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Abstract

The axial symmetry of a railway wheel is taken into account to expand its vibrational
response around the circumferential direction using Fourier series. This allows the vibroa-
coustic problem of the wheel to be formulated in a two-dimensional frame, solving for the
dynamic and acoustic variables analytically in the circumferential direction. By adopting
an Eulerian approach, the inertial effects associated with the rotation of the wheelset are
included in the model, assuming a constant angular speed of rotation. To represent a railway
wheelset, the wheel is constrained at the inner edge of the hub and the contribution of the
rigid body motion of the wheelset is superimposed on its response. The latter is evaluated
analytically under the assumption of small rigid body displacements. The computational
efficiency of the proposed methodology is found to be three orders of magnitude greater than
a full three-dimensional methodology, without compromising the accuracy. The results are
compared in terms of acoustic radiation with the commercial package Ansys, showing simi-
lar sound power levels in almost all the frequency range apart from some differences at low
frequencies due to the use of an acoustic model based on radiation ratios.
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1. Introduction

Noise pollution from railways can cause discomfort and even risk to people’s health.
For this reason, in recent decades, the development of quieter railway components through
different techniques has proliferated; among these, is the implementation of damper elements,
such as the use of viscoelastic layers on the wheel [1] and dynamic absorbers on the wheel and
rail [2, 3], as well as the search for optimal designs of the wheel [4, 5], the study of perforation
schemes for the wheel [6] and the analysis of the influence of track design on the radiated noise
[7]. Generally, in the preliminary design phase of such treatments, numerous simulations are
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required to reach the optimal configuration in terms of noise mitigation. In situations with
multiple design variables, the number of simulations that can be carried out is limited by
the computational cost associated with the vibroacoustic calculation. Consequently, it is
convenient to have efficient vibroacoustic models of the railway components. The present
study focuses on the wheelset.

To evaluate the sound radiation from the wheel, it is first necessary to determine the
vibrational field on its surface. The wheel vibration occurs in response to the excitation
forces at the wheel–rail contact; on straight track, the main reason for this excitation is the
existence of surface roughness on the wheel and rail running surfaces. The response of the
wheelset to these interaction forces can be determined numerically using the Finite Element
Method (FEM) [8]. In running conditions, the wheelset is rotating about its main axis,
which changes the dynamics of this component compared with the stationary case. In Ref.
[9], Thompson proposed to include the wheel rotation by means of a moving load problem,
excluding the gyroscopic and inertial effects associated with the rotation. Other authors
have proposed models based on Lagrangian coordinates to include the convective effects
in flexible rotors. Geradin and Kill [10] developed the equations of motion (EoM) in both
rotating and inertial frames by defining a reference system associated with local deformations
and assuming small angles of rotation about the axis; in their work, the axial and flexural
dynamic behaviour of the rotor was analysed, while the torsional one was neglected. Genta
and Tonoli [11] developed a formulation that includes the axial, flexural and torsional dynamic
behaviour of thin rotating discs. More recently, Sheng et al. [12] proposed a FE model
of a rotating railway wheel using an axisymmetric approach, which includes the vertical
vibration of the wheel axis by taking into account the momentum law; this was used to
solve the response of the wheel to a vertical harmonic wheel–rail force and it was shown
that the displacement of the wheel contact point, formulated in an inertial frame, is also
harmonic at the same frequency as the interaction force. When the rotating body interacts
with other non-rotating structures, models based on Eulerian coordinates present a clear
advantage over those based on Lagrangian coordinates, since the location of the interaction
usually has a constant spatial position with respect to the inertial reference system. Fayos
et al. [13] proposed a model based on Eulerian coordinates applied to the railway wheelset
to give an efficient solution to the interaction with the track; to do this, they developed
the EoM of the rotating body initially in Lagrangian coordinates and, then, a conversion
to Eulerian coordinates was carried out. Later, Mart́ınez-Casas et al. [14] developed the
EoM of the rotating 3D wheelset directly in Eulerian coordinates, in a cartesian reference
system. With a view to reducing the computational cost associated with the resolution of
the dynamic problem, Baeza et al. [15] performed an expansion of the response around the
circumferential direction using Fourier series, after transforming the EoM from a cartesian
to a cylindrical reference system.

Once the vibrational field of the wheel has been computed, it is possible to evaluate its
sound radiation. The most precise way to do this is by solving the air pressure field through
a Fluid Structure Interaction (FSI) approach. In the literature, however, acoustic models
can be found based on the use of radiation ratios, which have a lower computational cost.
These are based on post-processing the vibrational field of the wheel surface, as proposed in
Ref. [16]. In this reference, the wheel is constrained at the inner edge of the hub and the
modelling of the axle is omitted, which gives a good approximation for the contribution to
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the radiation of the vibration modes with 2 or more nodal diameters; it is worth noting that,
according to Ref. [8], these are the most important for rolling noise generation. However,
the vibroacoustic behaviour of the wheelset in the low frequency range is influenced by the
axle motion. To include this, the contribution of the rigid body modes of the wheelset can
be added to the constrained wheel vibration [17].

In this work, a model of a rotating railway wheel which takes advantage of its axial sym-
metry is proposed. The wheel flexibility is considered and the wheelset rigid body motion
(RBM) is superimposed on the wheel vibration. To do this, an analytical model of a rigid
rotating wheelset is developed. Both the flexible wheel and rigid wheelset models can be ap-
plied to other rotating systems as long as there is axial symmetry. Regarding the former, the
axisymmetric approach with Eulerian coordinates proposed by Baeza et al. [15] is extended
through the direct formulation of the EoM in a cylindrical reference system. Subsequently,
the acoustic model of Thompson [16] is considered to evaluate the acoustic radiation of the
wheel, taking advantage of the periodicity of the response to formulate the sound field also
in a two-dimensional frame. The wheel is constrained at the inner edge of the hub and
the contribution of the wheelset RBM is included through the RB model developed. The
accuracy of the results is studied by a comparison with the solution of the FSI problem com-
puted with the commercial FE software Ansys [18]. Likewise, the computational efficiency
of the proposed methodology is evaluated by benchmarking against a full three-dimensional
methodology.

Following this introduction, Section 2 presents the dynamic model of the rotating rigid
wheelset. Then, the three-dimensional vibroacoustic model of the rotating wheel is presented
in Section 3. In Section 4, the expansion of the wheel response around the circumferential
direction is introduced and the EoM and sound radiation are obtained in a two-dimensional
frame. Some results are presented in Section 5 and the main conclusions are summarized in
Section 6.

2. Rigid body motion of the wheelset

This section describes the methodology used to determine the equations of the RBM
including rotation at a constant speed Ω about its axis. There are six degrees of freedom

associated with the RBM, three translations τ =
(
τ1 τ2 τ3

)T
parallel to the cartesian

axes in Fig. 1 and three rotations ψ =
(
ψ1 ψ2 ψ3

)T
about them. Although the RBM is

associated with the cartesian axes, the EoM are developed in a cylindrical reference frame
with radial r, circumferential θ and axial z components. Considering only the RBM, the
position q of any particle of the wheelset during the motion can be expressed as follows:

q = u + s(u, t), (1)

where u =
(
r 0 z

)T
is the spatial position, expressed in an inertial frame, corresponding

to that particle without the motion and s =
(
sr sθ sz

)T
contains the displacements of the

particle in the position u at instant t due to the RBM in the radial, circumferential and
axial directions, respectively. These displacements can be divided into the contribution of
the translational sτ and rotational sψ motions, which yields the following vectorial sum:
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s = sτ + sψ. (2)

On the one hand, the vector sτ is related to the translational motion τ by means of the
transformation matrix between the cartesian and cylindrical frame Θτ , which, according to
the definition of the coordinate θ in Fig. 1, is given by:

sτ =

sin(θ) 0 cos(θ)
cos(θ) 0 − sin(θ)

0 1 0

 τ = Θττ . (3)

Fig. 1: Definition of the cartesian and cylindrical reference systems. The motion of the flexible wheel is
evaluated through the FEM. The RBM of the wheelset, described analytically, is superimposed on it.

