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Abstract

The dynamics of interfaces in slow-diffusion equations with strong absorption are
studied. Asymptotic methods are used to give descriptions of the behaviour local to a
comprehensive range of possible singular events that can occur in any evolution. These
events are: when an interface changes its direction of propagation (reversing and anti-
reversing), when an interface detaches from a absorbing obstacle (detaching), when two
interfaces are formed by film rupture (touchdown) and when the solution undergoes
extinction. Our account of extinction and self-similar reversing and anti-reversing is
built upon previous work; results on non-self-similar reversing and anti-reversing and
on the various types of detachment and touchdown are developed from scratch. In all
cases, verification of the asymptotic results against numerical solutions to the full PDE
are provided. Self-similar solutions, both of the full equation and of its asymptotic
limits, play a central role in the analysis.

1 Introduction

We shall be interested in the asymptotics of slow diffusion equations with strong absorption,
i.e. of PDEs of the slow-diffusion (i.e. m > 0) form

∂h

∂t
=

∂

∂x

(
hm

∂h

∂x

)
− hn, (1.1)

where h(x, t) is a compactly supported non-negative function, e.g. the concentration of some
species, with the following range of exponents

m+ n > 1, n < 1. (1.2)

While m+n > −1 is sufficient for a solution to have compact support (see [4] for the special
case m = n = 0), we shall only consider m + n > 1 for reasons that will become apparent;
the additional condition m + 3n + 1 > 0 will also be imposed - again, see below. A key
feature of the exponent range given in (1.2) is that both advancing and receding interfaces
can occur, as can touchdown.
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We shall supplement (1.1) with two different types of boundary condition. The first
describes a mass-conserving free boundary located at x = s(t) on the left-hand end of a
one-dimensional region x > s(t) in which h > 0. On such a boundary we require both h and
the flux to be zero, so that

h|x=s(t) = 0, hm
∂h

∂x

∣∣∣∣
x=s(t)

= 0. (1.3)

As has been shown in [9] the second of these is equivalent to imposing

ṡ = lim
x↘s(t)


−hm−1∂h

∂x
if ṡ(t) ≤ 0,

hn
(
∂h

∂x

)−1
if ṡ(t) ≥ 0.

(1.4)

The second type of boundary condition considered here describes scenarios in which an
absorbing boundary is at a fixed location, x = 0 say, and takes the form

h|x=0 = 0. (1.5)

We emphasise that, in contrast to the mass-preserving conditions (1.3), or equivalently (1.4),
the absorbing boundary condition implies a nonzero flux.

Solutions local to the boundaries can exhibit a range of different behaviours depending on
the exponents m and n, as well as on the initial data and boundary conditions. We shall be
concerned here with various types of intermediate-asymptotic behaviour. Local to a mass-
conserving interface it is possible to observe: (i) what we term ‘reversing’ behaviour, whereby
an advancing interface instantaneously pauses and then recedes [7, 6, 5, 8]1; (ii) the converse
‘anti-reversing’ behaviour, whereby a receding interface stops and then advances. Local to an
absorbing boundary, governed by (1.5), we may observe (iii) ‘attachment’ behaviour where
a mass-preserving, advancing interface arrives at an absorbing boundary, where it becomes
static, with mass lost through the boundary - this case requires no detailed analysis since the
solution has no knowledge of the presence of the fixed boundary prior to attachment; (iv)
the converse, ‘detaching’ behaviour in which the interface recedes away from the absorbing
boundary while obeying (1.3). Away from an interface or fixed boundary, it is possible to
observe (v) ‘touchdown’ behaviour (often termed ‘rupture’ in the fluid-dynamics community)
where, at an internal point, h becomes zero and two new interfaces are formed (see [15] for
such behaviour in a different context). These may then recede away from one another, each
governed by their own mass-conserving boundary conditions. Conversely, (vi) ‘coalescence’
arises when two interfaces meet one another and two disconnected regions of support merge
- this also requires no detailed analysis, for a similar reason to that in (iii). Finally, (vii)

1These prior references address only the role of similarity solutions of form (1.7) below. We shall see
that non-self-similar behaviour also plays a prominent role: such behaviour comprises multiple distinct
components (in the sense of matched-asymptotic expansions), with similarity reductions of limit cases of the
original PDE (and therefore not of the form (1.7), as set out in §4) playing a key role.
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‘extinction’ is associated with absorption consuming all the available mass, so a region of
h > 0 vanishes [16, 17, 22]. The local description of extinction has already been given for
m + n ≥ 1, 0 < n < 1 in [13], as well as for n = 1−m and 0 < m < 1 in [11, 12]. We shall
briefly revisit this phenomena. A sketch of a possible evolution of the compact support in
which each of these phenomena is shown schematically in Fig. 1 and illustrative numerical
solutions local to each of (i)-(vi) are shown in Fig. 2.

Symmetry arguments will play a central role in what follows; see [3], for example, for
relevant background. For almost allm and n (including all those in the range of interest here),
the only continuous symmetries of equation (1.1) are those that are obvious by inspection,
namely translations of x and of t and the scaling invariant

h→ αh, t→ α1−nt, x→ α(m+1−n)/2x, (1.6)

for arbitrary constant α. The associated similarity reductions; i.e. steady states, spatially
uniform solutions, travelling waves and the backward

h = (−t)
1

1−nf
(
x(−t)−

m+1−n
2(1−n)

)
, (1.7)

and forward

h = t
1

1−nf
(
xt−

m+1−n
2(1−n)

)
, (1.8)

scaling reductions associated with (1.6) will each play significant roles. The two double
reductions

h = A∗x
2

m+1−n , A∗ ≡
(

(m+ 1− n)2

2(m+ 1 + n)

) 1
m+1−n

, (1.9)

(both a steady state and a scaling reduction, through (1.7) or (1.8)) and

h = ((1− n)(−t))
1

1−n (1.10)

(both a spatially uniform solution and a scaling reduction, through (1.7)) play particularly
prominent roles.

Other aspects related to symmetry arguments of interest in their own right but of limited
relevance to the remainder of the paper are recorded in the Appendix.

Motivation and outline

A specific motivation for the current detailed study is that equation (1.1) is perhaps the sim-
plest PDE to manifest each of the seven classes of singular behaviour noted above. Moreover,
Fig. 1 is evidently not specific to a particular PDE and the classification is relevant to much
more general classes of moving-boundary problem; similarly, the formal-asymptotic method-
ologies adopted below and their consequences (notably with regard to non-generic, as well
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Figure 1: A schematic of the region of support (shaded blue) for a solution each of the
behaviours (i)-(vii). The maroon axes indicate the relevant local behaviours.

as generic, types of singular behaviour) should be of broader applicability, a point that has
been recognised in other contexts, notably with regard to blow up.

The aim of the reminder of this paper is to describe the structure of solutions to (1.1)
local to an event where an interface (i) reverses, (ii) anti-reverses, (iii) attaches, (iv) detaches,
(v) touches down, (vi) coalesces or (vii) goes extinct. Henceforth we shall assume that the
origins of the temporal and spatial coordinates have been defined in such a way that the
event of interest occurs at t = 0, x = 0. In §2 we discuss the different possible asymptotic
behaviours local to both mass-preserving interfaces, satisfying (1.3), and absorbing bound-
aries, satisfying (1.5). In the subsequent section, §3, we examine three scenarios in which
(1.1) can be reduced to an ODE namely, (a) when the solution is (quasi-)steady, (b) when
the solution takes the form of a travelling wave and (c) when the solution is self-similar.
Next, in §4, we examine the limiting behaviours in which one of the three terms in (1.1) is
negligible. In §5 we linearise about (1.9) and (1.10) in order to establish the results needed
to characterise the singular behaviours that are not of a ‘pure’ self-similar form. In §6 we
revisit the self-similar solutions and carry out a detailed analysis of the phase space of the
reduced ODE. In §7 the results of the preceding sections are leveraged in order to obtain the
local behaviour of solutions immediately prior to the each of the singular phenomena being
investigated. In the penultimate section, §8, the asymptotic results are validated against
direct numerical simulations of (1.1). Finally, in §9, we draw our conclusions.

As noted above, coalescence and attachment need no further consideration (given that
we limit ourselves to the one-dimensional case), and the cases of extinction, reversing and
anti-reversing have been the subject of previous analyses. Our specific goals here are to give
a comprehensive and, so far as is possible, a unified description of the range of intermediate-
asymptotic behaviours shown schematically in Fig. 2. In so doing, we address (for the first
time) touchdown and detachment, as well as describing novel non-self-similar behaviour of
reversing and anti-reversing interfaces. More generally, we seek to illustrate how a com-
bination of self-similar and non-self-similar asymptotic structures provides a framework to
analyse broad classes of moving-boundary problems – as already noted, the phenomena
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Figure 2: Panels (i)–(vi) show numerical solutions to (1.1) exhibiting reversing, anti-
reversing, attaching, detaching, touchdown and coalescence behaviour, respectively. The
solid curves indicate snapshots of the solution prior to the event and the dashed curves after
the event. A description of the numerical methods used to furnish these solutions is given
in §8.
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shown in Fig. 2 are not specific to the PDE in question. That both self-similar and non-self-
similar solutions arise in what follows for each scenario in question is also of more general
relevance (a point to which we return in §9) and requires an analysis of which of the available
candidates are generic (i.e. stable) – we undertake such an analysis of (1.1) for the first time.

2 Local behaviour

We now characterise the possible behaviours of (1.1) local to interfaces on which either (1.3)
or (1.5) is satisfied, noting that these prove useful in what follows.

Mass-preserving interfaces. Introducing the local variable χ about the interface

χ = x− s(t), (2.1)

with, locally, h > 0 in χ > 0 and h ≡ 0 in χ < 0 and applying the interface conditions (1.3)
the following hold

h1−n ∼ (1− n)

ṡ
χ as χ→ 0+ provided ṡ > 0 (receding interface), (2.2)

hm ∼ m(−ṡ)χ as χ→ 0+ provided ṡ < 0 (advancing interface). (2.3)

The former requires that the second term in (1.1) be negligible in the limit, which, in turn,
implies

n < 1, m+ n > 1. (2.4)

The latter, (2.3), requires that the third term in (1.1) be negligible in the limit, implying
that

m > 0, m+ n > 1. (2.5)

Absorbing boundaries. On imposing (1.5), h|x=0 = 0, the apparent sole candidate for
the local behaviour neglects both the first and the third term in (1.1), and is

hm+1 ∼ (m+ 1)Jx as x↘ 0, (2.6)

where J(t) > 0 is the flux through the boundary at x = 0. Here self-consistency requires
m > −1 and m+n > −1, a condition that is automatically satisfied by our prior imposition
of (1.2).

