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A B S T R A C T

The axial symmetry of a railway wheel is taken into account to expand its vibrational response
around the circumferential direction using Fourier series. This allows the vibroacoustic problem
of the wheel to be formulated in a two-dimensional frame, solving for the dynamic and acoustic
variables analytically in the circumferential direction. By adopting an Eulerian approach, the
inertial effects associated with the rotation of the wheelset are included in the model, assuming
a constant angular speed of rotation. To represent a railway wheelset, the wheel is constrained
at the inner edge of the hub and the contribution of the rigid body motion of the wheelset is
superimposed on its response. The latter is evaluated analytically under the assumption of small
rigid body displacements. The computational efficiency of the proposed methodology is found
to be three orders of magnitude greater than a full three-dimensional methodology, without
compromising the accuracy. The results are compared in terms of acoustic radiation with the
commercial package Ansys, showing similar sound power levels in almost all the frequency
range apart from some differences at low frequencies due to the use of an acoustic model
based on radiation ratios.

. Introduction

Noise pollution from railways can cause discomfort and even risk to people’s health. For this reason, in recent decades, the
evelopment of quieter railway components through different techniques has proliferated; among these, is the implementation of
amper elements, such as the use of viscoelastic layers on the wheel [1] and dynamic absorbers on the wheel and rail [2,3], as
ell as the search for optimal designs of the wheel [4,5], the study of perforation schemes for the wheel [6] and the analysis of

he influence of track design on the radiated noise [7]. Generally, in the preliminary design phase of such treatments, numerous
imulations are required to reach the optimal configuration in terms of noise mitigation. In situations with multiple design variables,
he number of simulations that can be carried out is limited by the computational cost associated with the vibroacoustic calculation.
onsequently, it is convenient to have efficient vibroacoustic models of the railway components. The present study focuses on the
heelset.

To evaluate the sound radiation from the wheel, it is first necessary to determine the vibrational field on its surface. The wheel
ibration occurs in response to the excitation forces at the wheel–rail contact; on straight track, the main reason for this excitation
s the existence of surface roughness on the wheel and rail running surfaces. The response of the wheelset to these interaction forces
an be determined numerically using the Finite Element Method (FEM) [8]. In running conditions, the wheelset is rotating about
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its main axis, which changes the dynamics of this component compared with the stationary case. In Ref. [9], Thompson proposed
to include the wheel rotation by means of a moving load problem, excluding the gyroscopic and inertial effects associated with
the rotation. Other authors have proposed models based on Lagrangian coordinates to include the convective effects in flexible
rotors. Geradin and Kill [10] developed the equations of motion (EoM) in both rotating and inertial frames by defining a reference
system associated with local deformations and assuming small angles of rotation about the axis; in their work, the axial and flexural
dynamic behaviour of the rotor was analysed, while the torsional one was neglected. Genta and Tonoli [11] developed a formulation
that includes the axial, flexural and torsional dynamic behaviour of thin rotating discs. More recently, Sheng et al. [12] proposed
a FE model of a rotating railway wheel using an axisymmetric approach, which includes the vertical vibration of the wheel axis by
taking into account the momentum law; this was used to solve the response of the wheel to a vertical harmonic wheel–rail force
and it was shown that the displacement of the wheel contact point, formulated in an inertial frame, is also harmonic at the same
frequency as the interaction force. When the rotating body interacts with other non-rotating structures, models based on Eulerian
coordinates present a clear advantage over those based on Lagrangian coordinates, since the location of the interaction usually
has a constant spatial position with respect to the inertial reference system. Fayos et al. [13] proposed a model based on Eulerian
coordinates applied to the railway wheelset to give an efficient solution to the interaction with the track; to do this, they developed
the EoM of the rotating body initially in Lagrangian coordinates and, then, a conversion to Eulerian coordinates was carried out.
Later, Martínez-Casas et al. [14] developed the EoM of the rotating 3D wheelset directly in Eulerian coordinates, in a cartesian
reference system. With a view to reducing the computational cost associated with the resolution of the dynamic problem, Baeza
et al. [15] performed an expansion of the response around the circumferential direction using Fourier series, after transforming the
EoM from a cartesian to a cylindrical reference system.

Once the vibrational field of the wheel has been computed, it is possible to evaluate its sound radiation. The most precise way to
o this is by solving the air pressure field through a Fluid Structure Interaction (FSI) approach. In the literature, however, acoustic
odels can be found based on the use of radiation ratios, which have a lower computational cost. These are based on post-processing

he vibrational field of the wheel surface, as proposed in Ref. [16]. In this reference, the wheel is constrained at the inner edge of the
ub and the modelling of the axle is omitted, which gives a good approximation for the contribution to the radiation of the vibration
odes with 2 or more nodal diameters; it is worth noting that, according to Ref. [8], these are the most important for rolling noise

eneration. However, the vibroacoustic behaviour of the wheelset in the low frequency range is influenced by the axle motion. To
nclude this, the contribution of the rigid body modes of the wheelset can be added to the constrained wheel vibration [17].

In this work, a model of a rotating railway wheel which takes advantage of its axial symmetry is proposed. The wheel flexibility
s considered and the wheelset rigid body motion (RBM) is superimposed on the wheel vibration. To do this, an analytical model of
rigid rotating wheelset is developed. Both the flexible wheel and rigid wheelset models can be applied to other rotating systems

s long as there is axial symmetry. Regarding the former, the axisymmetric approach with Eulerian coordinates proposed by Baeza
t al. [15] is extended through the direct formulation of the EoM in a cylindrical reference system. Subsequently, the acoustic model
f Thompson [16] is considered to evaluate the acoustic radiation of the wheel, taking advantage of the periodicity of the response to
ormulate the sound field also in a two-dimensional frame. The wheel is constrained at the inner edge of the hub and the contribution
f the wheelset RBM is included through the RB model developed. The accuracy of the results is studied by a comparison with the
olution of the FSI problem computed with the commercial FE software Ansys [18]. Likewise, the computational efficiency of the
roposed methodology is evaluated by benchmarking against a full three-dimensional methodology.

Following this introduction, Section 2 presents the dynamic model of the rotating rigid wheelset. Then, the three-dimensional
ibroacoustic model of the rotating wheel is presented in Section 3. In Section 4, the expansion of the wheel response around the
ircumferential direction is introduced and the EoM and sound radiation are obtained in a two-dimensional frame. Some results are
resented in Section 5 and the main conclusions are summarized in Section 6.

. Rigid body motion of the wheelset

This section describes the methodology used to determine the equations of the RBM including rotation at a constant speed 𝛺
about its axis. There are six degrees of freedom associated with the RBM, three translations 𝝉 =

(

𝜏1 𝜏2 𝜏3
)T parallel to the

cartesian axes in Fig. 1 and three rotations 𝝍 =
(

𝜓1 𝜓2 𝜓3
)T about them. Although the RBM is associated with the cartesian

axes, the EoM are developed in a cylindrical reference frame with radial 𝑟, circumferential 𝜃 and axial 𝑧 components. Considering
only the RBM, the position 𝐪 of any particle of the wheelset during the motion can be expressed as follows:

𝐪 = 𝐮 + 𝐬(𝐮, 𝑡), (1)

where 𝐮 =
(

𝑟 0 𝑧
)T is the spatial position, expressed in an inertial frame, corresponding to that particle without the motion

and 𝐬 =
(

𝑠𝑟 𝑠𝜃 𝑠𝑧
)T contains the displacements of the particle in the position 𝐮 at instant 𝑡 due to the RBM in the radial,

circumferential and axial directions, respectively. These displacements can be divided into the contribution of the translational 𝐬𝜏
and rotational 𝐬𝜓 motions, which yields the following vectorial sum:

𝐬 = 𝐬𝜏 + 𝐬𝜓 . (2)

On the one hand, the vector 𝐬𝜏 is related to the translational motion 𝝉 by means of the transformation matrix between the
cartesian and cylindrical frame Θ𝜏 , which, according to the definition of the coordinate 𝜃 in Fig. 1, is given by:

𝐬𝜏 =
⎡

⎢

⎢

sin(𝜃) 0 cos(𝜃)
cos(𝜃) 0 − sin(𝜃)

⎤

⎥

⎥

𝝉 = Θ𝜏𝝉 . (3)
2

⎣ 0 1 0 ⎦
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Fig. 1. Definition of the cartesian and cylindrical reference systems. The motion of the flexible wheel is evaluated through the FEM. The RBM of the wheelset,
escribed analytically, is superimposed on it.

