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Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous disorder with a high degree of psychiatric and physical
comorbidity, which complicates its diagnosis in childhood and adolescence. We analyzed registry data from 238,696 persons born
and living in Sweden between 1995 and 1999. Several machine learning techniques were used to assess the ability of registry data
to inform the diagnosis of ADHD in childhood and adolescence: logistic regression, random Forest, gradient boosting, XGBoost,
penalized logistic regression, deep neural network (DNN), and ensemble models. The best fitting model was the DNN, achieving an
area under the receiver operating characteristic curve of 0.75, 95% CI (0.74–0.76) and balanced accuracy of 0.69. At the 0.45
probability threshold, sensitivity was 71.66% and specificity was 65.0%. There was an overall agreement in the feature importance
among all models (τ > .5). The top 5 features contributing to classification were having a parent with criminal convictions, male sex,
having a relative with ADHD, number of academic subjects failed, and speech/learning disabilities. A DNN model predicting
childhood and adolescent ADHD trained exclusively on Swedish register data achieved good discrimination. If replicated and
validated in an external sample, and proven to be cost-effective, this model could be used to alert clinicians to individuals who
ought to be screened for ADHD and to aid clinicians’ decision-making with the goal of decreasing misdiagnoses. Further research is
needed to validate results in different populations and to incorporate new predictors.

Molecular Psychiatry (2023) 28:1232–1239; https://doi.org/10.1038/s41380-022-01918-8

INTRODUCTION
Attention-deficit/hyperactivity disorder (ADHD) is a heteroge-
neous neurodevelopmental disorder characterized by impairing
levels of inattention, hyperactivity/impulsivity, or both, with an
estimated worldwide prevalence of 5–10% in children and 2–5%
in adults [1]. The disorder, which frequently co-occurs with other
psychiatric and medical conditions [2–6], among others, leads to
economic and interpersonal problems, academic impairments,
delinquency, and injuries [4, 7–10] that are associated with a
significant individual and healthcare burden [11]. An extensive
body of work shows that pharmacologic treatment for ADHD
protects against a wide range of adverse outcomes [10] (e.g.,
injuries and accidents, criminality, substance use disorders,
suicide, and traumatic brain injury), at least in the short term.
The substantial heterogeneity and comorbidity of ADHD pose

diagnostic challenges for clinicians and can lead to either missed
or false positive diagnoses [12, 13]. Missed diagnoses expose
patients to the adverse outcomes of the disorder; false positive
diagnoses expose patients to improper treatments and their side
effects. Delays in correct diagnosis and treatment ultimately

engender increased healthcare use, potentially driven by the
deterioration of other co-occurrent psychiatric and somatic
conditions [11, 14]. Others have sought to address misclassifica-
tion using objective measures such as genetics [15], blood
biomarkers [16], rating scales [17], eye vergence [18], fMRI, EEG,
and MRI to classify individuals with and without ADHD [19–22].
This work has not yet led to a method that is routinely used in
clinical practice.
Although traditional statistical methods can assess predictive

accuracy, they cannot deal with complex non-linear relationships,
especially when many predictive features interact with one
another to predict outcomes. In contrast, machine learning can
handle such complex problems if a sufficiently large sample is
available [23]. Although machine learning has been applied to
objective data, such applications are limited due to the expense of
objective data which limits sample size. Moreover, these small
samples sizes are at risk for overestimating accuracy when
machine learning methods are not correctly applied [21, 24, 25].
A convenient alternative to testing is the use of register-based
data. This approach has previously been used for different

Received: 2 August 2022 Revised: 5 December 2022 Accepted: 9 December 2022
Published online: 19 December 2022

