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We compute the standard Euclidean window of the hadronic vacuum polarization using multiple
independent blinded analyses. We improve the continuum and infinite-volume extrapolations of
the dominant quark-connected light-quark isospin-symmetric contribution and address additional
sub-leading systematic effects from sea-charm quarks and residual chiral-symmetry breaking from
first principles. We find aWµ = 235.56(65)(50) × 10−10, which is in 3.8σ tension with the recently

published dispersive result of aWµ = 229.4(1.4)×10−10 [1] and in agreement with other recent lattice
determinations. We also provide a result for the standard short-distance window. The results
reported here are unchanged compared to our presentation at the Edinburgh workshop of the g-2
Theory Initiative in 2022 [2].

PACS numbers: 12.38.Gc

I. INTRODUCTION

The anomalous magnetic moment of the muon aµ is defined as the relative deviation of the muon’s Landé factor
gµ from Dirac’s relativistic quantum mechanics result, aµ = gµ/2 − 1. It is one of the most precisely determined
quantities in particle physics and has exhibited a persistent tension between the experimentally measured value and
the Standard Model theory result.

In order to reduce the experimental uncertainties, substantial efforts are currently undertaken at Fermilab (E989)
and planned at J-PARC (E34) [3]. In 2021 the Fermilab experiment released first results [4] confirming the previously
best result obtained by the BNL E821 experiment [5] and reducing the experimental uncertainty from 0.54 ppm to
0.46 ppm. Over the next few years, the Fermilab experiment aims to reduce the uncertainty further to approximately
0.14 ppm [6].

The Standard Model result provided by the Muon g-2 Theory Initiative [7–27] currently has an uncertainty of
0.37 ppm and is in 4.2σ tension with the experimental value. A further reduction of the theory uncertainty by at least
a factor of two is therefore needed [28] to match the expected experimental progress over the next few years. More
than 90% of the theory uncertainty is due to the leading-order hadronic vacuum polarization (HVP) contribution
such that a reduction of its uncertainty is particularly pressing.

The leading-order HVP contribution aHVP LO
µ can be related to e+e− decays using a dispersion relation such that, to

the degree that there is no new physics in e+e− decays, it can be used to represent the Standard Model theory result.
The Muon g-2 Theory Initiative result quoted above uses this method to determine the HVP contribution. One can
also relate the HVP contribution to hadronic τ decays, however, this requires precise first-principles knowledge of the
needed isospin rotation. Our collaboration is working on such a calculation [29] and we will report on related progress
in a separate publication. Finally, the HVP contribution can be computed from first principles using systematically
improvable lattice QCD+QED methods.
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Until recently, lattice QCD+QED methods have not yet been competitive with the precision provided by the
dispersive method. The BMW collaboration, however, has now produced a lattice QCD+QED result with 0.8%
precision [30], which is close to the current 0.6% precision of the dispersive method. The BMW value taken by itself
only leads to a 1.5σ tension for aµ. At the same time, the BMW value for the HVP contribution is in a 2.1σ tension
with the dispersive result provided by the Muon g-2 Theory Initiative.

In 2018, our collaboration introduced Euclidean window quantities [31], which allow for the separation of the
most challenging short and long time-distance contributions to aHVP LO

µ . The remaining standard window quantity,

aHVP LO W
µ , is much easier to compute at high precision in lattice QCD+QED and can also be computed using the

dispersive method [1, 30–32]. The BMW collaboration’s calculation of aHVP LO W
µ is in fact in 3.7σ tension with the

dispersive result, which has motivated many lattice collaborations to focus on high-precision calculations of aHVP LO W
µ

first in order to clarify the situation. In this work, we provide a significantly improved calculation of aHVP LO W
µ . We

focus on the the quark-connected light-quark contribution in the isospin-symmetric limit, which accounts for almost
90% of aHVP LO W

µ . Special attention is given to the continuum limit for which we replace our previous continuum
extrapolation based on a single approach using 2 lattice spacings with one based on 8 distinct approaches using 3
lattice spacings. We perform this update using a blinding procedure with five independent analysis groups. This
blinding procedure is implemented to avoid bias toward our previous computation of aHVP LO W

µ in Ref. [31], the
dispersive results, or other lattice results.

This paper is organized as follows. In Sec. II, we describe our methodology before giving computational details
in Sec. III. In Sec. IV, we discuss blinded results and explain convergence to the final prescription to determine
aHVP LO W
µ . Finally, in Sec. V, we present unblinded results and compare them to other groups’ results, including

data-driven ones, before concluding in Sec. VI.

II. METHODOLOGY

We first define the time-momentum representation in Sec. II A, which provides the basis for the definition of the
Euclidean windows in Sec. II B. In Sec. II C we define the isospin-symmetric world around which we expand. Special
care is taken such that the isospin-symmetric contribution can be compared directly with other lattice results. In
Sec. II D, we describe our blinding procedure.

A. Time-momentum representation

Starting from the vector current Jµ(x) = i
∑
f QfΨf (x)γµΨf (x) with fractional electric charge Qf and sum over

quark flavors f we may write

aHVP LO
µ =

∞∑

t=0

wtC(t) (1)

with correlator

C(t) =
1

3

∑

~x

∑

j=0,1,2

〈Jj(~x, t)Jj(0)〉 , (2)

where the weights wt capture the photon and muon part of the HVP diagrams. A complete list of diagrams is given
in Fig. 1. The weights can be expressed as a one-dimensional integral [33]

wt = 8α2

∫ ∞

0

dQ2

(
cos (Qt)− 1

Q2
+

1

2
t2
)
f(Q) (3)

with

f(Q) =
m2
µQ

2Z3(Q)(1−Q2Z(Q))

1 +m2
µQ

2Z2(Q)
, Z(Q) =

√
Q4 + 4Q2m2

µ −Q2

2m2
µQ

2
, (4)

where mµ is the muon mass. Note that we sum only over non-negative t in Eq. (1), yielding an additional symmetry
factor of two in wt. Using a lattice discretization for the photon momenta, an alternative weight

ŵt = 8α2

∫ ∞

0

dQ2

(
cos (Qt)− 1

(2 sinQ/2)2
+

1

2
t2
)
f(Q) (5)
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Diagrams – Isospin limit 2

with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the �� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2,↵�m, �m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA � ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e�ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e�ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the �� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e�ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.
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Figure 6: Displacement probability for 48c run 1.

(a) V (b) S (c) T (d) D1 (e) D2

(f) F (g) D3

Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.
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FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calcu-

x

x

x

(a) M

x

x

x

(b) R

x

x

x

(c) O

Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e�ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).

9

FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator.

Diagrams – QED corrections

and fit d�.
red For the finite-volume errors, the two-pion states in d are identical to the

I = 1 contributions of c and can be calculated using the GSL estimate which
we use for c. For the omega-related finite-volume errors, I will take the fitted
d� and E� and use this as the full result at finite-volume and compare it to
a GS model with omega mass from the fitted E� and width from the PDG
in infinite-volume. I should also compare this to R-ratio results for the I = 0
channel.

Do this entire exercise for 24ID and 32ID to estimate discretization errors.

4 QED and SIB diagrams

We will perform a full first-principles calculation of all O(↵) and O(mu � md)
corrections. The corresponding list of diagrams is given in Figs. 1 and 2.
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(g) D2 (h) D2d (i) F (j) D3

Figure 1: QED corrections
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Figure 2: SIB corrections
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FIG. 1. The diagrams of a complete calculation of aHVP LO
µ when formulated as an expansion around an isospin-symmetric

limit. In the isospin-symmetric limit, there is a quark-connected (left) and quark-disconnected contribution (right). For the
QED- and strong-isospin-breaking (SIB) corrections, we indicate the photon vertices that connect to the muon with filled dots
and only show the respective sub-diagrams. For the QED corrections, one has to enforce the exchange of gluons between the
quark loops in diagram F to avoid double-counting of higher-order HVP contributions. For the SIB corrections, the crosses
denote scalar operator insertions to allow for a linear correction in the respective quark masses.

can be defined, which gives the same value of aHVP LO
µ in the continuum limit. We use both versions to scrutinize the

continuum extrapolation.