On the other hand, the vector 𝐬𝜓 can be expressed as follows:

𝐬𝜓 = Θ𝜏 (𝐑 − 𝐈3×3)ΘT
𝜏 𝐮, (4)

where 𝐈3×3 is the identity matrix of order 3 × 3 and the matrix 𝐑 defines the position of a particle after the rigid body rotation
expressed in an inertial frame and formulated in cartesian coordinates. Assuming small angles, this is given by:

𝐑 =
⎡

⎢

⎢

⎣

1 −𝜓3 𝜓2
𝜓3 1 −𝜓1
−𝜓2 𝜓1 1

⎤

⎥

⎥

⎦

. (5)

After manipulating Eq. (4), the following relation between 𝐬𝜓 and 𝝍 is found:

𝐬𝜓 =
⎡

⎢

⎢

⎣

𝑧 cos(𝜃) 0 −𝑧 sin(𝜃)
−𝑧 sin(𝜃) 𝑟 −𝑧 cos(𝜃)
−𝑟 cos(𝜃) 0 𝑟 sin(𝜃)

⎤

⎥

⎥

⎦

𝝍 = Θ𝜓𝝍 . (6)

As the axis of rotation is coincident with the axial direction, i.e. Ω =
(

0 0 𝛺
)T in the cylindrical frame, the velocity 𝐯𝑠 due

to the rigid body spinning is given by:

𝐯𝑠 = Ω × 𝐮 = 𝑟𝛺𝐞2, (7)

with 𝐞2 =
(

0 1 0
)T. In an Eulerian approach, the velocity of any particle of the wheel can be evaluated as follows [19,20]:

D𝐪
D𝑡 = 𝐯𝑠 +Θ𝜏 𝝉̇ +Θ𝜓 𝝍̇ +𝛺𝐘𝝍 , (8)

here the matrix 𝐘 is given by:

𝐘 =
⎡

⎢

⎢

⎣

0 −𝑟 0
0 0 0

𝑟 sin(𝜃) 0 𝑟 cos(𝜃)

⎤

⎥

⎥

⎦

. (9)

The kinetic energy of the rotating wheelset due to its RBM is given by:

𝐾 =1
2 ∫𝑉𝑆

𝜌
D𝐪T

D𝑡
D𝐪
D𝑡 d𝑉 =

=1
2
𝑀 𝝉̇T𝝉̇ + 1

2
𝝍̇T𝝍̇ + 1

2
𝛺𝑧𝝍̇T𝐊1𝝍 + 1

2
𝛺2𝑧𝝍T𝐊2𝝍 +𝛺𝑧𝝍̇T𝐞2 +

1
2
𝛺2𝑧,

(10)

where 𝜌 is the density of the material, 𝑉𝑆 is the volume of the wheelset, 𝑀 is its mass, 𝑧 = ∫𝑉𝑆 𝜌𝑟
2d𝑉 is the moment of inertia

about the axis of rotation, the matrices 𝐊1 and 𝐊2 are shown in Appendix A and  is the inertia tensor of the wheelset that, given
the cartesian reference system defined (see Fig. 1), can be expressed as:

 =
⎡

⎢

⎢

𝑟 0 0
0 𝑧 0

⎤

⎥

⎥

, (11)
3

⎣ 0 0 𝑟⎦
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with 𝑟 =
𝑧
2 + ∫𝑉𝑆 𝜌𝑧

2d𝑉 being the moment of inertia about the radial axis. From the energy equation, Eq. (10), it follows that the
ranslational and rotational motions are decoupled. The Lagrange equations for the translational motion are given by:

D
D𝑡

( 𝜕𝐾
𝜕𝝉̇

)T
−
( 𝜕𝐾
𝜕𝝉

)T
=𝑀 𝝉̈ , (12)

while for the rotation movement it is verified that:

D
D𝑡

(

𝜕𝐾
𝜕𝝍̇

)T
−
(

𝜕𝐾
𝜕𝝍

)T
= 𝝍̈ +𝛺𝑧𝐊1𝝍̇ −𝛺2𝑧𝐊2𝝍 . (13)

In this work, it is considered that the external forces come from the wheel–rail interaction. Also, for simplicity, the contact is
assumed to occur at the angular coordinate 𝜃𝑐 = 0. Given the interaction forces 𝐅 =

(

𝐹𝑟 𝐹𝜃 𝐹𝑧
)T applied at the contact point,

the six equations of the RBM are given by:

𝑀 𝝉̈(𝑡) =
⎡

⎢

⎢

⎣

0 1 0
0 0 1
1 0 0

⎤

⎥

⎥

⎦

𝐅(𝑡),

𝝍̈(𝑡) +𝛺𝑧𝐊1𝝍̇(𝑡) −𝛺2𝑧𝐊2𝝍(𝑡) =
⎡

⎢

⎢

⎣

𝑧𝑐 0 −𝑟𝑐
0 𝑟𝑐 0
0 −𝑧𝑐 0

⎤

⎥

⎥

⎦

𝐅(𝑡),

(14)

where 𝑟𝑐 and 𝑧𝑐 are, respectively, the radial and axial coordinates of the contact point. For convenience, the EoM are transformed
o the frequency domain. Considering a harmonic excitation of frequency 𝜔 and constant amplitude 𝐅(𝜔), the steady state RBM is
btained by solving the following expressions:

−𝜔2𝑀𝝉(𝜔) =
⎡

⎢

⎢

⎣

0 1 0
0 0 1
1 0 0

⎤

⎥

⎥

⎦

𝐅(𝜔),

⎡

⎢

⎢

⎢

⎣

−𝜔2𝑟 −
1
2𝛺

2𝑧 0 −i𝜔𝛺𝑧
0 −𝑧(𝜔2 +𝛺2) 0

i𝜔𝛺𝑧 0 −𝜔2𝑟 −
1
2𝛺

2𝑧

⎤

⎥

⎥

⎥

⎦

𝝍(𝜔) =
⎡

⎢

⎢

⎣

𝑧𝑐 0 −𝑟𝑐
0 𝑟𝑐 0
0 −𝑧𝑐 0

⎤

⎥

⎥

⎦

𝐅(𝜔),

(15)

where i is the imaginary unit. The three translational motions and the rotation about the axial axis 𝜓2 are decoupled from the other
motions, while the rotations about the longitudinal 𝜓1 and vertical 𝜓3 axes are coupled to each other.

3. Three-dimensional vibroacoustic model of the wheel

In this section, the three-dimensional dynamic model developed by Martínez-Casas et al. [14] is formulated in a cylindrical
reference system. This allows the axisymmetric approach to be developed in the next section. The models can be used to describe
the dynamic behaviour of any rotating body with axial symmetry considering its flexibility and small RBM displacements. In this
work, however, it is employed to evaluate the motion of a flexible railway wheel which is constrained at the inner edge of the hub
and is rotating at a constant speed 𝛺 about its main axis. After solving its vibroacoustic behaviour, the contribution of the RBM of
the wheelset is included according to the developments of Section 2.

3.1. Kinetic energy

Given the rotating wheel subjected to an external dynamic force, the position 𝐩 of any particle in the deformed shape can be
expressed as the following vector sum:

𝐩 = 𝐮 + 𝐰(𝐮, 𝑡), (16)

where 𝐰 =
(

𝑤𝑟 𝑤𝜃 𝑤𝑧
)T contains the displacements of the particle at the position 𝐮 and instant 𝑡 due to flexibility in the radial,

circumferential and axial directions. The velocity of any particle of the wheel can be evaluated as follows [19,20]:

D𝐩
D𝑡 = 𝐯𝑠 + 𝐰̇ +𝛺𝜕𝐰

𝜕𝜃
+𝛺𝐉𝐰, (17)

where 𝐰̇ =
(

𝑤̇𝑟 𝑤̇𝜃 𝑤̇𝑧
)T contains the time derivatives of the displacements, 𝜕𝐰

𝜕𝜃 =
(

𝜕𝑤𝑟
𝜕𝜃

𝜕𝑤𝜃
𝜕𝜃

𝜕𝑤𝑧
𝜕𝜃

)T
considers the derivatives
4

with respect to the circumferential direction and the matrix 𝐉 is specified in Appendix A. The kinetic energy 𝐸𝑘 of the railway wheel
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is given by:

𝐸𝑘 =
1
2 ∫𝑉

𝜌
D𝐩T

D𝑡
D𝐩
D𝑡 d𝑉 =

=1
2
𝛺2

∫𝑉
𝜌𝑟2d𝑉 + 1

2 ∫𝑉
𝜌𝐰̇T𝐰̇d𝑉 + 1

2
𝛺2

∫𝑉
𝜌 𝜕𝐰

T

𝜕𝜃
𝜕𝐰
𝜕𝜃

d𝑉 +𝛺2
∫𝑉

𝜌 𝜕𝐰
T

𝜕𝜃
𝐉𝐰d𝑉 +

+𝛺 ∫𝑉
𝜌𝑟𝐞2

T𝐰̇d𝑉 +𝛺2
∫𝑉

𝜌𝑟𝐞2
T 𝜕𝐰
𝜕𝜃

d𝑉 +𝛺2
∫𝑉

𝜌𝑟𝐞2
T𝐉𝐰d𝑉 +

+𝛺 ∫𝑉
𝜌𝐰̇T 𝜕𝐰

𝜕𝜃
d𝑉 +𝛺 ∫𝑉

𝜌𝐰̇T𝐉𝐰d𝑉 + 1
2
𝛺2

∫𝑉
𝜌𝐰T𝐄𝐰d𝑉 ,

(18)

here 𝑉 is the volume of the wheel, d𝑉 = 𝑟d𝜃d𝑟d𝑧 and the matrix 𝐄 = 𝐉T𝐉 can be found in Appendix A. Since the wheel is
onstrained at the inner edge of the hub, all the terms in the right hand side of Eq. (18) except the first one are associated with the
heel flexibility, while the first one is due to steady rolling.

.2. Strain energy

The elastic potential energy 𝐸𝑝 can be expressed as follows:

𝐸𝑝 =
1
2 ∫𝑉

𝜺T𝝈d𝑉 = 1
2 ∫𝑉

𝜺T𝐃𝜺d𝑉 , (19)

where 𝐃 is the material stiffness matrix obtained from Hooke’s Law (see Appendix A). The strain vector satisfies 𝜺 = 𝐋𝐰 =
(

𝜀𝑟 𝜀𝜃 𝜀𝑧 𝛾𝑧𝑟 𝛾𝑟𝜃 𝛾𝜃𝑧
)T, with 𝐋 being a matrix operator defined in Appendix A.