On the other hand, the vector sψ can be expressed as follows:

sψ = Θτ (R− I3×3)ΘT
τ u, (4)

where I3×3 is the identity matrix of order 3×3 and the matrix R defines the position of
a particle after the rigid body rotation expressed in an inertial frame and formulated in
cartesian coordinates. Assuming small angles, this is given by:

R =

 1 −ψ3 ψ2

ψ3 1 −ψ1

−ψ2 ψ1 1

 . (5)

After manipulating Eq. (4), the following relation between sψ and ψ is found:

sψ =

 z cos(θ) 0 −z sin(θ)
−z sin(θ) r −z cos(θ)
−r cos(θ) 0 r sin(θ)

ψ = Θψψ. (6)

As the axis of rotation is coincident with the axial direction, i.e. Ω =
(
0 0 Ω

)T
in the

cylindrical frame, the velocity vs due to the rigid body spinning is given by:

vs = Ω× u = rΩê2, (7)
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with ê2 =
(
0 1 0

)T
. In an Eulerian approach, the velocity of any particle of the wheel can

be evaluated as follows [19, 20]:

Dq

Dt
= vs + Θτ τ̇ + Θψψ̇ + ΩYψ, (8)

where the matrix Y is given by:

Y =

 0 −r 0
0 0 0

r sin(θ) 0 r cos(θ)

 . (9)

The kinetic energy of the rotating wheelset due to its RBM is given by:

K =
1

2

∫
VS

ρ
DqT

Dt

Dq

Dt
dV =

=
1

2
M τ̇Tτ̇ +

1

2
ψ̇TIψ̇ +

1

2
ΩIzψ̇

TK1ψ +
1

2
Ω2Izψ

TK2ψ + ΩIzψ̇
Tê2 +

1

2
Ω2Iz,

(10)

where ρ is the density of the material, VS is the volume of the wheelset, M is its mass,
Iz =

∫
VS
ρr2dV is the moment of inertia about the axis of rotation, the matrices K1 and

K2 are shown in the Appendix A and I is the inertia tensor of the wheelset that, given the
cartesian reference system defined (see Fig. 1), can be expressed as:

I=

Ir 0 0
0 Iz 0
0 0 Ir

 , (11)

with Ir = Iz
2

+
∫
VS
ρz2dV being the moment of inertia about the radial axis. From the energy

equation, Eq. (10), it follows that the translational and rotational motions are decoupled.
The Lagrange equations for the translational motion are given by:

D

Dt

(
∂K

∂τ̇

)T

−
(
∂K

∂τ

)T

= M τ̈ , (12)

while for the rotation movement it is verified that:

D

Dt

(
∂K

∂ψ̇

)T

−
(
∂K

∂ψ

)T

= Iψ̈ + ΩIzK1ψ̇ − Ω2IzK2ψ. (13)

In this work, it is considered that the external forces come from the wheel–rail interaction.
Also, for simplicity, the contact is assumed to occur at the angular coordinate θc = 0. Given

the interaction forces F =
(
Fr Fθ Fz

)T
applied at the contact point, the six equations of

the RBM are given by:
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M τ̈ (t) =

0 1 0
0 0 1
1 0 0

F(t),

Iψ̈(t) + ΩIzK1ψ̇(t)− Ω2IzK2ψ(t) =

zc 0 −rc
0 rc 0
0 −zc 0

F(t),

(14)

where rc and zc are, respectively, the radial and axial coordinates of the contact point. For
convenience, the EoM are transformed to the frequency domain. Considering a harmonic
excitation of frequency ω and constant amplitude F(ω), the steady state RBM is obtained
by solving the following expressions:

−ω2Mτ (ω) =

0 1 0
0 0 1
1 0 0

F(ω),

−ω2Ir − 1
2
Ω2Iz 0 −iωΩIz

0 −Iz(ω2 + Ω2) 0
iωΩIz 0 −ω2Ir − 1

2
Ω2Iz

ψ(ω) =

zc 0 −rc
0 rc 0
0 −zc 0

F(ω),

(15)

where i is the imaginary unit. The three translational motions and the rotation about the
axial axis ψ2 are decoupled from the other motions, while the rotations about the longitudinal
ψ1 and vertical ψ3 axes are coupled to each other.

3. Three-dimensional vibroacoustic model of the wheel

In this section, the three-dimensional dynamic model developed by Mart́ınez-Casas et al.
[14] is formulated in a cylindrical reference system. This allows the axisymmetric approach
to be developed in the next section. The models can be used to describe the dynamic
behaviour of any rotating body with axial symmetry considering its flexibility and small
RBM displacements. In this work, however, it is employed to evaluate the motion of a flexible
railway wheel which is constrained at the inner edge of the hub and is rotating at a constant
speed Ω about its main axis. After solving its vibroacoustic behaviour, the contribution of
the RBM of the wheelset is included according to the developments of Section 2.

3.1. Kinetic energy

Given the rotating wheel subjected to an external dynamic force, the position p of any
particle in the deformed shape can be expressed as the following vector sum:

p = u + w(u, t), (16)

where w =
(
wr wθ wz

)T
contains the displacements of the particle at the position u and

instant t due to flexibility in the radial, circumferential and axial directions. The velocity of
any particle of the wheel can be evaluated as follows [19, 20]:

Dp

Dt
= vs + ẇ + Ω

∂w

∂θ
+ ΩJw, (17)
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where ẇ =
(
ẇr ẇθ ẇz

)T
contains the time derivatives of the displacements, ∂w

∂θ
=
(
∂wr
∂θ

∂wθ
∂θ

∂wz
∂θ

)T

considers the derivatives with respect to the circumferential direction and the matrix J is
specified in Appendix A. The kinetic energy Ek of the railway wheel is given by:

Ek =
1

2

∫
V

ρ
DpT

Dt

Dp

Dt
dV =

=
1

2
Ω2

∫
V

ρr2dV +
1

2

∫
V

ρẇTẇdV +
1

2
Ω2

∫
V

ρ
∂wT

∂θ

∂w

∂θ
dV + Ω2

∫
V

ρ
∂wT

∂θ
JwdV+

+Ω

∫
V

ρrê2
TẇdV + Ω2

∫
V

ρrê2
T∂w

∂θ
dV + Ω2

∫
V

ρrê2
TJwdV+

+Ω

∫
V

ρẇT∂w

∂θ
dV + Ω

∫
V

ρẇTJwdV +
1

2
Ω2

∫
V

ρwTEwdV,

(18)

where V is the volume of the wheel, dV = rdθdrdz and the matrix E = JTJ can be found
in Appendix A. Since the wheel is constrained at the inner edge of the hub, all the terms in
the right hand side of Eq. (18) except the first one are associated with the wheel flexibility,
while the first one is due to steady rolling.