1School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden. 2Department of Medical Epidemiology and Biostatistics, Karolinska Institutet,
Stockholm, Sweden. 3Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA. 4School of Psychology, University of
Southampton, Southampton, UK. 5Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK. 6Solent NHS Trust,
Southampton, UK. 7Hassenfeld Children’s Hospital at NYU Langone, New York University Child Study Center, New York City, New York, NY, USA. 8Division of Psychiatry and
Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK. ✉email: miguel.garcia-argibay@oru.se

www.nature.com/mp Molecular Psychiatry

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-022-01918-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-022-01918-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-022-01918-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-022-01918-8&domain=pdf
http://orcid.org/0000-0002-4811-2330
http://orcid.org/0000-0002-4811-2330
http://orcid.org/0000-0002-4811-2330
http://orcid.org/0000-0002-4811-2330
http://orcid.org/0000-0002-4811-2330
http://orcid.org/0000-0003-3037-5287
http://orcid.org/0000-0003-3037-5287
http://orcid.org/0000-0003-3037-5287
http://orcid.org/0000-0003-3037-5287
http://orcid.org/0000-0003-3037-5287
http://orcid.org/0000-0002-6851-3297
http://orcid.org/0000-0002-6851-3297
http://orcid.org/0000-0002-6851-3297
http://orcid.org/0000-0002-6851-3297
http://orcid.org/0000-0002-6851-3297
https://doi.org/10.1038/s41380-022-01918-8
mailto:miguel.garcia-argibay@oru.se
www.nature.com/mp


outcomes with good discrimination results [26, 27]. It has two
main advantages: large samples are available for model estimation
and, when models are implemented, there are no costs for
collecting data for clinical implementation. Nevertheless, to date
there are no studies that applied machine learning techniques to
the classification of ADHD using socio-demographic and clinical
features from population-based registry data.
In this paper, we aimed to train different machine learning and

deep learning algorithms for classifying childhood and adolescent
ADHD to 1) aid clinicians’ decision-making in terms of diagnosis,
and 2) offer a model for risk stratification and clinical referral of
high-risk individuals. All models used Swedish population registry
data including variables such as perinatal risk factors, medical and
psychiatric comorbidities for the individual and the relatives,
criminal convictions for the individual or the biological parents.

MATERIALS AND METHODS
Study population
This population-based study used several Swedish registers: the total
population register, the medical birth register, the prescribed drug register
(PDR), the national patient register (NPR), the multi-generation register, and
the national crime register. The total population register includes
demographic information for all individuals with permanent residence in
Sweden [28]. The medical birth register is a nationwide register with a 99%
coverage that contains obstetric information of all deliveries in Sweden [29].
The PDR includes complete information on all dispensed drugs in Sweden
from 2005 onwards. The NPR includes medical records from inpatient and
outpatient visits since 1973 and 2001, respectively. The multi-generation
register consists of family information for all individuals residing in Sweden,
and lastly, the national crime register contains all criminal offenses in
Sweden for all individuals from the age of criminal responsibility (i.e., 15
years) or older. Our cohort comprised 238,696 individuals born and living in
Sweden between 1995 and 1999 with information on their biological
parents and who did not emigrate or die before 2013.

Outcome
Individuals with ADHD were identified based on either the presence of a
diagnosis in the NPR (including inpatient and outpatient care services)
from age 3 onwards using the International Classification of Diseases (ICD)
version 9 code 314, ICD10-code F90 or a recorded prescription of any
ADHD medications (Anatomical Therapeutic Chemical [ATC] codes
N06BA04, N06BA01, N06BA02, N06BA09, and N06BA12) from the PDR.
The outcome variable was dichotomized indicating presence or absence of
an ADHD diagnosis (1/0) at any point between 1995 and 2013.

Features
In order to predict childhood and adolescent ADHD, we considered a set of
well-stablished predictors [3, 30–32] based on the availability and quality of
this information in the Swedish national registers. Only features with less
than 10% missingness were included. Other predictors were not selected
because, as recommended in recent guidance [33], we used predictors with
existing evidence from prior research and clinical knowledge, and to reduce
data dimensionality. We dichotomized and included the following
predictors defined as the presence in the NPR of any of the following
psychiatric and somatic disorders (for those with ADHD, all predictors should
be either before or coincident with the diagnosis of ADHD, and for those
without ADHD, it would be prior to age 18): substance use disorder (SUD),
major depressive disorder, anxiety disorder, autism spectrum disorder (ASD),
obesity, intellectual disability, speech/language developmental disorder and
learning disorder, motor and tic disorders, other neurodevelopmental
disorders not specified, eating disorder, gastro-esophageal reflux disease,
asthma, sleep disorder, hypertension, unintentional injuries, traumatic brain
injury, bipolar disorder, allergic rhinitis and allergic conjunctivitis, and
allergic dermatitis. We also included: sex, head circumference and weight at
birth, small size for gestational age, Apgar score, number of failed subjects at
school at age 16 (coded as 0 if the ADHD diagnosis happens before age 16),
and presence of criminal convictions. ICD codes used to define all features
are presented in Supplementary Table S2.
Amongst the predictors related to the biological parents, we included:

