1	The effects of disturbance on the microbial mediation of sediment stability
2	Naiyu Zhang ^{1, 2*} , Charlotte E.L. Thompson ^{2, 3} , and Ian H. Townend ²
3	¹ State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
4	² School of Ocean and Earth Science, National Oceanography Centre, University of
5	Southampton, Southampton SO14 3ZH, U.K.
6	³ Channel Coastal Observatory, National Oceanography Centre, Southampton, SO14
7	3ZH, U.K.
8	*Corresponding author: Naiyu Zhang (<u>21310078@tongji.edu.cn</u>)
9	Charlotte E.L. Thompson: <u>celt1@noc.soton.ac.uk</u>
10	Ian H. Townend: <u>I.Townend@soton.ac.uk</u>
11	Key words: Biofilm, disturbance, bioturbation, bio-stabilization, bio-destabilization,
12	biofilm-sediment aggregates, bio-sediment formation
13	

14 Abstract

15 In coastal areas, biofilms are often subject to disturbance by hydrodynamic forcing, 16 bioturbation and human activities. These factors affect the influences biofilms have on the sediment. To reveal these effects, we studied laboratory-incubated and field-17 18 collected biotic sediments reworked by disturbances, and examined their stabilities 19 and three-dimensional microstructures using laboratory annular flume tests and a wet-20 staining X-ray Microcomputed tomography (μ -CT) method. We find that, when 21 subject to disturbance, biofilms do not always establish mat-like matrices that firmly 22 armour the seabed and bio-stabilize sediments, but instead, have a range of effects on 23 sediment stability, including both bio-stabilization and destabilization. Disturbance 24 considerably alters microbial influences on sediment stability, but is not the only 25 control. Given equal disturbance, whether or not sediments are bio-stabilized largely 26 depends on the state of bio-sediment formation. At a relatively well-developed state, 27 an organic-rich, adhesive polymer network tightly interconnects large amounts of 28 sediment particles into aggregates, forms complex internal structures, and enhances 29 sediment stability. By contrast, some bio-sediment formations only ever reach a less 30 well-developed state, where scattered organic patches bind relatively few particles 31 into aggregates and reduce sediment stability. Microbial growth likely has two 32 opposing effects on sediment stability, by enhancing either weight/friction or lift/drag 33 on aggregated particles. The former has the positive effect of enhancing sediment 34 stability, whereas the latter can result in greater flow resistance and so have the 35 opposite effect. A conceptual framework is put forward to characterize the different

36 states of bio-sediment formation and their distinct effects on sediment stability.

37 Introduction

38	The solid-liquid interfaces of aquatic sediment particles provide preferential
39	habitats for microbial cells to colonise and grow. These microbial cells do not live as
40	single dispersed cells (Probandt et al. 2018), but instead, through the secretion of
41	sticky organic matter (e.g. extracellular polymeric substances (EPS)), attach to the
42	surfaces of sediment particles, building up adhesive biofilm structures and
43	accumulating additional microbe cells, sediment grains and particles (Decho 2000;
44	Flemming and Wingender 2010; Sutherland 2001). Heterogeneous and porous three-
45	dimensional (3D) aggregated microstructures of large diversity, ranging from small
46	clusters, large flocs, to multi-layered biofilm mats of varying thickness are formed
47	(Flemming 2019); i.e., biofilm-sediment aggregates (BSAs) (Zhang et al. 2018).
48	The ubiquitous presence of biofilm and bio-sediment formation alters the
49	physical transport of sediment (Fang et al. 2020; Malarkey et al. 2015; Mariotti and
50	Fagherazzi 2012). Studies acknowledge that the mat matrices of biofilm can suppress
51	sediment resuspension, by both binding sediment particles into an adhesive organic
52	mat, which provides an adhesive force that armours the bed, and also by smoothing
53	bed roughness to reduce drag, thus enhancing sediment stability; i.e. 'biostabilization'
54	(Paterson et al. 1989; Friend et al. 2008; Parsons et al. 2016).
55	A tightly-bound, mat-like matrix, however, is not always established. Coastal
56	areas are dynamic, with disturbances including hydrodynamic forcing, such as

57	currents and waves, bioturbation caused by zoobenthos, and human activities such as
58	footprints, dredging and fishing trawls (Michaud et al. 2005; Foden et al. 2011;
59	Thompson et al. 2017). Such disturbances prevent the successful establishment of
60	biofilm mats, a process that takes several days (Chen et al. 2017; Gerbersdorf et al.
61	2008; Vignaga et al. 2013), rather they tend to form patchy, loosely-connected,
62	diffusive and fluffy biofilm matrices (Hope et al. 2020; Orvain et al. 2014). BSA that
63	is disturbed as it develops may be of more relevance in dynamic coastal seas (Mariotti
64	et al. 2014; Mariotti and Fagherazzi 2012).
65	Two contrasting effects of disturbance have been noted on biofilm development:
66	(1) biostabilization remains after cyclic resuspension and deposition (Friend et al.
67	2003a; Hope et al. 2020), in which disturbance did not degrade bio-stabilization and
68	strong bio-stabilization was rapidly restored after a few cycles of moderate
69	disturbance, even though distinct transport behaviours were observed relative to
70	biofilm mats (Chen et al. 2019). Such rapid restoration of biostabilization occurs
71	during spring-neap tidal cycles (Van De Koppel et al. 2001; Mariotti & Fagherazzi
72	2012). In contrast, (2) the destabilization of sediments by microbial development (i.e.,
73	bio-destabilization) has been reported when the coastal areas are dominated by intense
74	and frequent disturbances caused by factors such as storm, waves and bioturbation
75	(Amos et al. 2004; Le Hir et al. 2007; Orvain et al. 2003). In these cases, the
76	concentrations of microbial substances (e.g. chlorophyll a and EPS concentrations)
77	negatively correlate with bed stability (erosion thresholds) (Hope et al. 2020; Orvain
78	et al. 2014; Thompson, et al. 2017).

79	It is likely that intense and frequent disturbances do not allow the mat matrices of
80	biofilms and their strong bio-stabilization effects to establish/restore, but instead
81	generate an alternative state with a less well-developed bio-sediment formation that
82	reduces sediment stability (Van De Koppel et al. 2001; Mariotti and Fagherazzi 2012).
83	Such a state occurs during the initial stages of biofilm incubation. Within hours of
84	initial bio-sediment formation, the attachment of dispersed microbial aggregates aids
85	the motion of sand grains (Mariotti et al. 2014). At the early stage of microbial
86	development, a rapid increase in field biomass reduces the critical shear stresses for
87	sediment erosion (De Brouwer et al. 2005).
88	This work addresses the following question: Do biofilms always enhance
89	sediment stability when subject to disturbance, or do they have a range of effects,
90	including bio-destabilization?
91	We hypothesized that sediment disturbance has a range of effects on microbial
92	influences on sediment stability, including both enhancing and reducing sediment
93	stability (bio-stabilization and destabilization). Further we hypothesized that bio-
94	destabilization is a relatively less well-developed state of bio-sediment formation. To
95	test this latter hypothesis, the resuspension thresholds of biotic sediments developed
96	under physical disturbances were examined using laboratory flume tests. The 3D
97	microstructural features of these disturbed biotic sediments were directly captured by
98	μ -CT scans, to reveal the states of bio-sediment formation.

