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Abstract 97 

Background: Asthma is a chronic respiratory disease with significant heterogeneity 98 

in its clinical presentation and pathobiology. There is need for improved understanding 99 

of respiratory lipid metabolism in asthma patients and its relation to observable clinical 100 

features. 101 

Objective: To perform a comprehensive, prospective, cross-sectional analysis of the 102 

lipid composition of induced sputum supernatant obtained from asthma patients with 103 

a range of disease severities, as well as healthy controls. 104 

Methods: Induced sputum supernatant was collected from 211 asthmatic adults and 105 

41 healthy individuals enrolled in the U-BIOPRED study. Sputum lipidomes were 106 

characterised by semi-quantitative shotgun mass spectrometry, and clustered using 107 

topological data analysis to identify lipid phenotypes. 108 

Results: Shotgun lipidomics of induced sputum supernatant revealed a spectrum of 109 

nine molecular phenotypes, highlighting not just significant differences between the 110 

sputum lipidomes of asthmatics and healthy controls, but within the asthmatic 111 

population as well. Matching clinical, pathobiological, proteomic and transcriptomic 112 

data informed on the underlying disease processes. Sputum lipid phenotypes with 113 

higher levels of non-endogenous, cell-derived lipids were associated with significantly 114 

worse asthma severity, worse lung function, and elevated granulocyte counts. 115 

Conclusion: We propose a novel mechanism of increased lipid loading in the 116 

epithelial lining fluid of asthmatics, resulting from the secretion of extracellular vesicles 117 

by granulocytic inflammatory cells, which could reduce the ability of pulmonary 118 

surfactant to lower surface tension in asthmatic small airways, as well as compromise 119 

its role as an immune regulator. 120 
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Clinical Implication: Immunomodulation of extracellular vesicle secretion in the lungs 121 

may provide a novel therapeutic target for severe asthma. 122 

123 

Capsule Summary: We used lipid phenotyping of induced sputum to stratify a 124 

heterogeneous asthma cohort, and propose a novel mechanism of pulmonary 125 

surfactant dysregulation by extracellular vesicles secreted in asthmatic airways. 126 

127 

Keywords: Asthma, induced sputum, epithelial lining fluid, pulmonary surfactant, 128 

lipidomics, molecular phenotyping, extracellular vesicles, granulocytic inflammation 129 

130 

Abbreviations: 131 

ACQ Asthma Control Questionnaire 132 

ATII Alveolar type II 133 

Chol Cholesterol 134 

CE Cholesterol ester 135 

Cer Ceramide 136 

DG Diglyceride 137 

DPPC Dipalmitoyl-phosphatidylcholine 138 

ELF Epithelial lining fluid 139 

EV Extracellular vesicle 140 

HC Healthy control 141 



8 

HexCer Hexosyl-ceramide 142 

IgE Immunoglobulin E 143 

IPA Ingenuity Pathway Analysis 144 

JT-test Jonckheere-Terpstra test 145 

LC-MS/MS Liquid chromatography tandem mass spectrometry 146 

LPC Lyso-phosphatidylcholine 147 

MDS Multi-dimensional scaling 148 

MMA Mild-to-moderate asthmatic 149 

PC Phosphatidylcholine 150 

PE Phosphatidylethanolamine 151 

PG Phosphatidylglycerol 152 

PI Phosphatidylinositol 153 

PS Phosphatidylserine 154 

SM Sphingomyelin 155 

QC Quality control 156 

SAc/ex Current or ex-smoking severe asthmatic 157 

SAn Non-smoking severe asthmatic 158 

TDA Topological data analysis 159 

TG Triglyceride 160 
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U-BIOPRED Unbiased Biomarkers for the Prediction of Respiratory Disease 161 

Outcomes 162 
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Introduction 163 

Asthma is a chronic respiratory disease characterised by recurrent attacks of 164 

breathlessness and wheezing, variable airflow limitation and loss of lung function, with 165 

airways inflammation and remodelling as the underlying pathobiological processes. 166 

The most significant challenge in asthma treatment is its heterogeneity in clinical 167 

presentation and underlying pathobiology. A variety of asthma phenotypes have been 168 

described to date based on demographic, clinical or pathophysiological 169 

characteristics. Amongst these, blood and sputum eosinophilia have been of greatest 170 

value for understanding the risk of exacerbations and response to treatments with 171 

inhaled corticosteroids and biologics.1 However, there is still a large unmet need for 172 

understanding the underlying disease mechanisms and for finding correlations with 173 

specific pathobiological processes or treatment responses in order to provide a clearer 174 

delineation of the various disease phenotypes and endotypes.2-4 Improved 175 

stratification along mechanistic lines will open up new directions for targeted drug 176 

development and more personalised disease management strategies. 177 

The U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease 178 

Outcomes) study5 has employed an ‘unbiased’ multi-omics systems biology approach 179 

to stratify patients with asthma, elucidate biochemical pathways, and define new sets 180 

of diagnostic molecular biomarkers.6-11 The aims of the current study were: to provide 181 

a comprehensive analysis of the lipid composition of induced sputum supernatant 182 

across the entire disease spectrum, from health to severe asthma; to stratify the 183 

heterogeneous U-BIOPRED cohort according to its sputum lipid molecular 184 

phenotypes; and to infer mechanisms of lipid biology that are either affected by, or 185 

contribute to, the observed phenotypes and their clinical features. 186 
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Sputum supernatant comprises a mixture of pulmonary surfactant and soluble material 187 

secreted by immune cells and the respiratory epithelium within the lungs, with small 188 

quantities of saliva. In healthy adult volunteers the sputum lipidome is dominated by a 189 

comparatively restricted number of molecular species, in particular di-saturated 190 

phosphatidylcholines, and small amounts of other glycerophospholipids, 191 

sphingolipids, glycerolipids and sterols.12-14 Thus, its lipid composition matches its 192 

primary source: pulmonary surfactant secreted by ATII cells in the alveolar 193 

epithelium.15-17 The tight and rapid regulation of lipids, from the cellular to systemic 194 

level, combined with their large molecular diversity and involvement in a wide range 195 

of intra and inter-cellular signalling pathways, makes them a rich source of molecular 196 

biomarkers of disease and a valuable component of systems-based disease 197 

phenotyping studies.18,19 However, despite significant interest in the role of lipids in 198 

respiratory diseases, studies of the sputum lipidome remain scarce.12-14,20-22 We have 199 

previously reported on the lipid composition of sputum supernatant in a cohort of 41 200 

healthy adults14 and now extend our analysis to an additional 211 U-BIOPRED study 201 

participants from across the asthma severity spectrum. Semi-quantitative shotgun 202 

lipidomic measurements were clustered using topological data analysis (TDA) and 203 

complemented with matched clinical, immunoassay and transcriptomic data to inform 204 

on the underlying disease processes. This multi-dimensional approach to patient 205 

characterisation stratified healthy and asthmatic participants into nine different groups 206 

based on their sputum lipid phenotypes, suggesting distinct biological mechanisms 207 

that could provide novel targets for asthma therapeutics. 208 

209 

Methods 210 

U-BIOPRED study design and tranSMART data repository211 
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All samples were obtained from the U-BIOPRED cohort recruited in 14 European 212 

clinical centres.5 Processed biological samples from clinical sites were fully blinded 213 

and stored in a central biobank (CIGMR Biobank, University of Manchester). All 214 

clinical, laboratory and ‘omics data collected for U-BIOPRED are hosted on the 215 

tranSMART knowledge management platform, and these were only released to study 216 

group members upon completion of all ‘omics analyses. 217 

Lipid analysis and data processing 218 

Shotgun lipidomics of induced sputum samples (n=252) followed the methodology 219 

previously published by us,14 and a comprehensive description is given in this article’s 220 

Online Repository at www.jacionline.org. Briefly, lipids were extracted using a modified 221 

Bligh-Dyer extraction protocol23 and characterised by flow injection analysis on a 222 

Dionex 3000 ultra-high performance liquid chromatography system (Thermo Scientific 223 

Dionex, Sunnyvale, CA, USA), coupled to a MaXis 3G quadrupole time-of-flight mass 224 

spectrometer, equipped with an electrospray ionisation source (Bruker Daltonics, 225 

Billerica, MA, USA). Measurements were performed in full scan mode for both positive 226 

and negative ionisation at m/z 300-1000. Fragmentation analyses for lipid identification 227 

were performed on pooled QC samples, using the same instrumental setup, but in LC-228 

MS/MS mode with a Waters Acquity C8 column (Waters, Milford, MA, USA). Data-229 

independent product ion scans were acquired over the entire LC run via broadband 230 

collision induced dissociation. Precursor and fragment ions were matched by their 231 

chromatographic retention time and using well-established fragmentation rules for 232 

lipids24 for identity confirmation. 233 

After removal of ions with <60% detection rate, data were corrected for potential batch 234 

effects using the R script “SVA ComBat”.25 All ion counts were normalised using 235 

synthetic internal standards and the original sample volume to obtain semi-quantitative 236 

http://www.jacionline.org/
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results. Because sputum is subject to variable dilution of analytes during sampling and 237 

processing,26,27 data were also normalised to the amount of total lipid. 238 

Data analysis and statistics 239 

In order to identify lipid phenotypes, topological data analysis (TDA)9,28,29 was used to 240 

group participants with comparable sputum lipid profiles. TDA was performed on the 241 