Maternal tobacco use during pregnancy, BMI from mother at the first
prenatal visit, pregnancy length, type of delivery (vaginal delivery with or
without assistance, planned caesarian delivery, or intrapartum caesarian
delivery), presence of any criminal convictions of any of the parents. In
terms of parental psychiatric disorders, we included all the following if they
occurred before or during follow up: ADHD, alcohol use disorder (AUD),
SUD, anxiety, eating disorder, depression, bipolar disorder, schizophrenia,
personality disorder. In total, 40 features were selected.

Statistical analysis
For all features, zero-variance and near-zero-variance were checked and
removed. Highly correlated features (≥0.95) were handled by randomly
keeping one of them. Near-zero-variance features were removed to avoid the
possibility for those features to become zero-variance during the data splits or
cross-validation (CV). Next, an initial 80% stratified data split was performed to
be used as the training data. The remaining 20% was used as testing data. For
the deep neural network (DNN), the aforementioned 80% split was further
split to create a hold-out validation/development set comprising 18% of the
training set, and the remaining 82% was used as the training set. As such, all
models were evaluated using the same independent testing set, however, to
alleviate computational burden when using k-fold CV in the training of the
DNN, we used a hold-out validation/development set for hyperparameter
tuning. A flowchart describing the data split strategy is shown in Fig. 1.

Fig. 1 Flowchart of the data split, hyperparameter tuning, and evaluation process. CV cross-validation, ML machine learning, DNN deep
neural network.
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Categorical variables with more than three levels were one-hot encoded and
categorical variables with two levels were used as binary variables (0/1), and
all continuous variables were normalized after the split to avoid information
leakage, fitted in the training set, and applied to the training, validation, and
test sets. Class imbalance of the outcome in the training set was dealt with
using the borderline synthetic minority oversampling technique (SMOTE-1)
[34] using 5 nearest neighbors.
We used several machine learning algorithms: logistic regression,

random forest (RF), gradient boosting (GB), XGBoost, naïve Bayes (NB),
and regularized logistic regression (L1L2) and a DNN. Moreover, a soft-
voting ensemble model combining the best performing models in the CV/
validation set were trained. A soft-voting ensemble model predicts class
membership based on the argmax of the sum of predicted probabilities
from each model. Learning curves were plotted to assess the adequacy of
our sample sizes. For the machine learning algorithms (i.e., all models
except the DNN), hyperparameter optimization was performed using a
stratified 10-fold CV in the training set by a manual grid search. To find the
optimal hyperparameters in the DNN, we used distributed hyperparameter
optimization (hyperopt) [35] with 100 evaluations and Bayesian optimiza-
tion [36] (200 steps of Bayesian optimization and 5 random points to
sample the target function). The model that performed best in the
validation data set —and smallest difference between training and
validation sets— was chosen and then assessed in the test set. Binary
cross-entropy was used as loss function. Supplementary Table S3 shows all
hyperparameters and the search space for each model.
Owing to the class imbalance in the test set, we used the Area Under the