The correlator C(t) is computed in lattice QCD+QED at physical pion mass with non-degenerate up- and down-
quark masses including up-, down-, strange-, and charm-quark contributions. The missing bottom-quark contributions
are estimated using perturbative QCD.

B. Euclidean windows

In the following, we suppress the leading-order HVP LO label for brevity. Following [31], we define Euclidean
windows that partition the contributions of time-slices t in Eq. (1) into short-distance (SD), window (W), and long-
distance (LD) contributions. To make the quantities well-defined at non-zero lattice spacing, we introduce smearing
kernels with width ∆. We write

aµ = aSD
µ + aW

µ + aLD
µ , (6)
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where

aSD
µ (t0,∆) =

∞∑

t=0

C(t)wt[1−Θ(t, t0,∆)] , (7)

aW
µ (t0, t1,∆) =

∞∑

t=0

C(t)wt[Θ(t, t0,∆)−Θ(t, t1,∆)] , (8)

aLD
µ (t1,∆) =

∞∑

t=0

C(t)wtΘ(t, t1,∆) , (9)

Θ(t, t′,∆) = [1 + tanh [(t− t′)/∆]] /2 . (10)

All contributions are well-defined individually and can be computed using lattice methods as well as dispersive methods
by relating the correlator

C(t) =
1

12π2

∫ ∞

0

d(
√
s)R(s)se−

√
st (11)

to the R-ratio

R(s) =
3s

4πα2
σ(s, e+e− → had). (12)

Within a lattice calculation, discretization effects are most severe for the SD contribution, while statistical noise and
finite-volume effects are most pronounced in the LD contribution. The window quantity aW

µ has small statistical and
systematic errors.

As recently argued in Ref. [1], the systematic study of window quantities aW
µ (t0, t1,∆) as a function of t0 and t1 is

useful to constrain energy regions within the R-ratio contributing to a possible tension between lattice and dispersive
results. First lattice results with a high resolution in t0 and t1 are already available [34]. Windows with larger values of
t0 and t1 are more sensitive to low-energy states and are useful for checking effective field theory as argued in Ref. [35].
A systematic study of the short-distance window aSD

µ (t0,∆) as a function of t0 is also useful as argued in Ref. [36],

where the aSD
µ (t0,∆) defined as above are called one-sided windows since 1−Θ(t, t0,∆) = [1− tanh [(t− t0)/∆]] /2 =

Θ(t0, t,∆). In the current work, we focus on the short-distance and window contributions for the standard values of
t0 = 0.4 fm, t1 = 1.0 fm, and ∆ = 0.15 fm [31].

C. Isospin-symmetric world

It is convenient to perform the calculation as an expansion around an isospin-symmetric point [31, 37–39]. We
therefore compute the diagrams of Fig. 1 individually. The exact choice of the expansion point is inconsequential
for the total aµ, however, care is needed if one attempts to compare isospin-symmetric results provided by different
groups [40].

In this work, we present results for two choices of the isospin-symmetric world. The first choice is the RBC/UKQCD18
world defined by

mπ = 0.135 GeV , mK = 0.4957 GeV , mΩ = 1.67225 GeV , (13)

consistent with our previous work [31]. In this update, we also consider the effects from dynamical sea-charm quarks
from first principles and therefore extend this choice by

mDs = 1.96847 GeV . (14)

Since one of the main goals of this work is to scrutinize the result of Ref. [30], we also consider a second choice

mπ = 0.13497 GeV , mss∗ = 0.6898 GeV , w0 = 0.17236 fm , (15)

which we label as the BMW20 world. The quantity mss∗ is obtained from the ground-state energy of the quark-
connected pseudoscalar s̄s meson two-point function. This choice is consistent with the isospin-symmetric world
defined in Ref. [30]. For the sea-charm study, we adopt Eq. (14) also in this case.
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ID a−1/GeV Nf L3 × T × Ls/a4 b+ c amres × 104 mπ/MeV mK/MeV mDs/GeV mπL
48I 1.7312(28) 2+1 483 × 96× 24 2 6.1 139.32(30) 499.44(88) – 3.9
64I 2.3549(49) 2+1 643 × 128× 12 2 3.1 138.98(43) 507.5(1.5) – 3.8
96I 2.6920(67) 2+1 963 × 192× 12 2 2.3 131.29(66) 484.5(2.3) – 4.7
1 1.7310(35) 2+1 323 × 64× 24 2 6.3 208.1(1.1) 514.0(1.8) – 3.8
2 1.7257(74) 2+1 243 × 48× 32 2 4.6 285.4(2.9) 537.8(4.6) – 4.0
3 1.7306(46) 2+1 323 × 64× 24 2 6.5 211.3(2.3) 603.8(6.1) – 3.9
4 1.7400(73) 2+1 243 × 48× 24 2 6.2 274.8(2.5) 530.1(3.1) – 3.8
5 1.7498(73) 2+1+1 243 × 48× 24 2 6.7 279.8(3.5) 539.1(5.3) 1.9902(69) 3.8
7 1.7566(81) 2+1+1 243 × 48× 24 2 7.9 272.5(5.9) 523(10) 1.3882(57) 3.7
A 1.7556(83) 2+1 243 × 48× 8 2 42 307.4(3.5) 557.3(5.7) – 4.2
24ID 1.0230(20) 2+1 243 × 64× 24 4 23 142.96(30) 515.7(1.0) – 3.4
32ID 1.0230(20) 2+1 323 × 64× 24 4 23 142.96(30) 515.7(1.0) – 4.5

TABLE I. List of ensembles with parameters determined in the RBC/UKQCD18 isospin symmetric world. Unless specified
otherwise, the ensembles have Iwasaki gauge action and Möbius [42] domain-wall [43, 44] fermion sea quarks with b − c = 1.
The parameters b and c are defined in Ref. [41]. For the Nf = 2 + 1 + 1 ensembles, the charm quarks couple to three-times
ρ = 0.1 stout smeared gauge fields as in Refs. [45, 46]. The scripts generating the new ensembles are publicly available [47]. The
24ID and 32ID ensembles have an additional DSDR term [41] in the gauge action. The 24ID and 32ID ensemble parameters
are taken from Ref. [48].

We define these parameters to the exact values given above without additional uncertainty. This avoids an unnec-
essary inflation of uncertainties when comparing isospin-symmetric lattice results. The experimental uncertainties of
the physical hadron spectrum are then taken into account when applying the isospin-breaking corrections.

To support the careful tuning of the isospin-symmetric world, we generated additional near-physical-pion-mass
ensembles allowing for the explicit calculation of light and strange quark-mass derivatives. Our choice of discretisation
and simulation parameters is summarised in Tab. I. We also generated ensembles with dynamical charm quarks and
ensembles with varying extent of the fifth dimension of our domain-wall fermions, Ls, to control for residual chiral-
symmetry-breaking effects. Finally, we include results at physical pion mass and a finer lattice spacing of a−1 ≈ 2.7
GeV.