3.3. Virtual work

The roughness present on the wheel and rail running surfaces generates dynamic forces when the vehicle is travelling along
the track. These forces are introduced in the wheel model as external loads applied at its contact point. The virtual work of the
interaction forces 𝐅 =

(

𝐹𝑟 𝐹𝜃 𝐹𝑧
)T is given by:

𝛿𝑊 = 𝛿𝐰T𝐅. (20)

3.4. Equation of motion

A FE model is adopted, so that the displacement field in the 𝑒th element of the FE mesh is computed from the nodal solution by
the following interpolation:

𝐰(𝑟, 𝜃, 𝑧, 𝑡) = 𝐍(𝑟, 𝜃, 𝑧)w𝑒(𝑡), (21)

𝐍 being the shape function matrix [21], which can be expressed as follows:

𝐍 =
[

𝐍1 ⋯ 𝐍𝑗 ⋯ 𝐍𝑚
]

; 𝐍𝑗 = 𝑁𝑗

⎡

⎢

⎢

⎣

cos(𝜃 − 𝜃𝑗 ) sin(𝜃 − 𝜃𝑗 ) 0
− sin(𝜃 − 𝜃𝑗 ) cos(𝜃 − 𝜃𝑗 ) 0

0 0 1

⎤

⎥

⎥

⎦

, (22)

where subscript 𝑗 refers to the 𝑗th node, 𝑚 is the number of nodes in the 𝑒th element and 𝑁𝑗 , which is dependent on the 𝑟, 𝜃 and 𝑧
coordinates, is the shape function associated with the 𝑗th node. The vector w𝑒 contains the displacements of the three Degrees of
Freedom (DoF) of each node in the 𝑒th element, that is:

w𝑒 =
(

w𝑒
1 ⋯ w𝑒

𝑗 ⋯ w𝑒
𝑚

)T
; w𝑒

𝑗 =
(

𝑤𝑒𝑟,𝑗 𝑤𝑒𝜃,𝑗 𝑤𝑒𝑧,𝑗
)

. (23)

By applying the expressions for the kinetic and strain energies in Eqs. (18) and (19) to the 𝑒th element and considering the FE
approach of Eq. (21), the non-zero terms of the Lagrange equations are:

D
D𝑡

(

𝜕𝐸𝑘
𝜕ẇ𝑒

)T
−
(

𝜕𝐸𝑘
𝜕w𝑒

)T
+
( 𝜕𝐸𝑝
𝜕w𝑒

)T
= 𝐌𝑒ẅ𝑒 + 2𝛺𝐕𝑒ẇ𝑒 +

(

𝐊𝑒 +𝛺2𝐀𝑒
)

w𝑒 −𝛺2𝐜𝑒. (24)

The element matrices in Eq. (24) correspond to the following expressions:

𝐌𝑒 =∫𝑉 𝑒
𝜌𝐍T𝐍d𝑉 ,

𝐕𝑒 =∫𝑉 𝑒
𝜌𝐍T 𝜕𝐍

𝜕𝜃
d𝑉 + ∫𝑉 𝑒

𝜌𝐍T𝐉𝐍d𝑉 ,

𝐊𝑒 =∫𝑉 𝑒
𝐁T𝐃𝐁d𝑉 ,

𝐀𝑒 =∫𝑉 𝑒
𝜌𝐍T 𝜕2𝐍

𝜕𝜃2
d𝑉 + 2∫𝑉 𝑒

𝜌𝐍T𝐉 𝜕𝐍
𝜕𝜃

d𝑉 − ∫𝑉 𝑒
𝜌𝐍T𝐄𝐍d𝑉 ,

𝐜𝑒 = 𝜌𝐍T𝐞1d𝑉 ,

(25)
5

∫𝑉 𝑒
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where 𝑉 𝑒 is the volume of the 𝑒th element, 𝐞1 =
(

1 0 0
)T and 𝐁 = 𝐋𝐍. As stated in [14], the second derivative in the matrix 𝐀𝑒

can be reduced to a first derivative by integrating its first term by parts and therefore the convergence of the integral is guaranteed
when 𝐶0 shape functions are taken into account.

Following the FEM approach, the element matrices are assembled to obtain the global matrices of the equation of motion. The
DoF (displacements of nodes) of the wheel are also assembled into the vector w. Similarly, the interaction forces 𝐅 applied on the
wheel contact point are considered in the FE assembly of the forces (applied on all nodes and directions) into the vector F. Thus,
the EoM are given by:

𝐌ẅ(𝑡) + 2𝛺𝐕ẇ(𝑡) +
(

𝐊 +𝛺2𝐀
)

w(𝑡) = 𝛺2𝐜 + F(𝑡). (26)

In order to evaluate the rolling noise radiated by the wheel, the model is transformed to the frequency domain, in which the
EoM can be expressed for 𝜔 > 0 as follows:

(

−𝜔2𝐌 + 2i𝜔𝛺𝐕 +𝐊 +𝛺2𝐀
)

w(𝜔) = F(𝜔), (27)

where w(𝜔) represents the steady state response to a harmonic excitation of frequency 𝜔 and constant amplitude F(𝜔).

3.5. Sound radiation

After solving the railway wheel dynamics, its acoustic radiation is computed by postprocessing the vibrational field on its surface.
The radiation model employed in this work was developed by Thompson [16] and it establishes that the wheel sound power is
obtained as the sum of the power associated with each set of modes with the same number of nodal diameters 𝑛. The wheel acoustic
power 𝑊 for a given frequency 𝜔 is evaluated as follows:

𝑊 (𝜔) = 𝜌𝑓 𝑐
∑

𝑛≥0

(

𝜎𝑧,𝑛(𝜔)𝑆𝑧⟨𝑣2𝑧,𝑛(𝜔)⟩ + 𝜎𝑟,𝑛(𝜔)𝑆𝑟⟨𝑣
2
𝑟,𝑛(𝜔)⟩

)

, (28)

where 𝜌𝑓 is the density of air (fluid surrounding the wheel) and 𝑐 is the speed of sound in air. The participation of each set of
modes with 𝑛 nodal diameters is in turn divided into its axial (subscript 𝑧) and radial (subscript 𝑟) contribution. Functions 𝜎 are
the radiation ratios, which are numerically assessed in Ref. [16]. The wheel surface is projected normal to the axial and radial
directions, which yields the areas 𝑆𝑧 and 𝑆𝑟, respectively. Similarly, the squared velocity of the wheel surface is projected into the
axial and radial directions and the corresponding values are averaged over time (̃) and space (⟨ ⟩); these are given by:

⟨𝑣2𝑖,𝑛⟩ =
1
2𝑆𝑖 ∫𝑆

|𝑣𝑖,𝑛|
2d𝑆𝑖, 𝑖 = 𝑧, 𝑟, 𝑛 ≥ 0, (29)

being the wheel surface. In this work, the wheelset RBM is superimposed on the vibration of the wheel constrained at the inner
dge of the hub. To do this, on the one hand, the EoM of the wheel given in Eq. (27) are solved and the vibrational velocity of any
article of the wheel 𝐰̇(𝑟, 𝜃, 𝑧, 𝜔) associated with its flexibility is obtained. On the other hand, the EoM of the rigid wheelset given in
q. (15) are solved and the RB motions 𝝉̇(𝜔) and 𝝍̇(𝜔) are obtained; from these the vibrational velocity of any particle of the wheel
̇ (𝑟, 𝜃, 𝑧, 𝜔) associated with the wheelset RBM can be found through the expressions in Eqs. (2), (3) and (6). Finally, both flexible
nd RB motions are superimposed. The wheelset RBM contributes to the response only for 𝑛 ≤ 1. Defining 𝑤̇|𝑛 as the contribution
o the velocity of the flexible wheel modes with 𝑛 nodal diameters, then for 𝑛 = 0 the total velocities of a wheel particle in the axial
nd radial directions are given by:

𝑣𝑧,0(𝑟, 𝑧, 𝜔) = 𝑤̇𝑧(𝑟, 𝑧, 𝜔)|𝑛=0 + 𝜏̇2(𝜔),

𝑣𝑟,0(𝑟, 𝑧, 𝜔) = 𝑤̇𝑟(𝑟, 𝑧, 𝜔)|𝑛=0,
(30)

ith 𝑤̇𝑧|𝑛=0 and 𝑤̇𝑟|𝑛=0 being associated with the wheel flexibility and 𝜏̇2 with the wheelset RBM. Likewise, the contribution of
odes with 𝑛 = 1 to the velocities is as follows:

𝑣𝑧,1(𝑟, 𝜃, 𝑧, 𝜔) = 𝑤̇𝑧(𝑟, 𝜃, 𝑧, 𝜔)|𝑛=1 − 𝑟𝜓̇1(𝜔) cos(𝜃) + 𝑟𝜓̇3(𝜔) sin(𝜃),

𝑣𝑟,1(𝑟, 𝜃, 𝑧, 𝜔) = 𝑤̇𝑟(𝑟, 𝜃, 𝑧, 𝜔)|𝑛=1 + (𝜏̇3(𝜔) + 𝑧𝜓̇1(𝜔)) cos(𝜃) + (𝜏̇1(𝜔) − 𝑧𝜓̇3(𝜔)) sin(𝜃),
(31)

ith 𝑤̇𝑧|𝑛=1 and 𝑤̇𝑟|𝑛=1 being associated with the wheel flexibility and the remaining terms with the wheelset RBM. Finally, for
≥ 2 the velocities are given by:

𝑣𝑖,𝑛(𝑟, 𝜃, 𝑧, 𝜔) = 𝑤̇𝑖(𝑟, 𝜃, 𝑧, 𝜔)|𝑛, 𝑖 = 𝑧, 𝑟, 𝑛 ≥ 2, (32)

here there is no contribution from the wheelset RBM.

. Vibroacoustic model: Axisymmetric approach

Given the axial symmetry of the wheel geometry, the displacement field can be expressed by means of an expansion as a Fourier
eries given by [22]:

𝑤𝑟 =𝑤𝑟,0 +
∑

𝑛>0

(

𝑤𝑟,𝑛 cos(𝑛𝜃) −𝑤𝑟,𝑛 sin(𝑛𝜃)
)

,

𝑤𝜃 = −𝑤𝜃,0 +
∑

𝑛>0

(

𝑤𝜃,𝑛 sin(𝑛𝜃) −𝑤𝜃,𝑛 cos(𝑛𝜃)
)

,

𝑤𝑧 =𝑤𝑧,0 +
∑

(

𝑤𝑧,𝑛 cos(𝑛𝜃) −𝑤𝑧,𝑛 sin(𝑛𝜃)
)

,

(33)
6

𝑛>0
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𝑛 being an integer number representing each Fourier term, corresponding to the set of modes with 𝑛 nodal diameters. In Eq. (33),
the harmonic amplitudes without a bar represent symmetric motions about 𝜃 = 0 and those with a bar represent antisymmetric

otions about 𝜃 = 0. It should be noted that the harmonic amplitudes 𝑤𝑟,0, 𝑤𝑧,0 and 𝑤𝜃,0 (for 𝑛 = 0) as well as 𝑤𝑟,𝑛, 𝑤𝜃,𝑛, 𝑤𝑧,𝑛, 𝑤𝑟,𝑛,
𝑤𝜃,𝑛 and 𝑤𝑧,𝑛 (for 𝑛 > 0) are dependent on the 𝑟, 𝑧 and 𝑡 coordinates but are independent of the 𝜃 coordinate.

