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Abstract—The Space-Ground Integrated Network (SGIN) con-
cept constitutes a promising solution for providing seamless
global coverage. However, the mobility of satellites and wireless
terminals imposes unprecedented challenges on the location
management in SGIN. We tackle this challenge by conceiving a
split identifier (ID) and Network Address (NA) based design for
providing natural mobility support, and characterize the ID-NA
mapping allocation problem by exploiting the storage capacity
of both Geostationary Earth Orbit Satellites (GEOSs) and Low
Earth Orbiting Satellites (LEOSs) to form a spatially distributed
binding resolution system and optimize the caching reward in
each LEOS. By considering the large quantity of ID-NA mapping
and the sparsity of popular mapping having positive mean
caching rewards, we formulate the mapping allocation problem
as a sparse Multi-Armed Bandit (MAB) learning procedure,
where the mappings are treated as the arms and the LEOSs
act as the players. A distributed learning algorithm, namely the
Sparse Upper confidence bound based Learning aided Caching
algorithm (SULC), is proposed for estimating the mean caching
rewards of mappings and selecting the optimal mappings for
caching. Moreover, we derive a sub-linear upper bound of the
cumulative learning regret to prove the learning efficiency of the
proposed SULC. Extensive simulations have been conducted to
show that the proposed SULC can quickly identify the popular
mappings and provide near-optimal content hit rates. In contrast
with the existing solutions, SULC has higher caching rewards and
can significantly reduce the cumulative regret after a short period
of learning.
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management, Reinforcement learning.
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I. INTRODUCTION

The terrestrial networks have been developed to cope with
the explosive growth of data traffic generated by smart devices
including smart vehicles, Unmanned Aerial Vehicles (UAVs),
wearable devices and so on. However, the existing terrestrial
networks have limited coverage as well as high construction
cost, hence covering remote rural areas, deserts and oceans
is economically unviable [1]–[3]. Inspired by the accelerating
globalization, there is an urgent need for developing new low-
latency, high-speed communication networks having seamless
global coverage.

Given their large footprint, satellite networks constitute a
promising complement to terrestrial networks. Hence, the inte-
gration of space and ground networks has attracted substantial
attention from researchers. However, in contrast to terrestrial
networks, the mobility of satellites and mobile terminals (MTs)
results in dynamically time-varying topology and frequent
handovers, which makes mobility management a critical is-
sue in Space-Ground Integrated Networks (SGINs) [4], [5].
Several authors have tackled this challenge by focusing on the
mobility management of IP-based satellite networks, where the
IP protocol or its enhanced variants (e.g. Mobile IP, MIPv6 and
the Seamless IP Diversity-based General Mobility Architecture
(SIGMA) [6]) originally designed for terrestrial networks were
adopted [4], [5], [7]–[9]. A handover-independent IP mobility
management scheme was proposed for Low Earth Orbit Satel-
lite (LEOS) networks in [7], where the geographical location
information was exploited for reducing satellites’ binding
update frequency, which may be viewed as the counterpart of
the terrestrial handover update frequency. In [8], the satellite
networks considered were divided into multiple virtual agent
domains, so as to support distributed mobility management.
By deploying an augmented reconfigurable management plane
on non-LEO satellites, the authors of [4] proposed a space-
distributed mobility management architecture for achieving
flexible mobility management function (MMF) configuration.
In [9], the pros and cons of applying the current IP-based
mobility management methods to LEOS networks have been
analyzed, while it was argued that reducing the management
cost should be a future challenge. The authors of [5] have
reviewed the current developments in location management
of IP-based LEOS networks with specific emphasis on the
extensions of the IETF location management techniques.

In IP protocols, the devices are identified by their IP
addresses, which are also used for routing [10]. The IP address
of a node is configured according to its logical network
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location. In the existing IP protocols, the IP address will
be changed once a handover occurs and the updated binding
information should be reported to the network. However, given
the frequent handovers in SGINs, adopting the existing IP-
based protocols would result in frequent transmission failure
and severe overhead required for location update, which would
waste precious onboard resources and significantly limit the
scale of the SGIN. The dual-role of the IP number as a device
identifier (ID) and network address (NA) has however intrinsic
limitations in the context of mobility support. Indeed, the
dynamic SGIN topology, frequent handovers and intermittent
connections, make the existing IP-based solutions unsuitable
[11].

These drawbacks of IP protocols have inspired the devel-
opment of new mobile network architectures, and there is a
broad consensus behind completely splitting the role of ID
and NA in these new protocols [12]–[16]. The decoupling of
ID and NA is eminently suitable for natural mobility support,
since a node can be identified by its unique time-invariant ID
throughout the whole network. A typical emerging network
architecture is that of MobilityFirst (MF) [16], which was
specifically designed for coping with the nodes’ mobility.
Again, MF splits the ID and NA, while a globally unique
identifier (GUID) is assigned to each device. Additionally,
a Global Name Resolution Service (GNRS) center is set
up in the MF architecture to store and update the mapping
assigning the GUID to its NA. The MF packet contains the
GUID of the destination node, and the corresponding NA
is obtained by querying the GNRS. The centralized GNRS
has substantial computing and storage requirements, thus it
cannot be deployed on resource-limited satellites. Moreover,
to apply the MF architecture in satellite networks, the GNRS
has to accommodated by ground-based nodes, which however
imposes long query delay and high updating cost.

Mobility management in IP networks can be divided into
two parts, i.e. location management [17] and handover man-
agement [18]. However, the splitting of ID and NA converts
mobility management into a pair of procedures including
location update and binding resolution [19]. Several au-
thors have focused their attention on the mobility manage-
ment of SGINs, where the ID-NA separation based design
principle was adopted. An overview of mapping resolution
systems conceived for satellite networks was presented in
[12], where it was argued that a distributed design and a
dynamic replica placement algorithm should be adopted for
reducing the location update cost and lookup latency. The
authors of [20] proposed a network architecture, where the
ID and NA split was adopted for improving the network’s
scalablity and flexibility. In [19], the authors aimed for making
the movement of satellites invisible to users and proposed
an indirect binding scheme, where multiple logically fixed
virtual attachment points were employed for the terrestrial
users. The authors of [21] proposed another architecture for
mobility management in satellite networks, where the terres-
trial gateways were exploited as regional mobility management
entities. By deploying ground-based identifier management
servers and satellite-based identifier switch routers in a SGIN,
a mobile handover process was proposed in [22] for reducing

the handover delay. The authors of [23] divided the Space-
Air-Ground Integrated Network (SAGIN) into multiple layers
including GEOS layer, LEOS layer and ground-based network
layer, while an intra-domain identifier switch router was de-
ployed in each layer for achieving mapping resolution and an
inter-domain identifier management server was deployed on
the ground. It was demonstrated that the mapping resolution
delay can meet the low-latency requirements of SAGIN. In
[24], both ground-based and satellite-based location resolvers
were implemented for improving the flexibility of heteroge-
neous SGINs, where multiple naming spaces were adopted for
locating a network device. The ground-based location resolver
adopted in [21], [24] suffered from long Satellite-to-Ground
(S2G) transmission delay. It has become a broad consensus
to deploy location resolvers in satellites [12], [19], [20], [22],
[23]. However, the existing satellite-based solutions dynam-
ically deployed the location resolvers in different satellites,
which resulted in non-negligible communication overhead for
the inter-satellite links. Moreover, the distributed onboard
caching resources and the historical lookup information of
ID-NA mapping were not exploited. Considering the high-
mobility of SGINs and the limitations of existing solutions, an
efficient location management system should be designed for
achieving low update cost, low lookup latency and distributed
binding resolution services.

