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Nuclear reactions may affect gravitational-wave signals from neutron-star mergers, but the impact is
uncertain. To indicate the significance of this effect, we compare two numerical simulations representing
intuitive extremes. In one case, reactions happen instantaneously. In the other case, they occur on
timescales much slower than the evolutionary timescale. We show that, while the differences in the two
gravitational-wave signals are small, the mismatch between them satisfies the condition for distinguish-
ability using the Einstein Telescope noise curve, assuming that the neutron-star equation of state can be well
constrained by experiments or by the postmerger signal of the event. This suggests that, to avoid systematic
errors in equation of state parameters inferred from observed signals, we need to accurately implement
nuclear reactions in future simulations.
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I. INTRODUCTION

Binary neutron-star mergers are promising cosmic labo-
ratories for extreme physics. As demonstrated in the
celebrated case of GW170817 [1], one can use observed
gravitational-wave merger signals (along with any electro-
magnetic counterparts) to make progress on the vexing
issue of the state of matter at densities beyond nuclear. This
motivates much of the current effort to develop robust
numerical simulation technology (in full general relativity)
to model these events [2,3], including as much realistic
physics as possible. Reliable numerical relativity (and
general relativistic magnetohydrodynamics) simulations
are required to model the highly nonlinear dynamics at
play and produce the signal templates needed for parameter
extraction. In parallel, we need to improve the detector
technology. The gravitational-wave signal from a merger
event is characterized by frequencies above 1 kHz, where
current ground-based instruments lose sensitivity.
While current interferometers could possibly detect the

postmerger gravitational-wave signal from a nearby event,
one would have to be very lucky for such an event to take
place; with the spectacular GW170817 observation we may
have been as fortunate as we are going to get, and in that
case we did not observe the postmerger dynamics. In order
to make our own luck, we need to push the development
of third-generation instruments (like the Einstein Telescope
[4–6] and the Cosmic Explorer [7,8]), which will have the
potential to regularly catch neutron-star mergers [9].

At the same time, we need to make progress on the issue
of extracting the physics we want to explore from obser-
vations. Motivated by this, simulations of large sets of
mergers involving different matter equations of state (and
physics implementations) have been carried out [10]. The
results demonstrate how one may, indeed, expect to be able
to distinguish different matter descriptions. This is prom-
ising, but a few points of caution are in order. In particular,
we need to keep in mind that current simulations are not yet
able to represent all aspects of the expected reality. Given
the level of difficulty of the issues involved (especially
concerning equilibrium [11] and neutrinos [12–16]),
progress is slow. As we improve our simulations, we need
to ensure that the results are sufficiently accurate and that
the signal templates do not introduce systematic errors due
to un- or underresolved physics. We will use the linked
concepts of “mismatch” and “distinguishability” from
gravitational-wave data analysis. The mismatch, quantified
in Sec. II B, gives a criterion for when a given detector can
observationally distinguish two gravitational-wave signals,
and hence the models that generate them. The systematic
errors generated by different models of nuclear reactions
raise questions somewhat different from that of comparing
different matter equations of state. We need to ask if
different physics implementations for the same equation
of state can be observationally distinguished. This question
motivates the present work.
Here we focus on the impact of nuclear reactions on the

gravitational-wave signal recovered from simulations. In
the simplest case, the reactions are responsible for the
balance between neutrons, protons, and electrons in the
high-density matter and are also responsible for production
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of neutrinos in neutron stars (which, in turn, leads to bulk
viscosity [17]). While there are current efforts [15,18–21]
to include neutrinos in neutron-star merger simulations,
we are only aiming to get a handle on the “error bars”
involved, so we take a more simplistic approach. We
consider two limiting cases, such that the reactions either
take place on such a long timescale that the rates can be
set to zero, or on such a short timescale that the fluid
composition reaches equilibrium instantaneously. As a
proof of principle, we use a single equation of state for
our simulations to isolate the systematic errors due to the
model for nuclear reactions. We then use toy models to
motivate the robustness of our results to changes in other
aspects of the model, such as the stiffness of the equation of
state. Our results demonstrate that gravitational-wave sig-
nals from these two simulations—although very similar—
could be distinguishable with a third-generation instrument
like the Einstein Telescope or Cosmic Explorer. The
implications are simple. We either have to accept the
difference as a systematic error or we need to make progress
on implementing nuclear reactions in our simulations.