3.2. Strain energy

The elastic potential energy Ep can be expressed as follows:

Ep =
1

2

∫
V

εTσdV =
1

2

∫
V

εTDεdV, (19)

where D is the material stiffness matrix obtained from Hooke’s Law (see Appendix A). The

strain vector satisfies ε = Lw =
(
εr εθ εz γzr γrθ γθz

)T
, with L being a matrix operator

defined in Appendix A.

3.3. Virtual work

The roughness present on the wheel and rail running surfaces generates dynamic forces
when the vehicle is travelling along the track. These forces are introduced in the wheel
model as external loads applied at its contact point. The virtual work of the interaction

forces F =
(
Fr Fθ Fz

)T
is given by:

δW = δwTF. (20)

3.4. Equation of motion

A FE model is adopted, so that the displacement field in the eth element of the FE mesh
is computed from the nodal solution by the following interpolation:

w(r, θ, z, t) = N(r, θ, z)we(t), (21)

N being the shape function matrix [21], which can be expressed as follows:
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N =
[
N1 · · · Nj · · · Nm

]
; Nj = Nj

 cos(θ − θj) sin(θ − θj) 0
− sin(θ − θj) cos(θ − θj) 0

0 0 1

 , (22)

where subscript j refers to the jth node, m is the number of nodes in the eth element and
Nj, which is dependent on the r, θ and z coordinates, is the shape function associated with
the jth node. The vector we contains the displacements of the three Degrees of Freedom
(DoF) of each node in the eth element, that is:

we =
(
we

1 · · · we
j · · · we

m

)T
; we

j =
(
wer,j weθ,j wez,j

)
. (23)

By applying the expressions for the kinetic and strain energies in Eqs. (18) and (19) to
the eth element and considering the FE approach of Eq. (21), the non-zero terms of the
Lagrange equations are:

D

Dt

(
∂Ek
∂ẇe

)T

−
(
∂Ek
∂we

)T

+

(
∂Ep
∂we

)T

= Meẅe+2ΩVeẇe+
(
Ke + Ω2Ae

)
we−Ω2ce. (24)

The element matrices in Eq. (24) correspond to the following expressions:

Me =

∫
V e
ρNTNdV,

Ve =

∫
V e
ρNT∂N

∂θ
dV +

∫
V e
ρNTJNdV,

Ke =

∫
V e

BTDBdV,

Ae =

∫
V e
ρNT∂

2N

∂θ2
dV + 2

∫
V e
ρNTJ

∂N

∂θ
dV −

∫
V e
ρNTENdV,

ce =

∫
V e
ρNTê1dV,

(25)

where V e is the volume of the eth element, ê1 =
(
1 0 0

)T
and B = LN. As stated in [14],

the second derivative in the matrix Ae can be reduced to a first derivative by integrating
its first term by parts and therefore the convergence of the integral is guaranteed when C0

shape functions are taken into account.
Following the FEM approach, the element matrices are assembled to obtain the global

matrices of the equation of motion. The DoF (displacements of nodes) of the wheel are also
assembled into the vector w. Similarly, the interaction forces F applied on the wheel contact
point are considered in the FE assembly of the forces (applied on all nodes and directions)
into the vector F. Thus, the EoM are given by:

Mẅ(t) + 2ΩVẇ(t) +
(
K + Ω2A

)
w(t) = Ω2c + F(t). (26)

In order to evaluate the rolling noise radiated by the wheel, the model is transformed to
the frequency domain, in which the EoM can be expressed for ω > 0 as follows:
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(
−ω2M + 2iωΩV + K + Ω2A

)
w(ω) = F(ω), (27)

where w(ω) represents the steady state response to a harmonic excitation of frequency
ω and constant amplitude F(ω).

3.5. Sound radiation

After solving the railway wheel dynamics, its acoustic radiation is computed by postpro-
cessing the vibrational field on its surface. The radiation model employed in this work was
developed by Thompson [16] and it establishes that the wheel sound power is obtained as the
sum of the power associated with each set of modes with the same number of nodal diameters
n. The wheel acoustic power W for a given frequency ω is evaluated as follows:

W (ω) = ρ
f
c
∑
n≥0

(
σz,n(ω)Sz〈ṽ2

z,n(ω)〉+ σr,n(ω)Sr〈ṽ2
r,n(ω)〉

)
, (28)

where ρ
f

is the density of air (fluid surrounding the wheel) and c is the speed of sound in

air. The participation of each set of modes with n nodal diameters is in turn divided into
its axial (subscript z) and radial (subscript r) contribution. Functions σ are the radiation
ratios, which are numerically assessed in Ref. [16]. The wheel surface is projected normal to
the axial and radial directions, which yields the areas Sz and Sr, respectively. Similarly, the
squared velocity of the wheel surface is projected into the axial and radial directions and the
corresponding values are averaged over time (˜) and space (〈 〉); these are given by:

〈ṽ2
i,n〉 =

1

2Si

∫
S

|vi,n|2dSi, i = z, r, n ≥ 0, (29)

S being the wheel surface. In this work, the wheelset RBM is superimposed on the vibration
of the wheel constrained at the inner edge of the hub. To do this, on the one hand, the
EoM of the wheel given in Eq. (27) are solved and the vibrational velocity of any particle
of the wheel ẇ(r, θ, z, ω) associated with its flexibility is obtained. On the other hand, the
EoM of the rigid wheelset given in Eq. (15) are solved and the RB motions τ̇ (ω) and ψ̇(ω)
are obtained; from these the vibrational velocity of any particle of the wheel ṡ(r, θ, z, ω)
associated with the wheelset RBM can be found through the expressions in Eqs. (2), (3) and
(6). Finally, both flexible and RB motions are superimposed. The wheelset RBM contributes
to the response only for n ≤ 1. Defining ẇ|n as the contribution to the velocity of the flexible
wheel modes with n nodal diameters, then for n = 0 the total velocities of a wheel particle
in the axial and radial directions are given by:

vz,0(r, z, ω) = ẇz(r, z, ω)|n=0 + τ̇2(ω),

vr,0(r, z, ω) = ẇr(r, z, ω)|n=0,
(30)

with ẇz|n=0 and ẇr|n=0 being associated with the wheel flexibility and τ̇2 with the wheelset
RBM. Likewise, the contribution of modes with n = 1 to the velocities is as follows:

vz,1(r, θ, z, ω) = ẇz(r, θ, z, ω)|n=1 − rψ̇1(ω) cos(θ) + rψ̇3(ω) sin(θ),

vr,1(r, θ, z, ω) = ẇr(r, θ, z, ω)|n=1 + (τ̇3(ω) + zψ̇1(ω)) cos(θ) + (τ̇1(ω)− zψ̇3(ω)) sin(θ),
(31)
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with ẇz|n=1 and ẇr|n=1 being associated with the wheel flexibility and the remaining terms
with the wheelset RBM. Finally, for n ≥ 2 the velocities are given by:

vi,n(r, θ, z, ω) = ẇi(r, θ, z, ω)|n, i = z, r, n ≥ 2, (32)

where there is no contribution from the wheelset RBM.