Each of the expressions (2.2), (2.3) and (2.6) contains a single degree of freedom (s or J),
as required for a second order PDE; this conclusion is near-immediate for (2.3) and (2.6),
while for (2.2) it requires an application of the Liouville-Green (JWKB) method.
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3 Exact reductions to the PDE

Standard symmetry methods imply that there are three scenarios in which the PDE (1.1)
can be reduced to an ODE, namely steady states, travelling waves and scaling self-similarity.

3.1 Steady states

The steady state solutions to (1.1) satisfy

d

dx

(
hm

dh

dx

)
= hn, (3.1)

an ODE that will subsequently arise as a quasi-steady balance in (1.1) for circumstances in
which the time-derivative is non-zero but negligible. On integrating with respect to x we
have that

1

2
h2m

(
dh

dx

)2

=
1

m+ n+ 1
hm+n+1 + C1, (3.2)

for arbitrary constant C1. Given the scaling invariance of (3.1),

x 7→ φm−n+1x, h 7→ φ2h, (3.3)

where φ is an arbitrary constant, we may scale |C1| in (3.2) to a convenient value. In this
section, we shall set C1 = 0, C1 = 1/2 and C1 = −1/(m+ n+ 1) in turn. Given (3.3), these
zero, positive and negative values in effect cover the full range of possibilities, the specific
values being chosen for algebraic convenience in the sense of (3.7) and (3.9) below.

The exceptional solution. For C1 = 0 we have the steady solution (1.9), up to transla-
tional invariance. In §3.3, §5 and §6 we shall see that it is a common component of a host
of relevant solutions; owing to its significance in the remainder of the analysis we shall refer
to it as the ‘exceptional solution’. Linearising (3.2) about (1.9) we obtain

h ∼ A∗x
α + ν1x

α−1 + ν2x
−(m+n)α (3.4)

where

α =
2

m+ 1− n
. (3.5)

The ν1 term in (3.4) reflects translational invariance in x and is less singular as x→ 0 than
the ν2 term when m+ 3n+ 1 > 0, a condition that we impose throughout.
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The leaking solution. Setting C1 = 1/2 in (3.2) and imposing the interface condition
(1.5) gives

1

2
h2m

(
dh

dx

)2

=
1

m+ n+ 1
hm+n+1 +

1

2
, h|x=0 = 0. (3.6)

A numerical solution is shown in yellow in Fig. 3. This solution, which we shall refer to as
the ‘leaking solution’, has a unit outward flux through the origin, i.e. it has the property

hm
dh

dx

∣∣∣∣
x=0

= 1, (3.7)

and is a candidate to form part of the asymptotic description of a solution to (1.1) that is
attached to an absorbing boundary. The solution to (3.6) has asymptotic behaviour given
by (3.4) as x→ +∞, with ν1 and ν2 depending on m and n, the ν1 term being the dominant
correction term for m+ 3n+ 1 > 0. For n = 0 we have the explicit solution

1

m+ 1
hm+1 =

1

2
x2 + x.

The pre-touchdown solution. Finally, setting C1 = −1/(m+n+1) in (3.2) and imposing
a boundary condition that requires the solution to have zero gradient at the origin leads to

1

2
h2m

(
dh

dx

)2

=
1

m+ n+ 1

(
hm+n+1 − 1

)
,

dh

dx

∣∣∣∣
x=0

= 0. (3.8)

The solution to this problem (determined numerically) is shown in green in Fig. 3. We shall
refer to this solution as the ‘pre-touchdown solution’ and it has the property

h|x=0 = 1. (3.9)

This solution, scaled by an appropriate function of time (i.e. in quasi-steady form), will
play a role in the pre-touchdown dynamics. Once again, the solution (3.8) has the far-field
behaviour (3.4). In the case n = 0 it has explicit solution

1

m+ 1
hm+1 =

1

2
x2 +

1

m+ 1
.

Exceptionally, the far-field behaviour of (3.8) has ν1 = 0 in (3.4) when n = 0. For n < 0
we have ν1 < 0 in (3.4) while for n > 0 we have ν1 > 0; this has implications for the
intermediate-asymptotic behaviour. More precisely,

h
m+1−n

2 ∼ m+ 1− n
(2(m+ n+ 1))1/2

x+
n

m+ n+ 1
B

(
1

2
,
m+ 3n+ 1

2(m+ n+ 1)

)
as x→ +∞, (3.10)

where B denotes the beta function and the constraint m+ 3n+ 1 > 0 again rears its head.
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Figure 3: Solutions to (3.1) for m = 3 and n = 0. The black curve corresponds to the
exceptional solution (1.9); the yellow curve (the leaking solution) satisfies (3.6) whilst the
green curve (the pre-touchdown) satisfies (3.8).

3.2 Travelling-wave solutions

Here we consider travelling-wave solutions to (1.1),

h = h(ζ), ζ = x− vt, (3.11)

where the constant v 6= 0 is the wave speed. Substitution of (3.11) into (1.1) yields the ODE

−vdh
dζ

=
d

dζ

(
hm

dh

dζ

)
− hn. (3.12)

We shall require a solution that satisfies (1.3) at ζ = 0, so that

h|ζ=0 = 0, hm
∂h

∂ζ

∣∣∣∣
ζ=0

= 0. (3.13)

Subsequently, for solutions with a moving interface, v will be identified with ṡ, with the
travelling-wave balance (3.12), again in quasi-steady form, providing the local behaviour
about the interface whenever ṡ 6= 0.

Via the rescalings

h→ |v|
2

m+n−1h, ζ → |v|
m+1−n
m+n−1 ζ (3.14)

we can without loss of generality set v = ±1 in (3.12). The phase plane for an advancing
interface (v < 0) is plotted in Fig. 4 panel (a). The initial conditions (3.13) correspond
to the sole trajectory that emanates from the origin, the asymptotic behaviour of which is
given in terms of the unscaled variables by

h ∼ ((−v)mζ)1/m as ζ → 0+ with v < 0, (3.15)
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Figure 4: Phase planes for (a) the advancing (v < 0) and (b) the receding (v > 0) travelling
waves. Here m = 3 and n = 0, but qualitatively similar results apply for other exponents in
the range (1.2). The red curves indicate the trajectories leaving the origin and corresponding
to the solution which links the behaviours (3.15) and (3.17) in panel (a), and (3.16) and (3.17)
in panel (b). Since v → −v results from ζ → −ζ in (3.12), (a) and (b) can be viewed as
upper and lower quadrants of the same phase plane on also swapping the direction of the
trajectories in one case. All the trajectories have the same far-field behaviour, (3.18).

corresponding to the local behaviour (2.3). The phase plane for v > 0 (a receding interface)
is plotted in Fig. 4 panel (b). The conditions (3.13) are associated with the sole trajectory
that emanates from the origin, the unscaled version of which satisfies

h ∼
(

(1− n)

v
ζ

)1/(1−n)

as ζ → 0+ with v > 0. (3.16)

coinciding with (2.2).

Far-field behaviour. The phase-plane analysis demonstrates that both advancing and
receding interfaces have the same far-field behaviour, with the left-hand side of (3.12) being
negligible at leading order, so that

h ∼ A∗ζ
α as ζ → +∞. (3.17)

We shall need a more detailed description of the behaviour, however; the relevant correction
terms follow from (3.4) and from the left-hand side of (3.12), and result in the far-field
behaviour

h ∼ A∗ζ
α − vBζα−β + ν1ζ

α−1 + ν2ζ
−(m+n)α as ζ → +∞, (3.18)

where the constants β and B are given by

β =
m+ n− 1

m+ 1− n
, B =

(2(m+ n+ 1))
m−1

m+1−n (m+ 1− n)
3−m−n
m+1−n

(1− n)(n+m+ 3)
. (3.19)
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The B term is the dominant correction term in (3.18), given the condition (1.2), whilst ν1
and ν2 are the requisite two degrees of freedom. The phase planes confirm that the IVP
(3.12)-(3.13) has a unique solution for given v, m and n; the dependencies of ν1 and ν2
upon v can be inferred from the above noted scaling property, their dependence on m and n
depending on the sign of v.

In the light of these properties, and in the parameter range (1.2), the velocity of the trav-
elling wave can thus be determined if the coefficient of the third term in far-field behaviour
(3.18) is known, this being the dominant correction term in (3.18), since β > 1.

3.3 Self-similar solutions

As we shall see below, the backward self-similar reduction for (1.1),

h(x, t) = (−t)
1

1−n f(ξ), ξ = x(−t)−
m+1−n
2(1−n) for t < 0, (3.20)

coupled to the free and absorbing boundary conditions (1.3) and (1.5), provides a plausible
scenario for times leading up to a singular event. As in [7], substituting (3.20) into (1.1)
reveals that f satisfies the ODE

1

1− n

(
−f +

m+ 1− n
2

ξ
df

dξ

)
=

d

dξ

(
fm

df

dξ

)
− fn. (3.21)

The power-law solution to (3.21) is the exceptional solution (1.9), which in similarity variables
reads

f = A∗ξ
α. (3.22)

As a precursor to constructing solutions to (3.21) which give rise to dynamic interfaces
it is helpful to examine the possible near-field behaviours of f about the interface at ξ = ξ̂.
We find that

f ∼

(
m(m+ 1− n)ξ̂

2(1− n)
(ξ − ξ̂)

)1/m

as ξ → ξ̂+ for ξ̂ > 0, (3.23)

f ∼

(
2(1− n)2

(m+ 1− n)(−ξ̂)
(ξ − ξ̂)

)1/(1−n)

as ξ → ξ̂+ for ξ̂ < 0 (3.24)

are admissible. Here, ξ̂ 6= 0 is a free parameter. In the context of the original PDE, (1.1), the
former behaviour corresponds to an advancing interface with ṡ < 0 (as, for example, depicted
by the solid curves in figure 2(i), which show an advancing solution before reversing), whilst
the latter corresponds to a receding interface with ṡ > 0. The behaviours (3.23)-(3.24)
correspond to (2.2)-(2.3). In [5, 6, 7] the Liouville-Green method was used (which involves
linearising about (3.23) in (3.21) and examining the self-consistent asymptotic behaviours)
to demonstrate that there is only one degree of freedom in the both of these behaviours,
namely ξ̂.
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Even solutions satisfying

f ∼ f̂ +
1

2
f̂−m

(
f̂n − 1

1− n
f̂

)
ξ2 as ξ → 0, (3.25)

wherein f̂ > 0 is the sole free parameter, are also of potential relevance. This behaviour
clearly does not correspond to an interface of (1.1) but, in time-dependent setting, it cor-
responds to a point of no flux and is a candidate to describe a solution leading up to a
touchdown event.