Inspired by the availability of onboard storage distributed in
LEOSs, caching some popular ID-NA mappings in each LEOS
is capable of facilitating prompt lookup responses. However,
given the limited storage, the cached mappings should be
carefully selected. Yet, this specific location management
problem of SGINs has not been addressed in the open literature
- most of the content allocation research in SGINs is focused
on file caching. In [25], a three-layer cooperative caching
model was proposed for minimizing the average content
acquisition delay of SGINs, where two caching strategies
were conceived for exploiting base station (BS) aided, satellite
and gateway based caching. By jointly formulating the
content placement and multi-hop delivery as an optimization
problem for satellite download based resource allocation, the
authors of [26] provided a popularity-driven content placement
algorithm, where a distance-sensitive popularity parameter
was relied upon for multi-hop delivery. The authors of [27]
considered a multi-layer satellite network, where the limited
storage of Geostationary Earth Orbit Satellites (GEOSs) was
exploited for balancing the load across LEOSs. By exploit-
ing the popular Stackelberg game, a load balancing scheme
was proposed, while a popularity matching algorithm was
conceived for caching aided resource allocation. By dividing
the satellite-integrated content-centric network into different
regions in conjunction with virtual locations, the authors of
[28] exploited a so-called DeepHawkes framework to predict
the popularity of files and proposed a delay minimization
caching replacement algorithm. The cache placement and
content delivery strategies of SGINs were jointly optimized
in [29] for minimizing the delivery delay, while deep Q-
learning was leveraged to learn the optimal policies. In [30],
both cache placement and cooperative beamforming were
optimized jointly to enhance the network performance of a
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integrated satellite-terrestrial network. The existing content
allocation solutions [25]–[30] rely on the interaction between
satellites or satellites and the ground BSs for synchronizing
the caching state or request information. In contrast to the
traditional contents, the ID-NA mapping information should be
updated frequently due to the frequent handovers in SGINs.
Adopting the existing content allocation strategies for map-
ping information caching may impose severe synchronization
overhead. In addition, existing research contributions have
demonstrated that the accurate prediction of file popularity
can significantly improve the caching efficiency. However, the
popularity of mapping contents may vary in different network
coverage scenarios and the time-varying satellite coverage
makes it difficult to estimate the content popularity in a
timely manner. Moreover, the existing deep-learning based
popularity estimating algorithms [26], [28], [29] are difficult
to implement in location management, since long training time
is required for a large number of content items.

Motivated by the drawbacks of the existing location man-
agement solutions and content allocation strategies, we pro-
pose a multi-layer binding resolution system, where both
GEOS and LEOSs are employed for supporting a distributed
mapping resolution service. By dividing the SGIN into multi-
ple domains according to the coverage of GEOSs, we consider
each GEOS to be the regional binding resolution service cen-
ter. Compared to GEOSs, LEOSs are closer to the ground and
can provide low-latency services. Inspired by the availability
of onboard caching and processing capabilities of LEOSs, we
exploit the historical mapping lookup information for caching
the most popular ID-NA mappings at each LEOS for support-
ing a prompt lookup response. Against this backdrop, the main
contributions of this paper are summarized as follows.

1) The frequent updates of mappings and the time-varying
resolvers impose synchronization overhead for existing
satellite-based solutions. For achieving distributed lo-
cation management at a low synchronization overhead
and prompt lookup response, we propose a multi-layer
binding resolution system for ground-based mobile ter-
minals (MTs), where our SGIN is divided into mul-
tiple GEOS-based domains and each GEOS acting as
the domain-head provides regional binding resolution
service. Then, each domain is further broken down
into different clusters consisting of a single LEOS and
multiple associated MTs, where replicas of the most
popular ID-NA mappings are stored in the LEOSs for
providing prompt lookup response.

2) The rapidly fluctuating satellite coverage makes it criti-
cal to identify the popular mappings in a timely manner.
However, the large quantity of ID-NA pairs and the
potential change of unknown mapping popularity impose
unprecedented challenges on popularity-aware caching
strategies. For maximizing the caching reward in each
LEOS, we exploit the sparsity of the popular mappings
and formulate the replica allocation procedure as a
sparse bandit learning problem for promptly identify-
ing the popular mapping contents. By modeling each
mapping as an arm in the multi-armed bandit (MAB)

procedure and treating the LEOSs as the players, we
propose a Sparse Upper confidence bound based Learn-
ing aided Caching algorithm (SULC) for estimating the
expected caching rewards of mappings and dynamically
allocating the replicas at each LEOS.

3) For ensuring the convergence guarantee of the proposed
SULC, we derive a sub-linear upper bound of the cu-
mulative regret, which represents the difference between
the optimal reward associated with all the popularity
distributions of the mappings known in advance and
the actual reward of SULC. In contrast to the classical
MAB algorithms, where the regret typically scales sub-
linearly with the total number of arms M , by leveraging
the knowledge that there are K (K < M ) mappings
having popularity higher than a pre-defined value and
each LEOS can cache γ (γ ≤ K) mappings, the regret
of SULC scales sub-linearly with (K − γ) instead of
M , which demonstrates the efficiency of our proposed
algorithm.

4) Extensive simulations have been conducted for validat-
ing the efficiency of the proposed SULC algorithm. We
show that the proposed SULC provides higher caching
reward and lower cumulative regret than the existing
algorithms after a short period of learning, since it
converges promptly by effectively identifying the most
popular mappings for providing near-optimal content hit
rates.

The remainder of this paper is organized as follows. Section
II presents our system overview. The formulation of the
mapping allocation problem is provided in Section III, while
Section IV introduces our distributed learning based location
management. Then, Section V presents our simulation results
and discussions. Finally, Section VI concludes the paper and
summarizes our key contributions.

II. SYSTEM OVERVIEW

A. System Model

In this paper, we consider the SGIN shown in Fig. 1
which is consisted by satellites (including GEOSs and LEOSs),
Terrestrial Gateways (TGs) and Mobile Terminals (MTs). The
set of GEOSs is denoted by SGEO = {sG1 , sG2 , ..., sGg }, where
g represents the number of GEOSs. We assume that there are
no LEO orbits, and each LEO orbit has ns satellites. The
LEOSs are represented by SLEO = {sL1 , sL2 , ..., sLno×ns}. We
use Sgw = {sgw1 , sgw2 , ..., sgww } to denote TGs, while the set
of MTs is expressed as M = {1, ...,m, ...,M}.

For supporting ubiquitous mobility in our SGIN, the ID-
NA split design is adopted. Each node has a fixed unique ID
and a changeable NA. It is assumed that MTs can be served
either by Terrestrial Networks (TNs) or satellites. Due to the
limited coverage of TNs, the MTs, which cannot be served
by Terrestrial Networks (TNs), access the SGIN through
LEOSs, where each LEOS can communicate with its nearest
GEOS. GEOSs are connected to form a space-based backbone
network, which connects with the terrestrial backbone network
through TGs. Furthermore, the TGs are connected to a ground-
based GNRS center. Thanks to the recent advances in satellite
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Fig. 1. System model of a space-ground integrated network.

technologies, the onboard processing and storage capabilities
of both GEOSs and LEOSs have been significantly improved.
Thus, we assume that both GEOSs and LEOSs are equipped
with onboard processing and caching resources.

B. Multi-layer SGIN architecture

The global coverage of SGIN makes it infeasible to have
a centralized binding resolution service, since the long en-
quiry delay and high updating cost may be unacceptable.
A promising solution is to divide the network into different
regions and perform mobility management within each region.
A representative example is the Proxy Mobile IPv6 (PMIPv6)
[31], in which the network is partitioned into multiple regions
and a TG is set as the Local Mobile Anchor (LMA) for local
mobility management. However, TGs can only provide limited
coverage distance. Moreover, the performance of TG-based
location management algorithms is degraded by the intermit-
tency of S2G links. Motivated by PMIPv6, in this treatise we
divide SGIN into multiple domains, according to the coverage
of GEOSs. As shown in Fig. 1, each domain includes a GEOS
satellite as the domain-head, multiple LEOSs connected to
the GEOS, and MTs served by these LEOSs. Furthermore,
the nodes in each domain are divided into multiple clusters,
where each cluster is headed by a LEOS and it consists of
the LEOS and the MTs served by it. Specifically, we group
the MTs served by a TN into a single domain. By grouping
the nodes in the SGIN into multiple domains and clusters, we
form a multi-layer SGIN architecture.