4.1. Kinetic energy

Due to the harmonic description of the displacement field in the circumferential direction, the kinetic energy of the system
described in Eq. (18) can be integrated analytically over this direction; details of the procedure are given in Appendix B. As a result,
the kinetic energy can be divided into the contribution of each Fourier term and is therefore given by:

𝐸𝑘 = 𝐸𝑘,0 +
∑

𝑛>0
𝐸𝑘,𝑛. (34)

When considering a stationary body with axial symmetry, for each Fourier term the energy associated with the symmetric
harmonic motion about 𝜃 = 0 is also decoupled from the antisymmetric harmonic motion about 𝜃 = 0. However, if the axisymmetric
body is rotating, there is a coupling between these motions due to the 8th and 9th terms of the kinetic energy in the right hand side
of Eq. (18). As a consequence, for each Fourier term both motions are simultaneously solved. The harmonic amplitudes in Eq. (33)
are grouped for each Fourier term as follows:

𝐰0 =
(

𝑤𝑟,0 𝑤𝑧,0 𝑤𝜃,0
)T , 𝑛 = 0,

𝐰𝑛 =
(

𝑤𝑟,𝑛 𝑤𝜃,𝑛 𝑤𝑧,𝑛 𝑤𝑟,𝑛 𝑤𝜃,𝑛 𝑤𝑧,𝑛
)T , 𝑛 > 0.

(35)

The kinetic energy for 𝑛 = 0 is given by:

𝐸𝑘,0 =𝜋𝛺2
∫𝐴

𝜌𝑟3d𝐴 + 𝜋 ∫𝐴
𝜌𝑟𝐰̇T

0 𝐰̇0d𝐴 − 2𝜋𝛺 ∫𝐴
𝜌𝑟2𝐞3

T𝐰̇0d𝐴+

+2𝜋𝛺2
∫𝐴

𝜌𝑟2𝐞1
T𝐰0d𝐴 + 2𝜋𝛺 ∫𝐴

𝜌𝑟𝐰̇T
0𝐉0𝐰0d𝐴 + 𝜋𝛺2

∫𝐴
𝜌𝑟𝐰T

0𝐄0𝐰0d𝐴,
(36)

where 𝐴 is the area of the wheel cross-section, d𝐴 = d𝑟d𝑧, 𝐞3 =
(

0 0 1
)T and the matrices 𝐉0 and 𝐄0 are presented in Appendix A.

The kinetic energy due to steady rolling, first term in the right hand side of Eq. (36), is not associated with vibration for 𝑛 = 0 but
is also included in the kinetic energy for 𝑛 = 0, although it will not appear in the EoM. The kinetic energy 𝐸𝑘,𝑛 for each 𝑛 > 0 is
expressed as follows:

𝐸𝑘,𝑛 =
𝜋
2 ∫𝐴

𝜌𝑟𝐰̇T
𝑛 𝐰̇𝑛d𝐴 + 𝜋

2
𝛺2

∫𝐴
𝜌𝑟𝑛2𝐰T

𝑛𝐰𝑛d𝐴 + 2𝜋𝛺2
∫𝐴

𝜌𝑟𝑛𝐰T
𝑛𝐉1𝐰𝑛d𝐴+

+𝜋𝛺 ∫𝐴
𝜌𝑟𝑛𝐰̇T

𝑛𝐉2𝐰𝑛d𝐴 + 𝜋𝛺 ∫𝐴
𝜌𝑟𝐰̇T

𝑛𝐉3𝐰𝑛d𝐴 + 𝜋
2
𝛺2

∫𝐴
𝜌𝑟𝐰T

𝑛𝐄3𝐰𝑛d𝐴,
(37)

with the matrices 𝐉1, 𝐉2, 𝐉3 and 𝐄3 being defined in Appendix A.

4.2. Strain energy

The strain energy in Eq. (19) can be integrated analytically over the circumferential direction according to the expansion of
Eq. (33). Details of this are given in Appendix B. Similarly to the kinetic energy, the strain energy can be expressed as a sum of the
contributions of each Fourier term, yielding the following expression:

𝐸𝑝 = 𝐸𝑝,0 +
∑

𝑛>0
𝐸𝑝,𝑛. (38)

Unlike the kinetic energy, for each Fourier term the contribution in the strain energy of the symmetric motion about 𝜃 = 0 is
decoupled from the antisymmetric motion about 𝜃 = 0. Nevertheless, since the kinetic energy equation couples both motions, they
are also considered simultaneously in the strain energy equation.

The strain energy 𝐸𝑝,0 for 𝑛 = 0 is given by:

𝐸𝑝,0 = 𝜋 ∫𝐴
𝑟𝜺T

0𝐃𝜺0d𝐴, (39)

where 𝜺0 is defined as follows:

𝜺0 = 𝐋0𝐰0, (40)

with 𝐋0 being a matrix derivative operator specified in Appendix A. The strain energy 𝐸𝑝,𝑛 for 𝑛 > 0 is given by:

𝐸𝑝,𝑛 =
𝜋 𝑟𝜺T𝐃𝜺𝑛d𝐴 + 𝜋 𝑟𝜺T𝐃𝜺𝑛d𝐴, (41)
7
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where 𝜺𝑛 and 𝜺𝑛 are defined as follows:

𝜺𝑛 = (𝐋𝑎 + 𝑛𝐋𝑏)𝐰𝑛,

𝜺𝑛 = (𝐋𝑎 + 𝑛𝐋𝑏)𝐰𝑛.
(42)

The matrix operators 𝐋𝑎, 𝐋𝑏, 𝐋𝑎 and 𝐋𝑏 are specified in Appendix A.

.3. Virtual work

Although the interaction forces 𝐅 are modelled as point loads at the wheel contact, they can be expressed as a function of the
ircumferential coordinate 𝜃. Therefore, they are defined in terms of the external force distribution 𝐟 , which is equivalent to 𝐅,
pplied along the locus of points with the same radial and axial coordinates as the contact point. This can be written as:

𝐟 (𝜃) = 𝐅
𝛿(𝜃 − 𝜃𝑐 )

𝑟𝑐
, (43)

with 𝛿(𝜃 − 𝜃𝑐 ) being the Dirac delta function. The force distribution 𝐟 =
(

𝑓𝑟 𝑓𝜃 𝑓𝑧
)T can also be decomposed as a Fourier series

with respect to the circumferential direction, which yields the following expressions:

𝑓𝑟 =𝑓𝑟,0 +
∑

𝑛>0

(

𝑓𝑟,𝑛 cos(𝑛𝜃) − 𝑓 𝑟,𝑛 sin(𝑛𝜃)
)

,

𝑓𝜃 = − 𝑓 𝜃,0 +
∑

𝑛>0

(

𝑓𝜃,𝑛 sin(𝑛𝜃) − 𝑓 𝜃,𝑛 cos(𝑛𝜃)
)

,

𝑓𝑧 =𝑓𝑧,0 +
∑

𝑛>0

(

𝑓𝑧,𝑛 cos(𝑛𝜃) − 𝑓 𝑧,𝑛 sin(𝑛𝜃)
)

,

(44)

where the harmonic force coefficients 𝑓𝑟,0, 𝑓𝑧,0, 𝑓 𝜃,0, 𝑓𝑟,𝑛, 𝑓𝜃,𝑛, 𝑓𝑧,𝑛, 𝑓 𝑟,𝑛, 𝑓 𝜃,𝑛 and 𝑓 𝑧,𝑛 are independent of 𝜃 and, considering the
expression in Eq. (43), can be evaluated as follows:

⎛

⎜

⎜

⎝

𝑓𝑟,0
𝑓 𝜃,0
𝑓𝑧,0

⎞

⎟

⎟

⎠

= 1
2𝜋 ∫

𝜋

−𝜋

⎛

⎜

⎜

⎝

𝑓𝑟
−𝑓𝜃
𝑓𝑧

⎞

⎟

⎟

⎠

d𝜃 = 1
2𝜋𝑟𝑐

⎛

⎜

⎜

⎝

𝐹𝑟
−𝐹𝜃
𝐹𝑧

⎞

⎟

⎟

⎠

, 𝑛 = 0,

⎛

⎜

⎜

⎝

𝑓𝑟,𝑛
𝑓 𝜃,𝑛
𝑓𝑧,𝑛

⎞

⎟

⎟

⎠

= 1
𝜋 ∫

𝜋

−𝜋

⎛

⎜

⎜

⎝

𝑓𝑟
−𝑓𝜃
𝑓𝑧

⎞

⎟

⎟

⎠

cos(𝑛𝜃)d𝜃 = 1
𝜋𝑟𝑐

⎛

⎜

⎜

⎝

𝐹𝑟
−𝐹𝜃
𝐹𝑧

⎞

⎟

⎟

⎠

, 𝑛 > 0,

⎛

⎜

⎜

⎝

𝑓 𝑟,𝑛
𝑓𝜃,𝑛
𝑓 𝑧,𝑛

⎞

⎟

⎟

⎠

= 1
𝜋 ∫

𝜋

−𝜋

⎛

⎜

⎜

⎝

−𝑓𝑟
𝑓𝜃
−𝑓𝑧

⎞

⎟

⎟

⎠

sin(𝑛𝜃)d𝜃 =
⎛

⎜

⎜

⎝

0
0
0

⎞

⎟

⎟

⎠

, 𝑛 > 0.

