
DPDS: Assisting Data Science with Data Provenance

Adriane Chapman
University of Southampton, UK
Adriane.Chapman@soton.ac.uk

Luca Lauro
Università Roma Tre, Italy
luca.lauro@uniroma3.it

Paolo Missier
Newcastle University, UK
paolo.missier@ncl.ac.uk

Riccardo Torlone
Università Roma Tre, Italy

riccardo.torlone@uniroma3.it

ABSTRACT

Successful data-driven science requires a complex combination of

data engineering pipelines and data modelling techniques. Robust

and defensible results can only be achieved when each step in

the pipeline that is designed to clean, transform and alter data in

preparation for data modelling can be justified, and its effect on

the data explained. The DPDS toolkit presented in this paper is

designed to make such justification and explanation process an

integral part of data science practice, adding value while remaining

as un-intrusive as possible to the analyst. Catering to the broad

community of python/pandas data engineers,DPDS implements an

observer pattern that is able to capture the fine-grained provenance

associated with each individual element of a dataframe, across

multiple transformation steps. The resulting provenance graph is

stored in Neo4j and queried through a UI, with the goal of helping

engineers and analysts to justify and explain their choice of data

operations, from raw data to model training, by highlighting the

details of the changes through each transformation.

PVLDB Reference Format:

Adriane Chapman, Luca Lauro, Paolo Missier, and Riccardo Torlone. DPDS:

Assisting Data Science with Data Provenance. PVLDB, 15(12): 3614 - 3617,

2022.

doi:10.14778/3554821.3554857

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/LucaLauro/Data_Provenance1.

1 INTRODUCTION

Explainability is a key requirement for data science. While the term

is generally used to indicate the need to explain a prediction made

by a machine learning model [1, 8], we extend it to include explain-

ability of the data preparation pipelines that, starting from raw

datasets, precede training. This is because such pipelines determine

the robustness, generalisability, and accuracy of a model. Indeed,

the data engineering decisions behind those pipelines may affect

the ability to operationalize the model itself and defend its relia-

bility. Thus, it ought to be possible to explain the effects that each

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554857

step of a pipeline produces on each element of each of the datasets

used in modelling, for instance as training sets.

The toolkit presented here, called DPDS (a shorthand for Data

Provenance for Data Science), is designed to support data engineers

and data scientists in such explanation tasks. DPDS caters to the

large community of Python/Pandas programmers, is focused on

tabular data, and is designed to collect, store, and present the prove-

nance of each individual element in a dataframe, across a series of

transformations, efficiently and in a very fine-grained fashion.

We consider transformations that apply across application do-

mains, including feature selection; engineering of new features;

imputation of missing values; downsampling or upsampling of data

subsets in order to achieve better balance, typically on the class

labels (for classification tasks) or on the distribution of the out-

come variable (for regression tasks); outlier detection and removal;

smoothing and normalization; de-duplication, as well as steps that

preserve the original information but are required by some algo-

rithms, such as łone-hotž encoding of categorical variables.

While these transformations can be encoded in many possible

ways, they all fall into a limited number of categories, depending on

the way in which data is changed, namely through reduction, aug-

mentation, transformation, or merging. The tool attempts to make

this distinction at runtime, by observing the program’s execution

and comparing dataframes before and after a particular command

or function is applied, typically (but not necessarily) as part of a

pipeline. For each of these steps, the observer, called Provenance

Tracker, produces a provenance document, using the PROV data

model [6], by instantiating one of several available templates, one

for each of the above-mentioned data transformation categories.

Each of such documents records the derivations of each of the af-

fected elements in the before- and -after- dataframes, at the finest

granularity possible. For instance, an imputation operation may

modify entire columns, while a one-hot encoding operation will

invalidate one column and generate a few new ones.

The set of all such documents produced during the program’s

execution form a larger provenance graph, where nodes represent-

ing either dataframe elements or operators are connected through

usage/generation as well as derivation edges. The graph is stored

in a Neo4J database and made available to a query layer. Through a

GUI, analysts can inspect the provenance graph, zoom in on pairs of

before/after dataframes of interest, and gain insight into their differ-

ences, at a level of granularity that is consistent with the operator

type.