Receiver Operating Characteristic Curve (AUROC) as the evaluation metric
with 95% confidence intervals using a fast implementation of the DeLong
algorithm [37]. The AUC in the test set was used as our final estimate of the
model’s ability to discriminate those with and without ADHD. We included
additional metrics such as balanced accuracy, area under the precision-
recall curve (AUPRC), sensitivity, specificity, positive predicted power (PPP),
and negative predictive value (NPV) using different thresholds. The
precision-recall curve was included because is especially relevant for
interpreting the clinical value of models. It plots positive predictive power
against sensitivity for every threshold on the model’s output probability.
Feature importance was estimated based on mean decrease in impurity
and mean absolute Shapley additive explanations (SHAP) values for the
DNN. The Kendall rank correlation (τb) was calculated between the ranking
of the feature importance to assess the level of agreement between
different methods together with bootstrapped 95% confidence intervals
with 50,000 replications with replacement. SHAP values were used to
explain the predicted probability for ADHD at the individual level to
increase interpretability for the DNN. Furthermore, SHAP scores were used
as an alternative to permutation feature importance to ease the
computational burden. The Guidelines for Reporting Machine Learning
Investigations in Neuropsychiatry (GREMLIN [25]) and Strengthening the
Reporting of Observational studies in Epidemiology (STROBE) guidelines
were followed (see Supplementary). Data management was performed
using SAS software version 9.4 and statistical analyses using Python 3.8.13
(scikit-learn [38] version 1.1.1, imbalanced-learn [39] version 0.9.1, XGBoost
[40] version 1.6.2, and keras [41] version 2.8.0 libraries). Python code and
model weights are available at https://github.com/kmlstyle/ADHD-DNN.
See Supplementary for code usage.

RESULTS
Our cohort comprised 238,696 individuals, of whom 12,893 (5.4%)
had ADHD. For the machine learning algorithms, the training
dataset had 190,956 observations (10,314 [5.4%] with ADHD) and
the testing dataset had 47,740 observations, of which 2579 (5.4%)
had ADHD. For the DNN, the training set contained 156,583
individuals, 34,373 in the validation set, and the testing dataset
47,740 observations, of whom 5.4% had ADHD. As expected, those
with ADHD were more likely to be diagnosed with the majority of
the selected mental disorders and medical conditions (Supple-
mentary Table S1), with the biggest difference in ASD, speech/
language developmental and learning disorders, and chronic
motor or vocal tic disorder. We also found an increased prevalence
of all parental psychiatric and somatic disorders in those with
ADHD (Supplementary Table S1).

Model selection
The number of features was reduced from 40 to 22 based on low
variance or high intercorrelations (see Methods). The logistic
regression model achieved an AUC in the test set of 0.74
(0.73–0.75). After hyperparameter optimization, the RF model
achieved an AUC of 0.68, 95% CI (0.67–0.69) in the test set,
whereas the XGBoost model achieved an AUC of 0.69, 95% CI
(0.68–0.70). Both models displayed signs of overfitting (training set
AUC > 0.92). With a slightly better fit, the GB model and elastic net
logistic regression achieved an AUC of 0.73, 95% CI (0.71–0.74)
and 0.74, 95% CI (0.73–0.75), respectively. The best fitting
model to the data was the DNN that achieved an AUC of 0.75,
95% CI (0.74–0.76) and balanced accuracy of 0.68 in the test set
(Table 1).
The DNN was built with two hidden layers of 10 and 15 units

respectively with a rectified linear activation function and a
dropout layer in between (dropout rate of 0.217). The first hidden
layer included a kernel L1 regularizer with a cost function λ= 1e-3.
The DNN used the Adadelta optimizer (learning rate 7e-3) to train
the model for 200 epochs with a batch size of 40 with the Xavier
normal weight initializer (Glorot). Supplementary Fig. S1 depicts
the learning history with respect to the loss function and AUC. The
good convergence for both metrics between the training and
validation sets does not provide evidence of overfitting. Learning
curves showed a learning plateau on around 260,000 samples.
This pattern indicates that increasing our sample size will not
improve accuracy (see supplementary Fig. S2). Instead, to improve
accuracy we need to add more features or improve the model’s
capacity for learning. Each model computes for each person a
probability of being diagnosed with ADHD. By choosing a
threshold on the output probability, we sort persons into those
predicted to have ADHD and those predicted not to have ADHD.

Table 1. AUC with 95% CI in the training and testing sets for the different trained models.