We determined the ensemble parameters in two ways. First, we used the new ensembles to obtain the quark-mass
dependence of the quantities defined in Eqs. (13) and (15). We then tune the dimensionless mπ/mΩ and mK/mΩ

for the RBC/UKQCD18 world and w0mπ and w0mss∗ for the BMW20 world to the values provided in Eqs. (13) and
(15). Any of the three dimensionful values can then equivalently be used to determine the lattice spacing a for a
given ensemble. For the Nf = 2 + 1 + 1 ensembles, we also tune mDs/mΩ for the RBC/UKQCD18 world and w0mDs

for the BMW20 world to the value provided in Eq. (14). We provide the results for the RBC/UKQCD18 world in
Tab. I. In addition, we also performed an update of our global fit [41] for which we found consistent results. A detailed
discussion of the updated global fit will be published separately. The two determinations of ensemble parameters were
performed by disjoint sub-groups of authors.

D. Blinding procedure

Since we provide an update of a previous result [31] compared to which a lower value would mean agreement with
the dispersive method and a higher value would mean agreement with the lattice result of Ref. [30], two values that
are in 3.7σ tension with each other, we believe it is crucial to perform this update in a blinded manner.

We implement the blinding by creating modified correlators Cb(t) from the unaltered correlators C0(t). For each
lattice ensemble, we use

Cb(t) = (b0 + b1a
2 + b2a

4)C0(t) (16)

with respective lattice spacing a and random coefficients b0, b1, and b2 that are common for each ensemble but different
for each analysis group. The parameter b0 is drawn from a Gaussian distribution with mean µ = 1.0 and standard
deviation σ = 0.2. The dimensionful parameters b1 and b2 are drawn from a flat distribution with maximum values
of |b1a2| = 0.05 and |b2a4| = 0.0025 for our coarsest lattice cutoff a−1 = 1.73 GeV. This procedure based on three
random numbers per analysis group prevents the possibility of complete unblinding based on previously shared data
on the coarser two ensembles [31]. The blinding factors were generated and directly applied to C0 by author CL. This
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process took a given seed for the random number generator as input such that only this seed and not the blinding
factors were directly accessible to CL.

For the current update, we established five analysis groups (called A–E in the following), composed of non-
overlapping sub-groups of authors. The different analysis groups were provided with the ensemble parameters and the
respectively blinded correlator data. They then separately decided on their respective analysis procedures without
interacting with other groups. The chosen methods are described in Sec. IV A. After the groups completed their
analyses, we started a relative unblinding procedure during which two groups would jointly discuss and scrutinize
their approaches. In this process some important findings emerged, as described in Sec. IV C. Based on these discus-
sions, the collaboration then converged on a preferred prescription that is described in Sec. IV D. At this point the
prescription was frozen and a complete unblinding performed. The results are discussed in Sec. V.

III. COMPUTATIONAL DETAILS

In the following, we describe in detail the computational methods used in this work. We explain aspects of data
generation as well as crucial components of the various aµ analyses.

A. Overview of improvements

Compared to our previous calculation of Ref. [31], we have made several substantial improvements. With regard to
the statistical uncertainty, we increased the statistical sample size for the correlators on ensembles 48I and 64I by a
factor of four. Improvements reducing systematic uncertainties are described in the following.

To improve the continuum extrapolation, we add a finer lattice spacing at physical pion mass with a−1 = 2.7
GeV. We also consider an additional discretization for the vector current by studying both local-conserved as well
as local-local correlators. This can be done in a cost-efficient manner as described in Sec. III B. In addition, we use
two different renormalization procedures for the local vector current. The first procedure, which we label ZV , follows
Ref. [41] and uses that the expectation value of the charge operator in a pion state equals one. The second procedure,
which we label Z?V , uses the ratio of local-conserved to local-local correlators interpolated to fixed Euclidean time t?

to define the current normalization. The particular choice of t? is described in Sec. IV A. Finally, we use two different
weight functions wt and ŵt, see Eqs. (3) and (5), at a given lattice spacing. This gives a total of 3×2×2×2 = 24 data
points to study the continuum extrapolation, which improves our previous extrapolation based on two data points.

To reduce parametric uncertainties, we generated new near-physical pion- and kaon-mass ensembles to calculate
parametric derivatives with respect to quark masses. In Sec. III E, we also show how to obtain parametric derivatives
inspired by master-field methodology [49].

We previously estimated the missing sea-charm effects using perturbative QCD [41]. For this update, we have
generated new ensembles with dynamical charm quarks, which we match to our Nf = 2 + 1 ensembles as described
in Sec. III C.

Domain-wall fermions exhibit only small chiral symmetry breaking which is commonly quantified using the residual
mass mres [44, 50]. For this reason, a very small linear discretization error is allowed. We previously neglected such
effects but have now generated new ensembles with different extents of the fifth dimension Ls to quantify them from
first principles.

Since we only have a small number of configurations for the new 96I ensemble, we also investigate a new five-
dimensional master-field statistical error estimate in Sec. III D to considerably reduce the uncertainty on our estimate
of statistical variance concerning this ensemble.

B. Local- and conserved-current correlators

In addition to the local lattice vector current Jµ, which we denote in the following as J l
µ, we consider the conserved

lattice vector current Jc
µ as defined in Ref. [41]. We consider the correlators

Cab(t) =
1

3

∑

~x

∑

j=0,1,2

〈Jbj (~x, t)Jaj (0)〉 (17)

in the local-local (C ll) and local-conserved (C lc) versions. After performing the fermionic Wick contraction, the source
is always local and the sink varies between local and conserved. The contraction code is publicly available [51]. It
uses an all-mode-averaging procedure [52–55] combined with additional averaging of the low-low component of the
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FIG. 2. Ratio C lc(t)/C ll(t) as a function of Euclidean time t on the 96I ensemble.

correlator [31]. Our approach again relies on approximating the low-mode space on a coarse grid as introduced in
Ref. [56]. For the 96I ensemble, this yields a reduction of data volume by a factor of 30. This is crucial not just for
data storage but also for the computational performance of low-mode estimates due to the reduced memory-transfer
requirements.

For a given point source, the local-local and local-conserved correlators are highly correlated. We therefore compute
the ratio C lc/C ll using only a few correlated source positions and multiply this ratio with our full-statistics estimator
of C ll to obtain our estimator for C lc. In Fig. 2, we plot the ratio for the 96I ensemble.

For the 96I ensemble an additional improvement was made. For this ensemble, we generate a data set in which two
source positions at time-slice t and t+ 96 are combined with a Z2 number. For short and intermediate distances, this
effectively doubles our statistics at the same cost. A second lower-statistics single time-slice data set is provided to
account for the effects of the backwards propagation of the additional time slice.

Finally, all correlators are provided with identical valence- and sea-quark masses. In this manner, we can perform a
purely unitary data analysis. For the 64I ensemble, however, for historical reasons the eigenvectors were generated for
a partially-quenched mass am = 0.0006203 instead of the unitary mass am = 0.0006780 [41]. For this reason, a small
additional correlated data set was generated at am = 0.001774 such that the unitary correlators can be obtained by

aµ(0.0006780) = aµ(0.0006203) + (0.0006780− 0.0006203)
aµ(0.001774)− aµ(0.0006203)

0.001774− 0.0006203

≈ aµ(0.0006203) +
aµ(0.001774)− aµ(0.0006203)

20
. (18)

Non-linear effects in the small quark-mass shift are negligible for the precision goals of the present calculation.

C. Sea-charm effects

In this work, we estimate the effects of sea-charm quarks from first principles. Most of our ensembles have Nf = 2+1
sea quarks with an isospin-symmetric up- and down-quark pair and an additional strange quark. To study the sea-
charm effects from first principles, we have generated additional Nf = 2+1+1 ensembles with different charm masses
to separate the physical effects from a modification of discretization errors. We list the ensemble parameters in Tab. I.