99 Materials and Methods

100 The creation and collection of biotic sediments

101	Biotic sediments were cultured in the laboratory using single algae species, and
102	collected from tidal flats colonized with natural microbial assemblages. By applying
103	different hydrodynamic disturbance regimes, two types of biotic sediment were
104	created during a 6-day incubation period: a fluffy sediment-water interface created
105	under daily resuspension disturbance referred to as 'fluff', and a mat-like sediment-
106	water interface created in calm waters with no disturbances referred to as 'mat'.
107	Surface intertidal sediments were collected, transported back to the laboratory and
108	hand mixed to fully rework/disturb the sediments before the experiments (sediment
109	sampling and preparation are detailed below). Two types of field sediments with
110	different abiotic matrices were tested; one comprising of predominantly silty
111	sediment, whilst the other was a sandy sediment.
112	Laboratory-created biotic sediments
113	Biotic sediments were created in an annular flume, the Core Mini Flume (CMF)
114	(Thompson et al., 2013), over a 6-day incubation period. A flat sediment surface was
115	hand-moulded, with a sediment depth of 6 cm overlaid with 15 cm depth of artificial
116	sea water (Sigma sea salts, salinity 35 ppt). The sediment was comprised of fine-
117	grained sand sieved to the range of 125-250 μ m with a $d_{50} = 195 \mu$ m, acid washed in
118	advance to remove organic matter. Slurries of algae clay aggregates provided the
119	microbial source and were cultured using a single species of diatom, Phaeodactylum
120	tricornutum (cultured in the Research Aquarium Laboratory, National Oceanography
121	Centre, Southampton), and kaolinite clays (ACROS Organics TM), following the

122	protocols of Zhang et al. (2018). They were added into the flume and allowed to settle
123	overnight on the sand before the 6-day period of incubation started.
124	The mat was allowed to grow under quiescent flow conditions with no
125	hydrodynamic disturbance for 6 days. The fluff was created in an identical CMF with
126	the same experimental setting, except that daily cycles of resuspension (6 hours) and
127	deposition (18 hours) were applied at a constant shear stress of 1.0 Pa that exceeds the
128	resuspension thresholds of sand grains for 6 days. In both treatments the sediments
129	were kept illuminated for 24 h at 18 °C, and oxygenated through air stones 24 h per
130	day, to keep the microbe cells alive.
131	Two replicates were run for each treatment, with one for the resuspension
132	threshold test, and the other for μ -CT experiments (Figure S1). Triplicate
133	resuspension tests were conducted on the fluff, to examine the reliability of the
134	experimental results of resuspension thresholds.
135	Field-collected biotic sediments
136	To determine whether similar results occur for natural microbial assemblages,
137	field samples were collected from two sampling sites ~ 200 m apart in the Tay estuary,
138	Scotland (56°26'42" N, 2°52'11" W) at the end of October in 2019. The Tay estuary is
139	a macrotidal, 50-km long coastal embayment on the east coast of Scotland, UK. At
140	each site, the top ~ 10 mm of the sediments were sampled for microphytobenthos and
141	their organic products, which were placed in plastic boxes with ice bags under dark
142	conditions and transported back to laboratories immediately after sampling (~12 h).
143	Samples were kept in a fridge at 4 °C under dark conditions for one week. The

144	samples were then hand mixed and homogenized to fully disturb and rework the
145	sediments, which were remoulded into a plane bed in the CMFs and gently overlaid
146	with 15 cm depth of artificial seawater (salinity 35 ppt). The CMFs were allowed to
147	settle overnight before experimentation, and kept at 18 °C, illuminated and
148	oxygenated, to create consistent environmental conditions with the laboratory-created
149	sediments. According to Folk's classification (Folk, 1954), the samples from site 1
150	belong to sandy silt (sand fraction = 47%, $d_{50} = 60 \ \mu\text{m}$, and d_{50} of sands = 98 μm)
151	and are referred to as silty sediments. Samples taken from site 2 belong to silty sand
152	(sand fraction = 63%, d_{50} = 120 µm, and d_{50} of sands = 239 µm), and are referred to
153	as sandy sediments.
154	The silty and sandy field sediments were prepared in two identical CMFs, with
155	one used for resuspension threshold test, and the other for μ -CT experiments.
156	Resuspension experiments
157	Resuspension experiments were performed in the CMFs (Thompson et al., 2013)
158	(Figure S1(a)), which is a small worktop annular flume (Amos et al., 1992). It consists
159	of two 5 mm-thick acrylic tubes; an outer diameter of 200 mm and inner diameter of
160	110 mm, which leaves a 40 mm-wide working channel in which a sediment bed can
161	be formed. An Optical Backscatter Sensor (OBS) was placed at 4 cm above the bed at
162	the same height as a sampling port, for measuring suspended sediment concentration.
163	A Nortek Vectrino Acoustic Doppler Velocimeter (ADV) was used to measure flow
164	velocity at 6 cm above the sediments (Figure S1(a)). Steady currents were generated

165	by 4 equidistant motor-controlled paddles, the speed of which was computer
166	controlled (Thompson et al., 2004; 2013). Stepwise increased motor speeds were
167	programmed and time steps of 10-minute were used to suspend the biotic sediments.
168	(Amos et al., 2004; Amos et al., 1992; Thompson et al., 2003; 2011). OBS data was
169	calibrated against the measured concentration of suspended materials (g/L) sampled
170	from the same height as the OBS every 2-3 velocity steps (Thompson et al., 2013).
171	Suspension samples for OBS calibration were taken using a 50 ml plastic syringe and
172	filtered through 47 mm GF/F Whatman filter. The filters were then oven dried at 60
173	°C and weighed to calibrate the OBS data. The suspended concentrations during the
174	stepwise increased resuspension tests were obtained.

175 Bed shear stress was estimated using the turbulent kinetic energy method (TKE) 176 (Amos et al., 2004; Thompson et al., 2003), which measures the intensity of turbulent motions within a shearing fluid and calculates the turbulent kinetic energy density, E, 177 from the spectrum of a velocity time series: $E = \frac{1}{2} \rho_w (\overline{u}_t^2 + \overline{v}_t^2 + \overline{w}_t^2)$ (where ρ_w is water 178 density, u_t , v_t , and w_t are flow velocity fluctuations in stream-wise, cross-stream and 179 180 vertical directions) (Soulsby, 1997; Thompson et al., 2004). The bed shear stress can be calculated according to $\tau_{h} = 0.19E$ (Soulsby, 1997). The resuspension threshold was 181 182 determined by plotting the bed shear stresses against the suspended sediment 183 concentration (Amos et al., 2004; Sutherland et al., 1998).

184 μ-CT experiments

185 A wet staining method was used to scan the 3D structures of the BSA (Zhang et

186	al., 2018), and this varied according to the sample composition. For samples
187	comprised of fine-grained clay particles (e.g. the BSA suspended from the fluff
188	sediments at moderate flow intensities), samples were collected from the sampling
189	port during the resuspension process using a 20 ml syringe and stained using absolute
190	alcohol and Alcian Blue dye solution (Sigma; 0.4 wt%/wt at pH 2.5), following Zhang
191	et al. (2018). The μ -CT scans of the treated specimens were conducted using a Zeiss
192	160 kVp Versa 510 X-ray microscope, at the μ -VIS X-ray Imaging Centre, University
193	of Southampton (Figure S1(b)). A high resolution of 0.7 \times 0.7 \times 0.7 μm was
194	achieved.
195	A modified method was used for sand grains, which can be two orders of
196	magnitude larger than clay minerals, requiring a considerably larger field of view
197	provided by the modified 225 kVp Nikon HMX ST, housed at the same facility. In
198	this case, samples were collected using a 50 ml syringe corer and placed in a sealed
199	glass vessel that was topped up with absolute alcohol and Alcian Blue dye solution
200	(Sigma;0.4 wt%/wt at pH 2.5). After an overnight treatment, the sediments of the top
201	\sim 3 cm in the syringe core was sectioned using a steel knife, which was carefully
202	washed and rinsed using distilled water and ethanol in succession. The sectioned layer
203	of the sediments was subsampled using borosilicate Nuclear Magnetic Resonance
204	(NMR) tubes (Norell [™] Standard Series [™] ; outer diameter 4.9 mm, inner diameter 4.2
205	mm, depth 20 mm), by inserting the tube into the sectioned sediment layer. After the
206	sub-sampling, wet staining liquid (absolute alcohol and Alcian Blue dye solution) was
207	gently added into the tube, to ensure the sampled BSA remained in a hydrated state.