A fourth alternative is

f ∼ Kξ1/(m+1) as ξ → 0+, (3.26)

where K > 0 is the sole free parameter. This leads to a static interface of (1.1) through
which mass is being lost (as, for example, depicted by the solid ones in 2(iv)). There is
a final near-field behaviour of relevance, namely the exceptional solution (1.9); in view of
(3.4), this contains no degrees of freedom.

The only relevant far-field behaviour for solutions to (3.21) is

f ∼ Aξα as ξ → +∞, (3.27)

and it has been shown in [7] that the parameter A > 0 is the only degree of freedom in
the large ξ behaviour. Unpicking the transformation to the self-similar variables, (3.27)
corresponds to

h ∼ Axα (3.28)

and is a candidate for the local behaviour as x → 0+ of the solution at t = 0, given that
ξ → +∞ as t→ 0− at fixed x. We note that (3.27) coincides with the exceptional solution
(1.9) in the case when A = A∗. We shall return in §6 to a detailed exploration of these
self-similar forms.

4 Limiting cases of the PDE

Here we examine the properties (in particular, the similarity solutions) of solutions in the
limiting cases in which one of the three terms in (1.1) is negligible. There are three scenarios.
First, where the time derivative is negligible and the solutions are quasi-steady; the results
of §3.1 then apply. In this section we cover the other two cases, namely where the sink term
is negligible, and where the diffusion term is negligible. §5 is devoted to a different class
of limiting behaviour that will also prove relevant, namely linearisation about the uniform
state and about the exceptional power-law solution.
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4.1 Porous medium equation balance

Neglecting the sink term in (1.1) gives the so-called porous-medium equation, i.e.

∂h

∂t
∼ ∂

∂x

(
hm

∂h

∂x

)
(4.1)

the similarity solutions of which (as well as its other properties) have been very widely
investigated, see e.g. [21]. We potentially need both the backward (t < 0) self-similar
solutions

h ∼ (−t)νf−(η−), η− = x(−t)−
mν+1

2 as t→ 0− with η− = O(1) (4.2)

and the forward (t > 0) ones

h ∼ tνf+(η+), η+ = xt−
mν+1

2 as t→ 0+ with η+ = O(1). (4.3)

The case ν = 1/m is of most significance to us for reasons that will become clear later: in
this case

fm− = mη̂(η− − η̂)+, fm+ = mη̂(η− + η̂)+

for some constant η̂; these are each both a scaling reduction and a travelling-wave solution
to (4.1), and represent an exceptional connection in the phase space of f− - see [14]. Neglect
of the hn terms as |t| → 0 requires, for legitimacy, that

ν < 1/(1− n), (4.4)

which in the case ν = 1/m implies that m+ n > 1, consistent with (1.2).

4.2 Absorption balance

The last of the three possible balances in which one of the terms in in (1.1) is entirely
neglected is

∂h

∂t
∼ −hn (4.5)

so that

h1−n ∼ h1−n0 (x) + (1− n)(−t). (4.6)

Here h0(x) is an arbitrary function. As we shall see, the balance (4.5) can play an asymptotic
role for power law

h0(x) = M |x|µ/(1−n) (4.7)
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for positive constants M and µ. In such instances it is instructive to interpret (4.6) as
backward and forward similarity reductions,

h = (−t)
1

1−n g−(ω−), ω− = x(−t)−1/µ, g1−n− = M1−n|ω−|µ + (1− n), (4.8)

h = t
1

1−n g+(ω+), ω+ = xt−1/µ, g1−n+ = M1−n|ω+|µ − (1− n), (4.9)

from which it is clear that self-consistency as |t| → 0 in the neglect of the diffusion term in
(1.1) requires

µm+ (µ− 2)(1− n) > 0. (4.10)

5 Linearisations

In this section we linearise about two special solutions to (1.1), namely the uniform solution
(1.10) and exceptional power-law solution (1.9). The analysis of §7 is devoted to character-
ising which of the possible candidates identified in §3-6 can in fact be realised in describing
the various types of singular behaviour.

5.1 Linearisation about the uniform state

We linearise about the uniform state, (1.10), by setting

h ∼ ((1− n)(−t))1/(1−n) +H(x, t) (5.1)

in (1.1) and neglect nonlinear terms in H to give

∂H
∂t

= ((1− n)(−t))m/(1−n) ∂
2H
∂x2
− n

(1− n)(−t)
H. (5.2)

Defining

H = (−t)
n

1−nG(x, τ), −τ =
((1− n)(−t))

m+1−n
1−n

m+ 1− n
(5.3)

transforms (5.2) to the heat equation

∂G
∂τ

=
∂2G
∂x2

. (5.4)

The backward self-similar solutions without exponential growth as |x| → +∞ are given by
the Hermite polynomials Hk, namely

G = Ck(−τ)k/2Hk

(
x(−τ)−1/2/2

)
(5.5)

14



where k is a non-negative integer and Ck is some constant2.
The following properties will be needed in due course. Firstly, (5.3)-(5.5) require, for the

self-consistency of (5.1) (i.e. that the second term therein be negligible in comparison to the
first in the limit that t→ 0−), that

km+ (k − 2)(1− n) > 0; (5.6)

the case k = 0 is therefore always excluded, unsurprisingly since it simply corresponds to a
translation in t. Secondly, a standard result for Hk implies that (5.5) renders the matching
condition

H(x, t) ∼ Ck(−t)−
n

1−nxk as |x(−τ)−1/2| → ∞, (5.7)

so that

h1−n ∼ (1− n)(−t) + (1− n)
1−2n
1−n Ckx

k, (5.8)

cf. (4.6), with (5.6) then corresponding to (4.10).

5.2 Linearisation about the exceptional solution

The other linearised problem that we shall need to characterise is that about the exceptional
solution, (1.9). On setting

h ∼ A∗x
α + H̄(x, t) (5.9)

in (1.1), linearising in H̄ gives

∂H̄
∂t

= Am∗
∂2

∂x2
(
xmαH̄

)
− nA−(1−n)∗ x−(1−n)αH̄. (5.10)

Elucidating the behaviour of solutions to (5.10) will provide information crucial to what
follows, specifically with regard to backward self-similarity. In order to analyse the linear
problem (5.10) it is helpful to use the definitions of A∗ and α to rewrite it in the form

x2−mα
∂H̄
∂t

= Am∗

(
x2−mα

∂2

∂x2
(
xmαH̄

)
− (α(m+ 1)− 2)(α(m+ 1)− 1)H̄

)
. (5.11)

The right-hand side of (5.11) dominates as x→ 0, since 2−mα > 0 in the range of parameters
that we consider, (1.2). The possible solution behaviours are thus found by neglecting the
left-hand side of (5.11) and solving the resulting Euler equation in x for H̄; these are

H̄ ∼ ν1(t)x
α−1, H̄ ∼ ν2(t)x

−(m+n)α, (5.12)

2We note that f = (1−n)
1

1−n is of course an exact solution to (3.21) and that the length scales associated

both with (3.20) and with (5.3) and (5.5) are x ∝ (−t)
m+1−n
2(1−n) .
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where ν1(t) and ν2(t) are arbitrary functions, as in (3.4). There are two distinct cases to be
considered: for m + 3n + 1 > 0 the second of (5.12) is the more singular so it is natural to
specify

H̄ = o
(
x−(2m+1)α+2

)
as x→ 0+ if m+ 3n+ 1 > 0 (5.13)

as a boundary condition on (5.10), the local behaviour then being given by the first of (5.12),
corresponding to a (small) translation of x in (5.9). By contrast, if m+ 3n+ 1 < 0 the first
of (5.12) is the more singular so it is natural instead to specify

H̄ = o
(
xα−1

)
as x→ 0+ if m+ 3n+ 1 < 0. (5.14)

As already noted, henceforth we only consider the case m+3n+1 > 0, so that (5.13) applies
(though in (II) below we record an instructive result for m+ 3n+ 1 < 0); the analysis of the
converse case proceeds on similar lines, but will be omitted here (in part because it appears
of less physical relevance).

Two transformations, (I) and (II) below, reduce (5.10) to standard forms. In both cases
we define

r = x
2−mα

2 , (5.15)

the definitions of Gi being guided by (5.12). We have

(I): H̄(x, t) = xα−1G1(r, t), m+ 3n+ 1 > 0, (5.16)

∂G1

∂t
=

1

4
(2−mα)2Am∗

(
∂2G1

∂r2
+
N1 − 1

r

∂G1

∂r

)
, N1 = 2

(m+ 2)α− 1

2−mα
. (5.17)

(II): H̄(x, t) = x−(m+n)αG2(r, t), m+ 3n+ 1 < 0, (5.18)

∂G2

∂t
=

1

4
(2−mα)2Am∗

(
∂G2

∂r2
+
N2 − 1

r

∂G2

∂r

)
, N2 = 2

5− (3m+ 2)α

2−mα
.(5.19)

These representations allow application of standard theory for the radially symmetric heat
equation3. As was pursued in [5], the standard forms for the backward similarity solutions
to (5.17) and (5.19) are

G = (−t)Mg(y), y =
2r

A
m/2
∗ (2−mα)(−t)1/2

(5.20)

(where M is an arbitrary constant) and satisfy

z
d2g

dz2
+

(
N

2
− z
)
dg

dz
+Mg = 0, z = y2, (5.21)