(45)

As in Section 2, it is assumed for simplicity that 𝜃𝑐 = 0. The virtual work of the load 𝐟 is given by:

𝛿𝑊 = ∫

𝜋

−𝜋
𝛿𝐰T𝐟𝑟𝑐d𝜃. (46)

Introducing the expansion of Eqs. (33) and (44) in Eq. (46) along with the relations in Eq. (45), the virtual work can also be
ecomposed into the contribution associated with each Fourier term as follows:

𝛿𝑊 = 𝛿𝑊0 +
∑

𝑛>0
𝛿𝑊𝑛. (47)

The virtual work for 𝑛 ≥ 0 is given by:

𝛿𝑊𝑛 = 𝛿𝐰T
𝑛𝐅𝑛, 𝑛 ≥ 0, (48)

here the force vector is defined as follows:

𝐅0 =
(

𝐹𝑟 𝐹𝑧 −𝐹𝜃
)T , 𝑛 = 0,

𝐅𝑛 =
(

𝐹𝑟 0 𝐹𝑧 0 −𝐹𝜃 0
)T , 𝑛 > 0.

(49)

.4. Equation of motion

The harmonic amplitudes in Eq. (35) are the unknown DoF to be determined. Considering a FE model of the wheel cross-section,
he following interpolation is proposed in the 𝑒th element for 𝑛 = 0:

𝐰0(𝑟, 𝑧, 𝑡) = 𝐍0(𝑟, 𝑧)w𝑒
0(𝑡), (50)

here 𝐍0 is the shape function matrix defined for 𝑛 = 0. When 𝑝 nodes are considered in the wheel cross-section, this matrix is
iven by:

𝐍 =
[ ]

; 𝐍 = 𝑁 𝐈 , (51)
8
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The vector of harmonic amplitudes of the 𝑒th element w𝑒
0 can be expressed as follows:

w𝑒
0 =

(

w𝑒
1,𝑛=0 ⋯ w𝑒

𝑗,𝑛=0 ⋯ w𝑒
𝑝,𝑛=0

)T
; w𝑒

𝑗,𝑛=0 =
(

𝑤𝑒𝑟,𝑗,𝑛=0 𝑤𝑒𝑧,𝑗,𝑛=0 𝑤𝑒𝜃,𝑗,𝑛=0
)

. (52)

Similar to the three-dimensional model, the Lagrange equations for motion with 𝑛 = 0 are given by:

D
D𝑡

(

𝜕𝐸𝑘,0
𝜕ẇ𝑒

0

)T

−

(

𝜕𝐸𝑘,0
𝜕w𝑒

0

)T

+

(

𝜕𝐸𝑝,0
𝜕w𝑒

0

)T

= 𝐌𝑒
0ẅ

𝑒
0 + 2𝛺𝐕𝑒0ẇ

𝑒
0 +

(

𝐊𝑒
0 +𝛺

2𝐀𝑒0
)

w𝑒
0 −𝛺

2𝐜𝑒0, (53)

rom which the following element matrices are defined:

𝐌𝑒
0 =2𝜋 ∫𝐴𝑒

𝜌𝑟𝐍T
0𝐍0d𝐴,

𝐕𝑒0 =2𝜋 ∫𝐴𝑒
𝜌𝑟𝐍T

0𝐉0𝐍0d𝐴,

𝐊𝑒
0 =2𝜋 ∫𝐴𝑒

𝑟𝐁T
0𝐃𝐁0d𝐴,

𝐀𝑒0 = − 2𝜋 ∫𝐴𝑒
𝜌𝑟𝐍T

0𝐄0𝐍0d𝐴,

𝐜𝑒0 =2𝜋 ∫𝐴𝑒
𝜌𝑟2𝐍T

0 𝐞1d𝐴,

(54)

here 𝐴𝑒 is the area of the 𝑒th element and 𝐁0 = 𝐋0𝐍0. These element matrices can be assembled to obtain the global matrices of
he EoM for 𝑛 = 0. In the same way, the displacement DoF are assembled into the vector w0 and the forces applied at the contact
oint and defined by 𝐅0 in Eq. (49) are assembled into the vector F0. Finally, the EoM are given by:

𝐌0ẅ0(𝑡) + 2𝛺𝐕0ẇ0(𝑡) +
(

𝐊0 +𝛺2𝐀0
)

w0(𝑡) = 𝛺2𝐜0 + F0(𝑡). (55)

As in the 3D approach, the model can be transformed to the frequency domain, in which the EoM are given for 𝜔 > 0 by:
(

−𝜔2𝐌0 + 2i𝜔𝛺𝐕0 +𝐊0 +𝛺2𝐀0
)

w0(𝜔) = F0(𝜔). (56)

The same procedure is carried out for each 𝑛 > 0. In this case, the harmonic amplitudes in the 𝑒th element are interpolated by:

𝐰𝑛(𝑟, 𝑧, 𝑡) = 𝐍𝜂(𝑟, 𝑧)w𝑒
𝑛(𝑡), (57)

here the shape function matrix for 𝑛 > 0 𝐍𝜂 is independent of 𝑛 and is defined as follows:

𝐍𝜂 =
[

𝐍1,𝜂 ⋯ 𝐍𝑗,𝜂 ⋯ 𝐍𝑝,𝜂
]

; 𝐍𝑗,𝜂 = 𝑁𝑗𝐈6×6, (58)

ith 𝐈6×6 being the identity matrix of order 6 × 6. The harmonic amplitude vector in the 𝑒th element is given by:

w𝑒
𝑛 =

(

w𝑒
1,𝑛 ⋯ w𝑒

𝑗,𝑛 ⋯ w𝑒
𝑝,𝑛

)T
; w𝑒

𝑗,𝑛 =
(

𝑤𝑒𝑟,𝑗,𝑛 𝑤𝑒𝜃,𝑗,𝑛 𝑤𝑒𝑧,𝑗,𝑛 𝑤𝑒𝑟,𝑗,𝑛 𝑤𝑒𝜃,𝑗,𝑛 𝑤𝑒𝑧,𝑗,𝑛
)

. (59)

Thus, the Lagrange equations for each 𝑛 greater than zero can be expressed as the following matrix system:

D
D𝑡

( 𝜕𝐸𝑘,𝑛
𝜕ẇ𝑒

𝑛

)T
−
( 𝜕𝐸𝑘,𝑛
𝜕w𝑒

𝑛

)T
+
( 𝜕𝐸𝑝,𝑛
𝜕w𝑒

𝑛

)T
= 𝐌𝑒

𝜂 ẅ
𝑒
𝑛 + 2𝛺𝐕𝑒𝑛ẇ

𝑒
𝑛 +

(

𝐊𝑒
𝑛 +𝛺

2𝐀𝑒𝑛
)

w𝑒
𝑛, (60)

he element matrices being as follows:

𝐌𝑒
𝜂 =𝜋 ∫𝐴𝑒

𝜌𝑟𝐍T
𝜂𝐍𝜂d𝐴,

𝐕𝑒𝑛 =𝜋 ∫𝐴𝑒
𝜌𝑟𝐍T

𝜂 𝐉3𝐍𝜂d𝐴 + 𝑛𝜋 ∫𝐴𝑒
𝜌𝑟𝐍T

𝜂 𝐉2𝐍𝜂d𝐴,

𝐊𝑒
𝑛 =𝜋 ∫𝐴𝑒

𝑟
(

𝐁T
𝑎 + 𝑛𝐁

T
𝑏
)

𝐃
(

𝐁𝑎 + 𝑛𝐁𝑏
)

d𝐴 + 𝜋 ∫𝐴𝑒
𝑟
(

𝐁
T
𝑎 + 𝑛𝐁

T
𝑏

)

𝐃
(

𝐁𝑎 + 𝑛𝐁𝑏
)

d𝐴,

𝐀𝑒𝑛 = − 𝜋 ∫𝐴𝑒
𝜌𝑟𝐍T

𝜂𝐄3𝐍𝜂d𝐴 − 𝑛2𝜋 ∫𝐴𝑒
𝜌𝑟𝐍T

𝜂 (𝐉
T
1 + 𝐉1)𝐍𝜂d𝐴 − 𝑛2𝜋 ∫𝐴𝑒

𝜌𝑟𝐍T
𝜂𝐍𝜂d𝐴,

(61)

where 𝐁𝑎 = 𝐋𝑎𝐍𝜂 , 𝐁𝑏 = 𝐋𝑏𝐍𝜂 , 𝐁𝑎 = 𝐋𝑎𝐍𝜂 and 𝐁𝑏 = 𝐋𝑏𝐍𝜂 . Note that 𝐌𝑒
𝜂 is not dependent on 𝑛 while 𝐕𝑒𝑛, 𝐊𝑒

𝑛 and 𝐀𝑒𝑛 are functions
of 𝑛, which means that they are evaluated for each 𝑛. Nevertheless, matrices 𝐕𝑒𝑛 and 𝐀𝑒𝑛 are expressed as polynomials with constant
(matrix) coefficients multiplying a power of 𝑛 and it is straightforward to express 𝐊𝑒

𝑛 in the same way. Finally, after assembling the
element matrices into global matrices, the displacement harmonic amplitudes into w𝑛 and the contact forces 𝐅𝑛 of Eq. (49) into F𝑛,
the EoM for each 𝑛 greater than zero are given by:

𝐌𝜂 ẅ𝑛(𝑡) + 2𝛺𝐕𝑛ẇ𝑛(𝑡) +
(

𝐊𝑛 +𝛺2𝐀𝑛
)

w𝑛(𝑡) = F𝑛(𝑡). (62)

If the model is transformed to the frequency domain, the EoM can be expressed for 𝜔 > 0 as follows:
( 2 2 )
9

−𝜔 𝐌𝜂 + 2i𝜔𝛺𝐕𝑛 +𝐊𝑛 +𝛺 𝐀𝑛 w𝑛(𝜔) = F𝑛(𝜔). (63)
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4.5. Sound radiation

Considering the expression for the projected squared velocities in Eq. (29), the surface differentials d𝑆𝑧 and d𝑆𝑟 can be expressed
as follows:

d𝑆𝑧 = 𝑟d𝜃d𝑟,
d𝑆𝑟 = 𝑟d𝜃d𝑧.