208	The NMR tubes were then sealed using NMR caps and sealing parafilm, in order to
209	avoid potential evaporation and desiccation during the scanning process. Each scan at
210	HMX took approximately 1 hour and the resulting voxel resolution was 4.5 \times 4.5
211	$\times~$ 4.5 $\mu m.$ 3D microstructures including the number of adhered sand grain, organic
212	matter content, 3D volume and surface area, and volume equivalent diameter, as well
213	as the BSA density profiles were quantified by a pre-developed protocol using CT-
214	pro, Image J and Avizo 9.3.0 (Callow et al., 2018; Zhang et al., 2018).
215	Results
216	Microbial mediation of sediment resuspension thresholds
217	Resuspension tests were conducted on the laboratory-created fluff and mat, and
218	the field-collected silty and sandy sediments. The results were compared against their
219	theoretical abiotic thresholds, to examine microbial effects on sediment stability.
220	Laboratory-created sediments
221	The suspended concentrations vs. the shear stresses for clean sand, the mat and
222	fluff are shown in Figure 1. The threshold for suspending abiotic clean sand grains
223	into the water column obtained from the control tests was 0.84 Pa (Figure 1 (a)),
224	consistent with empirical threshold estimate of 0.85 Pa, using Roe (2007)'s empirical
225	relationship (Table S1, Eq. (S1) in the SI).
226	Both the mat and fluff present a two-stage resuspension process, initiated at
227	different thresholds (Figure 1 (b-c)). An examination of suspended materials during
228	the first stage showed no sand grains, with only organic-rich materials suspended

229	(stage 1), while considerable suspension of sand grains occurred in the second stage
230	(stage 2). μ -CT examination confirmed that the suspended materials from stage 1
231	primarily consisted of aggregates of organic matter and kaolinite clays (no sand
232	grains), hence reflecting the microbial influences on the stability of clay particles.
233	According to annular flume tests by Mehta and Partheniades (1982) (where the same
234	clay mineralogy, water salinity, measurement techniques and methods were
235	considered), the resuspension threshold of abiotic kaolinite clays after 24 h
236	consolidation is 0.21 Pa. This measurement is consistent with the theoretical threshold
237	estimate of 0.22 Pa obtained using Wu et al. (2018)'s formula (Table S1, Eq. (S2) in
238	the SI). Our experiments showed the biofilm-mediated clays were not suspended until
239	the applied shear stresses reached 0.43 Pa (stage 1 of the mat, Figure 1(b)) and 0.31
240	Pa (stage 1 of the fluff, Figure 1(c)). The shear stress threshold value for the
241	resuspension of clay particles from the mat is clearly greater than that of the fluff,
242	suggesting a rather larger effect of bio-stabilization for the clay particles in the mat
243	when biofilm development was not disturbed. The less significant biostabilization
244	effects for the clay particles in the fluff is likely caused by the periodic disturbances.
245	Nevertheless, the biofilm that was disturbed as it developed stabilized clay particles.
246	In stage 2, the entrainment of sand grains occurred at 0.94 Pa for the mat, which
247	is higher than that of clean sand (0.84-0.85Pa), implying a bio-stabilization effect. By
248	contrast, the suspension of sand grains from the fluff occurred at an applied shear
249	stress of 0.74 Pa, which is lower than that of clean sand. Hence the disturbed biofilm
250	development destabilized the sand grains.

251	Previous examination notes the standard errors of CMF measurement are in the
252	range 0.01-0.03 Pa (Thompson et al., 2013). Taking the upper bound of the error, the
253	resuspension threshold of clay BSAs from the fluff is 0.31 ± 0.03 Pa, higher than the
254	theoretical thresholds of 0.21-0.22 Pa, supporting clay BSAs as bio-stabilizers. The
255	resuspension threshold of fluff BSAs is 0.74 ± 0.03 Pa, lower than the abiotic
256	threshold of 0.84-0.85 \pm 0.03 Pa, while mat BSAs have a higher resuspension
257	threshold of 0.94 \pm 0.03 Pa, supporting fluff BSAs as bio-destabilizers and mat BSAs
258	as bio-stabilizers. In calm waters, mat matrices of biofilm can rapidly establish and
259	stabilize sediments. By contrast, when the biofilm growth was disturbed, such that no
260	mat matrices were able to become established, the response is more complex, with the
261	fine fraction (clay) exhibiting biostabilization and the coarse fraction (sand)
262	destabilization. Hence disturbance seems unlikely to be the only control and other
263	mechanisms must have an influence.
264	Field-collected sediments
265	In contrast to the laboratory sediments, no clear two-stage resuspension
266	processes were observed for the silty and sandy sediments collected in the field. This
267	is likely because the sediments were hand-mixed and homogenised before the test,
268	and some of the naturally occurring fluffy material were lost through collection.
269	During the short period of settlement, no distinguishable two-layered matrices formed
270	at the bed. Plots of the suspended concentrations against the shear stress during the
271	step-wise increased resuspension tests showed that the entrainment of silty and sandy
272	field sediments started at 0.44 Pa and 1.05 Pa, respectively (Figure 1 (d)).

273	Theoretical thresholds for the suspension of abiotic sand-mud mixtures were
274	calculated. No direct measurements were taken, due to the unknown
275	resuspension/deposition history of the sediments in the field and thus the challenges
276	of successfully replicating the packing of sediment particles in the field. Five
277	commonly cited empirical relationships that have been developed and tested for a
278	variety of sediment properties, measurement techniques, and analysis methods, were
279	used to obtain abiotic threshold estimates (Eq. (S3-S7) in Table S1 of the SI) (Ahmad
280	et al., 2011; Van Ledden, 2003; Van Rijn, 1993; 2007; Wu et al., 2018; Yao et al.,
281	2018). The theoretical threshold estimates of abiotic sand-mud mixtures are in the
282	range of 0.12-0.30 Pa for the silty mixtures, and 1.55-2.46 Pa for the sandy mixtures.
283	The consideration of the CMF measurement errors of 0.03 allows a clear
284	separation between bio-stabilization and destabilization. The biofilm-mediated field
285	silty sediment entered water at a shear stress of 0.44 ± 0.03 Pa, higher than their
286	abiotic threshold estimates of 0.12-0.30 Pa, indicating an enhanced sediment stability
287	by disturbed biofilms (Figure 1(d-e)). By contrast, the entrainment of the biofilm-
288	mediated sandy field sediment occurred at 1.05 ± 0.03 Pa, lower than their theoretical
289	abiotic threshold estimates of 1.55-2.46 Pa, indicating a reduced sediment stability by
290	disturbed biofilms (Figure 1(d-e)). The consistent results from our laboratory-created
291	and field-collected sediments suggest that, whilst the establishment of a biofilm mat,
292	such as that developed in calm waters, enhances sediment stability as previously
293	acknowledged, both bio-stabilization and destabilization can develop when subject to
294	disturbance (Figure 1(e)).