AyasdiAI machine intelligence platform (Symphony AyasdiAI, Palo Alto, CA, USA), 242 

using a normalised correlation metric combined with MDS lenses. Groups of 243 

participants with similar sputum lipid profiles (i.e., sputum lipid phenotypes)  were 244 

defined within the TDA structure using density mode clustering.30,31 Statistical 245 

significance of trends across the TDA structure was assessed in SPSS Statistics 24 246 

(IBM, Armonk, NY, USA): Jonckheere-Terpstra tests for ordered alternatives were 247 

performed for sputum lipids, as well as a range of demographic, clinical and 248 

pathobiological measurements, selected blood protein concentrations, and sputum 249 

cell pellet gene expression (see below). Trends were considered significant if p<0.05, 250 

and highly significant if p<0.001 (after Bonferroni correction). 251 

Blood protein data 252 

Concentrations of 32 protein markers of inflammation and tissue function were 253 

downloaded from the U-BIOPRED database hosted on the tranSMART knowledge 254 

management platform. Protein measurements were performed on plasma samples, 255 

using Mesoscale Discovery (MSD) electrochemiluminescence (11), or on serum 256 

samples, using either of the following immunoassay platforms: Luminex (16), Impact 257 

(2), Singulex (1), Elecsys (1) or Immulite (1). 258 

Pathway analysis of sputum cell pellet transcriptomics data 259 
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Transcriptomic data from RNA extracts of 97 matching sputum cell pellets were 260 

downloaded from the U-BIOPRED dataset32, and subjected to Ingenuity Pathway 261 

Analysis (QIAGEN Bioinformatics, Redwood City, CA, USA) to identify potential 262 

upstream regulators of differential gene expression in each of the lipid phenotypes. 263 

IPA core analysis was performed on the top 4000 differentially expressed genes, using 264 

the ordered TDA groups as described above. The results were subjected to a 265 

comparison analysis to identify trends of IPA-predicted upstream regulator 266 

activation/inhibition across the sputum lipidomics TDA structure. 267 

268 

Results 269 

Study cohort 270 

Of the 610 adult individuals recruited in U-BIOPRED, 252 successfully provided 271 

sputum samples that passed QC based on cell viability, resuspension volume and a 272 

squamous epithelial cell cut-off of ≤40% of total sputum inflammatory cells.5 The study 273 

group thus comprised 137 females and 115 males of predominately white origin, 274 

clinically categorised as either non-smoking severe asthmatics (SAn; n=117), current 275 

or ex-smoking severe asthmatics (SAc/ex; n=51), mild-to-moderate asthmatics (MMA; 276 

n=43), or healthy controls (HC; n=41) (Table 1). 277 

Topological data analysis of sputum lipid phenotypes 278 

A total of 291 lipid molecular ions were quantified in the sputum samples (for 279 

methodology, QC and selection procedures see this article’s Online Repository at 280 

www.jacionline.org). Of these, 92 lipid species were identified using LC-MS/MS of 281 

pooled QC samples. The remaining ions were classified as ‘unknown lipids’, but 282 

together these comprised only 5% of the total lipid signal. 283 

http://www.jacionline.org/
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Initial TDA of all samples produced a network comprising a tight, highly interconnected 284 

“core” group (~60% of participants), connected to a more diffuse “flare” (~40% of 285 

participants) via a small number of edges (Fig. 1A). This indicates that sputum lipid 286 

profiles were similar amongst members of the core group, but were markedly different 287 

in the flare group. To gain deeper insight, the “core” (C) and “flare” (F) sets were split 288 

and re-analysed in individual TDAs. This analysis yielded a ring-like network for the 289 

core set, consisting of four connected groups, which were labelled C1 to C4 (Fig. 1B). 290 

The flare set comprised a V-shaped string of five distinct groups, which were labelled 291 

F1 to F5 (Fig. 1B). Edges connecting the flare set to the core set in the original TDA 292 

network were restricted to C3, C4, F1 and F2 in the central part of the structure. The 293 

nine identified groups constitute a continuous spectrum of partly overlapping sputum 294 

lipid phenotypes, starting with the ‘basal’ phenotype of group C1, via ‘intermediate’ 295 

groups C2-C4, then F1-F2, to the ‘terminal’ groups F3-F5 (Fig. 1B). 296 

To examine which components of the sputum lipidome were driving this structure, a 297 

trend analysis for ranked data was performed (JT-test). C1 and F5 were selected as 298 

the first and last group of the series, respectively, with the remaining intermediate 299 

groups ranked according to their distance from either end of the TDA structure (where 300 

groups were equidistant the order was assigned arbitrarily, e.g., C2 and C3). The 301 

results showed highly significant trends from C1 to F5 for 85% of the measured lipids 302 

(Fig. 2 and Table E1 in this article’s Online Repository at www.jacionline.org). Relative 303 

amounts of DPPC and other palmitic acid-containing PC species progressively 304 

decreased from C1 onwards, being lowest in group F5. There was a reciprocal 305 

increase in the relative quantities of other lipids, including long-chain polyunsaturated 306 

fatty acid-containing PCs, mixed alkyl-acyl PCs, other glycerophospholipids such as 307 

PE and PS, sphingolipids, sterols (Chol and its esters), and triacylglycerols (TG). 308 

http://www.jacionline.org/
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Importantly, trends in relative abundance were not always matched by the actual lipid 309 

concentration data. For example, actual concentrations of the surfactant-specific lipid 310 

DPPC were comparable across all TDA groups (JT-test, p-value: 0.823, z-score: 311 

0.223). Moreover, a number of differences between individual phenotypes did not 312 

conform to the general trend described. For example, relative to the other core groups, 313 

C2 was enriched in PC[16:0/18:0] and PC[16:0/18:1], whereas F3 was highly enriched 314 

in cholesterol and CE species, but not as enriched in PS[36:1] as the other flare groups 315 

(Table E1 in this article’s Online Repository at www.jacionline.org). 316 

Trends in matched clinical and pathobiological data 317 

Trend tests were also performed for a variety of metadata available from the U-318 

BIOPRED tranSMART repository, including demographic and clinical measurements, 319 

blood proteins and sputum cell pellet gene expression. There was a highly significant 320 

trend in asthma severity (JT-test, p-value <0.001, z-score: 6.336), as judged by the 321 

proportion of participants from each of the four clinically characterised U-BIOPRED 322 

categories (Table 1). The proportion of healthy controls was highest in basal group C1 323 

(42%) and decreased progressively through the intermediate groups to 12% in C4, 324 

being only 6-7% in F1, F2 and F4. The two terminal flare groups (F3 and F5) contained 325 

only mild-to-moderate and severe asthmatics, but no healthy participants. Among the 326 

clinical and pathobiological variables, highly significant negative trends were observed 327 

for lung function measurements (spirometry and reversibility), whereas subject age, 328 

ACQ scores, serum IgE levels, blood inflammatory cells and blood platelets all 329 

increased significantly from C1 to F5 (Table E2 in this article’s Online Repository at 330 

www.jacionline.org). The sputum differential cell counts showed reciprocal increases 331 

in eosinophils and neutrophils and significant decreases in macrophages and 332 

lymphocytes. Although median sputum eosinophil levels reached 3% of total 333 

http://www.jacionline.org/
http://www.jacionline.org/
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inflammatory cell counts in four of the TDA groups, a threshold viewed as clinically 334 

relevant,33 they were significantly higher in group F3 (26.8%) than in any other group. 335 

Similarly, neutrophil levels gradually increased from 40% in C1 to 60% in groups F1-336 

F3, and peaked in groups F4 and F5 (medians 83% and 91%, respectively). 337 

Of the 32 blood protein biomarkers of inflammation and tissue function available for 338 

this analysis, more than half increased significantly from C1 to F4/F5 (Table E3 in this 339 

article’s Online Repository at www.jacionline.org). Some of the between-group 340 

differences appeared to be independent of the overall trend. For example, high levels 341 

of serum Eotaxin-3 and IL-13 were associated with the high-eosinophil group F3, 342 

whereas levels of CCL17 and Galectin-3 in that group did not differ from the basal 343 

group C1. Finally, a number of upstream transcriptional regulators of inflammation, 344 

predicted by pathway analysis of the sputum cell pellet transcriptome, also showed 345 

consistent, significant trends across the TDA structure (Table E4 in this article’s Online 346 

Repository at www.jacionline.org). These included increasing expressions (from C1 to 347 

F4/F5) of RAB1B, PLA2R1, SYVN1, CD24, HSP90B1 and DNMT3B, and decreasing 348 

expressions of miR-10, miR-122, WT1, SMARCA4, NANOG, KDM5B, ETS1 and 349 

SMAD3. However, for most of the regulators any differences in expression relative to 350 