C. Spatially distributed binding resolution system

For providing prompt lookup of the ID-NA mapping in-
formation, the mappings should be appropriately allocated.
In this work, we exploit the storage of LEOSs and GEOSs
for constructing a spatially distributed binding resolution sys-
tem. As shown in Fig. 1, both the LEOSs and GEOSs are
equipped with onboard processing and storage resources for
storing the ID-NA mapping and for processing the mapping

lookup requests. However, given the limited onboard storage,
each GEOS only caches and maintains the ID-NA mapping
information for the nodes within the same domain. In addition
to maintaining the mapping information of its serving MTs,
each LEOS reserves a fixed storage capacity for caching
the replicas of popular mappings. When a MT intends to
communicate with a destination node (DN), it will first look
up the destination NA. A binding resolution request will be
sent to its serving LEOS. If the mapping of the DN is cached
by the serving LEOS, the destination NA can be obtained
locally and sent back to the MT for triggering the routing
procedure. Otherwise, the serving LEOS will send a lookup
request to its domain-head (i.e. the GEOS). If the destination
is an intra-domain node, a response message containing the
destination NA will be returned to the MT through its serving
LEOS. Otherwise, the lookup request will be forwarded to
the neighboring domains until the destination ID is resolved.
Thus, the lookup latency can be significantly reduced, once the
mapping is cached locally. Specifically, it is assumed that the
mapping of the MTs served by TN is stored in the ground-
based GNRS, while the TGs are connected with the GNRS
for supporting mapping lookup. By storing part of mapping in
GEOSs and LEOSs, we form a spatially distributed binding
resolution system.

D. Popularity distribution of mapping

For each MT, we model its lookup requests as an inde-
pendent Poisson arrival process with density λ > 0. The
relative frequency of requesting the ID-NA mapping of a
MT can be modeled as a popularity distribution. Following
the setups in [25], we use F = {f1, f2, ..., fK , fK+1} to
denote the set of all mappings, while fk (k ≤ K) represents
the kth most popular mapping and the set of the remaining
(M−K) mappings is expressed as fK+1. In the tth time slot,
we use dl,m(t) ∈ [0, 1] to denote the normalized number of
requesting the mapping of MT m in the lth cluster, which
is normalized by the maximum number of requests. Then,
we have the popularity distributions of mappings denoted by
Θ = {θl,m,∀l ∈ SLEO,∀m ∈M}, where θl,m is the mean of
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dl,m(t) and is distributed according to a Zipf-like distribution
[32], which is given by

θl,m =



1

|Υl,m|δl
∑
k∈F k

−δl
∀l ∈ SLEO, ∀m ∈ {f1, f2, ..., fK}

1

(M −K)|Υl,K+1|δl
∑
k∈F k

−δl

∀l ∈ SLEO, ∀m ∈ fK+1.
(1)

Here, for simplicity, we assume that all the mappings in
fK+1 have the same popularity. In, (1), δl represents the
Zipf exponent, which reflects the skewness of popularity
distribution, and a larger δl means that the majority of requests
is concentrated on a few MTs. Furthermore, Υl,m is given by

Υl,m =

{
σl −m, when σl 6= m

1, when σl = m
, (2)

where σl denotes the shift of popularity distribution in the lth

cluster, which is used for reflecting the diverse preferences of
MTs in different clusters. Regarding the practical limitations,
LEOSs have no knowledge of σl and δl in advance.

III. PROBLEM FORMULATION

In this paper, we focus on the allocation of ID-NA map-
ping in SGINs, and formulate it as an optimization problem,
which is solved by exploiting an online learning method for
maximizing the caching reward in each LEOS.

A. Problem formulation for caching reward maximization

Considering the limited onboard storage, only part of the
ID-NA mapping can be distributively allocated in LEOS and
GEOSs, while the GNRS maintains the mapping information
of MTs served by the TN. The lookup latency of a binding
resolution request can be significantly reduced if a content
hit event occurs, i.e. the mapping can be retrieved in a
MT’s serving satellite. Therefore, one of our objectives is
to maximize the content hit rate of the cached mapping in
LEOSs. Specifically, if the DN is located in the same domain
as the source node (SN), this event is termed as an intra-
domain content hit, otherwise, the event is classified as an
inter-domain content hit. In case the requested mapping cannot
be found in the cluster-head, the serving LEOS will forward
the lookup request to the domain-head.

For the tth time slot (TS), we use B(t) = {Bl,m(t),∀l ∈
SLEO,∀m ∈ M} to represent the caching strategy. We have
Bl,m(t) = 1 if the mapping of MT m is cached in the LEOS
sLl . Otherwise Bl,m(t) = 0. Considering the limited storage
in sLl , we have

δs
∑
m∈M

Bl,m(t) ≤ Sl, (3)

where δs is the size of each mapping. Then, the maximum
number of mappings that can be cached by sLl is denoted
by γl =

⌊
Sl
δs

⌋
. We use a random variable hl(t) to denote the

number of content hits in sLl at TS t under the ID-NA mapping
allocation strategy Bl(t). Then, hl(t) is given by

hl(t) =
∑
m∈M

Uldl,m(t)Bl,m(t). (4)

Here, Ul represents the maximum number of binding lookup
events in the lth cluster and Uldl,m(t) represents the number
of times that the mapping of m is requested.

It is worth noticing that inter-domain binding lookup events
impose longer delay and higher cost than intra-domain events.
Therefore, we further partition the content hits into intra-
domain and inter-domain content hits, which are given by

hintral (t) =
∑
m∈M

Dl,mUldl,m(t)Bl,m(t), (5)

hinterl (t) =
∑
m∈M

(1−Dl,m)Uldl,m(t)Bl,m(t), (6)

where Dl,m = 1 if the MT m is located in the same domain
of sLl . Otherwise, Dl,m = 0. Then, we capture the reward of
sLl upon adopting the caching strategy Bl(t) in TS t as

Rl(t) = ginter × hinterl (t) + gintra × hintral (t)

=
∑
m∈M

Uldl,m(t)Gl,mBl,m(t), (7)

where the constants ginter and gintra represent the caching
gains of inter-domain and intra-domain content hits, respec-
tively. Briefly, the caching gains are used for quantifying
the benefit of mapping caching and can be interpreted as
a general expression of the traffic offloading, energy saving
or delay reduction. Since all the intra-domain contents can
be retrieved from the corresponding GEOS, the intra-domain
content hits have the same caching gain gintra. Moreover,
global coverage can be achieved by deploying as few as 3
GEOSs. Thus, we assume that the inter-domain contents can
be retrieved from a neighboring domain-head and the caching
gains of inter-domain content hits can also be set as a constant
ginter. Gl,m = ginterDl,m + gintra(1−Dl,m) is the caching
gain of the mapping of m, and different caching strategies
may be constructed for inter- and intra-domain mappings by
adjusting the values of ginter and gintra. Similarly, we define
the caching cost of fetching the mapping as

Cl(t) =
∑
m∈M

βGl,mBl,m(t), (8)

where the constant β is a weighting factor. Thus, the total
reward of adopting the caching strategy Bl(t) can be written
as

RNl (t) = Rl(t)− Cl(t)

=
∑
m∈M

Bl,m(t)rl,m(t). (9)

Here, rl,m(t) denotes the net reward of caching the mapping
of m at TS t, which is given by

rl,m(t) = Gl,m(Uldl,m(t)− β). (10)

In this work, we aim for finding an optimal allocation
strategy for maximizing the total reward in each LEOS. The
total caching reward maximization problem is defined as

max
Bl(t)

{
T∑
t=1

RNl (t)

}
(11)

s.t. (3)
Bl,m(t)∈ {0, 1}, ∀l ∈ SL,∀m ∈M

,
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where Bl(t) = Bl,m(t),∀m ∈M is the allocation strategy of
the LEOS sLl . According to (10), given the popularity distri-
bution of mapping contents, the caching reward distributions
are known. Then, (11) can be decomposed into T independent
optimization problems and optimized in each TS. However, the
caching reward distributions are unknown in advance, making
it difficult to solve the optimization problem. Thus, in each
TS we cache some mappings and observe the requests to
improve the estimate of caching reward distribution. Moreover,
it can be readily observed that the maximization problem has
a nonlinear objective function (OF), which has 0-1 integer
variables and linear constraints. It has been proved that this
kind of problems are NP-complex [33], [34]. It is not triv-
ial to solve this problem by ‘polynomial-time’ algorithms.
Therefore, we provide an iterative, distributed and online
learning based mapping allocation algorithm that maximizes
the caching reward at each TS to asymptotically solve this
problem.