(64)

The solution of the EoM for a given 𝑛 results in the contribution of the set of vibration modes with 𝑛 nodal diameters to the
wheel response. Thus, for 𝑛 = 0, considering the expressions of Eq. (30), the following relations are established:

𝑣𝑧,0(𝑟, 𝑧, 𝜔) = 𝑤̇𝑧,0(𝑟, 𝑧, 𝜔) + 𝜏̇2(𝜔),

𝑣𝑟,0(𝑟, 𝑧, 𝜔) = 𝑤̇𝑟,0(𝑟, 𝑧, 𝜔),
(65)

here the terms 𝑤̇𝑧,0 and 𝑤̇𝑟,0 are associated with the wheel flexibility and the term 𝜏̇2 with the wheelset RBM. Therefore, the
integral in Eq. (29) can be evaluated analytically over the circumferential direction, yielding the following expressions:

𝑆𝑧⟨𝑣
2
𝑧,0⟩ = 𝜋 ∫𝛤

|𝑤̇𝑧,0 + 𝜏̇2|
2𝑟d𝑟,

𝑆𝑟⟨𝑣
2
𝑟,0⟩ = 𝜋 ∫𝛤

|𝑤̇𝑟,0|
2𝑟d𝑧,

(66)

here 𝛤 is the wheel cross-section boundary. Similarly, for 𝑛 = 1, according to Eq. (31), the following relations are satisfied:

𝑣𝑧,1(𝑟, 𝜃, 𝑧, 𝜔) =
(

𝑤̇𝑧,1(𝑟, 𝑧, 𝜔) − 𝑟𝜓̇1(𝜔)
)

cos(𝜃) −
(

𝑤̇𝑧,1(𝑟, 𝑧, 𝜔) − 𝑟𝜓̇3(𝜔)
)

sin(𝜃),

𝑣𝑟,1(𝑟, 𝜃, 𝑧, 𝜔) =
(

𝑤̇𝑟,1(𝑟, 𝑧, 𝜔) + 𝜏̇3(𝜔) + 𝑧𝜓̇1(𝜔)
)

cos(𝜃) −
(

𝑤̇𝑟,1(𝑟, 𝑧, 𝜔) − 𝜏̇1(𝜔) + 𝑧𝜓̇3(𝜔)
)

sin(𝜃),
(67)

here the terms 𝑤̇𝑧,1 and 𝑤̇𝑟,1 are associated with the wheel flexibility and the rest with the wheelset RBM. Thus, the spatial average
n Eq. (29) can be expressed as follows:

𝑆𝑧⟨𝑣
2
𝑧,1⟩ =

𝜋
2 ∫𝛤

(

|𝑤̇𝑧,1 − 𝑟𝜓̇1|
2 + |𝑤̇𝑧,1 − 𝑟𝜓̇3|

2)
𝑟d𝑟,

𝑆𝑟⟨𝑣
2
𝑟,1⟩ =

𝜋
2 ∫𝛤

(

|𝑤̇𝑟,1 + 𝜏̇3 + 𝑧𝜓̇1|
2 + |𝑤̇𝑟,1 − 𝜏̇1 + 𝑧𝜓̇3|

2)
𝑟d𝑧.

(68)

Finally, for 𝑛 ≥ 2, the expression for the velocities in Eq. (32) can be written as:

𝑣𝑖,𝑛(𝑟, 𝜃, 𝑧, 𝜔) = 𝑤̇𝑖,𝑛(𝑟, 𝑧, 𝜔) cos(𝑛𝜃) − 𝑤̇𝑖,𝑛(𝑟, 𝑧, 𝜔) sin(𝑛𝜃), 𝑖 = 𝑧, 𝑟, 𝑛 ≥ 2, (69)

where the only contributions are from the wheel flexibility. The spatial average in Eq. (29) leads to the following expressions:

𝑆𝑧⟨𝑣
2
𝑧,𝑛⟩ =

𝜋
2 ∫𝛤

(

|𝑤̇𝑧,𝑛|
2 + |𝑤̇𝑧,𝑛|

2)
𝑟d𝑟, 𝑛 ≥ 2,

𝑆𝑟⟨𝑣
2
𝑟,𝑛⟩ =

𝜋
2 ∫𝛤

(

|𝑤̇𝑟,𝑛|
2 + |𝑤̇𝑟,𝑛|

2)
𝑟d𝑧, 𝑛 ≥ 2.

(70)

Introducing Eqs. (66), (68) and (70) into Eq. (28), the sound radiation of a rotating wheel can be evaluated numerically in a
wo-dimensional frame.

. Results

The model proposed in Section 4 is compared with the three-dimensional formulation presented in Section 3. Results are shown
n terms of modal properties, frequency response functions (FRF), contact forces due to the wheel–rail interaction and sound power
evels (SWL). For comparison, the FRF and SWL are also computed with the commercial package Ansys [18]; in this, the one-way FSI
roblem is solved (it is assumed that the air acoustic pressure does not to influence the wheel dynamics). Finally, the computational
erformance of the presented model, in terms of efficiency, is evaluated and benchmarked against the three-dimensional approach.

In this work, a railway wheel with straight web, a diameter of 900 mm and a mass of 345 kg is employed. Three-dimensional
nd cross-section two-dimensional FE meshes of this wheel are shown in Fig. 2, which are employed in the subsequent calculations.
uadratic elements are used in both approaches, considering 683 nodes in the two-dimensional FE discretization and 122628 nodes

n the three-dimensional one, the latter having 132 elements around the circumferential direction. Note that, out of the 683 nodes
n the 2D discretization, 246 are placed at the corners of the quadratic elements, so the number of nodes in the 3D FE model can
e obtained as 132 ⋅ (683+246) = 122628. The wheel is constrained at the inner edge of the hub and, additionally, the wheelset RBM
s superimposed on the response of the wheel according to the developments in Section 2. The wheelset has a mass of 1005 kg and

2 2
10

oments of inertia of 88 kg m and 580 kg m about the axial and radial axes, respectively.
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m

Fig. 2. Three-dimensional (left) and cross-section two-dimensional (right) FE meshes of the railway wheel.

Fig. 3. Campbell diagram of the rotating wheel. Axial modeshapes are denoted as (𝑛,𝑚) while radial and circumferential modeshapes as (𝑛,R) and (𝑛,C),
respectively. : Three-dimensional model; : Axisymmetric approach.

5.1. Modal properties

Natural frequencies of the rotating wheel in the non-rotating frame are evaluated for different vehicle speeds. The results of
the three-dimensional and axisymmetric models are presented for some modes in a Campbell diagram in Fig. 3. The maximum
difference found between the two approaches is 0.44 Hz for a natural frequency of 6580 Hz, which represents a relative difference
of 0.007%. Using the notation of Thompson [17], for the axial modes both the number of nodal diameters 𝑛 and nodal circles 𝑚 of
each modeshape are given in the format (𝑛,𝑚) at the left of the lines. Regarding the radial and circumferential modes, since all the

odeshapes presented in the Campbell diagram have 𝑚 = 0, they are defined as (𝑛,R) and (𝑛,C), respectively.

5.2. Vibroacoustics

The wheel FRF at the contact point is evaluated through the three-dimensional and axisymmetric models for a vehicle speed
of 80 km/h and the results are depicted in Fig. 4. As can be seen, there is no noticeable difference between the curves associated
with the approaches presented in this work. A modal base formed by the vibration modes up to 12 kHz of the non-rotating wheel
is considered for solving the EoM. Damping is included in the models using the empirical relation proposed by Thompson [17], in

−3
11

which the modal damping ratio 𝜉 is related to the number of nodal diameters of the vibration mode, namely, 𝜉 = 10 for 𝑛 = 0,
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Fig. 4. Mobilities at the wheel contact point for a vehicle speed of 80 km/h. (a): direct axial/axial; (b): cross axial/radial; (c): direct radial/radial. :
Three-dimensional model; : Axisymmetric approach.
12
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𝜉

Fig. 5. Mobilities at the rail contact point. : direct lateral/lateral; : direct vertical/vertical.

Table 1
Properties of the track model used in the wheel–rail
interaction.

Rail pad stiffnessa (MN/m2) 1200 ∣ 90
Rail pad damping loss factor (–) 0.375
Sleeper massb (kg/m) 205
Ballast stiffnessa (MN/m2) 120 ∣ 60
Ballast damping loss factor (–) 1.5

aPer unit length. Format: Vertical direction ∣ Lateral
direction.
bPer unit length. Corresponding to half sleeper.

= 10−2 for 𝑛 = 1 and 𝜉 = 10−4 for 𝑛 ≥ 2. Also, the wheelset RBM contribution to the FRF is included in both methodologies. An
adaptative frequency spacing is adopted based on the gradient of the contact receptances; the minimum resolution is 0.2 Hz and
about 4000 different frequencies are evaluated.

The interaction forces due to the roughness present on the wheel and rail running surfaces are also evaluated for the radial and
axial directions. In this work, the contact model proposed by Thompson [17,23] is used, in which the interaction forces are computed
from the wheel and rail combined roughness by means of an operation involving the wheel and rail point receptances as well as
the contact receptances. To do this, a continuous track model formed by a UIC60 rail profile supported by a spring–mass–spring
system representing the rail pad, sleeper and ballast set is considered. The rail is modelled using periodic structure theory [24], the
properties of the track are given in Table 1 and the FRF at the rail contact point are presented in Fig. 5; the cross lateral/vertical
mobility is considered to be null. For the interaction problem, a vertical static load of 50 kN per wheel is considered, which has
influence on the contact receptances. The wheel–rail interaction forces for a vehicle speed of 80 km/h and a unit roughness input
at each frequency are presented in Fig. 6. As can be noted, both approaches predict practically the same forces at the contact.

