Climate-driven shifts in continental net primary production implicated as a driver of a recent abrupt increase in the land carbon sink
Climate-driven shifts in continental net primary production implicated as a driver of a recent abrupt increase in the land carbon sink
The World's ocean and land ecosystems act as sinks for anthropogenic CO2, and over the last half century their combined sink strength grew steadily with increasing CO2 emissions. Recent analyses of the global carbon budget, however, uncovered an abrupt, substantial (∼ 1 PgC yr−1) and sustained increase in the land sink in the late 1980s whose origin remains unclear. In the absence of this prominent shift in the land sink, increases in atmospheric CO2 concentrations since the late 1980s would have been ∼ 30 % larger than observed (or ∼ 12 ppm above current levels). Global data analyses are limited in regards to attributing causes to changes in the land sink because different regions are likely responding to different drivers. Here, we address this challenge by using terrestrial biosphere models constrained by observations to determine if there is independent evidence for the abrupt strengthening of the land sink. We find that net primary production has significantly increased in the late 1980s (more so than heterotrophic respiration) consistent with the inferred increase in the global land sink, and that large-scale climate anomalies are responsible for this shift. We identify two key regions in which climatic constraints on plant growth have eased: northern Eurasia experienced warming, and northern Africa received increased precipitation. Whether these changes in continental climates are connected is uncertain, but North Atlantic climate variability is important. Our findings suggest that improved understanding of climate variability in the North Atlantic may be essential for more credible projections of the land sink under climate change.
13767-13791
Buermann, W.
60b5a7d0-7393-49c4-8c3f-3cf8a91869ea
Beaulieu, C.
13ae2c11-ebfe-48d9-bda9-122cd013c021
Parida, B.
3be9cfc2-17b7-4157-b2d3-139c177394cc
Medvigy, D.
9059193e-83e8-4727-9e57-eebe0ed4bfd8
Collatz, G. J.
b48020ad-815d-4e18-a3a8-4a747ed74843
Sheffield, J.
dd66575b-a4dc-4190-ad95-df2d6aaaaa6b
Sarmiento, J. L.
45f5964b-15e6-43e8-bdd4-8789e2eb87cb
25 August 2015
Buermann, W.
60b5a7d0-7393-49c4-8c3f-3cf8a91869ea
Beaulieu, C.
13ae2c11-ebfe-48d9-bda9-122cd013c021
Parida, B.
3be9cfc2-17b7-4157-b2d3-139c177394cc
Medvigy, D.
9059193e-83e8-4727-9e57-eebe0ed4bfd8
Collatz, G. J.
b48020ad-815d-4e18-a3a8-4a747ed74843
Sheffield, J.
dd66575b-a4dc-4190-ad95-df2d6aaaaa6b
Sarmiento, J. L.
45f5964b-15e6-43e8-bdd4-8789e2eb87cb
Buermann, W., Beaulieu, C., Parida, B., Medvigy, D., Collatz, G. J., Sheffield, J. and Sarmiento, J. L.
(2015)
Climate-driven shifts in continental net primary production implicated as a driver of a recent abrupt increase in the land carbon sink.
Biogeosciences Discussions, 12 (16), .
(doi:10.5194/bgd-12-13767-2015).
Abstract
The World's ocean and land ecosystems act as sinks for anthropogenic CO2, and over the last half century their combined sink strength grew steadily with increasing CO2 emissions. Recent analyses of the global carbon budget, however, uncovered an abrupt, substantial (∼ 1 PgC yr−1) and sustained increase in the land sink in the late 1980s whose origin remains unclear. In the absence of this prominent shift in the land sink, increases in atmospheric CO2 concentrations since the late 1980s would have been ∼ 30 % larger than observed (or ∼ 12 ppm above current levels). Global data analyses are limited in regards to attributing causes to changes in the land sink because different regions are likely responding to different drivers. Here, we address this challenge by using terrestrial biosphere models constrained by observations to determine if there is independent evidence for the abrupt strengthening of the land sink. We find that net primary production has significantly increased in the late 1980s (more so than heterotrophic respiration) consistent with the inferred increase in the global land sink, and that large-scale climate anomalies are responsible for this shift. We identify two key regions in which climatic constraints on plant growth have eased: northern Eurasia experienced warming, and northern Africa received increased precipitation. Whether these changes in continental climates are connected is uncertain, but North Atlantic climate variability is important. Our findings suggest that improved understanding of climate variability in the North Atlantic may be essential for more credible projections of the land sink under climate change.
This record has no associated files available for download.
More information
Published date: 25 August 2015
Additional Information:
Publisher Copyright:
© Author(s) 2015.
Identifiers
Local EPrints ID: 477269
URI: http://eprints.soton.ac.uk/id/eprint/477269
ISSN: 1810-6277
PURE UUID: 12f17e79-595b-4f93-a6e3-6e80487c0a68
Catalogue record
Date deposited: 01 Jun 2023 17:06
Last modified: 17 Mar 2024 03:40
Export record
Altmetrics
Contributors
Author:
W. Buermann
Author:
B. Parida
Author:
D. Medvigy
Author:
G. J. Collatz
Author:
J. L. Sarmiento
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics