent in the phase profiles are artefacts of the

7



J. Phys. B: At. Mol. Opt. Phys. 55 (2022) 205501 J Saywell et al

Figure 6. Optimized phase and amplitude profiles corresponding to optimized symmetric beamsplitter and mirror sequences for
interferometers of order N = 1 to N = 3. In these plots, we have factored the maximum Rabi frequency Ωeff out of the pulse amplitudes. The
terminal ensemble fidelities reached by the optimization are shown above each panel. Positive and negative wave-vector directions
(subpulses) are represented by blue (solid) and red (dashed) waveforms respectively and only one wave-vector has a non-zero Rabi
frequency at any one time, alternating between pre-defined (shaded) periods. Each subpulse consists of 100 time-steps, except the pulse in
(a) which has 200 steps per subpulse.

graphical representation: the Cartesian waveforms ΩR cosφL

and ΩR sinφL are smooth functions of time.
As an illustration of how the optimized symmetric pulses

work, we have simulated the state probabilities throughout
the N = 2 beamsplitter sequence for a resonant atom in
figure 7. We observe that each subpulse within the optimized
sequence performs the same role identified in the schematic of
figure 3(a): starting in the state |g0〉, the first subpulse creates
a superposition of |g0〉 and |e+1〉; the second subpulse (in the
opposite direction) transfers |g0〉 to |e−1〉 and |e+1〉 to |g+2〉;
the final subpulse then transfers |e−1〉 to |g−2〉 leaving the other
arm (state |g+2〉) untouched. The first subpulse takes the role
of the π/2 pulse, the second acts as a broadband π pulse, and
the final as a narrowband π pulse.

5.2. Interferometer contrast

In this section, we explain how we simulate the expected inter-
ferometer fringe contrast following a state-symmetric order N
interferometer at a given cloud temperature, and compare the
results for the optimized and rectangular pulse sequences.

Starting with an atom with non-zero momentum p in the z-
direction, we compute the final state following the beamsplitter
pulse sequence and remove all residual population in unwanted
states, preserving the two primary interferometer arms for the
chosen momentum order N, e.g. |e+N〉 and |e−N〉. This state-
purification is roughly equivalent to performing a blow-away
operation except all unwanted momentum orders are removed
not just those in a particular electronic state. Following a

period of free evolution, we evolve the state of both arms under
the mirror pulse sequence and repeat the state-purification step.
We then apply a second period of free evolution (of equiva-
lent duration to the first to cancel the momentum-dependent
acquired phase), and introduce a relative phase φint between
the two arms. Finally, we apply the combined propagator for
the recombiner pulse sequence (Ûre, also a function of p) and
compute the probability of finding the atom in the state |e+1〉.
This probability—a function of initial atomic momentum—is
given by

Pe(p) =
∣∣〈e+1|Ûre

(
|ψu(p)〉+ eiφint |ψd(p)〉

)∣∣2, (14)

where |ψd〉(p) and |ψu〉(p) are the states prior to the final pulse
in the lower and upper interferometer arms, respectively.

We then perform numerical integration of equation (14)
over a Gaussian distribution of initial atomic momenta cor-
responding to a specific temperature and fit a sinusoid to the
resulting thermally-averaged probability for a range of relative
phases φint. The amplitude of the fitted sinusoid is interpreted
as the thermally-averaged interferometer contrast following a
particular interferometer sequence.

The results of the contrast simulation are shown in figure 8
for rectangular and optimized sequences. We observe that
the optimized pulses increase the contrast at all simulated
cloud temperatures and, further, that the higher the momentum
separation (N), the higher the contrast for a given cloud tem-
perature. For example, the N = 3 optimized sequence yields
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Figure 7. State probabilities for |gn〉 (a) and |en〉 (b) states computed
during the N = 2 beamsplitter pulse as a function of time. The
amplitude and phase waveforms from figure 6(c) are reproduced on
axes (c) and (d) for reference. The atom is initially at rest in the state
|g0〉. By the end of the sequence, it is in an equal superposition of
|g−2〉 and |g+2〉.

greater than 95% contrast at a temperature of 1 μK where the
N = 3 rectangular sequence results in a contrast below 20%.