4. Vibroacoustic model: Axisymmetric approach

Given the axial symmetry of the wheel geometry, the displacement field can be expressed
by means of an expansion as a Fourier series given by [22]:

wr =wr,0 +
∑
n>0

(wr,n cos(nθ)− wr,n sin(nθ)) ,

wθ =− wθ,0 +
∑
n>0

(wθ,n sin(nθ)− wθ,n cos(nθ)) ,

wz =wz,0 +
∑
n>0

(wz,n cos(nθ)− wz,n sin(nθ)) ,

(33)

n being an integer number representing each Fourier term, corresponding to the set of modes
with n nodal diameters. In Eq. (33), the harmonic amplitudes without a bar represent
symmetric motions about θ = 0 and those with a bar represent antisymmetric motions about
θ = 0. It should be noted that the harmonic amplitudes wr,0, wz,0 and wθ,0 (for n = 0) as well
as wr,n, wθ,n, wz,n, wr,n, wθ,n and wz,n (for n > 0) are dependent on the r, z and t coordinates
but are independent of the θ coordinate.

4.1. Kinetic energy

Due to the harmonic description of the displacement field in the circumferential direction,
the kinetic energy of the system described in Eq. (18) can be integrated analytically over this
direction; details of the procedure are given in Appendix B. As a result, the kinetic energy
can be divided into the contribution of each Fourier term and is therefore given by:

Ek = Ek,0 +
∑
n>0

Ek,n. (34)

When considering a stationary body with axial symmetry, for each Fourier term the
energy associated with the symmetric harmonic motion about θ = 0 is also decoupled from
the antisymmetric harmonic motion about θ = 0. However, if the axisymmetric body is
rotating, there is a coupling between these motions due to the 8th and 9th terms of the
kinetic energy in the right hand side of Eq. (18). As a consequence, for each Fourier term
both motions are simultaneously solved. The harmonic amplitudes in Eq. (33) are grouped
for each Fourier term as follows:

w0 =
(
wr,0 wz,0 wθ,0

)T
, n = 0,

wn =
(
wr,n wθ,n wz,n wr,n wθ,n wz,n

)T
, n > 0.

(35)

The kinetic energy for n = 0 is given by:
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Ek,0 =πΩ2

∫
A

ρr3dA+ π

∫
A

ρrẇT
0 ẇ0dA− 2πΩ

∫
A

ρr2ê3
Tẇ0dA+

+2πΩ2

∫
A

ρr2ê1
Tw0dA+ 2πΩ

∫
A

ρrẇT
0 J0w0dA+ πΩ2

∫
A

ρrwT
0 E0w0dA,

(36)

where A is the area of the wheel cross-section, dA = drdz, ê3 =
(
0 0 1

)T
and the matrices

J0 and E0 are presented in Appendix A. The kinetic energy due to steady rolling, first term
in the right hand side of Eq. (36), is not associated with vibration for n = 0 but is also
included in the kinetic energy for n = 0, although it will not appear in the EoM. The kinetic
energy Ek,n for each n > 0 is expressed as follows:

Ek,n =
π

2

∫
A

ρrẇT
n ẇndA+

π

2
Ω2

∫
A

ρrn2wT
nwndA+ 2πΩ2

∫
A

ρrnwT
nJ1wndA+

+πΩ

∫
A

ρrnẇT
nJ2wndA+ πΩ

∫
A

ρrẇT
nJ3wndA+

π

2
Ω2

∫
A

ρrwT
nE3wndA,

(37)

with the matrices J1, J2, J3 and E3 being defined in Appendix A.

4.2. Strain energy

The strain energy in Eq. (19) can be integrated analytically over the circumferential direc-
tion according to the expansion of Eq. (33). Details of this are given in Appendix B. Similarly
to the kinetic energy, the strain energy can be expressed as a sum of the contributions of
each Fourier term, yielding the following expression:

Ep = Ep,0 +
∑
n>0

Ep,n. (38)

Unlike the kinetic energy, for each Fourier term the contribution in the strain energy
of the symmetric motion about θ = 0 is decoupled from the antisymmetric motion about
θ = 0. Nevertheless, since the kinetic energy equation couples both motions, they are also
considered simultaneously in the strain energy equation.

The strain energy Ep,0 for n = 0 is given by:

Ep,0 = π

∫
A

rεT
0 Dε0dA, (39)

where ε0 is defined as follows:

ε0 = L0w0, (40)

with L0 being a matrix derivative operator specified in Appendix A. The strain energy Ep,n
for n > 0 is given by:

Ep,n =
π

2

∫
A

rεT
nDεndA+

π

2

∫
A

rεT
nDεndA, (41)

where εn and εn are defined as follows:
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εn = (La + nLb)wn,

εn = (La + nLb)wn.
(42)

The matrix operators La, Lb, La and Lb are specified in Appendix A.

4.3. Virtual work

Although the interaction forces F are modelled as point loads at the wheel contact, they
can be expressed as a function of the circumferential coordinate θ. Therefore, they are defined
in terms of the external force distribution f , which is equivalent to F, applied along the locus
of points with the same radial and axial coordinates as the contact point. This can be written
as:

f(θ) = F
δ(θ − θc)

rc
, (43)

with δ(θ − θc) being the Dirac delta function. The force distribution f =
(
fr fθ fz

)T
can

also be decomposed as a Fourier series with respect to the circumferential direction, which
yields the following expressions:

fr =fr,0 +
∑
n>0

(
fr,n cos(nθ)− f r,n sin(nθ)

)
,

fθ =− f θ,0 +
∑
n>0

(
fθ,n sin(nθ)− f θ,n cos(nθ)

)
,

fz =fz,0 +
∑
n>0

(
fz,n cos(nθ)− f z,n sin(nθ)

)
,

(44)

where the harmonic force coefficients fr,0, fz,0, f θ,0, fr,n, fθ,n, fz,n, f r,n, f θ,n and f z,n are
independent of θ and, considering the expression in Eq. (43), can be evaluated as follows:fr,0f θ,0

fz,0

 =
1

2π

∫ π

−π

 fr
−fθ
fz

 dθ =
1

2πrc

 Fr
−Fθ
Fz

 , n = 0,

fr,nf θ,n
fz,n

 =
1

π

∫ π

−π

 fr
−fθ
fz

 cos(nθ)dθ =
1

πrc

 Fr
−Fθ
Fz

 , n > 0,

f r,nfθ,n
f z,n

 =
1

π

∫ π

−π

−frfθ
−fz

 sin(nθ)dθ =

0
0
0

 , n > 0.

(45)

As in Section 2, it is assumed for simplicity that θc = 0. The virtual work of the load f
is given by:

δW =

∫ π

−π
δwTfrcdθ. (46)
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Introducing the expansion of Eqs. (33) and (44) in Eq. (46) along with the relations in
Eq. (45), the virtual work can also be decomposed into the contribution associated with each
Fourier term as follows:

δW = δW0 +
∑
n>0

δWn. (47)

The virtual work for n ≥ 0 is given by:

δWn = δwT
nFn, n ≥ 0, (48)

where the force vector is defined as follows:

F0 =
(
Fr Fz −Fθ

)T
, n = 0,

Fn =
(
Fr 0 Fz 0 −Fθ 0

)T
, n > 0.