AUC

Model Training Testing Balanced accuracy AUPRC

Logistic regression 0.819 0.742 (0.732–0.753) 0.673 0.162

Random forest 0.930 0.678 (0.667–0.689) 0.620 0.189

Gradient boosting (GB) 0.874 0.726 (0.715–0.737) 0.663 0.177

XGBoost 0.925 0.688 (0.676–0.699) 0.632 0.209

Naïve Bayes (NB) 0.806 0.710 (0.698–0.721) 0.655 0.179

Logistic regression – L1 and L2 penalty (elasticnet) 0.816 0.745 (0.735–0.755) 0.675 0.179

Deep neural network (DNN) 0.800 0.753 (0.743–0.763) 0.684 0.218

Ensemble (XGB, GB, NB, L1L2) 0.887 0.743 (0.732–0.752) 0.667 0.208

Ensemble (XGB, GB, NB, DNN) 0.898 0.750 (0.739–0.760) 0.671 0.212

AUC Area Under the Receiver Operating Characteristic Curve, AUPRC area under the precision-recall curve.
Bold values represent the best performing model for each metric.
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Supplementary Table S4 presents sensitivity, specificity, PPP, and
NPP at different output probability thresholds, and Fig. 2 presents
the precision-recall and receiver operating characteristic curves.
The precision-recall curve shows that to achieve a sensitivity of
80% one must accept a PPP below 10% (see Fig. 3 for graphical
representation of the model’s performance using two different
thresholds).
The top six most important features were having a relative with

criminal convictions, sex of patient, having a relative with ADHD,
number of academic subjects failed, speech/learning disabilities,
and ASD diagnosis. All models showed high agreement as
depicted by the correlations (τ > 0.5 for all models, except for
the XGB-RF and XGB-DNN comparisons, τ= 0.42 and 0.32,
respectively). The complete list of feature importance for the RF,
GB, XGBoost, and DNN algorithms together with pairwise Kendall’s
τ correlations are shown in Table 2.
SHAP values increase the interpretability of DNNs by

explaining the predicted probability for ADHD of each indivi-
dual. Supplementary Fig. S3 shows three individuals with low,
medium, and high risk for ADHD. The average predicted
probability was 42%. The first individual has a low predicted
risk for ADHD of 11%. The risk is low given that this individual is
female, no records of ADHD, depression, or criminal convictions
for any of the parents, no clinical records of depression, and no
academic subjects failed. In contrast, the second individual is a
male with a parent with criminal convictions that substantially
increases the risk of ADHD. The last individual has been
predicted with a high probability of ADHD due to risk-
increasing features such as ASD, being male, having a relative
with anxiety disorders, allergic rhinitis and allergic conjunctivitis,
and allergic dermatitis (features with SHAP values <0.005 are not
shown).

DISCUSSION
We trained machine-learning algorithms to classify childhood and
adolescent ADHD using registry data. This is the first study
combining Swedish national registry data and machine learning/
deep learning techniques to assess the combined accuracy of 22
predictors, including psychiatric and somatic comorbidities,
criminal convictions, perinatal variables, and parental psychiatric
comorbidities, to predict the onset of ADHD. The best-fitting
model was a DNN. It achieved good discrimination in an
independent test set (AUC= 0.75, 95% CI [0.74–0.76]). The DNN
outperformed all other algorithms in all metrics.
Although the DNN AUC of 0.75 is modest, several considera-

tions suggest that the DNN would be clinically useful. As Ross et al.
[42]. have shown, the clinical utility of a model depends on the
relative costs of using or not using the model in clinical practice.
For our model, deployment costs are limited to the programming
required to implement it in the electronic health record. The only
other implementation cost is the clinical action required when the
model flag a patient as potentially having ADHD. This can be very
low, for example, if the patient or parent is asked to complete a
rating scale for ADHD symptoms and those results are used
determine of a full clinical work up is needed. Not implementing
the model would have high costs due to failure to appropriately
diagnose and treat ADHD (for a summary of cost studies, see
Faraone et al. [3]). Because the model can also alert the clinician
that a patient they think may have ADHD may not have ADHD, it
could avoid the costs associated with over diagnosing ADHD and
may be a useful signal of potential malingering, e.g., by patients
who plan to divert or misuse medications [43].
In practice, the model could be applied by selecting a meaningful

cut point on the model’s predicted probability that an individual has
ADHD. For example, Fig. 2B shows that the PPP increases its rate of

Fig. 2 Performance of the deep neural network (DNN). A ROC curve B Precision-recall plot.