B. Problem Analysis

Since the reward distributions are unknown in advance, for
the sake of maximizing the caching reward, we have to strike
a tradeoff between exploitation (storing the ID-NA mappings
with empirically optimal rewards by leveraging historical ob-
servations) and exploration (aiming for learning the unknown
caching reward distributions of the under-sampled mappings
to minimize the probability of missing popular mappings).
Thus, the popular Multi-Armed Bandit (MAB) algorithms
may be adopted for solving this problem. However, a critical
limitation of applying the traditional MAB algorithms is that
the cumulative regret, capturing the difference between the
optimal rewards (with all the expected rewards of arms known
in advance) and the actual rewards, scales sub-linearly with the
number of arms [35], [36]. Thus, an excessive number of arms
will impose ultra-long convergence time for the traditional
MAB algorithms. It can be observed in (10) that only a subset
of mappings have positive expected rewards, since a MT is
likely to communicate with a small set of popular ones. Mo-
tivated by the sparsity of mappings having positive expected
rewards, the total caching reward maximization problem can
be modeled as a Sparse Bandit Problem (SBP) [37], which
can be solved by employing online learning for exploiting
the instant reward as well as exploring the under-sampled
mappings. In this context, LEOSs are treated as the players,
while the mappings of ID-NA pairs are viewed as the arms in
the Sparse Bandit Learning (SBL).

C. The Sparse Bandit Problem

As a variant of the classical bandit problem, the SBP is
designed for sparse scenarios, in which only a small set of
arms have positive rewards. In a MAB algorithm, there are M
arms and N players. It is assumed that the reward of the ith

arm (i ∈ 1, ...,M ) is randomly distributed with an unknown
mean. At each TS, the players obtain random rewards by
playing the arms, which were decided by the bandit algorithm
in the previous TS according to the preceding observations.
By exploiting the historical information, the caching reward

obtained will approach that of the optimal arm. In contrast
to the classical bandit problem, the SBP further assumes
that there are K unknown arms having positive expected
rewards and K < M . The core idea of the SBL algorithm
is to promptly identify the K arms having positive expected
rewards and then activate the bandit algorithm among these
arms. Thus, the regret of the SBL algorithm increases with K
instead of M in the classical bandit algorithms [37]. In light
of this, we will conceive a sparse bandit based online learning
algorithm for solving the mapping allocation problem.

IV. DISTRIBUTED LEARNING BASED LOCATION
MANAGEMENT

In this section, we exploit the SBL method for solving
our mapping allocation problem. We first propose a sparse
Upper Confidence Bound (UCB) based learning algorithm
for maximizing the caching reward of each LEOS. Then, the
performance of the sparse UCB learning algorithm is analyzed
in terms of regret.

A. Sparse UCB Learning on Caching Reward Distribution

Recall from (11), that we are interested in maximizing the
caching reward in each LEOS, since LEOSs have limited
onboard storage and could learn the served users’ requests
locally. Again, we formulate the caching reward maximization
problem as a SBP, where the mappings of ID-NA pairs
correspond to the arms and the learning agent in each LEOS
acts as the player. In contrast to the classical bandit problems,
we assume that each LEOS has a priori information1 that there
are Kl unknown MTs whose popularity is above a pre-defined
threshold β

Ul
. For simplicity, we refer to these Kl unknown

MTs as popular MTs, while the rest of MTs are referred to
as unpopular MTs. Similarly, the corresponding mappings are
divided into popular and unpopular mappings, respectively.

In each TS, the LEOS sLl will play with γl arms simultane-
ously (i.e. caching the mapping of γl MTs) according to the
learning results. Then, the estimated caching reward for the
mapping of MT m can be written as

r̄l,m [Nm(t)] =
1

Nm(t)

t−1∑
τ=1

Bl,m(τ)rl,m(τ), (12)

where Nm(t) denotes how many times the mapping of m was
cached up to the (t− 1) TS. Nm(t) is given by

Nm(t) =

t−1∑
τ=1

Bl,m(τ). (13)

By leveraging the sparsity of the popular mappings, we
propose the SULC procedure of Algorithm 1, which consists
of three different phases, including the Round-robin phase,
the Force-log phase and the UCB phase. In each TS, the
learning agent pulls γl arms simultaneously (i.e. caching γl
mappings) and updates the estimated caching rewards of the
corresponding arms according to the requests observed. For
identifying the popular mappings and activating the transition

1This priori information can be obtained by leveraging the historical
observations of users’ requests.
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between the three phases, we create the active MT set A(t)
as well as the active and sufficiently sampled MT set S(t),
which are defined as [37]

A(t) =

{
m ∈M | rl,m(Nm(t)) ≥

√
α log (Nm(t))

Nm(t)

}
,

(14)

S(t) =

{
m ∈M | rl,m(Nm(t)) ≥

√
α log(t)

Nm(t)

}
, (15)

where α is a positive constant no less than 1.5 [35].
As shown in Algorithm 1, the learning procedure starts with

a Round-robin phase, where the learning agent sequentially
caches γl different mappings in a TS until all the mappings
have been cached once. After that, the active MT set as well
as the active and sufficiently sampled MT set will be updated.
If the number of active MTs (denoted as |A(t)|) is fewer
than Kl, the learning algorithm will enter the Round-robin
phase. Otherwise, if there are fewer than Kl MTs in S(t), the
Force-log phase will be activated and the learning agent will
randomly select γl MTs in the different set of A(t) as well as
S(t), and their mappings will be cached in the next iteration.
When the number of active and sufficiently sampled MTs is no
fewer than Kl, the UCB policy is employed. The UCB policy
assigns an upper confidence index to each arm in the active and
sufficiently sampled mapping set, which denotes the biased
evaluation of that arm based on the previous observations of
the rewards obtained in the learning procedure [35]. The upper
confidence index of the mapping of m at time slot t is used
to represent the estimated mean reward of m, and is defined
as

r̂l,m = r̄l,m(Nm(t)) +

√
α log(t)

Nm(t)
. (16)

In the UCB phase, the mappings of the optimal γl MTs having
the highest upper confidence indices will be cached in the next
iteration.

The SBL algorithm aims for promptly identifying the Kl

popular mappings, and then employing the UCB policy for
selecting γl optimal mappings for caching. The Round-robin
phase is set to guarantee that all the popular mappings can be
active after performing a finite number of Round-robin phases.
In case the potential optimum is inactive, there are active but
unpopular mappings. If an unpopular mapping is in S(t), the
UCB policy ensures that it will be sufficiently sampled. Then,
the unpopular mappings will be removed from S(t), making
S(t) < Kl and the learning procedure enters the Force-log
phase. For the active but unpopular mappings, the Force-log
phase is designed to ensure that all the active mappings can be
sufficiently sampled and the unpopular mappings will become
inactive after a finite number of iterations. Therefore, if the
potential optimum happened to be inactive, the number of
active mappings would drop below Kl, and the Round-robin
phase will be performed to quickly make it active again.