(49)

4.4. Equation of motion

The harmonic amplitudes in Eq. (35) are the unknown DoF to be determined. Consider-
ing a FE model of the wheel cross-section, the following interpolation is proposed in the eth
element for n = 0:

w0(r, z, t) = N0(r, z)we
0(t), (50)

where N0 is the shape function matrix defined for n = 0. When p nodes are considered in
the wheel cross-section, this matrix is given by:

N0 =
[
N1,n=0 · · · Nj,n=0 · · · Np,n=0

]
; Nj,n=0 = NjI3×3, (51)

The vector of harmonic amplitudes of the eth element we
0 can be expressed as follows:

we
0 =

(
we

1,n=0 · · · we
j,n=0 · · · we

p,n=0

)T
; we

j,n=0 =
(
wer,j,n=0 wez,j,n=0 weθ,j,n=0

)
.

(52)
Similar to the three-dimensional model, the Lagrange equations for motion with n = 0

are given by:

D

Dt

(
∂Ek,0
∂ẇe

0

)T

−
(
∂Ek,0
∂we

0

)T

+

(
∂Ep,0
∂we

0

)T

= Me
0ẅ

e
0+2ΩVe

0ẇ
e
0+
(
Ke

0 + Ω2Ae
0

)
we

0−Ω2ce0, (53)

from which the following element matrices are defined:
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Me
0 =2π

∫
Ae
ρrNT

0 N0dA,

Ve
0 =2π

∫
Ae
ρrNT

0 J0N0dA,

Ke
0 =2π

∫
Ae
rBT

0 DB0dA,

Ae
0 =− 2π

∫
Ae
ρrNT

0 E0N0dA,

ce0 =2π

∫
Ae
ρr2NT

0 ê1dA,

(54)

where Ae is the area of the eth element and B0 = L0N0. These element matrices can
be assembled to obtain the global matrices of the EoM for n = 0. In the same way, the
displacement DoF are assembled into the vector w0 and the forces applied at the contact
point and defined by F0 in Eq. (49) are assembled into the vector F0. Finally, the EoM are
given by:

M0ẅ0(t) + 2ΩV0ẇ0(t) +
(
K0 + Ω2A0

)
w0(t) = Ω2c0 + F0(t). (55)

As in the 3D approach, the model can be transformed to the frequency domain, in which
the EoM are given for ω > 0 by:(

−ω2M0 + 2iωΩV0 + K0 + Ω2A0

)
w0(ω) = F0(ω). (56)

The same procedure is carried out for each n > 0. In this case, the harmonic amplitudes
in the eth element are interpolated by:

wn(r, z, t) = Nη(r, z)we
n(t), (57)

where the shape function matrix for n > 0 Nη is independent of n and is defined as follows:

Nη =
[
N1,η · · · Nj,η · · · Np,η

]
; Nj,η = NjI6×6, (58)

with I6×6 being the identity matrix of order 6×6. The harmonic amplitude vector in the eth
element is given by:

we
n =

(
we

1,n · · · we
j,n · · · we

p,n

)T
; we

j,n =
(
wer,j,n weθ,j,n wez,j,n wer,j,n weθ,j,n wez,j,n

)
.

(59)
Thus, the Lagrange equations for each n greater than zero can be expressed as the fol-

lowing matrix system:

D

Dt

(
∂Ek,n
∂ẇe

n

)T

−
(
∂Ek,n
∂we

n

)T

+

(
∂Ep,n
∂we

n

)T

= Me
ηẅ

e
n + 2ΩVe

nẇ
e
n +

(
Ke
n + Ω2Ae

n

)
we

n, (60)

the element matrices being as follows:
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Me
η =π

∫
Ae
ρrNT

η NηdA,

Ve
n =π

∫
Ae
ρrNT

η J3NηdA+ nπ

∫
Ae
ρrNT

η J2NηdA,

Ke
n =π

∫
Ae
r
(
BT
a + nBT

b

)
D (Ba + nBb) dA+ π

∫
Ae
r
(
B

T

a + nB
T

b

)
D
(
Ba + nBb

)
dA,

Ae
n =− π

∫
Ae
ρrNT

η E3NηdA− n2π

∫
Ae
ρrNT

η (JT
1 + J1)NηdA− n2π

∫
Ae
ρrNT

η NηdA,

(61)

where Ba = LaNη, Bb = LbNη, Ba = LaNη and Bb = LbNη. Note that Me
η is not dependent

on n while Ve
n, Ke

n and Ae
n are functions of n, which means that they are evaluated for each

n. Nevertheless, matrices Ve
n and Ae

n are expressed as polynomials with constant (matrix)
coefficients multiplying a power of n and it is straightforward to express Ke

n in the same
way. Finally, after assembling the element matrices into global matrices, the displacement
harmonic amplitudes into wn and the contact forces Fn of Eq. (49) into Fn, the EoM for
each n greater than zero are given by:

Mηẅn(t) + 2ΩVnẇn(t) +
(
Kn + Ω2An

)
wn(t) = Fn(t). (62)

If the model is transformed to the frequency domain, the EoM can be expressed for ω > 0
as follows: (

−ω2Mη + 2iωΩVn + Kn + Ω2An

)
wn(ω) = Fn(ω). (63)

4.5. Sound radiation

Considering the expression for the projected squared velocities in Eq. (29), the surface
differentials dSz and dSr can be expressed as follows:

dSz = rdθdr,

dSr = rdθdz.
(64)

The solution of the EoM for a given n results in the contribution of the set of vibration
modes with n nodal diameters to the wheel response. Thus, for n = 0, considering the
expressions of Eq. (30), the following relations are established:

vz,0(r, z, ω) = ẇz,0(r, z, ω) + τ̇2(ω),

vr,0(r, z, ω) = ẇr,0(r, z, ω),
(65)

where the terms ẇz,0 and ẇr,0 are associated with the wheel flexibility and the term τ̇2 with
the wheelset RBM. Therefore, the integral in Eq. (29) can be evaluated analytically over the
circumferential direction, yielding the following expressions:

Sz〈ṽ2
z,0〉 = π

∫
Γ

|ẇz,0 + τ̇2|2rdr,

Sr〈ṽ2
r,0〉 = π

∫
Γ

|ẇr,0|2rdz,
(66)
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where Γ is the wheel cross-section boundary. Similarly, for n = 1, according to Eq. (31), the
following relations are satisfied:

vz,1(r, θ, z, ω) =
(
ẇz,1(r, z, ω)− rψ̇1(ω)

)
cos(θ)−

(
ẇz,1(r, z, ω)− rψ̇3(ω)

)
sin(θ),

vr,1(r, θ, z, ω) =
(
ẇr,1(r, z, ω) + τ̇3(ω) + zψ̇1(ω)

)
cos(θ)−

(
ẇr,1(r, z, ω)− τ̇1(ω) + zψ̇3(ω)

)
sin(θ),

(67)
where the terms ẇz,1 and ẇr,1 are associated with the wheel flexibility and the rest with the
wheelset RBM. Thus, the spatial average in Eq. (29) can be expressed as follows:

Sz〈ṽ2
z,1〉 =

π

2

∫
Γ

(
|ẇz,1 − rψ̇1|2 + |ẇz,1 − rψ̇3|2

)
rdr,

Sr〈ṽ2
r,1〉 =

π

2

∫
Γ

(
|ẇr,1 + τ̇3 + zψ̇1|2 + |ẇr,1 − τ̇1 + zψ̇3|2

)
rdz.