Finally, the sound power radiated by the rotating wheel at a vehicle speed of 80 km/h is calculated. To do this, the roughness
spectrum for cast iron brake blocks defined by the standard EN13979-1 [25] is introduced in the model through the procedure
described by the aforementioned standard. Also, the contact filter proposed by Thompson [17] is included in the SWL computation.
This is dependent on the vehicle velocity and the size of the contact area; in the contact model employed, the latter is a function
of the vertical static load (50 kN) as well as the wheel and rail material properties and curvature radii in the contact points. The
sound power levels, presented in one-third octave bands as A-weighted spectra [26], are shown in Fig. 7. Results without and with
the wheelset RBM contribution to the wheel vibration are given. This contribution mainly increases the sound radiation below
about 1 kHz, while in the high frequency range there is no significant influence. Considering the wheelset RBM, the maximum
difference found in one-third octave band level between the three-dimensional and axisymmetric approaches is 0.05 dB(A). Note
that the proposed methodology does not consider the flexible motion of the axle, which might influence the wheel SWL in the
low and medium frequency range, where the acoustic energy radiated by the wheel is lower than in higher frequencies. Modelling
this flexible motion could increase the complexity and computational effort of the models presented here and therefore it is not
considered in this work.

For comparison purposes, the flexible wheel is also modelled in the commercial package Ansys [18]. This software implements
the dynamic rotation model proposed by Geradin and Kill [10] for an inertial frame, in which a system of reference associated with
local deformations is employed to describe the displacements and to formulate the equation of motion of a flexible rotating body.
The rotation axis (axial direction) is the out-of-plane axis and the other two (longitudinal and vertical directions) are the in-plane
axes. The local reference system is related to the inertial one by rotations about the two in-plane axes of the rotating body whereas
13
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Fig. 6. Contact forces for a vehicle speed of 80 km/h and a unit roughness input. (a): axial; (b): radial. : Three-dimensional model; : Axisymmetric
approach.

Fig. 7. SWL of the rotating wheel for a vehicle speed of 80 km/h. Lines include the wheelset RBM contribution while markers do not. and :
Three-dimensional model; and : Axisymmetric approach.
14
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the rotation in the out-of-plane axis is only due to the rigid body spinning, so the torsional behaviour is not described by the model.
The two rotations of the inertial system are assumed to be infinitesimal and so they are approximated by the first two terms of the
Taylor expansion. This leads to the Eulerian and Lagrangian descriptions of in-plane coordinates being equivalent.

The 3D railway wheel is modelled in Ansys using the FEM (same mesh as in Fig. 2); then the rotation is included in the model
nd the receptances of the wheel at the contact point are evaluated for a given set of frequencies. These receptances are exported
nd used to solve the interaction forces through an in-house code. Subsequently, the computed forces are imported into Ansys and
pplied to the wheel contact point, allowing the wheel response to be calculated. Once the dynamics of the rotating wheel is solved,
he wave equation for the surrounding air within a sphere of radius 1.55 m [18] is also modelled with the FEM considering the
coustic pressure as DoF; the FE model has 891317 nodes in the fluid region. The velocity on the wheel surface is prescribed as

an acoustic boundary condition and, at the external surface of the fluid sphere, the Ansys Radiation Boundary condition is applied,
which approximates the volume under consideration to infinity [18]. A comparison of the FRF and SWL delivered by this software
with results from the vibroacoustic models proposed in this work is shown in Figs. 8 and 9, respectively. For this comparison, the
wheelset RBM is not included in the models. Regarding the mobilities, the discrepancies are mainly found in the position of the
two resonance peaks associated with natural frequencies of the wheel for 𝑛 > 0, while the amplitudes are similar. In relation to
the SWL, which is presented in one-third octave bands, there is a good agreement in most of the frequency range considered, the
discrepancies being higher for lower frequencies. The main differences in the results between the proposed models and Ansys can
be due to:

• The inclusion of the wheel rotation: Ansys implements the model developed by Geradin and Kill [10], briefly explained above.
• The methodology to solve the sound radiation: Ansys solves the one-way FSI problem whereas the proposed methodologies

implement the acoustic model developed by Thompson [16]. This makes use of approximate expressions for radiation ratios,
which are mostly influential in the low and medium frequency range, where the highest discrepancies are found in Fig. 9.
Nevertheless, the energy contained in this frequency range is negligible compared with higher frequencies.

By adding the energy in each one-third octave frequency band, an overall SWL of 91.2 dB(A) is obtained by both the three-
dimensional and axisymmetric approaches while 91.4 dB(A) is predicted by Ansys. It is also worth noting that the SWL given by
the proposed models in Figs. 7 and 9 contain certain differences. The following reasons can be highlighted for this:

• As mentioned above, for simplicity, the wheelset RBM contribution to the flexible wheel motion is not included in the
comparison with Ansys (Fig. 9), which introduces some differences in the low frequency range (see Fig. 7).

• Given the high computational cost associated with the acoustic calculation in Ansys, about 2250 different frequencies are
evaluated in producing Fig. 9 with a minimum resolution of 1 Hz. As explained at the beginning of this Section, about 4000
frequencies with a minimum resolution of 0.2 Hz are considered in Fig. 7.

• When including rotation in Ansys, it is not possible to solve the wheel dynamics using a modal approach and the direct method
is employed by inverting the EoM formulated in physical coordinates. Thus, the modal damping defined at the beginning of
this Section, and considered in Fig. 7, cannot be included in the model in Ansys. Instead, a proportional damping with a mass
multiplier of 19.9 and a stiffness multiplier of 1.24 ⋅ 10−8 is considered to compute the three curves in Fig. 9. The matrix
multipliers have been tuned to produce modal damping values as similar as possible to those used in Fig. 7.

• As stated in the previous paragraph, the solution of the EoM in Ansys is performed by the direct method. In the proposed
methodologies, a modal approach is adopted, considering as modal basis the vibration modes with natural frequencies below
12 kHz. The difference between the proposed methodologies and Ansys corresponds to the contribution of higher order modes,
which can be assumed constant in the frequency range studied (up to 6 kHz) [27]. Therefore, this contribution can be evaluated
as the difference between the direct static solution (inversion of the stiffness matrix) and the solution for zero frequency using
the modal approach. In Fig. 9, in order to minimize the differences with Ansys, the aforementioned contribution is added to
the dynamic solution of the modal approach, but it has not been included in Fig. 7.

The previous four reasons also explain the differences between Figs. 4 and 8 regarding the results given by the proposed models.
t is worth noting that the methodology proposed in this work, which leads to Figs. 4 and 7, is the more physically correct.

.3. Computational performance

The methodology used in the axisymmetric approach presented consists of solving the circumferential direction analytically
nd the other two dimensions numerically. This procedure, as opposed to the full three-dimensional methodology, suppresses
he discretization error associated with the FEM in the circumferential direction. When using FE meshes with a sufficiently large
umber of nodes, the results obtained from the two models are indistinguishable. Nevertheless, the performance of the axisymmetric
pproach model is far superior in terms of computational effort.

To evaluate the computational performance, the SWL results from different FE meshes are compared with those from a highly
efined three-dimensional FE mesh with 358592 nodes, which is consider as the reference case. Both the computational time required
or the calculation of each FE mesh and the discrepancy with respect to the reference case are determined. The discrepancy for the
th FE mesh is defined as the average of the absolute difference in decibels for each one-third octave frequency band between
he SWL for the 𝑖th case and the reference one. The same frequency resolution technique as explained in Section 5.2 is used in
his analysis. In Fig. 10(a) the relation between the discrepancy and computational calculation time from both models is shown
15
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Fig. 8. Comparison of the mobilities at the wheel contact point for a vehicle speed of 80 km/h. (a): direct axial/axial; (b): cross axial/radial; (c): direct
radial/radial. : Three-dimensional model; : Axisymmetric approach; : Ansys.

for each FE mesh (circle markers) and, in particular, for the meshes employed in the previous results (cross markers). Also, a
regression line which fits the results is proposed. This allows the ratio to be evaluated between the computational time of the
three-dimensional and axisymmetric approaches for a given discrepancy, which is shown in Fig. 10(b). The axisymmetric approach
is, for small discrepancies, approximately three orders of magnitude more efficient than the three-dimensional one, which makes
the former suitable for implementation in optimization algorithms or SWL minimization routines. The numerical simulations are

®

16

carried out in a PC running with an Intel i7-9700 processor with 64 GB RAM. Regarding the calculations performed in Ansys, for
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Fig. 9. SWL comparison of the rotating wheel for a vehicle speed of 80 km/h. : Three-dimensional model; : Axisymmetric approach; : Ansys.

Fig. 10. (a): Discrepancy in the SWL results for the different FE meshes (markers), including the two used in the previous results (cross markers), and regression
dashed lines) for the three-dimensional (grey) and axisymmetric (black) models; (b): Discrepancy as a function of the ratio between the computational time
rom the three-dimensional and axisymmetric models.

250 different frequencies a total time of approximately 11.5 days is required, which represents a computational cost five orders of
agnitude higher than that of the axisymmetric approach .

. Conclusions

A model of an axisymmetric rotating and flexible railway wheel is proposed which allows a solution in a two-dimensional frame
or both the dynamic response and the sound radiation of the wheel due to its interaction with the rail. The wheelset RBM is
escribed through an analytical model and it is superimposed on the wheel vibration, which is constrained at the inner edge of the
ub. The proposed models are specifically aimed at describing the vibroacoustic behaviour of a railway wheel, but in general they
re valid for any rotating system provided that axisymmetry exists.