II. METHOD

A. Simulating reaction limits

We assume the neutron-star fluid is composed of
neutrons, protons, and electrons, which have number
densities nn, np, and ne, respectively, and that the fluid
is locally charge neutral, which imposes the condition
np ¼ ne. We then define the baryon number density as
nb ¼ nn þ np, proportional to the fluid rest mass density ρ.
To keep track of the composition of the fluid, we use the
electron fraction Ye defined by

Ye ¼
ne
nb

¼ np
nb

: ð1Þ

The standard Valencia formulation [22,23] of the general
relativistic evolution equations already accounts for the
evolution of nb through ρ, however, an extra equation is
required for the evolution of Ye. This takes the form

ua∇aYe ¼
Γe

nb
; ð2Þ

where ua is the fluid four velocity, and Γe is the total rate of
electron production (for the simplest case of the Urca
processes, this will be the rate of neutron decay minus
the rate of electron capture). The left-hand side of the
equation accounts for the advection of the composition
along the world line of a given fluid element, and the right-
hand side accounts for the change in this composition due
to reactions.
While this relation is simple to write down, the inter-

action between the rates and the numerical methods make it
much less simple to evolve. If the reaction rate Γe is large

compared to neΔt (where Δt is the simulation time step), or
equivalently, the equilibration timescale of the reactions is
fast compared to Δt, then Eq. (2) becomes stiff and explicit
numerical evolution schemes produce unphysical oscilla-
tions in Ye. The standard workarounds for this (decrease
Δt, increase convergence order, use an implicit scheme,1

etc.) are either computationally expensive or would require
significant changes to the method used (or both), so as a
first step we instead work in the two limits of Γe: the fast-
reaction limit where Γe → ∞ and the slow-reaction limit
where Γe → 0.
In the slow-reaction limit, Eq. (2) simplifies to a standard

advection equation where fluid composition is preserved
along the world lines of fluid elements, while the
assumption that the reactions occur on timescales too fast
to be resolved by the simulation will cause the matter to
always be in β equilibrium. The definition of this equilib-
rium (in terms of chemical potentials) changes as the
temperature of the fluid varies due to different reactions
dominating the changes in composition [11,25]. As we are
not yet able to implement this effect—we do not have
access to the extra chemical potentials required for the other
equilibria [25]—we bypass the issue by using (for the fast-
limit simulation) the “cold” β equilibrium, μn ¼ μp þ μe.
While reality may lie closer to one of these limits than the
other, the estimates given in [11,17] indicate that it is
difficult to judge which limit would be the more accurate
when applied to all of the matter. A full transport scheme
would be required to determine whether either limit is
appropriate, and, on the way to such a simulation, inves-
tigating these two limits is a natural first step.
We describe our current simulation setup in detail

in [11]. Briefly, we use a standard set of thorns within
the Einstein Toolkit [26] modified to facilitate the use of
three-parameter tabulated equations of state; in particular,
we use the Akmal-Pandharipande-Ravenhall [27,28] equa-
tion of state. The simulation uses adaptive mesh refinement
for the grid, with the highest spacial resolution grids
being centered on and completely covering each star with
a grid spacing of ∼400 m, and the time step we use is
Δt=Δx ¼ 0.25. A single set of initial data for two stars,
each with baryon mass Mb ¼ 1.4M⊙, separated by 40 km
obtained using LORENE [29], is evolved in all simulations
presented here, assuming a fixed initial temperature of
T ¼ 0.02 MeV and cold β equilibrium. No magnetic fields
are present.
In order to keep the simulations as comparable as

possible, we use identical code for the in- and out-of-
equilibrium simulations, and account for the instantaneous
equilibration through the equation of state table. In order to

1This is the approach used by Most et al. [24], however, the
accuracy of implicit schemes in regions where an explicit scheme
would not otherwise be stable is questionable. This issue needs
further consideration.
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achieve this, we take the 2D slice defined by μn ¼ μp þ μe
through the full three-parameter table, then replace each
value of pðρ; T; YeÞ in the three-parameter table with the
value pðρ; TÞ found on the 2D slice (and equivalently for
other equation of state variables). We can then use this table
with the same interface as the original table.