Fig. 3 Depiction of the DNN performance predicting ADHD at two different thresholds. PPP Positive predictive power, NPP Negative
predictive power. The probability threshold was 0.34 (left) and 0.78 (right).
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decline at a sensitivity of 33% and a PPP of 27%. Using that cut
point, our model would correctly identify one third of individuals
with ADHD, and among those predicted to have ADHD, 27% would
have ADHD. In a hypothetical sample of 1 million individuals
(assuming a prevalence of 5.3% for ADHD), our model would detect
17,561 cases out of 54,000, and amongst all individuals predicted to
be at risk for ADHD, 14,618 would have ADHD.
There was a good agreement in the importance of the top

predictors between different models with an average Kendall’s τb
correlation > 0.5. The most important predictors for ADHD were
having a parent with criminal convictions, sex of patient, having a
parent with ADHD, number of academic subjects failed, and
speech/learning disabilities. Previous literature had already
established these relationships [30–32], but these predictors have
rarely been used together for risk prediction models. This
approach showed that all models indicated the importance of
having a parent with criminal convictions, ADHD, and depression,
demonstrating the complex, multifactorial etiology of ADHD, with
an interplay of both genetic and environmental factors in its
pathogenesis. The fact that having a parent with criminal
convictions or depression ranked high suggests the contribution
of environmental risk factors, via epigenetics to ADHD pathophy-
siology. Epigenetics refers to the modification of gene function
and the expression of a phenotype through changes in DNA

methylation and histone modifications without a change in the
underlying DNA sequence. Epigenetics has been suggested to
explain complex mechanisms such as gene–environment interac-
tions that can result in different outcomes due to a similar
genotype but different environmental factors. In our cohort, these
environmental influences caused by a parent with depression or
criminal convictions could have occurred during embryonic
development, early infancy, or adolescence altering the expres-
sion of genes associated with ADHD and, in turn, affecting brain
function with subsequent changes in behavior. Consistent with
this idea, previous research indicated epigenetic modifications
linked to ADHD such as DNA methylation, histone modifications
and expression of noncoding micro RNAs (miRNA) [44–49].
Alternatively, the importance given to both parental criminal
convictions and depression could be driven by the co-occurrence
of ADHD in the parents rather than these two conditions per se,
and thus, indirectly predicting the offspring ADHD due to the high
heritability of the disorder.
Regarding clinical utility, our top features could potentially alert

clinicians for an early assessment using our model. Feature
importance was similar for men and women, with the exception
of head circumference and criminal convictions, which showed a
larger importance in women. Similarly, having depression and a
parent with ADHD displayed a higher importance among men

Table 2. Ranked feature importance for the XGBoost, gradient boosting (GB), random forest (RF), and deep neural network (DNN) models.

Feature XGB GB RF DNNª Average

Criminal conviction of either parent 18 20 19 20 19.3

Sex 15 19 18 21 18.3

ADHD relative 21 15 15 18 17.3

Number of academic subjects failed 9 21 20 19 17.3

Speech/learning disability 20 18 17 10 16.3

Autism disorder 19 16 16 12 15.8

Depression 16 14 13 16 14.8

Depression relative 13 17 14 15 14.8

Head circumference 3 13 21 13 12.5

Alcohol disorder relative 14 12 12 6 11.0

Anxiety 11 11 11 9 10.5

Criminal conviction 10 8 6 17 10.3

Motor/tic disorders 17 10 8 0 8.8

Allergic rhinitis and Allergic conjunctivitis 7 6 5 14 8.0

Asthma relative 8 9 10 4 7.8

Sleep disorders 12 7 4 8 7.8

Anxiety relative 2 5 9 11 6.8

Allergic dermatitis 6 2 3 7 4.5

Substance use disorders relative 0 3 7 5 3.8

Eating disorders 5 4 1 3 3.3

Small size for age 4 1 2 2 2.3

Eating disorders relative 1 0 0 1 0.5

Kendall’s τb XGB GB RF DNN Average

XGB 1 - - - -

GB 0.56*** (0.32–0.76) 1 - - -

RF 0.42** (0.11–0.70) 0.81*** (0.64–0.95) 1 - -

DNN 0.32* (0.02–0.58) 0.55*** (0.30–0.75) 0.52*** (0.27–0.72) 1 -

Average 0.62*** (0.39–0.81) 0.88*** (0.77–0.96) 0.78*** (0.60–0.92) 0.65*** (0.42–0.85) 1