C1 appeared to be specific to discrete, smaller parts of the structure. 351 

 352 

Discussion 353 

In this comprehensive cross-sectional assessment of sputum lipid biomarkers, we 354 

show the existence of a continuous spectrum of molecular phenotypes from health to 355 

severe neutrophilic and eosinophilic asthma (Figs. 1 and 3). TDA of the sputum 356 

lipidome showed a progressive reduction in relative quantities of DPPC and other di-357 

http://www.jacionline.org/
http://www.jacionline.org/
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saturated PC species from the basal group C1 to the flare groups F1-F5 (Fig. 2). This 358 

trend was matched by a progressive increase in both absolute and relative 359 

abundances of alkyl-acyl PCs, longer-chain/polyunsaturated fatty acid-containing 360 

PCs, various PE and PS species, sphingolipids, and neutral lipids (Chol, CE, DAG and 361 

TG species), in particular in the eosinophilic and neutrophilic severely asthmatic flare 362 

groups. In contrast, absolute concentrations of surface-active di-saturated PC species, 363 

the main lipid component of pulmonary surfactant,15,34,35 did not vary significantly 364 

between TDA groups. Lipid metabolism is highly dynamic, responding to 365 

developmental, nutritional and environmental challenges by up- or down-regulating 366 

lipid synthetic and catabolic pathways that maintain homeostasis. Due to its unique 367 

role in reducing surface tension at the air–liquid interface in the alveoli, and thereby 368 

preventing collapse of these structures at end expiration, the lipid composition of 369 

pulmonary surfactant is tightly regulated by the ATII cells.35 The constant levels of 370 

surface-active di-saturated PC species observed in this study strongly suggest that 371 

surfactant production and secretion are not significantly altered in asthma. Rather, the 372 

progressive increase in lipids that are not secreted by ATII cells as part of the 373 

pulmonary surfactant points to the presence of another source for this material, 374 

particularly in the TDA flare groups. Given the nature of this sample type, the number 375 

of potential sources is limited. Saliva was ruled out as a major source since the 376 

numbers of squamous epithelial cells derived from the upper airways, an indicator of 377 

salivary contamination,36,37 were on average only 10% and did not vary significantly 378 

between TDA groups. Moreover, concentrations of neutral lipids, which predominate 379 

in saliva,38 were low. Plasma infiltration in the upper airways has been shown to disrupt 380 

the respiratory lipidome, in particular during asthma attacks and allergen challenges, 381 

leading to significantly increased levels in the ELF of typical plasma lipids, such as 382 



19 
 

linoleic acid-containing PCs.39,40 This pattern did not match any of the phenotypes 383 

described here, and lipid species such as PC[34:1] and PC[34:2] either followed 384 

similar trends to DPPC, or did not show strong trends across the TDA network at all. 385 

This indicates that plasma infiltration is not a major factor in driving the sputum lipid 386 

phenotypes observed in this study. 387 

 In contrast, highly significant associations were seen between the lipidomic trends 388 

and inflammatory cell numbers. The flare groups all contained high numbers of 389 

granulocytic inflammatory cells, predominately eosinophils in F3, neutrophils in F4 and 390 

F5, and a combination of both in F1 and F2 (Fig. 3). We speculate, therefore, that the 391 

ELF lipidome in these phenotypes is enriched by material derived from airway 392 

granulocytes. The sampling protocol required removal (by centrifugation) of whole 393 

cells, and samples rich in dead or damaged cells were excluded from analysis as part 394 

of the QC. Thus, we postulate that the lipid material could be derived either from small 395 

membrane fragments or secreted extracellular vesicles (EVs). The latter were recently 396 

identified in both bronchoalveolar lavage fluid and induced sputum samples from mild 397 

allergic asthma patients.41-43 398 

Knowledge of the lipid pathobiology of neutrophils and eosinophils is unfortunately 399 

limited. Neutrophils are rich in PC, PE, PS, PI, SM and cholesterol, with high levels of 400 

mixed alkyl-acyl.44-47 In eosinophils, research has mainly focused on activation-401 

induced formation of intracellular lipid droplets and their metabolism of arachidonic 402 

acid as the precursor for pro-inflammatory lipid mediators,48-50 but there has been no 403 

systematic profiling of the eosinophil lipidome. Both neutrophils and eosinophils 404 

release EVs in response to inflammatory stimuli, either as endosome-derived 405 

exosomes or outer membrane-derived micro-vesicles.51,52 Such EVs were shown to 406 

be rich in sphingolipids, PS and neutral lipids, and may also reflect the lipid 407 
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compositions of their progenitor cells.53-55 The TDA flare groups were all significantly 408 

enriched in lipids that fit this inflammatory cell profile. For example, levels of 409 

arachidonic acid-containing lipids such as PC[16:0/20:4] and PC[18:0/20:4], as well as 410 

cholesterol and its esters, were highest in these groups (especially in the eosinophil-411 

rich group F3), as were levels of SM species and other sphingolipids (especially in F4 412 

and F5). Levels of mixed alkyl-acyl species such as PC[O-16:0/18:1], common in 413 

neutrophils, were only enriched in the two neutrophil-rich groups.  414 

Eotaxin production is elevated in the airways of asthmatic patients, and this chemokine 415 

can both recruit eosinophils56 and stimulate the formation of lipid droplets in these 416 

cells, which are enriched in arachidonic acid and can act as sites of eicosanoid 417 

formation.57,58 Such lipid droplets may selectively contribute lipid material for EVs, in 418 

particular exosomes, the formation and secretion of which is also induced by eotaxin 419 

and other inflammatory stimuli.51 A similar mechanism was recently proposed for 420 

neutrophil-derived exosomes, which were shown to contribute to airway smooth 421 

muscle remodelling.52 In the current study, circulating levels of a range of chemokine 422 

and cytokine markers of inflammation and tissue function were significantly higher in 423 

the serum of participants in the TDA flare groups. In addition, the upstream 424 

transcriptional regulator with the strongest positive trend across the TDA structure was 425 

RAB1B. Members of the Rab GTPases protein family are key regulators of intracellular 426 

membrane trafficking and are present on the membranes of lipid droplets.59,60 427 

Combined with the sputum lipidomics results, this suggests that pro-inflammatory 428 

mediators have additional, and potentially damaging, biological effects beyond cell 429 

recruitment. We also note a significant upregulation of the protein-coding gene 430 

PLA2R1 in the granulocytic flare groups (F3-F5). This receptor is produced to 431 

counteract the biological effects of secreted phospholipase A2 enzymes,61 and 432 
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PLA2R1 was previously shown to be overexpressed in the bronchial epithelium of 433 

children with atopic asthma.62 We did not observe a direct effect of potentially 434 

increased phospholipase A2 activity on the sputum lipidome of groups F3-F5 (e.g., an 435 

increase in lysophospholipid levels63,64). Nevertheless, phospholipase activity is likely 436 

an important driver in the pathobiology of eosinophilic and neutrophilic asthma, and 437 

additional insight is required into their localisation, substrate specificity and kinetics.  438 

The lipid phenotypic differences observed within the TDA core group were more subtle 439 

than in the flare groups. Group C1 contained a mixed population of healthy and mildly 440 

asthmatic participants with a sputum lipid profile that matches that of healthy adults.12-441 

14 The remaining core groups (C2-C4) contained smaller numbers of healthy 442 

participants, and mostly comprised a mixture of mild-to-moderate and non-443 

inflammatory severe asthmatics. Phenotype C4 was paucigranulocytic, with mean 444 

eosinophil and neutrophil counts of 2% and 43% respectively. Its lipid composition was 445 

intermediate between the healthy and severe granulocytic flare phenotypes, 446 

containing relatively less DPPC, elevated levels of the other lipid classes mentioned 447 

above, and a specific enrichment in PI species. The lipid phenotype of group C3 was 448 

intermediate between C1 and C4, with notably low levels of PIs. The main 449 

pathobiological features distinguishing these two groups of asthmatics were their 450 

atopy status and serum IgE levels, both of which were high in C4 and low in C3, 451 

suggesting the presence of a distinct sputum lipid phenotype for ‘non-atopic’ 452 

asthmatics.65 Finally, group C2 had a lipid phenotype similar to that of the ‘healthy’ 453 

group, but with relatively less DPPC and concomitantly increased levels of C18 fatty 454 

acid-containing PC species. This group was characterised by a higher body mass 455 

index and waist circumference, suggesting that the differences were related to body 456 

weight status, rather than a particular type of asthma. Several studies have 457 
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demonstrated dysregulation of lung lipid metabolism in obese animal models,66-68 and 458 

we have previously reported on a distinct ELF lipid phenotype in overweight, but 459 

otherwise healthy, human adults.14  460 

Finally, we examined associations between the lipidome and upstream regulators of 461 

inflammation identified by IPA of sputum cell pellets. In addition to upregulated RAB1B 462 

and PLA2R1 in the TDA flare groups, significant associations were observed between 463 

asthma severity and expression of SYVN1, CD24, HSP90B1 and DNMT3B 464 

(upregulation), and miR-10, miR-122, WT1, SMARCA4, NANOG, KDM5B, ETS1 and 465 

SMAD3 (downregulation). Many of these have previously been indicated in asthma 466 

and other inflammatory diseases. The upregulation of CD24, known to be expressed 467 