We match the Nf = 2+1 and Nf = 2+1+1 ensembles to the same pion and kaon masses and the Wilson-flowed [57]
energy density at long-distance. In Fig. 3, we show tfE(tf ) with flow-time tf and Wilson-flowed energy density E(tf )
for the nominal ensemble 4, 5, and 7 of Tab. I. At shorter distances, we observe a clear signal of charm effects in
the energy density. For the lighter charm mass, this effect extends to longer distances. We plot tfE(tf ) instead of
the dimensionless t2fE(tf ) since all plotted ensembles share the same lattice spacing and the interesting features are
better highlighted in this way.
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FIG. 3. Wilson-flowed energy density E(tf ) multiplied with the flow-time tf for Nf = 2 + 1 and Nf = 2 + 1 + 1 ensembles.
The small statistical uncertainties for each line are shown as an error band.

We use these matched ensembles to measure the sea-charm contributions to the HVP. We do this in particular for
the short-distance window, where most of the effect should appear. The exact approach used by the different analysis
groups is explained in Sec. IV A.

D. Five-dimensional master-field statistical errors

For the 96I ensemble, we currently only have 33 gauge field configurations in contrast to the 64I and 48I ensembles
for which we have 238 and 386 gauge field configurations, respectively. In order to obtain a reliable statistical-error
estimate on the 96I ensemble, we have performed a slightly modified master-field error analysis [49]. In our approach,
we improve the covariance estimate by considering a five-dimensional master field with Markov time as an additional
fifth dimension. We expect exponential locality in the fifth dimension governed by the eigen-modes of the Markov
transition matrix and in the four space-time dimensions governed by the eigen-modes of the QCD Hamiltonian.

For an observable Oτ,x with Markov time τ and space-time coordinate x, we consider the statistical average

O =
1

|V|
∑

(τ,x)∈V

Oτ,x (19)

with set V that contains all tuples (τ, x) for which the observable was determined. Note that we explicitly allow for
sparse sampling in space-time as well as Markov time. The covariance of two such observables O and O′ is then given
by

Covτc,xc(O,O
′) ≡ 1

|V||V′|
∑

(τ,x)∈V,(τ′,x′)∈V′,
|x−x′|≤xc,|τ−τ ′|≤τc

(
〈Oτ,xO′τ ′,x′〉 − 〈Oτ,x〉〈O′τ ′,x′〉

)
(20)

and studying Covτc,xc(O,O
′) as a function of τc and xc to identify a plateau for large τc and xc. In practice,

we estimate Covτc,xc(O,O
′) based on a given set of gauge configurations, which adds an error suppressed by the

inverse square root of the number of sampled five-dimensional points. In comparison, the Jackknife estimator has an
uncertainty suppressed by the inverse square root of the number of gauge configurations, such that its uncertainty
is generally much larger. The distance |x − x′| takes the field boundary conditions into account, i.e., for periodic
boundary conditions, we consider the shortest distance between mirror images.

For arbitrarily sparse V, the various Oτ,x are effectively all statistically independent such that we expect a plateau
already for very small τc and xc. In general, just before reaching the gauge noise limit, the plateaus still start early
in xc. Conversely, a rising behavior in xc signals that our sample points are significantly correlated. We tune the
sampling of our vector correlators to be such that we almost reach the gauge noise limit and therefore plateaus
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FIG. 4. The statistical uncertainty of C(t) determined by Eq. (20) multiplied with a blinding factor c determined by the
five-dimensional master-field approach (individual data points) compared to the Jacknife estimate (solid lines). For these
estimates, we use randomly selected 660 point sources per 33 configurations on the 96I ensemble. Due to the sparseness of
our measurement setup, we observe a plateau in xc starting essentially from the smallest value. The plot is made after having
established a plateau in τc.

are reached for modest values of xc. In Fig. 4, we compare the statistical uncertainty of C(t) on the 96I ensemble
determined by the five-dimensional master-field approach to the Jackknife estimate.

E. Master-field parametric derivatives

In order to tune the Nf = 2 + 1 + 1 ensembles described in Sec. III C, we found the master-field formalism useful to
get initial estimates of parametric derivatives with respect to the gauge-action parameter β as well as the sea-charm
mass. To simplify the discussion, we set a = 1 in this sub-section.

Consider a general gauge action

S = −βNd(Nd − 1)

2

∑

x

Ax (21)

with space-time dimension Nd and field of Wilson loops Ax anchored at a point x. It is not crucial how we exactly
identify the location x as long as the coordinate behaves properly under translations of the system. One can then
show that for a general observable O in Nd = 4 without explicit β dependence,

∂β〈O〉 = 6 lim
xc→∞

Cov0,xc(O,A) , (22)

with Cov0,xc defined in Eq. (20). Setting O to the Wilson-flowed energy density E(tf ), e.g., allows us to determine
the β-derivative of the Wilson-flow scales t0 and w0 [57, 58].

We can also show that

∂m〈O〉 = lim
xc→∞

Cov0,xc(O,Tr[D̃−1
ov (m)]) , (23)

for sea-quark mass m and

D̃−1
ov (m) =

1

1−m
(
D−1

ov (m)− 1
)
, (24)

with overlap operator Dov [42, 59]. We find that the traces of D̃−1
ov (m) can be efficiently estimated using our tadpole

field approach of Ref. [60]. For domain-wall fermions, an additional flavor enters the path integral as the determinant
ratio

det(D(m)D−1(1)) (25)
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FIG. 5. We plot for the 96I ensemble Cov0,xc(E(tf ),Tr[D̃−1
ov (0.8)]) on the left and Cov0,xc(E(tf ), A) on the right for

tf = 2.01 ≈ t0/2. The Wilson-loop field A is defined in Eq. (21).

with five-dimensional Dirac operator D(m). For m = 1 this factor is trivial and we can view including an additional
flavor as changing the sea-quark mass down from m = 1 to the target value. In this way integrating the parametric
derivative with respect to m allows us to determine the effects of introducing an additional sea-charm quark. Setting
O to the Wilson-flowed energy density, allows us to determine the effect of the additional sea-charm quark to the
Wilson-flow scales t0 and w0. In Fig. 5, we show the convergence as a function of xc for the β derivative as well as
the charm-quark mass derivative at m = 0.8 of E(tf ) with tf = 2.01 ≈ t0/2 on the 96I ensemble. The lower scale
t0/2 allows for a statistically more precise estimate of the dependence of the lattice spacing on β and the charm-quark
mass.

F. Finite-volume effects

In order to determine the finite-volume effects on C(t), the analysis groups explored two methods: a direct fit to
the 24ID and 32ID data as well as the Hansen-Patella approach [61, 62]. Details of the former approach are given in
Sec. IV A. For the latter approach, we use a monopole ansatz of the electromagnetic pion form factor

F (k2) =
1

1− k2/m2
ρ

(26)

and study the dependence on mρ. For this ansatz Ref. [62] gives an expression for the finite-volume corrections for
C(t) in terms of a simple integral

CL(t)− C∞(t) =
∑

~n 6=~0

1

6π|~n|L

{
Im

∫

R+iµ

dk3

2π

eik3|x0|(4m2
π + k2

3)m4
ρ

(m2
ρ + k2

3)2

e
−|~n|L

√
m2
π+

k23
4

4k3

+

∫
dp3

2π
e−|~n|L

√
m2
π+p23

d

dz

[
e−z|x0|(z2 − 4m2

π)m4
ρ

(z +mρ)2(z2 + 4p2
3)

]

z=mρ

}
, (27)

where CL is the correlator at finite spatial volume L3 and C∞ is the infinite-volume version. The equation depends
on the pion mass mπ and the monopole-mass parameter mρ. The complex shift iµ of the integration contour has to
be chosen in the range 0 < µ < 2mπ, however, the integral does not depend on the exact choice. Equation (27) only

considers the pole contribution to the Compton amplitude and neglects terms of order e−
√

2+
√

3mπL as well as effects
of finite Euclidean time. This is well justified for our current precision goal. The effects of the regular contribution
to the Compton amplitude and effects of the finite Euclidean time extent are known [61, 62] and may be considered
in future work.