To implement the proposed SULC in a SGIN having dis-
tributed caching resources, SULC operates on a time slot by
TS manner and the period of time slot is set to be much
higher than the maximum binding resolution delay, so that

Algorithm 1: Sparse UCB Learning based Caching
Algorithm

Input: the total number of MTs (i.e. M ), the number
of mappings with positive mean rewards (i.e. Kl), the
maximum number of mappings can be cached by a
LEOS (i.e. γl), and the number of iterations T ;
Output: the set of MTs selected in each TS (i.e. s(t)),
whose mappings will be cached;
Initialization: t← 1;
for τ = 1, 2, ..., dMγl e do

%Round− robin phase;
Imax = min(M, (τ + 1)γl − 1);
s(t) ← [τγl,τγl + 1,...,Imax];
t← t+ 1

end
Iteration: while t ≤ T do

Update the active MT set A(t), and the active and
sufficiently sampled MT set S(t) according to
(14) and (15) respectively.

if |A(t)| < Kl then
for τ = 1, 2, ..., dMγl e do

%Round− robin phase;
Imax = min(M, (τ + 1)γl − 1);
s(t) ← [τγl,τγl + 1,...,Imax];
t← t+ 1

end
end
else if |S(t)| < Kl then

%Force− log phase;
if |A(t)\S(t)| ≤ γl then

s(t)← A(t)\S(t);
end
else

s(t)←
randomly select γl MTs in A(t)\S(t);

end
t← t+ 1;

end
else

%UCB phase
for m∈ S(t) do

Calculate the uppder confidence indice r̂l,m;
end
s(t)← select γl optimal mappings with the
highest uppder confidence indices;
t← t+ 1;

end
end

the LEOS can obtain the binding resolution results in the
same time slot. Before performing SULC, MTs access their
serving LEOSs and are assigned NAs. Each LEOS will store
the ID-NA mappings of its serving MTs and will forward
these mappings to its serving GEOS, which acts as the local
binding resolution center. At the beginning of each time slot,
the LEOS performs SULC to cache a set of selected mappings,
which may be obtained locally or retrieved from GEOSs. In
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each time slot, MTs may send binding resolution requests
to their serving LEOS, and the LEOS will record the local
mapping content hit events, which will be used to update
both the active MT set as well as the active and sufficiently
sampled MT set in the next time slot. In this way, each LEOS
selects the caching contents independently according to its
local observation. Thus, imposing an excessive inter-satellite
synchronization overhead is avoided making it practical to
implement SULC in SGIN.

B. Performance analysis of SULC

Based on the definition of the net reward for caching a
mapping presented in (10), we reorder the mappings of MTs
in non-increasing order according to their expected caching
rewards at the LEOS sLl . Then, we have

µl,1 ≥ µl,2 ≥ · · ·µl,γl ≥ · · ·µl,Kl > 0 ≥ µl,Kl+1 · ·· ≥ µl,M ,
(17)

where µl,m = Gl,m (Ulθl,m − β) is the expected caching
reward of the mapping of MT m. For the sake of simplicity,
we denote the first γl MTs as Γ, while the first Kl MTs
are represented by K. In each TS, the LEOS will cache γl
mappings selected by the learning algorithm, and observe the
users’ requests for these mappings for updating their estimated
reward distributions.

For evaluating the performance of the proposed SULC, we
define the cumulative regret as the performance metric, which
is given by

Reg(T ) = R̄e(T )−Re(T ), (18)

where Re(T ) is the cumulative reward obtained in the learning
procedure and R̄e(T ) represents the caching reward gathered
by always selecting the γl optimal mappings having the highest
mean caching rewards, with R̄e(T ) and Re(T ) given by

R̄e(T ) =
T∑
t=1

∑
m∈Γ

E[r̄l,m(Nm(t))], (19)

Re(t) =

T∑
t=1

∑
m∈M

Bl,j(t)rl,m(t). (20)

Thus, the expected cumulative regret can be written as

E[Reg(T )] = T
∑
i∈Γ

µl,i −
∑
m∈M

µl,m E[Nm(T + 1)]. (21)

Upon substituting T =
∑
m∈M E[Nm(T+1)]

γl
into the above

equation, we have

E[Reg(T )] =
∑
m∈M

E[Nm(T + 1)]∆m, (22)

where ∆m = µ∗ − µl,m and µ∗ =
∑
i∈Γ µl,i
γl

.
Since µ∗ is a fixed constant, it can be observed from (22)

that the expected cumulative regret can be interpreted as the
summation of the regrets imposed by each mapping. Thus, we
decompose the regret according to the different phases. For a
MT m ∈ M, the event {Bl,m(t) = 1} can be decomposed

into three cases, which are defined as

R = {Bl,m(t) = 1|Round− robin phase} (23)
F = {Bl,m(t) = 1|Force− log phase} (24)
U = {Bl,m(t) = 1|UCB phase}. (25)

Then, the expected cumulative regret can be decomposed as

E[Reg(T )] = RegR(T ) +RegF (T ) +RegU (T ) (26)

where RegR(T ), RegF (T ) and RegU (T ) are the expected
cumulative regrets in the three different phases, which are
given by

RegR(T ) =
∑
m∈M

∆m E

[
T∑
t=1

Bl,m (t|R)

]
, (27)

RegF (T ) =
∑
m∈M

∆m E

[
T∑
t=1

Bl,m (t|F)

]
, (28)

RegU (T ) =
∑
m∈M

∆m E

[
T∑
t=1

Bl,m (t|U)

]
. (29)

It can be observed from (27), (28) and (29) that the expected
regrets in the three different phases are independent. The
upper bound of the expected cumulative regret in (22) can be
obtained by upper bounding (27), (28) and (29) independently.
Thus, in the following lemmas, we provide upper bounds for
the expected regrets in the three different phases, respectively.

Lemma 1. For the Round-robin phase, the expected cumula-
tive regret can be upper-bounded by

RegR(T ) ≤

(
1 +

∑
k∈K

(
n̂k +

2

µ2
l,k

)) ∑
m∈M

|∆m|. (30)

Here, n̂k is the minimum integer which ensures log(n)
n ≤ µ2

l,k

4α
for all n ≥ n̂k.

Proof. See Appendix A.

It can be observed in Lemma 1 that the regret imposed in
the Round-robin phase is constrained by a time-independent
constant, which implies that only a finite number of Round-
robin phases will be performed.

Lemma 2. As for the Force-log phase, the upper bound of the
expected regret is given by

RegF (T ) ≤ log(T )4α
∑
k∈K\Γ

∆1,k

µ2
l,k

+ 2

 ∑
k∈K\Γ

∆1,k

µ2
l,k

+
∑

m∈M\K

∆1,m

 (31)

where ∆1,k = µl,1 − µl,k. Specifically, the regret imposed
by the unpopular mappings in the Force-log phase is upper-
bounded by 2

∑
m∈M\K∆1,m.

Proof. See Appendix B.

Lemma 2 shows that the regret imposed by unpopular map-
pings is upper-bounded by a time-invariant constant, which
means that the unpopular MTs will become inactive after a
finite number of Force-log phases.
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Lemma 3. With respect to the UCB phase, we upper bound
the expected regret as

RegU (T ) ≤ log(T )4α
∑
k∈K\Γ

∆1,k

∑
i∈Γ

(
1

∆2
i,k

)

+ 2

 ∑
k∈K\Γ

∆1,k

(
γl +

∑
i∈Γ

1

∆2
i,k

)
+

∑
m∈M\K

∆1,m

 .

(32)

Proof. See Appendix C.

With the above Lemmas in place, an upper bound of the
expected cumulative regret for adopting the SULC algorithm
is presented in the following theorem, which guarantees the
convergence of the proposed SULC.

Theorem 1. The expected cumulative regret of SULC is upper-
bounded by

E[Reg(T )] ≤ log(T )4α
∑
k∈K\Γ

∆1,k

(
1

µ2
l,k

+
∑
i∈Γ

1

∆2
i,k

)

+ 2

 ∑
k∈K\Γ

∆1,k

(
γl +

1

µ2
l,k

+
∑
i∈Γ

1

∆2
i,k

)
+ 2

∑
m∈M\K

∆m


+

(
1 +

∑
k∈K

(
n̂k +

2

µ2
l,k

)) ∑
m∈M

|∆m|, (33)

which scales sub-linearly with (Kl − γl).