on granulocytes and lymphocytes, matched the high-neutrophil TDA groups F2, F4 468 

and F5.69 In contrast, ETS1 is a negative regulator of Th17 cells, proposed to drive 469 

specific phenotypes of asthma.70-73 Overexpression of DNMT3B promotes 470 

macrophage polarization into a ‘classically-activated’ M1 phenotype and enhances 471 

macrophage inflammation,74 and this gene was upregulated in all of the asthmatic 472 

groups apart from C2 and C4. Finally, Wilms Tumour 1 (WT1) is known to regulate the 473 

expression of Matrix metalloproteinase-9 (MMP-9), an enzyme responsible for 474 

extracellular matrix degradation and airway remodelling in asthma.75 Our results 475 

suggest that this mechanism may be activated in the most severe neutrophilic 476 

asthmatics (F4, F5), with WT1 downregulation leading to more MMP-9 mediated 477 

tissue.76 478 

In summary, we have shown that lipidomic profiling of induced sputum stratifies 479 

asthma into a spectrum of distinct molecular phenotypes, and that the abundance and 480 

proportion of lipids that are non-endogenous to the pulmonary surfactant increases 481 

significantly with asthma severity. Based on matching trends in the clinical, 482 
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immunoassay and transcriptomic data, we propose a hypothesis for a novel 483 

mechanism of surfactant dysregulation in severe asthma, wherein granulocytes 484 

recruited into the airways are activated to produce both intracellular lipid droplets and 485 

EVs (exosomes and/or microvesicles) (Fig. 4). Upon release, these lipid and protein-486 

rich EVs could disrupt the tightly regulated structure of the pulmonary surfactant 487 

component of the ELF,34 in a similar way as has been proposed for granulocyte-488 

derived proteins in asthma.77 In turn, this would reduce the surfactant’s ability to lower 489 

surface tension in the small airways, leading to collapsibility, and potentially also 490 

compromise its immunological function.34,42 491 

We wish to highlight that our findings require external validation, and that the variable 492 

efficacy of widely used asthma medication such as inhaled corticosteroids may play 493 

an important role in refining the respiratory lipid phenotype model presented here. 494 

Further in vivo or in vitro studies are needed to verify the proposed mechanism, 495 

including detailed analyses of the lipidomes of granulocytes and their EVs. 496 

Nonetheless, immunomodulation of EV secretion by granulocytes in the lungs could 497 

provide a new and attractive therapeutic target for severe asthma. If the proposed 498 

mechanism is substantiated, then efforts should be directed at identifying drugs that 499 

could modulate the observed sputum lipid phenotypes, thereby further exploring the 500 

relevance of respiratory lipid metabolic changes in asthma and the potential for 501 

additional therapeutics. 502 
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Table 1 736 

737 

Severe asthmatic Severe asthmatic Mild/moderate asthmatic Healthy 

Active or ex-smoker Non-smoker Non-smoker Non-smoker 

n=51 n=117 n=43 n=41 

Age mean [range] 55 [29-74] 53 [21-78] 42 [18-72] 37 [18-65] 

Sex (m/f) ratio 19/32 43/74 24/19 29/12 

Race (Caucasian/non-Caucasian) ratio 49/2 109/8 40/3 37/4 

Age at first diagnosis mean [range] 35 [1-67] 24 [0-68] 20 [1-63] NA 

BMI mean [range] 30.1 [20.6-48.4] 29.1 [17.8-51.1] 25.5 [17.9-36.6] 25.5 [18.9-32.0]

Serum IgE (mL-1) mean [range] 274 [5-2690] 398 [0-6811] 328 [7-3520] 89 [0-574] 

FEV1 (% predicted) mean [range] 66.1 [24.3-113.0] 65.4 [18.4-120.6] 90.4 [40.9-132.3] 102.1 [66.9-123.6] 

FVC (% predicted) mean [range] 90.6 [54.6-129.1] 87.8 [40.2-131.3] 107.4 [68.6-151.6] 108.5 [72.2-136.4] 

FEV1/FVC ratio mean [range] 62.6 [35.2-90.0] 62.1 [31.0-92.2] 75.0 [52.4-93.9] NA 

Exacerbations (past 12 months) mean [range] 2.5 [0-10] 2.1 [0-8] 0.4 [0-4] NA 

Smoking pack-years mean [range] 24.2 [5-70] 0.4 [0-5] 0.7 [0-5] 0.3 [0-5] 

Intubation (ever) count [pct] 1 [2%] 13 [11%] 0 [0%] NA 

ICU admission (ever) count [pct] 7 [14%] 28 [24%] 0 [0%] NA 

Positive atopy test count [pct] 27 [53%] 73 [62%] 36 [84%] 14 [34%]

ACQ1-5 score mean [range] 2.2 [0.2-4.4] 2.2 [0-5.0] 0.8 [0-2.4] NA 

ACQ7 score mean [range] 4.2 [0-7.0] 3.9 [0-7.0] 1.8 [0-7.0] NA 

AQLQ score mean [range] 4.4 [2.3-6.8] 4.6 [1.9-6.8] 5.9 [3.2-6.9] NA 

Oral corticosteroid use (current) count [pct] 25 [49%] 49 [42%] 0 [0%] NA 

Inhaled corticosteroid use (current) count [pct] 50 [98%] 113 [97%] 43 [100%] NA 

Injectable corticosteroid use (current) count [pct] 0 [0%] 8 [7%] 0 [0%] NA 

Long-acting ß-agonist use (current) count [pct] 48 [94%] 112 [96%] 1 [2%] NA 

Short-acting ß-agonist use (current) count [pct] 37 [73%] 91 [78%] 32 [74%] NA 

Corticosteroid dose (mg day-1) mean [range] 13.7 [2.5-40.0] 12.4 [5.0-37.5] NA NA 

Demographics of study participants according to the U-BIOPRED cohorts (see main 738 

text for definitions). Ex-smokers with a pack-year smoking history of ≤5 were 739 

considered to have a ‘negative’ smoking status, whereas ex-smokers with pack-year 740 

≥5 were only included in the study if also diagnosed with severe asthma. 741 

Abbreviations: BMI = body mass index; FEV1 = forced expiratory volume in 1 second; 742 
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FVC = forced vital capacity; IgE = Immunoglobulin E; ICU = intensive care unit; ACQ 743 

= Asthma Control Questionnaire; AQLQ = Asthma Quality of Life Questionnaire; NA = 744 

not applicable/not assessed. Systemic dosage of corticosteroids for severe asthmatic 745 

participants is expressed in prednisolone-equivalent doses. 746 
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Figure 1 747 
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 748 

TDA structures of (A) the complete study cohort (n=252) and (B) the ‘core’ and ‘flare’ 749 

subgroups side by side (n=164 and n=107 respectively), coloured by FEV1 (forced 750 

expiratory volume in 1 second) from 50% (red) to 100% (green; see histogram in inset). 751 

TDA was performed on 291 sputum lipid ions, using a normalised correlation metric 752 

and two MDS lenses. The TDA groups, as delineated by density mode clustering, 753 

along with the proportion of participants present in each group are shown in B. The 754 

original figures were obtained with the Symphony AyasdiAI machine intelligence 755 

platform (www.ayasdi.com).  756 
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Figure 2 757 
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Box plots of representative lipid species demonstrating the trends across the TDA 759 

structure. Relative abundances are given as a percentage of the total lipid, and 760 

boxplots were coloured from blue (low) to red (high) to highlight trends. The original 761 

plots were created in SPSS Statistics 24 which defines outliers as ‘near’ (open circles: 762 

more than 1.5 times the interquartile range) and ‘far’ (stars: more than 3 times the 763 

interquartile range). The abbreviations of the lipid species, e.g. PC, are explained in 764 

the text. 765 
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Figure 3 766 

 767 

Summary of the sputum lipid phenotypes found in this study and their assignments 768 

based on associations with the demographic, clinical and pathobiological data 769 

(predominately sputum differential cell counts). As shown in Fig. 1 and discussed in 770 

the main text, the nine phenotypes represent a spectrum of asthma severity from C1 771 

(low) to F3 and F5 (high). Key characteristics of the main ‘core’ and ‘flare’ groups are 772 

listed on the left and can be found in Tables E1-E4 in this article’s Online Repository 773 

(www.jacionline.org).  774 

http://www.jacionline.org/
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Figure 4 775 

776 

Conceptual representation of the potential role of granulocytic inflammation in 777 

producing EVs (exosomes and/or micro-vesicles) that may alter the lipid composition 778 

of the ELF (shown as light blue layer) in asthma. Pro-inflammatory chemokines and 779 

cytokines (red arrows) recruit eosinophils and neutrophils into the airways and 780 

stimulate intracellular lipid droplet formation and the secretion of EVs. The latter are 781 

rich in cellular lipids and proteins, which could impair the function of the pulmonary 782 

surfactant component of ELF, thereby reducing its ability to lower surface tension in 783 

the small airways and potentially compromising its role as an immunological barrier. 784 



Stratification of asthma by lipidomic profiling of induced 1 

sputum supernatant 2 

3 

Online Repository 4 

5 

Methods 6 

U-BIOPRED study design and tranSMART data repository7 

All samples used in this study were obtained from the U-BIOPRED cohort recruited in14 8 

clinical centres across Europe (Shaw et al. 2015). The study protocols were approved by local 9 