Note that the finite-volume corrections for the quark-connected diagram are 10
9 of the total as is easily seen from the

following argument. Consider a theory with quark charges Qu = 1
2 = −Qd instead of the physical Qu = 2

3 = −2Qd.

The QED charges of mesons made of up and down quarks are identical in both cases, however, in the Qu = 1
2 = −Qd
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theory the quark-disconnected diagram does not contribute, while the quark-connected diagram contributes with a
Q2
u + Q2

d = 1
2 factor instead of the physical Q2

u + Q2
d = 5

9 . We therefore find that 1
2

9
5 = 9

10 of the quark-connected

contribution is equal to the total contribution and equivalently that the total correction needs to be multiplied by 10
9

to obtain the correction for the quark-connected piece. This simple argument is consistent with partially quenched
Chiral Perturbation Theory studies [32, 34, 63].

IV. RELATIVE UNBLINDING

In the following, we summarize the different approaches of the five analysis groups and show the result of our
relative unblinding process. We highlight important findings and explain the prescription that all five groups agreed
to be used for the full unblinding.

A. Distinct methods of the five analysis groups

Each analysis group received the blinded correlator data as described in Sec. II D. The separate analysis groups
then discussed the data and agreed on the respective analysis methods within each group. The confinement of these
discussions to the separate groups lead to a diverse set of approaches to the data analysis. In the following sub-sections,
we briefly describe the approaches of each group, focusing on the differences.

1. Group A

Analysis group A provides results for aW
µ as well as aSD

µ . Statistical errors are obtained from a super-jackknife
procedure [64, 65] for most ensembles combined with a binning study and using the master-field error estimates of
Sec. III D on ensemble 96I. The continuum extrapolations are performed based on the 24 data points over three lattice
spacings described in Sec. III A, where small linear corrections to shift the individual points to the lines of constant
physics (LCP) are applied first. Finite-volume corrections are also applied before the continuum extrapolation. To
this end, the Hansen-Patella Eq. (27) is used for finite-volume corrections with nominal parameters mρ = 727 MeV
and errors estimated from the variation to mρ = 770 MeV. An additional ad-hoc 20% uncertainty is added to the
finite-volume corrections to account for the limitations discussed in Sec. III F. Combinations of the fit ansaetze

f2(a2) = c0 + c1a
2 , (28)

f2,4(a2) = c0 + c1a
2 + c2a

4 , (29)

f2α(a2) = c0 + c1a
2αs(µ = 1/a) , (30)

f2α,4(a2) = c0 + c1a
2αs(µ = 1/a) + c2a

4 (31)

are then considered with four-loop running coupling αs in the MS scheme [66].
For aW

µ , the central value is chosen as the average of the f2 fits to the (ωt, C
lc, Z?V ), (ωt, C

ll, Z?V ), (ωt, C
lc, ZV )

trajectories with t? = 1 fm. These trajectories had the smallest a4 contributions. For aW
µ , the effect of ωt compared

to ω̂t is negligible. The continuum extrapolation error is estimated by varying f2 to f2α and by considering the spread
of the mean to the individual (ωt, C

lc, ZV ) and (ωt, C
ll, Z?V ) fits.

For aSD
µ , the fit form f2,4 is used for all trajectories and the average of (ω̂t, C

lc, ZV ) and (ω̂t, C
lc, Z?V ) is used for the

central value since they exhibit the smallest a4 coefficients. The variation from f2,4 to f2α,4 as well as the maximal
variation to (ω̂t, C

ll, ZV ), (ωt, C
lc, ZV ), (ω̂t, C

lc, ZV ), (ω̂t, C
ll, Z?V ), (ωt, C

lc, Z?V ), and (ω̂t, C
lc, Z?V ) is then used for the

continuum extrapolation error.
The effects of the residual mass and the sea-charm quark are studied separately and found to be small compared

to the quoted uncertainties.

2. Group B

Analysis group B provides results for aW
µ as well as aSD

µ . The strategy is to employ a global fit to all of the
measurements on the ensembles listed in Sec. I. Statistical errors for each measurement, including lattice spacings,
pion masses, and so on, are incorporated through a super-jackknife method.
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Several terms comprise the global fit function for the intermediate window. A second-order polynomial in a2 is used
to extrapolate non-zero lattice spacing to the continuum limit. Finite-volume effects are treated explicitly through
a term exponential in mπL and are mainly constrained by the two Iwasaki-DSDR ensembles in Tab. I. Small light-
quark-mass mistunings are treated linearly in the appropriate meson-mass squared and a simple linear ansatz for the
residual mass is applied. Charm-quark mistunings are corrected with inverse mass-squared of the Ds meson. All
together, the fit function takes the form

aµ(...) = aµ
(
1 + c1a

2 + c2a
4
) (

1 + c3e
−mπL) (1 + c4(m2

π −m2
π,phys)

) (
1 + c5(m2

K −m2
K,phys)

)

× (1 + c6amres)

(
1 + c7

(
1

m2
Ds

− 1

m2
Ds,phys

))
. (32)

The coefficients c1 and c2 take on different values for the Iwasaki-DSDR ensembles, and the residual mass term is
treated as an O(a) artifact.

To fit the data to Eq. (32), the (log of) C(t) is first cubically interpolated between time-slices and then integrated
with the continuum form of the one-loop QED kernel, Eq. (3). The central value of the procedure is determined from
the average of conserved-local and local-local correlation functions for the HVP. The main part of the systematic error
arises from the difference of these two results in the continuum limit.

For the short-distance window, the procedure is similar except that the discrete version of the one-loop kernel ω̂t is
also used (approximated as wt(1−a2/t2)) and an a2 log a2 term is considered. The systematic error is computed from
differences between pairwise combinations of a2, a4 and a2 log a2 terms, using both wt and ŵt weights, all added in
quadrature. The central value is taken as the wt version with the conserved-local correlation function since empirically
it has the smallest a4 contamination.

3. Group C

Analysis group C provides results for aW
µ . The strategy is divided in a few steps. First, using the ensembles listed in

Tab. I the derivatives of the intermediate window with respect to the quark masses are calculated. Additional cutoff
or finite-volume effects on the derivatives are neglected. The derivatives are then used to shift the three reference
ensembles, 48I, 64I and 96I, to the LCP. Additionally, all windows are shifted to mπL = 4 using Chiral Perturbation
Theory and additional systematic effects are not considered since they are well below the statistical uncertainty.

After multiplying by the normalization factors ZV or Z?V , the intermediate windows from the 3 ensembles and 2
discretizations (C ll and C lc) are extrapolated to the continuum limit with a constrained fit. Note that also a2/t0
used in the extrapolation is shifted to the proper LCP. The following three types of fits are considered: linear and
quadratic in a2 with all 6 data points and linear in a2 with the finest 4 data points (96I, 64I). A systematic error from
the spread of the central values of the fitted continuum windows is included in the error budget. Both correlated and
uncorrelated fits are used, and for the latter their quality is assessed using the method developed in Ref [67]. The 3
fits described above are performed separately using ZV and a variant of Z?V . For the former it is observed that the
linear fit in a2 is not acceptable, and that a quadratic term is necessary to describe the data. Hence, the preferred
strategy is based on Z?V and the preferred fit is the constrained linear fit to all 6 data points. For the variant of
Z?V , a slight modification of the definition provided in Sec. III A is considered, i.e., the ratio of C lc over C ll is used
individually integrated using the smearing function Θ(t, t? − ∆/2,∆)Θ(t? + ∆/2, t,∆) with ∆ = 0.15 fm. Several
values of t? are explored and for the final analysis t? = 1 fm is adopted. No particular difference is observed with
respect to the interpolation described in Sec. III A, as one can easily infer from the long plateau in Fig. 2.