295 3D microstructural features of biofilm mediated sediments

296	μ -CT experiments were conducted to examine the 3D microstructural features of
297	biofilm mediated sediments. In total, five types of material were examined. This
298	includes the suspended materials during stage 1 from the fluff, but excluded the
299	suspended materials during stage 1 from the mat, as the large pieces of the suspended
300	material could not be extracted from the flume port. For the fluff and mat, after the
301	organic-rich and loosely-attached materials were removed during stage 1, the
302	materials remaining on the bed were examined. The materials at the surface of the
303	silty and sandy field sediments were also examined using μ -CT. Figure 2 (1a-5c)
304	illustrates 3D views of the microstructures of the five types of material, and their
305	microstructural properties are summarized in Table S3.
306	The materials suspended during stage 1 from the fluff are comprised of
307	aggregates formed by organic matter and clay particles, referred to as clay BSA
308	(Figure 2 (1a-c)). Extensive, relatively well-developed networks of organic matter
309	tightly adhere large amounts of clay particles, forming organic rich microstructures at
310	a relatively well-developed state (high organic fraction: 0.78 ± 0.09).
311	After the removal of clay BSA during stage 1, distinct BSA matrices remain in
312	the fluff (Figure 2 (2a-c)) and the mat (Figure 2 (3a-c)). In the fluff, organic matter
313	form discrete and scattered patches, attaching to relatively few sand grains in poorly-
314	structured aggregates, coined fluff BSA (Figure 2 (2a-c)). These aggregates appear to
315	be at much less well-developed states, of relatively low organic fraction (0.20 ± 0.07).
316	By contrast, BSAs in the mat developed in calm waters have copious amounts of

organic matter and developed an aggregate with multilayer structures, tightly adhered to large numbers of sand grains, and coherently bind into mat matrices of biofilm, referred to as mat BSA (Figure 2 (3a-c)). As a result, the mat BSAs contain a significantly higher organic matter fraction (0.55 ± 0.04) , 2-3 times higher than that of the fluff BSA, which enables the adherence of an order of magnitude larger number of sand grains into larger aggregates.

323 3D imaging illustrates distinct BSA microstructures at the silty and sandy field 324 sediments. Whilst both were reworked by disturbances, the organic matter from the 325 silty field sediments appears to be relatively well-developed into an adhesive organic 326 polymer network, where large amounts of fine-grained sediment particles were 327 adhered and embedded into tightly structured aggregates, coined field silty BSA 328 (Figure 2 (4a-c)). By contrast, in the reworked sandy field sediments, the state of bio-329 sediment formation appears to be less well-developed. A few coarse sand grains are 330 attached by discrete biofilm patches and small amounts of fined-grained sediment 331 particles, coined field sandy BSA (Figure 2 (5a-c)). The field sandy BSAs contain a 332 significantly lower organic fraction (0.15 ± 0.05), 5-6 times lower than that of field silty BSAs (0.80 ± 0.06). 333

When disturbed, the aggregates that enhance sediment stability (bio-stabilizers: clay and field silty BSAs) and reduce sediment stability (bio-destabilizers: fluff and field sandy BSAs) established significantly different and distinguishable 3D microstructures in terms of their constituent make-up and geometry (Figure 2 (6a-c)). The bio-stabilizers were at a relatively well-developed state of bio-sediment

339	formation, where the biofilm managed to build an extensive and cohesive organic
340	polymer network, resulting in a high organic to sediment ratio (organic fraction $= 0.78$
341	\pm 0.08, Figure 2 (6a)). Large amounts of sediment grains are tightly interconnected,
342	establishing highly complex internal structures with high porosities and irregularities
343	(porosity = 0.87 ± 0.07 , roundness = 0.13 ± 0.08 , Figure 2 (6b-c)). Sediments are bio-
344	stabilized. By contrast, the organic network in the bio-destabilizers shows a less well-
345	developed state, constituting a significantly lower organic fraction (organic fraction =
346	0.18 ± 0.07 , $p < 0.001$, Figure 2 (6a),), building less complex internal structures with
347	significantly lower porosities and surface irregularities (porosity = 0.67 ± 0.10 ,
348	roundness = 0.37 ± 0.10 , $p < 0.001$, Figure 2 (6b-c)). Sediment stability is reduced. As
349	such, BSA microstructures formed at different states of bio-sediment formation play a
350	key role in mediating sediment stability.
351	Discussion

352 Entrainment process of biofilm mediated sediments: the effects of disturbance

In calm waters, armouring matrices of biofilm mat develop (Figure 3 (1a)). At the surface of the mat, some relatively young, randomly-developed branches of organic matter may loosely connect with the mat and protrude into the flow (Droppo et al. 2007; Flemming 2019). These therefore experience stronger bed shear stresses than the planar areas of the mat, and were easily detached in stage 1 at a moderate applied shear stress (Figure 3 (1b)). This has been observed by others (Chen et al. 2019), and is likely due to the non-uniform development of the biofilm (Jesus et al.

360	2005). However, the loss of these protrusions does not eliminate the overall mat
361	stability. The armouring matrix of the mat retains its integrity and so continues to
362	protect the sediments. If this were not the case, the underlying sand grains would enter
363	the water column at their abiotic threshold shear stress of 0.84 Pa, which did not
364	occur. The immobilised sand grains also prevent bed-load transport. Once the applied
365	flow shear stress exceeds the "weakest" adhesion between the mat BSA and the
366	underlying sediment bed, the local integrity of the mat matrix is lost (Chen et al. 2019;
367	Vignaga et al. 2013). The underlying material is exposed to the flow at a higher shear
368	stress than the clean sand entrainment threshold (Figure 3 (1c)), causing immediate
369	mass resuspension of the bed sediments in an "all-or-nothing" fashion (Le Hir et al.
370	2007;. Mariotti and Fagherazzi 2012) (Figure 3 (1d)). Adhesion with the bed
371	predominantly controls and limits entrainment by the biofilm mat (Fang et al. 2014,
372	2017).
373	By contrast, a stable biofilm mat is unlikely to develop in the short period
374	between disturbances on the order of hours (Mariotti et al. 2014). Instead, discrete
375	aggregates are formed, developing loose connections with the seabed and presenting a
376	fluffy appearance at the sediment-water interface (i.e., the clay, fluff and sandy and
377	silty field BSAs, Figure 3 (2a)). The adhesion established between biofilm aggregates
378	and the seabed during the short periods between disturbances can be more than 5
379	times weaker than that for the mat (Fang et al. 2014)(Figure 3 (2b)), and can be
380	broken at lower flow intensities than are needed to directly lift them into water. The
381	detached aggregates are not immediately suspended, but are transported as bed-load,

382	sliding/rolling and saltating on top of sediments before suspension (Figure 3 (2c), and
383	Video SI for the detachment, bed-load transport and suspension of field silty BSAs as
384	an example). Once the balance between the flow lift/drag forcing and submerged BSA
385	weight/friction forcing is reached, BSAs are lifted into the water and sediment
386	entrainment occurs (Figure 3 (2d)). Hence sediment entrainment is not only controlled
387	by adhesive strength, but largely determined by the balance between flow lift/drag and
388	weight/friction forces. If this balance is reached at a shear stress higher than that of
389	abiotic sediments, biofilm stabilizes the sediment, such as in the clay and field silty
390	BSA samples. However, if the balance is reached at a lower applied shear stress that
391	cannot suspend those abiotic sediments, sediments are bio-destabilized, such as for the
392	fluff and field sandy BSA.
393	Application of Shields parameter to distinguish microbial influences

394 Multiple criteria have been established to characterize the abiotic thresholds of 395 sediment transport (Shields 1936; Bagnold 1966; Buffington, 1999)(abiotic Shields diagram, Figure S2). For example, the Shields parameter, $\theta_{crit, S} = \frac{\tau_{crit}}{(\rho_S - \rho_w)gd_{50}}$, and 396 dimensionless particle diameter, $D_{*,s} = (\frac{(\rho_s / \rho_w - 1)g}{v^2})^{1/3} d_{50}$ consider the size, d_{50} , and 397 effective density, ρ_{s} / ρ_{w} , of clean sediment particles (in which τ_{crit} is the critical 398 399 shear stress for sediment resuspension, ρ_s and ρ_w are the densities of inorganic 400 sediment particles and water, g is gravitational acceleration and v is kinematic 401 viscosity of water). In this scenario, sediment matrices with the same particle size and effective density have the same resuspension thresholds, and microbial effects cannot 402

403 be directly distinguished.