(68)

Finally, for n ≥ 2, the expression for the velocities in Eq. (32) can be written as:

vi,n(r, θ, z, ω) = ẇi,n(r, z, ω) cos(nθ)− ẇi,n(r, z, ω) sin(nθ), i = z, r, n ≥ 2, (69)

where the only contributions are from the wheel flexibility. The spatial average in Eq. (29)
leads to the following expressions:

Sz〈ṽ2
z,n〉 =

π

2

∫
Γ

(
|ẇz,n|2 + |ẇz,n|2

)
rdr, n ≥ 2,

Sr〈ṽ2
r,n〉 =

π

2

∫
Γ

(
|ẇr,n|2 + |ẇr,n|2

)
rdz, n ≥ 2.

(70)

Introducing Eqs. (66), (68) and (70) into Eq. (28), the sound radiation of a rotating
wheel can be evaluated numerically in a two-dimensional frame.

5. Results

The model proposed in Section 4 is compared with the three-dimensional formulation
presented in Section 3. Results are shown in terms of modal properties, frequency response
functions (FRF), contact forces due to the wheel–rail interaction and sound power levels
(SWL). For comparison, the FRF and SWL are also computed with the commercial package
Ansys [18]; in this, the one-way FSI problem is solved (it is assumed that the air acoustic
pressure does not to influence the wheel dynamics). Finally, the computational performance
of the presented model, in terms of efficiency, is evaluated and benchmarked against the
three-dimensional approach.

In this work, a railway wheel with straight web, a diameter of 900 mm and a mass of
345 kg is employed. Three-dimensional and cross-section two-dimensional FE meshes of this
wheel are shown in Fig. 2, which are employed in the subsequent calculations. Quadratic
elements are used in both approaches, considering 683 nodes in the two-dimensional FE
discretization and 122628 nodes in the three-dimensional one, the latter having 132 elements
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around the circumferential direction. Note that, out of the 683 nodes in the 2D discretization,
246 are placed at the corners of the quadratic elements, so the number of nodes in the 3D FE
model can be obtained as 132 · (683 + 246) = 122628. The wheel is constrained at the inner
edge of the hub and, additionally, the wheelset RBM is superimposed on the response of the
wheel according to the developments in Section 2. The wheelset has a mass of 1005 kg and
moments of inertia of 88 kg m2 and 580 kg m2 about the axial and radial axes, respectively.

Fig. 2: Three-dimensional (left) and cross-section two-dimensional (right) FE meshes of the railway wheel.

5.1. Modal properties

Natural frequencies of the rotating wheel in the non-rotating frame are evaluated for
different vehicle speeds. The results of the three-dimensional and axisymmetric models are
presented for some modes in a Campbell diagram in Fig. 3. The maximum difference found
between the two approaches is 0.44 Hz for a natural frequency of 6580 Hz, which represents
a relative difference of 0.007 %. Using the notation of Thompson [17], for the axial modes
both the number of nodal diameters n and nodal circles m of each modeshape are given in
the format (n,m) at the left of the lines. Regarding the radial and circumferential modes,
since all the modeshapes presented in the Campbell diagram have m = 0, they are defined
as (n,R) and (n,C), respectively.
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Fig. 3: Campbell diagram of the rotating wheel. Axial modeshapes are denoted as (n,m) while radial and
circumferential modeshapes as (n,R) and (n,C), respectively. : Three-dimensional model; : Axisym-
metric approach.

5.2. Vibroacoustics

The wheel FRF at the contact point is evaluated through the three-dimensional and
axisymmetric models for a vehicle speed of 80 km/h and the results are depicted in Fig.
4. As can be seen, there is no noticeable difference between the curves associated with the
approaches presented in this work. A modal base formed by the vibration modes up to 12
kHz of the non-rotating wheel is considered for solving the EoM. Damping is included in the
models using the empirical relation proposed by Thompson [17], in which the modal damping
ratio ξ is related to the number of nodal diameters of the vibration mode, namely, ξ = 10−3

for n = 0, ξ = 10−2 for n = 1 and ξ = 10−4 for n ≥ 2. Also, the wheelset RBM contribution
to the FRF is included in both methodologies. An adaptative frequency spacing is adopted
based on the gradient of the contact receptances; the minimum resolution is 0.2 Hz and about
4000 different frequencies are evaluated.
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(a)

(b)

(c)

Fig. 4: Mobilities at the wheel contact point for a vehicle speed of 80 km/h. (a): direct axial/axial; (b):
cross axial/radial; (c): direct radial/radial. : Three-dimensional model; : Axisymmetric approach.

The interaction forces due to the roughness present on the wheel and rail running surfaces
are also evaluated for the radial and axial directions. In this work, the contact model proposed
by Thompson [17, 23] is used, in which the interaction forces are computed from the wheel
and rail combined roughness by means of an operation involving the wheel and rail point
receptances as well as the contact receptances. To do this, a continuous track model formed
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by a UIC60 rail profile supported by a spring-mass-spring system representing the rail pad,
sleeper and ballast set is considered. The rail is modelled using periodic structure theory
[24], the properties of the track are given in Table 1 and the FRF at the rail contact point
are presented in Fig 5; the cross lateral/vertical mobility is considered to be null. For the
interaction problem, a vertical static load of 50 kN per wheel is considered, which has influence
on the contact receptances. The wheel–rail interaction forces for a vehicle speed of 80 km/h
and a unit roughness input at each frequency are presented in Fig. 6. As can be noted, both
approaches predict practically the same forces at the contact.

Fig. 5: Mobilities at the rail contact point. : direct lateral/lateral; : direct vertical/vertical.

Table 1: Properties of the track model used in the wheel–rail interaction.

Rail pad stiffness* (MN/m2) 1200 | 90

Rail pad damping loss factor (-) 0.375

Sleeper mass** (kg/m) 205

Ballast stiffness* (MN/m2) 120 | 60

Ballast damping loss factor (-) 1.5

* Per unit length. Format: Vertical direction | Lateral direction.
**Per unit length. Corresponding to half sleeper.
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(a)

(b)

Fig. 6: Contact forces for a vehicle speed of 80 km/h and a unit roughness input. (a): axial; (b): radial. :
Three-dimensional model; : Axisymmetric approach.

Finally, the sound power radiated by the rotating wheel at a vehicle speed of 80 km/h
is calculated. To do this, the roughness spectrum for cast iron brake blocks defined by the
standard EN13979-1 [25] is introduced in the model through the procedure described by the
aforementioned standard. Also, the contact filter proposed by Thompson [17] is included in
the SWL computation. This is dependent on the vehicle velocity and the size of the contact
area; in the contact model employed, the latter is a function of the vertical static load (50
kN) as well as the wheel and rail material properties and curvature radii in the contact
points. The sound power levels, presented in one-third octave bands as A-weighted spectra
[26], are shown in Fig. 7. Results without and with the wheelset RBM contribution to the
wheel vibration are given. This contribution mainly increases the sound radiation below
about 1 kHz, while in the high frequency range there is no significant influence. Considering
the wheelset RBM, the maximum difference found in one-third octave band level between
the three-dimensional and axisymmetric approaches is 0.05 dB(A). Note that the proposed
methodology does not consider the flexible motion of the axle, which might influence the
wheel SWL in the low and medium frequency range, where the acoustic energy radiated by
the wheel is lower than in higher frequencies. Modelling this flexible motion could increase
the complexity and computational effort of the models presented here and therefore it is not
considered in this work.
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Fig. 7: SWL of the rotating wheel for a vehicle speed of 80 km/h. Lines include the wheelset RBM contribution
while markers do not. and : Three-dimensional model; and : Axisymmetric approach.