Importance ranging from 0 (less important) to 21 (most important). Confidence intervals based on 50,000 bootstrap replicates. ªRank based on SHAP feature
importance (mean absolute Shapley values).
*p < 0.05, **p < 0.01, ***p < 0.001.
Bold values represent the best performing model for each metric.
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(see Table 3). It is important to note that it is plausible that top
features might have masked the importance of lower-ranked
features that are redundant with higher ranked features. Never-
theless, our model has the potential to facilitate precision medicine
by providing individual-level risk predictions and their unique risk-
relevant features. Of note, one of the top features contributing to
classification was represented by speech/learning disabilities. This
is of relevance as generally practitioners in primary, but also
secondary care, are not familiar with this disorder. This highlights
the need for raising awareness and training on speech/learning
disabilities in primary and secondary care.
With an estimated incremental annual cost of 2476€, individuals

who do not get an ADHD diagnosis until mid-adulthood require
increased healthcare utilization compared to those without ADHD
(2870€ versus 394€) [11], and compared with those who get their
ADHD diagnosis in childhood [14]. This difference stresses the
importance of an early correct diagnosis and treatment for those
with ADHD and points out how current diagnostic methods do
not perform adequately in certain cases. For such cases, applying
our predictive model in Sweden, even with a relatively low PPP,
should ultimately reduce public health costs and shorten
impairments associated with ADHD after treatment initiation.
The net benefit would most likely be positive, as shown in other
prediction interventions with low PPP such as suicide [42]. It is
important to note that this model is not meant to replace well-
validated assessment tools, but to alert clinicians to patients who
ought to be screened for ADHD or to have them do a more
detailed assessment of those who might be malingering.

Amongst the strengths from this paper, we can highlight the
use of a large, nationwide sample and the longitudinal nature of
the study for 18 years. Additionally, in Sweden, ADHD is assessed
at outpatient clinics exclusively by specialist psychiatrists after
clinical somatic and psychiatric evaluation. An external validation
of the diagnoses in the National Inpatient Register showed high
validity with PPPs ranging from 85–95% [50]. Despite these
strengths, our conclusions should be interpreted in light of some
limitations. Due to the computational burden of hyperparameter
search in the DNN when performing k-fold CV with a big sample
size using a CPU, we used an independent validation set for this
purpose. This approach allowed us to reduce computation time
by a factor of k and increase the maximum number of evaluations
in the hyperparameter optimization process by the same k factor.
However, since we used a different validation method for
hyperparameter optimization in the DNN model, comparing its
performance to the other methods should be made with caution.
Given that this was a registry-based study, ADHD diagnoses only
capture clinically referred cases of ADHD. Thus, our model may
not be relevant for cases of ADHD in the population that do not
seek treatment. There are several important predictors of ADHD
that we were not able to include given the unavailability within
the registers, including IQ, reading and arithmetic scores, working
memory, reaction time, risky decision-making [3] that future
studies looking to improve the model performance can incorpo-
rate. Further, given that we used well-stablished predictors, we
were not able to identify predictors than may not have been
studied before. Although our model achieved good results when
testing it with data that the model never saw before (i.e., the
testing set), this does not necessarily imply that it would perform
well in other populations. It is plausible that the magnitude of a
feature that has a higher influence on the model’s performance
may be much greater in one country than another. For instance, it
is possible that a country with a low life expectancy rate or low
income would have less features that are strongly correlated with
ADHD. By the same token, features such as academic perfor-
mance and a criminal conviction of a parent might have a much
lower importance in countries with a high crime rate and low
income. Thus, it is imperative to assess the model’s performance
in samples from another country or health care system and to
perform an evaluation of feature importance. Also, cross-study
variability in feature importance may also reflect biased data
(e.g., underdiagnosis of diagnoses or differential misclassifica-
tion). Our study plan called for only included predictors that had
previously been shown to be related to ADHD. Future work could
use machine learning methods to discover additional features
that might improve model accuracy. Lastly, learning curves
indicated that increasing our sample size will not improve
accuracy, however, including new features or different types of
neural networks could potentially improve the model’s
performance.
In conclusion, in this paper we presented a DNN model for

discriminating childhood and adolescent ADHD using register-
based data. The DNN model presented good discrimination and
could potentially improve decision-making.
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