404 The microbial development has, to different extents, enlarged the size and 405 reduced the density of aggregated particles. Including these differences leads to a more robust interpretation of biofilm mediation. It is possible to define a Shields 406 parameter for the solid matter within the sediment, $\theta_{crit,M} = \frac{\tau_{crit}}{(\rho_M - \rho_w)gd_M}$, and matter 407 dimensionless diameter, $D_{*,M} = (\frac{(\rho_M / \rho_w - 1)g}{v^2})^{1/3} d_M$, where ρ_M / ρ_w and d_M are 408 409 effective density and sizes of the solid matter (organic matter and sediment particles) within the aggregates. (A detailed deviation of ρ_M and d_M are provided in Text S1). 410 411 These are related through a power law relationship (Figure 4(a)):

$$\theta_{crit\ M} = 0.80 D_{*M}^{-0.88}, R^2 = 0.91 \tag{1}$$

It is relevant to note that, among the total 78 BSAs tested in this study, only 3 of them are from the mat developed in calm waters, which exhibit a different resuspension mechanism from those in disturbed environments (Chen et al. 2019). The analysis in this section focuses on the 75 disturbed BSAs. The empirically determined suspension thresholds using Eq. (1) fall on or close to the 1:1 line against the thresholds obtained from experiments, showing a reasonable level of agreement, except for the field sandy BSA (Figure 4(b)).

419 The effects of pore water can be included using a Shields parameter for

420 aggregates,
$$\theta_{crit,A} = \frac{\tau_{crit}}{(\rho_A - \rho_w)gd_A}$$
, and the aggregate dimensionless diameter,

421
$$D_{*,A} = \left[\frac{(\rho_A / \rho_w - 1)g}{v^2}\right]^{1/3} d_A$$
, where d_A and ρ_A are the densities and sizes of

422 aggregates (including both soild matter and pore water encapsulated within

423 aggregates). A power law relationship was found between $\theta_{crit,A}$ and $D_{*,A}$ in Figure 4 424 (c):

$$\theta_{crit} = 4.3 D_{*4}^{-1.3}, R^2 = 0.77 \tag{2}$$

The threshold estimates using Eq. (2) are plotted against the experimentallytested results, showing an overall good level of agreement, though the results appear to be more scattered (Figure 4 (d)). For the field sandy BSA, the agreement is improved compared to the Shields diagram for matter, whereas accounting for pore water has only a small influence on the other BSA (The role of pore water is

discussed in Text S2).

431 The importance of aggregate matter in determining sediment stability is not 432 surprising, given that the properties of BSA matter reflect the states of bio-sediment 433 formation. At a relatively well-developed state, a rapid expansion of BSA size occurs, 434 because more mass is encapsulated and weight/friction forces are enhanced to resist 435 flow erosion. In this case, biofilm development and its aggregation with sediment 436 particles have a positive effect on sediment stability. The bed stability increases with 437 the standing stock of algae cells (chlorophyll *a* concentration) (Le Hir et al. 2007; Sutherland et al. 1998; Thompson et al. 2011), and the amount of their EPS secretions 438 439 (e.g. colloidal carbohydrate contents) (Friend et al. 2003b; Underwood and Paterson 440 1993; Yallop et al. 2000), for both sandy and muddy sediments (Hope et al. 2020). 441 Conversely, BSA expansion needs copious amounts of organic matter to be 442 produced. The increased fraction of organic polymers reduces aggregate bulk density

115	as in the clay and field silty BSA. As bed stability positively correlates with bulk
444	densities of sediments (Amos et al. 1997; Thompson et al. 2013, 2017), a reduction in
445	bulk density caused by microbial development reduces sediment stability, and leads to
446	negative correlations between chlorophyll a and/or EPS contents and bed stability
447	(Hope et al. 2020; Orvain et al. 2014; Thompson, et al. 2017). The copious secretion
448	of organic substances glues more sediment particles into larger sizes, enlarging the
449	projected area, making the internal structure more complex and increasing BSA
450	surface roughness (Maggi and Tang 2015). The larger projected area and higher
451	surface roughness cause higher lift/drag forces, making the aggregates less stable to
452	erosion. Consequently, biofilm growth and its aggregation with sediment particles
453	play a negative role on sediment stability.
454	A conceptual framework for microbial mediation at different states
454 455	A conceptual framework for microbial mediation at different states Whether the sediment stability is enhanced or reduced by bio-sediment formation
454 455 456	A conceptual framework for microbial mediation at different states Whether the sediment stability is enhanced or reduced by bio-sediment formation is more complex than previously thought, and needs to consider the net effects of
454 455 456 457	A conceptual framework for microbial mediation at different states Whether the sediment stability is enhanced or reduced by bio-sediment formation is more complex than previously thought, and needs to consider the net effects of BSA development. We suggest three important states of bio-sediment formation, with
454 455 456 457 458	A conceptual framework for microbial mediation at different states Whether the sediment stability is enhanced or reduced by bio-sediment formation is more complex than previously thought, and needs to consider the net effects of BSA development. We suggest three important states of bio-sediment formation, with distinct microstructures and influences on sediment transport (Figure 5 (a-d)):
454 455 456 457 458 459	A conceptual framework for microbial mediation at different states Whether the sediment stability is enhanced or reduced by bio-sediment formation is more complex than previously thought, and needs to consider the net effects of BSA development. We suggest three important states of bio-sediment formation, with distinct microstructures and influences on sediment transport (Figure 5 (a-d)): (I) When the time available for bio-sediment formation is short, scattered and
454 455 456 457 458 459 460	A conceptual framework for microbial mediation at different states Whether the sediment stability is enhanced or reduced by bio-sediment formation is more complex than previously thought, and needs to consider the net effects of BSA development. We suggest three important states of bio-sediment formation, with distinct microstructures and influences on sediment transport (Figure 5 (a-d)): (1) When the time available for bio-sediment formation is short, scattered and discrete patches of organic polymers and colloids attach, coat and bridge relatively
454 455 456 457 458 459 460 461	A conceptual framework for microbial mediation at different states Whether the sediment stability is enhanced or reduced by bio-sediment formation is more complex than previously thought, and needs to consider the net effects of BSA development. We suggest three important states of bio-sediment formation, with distinct microstructures and influences on sediment transport (Figure 5 (a-d)): (1) When the time available for bio-sediment formation is short, scattered and discrete patches of organic polymers and colloids attach, coat and bridge relatively few sediment grains, forming poorly-structured 3D aggregates (e.g., fluff and field
454 455 456 457 458 459 460 461 462	A conceptual framework for microbial mediation at different states Whether the sediment stability is enhanced or reduced by bio-sediment formation is more complex than previously thought, and needs to consider the net effects of BSA development. We suggest three important states of bio-sediment formation, with distinct microstructures and influences on sediment transport (Figure 5 (a-d)): (I) When the time available for bio-sediment formation is short, scattered and discrete patches of organic polymers and colloids attach, coat and bridge relatively few sediment grains, forming poorly-structured 3D aggregates (e.g., fluff and field sandy BSA, Figure 5 (a)). The increase in weight/friction forcing is moderate and

structure complexity, surface roughness and projected area (Figure 5 (d)). The net
effect is negative and sediment stability is reduced (bio-destabilization). When subject
to erosion, the loose connections between the BSAs and seabed are quickly broken.
The BSAs behave akin to single particle grains, starting bed-load transport before
suspension (Figure 3(2a-d)).