For comparison purposes, the flexible wheel is also modelled in the commercial package
Ansys [18]. This software implements the dynamic rotation model proposed by Geradin
and Kill [10] for an inertial frame, in which a system of reference associated with local
deformations is employed to describe the displacements and to formulate the equation of
motion of a flexible rotating body. The rotation axis (axial direction) is the out-of-plane
axis and the other two (longitudinal and vertical directions) are the in-plane axes. The local
reference system is related to the inertial one by rotations about the two in-plane axes of
the rotating body whereas the rotation in the out-of-plane axis is only due to the rigid body
spinning, so the torsional behaviour is not described by the model. The two rotations of the
inertial system are assumed to be infinitesimal and so they are approximated by the first two
terms of the Taylor expansion. This leads to the Eulerian and Lagrangian descriptions of
in-plane coordinates being equivalent.

The 3D railway wheel is modelled in Ansys using the FEM (same mesh as in Fig. 2);
then the rotation is included in the model and the receptances of the wheel at the contact
point are evaluated for a given set of frequencies. These receptances are exported and used
to solve the interaction forces through an in-house code. Subsequently, the computed forces
are imported into Ansys and applied to the wheel contact point, allowing the wheel response
to be calculated. Once the dynamics of the rotating wheel is solved, the wave equation for
the surrounding air within a sphere of radius 1.55 m [18] is also modelled with the FEM
considering the acoustic pressure as DoF; the FE model has 891317 nodes in the fluid region.
The velocity on the wheel surface is prescribed as an acoustic boundary condition and, at the
external surface of the fluid sphere, the Ansys Radiation Boundary condition is applied, which
approximates the volume under consideration to infinity [18]. A comparison of the FRF and
SWL delivered by this software with results from the vibroacoustic models proposed in this
work is shown in Fig. 8 and Fig. 9, respectively. For this comparison, the wheelset RBM is
not included in the models. Regarding the mobilities, the discrepancies are mainly found in
the position of the two resonance peaks associated with natural frequencies of the wheel for
n > 0, while the amplitudes are similar. In relation to the SWL, which is presented in one-
third octave bands, there is a good agreement in most of the frequency range considered, the
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discrepancies being higher for lower frequencies. The main differences in the results between
the proposed models and Ansys can be due to:

� The inclusion of the wheel rotation: Ansys implements the model developed by Geradin
and Kill [10], briefly explained above.

� The methodology to solve the sound radiation: Ansys solves the one-way FSI prob-
lem whereas the proposed methodologies implement the acoustic model developed by
Thompson [16]. This makes use of approximate expressions for radiation ratios, which
are mostly influential in the low and medium frequency range, where the highest dis-
crepancies are found in Fig. 9. Nevertheless, the energy contained in this frequency
range is negligible compared with higher frequencies.

By adding the energy in each one-third octave frequency band, an overall SWL of 91.2
dB(A) is obtained by both the three-dimensional and axisymmetric approaches while 91.4
dB(A) is predicted by Ansys. It is also worth noting that the SWL given by the proposed
models in Fig. 7 and 9 contain certain differences. The following reasons can be highlighted
for this:

� As mentioned above, for simplicity, the wheelset RBM contribution to the flexible wheel
motion is not included in the comparison with Ansys (Fig. 9), which introduces some
differences in the low frequency range (see Fig. 7).

� Given the high computational cost associated with the acoustic calculation in Ansys,
about 2250 different frequencies are evaluated in producing Fig. 9 with a minimum
resolution of 1 Hz. As explained at the beginning of this Section, about 4000 frequencies
with a minimum resolution of 0.2 Hz are considered in Fig. 7.

� When including rotation in Ansys, it is not possible to solve the wheel dynamics using
a modal approach and the direct method is employed by inverting the EoM formulated
in physical coordinates. Thus, the modal damping defined at the beginning of this
Section, and considered in Fig. 7, cannot be included in the model in Ansys. Instead,
a proportional damping with a mass multiplier of 19.9 and a stiffness multiplier of
1.24 · 10−8 is considered to compute the three curves in Fig. 9. The matrix multipliers
have been tuned to produce modal damping values as similar as possible to those used
in Fig. 7.

� As stated in the previous paragraph, the solution of the EoM in Ansys is performed
by the direct method. In the proposed methodologies, a modal approach is adopted,
considering as modal basis the vibration modes with natural frequencies below 12 kHz.
The difference between the proposed methodologies and Ansys corresponds to the con-
tribution of higher order modes, which can be assumed constant in the frequency range
studied (up to 6 kHz) [27]. Therefore, this contribution can be evaluated as the dif-
ference between the direct static solution (inversion of the stiffness matrix) and the
solution for zero frequency using the modal approach. In Fig. 9, in order to minimize
the differences with Ansys, the aforementioned contribution is added to the dynamic
solution of the modal approach, but it has not been included in Fig. 7.
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The previous four reasons also explain the differences between Fig. 4 and 8 regarding the
results given by the proposed models. It is worth noting that the methodology proposed in
this work, which leads to Fig. 4 and 7, is the more physically correct.

(a)

(b)

(c)

Fig. 8: Comparison of the mobilities at the wheel contact point for a vehicle speed of 80 km/h. (a): direct
axial/axial; (b): cross axial/radial; (c): direct radial/radial. : Three-dimensional model; : Axisym-
metric approach; : Ansys.
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Fig. 9: SWL comparison of the rotating wheel for a vehicle speed of 80 km/h. : Three-dimensional model;
: Axisymmetric approach; : Ansys.

5.3. Computational performance

The methodology used in the axisymmetric approach presented consists of solving the
circumferential direction analytically and the other two dimensions numerically. This pro-
cedure, as opposed to the full three-dimensional methodology, suppresses the discretization
error associated with the FEM in the circumferential direction. When using FE meshes with
a sufficiently large number of nodes, the results obtained from the two models are indistin-
guishable. Nevertheless, the performance of the axisymmetric approach model is far superior
in terms of computational effort.

To evaluate the computational performance, the SWL results from different FE meshes
are compared with those from a highly refined three-dimensional FE mesh with 358592 nodes,
which is consider as the reference case. Both the computational time required for the calcula-
tion of each FE mesh and the discrepancy with respect to the reference case are determined.
The discrepancy for the ith FE mesh is defined as the average of the absolute difference in
decibels for each one-third octave frequency band between the SWL for the ith case and the
reference one. The same frequency resolution technique as explained in Section 5.2 is used in
this analysis. In Fig. 10(a) the relation between the discrepancy and computational calcu-
lation time from both models is shown for each FE mesh (circle markers) and, in particular,
for the meshes employed in the previous results (cross markers). Also, a regression line which
fits the results is proposed. This allows the ratio to be evaluated between the computational
time of the three-dimensional and axisymmetric approaches for a given discrepancy, which is
shown in Fig. 10(b). The axisymmetric approach is, for small discrepancies, approximately
three orders of magnitude more efficient than the three-dimensional one, which makes the for-
mer suitable for implementation in optimization algorithms or SWL minimization routines.
The numerical simulations are carried out in a PC running with an ®Intel i7-9700 processor
with 64 GB RAM. Regarding the calculations performed in Ansys, for 2250 different frequen-
cies a total time of approximately 11.5 days is required, which represents a computational
cost five orders of magnitude higher than that of the axisymmetric approach.
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(a) (b)

Fig. 10: (a): Discrepancy in the SWL results for the different FE meshes (markers), including the two used
in the previous results (cross markers), and regression (dashed lines) for the three-dimensional (grey) and
axisymmetric (black) models; (b): Discrepancy as a function of the ratio between the computational time
from the three-dimensional and axisymmetric models.