This demo paper is underpinned by our recent work [3], where

details on the approach can be found. Here we provide a brief

overview in Section 2, we describe components and features of

3614

https://www.acm.org/publications/policies/artifact-review-and-badging-current


DPDS in Section 3, we illustrate how the system will be demon-

strated in Section 4, and finally, in Section 5, we draw some conclu-

sions.

2 OVERVIEW OF DPDS

2.1 Data Model and Basic Operators.

Our approach relies on a small but representative set of basic oper-

ators for data preparation in machine learning. These operators op-

erate over a generalization of dataframes [5] called datasets, which

are just ordered collections of rows each of which has a unique index

and includes values for a fixed set of features. The core operators

that we have considered capture most of the data transformation

operators that are available in packages for building data prepro-

cessing pipelines (e.g., Orange [4] and SciKit [7]) and perform four

main types of data manipulation over datasets.

Data reduction. These reduce the size of a dataset𝐷 by eliminating

rows or columns. Two basic data reduction operators are defined

over datasets. They are simple extensions of two well-known re-

lational operators: the (conditional) projection 𝜋𝐶 of 𝐷 on a subset

of its features and the selection 𝜎𝐶 of 𝐷 with respect to a boolean

condition 𝐶 . Feature selection, data selection, and undersampling

are examples of transformations that can be implemented by these

operators.

Data augmentation. Augmentations increase the size of a dataset

𝐷 by adding new rows or new features to𝐷 . Two basic data augmen-

tation operators are defined over a dataset 𝐷 : the vertical augmenta-

tion 𝛼→
𝑓 (𝑋 ) :𝑌

of 𝐷 , which adds to 𝐷 a new set of features whose new

values are obtained by applying a function 𝑓 to values occurring

in 𝐷 , and the horizontal augmentation 𝛼
↓

𝑋 :𝑓 (𝑌 )
of 𝐷 , which adds

one or more new rows to 𝐷 by applying a (possibly aggregative)

function 𝑓 to values occurring in 𝐷 . This category captures data

transformations such as space transformation, oversampling, string

indexer, and one-hot encoder.

Data transformation. Transformations just change the content of

a dataset𝐷 . One basic data transformation operator 𝜏𝑓 (𝑋 ) is defined

over datasets: it replaces values of 𝐷 using a function 𝑓 . Data repair,

binarization, discretization, and imputation are examples of data

transformations of this type.

Data fusion. A data fusion combines different datasets with two

basic operators: the join ⊲⊳
𝑡
𝐶
, which applies the standard join op-

eration based on a boolean condition 𝐶 , and the append ⊎, which

adds the rows of a dataset to another dataset possibly extending

the result with nulls on their mismatching features. Operations

aimed at collecting and combining data from different sources can

be implemented by such operators.

In [3] we illustrate how a large variety of pre-processing oper-

ators that are used in data preparation pipelines can be suitably

captured by the basic operators above or by a composition thereof.

2.2 Representing Data Provenance.

The purpose of data provenance is to extract relatively simple expla-

nations for the existence (or the absence) of some piece of data in

the result of complex data manipulations. Along this line, we adopt

as the provenance model a subset of the PROV model [6] from

Figure 1: The core W3C PROV model.

the W3C, a widely adopted ontology that formalizes the notion of

provenance document and which admits RDF and other serialization

formats to facilitate interoperability. This model can be graphically

described as shown in Figure 1.

In PROV an entity represents an element 𝑑 of a dataset 𝐷 and

is uniquely identified by 𝐷 and the coordinates of 𝑑 in 𝐷 (i.e., the

corresponding row index and feature). An activity represents any

pre-processing data manipulation that operates over datasets.

For each element 𝑑 in a dataset 𝐷 ′ generated by an operation o

over a dataset 𝐷 we represent the facts that: (i) 𝑑 wasGeneratedBy

o, and (ii) 𝑑 wasDerivedFrom a set of elements in 𝐷 . In addition,

we represent: (iii) all the elements 𝑑 of 𝐷 such that 𝑑 was used by

o and (iv) all the elements 𝑑 of 𝐷 such that 𝑑 wasInvalidatedBy

(i.e., deleted by) o (if any). Note that, in PROV, derivation implies

usage, but the inverse is not true and this is why this notation is

not redundant.