B. Gravitational-wave analysis

We measure the gravitational radiation from the merger
through the Weyl scalar Ψ4 ¼ ḧþ − iḧ×, using the “fixed
frequency integration” method of Reisswig and Pollney
[30] to obtain the raw strain h ¼ hþ − ih×. As the stars
remain close to equilibrium until merger, we do not
expect any significant differences to appear during the
inspiral (and indeed we do not see significant differences
between the simulations in the ∼5 premerger orbits
covered), hence we focus our analysis on the postmerger
signal. We do this in two ways: in one method, we ignore
any data before the maximum jhðtÞj; in the second, we
apply a high-pass filter to all of the data.
To quantify the impact of the reaction limits on the

recoveredsignals,weuseastandardmeasureof thedifference
between two gravitational-wave signals, the mismatch M
(see, e.g., [31–34]). The mismatch is calculated through the
waveform overlap hh1jh2i, defined by

hh1jh2i ¼ 4

Z
∞

−∞

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df; ð3Þ

where ĥðfÞ is the Fourier transform of h and � denotes its
complex conjugate, while Sn is the strain sensitivity of a
detectoraspowerspectraldensity.Asthesimulationoutputsa
discretely sampled signal, we discretize Eq. (3) to obtain

hh1jh2i ¼ 4Δf
Xfmax

f¼fmin

�
h̃1ðfÞh̃�2ðfÞ

SnðfÞ
�
; ð4Þ

where the tilde denotes the discrete Fourier transform
(normalized for consistency with the continuous version),
fmax is the maximum resolvable frequency in the data
(typically the Nyquist frequency), fmin is the minimum
resolvable frequency (which for us is either the fixed cutoff
frequency ω0 used in the fixed frequency integration [30] or
the filter frequency), andΔf is the frequency resolutionof the
discrete Fourier transform.
The match M (sometimes referred to as the “maximized

overlap”) between the two signals is given by

M ¼ maxðhh1jh2iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i
p ; ð5Þ

where the overlap between h1 and h2 should be maximized
by time and phase shifting h2 by ðtc;ϕcÞ. The mismatchM
is then given by one minus the real part of the (maximized)
match, so we obtain

M ¼ 1 −ℜ

�
maxðhh1jh2eiðϕc−2πftcÞiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i

p
�
: ð6Þ

The mismatch is related to the signal-to-noise ratio of the
difference between the two signals ρdiff through [32]

ρ2diff ¼ 2ρ2sigM; ð7Þ

where ρsig is the signal-to-noise ratio of a detected signal
(not to be confused with the matter density). A widely
used criterion for the two signals to be distinguishable is
ρdiff ≥ 1 [31,35]. It should be noted that this does not relate
to the ability to observe a signal among some noise, nor
to using a given signal to estimate the specific model
differences. Instead, it speaks to whether or not one is able
distinguish between one model and another, knowing that
there is a signal present in the data.
For our purposes, we want to know what signal-to-noise

ratio is required for us to be able to distinguish between
the two reaction limits, so we rearrange Eq. (7) to provide
the condition

ρsig ≥
1ffiffiffiffiffiffiffiffiffi
2M

p : ð8Þ

To reiterate, if this condition is satisfied for a given detected
signal, we should be able to differentiate between fast- and
slow-reaction-limit behavior. We define ρreq ¼ 1=

ffiffiffiffiffiffiffiffiffi
2M

p
as

the smallest signal-to-noise ratio required to satisfy this
condition.