Proof. The upper bound in (33) can be readily obtained by
combining the results in Lemma 1, 2 and 3. By omitting the
multiplicative constants and the additive constants in (33), we
have

E[Reg(T )] . log(T )
∑
k∈K\Γ

∆1,k

(
1

µ2
l,k

+
∑
i∈Γ

1

∆2
i,k

)

. log(T )
∑
k∈K\Γ

max

{
∆1,k

µ2
l,k

,
1

∆1,k
,

∆1,k

∆2
2,k

, · · ·, ∆1,k

∆2
γl,k

}
.

(34)
Since (34) scales sub-linearly with Kl − γl, Theorem 1 is
proved.

C. Complexity analysis of SULC

In this subsection, we analyze the computational complexity
of SULC in Algorithm 1, while the computational complexity
represents the total number of operations executed in a single
round. After the initialization, both the active MT set and the
active and sufficiently sampled MT set will be updated in each
time slot. Since the estimated caching reward for a mapping
defined in (12) should only be updated if the mapping was
cached in the previous time slot, there are a maximum of γl
mappings that should be updated. Thus, updating (14) and (15)
requires O(γl+St) operations, while St represents the number
of mappings in S(t). It can be observed from Algorithm 1 that
the computational complexity for each Round-robin phase is
O(γl +St + 2). As for the Force-log phase, its computational

complexity is given by O(γl + St + 1). In the UCB phase,
the upper confidence indices of the mappings in S(t) should
be calculated. Then, the γl optimal mapping contents with
maximum upper confidence indices are selected for caching.
Thus, the computational complexity of the UCB phase can be
written as O(γl + 2St + 1). It has been proved in Subsection
IV-B that SULC will perform a finite number of Round-
robin and Force-log phases, and converges to the UCB phase.
Moreover, the number of mappings in S(t) will converge to
Kl and Kl ≥ γl. Therefore, the computational complexity of
the proposed SULC is equivalent to O(Kl). Since Kl << M ,
we can conclude that SULC maintains a low computational
complexity.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we conduct extensive simulations for eval-
uating the performance of the proposed SULC algorithm.
Moreover, SULC is compared to the existing caching strategies
for demonstrating its benefits.

A. Simulation Setup

In our simulations, we assume that 3 GEOSs are equidis-
tantly positioned for providing global coverage, while the Irid-
ium constellation [38] is adopted for LEOSs which has no = 6
orbits and each orbit has ns = 11 satellites. Moreover, we
assume there are M = 1000 MTs randomly distributed on the
Earth and their popularity distributions are generated according
to a Zipf-like distribution. Without loss of generality, the
MTs are served by their nearest LEOSs and the performance
of a generic LEOS is analyzed in this section. Because the
mapping allocation problem has not been addressed in the
open literature, we follow similar setups to those in [25], [32],
[35] to set the parameters of Zipf distribution, user request
arrival process and UCB policy, respectively. To reflect the
sparsity of popular mappings, the weight control parameter of
the caching cost is set to ensure that there are 200 popular
mappings, while the maximum number of cached mappings
in each LEOS should be lower than that of popular mappings.
As for the caching gains, we assume that the inter-domain
caching gain is twice as much as the intra-domain caching
gain. For characterizing the impact of different algorithms on
networks, we estimate the one-hop binding resolution delay of
a generic request as t = 2tp+tc [23], where tp is the distance-
based propagation delay and tc represents the processing delay.
According to [23], we set tc = 11.4ms. The parameters
adopted are presented in Table I.

For demonstrating the benefits of the sparse bandit learning
based location management, the following caching strategies
will be compared to SULC.

• We refer to the Classical UCB based MAB algorithm [35]
as the CUM algorithm. By adopting the CUM algorithm,
the LEOS acting as a player learns the caching reward
distributions of the mappings and implements the UCB
policy for all mappings for selecting γl mappings with
optimal UCB indices.
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TABLE I
LIST OF PARAMETERS

Total number of mappings M=1000
Zipf exponent δl=0.5
Shift of popularity distribution σl=0
Maximum number of lookup
requests in a LEOS Ul=75

Density of Poisson distributed
request arrival process λ = 5

Number of popular mappings K = 200
Weight control parameter for caching cost β = 0.05
Maximum number of cached
mappings in each LEOS γl=100

UCB parameter α = 1.5
Caching gain for inter-domain content hits ginter = 10
Caching gain for intra-domain content hits gintra = 5
Processing delay of a binding request tc = 11.4ms

• The deep learning-enabled algorithm adopted in [28] is
referred to as the DeepHawkes algorithm. Since Deep-
Hawkes requires offline training, we collected the re-
quests in 100000 time slots to train the DeepHawkes
algorithm. The batch size and learning rate of Deep-
Hawkes are set to 32 and 0.02, respectively. After 10
epochs’s training, the contents with the highest estimated
popularity will be cached.

• The Least Recently Used (LRU) algorithm of [39] mon-
itors the time interval between the current and the pre-
vious requests of each mapping. The least recently used
mapping will be replaced once a binding lookup request
cannot be resolved locally.

• The Least Frequently Used (LFU) algorithm of [39]
counts the content hit events for each cached mapping.
Once a binding resolution request cannot be satisfied
locally, the mapping having the minimum number of hits
will be replaced.

• In the Optimal solution (OPT), we assume that the popu-
larity distributions of all mappings are known in advance.
Each LEOS will always cache the optimal γl mappings,
which have the highest expected caching rewards.

B. Performance Evaluation

Fig. 2 presents the average content hit rates in every 100
TSs for different algorithms. Here, we define the average
content hit rate as the ratio of the number of events that a
request is satisfied by the serving LEOS to the total number of
binding resolution requests. A higher content hit rate indicates
that more binding resolution requsts can be satisfied locally
at a low lookup latency. As it can be observed in Fig. 2,
DeepHawkes provides the highest content hit rate. This is
because a large data set has been used to train the DeepHawkes
algorithm for providing good estimate of content popularity,
and the mappings having the highest popularity are selected
without distinguishing the different caching rewards for intra-
domain and inter-domain mappings. Besides, the proposed
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Fig. 2. Average content hit rates for different algorithms
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SULC outperforms the other solutions and approaches the
optimal solution after a short period of learning. CUM has
higher content hit rate than LFU, while LRU exhibits the
worst performance. This is because the performance of a
classical MAB algorithm will degrade with the number of
arms [37], and it is inefficient to use an excessive number of
arms. Thus, there is a gap between the optimal solution and
CUM. Moreover, the observed popularity of mappings was not
exploited in LRU, while the other algorithms take advantage
of the historical binding lookup requests. Fig. 2 demonstrates
the learning efficiency of the proposed SULC, which attains a
near-optimal content hit rate after a short period of learning.

Fig. 2 shows that SULC provides low content hit rates at the
beginning, while however increases dramatically after about
700 TSs. Since the proposed SULC consists of three different
phases, to explore the learning procedure of SULC, Fig. 3
displays how many times the different phases are entered.
It can be observed that SULC starts with a few Round-
robin phases for making the popular mappings active. Then,
the Force-log phase may be triggered for ensuring that the
popular mappings are sufficiently sampled. After identifying
the popular mappings, SULC will activate the UCB phases
among these mappings.

Fig. 4 depicts the cumulative caching rewards for different
algorithms, which quantity the benefits of mapping caching
either in terms of energy saving or delay reduction. It can be
observed that all the caching rewards tend to linearly increase
with time, and SULC provides the closest performance to
the optimal solution. In contrast to the existing algorithms,
SULC provides poor rewards at the beginning. This is because
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SULC has to activate the Round-robin and Force-log phases
for rendering the popular mappings active and sufficiently-
sampled. The caching reward will be degraded, especially in
the Round-robin phase, where all the mappings will be cached
once. After the proposed learning algorithm converged, the
gaps between SULC and the other algorithms will increase
with time, since DeepHawkes ignores the different caching
rewards for intra-domain and inter-domain contents and SULC
attains higher content hit rates than the others.