The statistical analysis is carried out by propagating all fluctuations of observables using both the Jackknife method
and the Γ-method [68]. No large autocorrelations in the extrapolated continuum window are observed. Finite-volume
effects to correct from mπL = 4 to ∞ are obtained from an independent implementation of Eq. (27). Final shifts for
residual mass effects and dynamical charm effects are applied in the same manner as also done by group B.

4. Group D

Analysis group D provides results for aW
µ from the physical pion-mass ensembles 48I, 64I, and 96I, which are

computed with a binned super-jackknife analysis with weight function wt and vector current normalizations ZV and
Z?V . In addition, a version of ZV is used, where the pion state is replaced by a kaon state. The mass extrapolation
to the physical point is done by assuming linear dependence on the quark masses taken from ensemble 1 with 4 and
ensemble 1 with 3, respectively. Finite-Ls effects are corrected by assuming linearity in mres using ensembles 1, 2,
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4, and A. The values of aW
µ on the 48I and 64I ensembles are corrected by an exponential dependence to the lattice

extent, exp(−mπL), whose coefficient is taken from the 24ID and 32ID ensembles, to match for the volume of 96I. A
50% systematic uncertainty for these finite-volume corrections is added. It is noted that within the statistical noise
of the 24ID and 32ID ensembles, their difference is reproduced by the Hansen-Patella finite-volume formula as well
as the Meyer-Lellouch-Lüscher-Gounaris-Sakurai [69–71] approach.

After these corrections for 18 data points from three ensembles, two vector currents C ll and C lc, and three vector
current normalizations, the continuum extrapolation is performed by combinations of the fit formulae f2(a2), f2,4(a2),
f2α(a2), and f2α,4(a2) by requiring a universal continuum limit for all 18 data points. f2(a2) poorly fits C ll(t) with
the coarsest ensemble 48I, and it is decided to drop this combination from the final results. In analysis group D,
the central value for the continuum extrapolation is chosen from fit f2(a2) to C ll(t) and f2α(a2) to C lc(t). The error
of the continuum extrapolation is determined to cover all central values of the considered fit forms. The continuum
extrapolation for each of the 6 individual combination of currents and normalizations is also performed. The results are
consistent with that of the universal fit except, again, the f2(a2) fit for C ll(t). Finally, a small volume correction from
the 96I volume to infinity is carried out using the Meyer-Lellouch-Lüscher-Gounaris-Sakurai approach. For each of the
isospin-symmetric worlds, RBC/UKQCD18 and BMW20, the lattice spacing is determined in two different scaling
trajectories (either keeping w0 or mΩ fixed). The fit results are consistent between the two scaling trajectories,
providing an additional check for the continuum extrapolation of aW

µ .

5. Group E

Analysis group E provides results for aW
µ . The strategy is entirely data driven. Statistical uncertainties are

determined from a bootstrap analysis with measurements within 20 MD units binned into an effective measurement.
The input uncertainties are propagated via re-sampling (Gaussian error propagation). Both ωt and ω̂t kernels are
used. In addition to ZV a variant of Z?V is used that for a given window is defined as

ZCV =
alc,bare
µ

all,bare
µ

, (33)

where aab,bare
µ is obtained without vector-current normalization factors from the bare correlators Cab. When referring

to aZ,Kµ below, all,bare
µ is normalized using two powers of ZV or two powers of ZCV . The chiral, strange-quark,

discretization, and finite-volume effects are fitted to all ensembles for a given choice of renormalization procedure and
kernel to the ansatz

aZ,Kµ = aphys
µ ×

(
1 + Cχ

(m2
π − (m2

π)
phys

)

(m2
π)

phys

)
×
(

1 + Cs
(Xs −Xphys

s )

Xphys
s

)
(34)

×
(
1 + CV e

−mπL)×
(

1 + CZ,KCL,0(aΛ)2 + CZ,KCL,1(aΛ)4
)
×
(

1 + CZ,K5 amres

)
. (35)

In this formula Xs stands for mK for the RBC/UKQCD18 world and for mss? for the BMW20 world. The ratios

RZ,KZ′,K′ on the three physical point Iwasaki ensembles are simultaneously fitted to the model fR,

RZ,KZ′,K′ ≡
aZ,Kµ

aZ
′,K′

µ

, fR ≡
1 + CZ,KCL,0(aΛ)2 + CZ,KCL,1(aΛ)4

1 + CZ
′,K′

CL,0 (aΛ)2 + CZ
′,K′

CL,1 (aΛ)4
(36)

and the ratio RID
V for the ensembles 32ID and 24ID to the model gV ,

RID
V ≡

a32ID
µ

a24ID
µ

, gV ≡
1 + CV e

−(mπL)32ID

1 + CV e−(mπL)24ID
. (37)

All correlations between data points on the same ensembles are included in this fit. Systematic uncertainties are
estimated by variations on the data that enters the fit and/or the terms included in the model(s).

B. Comparison of results

After the analysis groups had individually converged on their respective methodology described above, we started the
process of relative unblinding. The relative unblinding of groups X and Y was conducted by sharing the individually
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FIG. 7. The dimensionless correlation function combinations t3C lc(t) (left) and t3C ll(t) (right) as well as the perturbative
result obtained from Ref. [72].

blinded data sets of group X with group Y and vice versa. One of the groups then re-ran their analysis without
modifications on the other data set. This allowed for a direct comparison of groups X to Y while still keeping the
absolute blinding intact.

In Fig. 6, we show the final result of the relative unblinding procedure for aW
µ , for which all five groups participated.

The inner error bars give the statistical uncertainty, the outer error bars give statistical and systematic uncertainties
added in quadrature. We first note that the statistical uncertainties quoted by the separate analysis groups are consis-
tent. In addition, the different systematic approaches described in Sec. IV A yield different systematic uncertainties,
however, all results are consistent within total uncertainties.

The blinding procedure described in Sec. II D allows the a4 term to affect the comparison at the level of ±0.0025 if
the a4 terms are not included in the fits. This effect is small compared to the quoted uncertainties and is completely
eliminated in Sec. V, where we show the results of all groups after they repeated their unmodified analysis with the
fully unblinded data sets.

C. Important findings

After the relative unblinding process, the analysis groups exchanged their most important findings for our data
sets. We discuss these findings in this sub-section. They form the basis, determined entirely on blinded data, of
formulating the preferred prescription to produce the combined collaboration result described in Sec. IV D.
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Finding 1: The correlator C ll has significantly larger a2/t2 and a4/t4 errors compared to C lc. These errors also
noticeably affect aW

µ . In Fig. 7, we plot the dimensionless t3C(t) to highlight this effect.

Finding 2: Mean-field improved lattice perturbation theory finds the discretization errors of C ll to be approximately
double the discretization errors of C lc.

Finding 3: When analyzing aSD
µ , where both a2 and a4 coefficients were determined, the size of the a4 coefficient is

substantially larger for C ll compared to C lc.

Finding 4: The continuum extrapolation is sensitive to how finite-volume corrections are applied to the individual
ensembles. This is an important effect in our analyses since the new finest 96I ensemble has a larger physical
volume compared to the 64I and 48I ensembles.