III. RESULTS AND DISCUSSION

A. Waveform comparison

In the upper panel of Fig. 1, we show the postmerger
gravitational-wave output of the fast- and slow-reaction-
limit simulations, alongside the suggested ET-D noise
curve for the Einstein Telescope [5] (which we use as
the detector noise in all mismatch calculations), assuming a
polar aligned detector at a distance of 40 Mpc. While the
two signals have similar overall shapes in the frequency
domain, we see that the peak frequencies for the two
simulations are visibly different: 2992� 8 Hz in the slow-
limit simulation and 3050� 10 Hz in the fast-limit simu-
lation, giving a difference of Δf ¼ 58� 13 Hz. Peak
frequencies are calculated using the method of Macleod
[36] and checked using the method of Quinn [37] (in all
cases, the estimate from the second method is within the
error bounds of the first). The computed mismatch between
these signals is M ¼ 36%, which, using Eq. (8), gives a
required signal-to-noise ratio for the two signals to be
distinguishable of ρreq ¼ 1.2. As this is lower than any
reasonable threshold to claim a detection, if the postmerger
signal is detected, then the effect of the reactions must be
taken into account.
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As a sanity check, we also performed a simulation with
20% coarser resolution but otherwise identical to the slow-
limit simulation, the output of which is plotted (alongside
the original slow-limit results) in the lower panel of Fig. 1.
Comparing these results with the original slow-limit
simulation, we find a mismatch on the order of 1%, and
the lower resolution simulation has a measured peak
frequency of 2992� 6 Hz. The mismatch in this case is
much lower than the mismatch between the fast- and slow-
limit simulations, and the peak frequency extracted from
the low-resolution simulation is within the error bounds
of the high-resolution simulation, so we are confident that
the numerical error due to the finite resolution of the
simulations is much less than the difference driven by the
contrasting physics models in the two cases.
As a further check, we have performed the above

analysis using the full gravitational-wave data from each

simulation (as opposed to just the postmerger data) after
high-pass filtering (the methodology used in [38]) and
obtained mismatches of 33% and 1% for the fast-/slow-
limit and high-/low-resolution combinations, respectively.
All of the recovered peak frequencies were within the error
bounds of their counterparts given above.

B. Effect on the equation of state

Having established that the two cases are distinguish-
able, it is natural to question what drives this difference. We
start by using a simple model motivated by the results of the
simulations to explore what effect being out of equilibrium
has on an isolated star. By constructing two one-parameter
equations of state from the full three-parameter table, one
in- and one out-of-equilibrium, we can see what effect
being out of equilibrium has on the structure of the stars.
For the out-of-equilibrium equation of state, we solve the
composition for a constant μΔ ¼ μn − ðμp þ μeÞ throughout
the table. This value of the offset need not be wholly
representative of the full simulations, but for the sake of
comparison we use the simulation data to inform our
choice. In Figs. 5 and 7 of [11], we see the deviation from
chemical equilibrium in the two stars around the time of
merger. At 5 ms postmerger, most of the core matter is in
the μΔ ¼ 20–30 MeV range (excluding the hot spots),
hence we choose μΔ ¼ 20 MeV as the deviation from
equilibrium for our out-of-equilibrium equation of state.
Finally, we obtain a one-parameter equation of state by
choosing a temperature of T ¼ 5 MeV.
Using LORENE [29], we first construct a rotating star

using the equilibrium equation of state. We choose the mass
of the star such that the central baryon number density is
similar to that found in our simulation (3.5nsat), giving a
total baryon mass for the star of 1.7M⊙, and an arbitrary
rotation frequency of 500 Hz (significant, but well below
the Keplerian frequency). This gives us a total angular
momentum. We then construct a rotating star using the out-
of-equilibrium equation of state conserving the total baryon
mass and angular momentum from the equilibrium star,
giving us a different rotation frequency. Admittedly, this
toy model is far from the true, dynamical postmerger state.
However, its qualitative features (in terms of rotation rates
and hence gravitational-wave phasing) should match a full
model and allow us to robustly explore a range of equations
of state.
We find that, to conserve angular momentum, the rotation

frequency must be reduced to 496 Hz (a fractional difference
of ∼1%). We repeated this procedure for a number of
equations of state based on different physical models,
namely, the DD2 [39,40], SFHx [41], and SLy4 [42,43]
equations of state, and obtained similar results, with the
change in rotation frequency required being of order 1% and
always in the same direction: out-of-equilibrium stars need a
lower frequency to match the angular momentum of the
respective in-equilibrium stars due to an increase in moment

FIG. 1. Upper: square-root power spectral density (PSD) plots
of the recovered waveforms from slow- and fast-reaction-limit
simulations (blue and orange curves, respectively). Lower: the
same comparison for the high- and low-resolution simulations
(blue and green curves, respectively), both in the slow-reaction
limit. Upper and lower: peak frequencies for each curve calcu-
lated using the Macleod method [36] are shown with dashed
lines. The ET-D design sensitivity curve for the Einstein Tele-
scope [5] is shown in red. The waveforms are normalized to a
distance of 40 Mpc and assume the source and detector are
perfectly aligned.
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of inertia. This increase is caused by a softening of the
equation of state at core densities as the matter is taken out
of equilibrium, creating a flatter density profile, and thus
more of the mass of the star is located further from the
axis of rotation.
Having observed similar effects in several equations

of state, one might ask whether this effect is truly general.
We will do this through the adiabatic index