469 (II) Continuous cell growth and EPS secretion build up well-structured 3D organic-rich polymer network, tightly binding large amounts of sediment grains, such 470 471 as our clay and field silty BSA (Figure 5 (b)). However, due to frequent resuspension, 472 the BSAs do not tightly interconnect into a coherent mat armour. Similar to state (I), 473 the adhesion between BSAs and seabed breaks at moderate flow intensities, and BSAs are transported as bed-load before suspension (Figure 3 (2a-d)). In this state, the well-474 established organic network has a great capacity to encapsulate large amounts of 475 476 mass, increasing its weight/friction to resist flow erosion and increase bed stability 477 (Figure 5 (b)). The positive effects on sediment stability surpass the negative effects, 478 and sediment stability is enhanced.

(III) With little disturbances, discrete aggregates become tightly interconnected
into mat matrices, armouring the underlying sediments (Figure 5 (c)). The mat
matrices have a "smoothed" surface roughness and the negative effects on sediment
stability are reduced (Figure 5 (d)), resulting a significant effect of biostabilization by
a factor ranging from 1.25 to 20 (Amos et al. 1997; Paterson 1989; Yallop et al.
1994). In contrast to states (I) and (II), the "weakest" adhesion between the mat and

485	seabed determines the mass entrainment of sediments, which occurs with surface
486	biofilm failure in an "all-or-nothing" fashion (Decho 2000; Black et al. 2002).
487	We note that BSA dynamics are influenced by a range of factors, including
488	sediment matrices, microbial species and nutrients. Higher microbial growth and
489	production rates are commonly found in muddy sites, likely due to the high level of
490	nutrients entrapped in interstitial pores and absorbed on the surfaces of these fine
491	grains (Le Hir et al. 2007; Stal 2010). Our work only finds state II for clays and silts.
492	This result agrees with van de Koppel (2001) that silt and clay particles provide a
493	more favourable substrate for diatom growth and promote biostabilization to quickly
494	establish, and less likely to remain in state I compared to sands. Hence the apparent
495	ubiquity of state I for naturally occurring clay and silt substrates is unclear. Further
496	research into the nature and dynamics of microbial influences on sediments is
497	warranted.

498 Acknowledgement

This work was partially funded by the National Natural Science Foundation of
China (Grant No. 42206059), the BLUEcoast project (NE/N 015703/1), and the China
Postdoctoral Science Foundation (2021M702472). We gratefully acknowledge Dr.
Hachem Kassem for his help in flume setup instructions. We wish to thank Prof.
David Paterson and Dr. Andrew Blight at St Andrews University for hosting field
sampling work in Scotland. We wish to extend our thanks to Dr. Kathryn Rankin and
Dr. Orestis Katsamenis for their assistance in performing the scans carried out at the

506	μ -VIS X-ray Imaging Centre, University of Southampton. We also thank the editor
507	and the two anonymous reviewers for their constructive comments, which makes the
508	manuscript significantly improved.
509	References
510	Ahmad, M. F., Dong, P., Mamat, M., Wan Nik, W. B., and Mohd, M. H. (2011). The
511	critical shear stresses for sand and mud mixture. Applied Mathematical Sciences,
512	5: 53–71.
513	Amos, C. L., Feeney, T., Sutherland, T. F., and Luternauer, J. L. (1997). The stability
514	of fine-grained sediments from the Fraser River delta. Estuarine, Coastal and
515	Shelf Science, 45: 507–524. doi:10.1006/ecss.1996.0193
516	Amos, C. L., and others (2004). The stability of tidal flats in Venice Lagoon - The
517	results of in-situ measurements using two benthic, annular flumes. Journal of
518	Marine Systems, 51: 211–241. doi:10.1016/j.jmarsys.2004.05.013
519	Amos, Carl L., Daborn, G. R., Christian, H. A., Atkinson, A., and Robertson, A.
520	(1992). In situ erosion measurements on fine-grained sediments from the Bay of
521	Fundy. Marine Geology, 108: 175–196. doi:10.1016/0025-3227(92)90171-D
522	Bagnold, R. A. (1966). An Approach to the Sediment Transport Problem from
523	General Physics. USGS Professional Paper.
524	Beaulieu, S. E. (2002). Accumulation and fate of phytodetritus on the sea floor.
525	Oceanography and Marine Biology, 40: 171–232.
526	doi:10.1201/9780203180594.ch4
527	Black, K. S., Tolhurst, T. J., Paterson, D. M., and Hagerthey, S. E. (2002). Working
528	with natural cohesive sediments. Journal of Hydraulic Engineering, 128: 2-8.
529	doi:10.1061/(ASCE)0733-9429(2002)128:1(2)
530	De Brouwer, J. F. C., Wolfstein, K., Ruddy, G. K., Jones, T. E. R., and Stal, L. J.
531	(2005). Biogenic stabilization of intertidal sediments: The importance of
532	extracellular polymeric substances produced by benthic diatoms. Microbial
533	<i>Ecology</i> , 49: 501–512. doi:10.1007/s00248-004-0020-z
534	Buffington, J. M. (1999). The Legend of A. F. Shields. Journal of Hydraulic
535	Engineering. doi:10.1061/(asce)0733-9429(1999)125:4(376)
536	Callow, B., Falcon-Suarez, I., Ahmed, S., and Matter, J. (2018). Assessing the carbon
537	sequestration potential of basalt using X-ray micro-CT and rock mechanics.
538	International Journal of Greenhouse Gas Control, 70: 146–156.
539	doi:10.1016/j.ijggc.2017.12.008
540	Chen, X. D., Zhang, C. K., Paterson, D. M., Townend, I. H., Jin, C., Zhou, Z., and
541	Feng, Q. (2019). The effect of cyclic variation of shear stress on non-cohesive
542	sediment stabilization by microbial biofilms: the role of 'biofilm precursors.'
543	Earth Surface Processes and Landforms. doi:10.1002/esp.4573
544	Chen, X. D., Zhang, C. K., Paterson, D. M., Thompson, C. E. L., Townend, I. H.,