5.3. ‘Blow-away’ compatible optimized pulses

A key feature of the state-symmetric interferometer scheme
introduced by Berg et al in [22] was that it allowed a state-
purification or ‘blow-away’ pulse to be applied after the initial
beamsplitter. This pulse is designed to remove atoms in a
particular internal state e.g. |g〉 or |e〉, and since the beam-
splitter produces a superposition of atoms in the same internal
state |e〉, can be applied after the beamsplitter pulse. This
removes the need for a long velocity-selective π pulse before
the beamsplitter (as is often used in conventional Raman
interferometers). The symmetric beamsplitter in [22] therefore
provides an automatic velocity selection of the atomic sample.

Although we have demonstrated that optimal control can
significantly increase the velocity acceptance of the interfer-
ometer pulses as the momentum order of the diffraction is
increased, if we inspect the final state probabilities following
the optimized beamsplitters for a range of input momenta
(figure 9(a)), we see that they are not compatible with blow-
away pulses: there is significant population in the excited state
following the pulses for large input momenta.

However, we can modify our beamsplitter fidelity to ensure
that outside the central detuning pass-band (the detuning range

Figure 8. Simulated contrast for interferometers of orders
N = 1, 2, 3 using rectangular pulses (a) and GRAPE-optimized
pulses (b). The rectangular pulse sequences consist of entirely
narrowband pulses.

in which we desire an equal superposition of target states),
there is a stop-band (sb) where all the population is directed
into the ground state, therefore enabling blow-away pulses
after the beamsplitter. For the N = 1 beamsplitter sequence,
this modification amounts to minimising the population in the
‘loss’ states |e−1〉 and |e+1〉 in the sb, since the only possible
excited states that are reachable after the +− sequence are
|e−1〉 and |e+1〉. In the optimisation, this is done by subtracting
the following loss term from the ensemble fidelity defined in
equation (11):

Ploss(c) =
1

Nsb
v

∑
v∈sb

∑
loss

|〈ψloss|Ûbs(c, v)|g0〉|2. (15)

Nsb
v represents the number of atomic momenta in the sb. For

the N = 3 case, where the number of allowed states is larger,
this amounts to simultaneously minimising the population in
the loss states |ψloss〉: |e−1〉, |e+1〉, |e−3〉, and |e+3〉 in the sb.
Minimising these quantities forces atoms to diffract into the
higher momentum order |g〉 states or remain in the initial state
outside the pass-band therefore enabling state purification after
the pulse.

The results for this selective optimization for a momentum
order of N = 3 are shown in figure 9 and compared with
the equivalent N = 3 beamsplitter from figure 6. We do not
consider such a modification to the order N = 2 beamsplit-
ter sequence, as it produces a superposition of atoms in the
internal state |g〉 from atoms initially in the internal state |g〉

9



J. Phys. B: At. Mol. Opt. Phys. 55 (2022) 205501 J Saywell et al

Figure 9. (a) and (b) Show the transition probability for different states following two optimized N = 3 beamsplitter pulse sequences as a
function of atomic momentum. Both beamsplitters are optimized to produce an equal superposition of |e−3〉 and |e+3〉 in the central
(cross-hatched) region. The total loss to unwanted momentum states is represented, divided by electronic state, as |gloss〉 and |eloss〉. This loss
becomes significant for large input momenta but, while in (a) it is distributed across both hyperfine levels, in (b) it is largely restricted to |gn〉
by explicitly minimising excitation to |en〉 states in the hatched stop band. This allows atoms in unwanted states to be removed with a
‘blow-away’ pulse, at the expense of increased pulse duration. (c) and (d) Show the amplitude and phase profiles, respectively, for this
blow-away compatible (selective) pulse. Each subpulse consists of 200 time-steps and the total sequence duration is 100 μs, which is twice
that of the N = 3 beamsplitter presented in figure 6. The amplitude profile shown in (c) also possesses significantly smoother rises and falls.

and therefore the limiting behaviour at large detuning is not
compatible with a removal of atoms in the wrong state. We
have found that these blow-away compatible pulses needed to
be longer to reach similar fidelities to the ones in section 5, and
observe that there is still some small loss to the excited state
within the sb.

6. Discussion

State-symmetric Raman interferometers—like those employ-
ing Bragg pulses—minimize the effect of laser phase noise and
magnetic noise during the dwell-times but require sub-recoil
cloud temperatures for high diffraction efficiency. Velocity
selection is therefore necessary, inevitably discarding atoms
that move too quickly and thus lowering the measurement
SNR. In this paper, we have shown how Raman pulse
sequences designed using optimal control can increase the
velocity acceptance of this type of interferometer, enabling one
to potentially forgo the velocity selection step and hence use
more atoms in inertial measurements.

In addition, we have explained how increasing the momen-
tum imparted by the diffraction process allows one to further
lift the constraints on the initial temperature of the atoms. This
is because (a) larger momentum superpositions are easier to

distinguish with frequency selective pulses that affect only one
interferometer arm at a time and (b) optimized pulses can cre-
ate these larger momentum superpositions with high fidelity.
In all these applications, the rectangular π pulse is limited
by its sinc-squared excitation profile; optimized pulses can
be designed with tailored frequency selectivity and robustness
enabling higher fidelity sequences to be obtained.

A key argument in this paper is that optimal con-
trol can remove the need for velocity selection in state-
symmetric Raman-based interferometers. Velocity selection
often involves using a long, low-power π pulse to select a
sub-recoil distribution from a ∼μK atom cloud. However, the
atomic sample also typically needs to be prepared in a single
Zeeman substate in interferometers designed to detect inertial
effects. Although Zeeman state preparation can be performed
concurrently with velocity selection by using a bias magnetic
field to separate the substates in frequency before applying the
selective π pulse, it can also be performed without velocity
selection using optical pumping [49] and/or microwave pulses
[6]. It therefore remains useful to develop techniques that
enable high-contrast interferometry without velocity selection.

In the pulses optimized in this paper, the laser intensity
varies in time. This means the AC Stark shift (present in the
Raman resonance condition of equation (1)), changes during
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the pulses. Since this effect was not included in our model,
it must be compensated experimentally. This can be done by
adjusting the intensity ratio of the two Raman beams [37] or
by using additional off-resonant frequency components in the
Raman beams [50]. Alternatively, the AC Stark shift could be
included in the optimization itself, or the optimization could
be restricted to phase-varying pulse sequences only.

Spontaneous emission from unwanted single-photon exci-
tation will limit any practical improvement in fringe contrast
and pulse area that may be obtained using optimized pulse
sequences because they are longer than those composed of
rectangular pulses. The rate of spontaneous emission can
be reduced in Raman transitions by increasing the single-
photon detuning from the upper intermediate levels (at a cost
of reduced Rabi frequency if the laser intensity is not also
increased) although this can prevent one compensating the
AC Stark shift using the intensity ratio technique. In practice
therefore, it is vital that spontaneous emission is minimized
as much as possible and that one uses the shortest possible
optimized sequences.

We have optimized our interferometer pulses assuming that
the Rabi frequency and the Doppler detuning do not change
significantly in time. If there is an intensity imbalance between
pulse sequences (i.e. between beamsplitter, mirror, and recom-
biner) resulting from, for example, expansion of the atomic
cloud within a beam with a spatial intensity gradient, the
phase spread introduced by first pulse sequence will thus not
perfectly cancel with the final one. This leads to a phase shift
in the interferometer fringe (analogous to the effect explored
first by Gillot et al [51]). This could be reduced by limiting the
intensity variation experienced by the expanding atom cloud
by using bigger beams, or by directly compensating for this
effect in the optimization. Note that this effect is minimized
when maximizing the beamsplitter fidelity over a range of
different amplitude errors, meaning the same linear phase
spread should be applied and later reversed despite variations
in intensity—but it is not perfect unless the fidelity is 100%.

Finally, we note that the framework presented in this
paper can be extended to optimize pulses for Raman double-
diffraction schemes (as outlined in appendix A) and other
interferometer designs that employ multi-pulse sequences,
such as the algorithmic cooling scheme introduced by Free-
garde and Segal [52] as it utilizes the ladder of momentum
states addressed by sequences of laser pulses in alternating
directions.
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Appendix A. State-symmetric Raman pulse theory

We write the state of the atom following a general sequence of
pulses +−+−+− . . . as

|ψ〉 = (g−nmax , . . . , e−1, g0, e1, . . . , gnmax)T, (A1)

where nmax depends on the specific sequence of effective wave-
vector directions.

Following adiabatic elimination of the intermediate state |i〉
from the dynamics, we can find the equations for the rates
of change of the amplitudes gn(t) and en(t) corresponding to
the states |gn〉 and |en〉, respectively [17,53]. For the +h̄keff

transition, we find

iġn =
Ω+

R

2
e−iφL ei(δL−δD−(1+2n)δR)ten+1 (A2)

iėn+1 =
Ω+

R

2
eiφL e−i(δL−δD−(1+2n)δR)tgn, (A3)

and for the −h̄keff transition, we find

iġn =
Ω−

R

2
e−iφL ei(δL+δD−(1−2n)δR)ten−1 (A4)

iėn−1 =
Ω−

R

2
eiφL e−i(δL+δD−(1−2n)δR)tgn. (A5)

We have defined Ω−
R and Ω+

R as the two-photon Rabi fre-
quencies (assumed equal throughout this paper) for the −
and + Raman transitions, respectively. φL ≡ φ1 − φ2 is the
difference between the phase of each laser beam.