Ethics Review Boards and participants gave their written informed consent for in-depth 10 

characterisation using U-BIOPRED standardised protocols for clinical assessment and 11 

biological sample collection, as well as molecular analysis by a variety of ‘omics platforms. 12 

Processed biological samples from all clinical sites were blinded and stored in a central 13 

biobank (CIGMR Biobank, University of Manchester) and after completion of recruitment 14 

analysed in the Mass Spectrometry Unit of the NIHR Southampton Biomedical Research 15 

Centre. The study IDs and clinical metadata of the participants providing the samples were 16 

un-blinded only after completing all the analyses, data processing and quality control. 17 

All clinical, laboratory and ‘omics data collected as part of the U-BIOPRED study is hosted on 18 

the tranSMART knowledge management platform and available to study group members. To 19 

gain insight in the pathobiology underlying the sputum supernatant lipid phenotypes described 20 

in this work, we acquired from this database a variety of demographic, clinical and laboratory 21 

data, as well as blood protein and sputum cell pellet gene expression data (tranSMART query 22 

date: 28 September 2017). 23 

24 

Repository - Unmarked Text



Lipid analysis and data processing 25 

A detailed description of the experimental procedures and data analysis methods can be found 26 

in Brandsma et al. (2018). Briefly, lipids were extracted from 100 μl of sputum using semi-27 

automated Bligh-Dyer extraction protocol (Bligh and Dyer 1959) on a TECAN Freedom 28 

EVO100 robotic liquid handling platform (Tecan, Männedorf, Switzerland). Untargeted 29 

‘shotgun’ mass spectra were acquired by flow injection analysis on a Dionex 3000 ultra-high 30 

performance liquid chromatography system (Thermo Scientific Dionex, Sunnyvale, CA, USA), 31 

coupled to a MaXis 3G quadrupole time-of flight mass spectrometer equipped with an 32 

electrospray ionisation source (Bruker Daltonics, Billerica, MA, USA). Measurements were 33 

done in full scan mode over an m/z range of 350-1200 with separate injections for positive and 34 

negative ionisation. Blank injections were performed after every four samples (no significant 35 

carry-over was detected) and a pooled QC sample was run after every four samples to check 36 

for changes in instrument performance. Fragmentation analysis for lipid identification was 37 

performed on the pooled QC using the same instrumental setup, but in LC-MS/MS mode using 38 

a Waters Acquity C8 column (1.7μm, 2.1mm x 100mm; Waters, Milford, MA, USA) and a 50 39 

min gradient of methanol and water (both with 50 mM NH4HCO2 and 0.2% formic acid). Data-40 

independent product ion scans were acquired over the entire gradient using broadband 41 

collision induced dissociation. Precursor and fragment ions were matched retrospectively by 42 

their LC retention time and using the well-established fragmentation rules for lipids (Hsu & 43 

Turk 2003) to provide confirmation of identities. Lipid nomenclature followed the framework 44 

set out by Liebisch et al. (2013) where sufficient structural information was available. The 45 

following abbreviations for lipid classes were used in this study: phosphatidylcholine (PC); 46 

phosphatidylglycerol (PG); phosphatidylserine (PS); phosphatidylinositol (PI); 47 

phosphatidylethanolamine (PE); lyso-phosphatidylcholine (LPC); ceramide (Cer); hexosyl-48 

ceramide (HexCer); sphingomyelin (SM); cholesterol (Chol); cholesterol ester (CE); 49 

diglyceride (DG); and triglyceride (TG). 50 



All raw screening mass spectra were smoothed, lock mass calibrated and aligned using a 51 

hierarchical clustering-based algorithm (adapted from Yang 2016). After background 52 

subtraction and removal of ions with <60% detection rate, the data were corrected for potential 53 

batch effects due to instrument performance or differences in sample work-up date using the 54 

R script “SVA ComBat” (Johnson et al. 2007). All ion counts were normalised using internal 55 

standards and the original sample volume to obtain semi-quantitative results. However, 56 

biofluids and particularly induced sputum are subject to variable dilution of analytes during 57 

sampling and subsequent workup (Simpson et al. 2004; Kirwan et al. 2014), hence the data 58 

were also normalised to the amount of total lipid. 59 

Data analysis and statistics 60 

Topological data analysis (TDA) was used to group participants with comparable sputum lipid 61 

profiles in an unbiased manner (Hinks et al. 2016; Bigler et al. 2017; Siddiqui et al. 2018), and 62 

identify trends and lipid phenotypes within the study cohort. TDA was performed using the 63 

AyasdiAI machine intelligence platform (Symphony AyasdiAI, Palo Alto, CA, USA) on the 64 

sputum lipid data set, employing a normalised correlation metric combined with two 65 

multidimensional scaling (MDS) lenses. Groups of participants with similar sputum lipid 66 

profiles were defined within the TDA structure using density mode clustering (Wasserman 67 

2018, Schofield et al. 2020). By its very essence, TDA captures the continuous nature of data 68 

(Lum et al. 2013), and it therefore allows for a degree of overlap between connected groups 69 

of cases (i.e., a study subject can be a member of more than one group at the same time). As 70 

this negatively affects the efficacy of statistical tests for between-group comparisons, the 71 

resolution settings of the TDA were adjusted to limit the degree of overlap between groups 72 

(less than 10% of participants were allowed to be shared), whilst at the same time maintaining 73 

the integrity of the TDA structure. 74 

Note that the TDA group designations in this paper reflect the placement of each individual 75 

group within the semi-continuous TDA network. Groups C1 through to C4 constitute the ring-76 

like structure of the “core group”, with C1 forming the outer edge of the overall TDA network 77 



and C4 residing near its centre. F1 through to F5 constitute the V-shaped “flare”, a string of 78 

TDA groups connected to the “core” groups at F1 and F2, and with F3 and F4/F5 as its 79 

respective terminal branches. Thus, sputum lipid profiles are most different between patients 80 

in groups C1 and F3 or F4/F5, but each of the intermediate groups represents a step along 81 

the gradient between these extremes. Consequently, ranking the TDA groups along this 82 

gradient enables the use of ranks-based statistical tests, such as the Jonckheere-Terpstra test 83 

for ranked alternatives. 84 

The statistical significance of trends across the TDA structure and differences between 85 

individual groups, were examined in SPSS Statistics 24 (IBM, Armonk, NY, USA). Analyses 86 

were performed for the sputum lipids, a variety of demographic, clinical and pathobiological 87 

measurements, as well as blood protein biomarker concentrations. Distribution analysis 88 

showed that, with few exceptions, the variables were not normally distributed within groups. 89 

Therefore, a non-parametric Jonckheere-Terpstra test for ordered alternatives was selected 90 

to identify trends in the ordinal and continuous variables, assuming an ascending hypothesis 91 

order. Trends were considered significant if p<0.05, and highly significant if p<0.001 (after 92 

Bonferroni correction).The significance of individual between-group differences was assessed 93 

pairwise by either Mann-Whitney U test or Pearson's Chi-squared test (with Bonferroni 94 

correction). However, the small group sizes likely led to this analysis being underpowered and 95 

prone to returning false positives, and consequently the results are not reported here.  96 

Blood protein data 97 

Protein expression data from peripheral blood were acquired as a routine analysis for all U-98 

BIOPRED participants. Levels of 11 proteins were measured in plasma using a Mesoscale 99 

Discovery (MSD) electrochemiluminescence assay, whereas a further 21 proteins were 100 

measured in serum using either of the following immunoassay platforms: 16 by Luminex, 2 by 101 

Impact, 1 by Singulex, 1 by Elecsys, and 1 by Immulite. For this study, curated protein levels 102 

were downloaded directly from the U-BIOPRED data repository. 103 



Pathway analysis of sputum cell pellet transcriptomics data 104 

Transcriptomic data from RNA extracts of 97 matching sputum cell pellets (Kuo et al. 2017) 105 

were acquired from the U-BIOPRED data repository. These were subjected to Ingenuity 106 

Pathway Analysis (IPA; QIAGEN Bioinformatics, Redwood City, CA, USA) in order to identify 107 

potential upstream regulators of differential gene expression in each of the lipid phenotypes. 108 

IPA core analysis was performed on the top 4000 differentially expressed genes, using the 109 

ordered TDA groups as described above. The results were subjected to a comparison analysis 110 

to identify trends of IPA-predicted upstream regulator activation/inhibition across the sputum 111 

lipidomics TDA structure. 112 

 113 
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Supplementary Table E1 158 