6. Conclusions

A model of an axisymmetric rotating and flexible railway wheel is proposed which allows
a solution in a two-dimensional frame for both the dynamic response and the sound radiation
of the wheel due to its interaction with the rail. The wheelset RBM is described through
an analytical model and it is superimposed on the wheel vibration, which is constrained at
the inner edge of the hub. The proposed models are specifically aimed at describing the
vibroacoustic behaviour of a railway wheel, but in general they are valid for any rotating
system provided that axisymmetry exists.

First, a three-dimensional vibroacoustic model of the rotating flexible wheel, numerically
addressed through the FEM, is presented. The response of the wheel around the circumfer-
ential direction is then expanded using Fourier series, which allows the dynamic and acoustic
fields to be solved analytically in that direction. The other two directions, associated with
the wheel cross-section, are solved numerically. Finally, the rigid wheelset motion, which is
solved analytically, is superimposed on the flexible wheel motion; this mainly modifies the
wheel response in the low frequency range. Further development of this model could consider
the flexible motion of the axle which is subject for future study.

The results from the proposed axisymmetric model are compared with the three-dimensional
methodology in terms of modal, dynamic and acoustic behaviour, obtaining virtually identi-
cal solutions. In addition, the SWL predicted from both aforementioned methodologies are
compared with those from the commercial package Ansys and similar results are obtained
although some discrepancies, mainly in the low frequency range, are noted. However, in
overall terms, a difference of only 0.2 dB(A) is found.

The axisymmetric approach presented suppresses the discretization error associated with
the FEM in the circumferential direction, therefore leading to similar results to the three-
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dimensional model when considering highly refined FE meshes. However, for these meshes,
the computational time required by the proposed axisymmetric model to solve the sound
radiation of the wheel is approximately 1000 times less than with the three-dimensional
methodology.
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Appendices
A. Matrices and matrix operators

A.1. Matrices

K1 =

0 0 −1
0 0 0
1 0 0

 , K2 =

1
2

0 0
0 1 0
0 0 1

2

 . (A.1)

J =

0 −1 0
1 0 0
0 0 0

 , E = JTJ =

1 0 0
0 1 0
0 0 0

 . (A.2)

D =
λ

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2

0 0

0 0 0 0 1−2ν
2

0

0 0 0 0 0 1−2ν
2


, (A.3)

with λ being the Young’s modulus and ν the Poisson’s ratio.

J0 =

 0 0 1
0 0 0
−1 0 0

 , E0 = JT
0 J0 =

1 0 0
0 0 0
0 0 1

 . (A.4)
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J1 =


0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0

 , J2 =


0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1
1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0

 ,

J3 =


0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0

 , E3 = JT
3 J3 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 .
(A.5)

A.2. Matrix operators

L =



∂
∂r

0 0

1
r

1
r
∂
∂θ

0

0 0 ∂
∂z

∂
∂z

0 ∂
∂r

1
r
∂
∂θ

∂
∂r
− 1

r
0

0 ∂
∂z

1
r
∂
∂θ


. (A.6)

L0 =



∂
∂r

0 0

1
r

0 0

0 ∂
∂z

0

∂
∂z

∂
∂r

0

0 0 ∂
∂r
− 1

r

0 0 ∂
∂z


. (A.7)
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La =



∂
∂r

0 0 0 0 0

1
r

0 0 0 0 0

0 0 ∂
∂z

0 0 0

∂
∂z

0 ∂
∂r

0 0 0

0 ∂
∂r
− 1

r
0 0 0 0

0 ∂
∂z

0 0 0 0


, Lb =



0 0 0 0 0 0

0 1
r

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−1
r

0 0 0 0 0

0 0 −1
r

0 0 0


,

La =



0 0 0 ∂
∂r

0 0

0 0 0 1
r

0 0

0 0 0 0 0 ∂
∂z

0 0 0 ∂
∂z

0 ∂
∂r

0 0 0 0 ∂
∂r
− 1

r
0

0 0 0 0 ∂
∂z

0


, Lb =



0 0 0 0 0 0

0 0 0 0 −1
r

0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1
r

0 0

0 0 0 0 0 1
r


.

(A.8)

B. Kinetic and strain energy integration

In this appendix the analytical integration in the circumferential direction of the kinetic
energy in Eq. (18) and strain energy in Eq. (19) is detailed. To compute the integrals,
considering n, l ∈ Z, the following relations are used:∫ π

−π
sin(nθ) sin(lθ)dθ =

{
π, if n = l 6= 0.

0, if n 6= l or n = l = 0.

∫ π

−π
cos(nθ) cos(lθ)dθ =


π, if n = l 6= 0.

0, if n 6= l.

2π, if n = l = 0.∫ π

−π
sin(nθ) cos(lθ)dθ =0, ∀n, l.

(B.1)

Bearing in mind that dV = rdθdA and decomposing the kinetic energy into its ten terms,
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the result of the aforementioned integration is given by:

E
(1)
k =

1

2
Ω2

∫
V

ρr2dV = πΩ2

∫
A

ρr3dA, (B.2a)

E
(2)
k =

1

2

∫
V

ρẇTẇdV = π

∫
A

ρrẇT
0 ẇ0dA+

∑
n>0

(
π

2

∫
A

ρrẇT
n ẇndA

)
, (B.2b)

E
(3)
k =

1

2
Ω2

∫
V

ρ
∂wT

∂θ

∂w

∂θ
dV =

∑
n>0

(
π

2
Ω2

∫
A

ρrn2wT
nwndA

)
, (B.2c)

E
(4)
k = Ω2

∫
V

ρ
∂wT

∂θ
JwdV =

∑
n>0

(
2πΩ2

∫
A

ρrnwT
nJ1wndA

)
, (B.2d)

E
(5)
k = Ω

∫
V

ρrê2
TẇdV = −2πΩ

∫
A

ρr2ê3
Tẇ0dA, (B.2e)

E
(6)
k = Ω2

∫
V

ρrê2
T∂w

∂θ
dV = 0, (B.2f)

E
(7)
k = Ω2

∫
V

ρrê2
TJwdV = 2πΩ2

∫
A

ρr2ê1
Tw0dA, (B.2g)

E
(8)
k = Ω

∫
V

ρẇT∂w

∂θ
dV =

∑
n>0

(
πΩ

∫
A

ρrnẇT
nJ2wndA

)
, (B.2h)

E
(9)
k = Ω

∫
V

ρẇTJwdV = 2πΩ

∫
A

ρrẇT
0 J0w0dA+

∑
n>0

(
πΩ

∫
A

ρrẇT
nJ3wndA

)
, (B.2i)

E
(10)
k =

1

2
Ω2

∫
V

ρwTEwdV = πΩ2

∫
A

ρrwT
0 E0w0dA+

∑
n>0

(
π

2
Ω2

∫
A

ρrwT
nE3wndA

)
.

(B.2j)

Similarly, considering the strain energy, the following expression is computed:

Ep =
1

2

∫
V

εTDεdV = π

∫
A

rεT
0 Dε0dA+

∑
n>0

(
π

2

∫
A

rεT
nDεndA+

π

2

∫
A

rεT
nDεndA

)
. (B.3)
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