3Here N1 + N2 = 4, which has as a special case the well-known transformation between the spherically
symmetric heat equation and that in a single Cartesian dimension (there being a nonlinear generalisation –
see [18]). N1 > 2 applies for m+3n+1 > 0 and N2 > 2 for m+3n+1 < 0; the borderline case m+3n+1 = 0
is characterised by N1 = N2 = 2, as is to be expected.
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so that the solutions having the necessary regularity as z → 0 (namely g finite as z → 0)
and growing algebraically, rather than exponentially (of the form log g ∼ z as z → +∞), as
z → +∞ are given by the generalised Laguerre polynomials,

g ∝ L
(N−2)/2
P (z), (5.22)

where P = M+(N−2)/2; since (N−2)/2 need not be an integer, this is not the standard case,
but M is required to be a positive integer, leading to g being an M -th order polynomial in z
(i.e. in (5.20)-(5.21), M should be viewed as an eigenvalue, leading to the requirement that it
be a non-negative integer). The first few eigenmodes (radially symmetric heat polynomials,
representing a complete set of eigenmodes) are thus multiples of the following:

M = 0, g0 = 1, (5.23)

M = 1, g1 = z −N/2, (5.24)

M = 2, g2 = z2 − (N + 2)z +N(N + 2)/4, (5.25)

M = 3, g3 = z3 − 3(N + 4)z2/2 + 3(N + 2)(N + 4)z/4−N(N + 2)(N + 4)/8. (5.26)

We shall subsequently need to view the leading term in (5.9) as a similarity solution of
the form (4.9), while in case (I) above (5.20) implies that H̄ is of the self-similar form

H̄ = (−t)LF (ξ), where L = M +
1 + n−m
2(1− n)

, (5.27)

so self-consistency of (5.9) requires that

M >
m+ 1− n
2(1− n)

. (5.28)

Hence M = 0 and M = 1 are excluded (in the latter case (5.28) would require m + n < 1
for n < 1, again identifying familiar borderline cases). This is to be expected in view of
the invariance of (1.1) under translations of x and t, illustrating a more general principle
(we touch on some of the broader implications in §9). Equation (5.10) inherits t, but not x,
translation invariance and we pursue the reasoning in two stages. It follows from t translation
invariance that the M -th mode is proportional to the time derivative of the (M+1)-th mode,
so that

gM ∝ z
dgM+1

dz
− (M + 1)gM+1. (5.29)

Hence we have

H̄(x, t+ t0) =
M∑
k=0

ak,M t
k
0H̄M−k(x, t) (5.30)

(where H̄p is the solution to (5.10) associated with gp) with

a0,M = 1, ak,M =
k−1∏
L=0

αM−L/k!, k ≥ 1, (5.31)
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where

H̄M−1(x, t) = αM
∂

∂t
H̄M(x, t). (5.32)

Writing the solution to (5.10) in the form

H̄ ∼
∞∑
p=0

KpH̄p(x, t), (5.33)

if we now choose t0 in (5.30) such that

K1 =
∞∑

M=1

aM−1,M t
M−1
0 (5.34)

then the time-translated version of H has K1 = 0. This translation will modify the value
of K0, but here x translation invariance comes into play: since H̄0 ∝ dxα/dx, translating
suitably in (5.9) allows K0 also to be set to zero.

The condition (5.28) will play a crucial role in what follows, the borderline cases

m = (2M − 1)(1− n), M = 2, 3, · · · (5.35)

identifying the bifurcation points in Fig. 7 below.

6 Self-similar bifurcation diagram

6.1 Backward self-similarity

We now analyse in detail some the phase space of the ODE (3.21) associated with the full
backward similarity reduction (1.7) of the PDE (1.1). In order to construct solutions to
the ODE (3.21) that give rise to viable dynamic solutions to (1.1) it remains to determine
whether it is possible to connect one of the near-field behaviours (3.23)-(3.26) with the far-
field behaviour (3.27). We shall address this question by setting up an IVP (i.e. a shooting
problem) from ξ = ∞. It was proved in Lemma 4.4 of [6] that trajectories emanating from
(3.27) with A > 0 will, when integrated in the direction of decreasing ξ, either reach f = 0
or fmdf/dξ = 0 at some finite ξ. In lieu of an analytical means to solve the connection
problem, the result from [6] motivates its numerical study by means of a shooting scheme
in which A > 0 is varied as the shooting parameter. Once a value for A has been adopted,
the behaviour (3.27) can be used to set initial conditions to integrate (3.21) backwards in ξ
and this process can be terminated at the value ξ = ξterm at which f = 0 or fmdf/dξ = 0
(whichever occurs first). Once this has been done, it is then possible to assess whether
one of the behaviours (3.23)-(3.26) has been reached by reading off the values of f |ξ=ξterm ,
fmdf/dξ|ξ=ξterm and ξterm. If the integration stopped at a point where

18



(a) f |ξ=ξterm = 0, fm
df

dξ

∣∣∣∣
ξ=ξterm

= 0 with ξterm > 0, the behaviour (3.23) has been

attained,

(b) f |ξ=ξterm = 0, fm
df

dξ

∣∣∣∣
ξ=ξterm

= 0 with ξterm < 0, the behaviour (3.24) has been

attained,

(c) f |ξ=ξterm > 0, fm
df

dξ

∣∣∣∣
ξ=ξterm

= 0 with ξterm = 0, the behaviour (3.25) has been

attained,

(d) f |ξ=ξterm = 0, fm
df

dξ

∣∣∣∣
ξ=ξterm

> 0 with ξterm = 0, the behaviour (3.26) has been

attained.

The additional constraints in (a)-(d), namely a pair of boundary conditions in (a) and (b)
and the requirement that ξterm be zero in (c) and (d), leads to the selection of a discrete set
of admissible values of A for given m and n, as exemplified in Fig. 7. The results of this
shooting scheme are summarised in Figs. 5 and 6 for m = 2.5, n = 0 and m = 4.5, n = 0
respectively. Similar bifurcation diagrams have been presented in the the authors’ previous
work, [6, 5], but this is the first time that solutions reaching states (c) or (d) have been
found. In the former case one viable solution with a receding interface (blue), satisfying
(3.24), was identified, as well as one with an attached interface (yellow), satisfying (3.26). In
the latter case two viable solutions were found, one with the local behaviour (3.26), which is
a potential profile prior to touchdown (green) and another with an advancing interface (red)
and the near-field behaviour (3.23). Similar experiments were carried out for many values
of m ∈ (1, 8) while retaining n = 0 and the locations of the viable solutions are summarised
in the top right panel of Fig. 7. Further computations were carried out for other values of
n, namely −1,−1/2 and 1/2, and similar results were found, see the other panels in Fig. 7.
In summary, we observe that for a particular pair of values of m and n it is possible to find
connections between the far-field behaviour (3.27) and the near-field behaviours (3.23)-(3.26)
for isolated values of A.

6.2 Forward self-similiarity

When a backward similarity solution exists, as described in §6.1, it is a candidate for de-
scribing the local behaviour as the relevant type of singularity is approached. The immediate
post-singularity behaviour is then expected to be a forward similarity solution of the form
(1.8) with

f(ξ) ∼ Aξα as ξ → +∞, (6.1)

where the admissible values of A are determined by the pre-singularity backward solution;
(6.1) is supplemented by the relevant boundary conditions at the interface. Importantly, the
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forward problem is not of eigenvalue type: in contrast to (1.7), an exponentially decaying
correction to (6.1) is available and can be constructed by the Liouville-Green method, so the
boundary value problem is correctly specified for given A, rather than the possible A being
determined as part of the solution (the corresponding quantity then being exponentially
growing rather than decaying). It was proved in Corollary 4.2 of [6] that reversing and
anti-reversing solutions emanating from suitable behaviour at finite ξ all reach (6.1), for
some value of the parameter A, when integrated in the direction of increasing ξ. Associated
numerical results are shown in Fig. 8, for n = 0, m = 2, 3, 4, the ODE being solved in the
direction of increasing ξ, the approach confirming that arbitrary A > 0 can be attained in
this fashion.

7 Specific singular phenomena

7.1 Preliminaries

We shall exploit the x and t translation invariance of (1.1) to locate the singularity at x = 0
and t = 0, without loss of generality (in particular, where a fixed boundary is involved, this
will be taken to be at x = 0). These symmetries will play further important roles in what
follows.

§5 gives a detailed description of the two relevant linearisations in terms of special func-
tions. Here we summarise the results in more informal terms and in a self-contained fashion
to highlight the information we shall need in the rest of the section. Firstly, the linearisation
(5.1) about the spatially uniform solution

h = ((1− n)(−t))
1

1−n , (7.1)

leads to the linear PDE (5.2). The relevant backward similarity solutions to this PDE take
the form

HM = (−t)
n

1−n (−t)
(m+1−n)M

2(1−n) ΨM(η), η =

√
m+ 1− n

2
(1− n)−

(m+1−n)
2(1−n)

x

(−t)
(m+1−n)
2(1−n)

, (7.2)

for non-negative integer M , ΨM being an Mth order polynomial in η that satisfies

−MΨM + η
dΨM

dη
=
d2ΨM

dη2
. (7.3)

We normalise ΨM(η) by requiring that

ΨM ∼ ηM as |η| → ∞, (7.4)

so that

Ψ0 = 1, Ψ1 = η, Ψ2 = η2 − 1, Ψ3 = η3 − 3η, Ψ4 = η4 − 6η2 + 3. (7.5)
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Figure 5: Results of the shooting scheme to detect viable solutions (3.21) for m = 2.5 and
n = 0. The upper panel, (a), shows the variation of f , fmdf/dξ and ξterm at the termination
point (ξ = ξterm) with the shooting parameter A. Candidate receding, exceptional and
attached trajectories are indicated by the blue, black and yellow arrows respectively. The
lower panels, (b) and (c), show the candidate receding and attached trajectories (solid curves)
respectively, along with a few trajectories “near” to these candidates (dashed curves) – “near”
in the sense that they have values of A close to the candidates.