D. Preferred prescription

Based on the findings outlined in Sec. IV C, the collaboration decided on the following principles for the combined
analysis that will be used for the full unblinding. First, when using C ll, we always add a a4 term to the fits. Second,
we use the Hansen-Patella finite-volume corrections instead of the data-driven fits to e−mπL since we expect the
Hansen-Patella formalism to more precisely map out the volume dependence.

These principles are then implemented in the following prescription for aW
µ . For the vector current renormalization

factor, we use ZV as well as Z?V with t? = 1 fm. For the weight functions we use ŵt as well as wt. For the continuum
extrapolation, we perform a simultaneous fit to the C ll and C lc data sets using

fll(a
2) = c0 + c1a

2 + c2a
4 , (38)

flc(a2) = c0 + c3a
2 (39)

as well as

fll,α(a2) = c0 + c1a
2αs(µ = 1/a) + c2a

4 , (40)

flc,α(a2) = c0 + c3a
2αs(µ = 1/a) . (41)

We therefore perform 8 fits in total. We take the average of the minimum and maximum result as the central value for
our prediction. We take the difference of the central value to the maximum as our systematic error for the continuum
extrapolation. In Fig. 8, we show the final result of the relative unblinding for each group as well as the preferred
prescription, labelled RBC/UKQCD 23. For aSD

µ the results of groups A and B were close to identical and we adopt
the prescription of group A as the preferred result.
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FIG. 9. Comparison of the up and down quark, connected, isospin-symmetric contribution to the intermediate window. For
historical completeness, we also show results that are superseded by newer results of the same collaboration at the top in gray.
The inner error bars show the statistical uncertainty, the outer error bars show the statistical and systematic uncertainties
added in quadrature. RBC/UKQCD 2018 [31], Aubin et al. 2019 [32], ETMC 2021 [73], BMW 2020 [30], LM 2020 [34], Aubin
et al. 2022 [35], χQCD 2022 [74], Mainz 2022 [75], ETMC 2022 [76].

V. ABSOLUTE UNBLINDING

After the collaboration converged on the preferred prescription described in Sec. IV D, the analysis was frozen and
the absolute unblinding was performed. To this end, the unblinded data sets were distributed to the analysis groups,
who then re-ran their analysis without modifications. The results were presented by our collaboration already at the
Edinburgh workshop of the g-2 Theory Initiative [2] in 2022 and are stated without modifications in the following.

A. Intermediate-distance window aWµ

For the intermediate-distance window aW
µ in the isospin-symmetric limit with t0 = 0.4 fm, t1 = 1.0 fm, and ∆ = 0.15

fm, we find the up and down quark-connected contribution to be

aW,iso,conn,ud
µ = 206.36(44)S(42)C(01)FV(00)mπ FV(08)∂m C(00)WF order(03)mres

× 10−10 (42)

in the BMW20 world and

aW,iso,conn,ud
µ = 206.46(53)S(43)C(01)FV(01)mπ FV(09)∂m C(00)WF order(03)mres

× 10−10 (43)

in the RBC/UKQCD18 world. We separately quote the statistical uncertainties (S), the continuum limit uncertainties
(C), the finite-volume uncertainties for the vector correlators (FV), the finite-volume uncertainties of the measured
pion masses (mπ FV), the uncertainties associated with the linear corrections to the line of constant physics (∂m C),
the uncertainties from the discretization of the Wilson flow equation (WF order), as well as the uncertainties due to
the non-zero chiral symmetry breaking (mres). The uncertainties from the ensemble-parameter and renormalization-
factor determinations are fully propagated in the quoted uncertainties. In Fig. 9, we compare Eq. (42) with previously
published results. In this work, we consistently use the BMW20 world for comparison plots of isospin-symmetric
contributions.

Compared to our earlier result presented in Ref. [31], where aW
µ was defined and computed for the first time, we

increase the basis for our continuum extrapolation from 2 data points over two lattice spacings to 24 data points over
three lattice spacings. If we were to repeat the continuum extrapolation through the 2 data points already available
in Ref. [31] with lower statistical precision, we obtain a result consistent with the earlier work of aW,iso,conn,ud

µ =

202.9(1.4) × 10−10. This is shown in Fig. 10. The approximate 2σ upward shift compared to Ref. [31] can therefore
dominantly be attributed to our improved continuum extrapolation.

In Ref. [31], we also computed the QED, strong-isospin-breaking, strange, charm, and quark-disconnected contribu-
tions to the intermediate window quantity. These contributions are much smaller in magnitude and their uncertainties
due to the continuum extrapolation are much smaller in absolute terms compared to aW,iso,conn,ud

µ . By combining
these contributions with our improved light quark-connected, isospin-symmetric result of Eq. (43), we obtain our
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FIG. 11. Comparison of the total intermediate window contribution. For historical completeness, we also show results that
are superseded by newer results of the same collaboration at the top in gray. Dispersive resuls are shown in purple, lattice
results are shown in green. The inner error bars show the statistical uncertainty, the outer error bars show the statistical and
systematic uncertainties added in quadrature. RBC/UKQCD 2018 [31], ETMC 2021 [73], BMW 2020 [30], Mainz 2022 [75],
ETMC 2022 [76], RBC/UKQCD 2018/FJ [77], Aubin et al. 2019/CL/KNT [78], BMW 2020/KNT [79], Colangelo et al. 2022
[1].

prediction for the total intermediate window contribution

aW
µ = 235.56(65)(50)× 10−10 (44)

with statistical (left) and systematic (right) errors given separately. This can be compared with other lattice results
as well as results based on the R-ratio, see Fig. 11. Our result is in 3.8σ tension with the recently published dispersive
result of aW

µ = 229.4(1.4)× 10−10 [1] and in agreement with recent lattice results [30, 75, 76].

B. Short-distance window aSDµ

For the short-distance window aSD
µ in the isospin-symmetric limit with t0 = 0.4 fm and ∆ = 0.15 fm, we find the

up and down quark-connected contribution to be

aSD,iso,conn,ud
µ = 48.7(0.5)(1.6)× 10−10 (45)

in the BMW20 world and

aSD,iso,conn,ud
µ = 49.0(0.6)(1.4)× 10−10 (46)
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mass using ensembles 48I, 1, and 4. The horizontal lines give the result of lattice QCD without combination with perturbative
QCD. Only the quark-connected isospin-symmetric up and down quark contribution is shown.

in the RBC/UKQCD18 world. We can substantially improve this result by replacing the very shortest distances
with perturbative QCD. Such a hybrid result of perturbative and non-perturbative QCD is still a first-principles
determination but may combine the strength of both approaches. In addition, the study of the consistency of lattice
QCD and perturbative QCD at short distances may play an important role in understanding the origin of the tension
for aW

µ described in Sec. V A.
To establish a hybrid method, we use the additive property of the windows, i.e.,

aSD
µ (t0,∆) = aSD

µ (tp,∆) + aW
µ (tp, t0,∆) . (47)

We can then evaluate the first term in perturbative QCD at O(α4) [72] and the second term in lattice QCD, i.e., we
write

aSD
µ (t0,∆) = aSD,pQCD

µ (tp,∆) + aW
µ (tp, t0,∆) . (48)

In Fig. 12, we study this separation as a function of tp. To the degree that perturbative QCD agrees with lattice QCD
at distance tp, the plot should exhibit a plateau. We find that lattice QCD and perturbative QCD are consistent
within 1.5× 10−10 up to 0.4 fm. For a related study of matching perturbative QCD to short-distance vector current
correlators, see Ref. [80]. If we choose tp = 0.1 fm, we find

aSD,iso,conn,ud
µ = 48.51(43)(53)× 10−10 (49)

in the BMW20 world and

aSD,iso,conn,ud
µ = 48.70(52)(59)× 10−10 (50)

in the RBC/UKQCD18 world. This is our preferred prescription for aSD,iso,conn,ud
µ . We compare Eq. (49) to previous

results in Fig. 13. The hybrid method reduces the large discretization errors for the short-distance window and
specifically also reduces the logarithmic discretization errors described in Refs. [81] and [82].