In Fig. 5, we present the regrets of different algorithms,
which represent the reward gaps against the OPT algorithm.
We can observe from Fig. 5 that LRU has the worst per-
formance, since it does not exploit the knowledge of the
request frequency of mappings. By contrast, LFU exploits the
historical lookup information, and caches the most frequent
mappings, hence reduces the regret of LRU. However, the
different caching rewards of intra-domain and inter-domain
content hits are not considered in LFU, which imposes a
linearly increased regret. By considering the inter-domain and
intra-domain caching rewards, CUM provides much lower
regret than LFU. Nonetheless, the CUM algorithm requires
a long time for exploring all the mappings, and it con-
verges slowly. After performing offline training, DeepHawkes
provides the lowest regret at the beginning. However, its
cumulative regret increases linearly due to the lack of distin-
guishing intra-domain and inter-domain contents. In contrast to
the existing solutions, SULC aims for learning the unknown
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caching reward distributions and for exploiting the sparsity
of popular mappings for speeding up the learning procedure.
Therefore, SULC provides the lowest regret after a short
period of learning as a benefit of identifying the popular
mappings.

In Fig. 6, we compare the average caching rewards of SULC
in every 100 TSs, when different cache sizes are considered. It
can be observed that the average caching reward increases with
γl. This is because a larger cache size will increase the content
hit rates and result in higher caching rewards. Moreover, Fig.
6 demonstrates the efficiency of the proposed SULC, since it
converges quickly for different γl.

To further explore the effect of the cache size on the
performance of SULC in Fig. 7, we present the cumulative
regret of SULC in the UCB phase (SULC-UCB) , since it
has been demonstrated that SULC will converge in the UCB
phases after performing a finite number of the Round-robin
and Force log phases. Observe in Fig. 7 that the regret of
SULC-UCB decreases with γl, because after identifying the
Kl popular mappings, the regret is imposed by caching the
mappings in K\Γ, which scales sub-linearly with Kl − γl.

In Fig. 8, we compare the regret of CUM and SULC-
UCB when different number of mappings are considered.
For CUM, a larger number of mappings result in increased
rate-loss, since the classical bandit algorithm requires more
time for exploring all the mappings and the performance of
CUM degrades with M . In contrast to CUM, the increase
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of the number of mapping has little effect on the regret of
SULC-UCB. This is because the proposed SULC can promptly
identify the popular mappings and apply the UCB policy for
these popular mappings.

For characterizing the impact of caching algorithms on
networks, we compare the average binding resolution delay
of different algorithms in Fig. 9. It can be observed that
SULC provides near-optimal performance after a short period
of exploration. Since inter-domain binding resolution has a
higher delay than intra-domain lookup, SULC tends to cache
the popular inter-domain mappings for reducing the average
resolution delay. By contrast, DeepHawkes caches the contents
having the highest estimated popularity, resulting in longer
average delay than SULC. Moreover, CUM provides similar
performance to DeepHawkes, while LRU has the highest
average binding resolution delay.

In Fig. 10, we analyze the impact of different network
parameters on the average binding resolution delay of SULC.
It can be readily observed from Fig. 10 (a) that the aver-
age binding resolution delay can be significantly reduced by
increasing the cache size. This is because mapping lookup
requests are more likely to be resolved locally when each LEO
can cache more popular mappings. For different total numbers
of mappings, Fig. 10 (b) shows that SULC converges promptly
and the change of M has a low impact on the average binding
resolution delay. Because the Zipf-like distribution of mapping
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Fig. 10. Binding resolution delay comparison of SULC with different
parameters

popularity results in the sparsity of popular mappings, the
majority of requests is concentrated on a few MTs. Moreover,
SULC exploits the Round-robin and the Force-log phases to
quickly identify the popular mappings and employs the UCB
policy for caching the optimal mappings. Thus, SULC is not
sensitive to the change of M .

VI. CONCLUSIONS

In this paper, we have studied the location management
problems of SGINs from the perspective of ID-NA mapping
allocation. By exploiting the distributed storage on board of
GEOSs and LEOSs for caching part of the ID-NA mappings,
we have proposed a multi-layer binding resolution system for
providing prompt lookup response. By considering the limited
storage of LEOSs, we formulated the mapping allocation
procedure as a caching reward maximization problem. By
leveraging the sparsity of the popular mappings, a sparse
bandit learning based algorithm, namely SULC, has been
proposed, which exploited the historical lookup information
for estimating the expected caching rewards of mappings.
Moreover, a sub-linear upper bound of the cumulative regret
imposed by employing SULC has been provided for guar-
anteeing the convergence of the proposed algorithm. Exten-
sive simulations have been conducted for demonstrating that
the proposed algorithm succeeds in promptly identifying the
popular mappings and attains near-optimal content hit rate.
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Compared to the existed solution, we have shown that SULC
provides the best binding resolution delay performance, while
maintaining the lowest regret after a short period of learning.

APPENDIX

A. Proof of Lemma 1

Before providing the detailed proof of Lemma 1, we first
present the following Lemma based on the Chernoff-Hoeffding
bound [40] which will facilitate the derivation of the regret
upper bound.

Lemma 4. Upon assuming that the random variables
X1, ..., Xn are the rewards obtained by pulling the same arm,
all the random variables belong to [0,1] and have the same
mean value µ. By letting X̄n =

∑n
i=1 Xi
n , for all a ≥ 0, we

have P
{
X̄n − µ ≥ a

}
≤ e−2na2

and P
{
X̄n − µ ≤ −a

}
≤

e−2na2

[32].

Let us now consider the Round-robin phase. Since the
mapping of each MT is cached once during the first

⌈
M
γl

⌉
TSs, we have ⌈

M
γl

⌉∑
t=1

Bl,m (t|R) = 1,∀m ∈M. (35)

When t ≥
⌈
M
γl

⌉
+1, the event {Bl,m (t|R) = 1} occurs only if

the learning algorithm entered the Round-robin phase, which
means |A (τ)| ≤ γl for τ = t −

⌈
m
γl

⌉
. In this case, some of

the popular mappings are inactive. Thus, we have
R ⊂ {|A (τ)| ≤ γl}

⊂ ∪Klk=1

{
r̄l,k (Nk (τ)) ≤

√
α log (Nk (τ))

Nk (τ)

∣∣∣∣∣Bl,m(t) = 1,R

}
.

(36)
The expectation term in (27) can be upper-bounded by

E

[
T∑
t=1

Bl,m (t|R)

]
≤ 1 + E

 ∞∑
t=
⌈
M
γl

⌉
+1

Bl,m (t|R)


≤ 1 +

∑
k∈K

∞∑
n=1

P

{
r̄l,k (n) ≤

√
α log (n)

n

}

= 1 +
∑
k∈K

∞∑
n=1

P

{
r̄l,k (n)− µl,k ≤

√
α log (n)

n
− µl,k

}
,

(37)

where we replace Nk(τ) by n. When log(n)
n ≤ µ2

l,k

4α , we have√
α log(n)

n − µl,k ≤ −µl,k2 . One can readily check that there
exists a minimum integer n̂k and ∀n ≥ n̂k, when we have
log(n)
n ≤ µ2

l,k

4α . Thus, applying Lemma 4, (37) can be further

upper-bounded by

E

[
T∑
t=1

Bl,m (t|R)

]

≤ 1 +
∑
k∈K

(
n̂k +

∞∑
n=n̂k+1

P
{
r̄l,k (n)− µl,k ≤ −

µl,k
2

})

≤ 1 +
∑
k∈K

(
n̂k +

∞∑
n=n̂k+1

e−
µ2
l,k
2 n

)

≤ 1 +
∑
k∈K

(
n̂k +

2

µ2
l,k

)
, (38)

and Lemma 1 is proved.