2.3 Capturing Provenance.

We associate a prov-gen function pfo () to each of the core operators.

This takes as inputs the sets of input and output datasets 𝐷, 𝐷 ′ for

the operator, and produces a PROV document that describes the

transformation produced by the operator on each element of 𝐷 ,

as reflected in 𝐷 ′. Note that for binary operators, namely join and

append, 𝐷 includes inputs from both operands.

Due to space constraints, here we illustrate prov-gen for

only one operator type, namely Vertical Augmentation (VA):

𝛼→
𝑓 (Age) :ageRange

(𝐷), where attribute Age is binarised into {young,

adult} based on a pre-defined cutoff, defined as part of 𝑓 (). The

reader is referred to [3] for full details on all prov-gen functions.

The prov-gen function for VA will have to produce a collec-

tion of small PROV documents, one for each input-output pair

⟨𝐷𝑖,Age, 𝐷
′
𝑖,AgeRange

⟩. As these documents all share the same struc-

ture, we define a common PROV template which is then instanti-

ated multiple times, once for each inputs/output pair. A template

is a PROV document that may contain variables, indicated by the

namespace var:, which are used as placeholders for values. Here

templates are designed to capture the transformation at the level

of individual elements of 𝐷 , or its rows or columns, as appropriate.

Thus a template will have a used set of entities, which refer to the

subset of data items in 𝐷 which have been used by an operator o,

and a generated set of new entities, corresponding to new elements

in 𝐷 ′ (for projection and selection, it will have an invalidated set

of entities instead, as these operators remove data from 𝐷).

The PROV template for VA is shown in Figure 2 (top), where we

use the generic attribute names 𝑋,𝑌 to indicate the old and new

feature names. One or more binding generators are associated with

each template, each of which determines how values found in 𝐷 ,

3615



Figure 2: Example of PROV template for Vertical Augmenta-

tion and corresponding instances.

𝐷 ′ upon execution of the operator are substituted for the variables.

Each variable substitution results in a PROV document, which we

refer to as a provlet.

In the VA example, the transformation between 𝐷 and 𝐷 ′ is 1:1

and thus a new provlet is created from each value of column Age

and the corresponding value in AgeRange.

Two sample instance provlets obtained from the template for VA

are shown in the bottom part of Figure 2.

3 SYSTEM DESCRIPTION

3.1 System Architecture

The main components of DPDS are shown in Figure 3. The

Provenance-Tracker automates the process of detecting and track-

ing the provenance of a user-defined pipeline of data preparation.

It includes a Prov-generator that produces the provenance of each

operator in the pipeline by analyzing its effect on the underlying

dataset. This is done at execution time by:

(a) identifying, at each step of the pipeline, the operator under

execution on the basis of a series of increasingly complex

comparisons between the input and the output datasets,

(b) executing the prov-gen function of the core operation that

captures the identified operator by suitably instantiating

the function template, and

(c) storing the provenance data produced by the prov-gen func-

tion on an underlying repository.

Since provenance data have a natural graphical representation,

Neo4j, a popular graph database management system, is used for

this purpose.

TheQuery-generator allows the user to perform several types of

analyses of the data provenance collected for a given data prepara-

tion pipeline, by translating a specific data-provenance exploration

chosen from a menu of a graphical interface into a query expressed

in Cypher, the query language of Neo4j.

3.2 Main Features of DPDS

Unlike many provenance visualization tools, which focus on the

presentation and navigation of the provenance graph, in DPDS

the provenance graph is mainly used as a backbone to support

Provenance Tracker

Data provenance repository

Query generator

GUI

Prov-generator Dataset 

repository

Data Preparation

Pipeline

Figure 3: DPDS architecture

Figure 4:DPDS interface example showing how data changes

after a transformation process that operates locally, at the

feature level.

the exploration of the dataset characteristics and to highlight the

changes through the transformations.

Specifically, visual exploration proceeds in two steps. First, users

can query the provenance trace and thus łzoom inž to the łbe-

fore/afterž transformations of interest. Depending on the type of

operator that was applied, this may be at the level of values within

a column, in the case of a local transformation, or at the level of the

entire framework, in the case of a global transformation. A local

type of transformation is illustrated in Figure 4, where a dropna()

operation, whichmodifies values in col3, is represented in the prove-

nance fragment at the bottom. The user is then able to navigate

through the retrieved provenance, identify the pre- and post- states

3616



Figure 5:DPDS interface example showing how data changes

at the dataset level, after an imputation operation over sev-

eral columns.

for col3, and visualise their differences in terms of summary sta-

tistics (top right), values distribution (center), and optionally each

value can be inspected (top middle).