21



0 0.5 1 1.5
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2
0.4

0.45

0.5

0.55

0.6

0.65

0.5 1 1.5
0

0.5

1

1.5

Figure 6: Results of the shooting scheme to detect viable solutions (3.21) for m = 4.5 and
n = 0. The upper panel, (a), shows the variation of f , fmdf/dξ and ξterm at the termination
point (ξ = ξterm) with the shooting parameter A∗. Candidate exceptional, touchdown and
advancing trajectories are indicated by the black, green and red arrows respectively. The
lower panels, (b) and (c), show the candidate touchdown and attached trajectories (solid
curves) respectively, along with a few trajectories “near” to these candidates (dashed curves).
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Figure 7: Locations of viable solution to the self-similar ODE for (3.21). The exceptional
trajectory is indicated by the presence of a black dot. Advancing and receding interface
solutions satisfying (3.23) and (3.24) are indicated by red and blue dots respectively. A
touchdown candidate with the near-field behaviour (3.25) is indicated by a green dot, and a
leaking candidate, satisfying (3.26), is indicated by a yellow dot.
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Figure 8: The connection problem for the self-similar ODE for t > 0; illustrating that
connections can be made to arbitrary positive values of A (viable reversers have A < A∗ and
viable anti-reversers have A > A∗).
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The coefficients in ΨM alternate in sign, so that the constant term in Ψ2N has the same
sign as (−1)N , as does the linear term in Ψ2N+1, an observation that will be relevant in due
course. In view of the power of (−t) in the prefactor in (7.2), self-consistency, in the sense
that the second term in (5.1) is much smaller than the first in the limit t→ 0−, requires

mM + (1− n)(M − 2) > 0, (7.6)

which is automatically satisfied for M ≥ 1 in the range of interest here but fails for M = 0;
the full complement of M is required to furnish a complete set of eigenfunctions to (5.2), an
issue to which we shall also implicitly need to return.

Similar issues arise for the linearisation about the steady-state

h = A∗x
2

m+1−n , (7.7)

for which H̄, the perturbation about (7.7), satisfies the linear PDE (5.10), which is more
conveniently written in the form

∂H̄
∂t

= Am∗

(
∂2

∂x2

(
x

2m
m+1−n H̄

)
−
(

2n(m+ n+ 1)

(m+ 1− n)2

)
x−

2(1−n)
m+1−n H̄

)
. (7.8)

Since we limit ourselves to the range m + 3n + 1 > 0, the required backward self-similar
solutions to (5.10) (i.e. those with maximal regularity as η → 0+, this being a requirement
for the subsequent matching) take the form

H̄M = (−t)
n+1−m
2(1−n) (−t)Mη

n+1−m
m+1−nΘM(η), η = A

−m(m+1−n)
2(1−n)

∗ x(−t)−
m+1−n
2(1−n) , (7.9)

where ΘM(η) is a polynomial in η
2(1−n)
m+1−n of Mth order, with

−MΘM +
m+ 1− n
2(1− n)

η
dΘM

dη
= η−

n+1−m
m+1−n

d2

dη2

(
η
m+1+n
m+1−nΘM

)
− 2n(m+ 1 + n)

(m+ 1− n)2
η−

2(1−n)
m+1−nΘM .(7.10)

We note that η in (7.9) has the same time dependence as in (7.2), being that of the full
similarity solution of §6.1, though the constant factor for convenience differs. We normalise
ΘM(η) according to

ΘM ∼ η
2(1−n)M
m+1−n as η → +∞; (7.11)

the coefficients again alternate sign, so that ΘM(0) has the same sign as (−1)M ; in contrast
to ΨM , for which the polynomials are alternately odd and even, ΘM contains all the relevant
powers. It follows that

Θ0 = 1, Θ1 = η
2(1−n)
m+1−n − 2

(1− n)(n+m+ 3)

(m+ 1− n)2
, (7.12)

Θ2 = η
4(1−n)
m+1−n − 4

(1− n)(m+ 5− n)

(m+ 1− n)2
η

2(1−n)
m+1−n + 4

(1− n)2(m+ 5− n)(n+m+ 3)

(m+ 1− n)4
. (7.13)

Given that (7.7) is proportional to (−t)1/(1−n) for η = O(1), self-consistency of (7.9) requires
that

m < (2M − 1)(1− n) (7.14)
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7.2 Extinction behaviour

We start with this case because it involves only one class of self-similar solutions (these
being those of the limit problem in §4.2, rather than those of the full PDE) and does not
involve any post-singular behaviour, h being identically zero following extinction; moreover,
it illustrates some principles that will be of more general relevance. We refer to [13] for a
very closely related approach to this case.

The extinction behaviour is ‘flat’ in the sense that it is selected by the linearisation (5.1),
with M even in (7.2); in other words, we have ‘inner’ expansion

h ∼ ((1− n)(−t))
1

1−n − aN(−t)
n+(m+1−n)N

1−n Ψ2N(η), , (7.15)

with N ≥ 1 and where aN is an arbitrary constant that is required to be positive in view
of the matching to bN noted below. In view of (7.4), the expression (7.15) disorders for

|x| ≥ O((−t) 1
2N ) (i.e. the final ‘linearised’ term in (7.15) becomes comparable with the

leading ((1− n)(−t))
1

1−n term). On this outer scale the dominant balance in (1.1) is given
by

∂h

∂t
∼ −hn

so that (cf. §4.2)

h ∼ (−t)
1

1−n

(
(1− n)

(
1− bN

x2N

(−t)

)) 1
1−n

(7.16)

with bN ∝ aN ; the matching condition (‘inner of outer’) that follows from (7.16) can readily
be inferred. From (7.16) it follows that the interfaces satisfy

x ∼ ±
(

(−t)
bN

) 1
2N

as t→ 0−,

wherein bN is an arbitrary positive constant.
We now discuss the status of N in the analysis above in terms of the stability (reflecting

the completeness of the eigenfunctions) and of the necessity for an entire family of possible
asymptotic behaviours (N being an arbitrary positive integer). The case N = 1 is expected
to provide the generic (i.e. stable) extinction behaviour; while the solution to (5.2) will in
general also contain H0 and H1 contributions, each of these being eliminated by identifying
x = 0, t = 0 with the place and time of extinction (it is no coincidence that there are
two translation symmetries and that two eigenfunctions need to be suppressed); indeed H0

corresponds to a small shift in t in (1.6), while HM ∝ ∂HM+1/∂x, so an x translation in H2

can suppress H1. Similar arguments apply in the singular scenarios outlined below, where we
typically omit such details (see the end of §5.2, however). The necessity for the non-generic
cases N ≥ 2 can be argued as follows: for initial data containing a minimum between the
two maxima, two generic behaviours can occur prior to extinction:
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(i) diffusion may eliminate the minimum to leave a single maximum

or

(ii) the sink term may lead to the minimum touching down (as described in the next
subsection), with the support of h breaking into two disconnected sets.

The case N = 2 (which has a minimum at η = 0) describes intermediate-asymptotic be-
haviour on the borderline between these two, with yet higher N corresponding to border-
lines between scenarios that are themselves non-generic (the inevitability of the latter being
implicit in the above identification of the necessity of a scenario with N = 2, enabling a boot-
strapping argument to higher and higher N given the presence of the comparable families
associated with other types of singular behaviour).

In summary, as well as characterising a particularly significant type of intermediate-
asymptotic behaviour, the above illustrates a central element of the subsequent subsections,
namely the existence of a (discrete) set of asymptotic possibilities, the leading one of which
is generic, this being particularly transparent in the current case given that the relevant
solution to the heat equation can be written as a sum over the Hermite polynomials (5.5)
with k ≥ 2. The number of modes to which a given asymptotic scenario is unstable is
readily identified from such a representation in terms of the omitted contributions and the
non-generic behaviours play an identifiable role in the dynamics: for example, and as noted
above, the case C2 = C3 = 0 can be interpreted as providing the borderline between solutions
whose support breaks up prior to extinction and those for which it does not.

7.3 Touchdown

It is noteworthy that there are three distinct intermediate-asymptotic scenarios in this case.
Firstly, the results of the previous subsection can be immediately revisited with the only
changes being aN → −aN and bN → −bN , with aN and bN then still positive. Hence, in
particular, (7.16) becomes

h ∼ (−t)
1

1−n

(
(1− n)

(
1 + bN

x2N

(−t)

)) 1
1−n

(7.17)

so that the local profile at t = 0 is given by

h(x, 0) ∼
(
(1− n)bNx

2N
) 1

1−n as |x| → 0.

For t→ 0+ (i.e. after the touchdown and film rupture at t = 0) one then has the asymptotic
behaviour

h ∼
(
(1− n)

(
bNx

2N − t
)) 1

1−n (7.18)

with retracting interfaces given by

x ∼ ±
(
t

bN

) 1
2N

,
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and with h ≡ 0 for smaller |x|; since (7.18) is consistent with (2.2), the former needs no
supplementation by an inner scaling.

Secondly, the green curves in Fig. 7 are of the required type for the pre-touchdown local
behaviour, whilst the associated post-touchdown local behaviour is then expected to be a
forward similarity solution of the form (1.7).

Thirdly, and clarifying the bifurcation structure in Fig. 7, the black branch therein,
which gives the exceptional solution, can be followed in the sense of the linearisation (5.10),
so that

h ∼

{
A∗x

2
m+1−n + c+MH̄M(x, t) for η > 0,

A∗(−x)
2

m+1−n + c−MH̄M(−x, t) for η < 0,
(7.19)

provides the outer (i.e. η = O(1)) expansion, with arbitrary constants c±M and H̄M and
η as in (7.9). Here the pre-touchdown solution of §3.1, see (3.8), comes into play via its
quasi-steady generalisation: the resulting inner scalings are

x = (−t)Mξ, h = (−t)
2M

m+1−n g(ξ) (7.20)

implying the quasi-steady balance (as in §3.1)

d

dξ

(
gm
dg

dξ

)
∼ gn (7.21)

at leading order. The matching condition

g ∼ A∗|ξ|
2

m+1−n as |ξ| → ∞ (7.22)

specifies the solution to (7.21) up to arbitrary constants ξ0 and α in the form

g = α2G

(
ξ + ξ0
αm+1−n

)
(7.23)

where G(σ) is an even function of σ that can be specified uniquely via

G(σ) ∼ A∗σ
2

m+1−n + σ
n+1−m
m+1−n as σ → +∞ for n > 0,

G(σ) ∼ A∗σ
2

m+1−n − σ
n+1−m
m+1−n as σ → +∞ for n < 0,

(7.24)

The switch in sign follows (as in (3.10) above) from an analysis of the integral that arises on
solving the separable equation

1

2
G2m

(
dG

dσ

)2

− 1

m+ n+ 1

(
Gm+n+1 −Gm+n+1

0

)
= 0

that results as the first integral of (7.21), where

G0 = G(0).
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In the special case n = 0 already noted above we have

G =

(
G0 +

m+ 1

2
σ2

) 1
m+1

and the correction terms in (7.24) are instead absent; we omit further analysis of this excep-
tional case here.