545	Gong, Z., and Feng, Q. (2017). Hindered erosion: The biological mediation of
546	noncohesive sediment behavior. Water Resources Research, 53: 4787-4801.
547	doi:10.1002/2016WR020105
548	Decho, A. W. (2000). Microbial biofilms in intertidal systems: An overview.
549	Continental Shelf Research, 20: 1257–1273. doi:10.1016/S0278-4343(00)00022-
550	4
551	Droppo, I. G., Ross, N., Skafel, M., and Liss, S. N. (2007). Biostabilization of
552	cohesive sediment beds in a freshwater wave-dominated environment. Limnology
553	and Oceanography, 52: 577–589. doi:10.4319/lo.2007.52.2.0577
554	Fang, H. W., Shang, Q., Chen, M., and He, G. (2014). Changes in the critical erosion
555	velocity for sediment colonized by biofilm. Sedimentology, 61: 648-659.
556	doi:10.1111/sed.12065
557	Fang, H. W., Huang, L., Zhano, H., Cheng, W., Chen, Y., Fazeli, M., and Shang, Q.
558	(2020). Mechanics of Bio-Sediment Transport. Springer, Berlin, Heidelberg.
559	doi:10.1007/978-3-662-61158-6
560	Fang, H. W., Lai, H. J., Cheng, W., Huang, L., and He, G. J. (2017). Modeling
561	sediment transport with an integrated view of the biofilm effects. Water
562	Resources Research, 53: 7536-7557. doi:10.1002/2017WR020628
563	Flemming, H. C. (2019). Bacteria and archaea on Earth and. Nature Reviews
564	Microbiology, 17: 247-260. doi:10.1038/s41579-019-0158-9
565	Flemming, H. C., and Wingender, J. (2010). The biofilm matrix. Nature Reviews
566	Microbiology, 8: 623-633. doi:10.1038/nrmicro2415
567	Folk, R. L. (1954). The Distinction between Grain Size and Mineral Composition in
568	Sedimentary-Rock Nomenclature. The Journal of Geology.
569	https://doi.org/10.1086/626171
570	Friend, P. L., Collins, M. B., and Holligan, P. M. (2003a). Day-night variation of
571	intertidal flat sediment properties in relation to sediment stability. Estuarine,
572	Coastal and Shelf Science, 58: 663-675. doi:10.1016/S0272-7714(03)00178-1
573	Friend, P. L., Ciavola, P., Cappucci, S., and Santos, R. (2003b). Bio-dependent bed
574	parameters as a proxy tool for sediment stability in mixed habitat intertidal areas.
575	Continental Shelf Research.23:1899-1917. doi:10.1016/j.csr.2002.12.001
576	Friend, P. L., Lucas, C. H., Holligan, P. M., and Collins, M. B. (2008). Microalgal
577	mediation of ripple mobility. <i>Geobiology</i> , 6: 70–82. doi:10.1111/j.1472-
578	4669.2007.00108.x
579	Gerbersdorf, S. U., and Wieprecht, S. (2015). Biostabilization of cohesive sediments:
580	Revisiting the role of abiotic conditions, physiology and diversity of microbes,
581	polymeric secretion, and biofilm architecture. Geobiology, 13: 68–97.
582	doi:10.1111/gbi.12115
583	Gerbersdorf, S. U., Jancke, T., Westrich, B., and Paterson, D. M. (2008). Microbial
584	stabilization of riverine sediments by extracellular polymeric substances.
585	Geobiology, 6: 57–69. doi:10.1111/j.1472-4669.2007.00120.x
586	Le Hir, P., Monbet, Y., and Orvain, F. (2007). Sediment erodability in sediment
587	transport modelling: Can we account for biota effects? Continental Shelf
588	Research, 27: 1116–1142. doi:10.1016/j.csr.2005.11.016

589	Hope, J. A., and others (2020). Interactions between sediment microbial ecology and
590	physical dynamics drive heterogeneity in contextually similar depositional
591	systems. Limnology and Oceanography, 65: 2403–2419. doi:10.1002/lno.11461
592	Jesus, B., Brotas, V., Marani, M., and Paterson, D. M. (2005). Spatial dynamics of
593	microphytobenthos determined by PAM fluorescence. Estuarine, Coastal and
594	Shelf Science. 65: 30-42. doi:10.1016/j.ecss.2005.05.005
595	Foden, J., Rogers S. I., and Jones, A. P. (2011). Human pressures on UK seabed
596	habitats: a cumulative impact assessment. Mar Ecol Prog Ser, 428: 33-47.doi:
597	10.3354/MEPS09064
598	Van De Koppel, J., Herman, P. M. J., Thoolen, P., and Heip, C. H. R. (2001). Do
599	alternate stable states occur in natural ecosystems? Evidence from a tidal flat.
600	Ecology, 82: 3449-3461. doi:10.1890/0012-
601	9658(2001)082[3449:DASSOI]2.0.CO;2
602	Van Ledden, M., Van Kesteren, W. G. M., and Winterwerp, J. C. (2004). A
603	conceptual framework for the erosion behaviour of sand-mud mixtures.
604	Continental Shelf Research, 24: 1-11. https://doi.org/10.1016/j.csr.2003.09.002
605	Le Hir, P., Monbet, Y., and Orvain, F. (2007). Sediment erodability in sediment
606	transport modelling: Can we account for biota effects? Continental Shelf
607	Research, 27: 1116–1142. doi:10.1016/j.csr.2005.11.016
608	Maggi, F., and Tang, F. H. M. (2015). Analysis of the effect of organic matter content
609	on the architecture and sinking of sediment aggregates. Marine Geology, 363:
610	102–111. doi:10.1016/j.margeo.2015.01.017
611	Malarkey, J., and others (2015). The pervasive role of biological cohesion in bedform
612	development. Nature Communications, 6: 2-7. doi:10.1038/ncomms7257
613	Mariotti, G., and Fagherazzi, S. (2012). Modeling the effect of tides and waves on
614	benthic biofilms. Journal of Geophysical Research G: Biogeosciences, 117: 1-
615	14. doi:10.1029/2012JG002064
616	Mariotti, G., Pruss, S. B., Perron, J. T., and Bosak, T. (2014). Microbial shaping of
617	sedimentary wrinkle structures. Nature Geoscience, 7: 736–740.
618	doi:10.1038/NGEO2229
619	Mehta, A. J., and Partheniades, E. (1982). Resuspension of deposited cohesive
620	sediment beds. Coastal Engineering, 1569–1588.
621	doi:10.1061/9780872623736.095
622	Michaud, E., Desrosiers, G., Mermillod-Blondin, F., Sundby, B., and Stora, G.
623	(2005). The functional group approach to bioturbation: The effects of
624	biodiffusers and gallery-diffusers of the Macoma balthica community on
625	sediment oxygen uptake. Journal of Experimental Marine Biology and Ecology,
626	326: 77–88. doi:10.1016/j.jembe.2005.05.016
627	Orvain, F., Le Hir, P., and Sauriau, P. G. (2003). A model of fluff layer erosion and
628	subsequent bed erosion in the presence of the bioturbator, Hydrobia ulvae.
629	Journal of Marine Research, 61: 823-851. doi:10.1357/002224003322981165
630	Orvain, F., Guizien, K., Lefebvre, S., Bréret, M., and Dupuy, C. (2014). Relevance of
631	macrozoobenthic grazers to understand the dynamic behaviour of sediment
632	erodibility and microphytobenthos resuspension in sunny summer conditions.