 159 

C1 C2 C3 C4 F1 F2 F3 F4 F5

10% 26% 6% 21% 14% 6% 6% 6% 5%

SM[d18:1/24:0] <0.001 16.639 0.04 0.05 0.09 0.10 0.14 0.25 0.24 0.29 0.54

SM[d18:1/24:1] <0.001 16.341 0.09 0.08 0.17 0.16 0.28 0.44 0.51 0.66 1.15

PC[30:1] <0.001 16.303 0.13 0.14 0.19 0.23 0.31 0.54 0.50 0.72 1.44

SM[d18:1/16:0] <0.001 16.248 0.25 0.26 0.49 0.56 0.74 1.36 1.23 1.83 3.67

PE[40:4] <0.001 14.941 0.05 0.05 0.08 0.07 0.09 0.12 0.16 0.21 0.36

SM[d18:1/18:0] <0.001 14.519 0.00 0.00 0.06 0.10 0.11 0.28 0.18 0.22 0.33

PE[38:4] <0.001 13.239 0.10 0.12 0.16 0.15 0.18 0.22 0.23 0.31 0.47

PC[36:0] <0.001 13.211 0.18 0.17 0.28 0.41 0.40 0.83 0.33 0.83 1.49

CE[18:2] <0.001 12.377 0.06 0.04 0.16 0.07 0.30 0.28 2.02 0.85 0.66

PCa[40:2] <0.001 12.269 0.02 0.02 0.05 0.04 0.06 0.14 0.07 0.12 0.24

CE[18:1] <0.001 12.218 0.04 0.02 0.10 0.04 0.16 0.28 0.68 0.35 0.36

Cholesterol <0.001 11.943 0.91 0.47 1.30 0.83 1.70 2.09 8.17 3.70 5.01

PC[38:4] <0.001 11.501 0.13 0.15 0.15 0.16 0.19 0.22 0.51 0.36 0.39

PCa[36:0] <0.001 11.281 0.09 0.09 0.11 0.13 0.14 0.26 0.13 0.20 0.27

PS[36:1] <0.001 11.144 0.69 1.34 1.52 3.00 2.88 4.95 2.04 5.42 9.40

PC[38:0] <0.001 10.951 0.01 0.02 0.02 0.03 0.03 0.06 0.05 0.07 0.09

PCa[40:1] <0.001 10.838 0.00 0.01 0.00 0.02 0.02 0.07 0.03 0.07 0.15

PE[32:1] <0.001 10.825 0.00 0.00 0.00 0.01 0.05 0.11 0.33 0.12 0.14

PE[40:6] <0.001 10.346 0.10 0.13 0.12 0.16 0.16 0.25 0.15 0.24 0.33

TG[52:3] <0.001 10.339 0.02 0.01 0.06 0.02 0.08 0.07 0.32 0.39 0.35

TG[52:2] <0.001 10.041 0.03 0.02 0.08 0.03 0.10 0.09 0.40 0.66 0.44

Cer[d18:0/16:0] <0.001 9.951 0.01 0.00 0.02 0.02 0.02 0.11 0.03 0.03 0.07

Cer[d18:1/16:0] <0.001 9.949 0.03 0.01 0.05 0.04 0.05 0.17 0.06 0.08 0.15

PCa[32:2] <0.001 9.891 0.04 0.03 0.04 0.04 0.05 0.09 0.05 0.08 0.10

PE[40:5] <0.001 9.828 0.09 0.11 0.09 0.13 0.14 0.14 0.19 0.22 0.35

PCa[36:1] <0.001 9.726 0.10 0.10 0.12 0.11 0.14 0.18 0.16 0.23 0.55

HexCer[d18:1/16:0] <0.001 9.622 0.02 0.02 0.03 0.03 0.03 0.06 0.04 0.06 0.07

TG[50:0] <0.001 9.488 0.00 0.00 0.02 0.01 0.03 0.03 0.04 0.08 0.07

PCa[42:2] <0.001 9.380 0.00 0.00 0.00 0.01 0.03 0.04 0.03 0.11 0.18

PC[38:5] <0.001 9.379 0.13 0.18 0.15 0.16 0.19 0.21 0.38 0.29 0.29

TG[54:3] <0.001 9.260 0.00 0.01 0.05 0.02 0.05 0.06 0.15 0.21 0.22

TG[54:5] <0.001 9.152 0.02 0.01 0.03 0.01 0.04 0.04 0.09 0.12 0.15

TG[54:4] <0.001 9.101 0.02 0.01 0.04 0.01 0.04 0.05 0.14 0.16 0.20

TG[52:4] <0.001 9.060 0.00 0.00 0.01 0.01 0.04 0.02 0.14 0.16 0.13

TG[52:1] <0.001 9.015 0.01 0.01 0.03 0.01 0.04 0.04 0.10 0.23 0.15

CE[16:1] <0.001 8.949 0.00 0.00 0.00 0.02 0.05 0.08 0.08 0.06 0.09

SM[d18:1/14:0] <0.001 8.552 0.00 0.01 0.00 0.02 0.02 0.00 0.07 0.08 0.11

TG[54:2] <0.001 8.441 0.02 0.02 0.03 0.03 0.03 0.05 0.04 0.07 0.13

TG[50:1] <0.001 8.310 0.01 0.01 0.04 0.01 0.05 0.06 0.13 0.35 0.20

PC[38:1] <0.001 8.196 0.03 0.02 0.05 0.06 0.05 0.11 0.05 0.07 0.13

TG[50:2] <0.001 7.917 0.00 0.00 0.03 0.00 0.04 0.02 0.16 0.22 0.17

PCa[32:1] <0.001 7.891 0.16 0.17 0.17 0.19 0.20 0.28 0.17 0.29 0.41

PCa[34:1] <0.001 7.244 0.40 0.41 0.42 0.41 0.47 0.58 0.48 0.70 1.37

PCa[36:2] <0.001 7.020 0.07 0.08 0.04 0.06 0.10 0.11 0.14 0.17 0.72

PC[36:1] <0.001 7.014 0.44 0.49 0.45 0.44 0.57 0.46 0.67 0.75 1.37

PE[36:2] <0.001 6.994 0.12 0.13 0.09 0.12 0.15 0.22 0.17 0.22 0.60

PC[36:5] <0.001 6.598 0.16 0.22 0.18 0.22 0.24 0.23 0.38 0.25 0.31

LPC[18:0] <0.001 6.269 0.04 0.04 0.06 0.09 0.08 0.08 0.10 0.14 0.10

PC[38:2] <0.001 5.492 0.02 0.04 0.04 0.11 0.08 0.16 0.00 0.04 0.19

Lipid p-value z-score

Continued on next page



Supplementary Table E1 (continued) 160 

161 

Heat map of lipidomics trends across the TDA structure, sorted by p-value and z-score of a 162 

Jonckheere-Terpstra test for ranked alternatives. Values in the table show the median relative 163 

abundance of a lipid for each TDA group. Note that unidentified ions were not included in this 164 