Given that

H̄M ∼ KM(−1)M(−t)Mx
n+1−m
m+1−n as η → 0. (7.25)

for some positive constant KM that is to be regarded as known, given the analysis of §5.2,
matching to (7.20) and (7.24) implies that α and ξ0 are given by

2

m+ 1− n
ξ0A∗ ± αm+1−n = (−1)Mc+MKM

− 2

m+ 1− n
ξ0A∗ ± αm+1−n = (−1)Mc−MKM

(7.26)

where the signs on the left-hand sides correspond to those in (7.24). Self-consistency of such
a scenario requires that (7.14) hold. Before turning to questions of stability, it is helpful to
make connections between (7.26) and Fig. 7; the green branches in the latter bifurcate off
when equality holds in (7.14) and are symmetric. For m slightly larger than (2M −1)(1−n)
the expressions (7.26) remain relevant with ξ0 = 0, c+M = c−M = cM ; since α is necessarily
positive (a constraint with broader implications in (7.26)), this implies cM > 0 and hence
A > A∗ for n < 0, M odd and n > 0, M even, with cM < 0 and A < A∗ in the converse
cases. This is consistent both with the alternating directions of the green branches in Fig.
7 and with their swapping sides as n passes through zero. Turning now to stability, N = 1
in (7.17) leads to a generic cases, as in the previous subsection; N ≥ 2 scenarios are again
necessary but unstable. We signpost that the cases akin to (7.17), but with M odd, will
also be relevant in due course. In terms of (7.19), the cases η > 0 and η < 0 in effect
operate independently, so suppressing the M = 0 mode in (5.10) on both sides uses up both
translational invariants. Since (7.14) is violated for M = 1, m + n > 1 , the first legitimate
instance of (7.19) is doubly unstable (though in the symmetric case, or with zero-Neumann
boundary condition on x = 0 (for which x translational invariance cannot be exploited), it
is only singly so). However, for related reasons the left-most green branch in panel of Fig. 7
with n ≤ 0 is expected to be stable4 above the fold, but unstable below it: in these regimes
there are thus two stable scenarios, that in Fig. 7 for a narrow range of m > 1 − n, while
(7.17) with N = 1 is applicable throughout. In Fig. 7, successive branches (of any colour)
are expected to gain an additional unstable mode on each occasion a bifurcation point is
passed through from left to right.

At t = 0 the spatial profiles in the third scenario take the form

h ∼ A∗|x|
2

m+1−n + c±M |x|
n+1−m+2M(1−n)

m+1−n as |x| → 0. (7.27)

4For n > 0 the corresponding branch is anticipated to lie in m + n < 1.
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There seems subsequently to be the possibility of non-uniqueness, but we shall not discuss
the associated post-touchdown behaviour given that these are in any case unstable.

7.4 Attachment, detachment and coalescence

Attachment, either to a fixed boundary or through two interfaces colliding (either through
both advancing or by one advancing faster than the other is retracting) – termed coalescence
above – raises no pre-singularity questions since the solution has no prior knowledge that
it is about to attach (unlike the other cases analysed here).5 Post-attachment raises no
significant challenges either: one has a porous-medium equation similarity solution of the
form

h ∼ t
1
mf
(x
t

)
as with x = O(t),

with additional structure when an advancing interface overuns a receding one of a form akin
to that analsyed in the generic anti-reverser case addressed below. One related observation
is in order, however: the pre-attaching behaviour of an advancing interface takes the form

h ∼ (−t)
1
mf

(
x

(−t)

)
, fm(η) = mη0(η0 − η)

for some constant η0. This simply corresponds to a Taylor expansion in t of (2.3), reflecting
the lack of prior knowledge referred to above, but is also an exceptional connection for the
porous-medium equation in a sense elaborated upon in [14], the significance of which here
is that this relates to the probably unexpected branches present in the bottom left-hand
corners of Fig. 7, though we shall not go into details here.

There are of course non-generic attaching behaviours, such as an interface reversing at the
same instant as attaching, but the no-prior-knowledge argument applies to these also. For
the hole filling case in higher dimensions the situation is more complicated, however, since
the interface is aware of its increasing curvature; see, for example, [1] for the porous-medium
equation - including a sink term, as in (1.1), leads to open questions in this regard.

The detachment case is also simple in the sense that we conjecture that the left-most
yellow branch in each panel of Fig. 7 provides the generic behaviour, with post-detachment
being described by an associated forward similarity solution. For n > 0 we expect this branch
to start from A < A∗ as m + n → 1+ (with a fold in m + n < 1 connecting the branch to
A = A∗ at m+ n = 1), whereas for n ≤ 0 we have A→ A∗ in that limit. Non-generic cases
arise both as the other yellow branches and from tracking along the black branch prior to
the secondary and subsequent bifurcations, as in the first of (7.19), being subject to (7.14).
Now a quasi-steady version of the leaking solution of §3.1, satisfying (3.6), describes the

5We note that here we are assuming that ṡ(0) 6= 0. For the porous-medium equation waiting-time
behaviour, ṡ ≡ 0, can occur for small enough times but the interface must subsequently advance at finite
speed for all t; we shall not explore such phenomena here - see [21] and [20] for such behaviour in the
porous-medium equation.
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inner behaviour – the inner scalings are again given by (7.20), but now (7.21) is subject to

g = 0 at ξ = 0

so that

g = α2G

(
ξ

αm+n−1

)
with

1

2
G2m

(
dG

dσ

)2

− 1

m+ 1
Gm+n+1 =

1

2
J2
0

where

J0 = Gm dG

dσ

∣∣∣∣
σ=0

> 0

determines the outward flux. For n = 0 we have

G =

(
(m+ 1)

(
J0σ +

1

2
σ2

)) 1
m+1

and for any n the sign in the first of (7.24) applies here – correspondingly the yellow branches
of Fig. 7 are on the opposite sides from the green ones for n < 0 and on the same side for
N > 0. The local behaviour at detachment is then again as in (7.27). Instability follows even
for M = 2 because the x-translation mode is not available given the boundary condition (i.e.
h = 0 at x = 0) and the M = 0 and M = 1 modes both need to be absent; accordingly we
omit any discussion of the post-detachment behaviour in these non-generic cases.

7.5 Reversers and anti-reversers

We start with scenarios in which the two have closely related behaviour, before discussing
a (generic) anti-reversing structure distinct from the other categories arising here. We take
the support to lie in x > 0 at t = 0 and start from the first of (7.19) (writing cM = c+M)
with, as always, (7.14) being required. Since here we can apply both t and x translational
invariance, the M = 0 and M = 1 modes can both be suppressed (in contrast to the situation
in the previous section), leaving M = 2 as a potential stable scenario for m < 3(1− n). The
matching condition

h ∼ A∗x
2

m+1−n + (−1)MKMcM(−t)Mx
n+1−m
m+1−n (7.28)

then applies on a travelling-wave inner region, for which a translation

x = s(t) + z, s(t) ∼ (−1)M+1KMcM
A∗

(−t)M (7.29)
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is required, with the dominant balance being (as in §3.2)

−ṡ∂h
∂z
∼ ∂

∂z

(
hm

∂h

∂z

)
− hn, (7.30)

which implies that the inner scalings are

z = O
(

(−t)
(m+1−n)(M+1)

m+n−1

)
, h = O

(
(−t)

2(M−1)
m+n−1

)
. (7.31)

Given that the outer scaling associated with (7.19) is the full self-similar one, x = O
(

(−t)
m+1−n
2(1−n)

)
,

consistency conditions on the above read

(m+ 1− n)(M − 1)

m+ n− 1
> M >

m+ 1− n
2(1− n)

, (7.32)

both inequalities simply reproducing (7.14). Whether (7.28) is associated with a reverser or
an anti-reverser depends upon the sign of cM ; if cM(−1)M+1 is positive the above asymptotic
behaviour corresponds to a reverser (advancing interface for t < 0), while if it is negative
it is an anti-reverser (receding interface for t < 0)6, subject to the following qualification
– for the stable case M = 2 and other even M the interface indeed changes direction (see
(7.29)), while for M odd it recommences its original direction after an instantaneous pause
(the singly unstable case M = 3 corresponding to the borderline between (i) reversers and
anti-reversers occurring in rapid succession (in either order) and (ii) no change of direction).

A first integral of (7.30) is available in the case n = 0, namely

−ṡh = hm
∂h

∂z
− z.

With regards to the transcritical red/blue bifurcations in Fig. 7, for n < 0 the numerics
provide evidence that the primary such bifurcation has red unstable and blue stable close
to the bifurcation point, though with folds rapidly swapping the stability of each, whereas
for n > 0 the red branch is expected to be stable throughout and the blue unstable (except
perhaps in the lower left-hand corner: we leave the stability of the branches there as an open
question). Similar comments apply with respect to the number of unstable model arising
from the subsequent bifurcations.

Collecting together the implications of the above for the generic cases, we summarise our
conjectures as follows.

(I) Reversers

For m < 3(1 − n), (7.28)-(7.30) with M = 2 provide a stable solution, changing direction
smoothly (i.e. s ∝ (−t)2 in (7.29)). At t = 0

h ∼ A∗x
2

m+1−n + κx
5−3n−m
m+1−n (7.33)

6The presence of the (−1)M+1 here is reflected in the red and blue branches repeatedly swapping sides
in Fig. 7.
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holds for some constant κ and the t → 0+ behaviour follows directly from the t → 0−

behaviour (the equivalent polynomial solutions provide the correction term, though their
coefficients then all take the same sign). For n > 0 the generic behaviour in m > 3(1 − n)
is a full similarity solution, corresponding to the first red branch in Fig. 7. For n < 0 the
situation is slightly more complicated, with a bistable regime being present over a small
range of m in m < 3(1 − n), the red branch being unstable below the fold (being the
borderline between the two stable scenarios) but stable above it and continuing into the
range m > 3(1− n). When a full similarity solution applies, s is in general not smooth:

s ∼ S−(−t)
m+1−n
2(1−n) as t→ 0−, s ∼ S+t

m+1−n
2(1−n) as t→ 0+, (7.34)

with a forward similarity solution holding as t → 0+ and with the constants S− and S+

presumably being different and positive on the primary branch.