First, a three-dimensional vibroacoustic model of the rotating flexible wheel, numerically addressed through the FEM, is
resented. The response of the wheel around the circumferential direction is then expanded using Fourier series, which allows
he dynamic and acoustic fields to be solved analytically in that direction. The other two directions, associated with the wheel
ross-section, are solved numerically. Finally, the rigid wheelset motion, which is solved analytically, is superimposed on the flexible
heel motion; this mainly modifies the wheel response in the low frequency range. Further development of this model could consider

he flexible motion of the axle which is subject for future study.
17
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The results from the proposed axisymmetric model are compared with the three-dimensional methodology in terms of modal,
ynamic and acoustic behaviour, obtaining virtually identical solutions. In addition, the SWL predicted from both aforementioned
ethodologies are compared with those from the commercial package Ansys and similar results are obtained although some
iscrepancies, mainly in the low frequency range, are noted. However, in overall terms, a difference of only 0.2 dB(A) is found.

The axisymmetric approach presented suppresses the discretization error associated with the FEM in the circumferential direction,
herefore leading to similar results to the three-dimensional model when considering highly refined FE meshes. However, for
hese meshes, the computational time required by the proposed axisymmetric model to solve the sound radiation of the wheel
s approximately 1000 times less than with the three-dimensional methodology.
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Appendix A. Matrices and matrix operators

A.1. Matrices

𝐊1 =
⎡

⎢

⎢

⎣

0 0 −1
0 0 0
1 0 0

⎤

⎥

⎥

⎦

, 𝐊2 =

⎡

⎢

⎢

⎢

⎣

1
2 0 0
0 1 0
0 0 1

2

⎤

⎥

⎥

⎥

⎦

. (A.1)

𝐉 =
⎡

⎢

⎢

⎣

0 −1 0
1 0 0
0 0 0

⎤

⎥

⎥

⎦

, 𝐄 = 𝐉T𝐉 =
⎡

⎢

⎢

⎣

1 0 0
0 1 0
0 0 0

⎤

⎥

⎥

⎦

. (A.2)

𝐃 = 𝜆
(1 + 𝜈)(1 − 2𝜈)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 − 𝜈 𝜈 𝜈 0 0 0

𝜈 1 − 𝜈 𝜈 0 0 0

𝜈 𝜈 1 − 𝜈 0 0 0

0 0 0 1−2𝜈
2 0 0

0 0 0 0 1−2𝜈
2 0

0 0 0 0 0 1−2𝜈
2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (A.3)

with 𝜆 being the Young’s modulus and 𝜈 the Poisson’s ratio.

𝐉0 =
⎡

⎢

⎢

0 0 1
0 0 0

⎤

⎥

⎥

, 𝐄0 = 𝐉T
0𝐉0 =

⎡

⎢

⎢

1 0 0
0 0 0

⎤

⎥

⎥

. (A.4)
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𝐉1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐉2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1
1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐉3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐄3 = 𝐉T
3𝐉3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(A.5)

A.2. Matrix operators

𝐋 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕
𝜕𝑟 0 0
1
𝑟

1
𝑟
𝜕
𝜕𝜃 0

0 0 𝜕
𝜕𝑧

𝜕
𝜕𝑧 0 𝜕

𝜕𝑟
1
𝑟
𝜕
𝜕𝜃

𝜕
𝜕𝑟 −

1
𝑟 0

0 𝜕
𝜕𝑧

1
𝑟
𝜕
𝜕𝜃

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (A.6)

𝐋0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕
𝜕𝑟 0 0
1
𝑟 0 0

0 𝜕
𝜕𝑧 0

𝜕
𝜕𝑧

𝜕
𝜕𝑟 0

0 0 𝜕
𝜕𝑟 −

1
𝑟

0 0 𝜕
𝜕𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (A.7)

𝐋𝑎 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕
𝜕𝑟 0 0 0 0 0
1
𝑟 0 0 0 0 0

0 0 𝜕
𝜕𝑧 0 0 0

𝜕
𝜕𝑧 0 𝜕

𝜕𝑟 0 0 0

0 𝜕
𝜕𝑟 −

1
𝑟 0 0 0 0

0 𝜕
𝜕𝑧 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐋𝑏 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0

0 1
𝑟 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

− 1
𝑟 0 0 0 0 0

0 0 − 1
𝑟 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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𝐋𝑎 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 𝜕
𝜕𝑟 0 0

0 0 0 1
𝑟 0 0

0 0 0 0 0 𝜕
𝜕𝑧

0 0 0 𝜕
𝜕𝑧 0 𝜕

𝜕𝑟

0 0 0 0 𝜕
𝜕𝑟 −

1
𝑟 0

0 0 0 0 𝜕
𝜕𝑧 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐋𝑏 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0

0 0 0 0 − 1
𝑟 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1
𝑟 0 0

0 0 0 0 0 1
𝑟

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(A.8)
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Appendix B. Kinetic and strain energy integration

In this appendix the analytical integration in the circumferential direction of the kinetic energy in Eq. (18) and strain energy in
q. (19) is detailed. To compute the integrals, considering 𝑛, 𝑙 ∈ Z, the following relations are used:

∫

𝜋

−𝜋
sin(𝑛𝜃) sin(𝑙𝜃)d𝜃 =

{

𝜋, if 𝑛 = 𝑙 ≠ 0.
0, if 𝑛 ≠ 𝑙 or 𝑛 = 𝑙 = 0.

∫

𝜋

−𝜋
cos(𝑛𝜃) cos(𝑙𝜃)d𝜃 =

⎧

⎪

⎨

⎪

⎩

𝜋, if 𝑛 = 𝑙 ≠ 0.
0, if 𝑛 ≠ 𝑙.
2𝜋, if 𝑛 = 𝑙 = 0.

∫

𝜋

−𝜋
sin(𝑛𝜃) cos(𝑙𝜃)d𝜃 =0, ∀𝑛, 𝑙.

(B.1)

Bearing in mind that d𝑉 = 𝑟d𝜃d𝐴 and decomposing the kinetic energy into its ten terms, the result of the aforementioned
ntegration is given by:

𝐸(1)
𝑘 = 1

2
𝛺2

∫𝑉
𝜌𝑟2d𝑉 = 𝜋𝛺2

∫𝐴
𝜌𝑟3d𝐴, (B.2a)

𝐸(2)
𝑘 = 1

2 ∫𝑉
𝜌𝐰̇T𝐰̇d𝑉 = 𝜋 ∫𝐴

𝜌𝑟𝐰̇T
0 𝐰̇0d𝐴 +

∑

𝑛>0

(

𝜋
2 ∫𝐴

𝜌𝑟𝐰̇T
𝑛 𝐰̇𝑛d𝐴

)

, (B.2b)

𝐸(3)
𝑘 = 1

2
𝛺2

∫𝑉
𝜌 𝜕𝐰

T

𝜕𝜃
𝜕𝐰
𝜕𝜃

d𝑉 =
∑

𝑛>0

(

𝜋
2
𝛺2

∫𝐴
𝜌𝑟𝑛2𝐰T

𝑛𝐰𝑛d𝐴
)

, (B.2c)

𝐸(4)
𝑘 = 𝛺2

∫𝑉
𝜌 𝜕𝐰

T

𝜕𝜃
𝐉𝐰d𝑉 =

∑

𝑛>0

(

2𝜋𝛺2
∫𝐴

𝜌𝑟𝑛𝐰T
𝑛𝐉1𝐰𝑛d𝐴

)

, (B.2d)

𝐸(5)
𝑘 = 𝛺 ∫𝑉

𝜌𝑟𝐞2
T𝐰̇d𝑉 = −2𝜋𝛺 ∫𝐴

𝜌𝑟2𝐞3
T𝐰̇0d𝐴, (B.2e)

𝐸(6)
𝑘 = 𝛺2

∫𝑉
𝜌𝑟𝐞2

T 𝜕𝐰
𝜕𝜃

d𝑉 = 0, (B.2f)

𝐸(7)
𝑘 = 𝛺2

∫𝑉
𝜌𝑟𝐞2

T𝐉𝐰d𝑉 = 2𝜋𝛺2
∫𝐴

𝜌𝑟2𝐞1
T𝐰0d𝐴, (B.2g)

𝐸(8)
𝑘 = 𝛺 ∫𝑉

𝜌𝐰̇T 𝜕𝐰
𝜕𝜃

d𝑉 =
∑

𝑛>0

(

𝜋𝛺 ∫𝐴
𝜌𝑟𝑛𝐰̇T

𝑛𝐉2𝐰𝑛d𝐴
)

, (B.2h)

𝐸(9)
𝑘 = 𝛺 ∫𝑉

𝜌𝐰̇T𝐉𝐰d𝑉 = 2𝜋𝛺 ∫𝐴
𝜌𝑟𝐰̇T

0𝐉0𝐰0d𝐴 +
∑

𝑛>0

(

𝜋𝛺 ∫𝐴
𝜌𝑟𝐰̇T

𝑛𝐉3𝐰𝑛d𝐴
)

, (B.2i)

𝐸(10)
𝑘 = 1

2
𝛺2

∫𝑉
𝜌𝐰T𝐄𝐰d𝑉 = 𝜋𝛺2

∫𝐴
𝜌𝑟𝐰T

0𝐄0𝐰0d𝐴 +
∑

𝑛>0

(

𝜋
2
𝛺2

∫𝐴
𝜌𝑟𝐰T

𝑛𝐄3𝐰𝑛d𝐴
)

. (B.2j)

Similarly, considering the strain energy, the following expression is computed:

𝐸𝑝 =
1
2 ∫𝑉

𝜺T𝐃𝜺d𝑉 = 𝜋 ∫𝐴
𝑟𝜺T

0𝐃𝜺0d𝐴 +
∑

𝑛>0

(

𝜋
2 ∫𝐴

𝑟𝜺T
𝑛𝐃𝜺𝑛d𝐴 + 𝜋

2 ∫𝐴
𝑟𝜺T
𝑛𝐃𝜺𝑛d𝐴

)

. (B.3)
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