table, and see main text for lipid nomenclature and the abbreviations used. 165 

C1 C2 C3 C4 F1 F2 F3 F4 F5

10% 26% 6% 21% 14% 6% 6% 6% 5%

Cer[d18:1/18:0] <0.001 4.880 0.01 0.00 0.02 0.01 0.02 0.09 0.01 0.00 0.06

PC[40:6] <0.001 4.875 0.04 0.03 0.06 0.00 0.05 0.00 0.14 0.09 0.12

PE[38:6] <0.001 4.863 0.02 0.12 0.05 0.43 0.18 0.31 0.16 0.11 0.42

PC[36:2] <0.001 4.814 0.74 0.99 0.72 0.75 1.04 0.71 1.72 1.44 1.63

PE[38:5] <0.001 4.163 0.11 0.15 0.10 0.16 0.15 0.18 0.16 0.20 0.22

PC[44:11] <0.001 3.505 0.02 0.04 0.03 0.06 0.04 0.06 0.03 0.05 0.06

PE[36:4] 0.001 3.327 0.04 0.05 0.04 0.06 0.05 0.06 0.04 0.06 0.08

Cer[d18:1/18:1] 0.001 3.243 0.01 0.01 0.03 0.02 0.03 0.06 0.01 0.03 0.03

LPC[18:2] 0.005 2.795 0.03 0.02 0.06 0.05 0.06 0.12 0.03 0.03 0.02

LPC[18:1] 0.008 2.656 0.06 0.06 0.08 0.10 0.09 0.18 0.05 0.12 0.07

PG[34:1] 0.014 2.451 2.51 3.02 2.45 2.89 2.83 3.44 2.82 3.77 4.85

PC[38:6] 0.037 2.085 0.10 0.12 0.07 0.09 0.12 0.07 0.33 0.16 0.12

PC[32:2] 0.057 1.907 0.12 0.16 0.13 0.13 0.15 0.25 0.14 0.21 0.41

PC[36:4] 0.157 1.415 0.54 0.81 0.57 0.67 0.67 0.53 1.21 0.81 0.78

LPC[18:3] 0.163 1.395 0.03 0.05 0.09 0.14 0.08 0.13 0.04 0.04 0.03

PCa[32:0] 0.173 1.364 0.89 0.81 0.86 0.84 0.73 0.70 0.60 0.79 1.11

PE[36:3] 0.174 1.361 0.11 0.13 0.11 0.13 0.11 0.12 0.11 0.14 0.19

PCa[34:0] 0.222 1.221 0.72 0.65 0.76 0.70 0.58 0.54 0.47 0.53 0.55

LPC[24:0] 0.328 0.979 0.01 0.01 0.02 0.01 0.02 0.04 0.00 0.01 0.01

LPC[16:0] 0.581 0.553 0.20 0.30 0.35 0.54 0.36 0.63 0.22 0.23 0.19

PE[32:0] 0.611 -0.509 0.06 0.05 0.07 0.06 0.05 0.00 0.00 0.07 0.10

PI[36:1] 0.214 -1.242 0.63 1.00 0.01 1.74 0.99 0.43 0.01 0.79 0.01

PE[36:5] 0.022 -2.299 0.07 0.07 0.08 0.07 0.07 0.08 0.05 0.06 0.06

PC[36:3] 0.017 -2.397 0.47 0.60 0.34 0.30 0.48 0.28 0.87 0.45 0.28

PC[34:2] 0.012 -2.524 1.96 2.48 1.76 2.04 2.21 1.54 3.33 2.01 1.52

LPC[16:1] 0.009 -2.631 0.02 0.01 0.04 0.01 0.01 0.05 0.00 0.00 0.00

PI[36:2] 0.001 -3.255 0.56 0.95 0.00 1.35 0.71 0.01 0.01 0.97 0.01

PC[34:4] 0.001 -3.404 0.24 0.35 0.28 0.33 0.30 0.31 0.20 0.26 0.29

PE[34:0] 0.001 -3.421 0.89 0.81 0.86 0.84 0.73 0.70 0.60 0.79 1.11

PG[36:1] <0.001 -5.898 1.90 1.94 1.34 1.81 1.70 1.65 1.29 1.26 0.01

PC[34:1] <0.001 -6.205 5.43 6.64 5.19 5.45 5.62 4.49 5.13 5.36 4.99

PG[36:2] <0.001 -7.237 1.44 1.82 1.09 1.40 1.35 0.66 0.01 0.87 0.01

PC[34:3] <0.001 -8.571 1.99 2.52 2.06 2.68 2.05 1.73 1.38 1.18 0.88

PC[34:0] <0.001 -8.822 1.48 1.55 1.40 1.28 1.36 1.08 0.97 1.22 1.05

PC[32:1] <0.001 -11.653 4.17 4.91 3.33 3.54 3.13 2.50 2.09 2.10 1.46

PC[30:0] <0.001 -12.117 4.26 4.08 3.68 3.44 2.96 2.54 2.21 2.13 1.32

PC[32:0] <0.001 -12.463 35.52 31.87 34.78 32.43 29.04 24.71 19.68 18.76 13.72

Lipid p-value z-score
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 167 

Heat map of trends in the demographic, clinical and pathobiological data across the sputum 168 

lipidomics TDA structure, with p-values and z-scores of a Jonckheere-Terpstra test for ranked 169 

alternatives. Values in the table show the median for each TDA group. See Shaw et al. (2015) 170 

for a description of the variables and methods used in the U-BIOPRED study. Abbreviations: 171 

BMI = Body Mass Index; IgE = Immunoglobulin E; ACQ = Asthma Control Questionnaire; ICU 172 

= intensive care unit; SNOT = SinoNasal Outcomes Test; HADS = Hospital Anxiety and 173 

Depression Scale; FEV1 = forced expiratory volume in 1 second; FVC = forced vital capacity; 174 

FEF 25-75 = forced expiratory flow at 25-75% of the pulmonary volume; sGAW = specific 175 

airway conductance. Asthma severity is expressed as the ratio of any asthmatic (MMA, SAc/ex 176 

and SAn) versus healthy (HC) participants; systemic dosage of corticosteroids for severe 177 

asthmatic participants is expressed in prednisolone-equivalent doses.  178 

C1 C2 C3 C4 F1 F2 F3 F4 F5

10% 26% 6% 21% 14% 6% 6% 6% 5%

Astmha severity <0.001 6.366 0.58 0.76 0.71 0.88 0.93 0.94 1.00 0.94 1.00

Inhaled corticosteroid dose (mg day-1) <0.001 5.917 0.4 0.5 0.6 0.6 0.8 0.8 0.8 0.8 1.0

Sputum eosinophils (%) <0.001 5.857 0.2% 0.7% 0.2% 2.0% 4.4% 1.4% 26.8% 3.5% 2.9%

ACQ7 score <0.001 5.026 1.5 2.5 2.5 3.0 3.2 3.8 4.2 3.5 4.5

Sputum neutrophils (%) <0.001 4.907 40.5% 45.7% 43.9% 43.2% 59.5% 60.8% 59.6% 83.0% 91.4%

Exacerbations (past 12 months) <0.001 4.445 0.8 1.1 1.2 1.7 2.1 1.7 1.9 2.2 2.9

Blood leukocytes (μL-1) <0.001 4.306 6000 6900 6050 6900 7800 9450 7900 9350 9100

Oral corticosteroid dose (mg day-1) <0.001 4.247 2.6 2.1 1.9 4.1 5.4 6.7 6.0 5.9 3.4

Age <0.001 3.994 45 48 48 49 55 54 58 57 56

Blood neutrophils (μL-1) <0.001 3.849 3200 4000 3500 3900 4750 5700 4700 5300 5550

Exhaled nitric oxide (ppb) 0.003 2.970 23 20 27 27 32 24 54 23 19

Blood eosinophils (μL-1) 0.006 2.756 100 200 200 200 200 200 400 250 250

ICU admission (ever) 0.006 2.748 0.1 0.1 0.0 0.2 0.1 0.1 0.1 0.3 0.6

SNOT score 0.007 2.685 22 24 23 26 30 29 26 33 29

Serum IgE (mL-1) 0.160 1.405 86 89 68 109 93 91 120 91 129

Age at first diagnosis 0.194 1.299 24 17 24 22 21 16 43 35 14

HADS score 0.850 0.189 8.8 10.6 12.1 11.3 13.8 10.8 9.6 9.5 9.6

Smoking status (% current or ex-smokers) 0.752 -0.316 0% 11% 4% 14% 14% 7% 0% 6% 0%

Positive atopy test (%) 0.512 -0.656 37% 38% 26% 44% 43% 33% 53% 37% 36%

Sex (% male) 0.488 -0.734 0.4 0.3 0.7 0.6 0.5 0.6 0.6 0.4 0.2

BMI 0.111 -1.592 25 30 27 25 27 27 26 28 24

Sputum squamous epithelial cells (%) 0.170 -2.376 9.5% 5.3% 13.3% 6.7% 9.9% 6.9% 3.6% 7.8% 0.9%

FEV1/FVC ratio (predicted) <0.001 -3.510 79.3 78.9 79.4 79.3 77.6 77.9 77.1 77.9 77.9

FVC (% predicted) <0.001 -3.643 107 98 98 96 97 89 93 90 75

Sputum lymphocytes (%) <0.001 -3.707 1.4% 1.1% 1.3% 1.2% 0.9% 0.8% 0.7% 0.6% 0.4%

sGAW (1/kPA x sec) <0.001 -4.162 1.18 1.29 1.06 0.86 0.77 0.84 0.72 0.72 0.25

FEV1 (% predicted) <0.001 -5.495 91 80 82 79 69 66 62 60 42

FEF25-75 (predicted) <0.001 -5.699 3.71 3.56 3.64 3.76 3.34 3.35 3.29 3.36 3.29

Sputum macrophages (%) <0.001 -8.764 57.6% 49.0% 54.8% 41.8% 25.7% 20.3% 12.1% 9.1% 4.8%

Clinical and pathobiological data p-value z-score
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 180 

Heat map of trends in blood protein biomarker levels across the lipidomics TDA structure, 181 

sorted by p-value and z-score of a Jonckheere-Terpstra test for ranked alternatives. Values in 182 

the table show the median concentration of a given protein for each TDA group.  183 

C1 C2 C3 C4 F1 F2 F3 F4 F5

10% 26% 6% 21% 14% 6% 6% 6% 5%

IL-8 Plasma MSD <0.001 4.031 2.79 3.13 2.73 3.01 3.03 3.73 3.24 3.87 3.97

Serpin-E1 Serum Luminex <0.001 3.875 77469 85894 86691 90934 91605 101345 96137 111359 91426

MCP-4 Serum Luminex <0.001 3.740 98.3 127.2 111.9 128.2 131.7 145.1 146.0 129.9 159.6

Periostin Serum Elecsys 0.001 3.328 48.3 45.0 44.3 44.5 47.9 53.7 61.3 50.4 53.9

Eotaxin Plasma MSD 0.001 3.326 87.8 93.9 92.7 106.0 106.5 138.0 104.5 113.0 135.0

CCL18 Serum Impact 0.001 3.185 134.9 161.3 164.1 191.4 192.1 186.0 221.3 179.8 276.6

Galectin-3 Serum Luminex 0.003 3.011 5288 5486 5182 5298 5722 6256 5112 6232 6740