(II) Anti-reversers

The description in (I) above again applies for m < 3(1 − n), M = 2 (whether a reverser
or anti-reverser pertains depends on the sign of κ). For n < 0 there is expected to be a
narrow range of bistability in m > 3(1 − n) also (one of the stable scenarios being the full
similarity solution, as in Fig. 7, the other being described next), but the first blue branch
is otherwise unstable, necessitating the identification of a different class of intermediate-
asymptotic behaviour. The range m < 3(1 − n) is thus bistable, with the blue branch
expected to provide the borderline between the two generic cases.

An important clue into the other generic scenario is provided by a comparison between
(2.2) and (2.3): since

1− n < m for m+ n > 1,

retreating interfaces are associated with local behaviour smaller than that of the advancing
ones, so we may anticipate that the latter can overrun the former with little modification
to itself. We now formalise that intuition; related analyses of the porous-medium equation,
[20, 19], represent precedents. Two outer regions are present on the scaling x = O(−t),
namely

hm ∼ mq(x− q(−t)) for
x

(−t)
> q,

h1−n ∼ (1− n)

(
−t+

x

Q

)
for q >

x

(−t)
> −Q,

(7.35)

wherein q and Q are each positive constants, the former expression being a similarity solution
of the porous-medium equation (as in §4.1) and the latter being one of the pure absorption
limit (as in §4.2). The two expressions in (7.35) are comparable for

x = q(−t) +O
(

(−t)
m

1−n

)
,
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self-consistency here again requiring that m+ n > 1, which implies the inner scalings

x = q(−t) + (−t)
m

1−n ξ, h = (−t)
1

1−n g,

leading to

q
∂g

∂ξ
∼ ∂

∂ξ

(
gm
∂g

∂ξ

)
and hence to

q

(
g −

(
(1− n)

(
1 +

q

Q

)) 1
1−n
)
∼ gm

∂g

∂ξ
,

thereby matching with (7.35) in both limits |ξ| → ∞. In consequence we simply have

h(x, 0) ∼ (mqx)
1
m as x→ 0+

so the interface obeys

x ∼ Qt as t→ 0−, x ∼ −qt as t→ 0+, (7.36)

its velocity being discontinuous (indeed swapping sign) at t = 0.
There is one final, but unstable, case to which we have already alluded and for which

relevant results can be read off directly from (7.17) on replacing the even exponent by an
odd one, so that

h ∼ (−t)
1

1−n

(
(1− n)

(
1 + bN

x2N+1

(−t)

)) 1
1−n

with N ≥ 1 and with bN > 0 without loss of generality. This has a retreating interface for
t < 0 at

x ∼ −
(

(−t)
bN

) 1
2N+1

,

with h ≡ 0 for smaller x, and

h(x, 0) ∼
(
(1− n)bNx

2N+1
) 1

1−n as x→ 0+.

Since the interface has

x ∼
(
t

bN

) 1
2N+1

as t→ 0+

in this case no change of direction occurs, with N = 1 being singly unstable and providing
the borderline between solutions that lose a local maximum/minimum pair while retreating
and those which touchdown. These cases are striking in having unbounded, rather than zero,
interface velocity at t = 0 and do not fall naturally under any of the headings above.
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8 Numerical solutions to the PDE

8.1 Validation of the asymptotic predictions

Here we provide evidence to substantiate the observability of some of the local descriptions
identified as generic above. First we summarise the findings of the numerical experiments,
and then we give the details on how solutions to (1.1) were found by direct numerical
simulation. All results in this section have n = 0 but similarly good agreement is expected
for other values of n in the range (1.2).

(i) Reversing events Panel (ia) in Fig. 9 indicate that for m < 3(1 − n) we have
s ∼ const.(−t)2 as t → 0− with the constant dependent upon the initial conditions. This
is in agreement with (7.33). Panel (ib) indicates that for m > 3(1 − n) we have s ∼
ξ̂(−t)(m+1−n)/2(1−n) where the constant ξ̂ is that obtained from the ODE solutions described
in §6 on the stable red branch: we find

ξ̂ ≈ 0.3864 for m = 4, n = 0, (8.1)

ξ̂ ≈ 0.5014 for m = 5, n = 0, (8.2)

the PDE simulations being consistent with these values up to three significant figures.

(ii) Anti-reversing events Panel (ii) in Fig. 9 indicates that the interface obeys s ∼
const.(−t) with the constant selected by the initial data, in agreement with (7.36). We omit
here the other regime of stable anti-reversing identified in §7.5, namely pure self-similarity.

(iii) Attaching events Panel (iii) in Fig. 9 indicates that the interface obeys s ∼
const.(−t) with the constant selected by the initial data in agreement with the discussion
in §7.4; in short, this is expected because the interface has no way to anticipate its collision
with the absorbing boundary.

(iv) Detaching events Panel (iv) in Fig. 10 indicates that the outward flux at the
interface leading up to a detachment event obeys

hm
∂h

∂x

∣∣∣∣
x=0

= (−t)(m+1)/2 fm
∂f

∂ξ

∣∣∣∣
ξ=0

(8.3)

where the quantity fm∂f/∂ξ|ξ=0 can be determined via the shooting method described in
§6. Shooting on the self-similar ODE yields

fm
∂f

∂ξ

∣∣∣∣
ξ=0

= 0.4912 for m = 2, n = 0, (8.4)

fm
∂f

∂ξ

∣∣∣∣
ξ=0

= 0.8786 for m = 3, n = 0, (8.5)

fm
∂f

∂ξ

∣∣∣∣
ξ=0

= 1.3076 for m = 4, n = 0, (8.6)
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with which the PDE solutions are again consistent up to three significant figures. This
verifies the claim in §7.4 that the left-most yellow branch in Fig. 7 provides the generic
description of detachment.

(v) Touchdown events Panels (va) and (vb) in Fig. 10 indicate that the description
leading up to a touchdown event are in agreement with (7.18) with N = 1, verifying that
this is the generic behaviour; we note that the curvature does not tend to a constant at
t→ 0− in cases where N > 1.

(vi) Coalescence events Panel (vi) in Fig. 10 indicates that the interfaces obeys s ∼
const.(−t) with the constant selected by the initial data, in agreement with the discussion
in §7.4 and again following from the no-prior-knowledge argument.

8.2 Numerical methods

We furnish numerical solutions (1.1) on a finite domain by supplementing it with an interface
condition at the left-hand end of its compact support, i.e. one of the conditions (1.3)-(1.5),
as well as a symmetry condition at some location x = x0 > 0, i.e.

∂h

∂x

∣∣∣∣
x=x0

= 0. (8.7)

The value of x0 is chosen arbitrarily; the spatial coordinates are translated post hoc such
that the singular event occurs at x = 0.

Numerical solution is made awkward by two features, namely (a) that the domain is
dynamic and (b) that the solution often exhibits an infinite spatial gradient at the interface.
We alleviate these difficulties by transforming the spatial coordinates using a similar strategy
to that in [6]. As we have seen, the solution local to an interface takes the form

h ∼ λ(t)(x− s(t))ω as x→ s(t)+ (8.8)

for some λ, where ω = 1/m, 1/(1−n), 1/(m+ 1) or 2/(m+ 1−n) depending on whether the
interface is advancing, receding, in contact with an absorbing boundary or stationary and
mass preserving. These local behaviours motivate the coordinate transformations

y =

(
1− x0 − x

x0 − s(t)

)ω
(8.9)

such that the behaviour (8.8) is replaced with h ∼ λ̂(t)y as y → 0+. The PDE (1.1) becomes

∂h

∂t
=
wy(w−1)/w

x0 − s
∂

∂y

(
wy(w−1)/w

x0 − s
hm

∂h

∂y

)
+
w
(
1− y1/w

)
y(w−1)/w

x0 − s
ds

dt

∂h

∂y
− hn. (8.10)

This is closed by the boundary conditions

h|y=0 = 0,
∂h

∂y

∣∣∣∣
y=1

= 0, (8.11)
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Figure 9: Comparison between the asymptotic results, shown in grey, and direct numerical
simulation of (1.1), shown in black, for n = 0. Panels (ia) and (ib) show the interface position
leading up to a reversing event for different choices of initial condition. In (ia) dashed curves
are for m = 2, whereas solid ones are m = 3. In (ib) dotted curves are for m = 4 and solid
curves for m = 5. Panels (ii) and (iii) show the interface position leading up to antireversing
and attachment events, respectively, for different choices of initial condition. In both panels
(ii) and (iii), dashed curves indicate m = 2, solid curves m = 3 and dotted curves m = 4.
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Figure 10: Comparison between the asymptotic results, shown in grey, and direct numerical
simulation of (1.1), shown in black, for n = 0; results for m = 2 are indicated by dashed
curves, for m = 3 with solid curves and for m = 4 with dotted curves. Panel (iv) shows the
flux at the interface leading up to a detachment event for different choices of initial condition.
Panels (va) and (vb) show h and hxx at the minimum leading up to a touchdown event.
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where the latter results from transforming (8.7) and the former results from (1.3a) for a
mobile interface or (1.5) for an absorbing boundary. When an absorbing boundary is being
considered we have ṡ = 0, but for a dynamic interface the motion is solved for as part of the
solution to the problem using the transformed counterpart of (1.4), which reads

ṡ = lim
y↘0


−wy

(w−1)/w

x0 − s
hm−1

∂h

∂y
if ṡ(t) ≤ 0,

hn(x0 − s)
wy(w−1)/2

(
∂h

∂y

)−1
if ṡ(t) ≥ 0.

(8.12)

The spatial derivatives in the PDE (8.10) and the boundary conditions (8.11) (along with
(8.12) in scenarios where an interface is moving) are discretised using finite differences.
Second-order central differences are used on internal points, whilst the ghost-point method
is used to incorporate (8.11). To retain second-order accuracy the spatial derivative in (8.12)
is computed using a forward-finite-difference approximation involving values of h at the node
in question and two neighbouring nodes. Once this has been done, the resulting large system
of coupled ODEs is integrated forward in time using an adaptive Runge-Kutta-Fehlberg
(RKF45) scheme implemented in MATLAB.

9 Discussion

As will be clear from the lengthy analysis above, the PDE (1.1), despite being deceptively
simple looking, displays a wide variety of singular behaviours. We have investigated these
using a combination of formal asymptotics and numerical methods, and our results leave
open a considerable number of open questions deserving of a rigorous analytical treatment.