633	Journal of Sea Research. 92: 46-55. doi:10.1016/j.seares.2014.03.004
634	Parsons, D. R., Schindler, R. J., Hope, J. A., Malarkey, J., Baas, J. H., Peakall, J., et
635	al. (2016). The role of biophysical cohesion on subaqueous bed form size.
636	Geophysical Research Letters, 43: 1566–1573. doi:10.1002/2016GL067667
637	Paterson, D. M. (1989). Short-term changes in the erodibility of intertidal cohesive
638	sediments related to the migratory behavior of epipelic diatoms. Limnology and
639	Oceanography, 34: 223–234. doi:10.4319/lo.1989.34.1.0223
640	Probandt, D., Eickhorst, T., Ellrott, A., Amann, R., and Knittel, K. (2018). Microbial
641	life on a sand grain: From bulk sediment to single grains. ISME Journal, 12:
642	623-633. doi:10.1038/ismej.2017.197
643	Van Rijn, L. C. (1993). Principles of sediment transport in rivers, estuaries and
644	coastal seas. Amsterdam: Aqua publications.
645	Van Rijn, L. C. (2007). Unified view of sediment transport by currents and waves. I:
646	Initiation of motion, bed roughness, and bed-load transport. Journal of Hydraulic
647	Engineering, 133: 649-667. doi:10.1061/(ASCE)0733-9429(2007)133:6(649)
648	Roe, S. (2007). A laboratory study of the derivation of the suspensionthreshold of fine
649	and very fine sand. University of Sounthampton.
650	Shields, I. A. (1936). Application of similarity principles and turbulence research to
651	bed-load movement, U.S. Soil Conservation Service Coop. Lab. In Ott, W.P.,
652	van Uchelen, J.C. (Eds.), (Translators), Hydrodynamics Laboratory Publication,
653	vol. 167. California Institute of Technology, Pasadena.
654	Soulsby, R. L. (1997). Dynamics of marine sands: a manual for practical
655	applications. Dynamics of marine sands: a manual for practical applications.
656	Stal, L. J. (2010). Microphytobenthos as a biogeomorphological force in intertidal
657	sediment stabilization. Ecological Engineering, 36: 236–245.
658	doi:10.1016/j.ecoleng.2008.12.032
659	Sutherland, I. W. (2001). The biofilm matrix - An immobilized but dynamic microbial
660	environment. Trends in Microbiology, 9: 222-227. doi:10.1016/S0966-
661	842X(01)02012-1
662	Sutherland, T. F., Amos, C. L., and Grant, J. (1998). The effect of buoyant biofilms
663	on the erodibility of sublittoral sediments of a temperate microtidal estuary.
664	Limnology and Oceanography, 43: 225–235. doi:10.4319/lo.1998.43.2.0225
665	Thompson, C. E. L., Amos, C. L., Jones, T. E. R., and Chaplin, J. (2003). The
666	Manifestation of Fluid-transmitted Bed Shear Stress in a Smooth Annular Flume
667	- A Comparison of Methods. Journal of Coastal Research, 19: 1094–1103.
668	doi:10.2307/4299251
669	Thompson, C. E. L., Amos, C. L., Lecouturier, M., and Jones, T. E. R. (2004). Flow
670	deceleration as a method of determining drag coefficient over roughened flat
671	beds. Journal of Geophysical Research: Oceans, 109. doi:10.1029/2001jc001262
672	Thompson, C. E. L., Couceiro, F., Fones, G. R., Helsby, R., Amos, C. L., Black, K., et
673	al. (2011). In situ flume measurements of resuspension in the North Sea.
674	Estuarine, Coastal and Shelf Science, 94: 77-88. doi:10.1016/j.ecss.2011.05.026
675	Thompson, C. E. L., Couceiro, F., Fones, G. R., and Amos, C. L. (2013). Shipboard
676	measurements of sediment stability using a small annular flume-core mini flume

677	(CMF. Limnology and Oceanography: Methods. 11:604-685.
678	doi:10.4319/lom.2013.11.604
679	Thompson, C. E. L., Williams, M. E., Amoudry, L., Hull, T., Reynolds, S., Panton,
680	A., and Fones, G. R. (2017). Benthic controls of resuspension in UK shelf seas:
681	Implications for resuspension frequency. Continental Shelf Research, 185:3-15.
682	doi:10.1016/j.csr.2017.12.005
683	Underwood, G. J. C., and Paterson, D. M. (1993). Seasonal changes in diatom
684	biomass, sediment stability and biogenic stabilization in the severn estuary.
685	Journal of the Marine Biological Association of the United Kingdom, 73: 871–
686	887. doi:10.1017/S0025315400034780
687	Vignaga, E., Sloan, D. M., Luo, X., Haynes, H., Phoenix, V. R., and Sloan, W. T.
688	(2013). Erosion of biofilm-bound fluvial sediments. Nature Geoscience, 6: 770-
689	774. doi:10.1038/ngeo1891
690	Wu, W., Perera, C., Smith, J., and Sanchez, A. (2018). Critical shear stress for erosion
691	of sand and mud mixtures. Journal of Hydraulic Research, 56: 96–110.
692	doi:10.1080/00221686.2017.1300195
693	Yallop, M. L., Paterson, D. M., and Wellsbury, P. (2000). Interrelationships between
694	rates of microbial production, exopolymer production, microbial biomass, and
695	sediment stability in biofilms of intertidal sediments. Microbial Ecology,
696	39:116–127. doi:10.1007/s002489900186
697	Yallop, M. L., De Winder, B., Paterson, D. M., and Stal, L. J. (1994). Comparative
698	structure, primary production and biogenic stabilization of cohesive and non-
699	cohesive marine sediments inhabited by microphytobenthos. Estuarine, Coastal
700	and Shelf Science, 39: 565–582. doi:10.1016/S0272-7714(06)80010-7
701	Yao, P., Hu, Z., Su, M., Chen, Y., and Ou, S. (2018). Erosion Behavior of Sand-silt
702	Mixtures: the Role of Silt Content. Journal of Coastal Research, 85: 1171–1175.
703	doi:10.2112/si85-235.1
704	Zhang, N., Thompson, C. E. L., Townend, I. H., Rankin, K. E., Paterson, D. M., &
705	Manning, A. J. (2018). Nondestructive 3D Imaging and Quantification of
706	Hydrated Biofilm-Sediment Aggregates Using X-ray Microcomputed
707	Tomography. Environmental Science and Technology, 52: 13306–13313.
708	doi:10.1021/acs.est.8b03997
709	

710 Figures

Figure 1. Suspended sediment concentration (g/L) vs. bed shear stress (Pa) for five experimental conditions: abiotic control clean sand (a), mat BSA (b) and fluff BSA (c), silty and sandy field sediments (d), with a summary of the corresponding effects on sediment stability for each in (e). In (c), three replicates for the fluff resuspension experiments are plotted, and each replicate is presented as triangle, diamond, inverted triangle, respectively. Black dashed lines show regression lines of suspension concentration against applied shear stress (a-c). Results are presented as mean \pm SD.

720	Figure 2 . μ -CT scans of the 3D microstructures showing states of bio-sediment
721	formation, including clay (1a-c) and the fluff BSAs (2a-c) from the fluff, mat BSAs
722	(3a-c) from the mat, silty (4a-c) and sandy BSAs (5a-c) from the field-collected
723	sediments. Ternary plots of BSA constituent make-up (6a), porosity (6b) and structure
724	roundness (6c) of the bio-stabilizing and destabilizing BSAs. Results are presented as
725	mean \pm SD.

727 Figure 3. Schematic illustrations of the entrainment processes of biofilm mediated 728 sediments developed in calm waters (1a-d) and under disturbance (2a-d). In calm 729 waters, mat matrices of biofilm armour the underlying sediments (1a). Sediment 730 resuspension follows surface organic-rich matter removal at a relatively moderate 731 flow intensity, where the integrity of mat is not destroyed (1b), and the subsequent 732 break-up of local mat (1c) and mass entrainment of underlying sediments (1d). The 733 latter two processes occurred almost simultaneously and are included in one purple 734 box. In disturbed environments, no mat matrices of biofilms were established, and 735 discrete BSAs form fluffy appearance of sediment-water interfaces (2a). Sediment

bed-load transport of the detached BSA (2c) and BSA suspension (2d).

738

739 Figure 4. Plots of critical Shields parameter, against matter dimensionless diameter, 740 to determine the effects of organic and inorganic particles on the resuspension of 741 biofilm mediated sediments (a). The estimated resuspension threshold using the power 742 law relationship presented in (a) are plotted against experimentally-tested 743 resuspension thresholds for both the laboratory-created and field-collected, disturbed 744 BSAs in (b). Plots of Shields parameter for aggregates against aggregate 745 dimensionless diameter determine the effects of pore water (c). The estimated 746 resuspension threshold using the power law relationship presented in (c) are plotted 747 against the experimentally-tested thresholds in (d). All the BSAs established under 748 disturbed conditions, including clay, fluff, silty and sandy field BSAs, are represented

as yellow, green, purple and blue dots, respectively. Results are represented as mean \pm

Figure 5. A conceptual framework that characterizes three states of bio-sediment

753 formation. Distinct microstructures establish at each state (a-c). The biofilm growth

and bio-sediment formation have two opposing effects on sediment stability and the

net effects that determine bio-stabilization and destabilization vary at each state (d).

756