Γ ¼ ∂ lnp
∂ ln nb

����
S;Ye

¼ nb
p

∂p
∂nb

����
S;Ye

; ð9Þ

where S is the specific entropy per baryon. Taylor
expanding around equilibrium and keeping only the first
term, we obtain

ΓðμΔÞ ¼ Γð0Þ þ μΔ
∂Γð0Þ
∂μΔ

����
S;nb

þOðμ2ΔÞ; ð10Þ

so the change in stiffness when moving out of equilibrium
will depend on the sign of the second term. The sign
is dependent on the equation of state used, however,
assuming a simple Fermi gas model gives a negative value
for all densities. Using the more realistic BSk density
functionals [44] we also obtain a negative sign at the
densities of interest.

C. Effect on the matter distribution

Having examined some simpler systems to determine a
possible source for the frequency difference presented
above, we can also look to see whether the softening effect
is visible in the full merger simulation. The naïve approach
would be to measure the moment of inertia of the whole
system in each case. However, after merger, the moment of
inertia is dominated by low-density matter far from the
remnant, so we need some local measure that we can apply
only to the remnant.
Starting from the Newtonian definition of the moment of

inertia for a mass distribution along the z axis,

IzðρÞ ¼
Z Z Z

V
ρðx; y; zÞðx2 þ y2ÞdV; ð11Þ

we substitute in the proper mass density ρW (the rest mass
density ρ multiplied by the local Lorentz factor W), and
correct the volume element to obtain

Iz ¼
Z Z Z

V
ρWðx1x1 þ x2x2Þ ffiffiffi

γ
p

d3x: ð12Þ

To better see the differences between the remnants, we
will use a density cutoff to mask the effects of low-density
matter at large radius, and to determine a relevant density
for the cutoff, we will look at how the contribution to the

moment of inertia varies in the x-y plane of the two stars.
To do this, we calculate the infinitesimal contribution to
the total moment of inertia of the loop at radius r, IloopðrÞ,
then integrate radially outward [to obtain IdiskðrÞ] to find
the density at which the difference between the two
simulations settles to a particular value. We find that the
difference between IdiskOOE and IdiskNSE reaches a near steady
state by ρ ∼ 10−2 − 10−3ρsat.
Ignoring densities below this cutoff, we can then apply

Eq. (12) to the whole domain, the results of which we plot
in Fig. 2. This shows that, when considering only the
densities above ρcutoff ∼ 10−2 − 10−3ρsat, the moment of
inertia of the remnant is a few percent higher in the out-of-
equilibrium simulation, which would intuitively lead
to a few percent decrease in the frequency at which the
remnant rotates.

IV. SUMMARY

We have shown that the postmerger gravitational-wave
signal is sensitive to the model of the weak reactions, in
concordance with recent simulations, using a different
method, by Most et al. [24]. This is driven by an increase
in moment of inertia from softening of the equation of state
which, we argue, is robust across different equation of state
models. If the bulk equation of state is constrained by the
inspiral and merger phase of the signal [45], then this
dephasing from the fixed equation of state model would be
distinguishable with the next-generation gravitational-wave
observatories, like the Einstein Telescope and Cosmic
Explorer.
It is, of course, important to note that the change in

frequency seen here is, in general, small compared to the

FIG. 2. Upper: evolution of the total moment of inertia [see
Eq. (12)] ignoring matter with rest mass density below ρcutoff for
slow- and fast-reaction-limit simulations (labeled OOE for out of
equilibrium and NSE for in equilibrium, solid and dotted lines,
respectively). Lower: relative difference between results for slow-
and fast-limit simulations.
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difference in frequency obtained by changing the equa-
tion of state (see, for example, Takami et al. [38]).
However, we reiterate that the magnitude of the
deviation demonstrated here is enough to materially
alter the postmerger gravitational-wave spectrum as
would be seen by a generation detector. Therefore,
any parameters extracted from such a signal using
templates derived from simulations that do not take this
effect into account would be subject to an associated
systematic error. If we wish to maximize the science
output of the next generation of detectors, consistent

models of weak reactions and numerical simulations
including them are essential.
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