We now outline some broader implications of the types of approach implemented here,
firstly for singularity development in moving-boundary problems and nonlinear PDEs and
secondly for symmetry methods. In the former regard the classes of phenomena explored here
are of broad relevance (in terms both of the rather comprehensive nature of the transitions
summarised by Fig. 1 and of the necessity for hierarchies of less and less generic types
of singularity formation) for systems in which interfaces can both advance and retreat and
in which touchdown can occur. Another well-known such example is that of the thin-film
equation, in which touchdown is associated with film rupture; the current example is perhaps
the simplest though, being of second order – moreover, retreat and touchdown both become
impossible for n ≥ 1, so (1.1) also serves to illustrate a further type of transition. Two
further constraints (namely m+ n > 1 and m+ 3n+ 1 > 0) have been imposed above – the
transitions that occur on passing through these borderlines are less dramatic but nevertheless
require that the resulting parameter regimes be afforded separate treatment.

In terms of similarity methods, we focus here on issues associated with the linear stability
of the postulated self-similar forms, illustrating more general principles through the current
specific application, to which the scaling reduction

h = (−t)
1

1−nf(η), η =
x

(−t)
m+1−n
2(1−n)

(9.1)
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applies; the two symmetries not used up by (9.1) (i.e. t and x translation invariants) can
each be applied to generate solutions that satisfy (1.1) linearised about (9.1), namely

∂H

∂τ
+
m+ 1− n
2(1− n)

η
∂H

∂η
=

∂2

∂η2
(fmH)− nf−(1−n)H, (9.2)

where τ = − ln(−t). That (9.2) is autonomous in τ (and hence separable) is a remnant of the
scaling invariance of (1.1). The solutions to (9.2) resulting from the translation invariants
are

H =
∂h

∂t
= (−t)

n
1−n

(
−f +

m+ 1− n
2

η
df

dη

)
, (9.3)

and

H =
∂h

∂x
= (−t)

n+1−m
2(1−n)

df

dη
. (9.4)

Because (9.2) is second-order and linear, so that Sturm-Liouville theory is applicable for
suitable boundary data, the number of zeros on each of these provides insight into the
stability properties of (9.1); cf. [2], for example, for related arguments. In the current
context, (9.3) and (9.4) should be regarded as unstable modes, both growing relative to
(9.1) as t→ 0−, a result implicit in our translations of x and t to prescribe the singularities
to occur at the origin of each.

Central to our analyses have been two special solutions to (1.1), namely

h = ((1− n)(−t))
1

1−n , (9.5)

and

h = A∗x
2

m+1−n . (9.6)

As already noted, these are exceptional with regard to symmetry methods (being invariant
under two distinct symmetries); it is therefore perhaps not surprising that they also play an
exceptional role in delineating the possible intermediate-asymptotic properties. Their doubly
symmetric nature has implications for the linearisation, an issue which we have touched on
above: the linearised equation for H(x, t) is autonomous in x for (9.5) and in t for (9.6)
implying successive modes derived in §5.1 involve successive integrations with respect to x
and those in §5.2 successive integrations with respect to t, prefiguring some of the properties
that we have exploited and being revisited below. The τ translation invariance of (9.3) also
remains significant, however – we recall that each of (9.5) and (9.6) is a special case of (9.1).
Moreover, the doubly symmetric attributes of (9.5) and (9.6) have further implications: (9.4)
is identically zero for (9.5), as is (9.3) for (9.6), so more needs to be said with regard to the
application of the translation invariants, there being significant differences from the roles
these play for more general f .
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We write the general solution to (9.2) in the form (glossing over boundary conditions and
ignoring the role of nonlinearities, neither of which lead to fundamental difficulties)

H =
∞∑
n=0

AM(−t)λMFM(η), (9.7)

where t = −e−τ , the FM(η) form a complete set of normalised eigenfunctions, the AM are
arbitrary constants and the λM form an increasing sequence. We define HM = (−t)λMFM(η).
Except for (9.5) and (9.6), when f(η) is stable we expect

λ0 =
n+ 1−m
2(1− n)

, F0 =
df

dη
,

λ1 =
n

1− n
, F1 = −f +

m+ 1− n
2

η
df

dη
,

(9.8)

when m + n > 1 (that these two swap dominance at m + n = 1 is a further indication of
the significance of that borderline). In view of (9.3), (9.4) these can (and should, given that
they would otherwise dominate (9.1)) be absorbed into f(η) by suitable x and t translations,
respectively, so that (9.7) is dominated by M = 2 (with λ2 > 1/(1−n) when f(η) is stable).
The situation with (9.5) and (9.6) is more complicated, however. For (9.5) we have

λM =
n

1− n
+
m+ 1− n
2(1− n)

M (9.9)

with F0 = 1, dFM+1/dη = FM . The M = 0 mode can be absorbed into (9.1) by translating
t, but now the translational invariance in x must be used in a different way: since

H1 =
∂H2

∂x
(9.10)

we can translate x in the M = 2 mode, rather than in f , to eliminate A1, again leaving
M = 2 dominant. Similarly for (9.6), we have

λM =
n+ 1−m
2(1− n)

+M, (9.11)

with

F0 = η
n+1−m
m+1−n , FM = −λM+1FM+1 +

m+ 1− n
2(1− n)

η
dFM+1

dη
. (9.12)

Here F0 can be absorbed into (9.1) (within, as always here, the linearisation) by a translation
of x, and the M = 1 mode suppressed by translation of t in H2, given that

H1 =
∂H2

∂t
.
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The above somewhat lengthy discussion is motivated both by the crucial role such argu-
ments have implicitly played in the degree-of-freedom counts that have formed an important
part of our analysis and by their broader implications for the application of symmetry meth-
ods in a variety of contexts.

We conclude with the following remarks. We claim that the collection of potential types
of singular behaviour illustrated by Fig. 1 is rather comprehensive for PDE problems of the
class with which we have been concerned. Our results thus confirm the power of self-similar
approaches in addressing such phenomena. Similarity solutions are central to the analysis
addressed above, but it is equally important to stress that these need not be similarity
solutions to the original PDE – in many cases they involve the taking of an asymptotic
limit (associated either with linearisation about an exceptional exact solution or simply with
neglect of specific terms) prior to an appeal to self-similarity. The current example is notably
rich in the range of possibilities that can be realised in terms of the interface velocities, these
covering the full range from zero to unbounded. It is thus likely that it would be extremely
challenging to establish rigorous regularity results on these moving-boundary problems.
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Appendix A Special cases of (1.1)

Special cases of (1.1) are worth recording here, in part for providing some pointers towards
the reasons for the demarcating roles of n = 1 and m+n = 1, though they are not otherwise
of significance in the above.

Three cases can be written in divergence form, implying the potential presence of two
conserved quantities for each (depending on the boundary conditions, of course). These are
as follows.

(I) n = 0:

∂h

∂t
=

∂2

∂x2

(
1

m+ 1
hm+1 − 1

2
x2
)
, (A.1)

the potential conserved quantities being, as in the case of (II) below, the mass
∫
hdx and

the first moment
∫
xhdx. For m = −2, n = 0 the potential-hodograph transformation

takes (1.1) to Burgers’ equation which can in turn be mapped to the heat equation by
the Cole-Hopf transformation.

(II) n = 1:

∂

∂t
(e−th) =

∂2

∂x2

(
1

m+ 1
e−thm+1

)
. (A.2)

Here the changes of variable

h = e−tφ, τ =
1

m
(emt − 1), (A.3)

transform (1.1) to the porous-medium equation,

∂φ

∂t
=

∂

∂x

(
φm

∂φ

∂x

)
, (A.4)

implying the presence of further symmetry.

(III) n = m+ 1: In this case

∂

∂t
(e±(m+1)1/2xh) =

∂

∂x

(
e±(m+1)1/2x

(
hm

∂h

∂x
∓ 1

(m+ 1)1/2
hm+1

))
, (A.5)
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and the two conserved quantities are
∫
e±(m+1)1/2xhdx. In the subcase m = −4/3,

n = −1/3, the changes of variables

H = exp(∓
√

3ix)h, X =

√
3

2
i exp

(
± 2i√

3
x

)
(A.6)

map (1.1) to

∂H

∂t
=

∂

∂X

(
H−4/3

∂H

∂X

)
. (A.7)

implying the presence of two further symmetries; that (A.6) involves complex quantities
would seem likely to limit the applicability of these, however. For m < −1, linear
combinations of (A.5) lead to real expressions involving trigonometric functions.

Introducing the ‘pressure’ variable v = hm transforms (1.1) to

∂v

∂t
= v

∂2v

∂x2
+

1

m

(
∂v

∂x

)2

−mv
m+n−1

m , (A.8)

which comes in three quadratically nonlinear guises, namely when n = 1 (see (II) above),
n = m + 1 (see (III) above) or m + n = 1. In consequence, invariant subspaces of solutions
are available; see [10] and references therein. For n = m + 1 (i.e. case (III) above) these
solutions to (A.8) take the form, up to a translation in x,

v =

(
a(t)− b(t) cosh

(
mx

(m+ 1)1/2

))
+

(A.9)

where the functions a(t) and b(t) satisfy the coupled ODEs

da

dt
+ma2 +

m

m+ 1
b2 = 0,

db

dt
+
m(m+ 2)

m+ 1
ab = 0

and a > b > 0 for m > 0 and a > 0, b < 0 for m < 0. For the case m+n = 1, these solutions
to (A.8) take the form

v =
(
a(t)− b(t)x2

)
+

(A.10)

where the functions a(t) and b(t) satisfy the coupled ODEs

da

dt
+ 2ab+m = 0,

db

dt
+

2(m+ 2)

m
b2 = 0

For m+n = 1 and m > 0 a special case of solution to (A.8) is an additional double reduction
(travelling-wave and scaling) giving rise to the one-parameter family

v =
m

2

(
(c2 + 4)1/2 + c

)
(ct− x)+ (A.11)

with arbitrary constant c that, significantly, can take either sign (with c > 0 for −∂v/∂x > m
and c < 0 for −∂v/∂x < m). Pairs of exponents at the intersection of two or more of the
above special cases are m = 0, n = 1 ((II), (III) and n + m = 1, equation (1.1) then being
linear; the other linear case, m = 0, n = 0, does not arise in such a fashion), m = 1, n = 0
((I) and m+ n = 1) and m = −1, n = 0 ((I) and (III)).
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