By making the transformation

gn ≡ ein(δD+nδR)tg̃n (A6)

en ≡ ein(δD+nδR)t−iδLtẽn, (A7)

we can move to a rotating frame and find that for the +h̄keff

transition

i ˙̃gn = n(δD + nδR)g̃n +
Ω+

R

2
e−iφL ẽn+1 (A8)

i ˙̃en+1 = [(n + 1)(δD + (n + 1)δR) − δL]ẽn+1 +
Ω+

R

2
eiφL g̃n,

(A9)

and for the −h̄keff transition that

i ˙̃gn = n(δD + nδR)g̃n +
Ω−

R

2
e−iφL ẽn−1 (A10)

i ˙̃en−1 = [(n − 1)(δD + (n − 1)δR) − δL]ẽn−1 +
Ω−

R

2
eiφL g̃n.

(A11)

We can therefore write the total Hamiltonian for the + direc-
tion as Ĥ = Ĥ0 + Ĥ+, and for the − direction as Ĥ = Ĥ0 +
Ĥ−, noticing that the drift term Ĥ0 (containing the detuning)
is common to each wave-vector direction. As an illustration,

11



J. Phys. B: At. Mol. Opt. Phys. 55 (2022) 205501 J Saywell et al

we depict each matrix in the basis of equation (A1) for the
case where nmax = 2:

Ĥ0 = h̄

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2δD + 4δR 0 0 0 0

0 −δD + δR − δL 0 0 0

0 0 0 0 0

0 0 0 +δD + δR − δL 0

0 0 0 0 +2δD + 4δR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A12)

Ĥ− =
h̄
2

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 Ω−

R eiφL 0 0
0 Ω−

R e−iφL 0 0 0
0 0 0 0 Ω−

R e+iφL

0 0 0 Ω−
R e−iφL 0

⎞
⎟⎟⎟⎟⎠,

(A13)

Ĥ+ =
h̄
2

⎛
⎜⎜⎜⎜⎝

0 Ω+
R e−iφL 0 0 0

Ω+
R eiφL 0 0 0 0

0 0 0 Ω+
R e−iφL 0

0 0 Ω+
R e+iφL 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎠.

(A14)
The form of these Hamiltonians makes it clear that, unlike

in Raman double diffraction, only adjacent pairs of states
are coupled by a pulse in a given direction: the system of
equations governing the dynamics is closed. This makes it
easier to simulate because there is no need to truncate the
ladder of momentum states included in the dynamics. In order
to optimise pulses for a double diffraction arrangement, one
can write the total Hamiltonian as the sum Ĥ = Ĥ0 + Ĥ+ +
Ĥ−, treating the Rabi frequency and relative phase for +
and − transitions as the same, and truncate the state-space
appropriately.

Once we specify the sequence of wave-vector directions
(+−+−+− · · ·) and hence constrain the dimension of
the state-space as explained above, we can write down an
expression for the Hamiltonian and exponentiate it to find the
propagator for time-evolution under a time-slice of durationΔt
with constant Rabi frequency and relative laser phase. Using

|ψ(Δt + t0)〉 = exp

(
− i

h̄
ĤΔt

)
|ψ(t0)〉 (A15)

we can then simulate the evolution of a particular atom’s
state under either a + or − pulse of constant Rabi frequency,
detuning, and laser phase. Periods of free evolution may also
be simulated in this manner, by simply setting Ĥ = Ĥ0 in the
state propagation.

Examining the drift Hamiltonian in equation (A12), we can
also see why state-symmetric interferometers are insensitive
to perturbations that affect the laser and hyperfine transition
frequencies during the dwell times. Assuming an order N
beamsplitter sequence produces a superposition of |e−N〉 and
|e+N〉 with perfect fidelity, the relative phase that subsequently
accrues between each arm when the light is off will depend
only upon the difference in the Doppler shift 2NδD between
these two states. Any change in δL = ω1 − ω2 − ωeg will leave
this relative phase unaffected.
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