In contrast Figure 5 shows a global transformation which is the

effect of an imputation step. As this may change more than one

column at the time (for instance, using Multiple Inference, as in

MICE), in this case the dashboard displays salient differences at

the dataframe level. We can see for instance that the operation has

not changed the number of rows and columns of the dataframe

(top left), but the imputation has updated the values of several

columns (col2, col4, col5, col6, see top middle), and has altered the

percentage of null values (bar chart). We can also see the changes

in the correlation between each pair of columns in the dataframes

before and after the operation is performed.

4 DEMO OUTLINE

In our demonstration, we will simulate typical scenarios of data

preprocessing in data science, which are aimed at giving a compre-

hensive view of DPDS and leading to discussions on supporting

data science with provenance data. We highlight the minimum

impact provenance collection using our technique has on the funda-

mental data science development and the utility of the provenance

information collected

Scenario A: provenance capture. In this scenario, we show how

DPDS can be used within minimal overhead for a data science de-

veloper. The audience will be provided with a working data science

pipeline, COMPAS, which has been used to predict recidivism and

has been shown to be unfair to minority groups [2]. The audience

will be asked to capture provenance across the data science pipeline

to showcase how simple it is, and how little it impacts the data

scientists’ actions.

Scenario B: provenance modelling choices. Using the prove-

nance captured from Scenario A, we then show how relationships

are generated among the provenance collected. The audience can

change the configuration of DPDS and review how the relation-

ships in the provenance store are generated offline and stored.

Scenario C: data diff. In this scenario, we highlight the utility

of the provenance to the data scientist. The audience is invited to

explore the interface that allows data scientists to drill down on

the datasets, their content, and the changes that were introduced

through the transformations in the data science pipeline. The audi-

ence will be able to iterate through Scenarios A, B, and C to explore

the impact the capture choices in Scenario A have on the relation-

ships in the provenance from Scenario B and their detailed effect

on the values of the dataframes, in Scenario C.

5 CONCLUSION

DPDS is a tool supporting data specialists to collect, store, and

investigate the provenance of each individual element in a dataset

across a data preparation process, efficiently and in a very fine-

grained fashion.

Using DPDS, the data scientist can understand how pre-

processing steps change the data profile of any dataset used within

the data science process. The provenance captured facilitates expla-

nations each component of a pipeline produces on each element of

each of the datasets used in modelling, for instance as training sets.

This demonstration aims at showing the distinctive tools that

DPDS offers to data scientists, their minimal impact on the data sci-

ence process, and the ability they provide to explore and introspect

into development choices.

REFERENCES
[1] Ahmed MAlaa and Mihaela van der Schaar. 2019. Demystifying Black-box Models

with Symbolic Metamodels. In Proc. of Neural Information Processing Systems.
11301ś11311.

[2] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. 2016. Machine bias.
ProPublica, May 23 (2016), 139ś159.

[3] Adriane Chapman, Paolo Missier, Giulia Simonelli, and Riccardo Torlone. 2020.
Capturing and querying fine-grained provenance of preprocessing pipelines in
data science. Proc. of VLDB Endowment 14, 4 (2020), 507ś520.

[4] Janez Demšar et al. 2013. Orange: Data Mining Toolbox in Python. The Journal of
Machine Learning Research 14, 1 (2013), 2349ś2353.

[5] Devin Petersohn et al. 2020. Towards Scalable Dataframe Systems. Proc. of VLDB
Endowment 13, 11 (2020), 2033ś2046.

[6] Moreau et. al. 2012. PROV-DM: The PROV Data Model. Technical Report. World
Wide Web Consortium. http://www.w3.org/TR/prov-dm/ (last accessed: June
2022).

[7] Pedregosa et al. 2011. Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research 12 (2011), 2825ś2830.

[8] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. łWhy should i trust
you?ž: Explaining the predictions of any classifier. In Proc. of KDD. 1135ś1144.

3617