B. Proof of Lemma 2

Before providing the detailed proof of Lemma 2, we present
a generic upper-bound of the expected cumulative regret.
Recalling (21), the expected cumulative regret can be rewritten
as

E[Reg(T )] =
∑
i∈Γ

µl,i (T − E[Ni(T + 1)])

−
∑

m∈M\Γ

µl,m E[Nm(T + 1)]. (39)

Since µl,i ≤ µl,1, we have

E[Reg(T )] ≤ µl,1

(
γlT −

∑
i∈Γ

E[Ni(T + 1)]

)
−

∑
m∈M\Γ

µl,m E[Nm(T + 1)]

≤
∑

m∈M\Γ

E[Nm(T + 1)]∆1,m, (40)

where ∆1,m = µl,1 − µl,m.
For the Force-log phase, we decompose the regret into

two parts imposed by the popular and unpopular mappings,
respectively. Since the learning algorithm starts with a Round-

robin phase,
∑⌈

M
γl

⌉
t=1 Bl,m(t|F) = 0 and RegF (T ) can be

upper-bounded by

RegF (T ) ≤
∑
k∈K\Γ

∆1,k E

 T∑
t=
⌈
M
γl

⌉Bl,k (t|F)


︸ ︷︷ ︸

F1

+
∑

m∈M\K

∆1,m E

 T∑
t=
⌈
M
γl

⌉Bl,m (t|F)


︸ ︷︷ ︸

F2

. (41)

According to the definition of the Force-log phase, the map-
ping of MT m is cached, which implies that r̄l,m(Nm(t)) ≤√

α log(t)
Nm(t) . Thus, F1 can be upper-bounded by

F1 ≤
∑
k∈K\Γ

∆1,k

T∑
t=
⌈
M
γl

⌉P
{
r̄l,k(Nk(t)) ≤

√
α log(t)

Nk(t)

}
. (42)
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Upon leveraging t ≤ T , we have

F1 ≤
∑
k∈K\Γ

∆1,k

∞∑
t=
⌈
M
γl

⌉P
{
r̄l,k(Nk(t)) ≤

√
α log(T )

Nk(t)

}

≤
∑
k∈K\Γ

∆1,k

∞∑
n=1

P

{
r̄l,k(n)− µl,k ≤

√
α log(T )

n
− µl,k

}
.

(43)

Since
√

α log(T )
n decreases with n, when n ≥

⌈
4α log(T )
µ2
l,m

⌉
, we

have
√

α log(T )
n − µl,m ≤ −µl,m2 . We further upper-bound F1

by

F1 ≤
∑
k∈K\Γ

∆1,k

(
4α log(T )

µ2
l,k

+

∞∑
n=1

P
{
r̄l,k(n)− µl,k ≤ −

µl,k
2

})

≤
∑
k∈K\Γ

∆1,k

(
4α log(T )

µ2
l,k

+
2

µ2
l,k

)
. (44)

When the mapping of an unpopular MT is cached in the
Force-log phase, the MT should be active. Hence, F2 can be
upper-bounded by

F2 ≤
∑

m∈M\K

∆1,m

×
T∑

t=
⌈
M
γl

⌉P
{
r̄l,m (Nm(t)) ≥

√
α log(Nm(t))

Nm(t)

}
.

(45)

By exploiting the fact that µl,m ≤ 0 for all m ∈ M\K, we
have

F2 ≤
∑

m∈M\K

∆1,m

∞∑
n=1

P

{
r̄l,m (n)− µl,m ≥

√
α log(n)

n

}

≤
∑

m∈M\K

∆1,m

∞∑
n=1

1

n2α/ ln(10)

≤ 2
∑

m∈M\K

∆1,m. (46)

By substituting the upper bounds of F1 and F2 into (41),
(31) is obtained.

C. Proof of Lemma 3
Following similar steps to those in the proof of Lemma 2,

the cumulative regret in the UCB phase can be upper-bounded
by

RegU (T ) ≤
∑
k∈K\Γ

∆1,k E

 T∑
t=
⌈
M
γl

⌉Bl,k (t|U)


︸ ︷︷ ︸

U1

+
∑

m∈M\K

∆1,m E

 T∑
t=
⌈
M
γl

⌉Bl,m (t|U)


︸ ︷︷ ︸

U2

. (47)

Here, U1 and U2 represent the upper bounds of the regrets
for caching the popular and unpopular mappings respectively.

The mapping of m ∈ K\Γ is cached only if its estimated
mean reward is higher than that of a MT in Γ. Hence, we
further upper-bound U1 by

U1 ≤
∑
k∈K\Γ

∆1,k

T∑
t=
⌈
M
γl

⌉P
{
r̄l,k(Nk(t)) +

√
α log t

Nk(t)

≥ min
i∈Γ

(
r̄l,i(Ni(t)) +

√
α log t

Ni(t)

)}

≤
∑
k∈K\Γ

∆1,k

T∑
t=
⌈
M
γl

⌉
∑
i∈Γ

Pk,i(t), (48)

where Pk,i(t) can be expressed as

Pk,i(t) = P

{
r̄l,k(Nk(t)) +

√
α log t

Nk(t)
≥ r̄l,i(Ni(t)) +

√
α log t

Ni(t)

}

= P

{
r̄l,k(Nk(t))− µl,k ≥

∆i,k

2
+

∆i,k

2
−

√
α log t

Nm(t)

+r̄l,i(Ni(t))− µl,i +

√
α log t

Ni(t)

}
. (49)

Here, ∆i,k = µl,i − µl,k. It can be observed that ∆i,k

2 −√
α log t
Nk(t) ≥ 0 if Nk(t) ≥

⌈
4α log(t)

∆2
i,k

⌉
. Moreover, one can

readily check that

P{x ≥ a+ b} = P{x ≥ a+ b|b ≥ 0}P{b ≥ 0}
+ P{x ≥ a+ b|b ≤ 0}P{b ≤ 0}. (50)

Since 0 ≤ P{b ≥ 0} ≤ 1, the first term on the left side of
(50) can be upper-bounded by

P{x ≥ a+ b|b ≥ 0}P{b ≥ 0} ≤ P{x ≥ a+ b|b ≥ 0}
≤ P{x ≥ a}. (51)

Similarly, 0 ≤ P{x ≥ a + b|b ≤ 0} ≤ 1, the second term on
the left side of (50) can be upper-bounded by

P{x ≥ a+ b|b ≤ 0}P{b ≤ 0} ≤ P{b ≤ 0}. (52)

Combining (51) and (52), we have

P{x ≥ a+ b} ≤ P{x ≥ a}+ P{b ≤ 0}. (53)

Then U1 can be further bounded by

U1 ≤
∑
k∈K\Γ

∆1,k

∑
i∈Γ

(
4α log(t)

∆2
i,k

+

∞∑
n≥
⌈

4α log(t)

∆2
i,k

⌉P
{
r̄l,k(n)− µl,k ≥

∆i,k

2

}

+

T∑
t=
⌈
M
γl

⌉P
{
r̄l,i(Ni(t))− µl,i ≤ −

√
α log t

Ni(t)

} . (54)
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By leveraging t ≤ T and Lemma 4, we have

U1 ≤
∑
k∈K\Γ

∆1,k

∑
i∈Γ

(
4α log(T )

∆2
i,k

+

∞∑
n≥
⌈

4α log(t)

∆2
i,k

⌉ e−n
∆2
i,k
2 +

T∑
t=
⌈
M
γl

⌉ t−2α/ ln 10


≤
∑
k∈K\Γ

∆1,k

∑
i∈Γ

(
4α log(T )

∆2
i,k

+
2

∆2
i,k

+ 2

)
. (55)

For m ∈ M\K, its mapping is cached only if
r̄l,m(Nm(t)) ≥

√
α log(t)
Nm(t) . Then U2 can be upper-bounded by

U2 ≤
∑

m∈M\K

∆1,m

T∑
t=
⌈
M
γl

⌉P
{
r̄l,m(Nm(t)) ≥

√
α log(t)

Nm(t)

}

≤
∑

m∈M\K

∆1,m

T∑
t=
⌈
M
γl

⌉P
{
r̄l,m(Nm(t))− µl,m ≥

√
α log(t)

Nm(t)

}

≤
∑

m∈M\K

∆1,m

T∑
t=
⌈
M
γl

⌉ t−2α/ ln 10 ≤ 2
∑

m∈M\K

∆1,m. (56)

Upon combining the upper-bounds of U1 and U2, Lemma 3
is proved.
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