Finally, we note that the short-distance correlator is insensitive to the quark mass, see Fig. 14. This motivates a
new approach to study the continuum limit of the HVP. Since discretization errors largely cancel in the difference
between vector currents evaluated at different quark masses, we proposed a mass-splitting approach in Ref. [83]. In
this approach, we generate pairs of ensembles with mπ and Mπ with Mπ � mπ to compute

aµ(mπ) = aµ(mπ)− aµ(Mπ)︸ ︷︷ ︸
≡δaµ

+aµ(Mπ) . (51)
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correlator is effectively independent of the quark mass.

This allows us to consider the continuum limit of δaµ and aµ(Mπ) separately. The costly term δaµ can then be
calculated at coarser lattice spacings compared to aµ(Mπ). This method will be used in upcoming improvements to
the present calculation.

C. Isospin-symmetric scheme dependence

For comparisons of quantities defined in an isospin-symmetric world, it is crucial to precisely match the definitions
of the isospin-symmetric point. In Sec. II C, we defined two hadronic schemes to define the isospin-symmetric world
that match results previously presented by the RBC/UKQCD and BMW collaborations. In previous sections, we
presented our results separately for both schemes. In this section, we provide results for the correlated difference of
the BMW20 minus the RBC/UKQCD18 world. For the intermediate window we find

∆aW,iso,conn,ud
µ = −0.10(24)(07)× 10−10 (52)

and for the short-distance window we find

∆aSD,iso,conn,ud
µ = −0.33(36)(36)× 10−10 (53)

using the lattice results of Eqs. (45) and (46). We can therefore not yet resolve the difference in isospin-symmetric
schemes and they can be viewed as compatible at the current precision.

D. Retrospective discussion of the blinding procedure

In the current paper, we performed a blinded analysis as described in Sec. II D. The goal of this procedure was
to eliminate psychological bias that may have influenced systematic decisions of the analysis groups to favor either
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FIG. 15. We show the result of the relative unblinding for aWµ including the preferred prescription. On the left side, each
group used its own blinded data set including the a2 and a4 terms added in Eq. (16). On the right side, each group re-ran
their unmodified analysis after the absolute unblinding on the unblinded dataset. As anticipated, the artificial discretization
errors in the blinded data can change central values and error estimates at the ±0.0025 level. The data is normalized to the
RBC/UKQCD 23 prescription. The inner error bars show the statistical uncertainty, the outer error bars show the statistical
and systematic uncertainties added in quadrature.

a larger value for aW
µ , confirming the lattice QCD result of the BMW collaboration for this window quantity, or a

smaller value, confirming the result based on the R-ratio. To this end, we added artificial discretization errors using
both a2 and a4 terms such that it is impossible for those who had access to our previous results for the coarser two
lattice spacings of Ref. [31] to completely unblind themselves by comparing the new blinded correlators with the
previously shared data. This is the reason for the three parameters of Eq. (16) exceeding the number of previously
available lattice spacings.

Nevertheless, the possibility of an analysis group computing unblinded correlators based on the used gauge fields
always remains. Given the reduced statistical noise of short-distance time-slices of C(t), even our chosen blinding
procedure can in principle be circumvented with sufficient effort. It therefore remains an important task to evaluate
the balance between the threshold preventing such unblinding and the possible drawbacks introduced by the blinding
procedure. We suggest that a reasonable balance is found when everybody acting in good faith is protected from
psychological bias.

For the current calculation, we believe the chosen blinding procedure to be successful in that regard. However, it
came at the cost of a ±0.0025 level uncertainty, limiting the optimization of our preferred procedure. This uncertainty
is introduced by the a4 terms in Eq. (16) that are not always eliminated by the continuum extrapolation. The analysis
groups, however, had to make decisions and freeze their analyses based on the blinded data set. In Fig. 15, we highlight
this effect by contrasting the relative unblinding as performed on the blinded data sets compared to the case, where
we re-run the unmodified analyses on the unblinded data sets.

In future studies, we will have to reconsider our exact approach since adding even higher-order terms (such as a6)
with sufficiently small coefficients to account for additional finer data sets would have a diminishing effect. We may
therefore decide to use only lattice-spacing-independent blinding factors in the future.

VI. CONCLUSIONS AND OUTLOOK

In this work we compute the standard Euclidean window of the hadronic vacuum polarization. We employ a
blinded setup to avoid a possible bias towards reproducing previously published results. We focus on the dominant
quark-connected light-quark isospin-symmetric contribution and significantly improve its continuum extrapolation
and address additional sub-leading systematic effects from sea-charm quarks and residual chiral-symmetry breaking
from first principles. Our result for the total intermediate window aW

µ is in 3.8σ tension with the recently published
dispersive result of Ref. [1] and in agreement with other lattice results [30, 75, 76]. For the isospin-symmetric
connected up and down quark contribution aW,iso,conn,ud

µ more lattice results are available [30, 34, 35, 74–76] that are
all in agreement with the result presented in this work.

The tension for the intermediate window between lattice QCD and the dispersive result needs to be addressed in
future work and a systematic study of additional windows may provide further insights. As it stands, this tension
may be interpreted as a yet to be understood new physics contribution to hadronic e+e− decays. In the context of
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the 4.2σ tension for aµ [4],

aµ(EXP)− aµ(SM) = 25.1(5.9)× 10−10 , (54)

we note that the difference of the dispersive and lattice results for aW
µ (SM) is only 6× 10−10.

In addition, we provide a result for the short-distance window for which our result is compatible with the recently
published result of the ETMC collaboration [76]. At short distances, we contrast lattice QCD and perturbative QCD
and find agreement up to 0.4 fm at the level of 1.5 × 10−10. We also provide results for a hybrid method in which
we use perturbative QCD below 0.1 fm and lattice QCD at longer distances. The effective mass-independence of the
vector correlators at short distances finally motivates us to define a mass-splitting procedure to further improve the
continuum extrapolation of the HVP.

We are currently generating additional ensembles with lattice spacings at a−1 = 3.5 GeV and 4.7 GeV that will
support a five-lattice spacing continuum extrapolation using the mass-splitting method.

Finally, we are also preparing an update for the long-distance window using the improved bounding method [84]
and an update of our QED and strong-isospin-breaking corrections re-using data from our hadronic light-by-light
program [26, 85–87]. Upon completion of our HVP program, we expect to be able to match the FNAL E989 target
precision.
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[75] M. Cè et al., Window observable for the hadronic vacuum polarization contribution to the muon g − 2 from lattice QCD,
(2022), arXiv:2206.06582 [hep-lat].

[76] C. Alexandrou et al., Lattice calculation of the short and intermediate time-distance hadronic vacuum polarization con-
tributions to the muon magnetic moment using twisted-mass fermions, (2022), arXiv:2206.15084 [hep-lat].

[77] This result was produced in Ref. [31] using data provided by Fred Jegerlehner.
[78] This result was produced by Christoph Lehner for Ref. [32] using data from Ref. [13].
[79] This result was produced in Ref. [30] using data from Ref. [17].
[80] D. Giusti, F. Sanfilippo, and S. Simula, Light-quark contribution to the leading hadronic vacuum polarization term of the

muon g − 2 from twisted-mass fermions, Phys. Rev. D 98, 114504 (2018), arXiv:1808.00887 [hep-lat].
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