IL-6 Plasma MSD 0.004 2.906 0.52 0.91 0.61 0.73 0.60 0.89 1.07 1.37 1.23

IL-17AA Serum Singulex 0.005 2.806 0.29 0.30 0.36 0.37 0.35 0.38 0.46 0.53 0.36

CCL17 Plasma MSD 0.006 2.754 55.7 69.3 51.6 63.2 65.6 129.0 54.7 117.0 73.8

IL-13 Serum Impact 0.006 2.726 0.49 0.49 0.54 0.62 0.60 0.47 1.32 0.53 0.48

MCP-1 Plasma MSD 0.008 2.641 93.6 98.7 102.0 98.2 95.7 125.0 110.5 109.0 112.5

hs-CRP Serum Immulite 0.010 2.577 1.2 1.4 1.2 1.6 1.2 1.4 1.3 6.2 2.8

TNF-alpha Plasma MSD 0.016 2.400 1.56 1.86 1.68 1.89 1.71 1.83 1.96 1.85 2.12

C5a Serum Luminex 0.020 2.335 33.7 38.2 48.9 36.6 39.8 39.0 35.6 54.4 49.5

MMP-3 Serum Luminex 0.025 2.245 13817 13569 13730 14477 17158 23242 20967 12788 15431

MIP-1b Plasma MSD 0.035 2.114 46.2 49.4 44.1 45.7 45.2 67.8 52.1 61.8 54.6

Eotaxin-3 Plasma MSD 0.058 1.894 17.8 15.4 15.5 19.1 18.4 18.0 26.9 14.2 15.4

INF-gamma Plasma MSD 0.067 1.834 4.38 5.77 5.40 4.67 4.80 5.73 7.41 7.43 11.02

CD40L Serum Luminex 0.104 1.624 4717 4287 4750 4698 4910 5275 5546 4725 4253

IL-6R-alpha Serum Luminex 0.127 1.525 10398 10927 11221 11227 11696 12783 11108 10787 10884

IL-1-alpha Serum Luminex 0.231 1.199 34.1 33.6 32.5 35.9 34.1 36.6 37.5 31.9 32.3

Alpha-1-microglobulin Serum Luminex 0.257 1.134 6355 6551 7592 7056 6935 7610 6889 6971 7392

IL-18 Serum Luminex 0.267 1.110 192.4 219.0 214.4 222.0 210.7 209.1 218.1 244.7 221.9

IP-10 Plasma MSD 0.347 0.940 224 326 297 278 250 234 305 353 473

CD30 Serum Luminex 0.377 0.883 31.7 38.0 38.1 38.5 35.7 37.1 36.3 40.7 40.5

LBP Serum Luminex 0.466 0.729 2056309 2166450 2160387 2019250 1999580 2623438 1722458 2770901 2508327

Lumican Serum Luminex 0.502 0.672 130969 133245 132268 133135 128644 141913 148609 125866 141143

RAGE Serum Luminex 0.809 0.242 1358 1298 1382 1275 1250 1265 1151 1372 1585

SHBG Serum Luminex 0.512 -0.655 4637586 2777497 1693569 2969730 2709649 1989644 2396730 2470851 3401339

CCL22 Plasma MSD 0.502 -0.672 869 890 810 794 700 858 829 880 893

DPPIV Serum Luminex 0.216 -1.238 90742 101947 100085 101725 95053 92193 93394 86834 91931

Protein biomarker p-value z-scoreAssaySample
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C1 C2 C3 C4 F1 F2 F3 F4 F5

10% 26% 6% 21% 14% 6% 6% 6% 5%

RAB1B 0.011 2.535 0.00 0.00 0.00 0.00 0.00 2.00 1.71 2.98 2.35

PLA2R1 0.017 2.381 0.00 0.00 0.00 0.00 0.00 0.00 2.22 2.14 3.12

SYVN1 0.017 2.381 0.00 0.00 0.00 0.00 0.00 0.00 2.26 2.25 3.28

CD24 0.021 2.304 0.00 -0.65 0.00 0.00 0.00 1.89 0.00 2.84 2.31

HSP90B1 0.025 2.234 0.00 0.71 0.79 0.00 0.00 2.14 2.51 2.52 2.21

DNMT3B 0.037 2.085 0.00 -0.51 1.34 -0.49 1.74 2.33 1.90 1.46 2.14

DAP3 0.168 1.379 0.00 0.00 -2.00 -2.45 0.00 0.00 0.00 0.00 2.00

ERG 0.242 1.170 0.00 -1.09 0.94 -0.69 -0.54 0.00 0.00 -0.28 1.13

IL13 0.242 1.170 0.00 -1.63 -2.19 -3.62 -2.32 0.00 -0.92 0.00 2.76

CXCL8 0.259 1.128 0.00 1.42 0.00 0.00 0.00 0.00 0.00 2.36 1.91

MYC 0.259 1.128 0.00 -1.13 0.00 -1.28 0.00 0.00 0.67 0.00 0.00

NONO 0.357 0.922 0.00 0.00 0.00 0.38 1.63 1.41 0.00 0.00 0.82

EGLN 0.380 0.877 0.00 1.19 0.00 0.00 0.00 0.00 1.86 2.44 0.00

HDAC1 0.380 0.877 0.00 -1.00 0.00 -0.56 1.02 0.00 0.00 0.00 0.00

HEXIM1 0.380 0.877 0.00 0.00 0.00 0.20 0.00 2.00 0.00 0.45 0.00

TCF7L2 0.381 0.876 0.00 0.00 -1.13 -1.65 -2.08 -2.61 0.00 -1.80 0.00

EOMES 0.531 0.627 0.00 -2.45 0.00 0.00 0.28 -0.94 0.00 0.00 0.00

PRL 0.707 0.376 0.00 0.00 0.00 3.48 0.00 4.97 2.53 0.00 0.00

RXRA 0.707 0.376 0.00 -0.15 0.00 0.00 0.00 -1.67 0.00 -0.24 0.00

P38 MAPK 0.900 0.125 0.00 0.00 0.00 -3.11 -2.86 0.00 -2.18 0.00 0.00

MGEA5 0.915 0.106 0.00 1.81 2.79 2.59 2.27 2.34 0.00 2.89 0.00

GATA6 1.000 0.000 0.00 0.00 0.00 0.00 -0.92 -0.59 0.00 -0.08 1.14

HIF1A 1.000 0.000 0.00 -0.89 0.00 -2.00 -1.96 0.00 -2.05 0.00 0.00

PGR 1.000 0.000 0.00 0.00 0.80 1.77 1.11 0.00 0.00 0.00 0.41

USP7 0.908 -0.116 0.00 -2.00 0.00 0.00 -2.83 -2.24 0.00 -2.00 0.00

SMARCD3 0.707 -0.376 0.00 0.00 -1.34 -1.13 0.00 0.00 0.00 0.00 -1.98

TP73 0.531 -0.627 0.00 0.68 0.00 1.66 2.00 0.00 0.00 0.00 0.00

INHBA 0.489 -0.691 0.00 0.82 0.00 0.66 0.00 0.00 -1.82 0.73 0.00

RARA 0.489 -0.691 0.00 1.22 0.00 -0.78 0.08 -2.16 0.00 0.00 0.00

POU2F2 0.311 -1.014 0.00 0.00 0.90 0.32 0.00 0.00 0.00 0.00 0.00

GATA1 0.300 -1.037 0.00 0.00 0.00 0.00 -0.20 -2.21 0.00 0.00 -1.40

IFNA 0.273 -1.095 0.00 2.74 1.95 3.73 0.00 2.77 0.00 -1.89 0.00

IGFBP2 0.273 -1.095 0.00 0.00 0.00 0.03 0.18 -2.77 0.00 -0.98 -1.35

GLI1 0.249 -1.152 0.00 0.10 0.00 -0.04 0.00 -2.31 0.00 -0.92 0.00

IL1RN 0.249 -1.152 0.00 0.00 0.00 -2.52 0.00 -2.21 -2.63 -2.43 0.00

Cg 0.167 -1.383 0.00 -0.53 0.00 0.00 0.00 0.00 -3.24 -2.84 -1.87

ITGB1 0.167 -1.383 0.00 -0.15 1.93 0.00 0.00 0.00 -1.86 0.00 -2.11

JUN 0.107 -1.613 0.00 -1.59 0.00 0.00 0.00 0.00 -1.95 -2.14 -1.77

EPAS1 0.103 -1.629 0.00 0.00 0.00 0.00 0.00 -2.57 -1.93 0.00 -1.95

HGF 0.103 -1.629 0.00 2.00 0.52 2.00 0.00 0.00 0.00 0.00 0.00

CST5 0.080 -1.753 0.00 -0.39 0.00 0.00 -0.25 0.00 -1.94 -3.17 -1.46

miR-10 0.049 -1.972 0.00 1.05 0.24 0.00 0.06 -0.73 0.00 0.00 -1.86

miR-122 0.021 -2.304 0.00 0.00 -1.83 0.00 0.00 0.00 -2.48 -3.00 -3.69

WT1 0.021 -2.304 0.00 1.92 0.00 0.06 0.00 0.00 0.00 -0.38 -0.62

SMARCA4 0.016 -2.410 0.00 0.00 0.00 -1.20 0.00 -3.17 -1.76 -4.09 -2.95

NANOG 0.016 -2.411 0.00 -1.46 0.08 0.00 -1.29 -1.79 -3.21 -2.77 -2.87

KDM5B 0.011 -2.535 0.00 1.90 0.00 0.00 0.00 0.00 -2.39 -2.24 -3.09

ETS1 0.008 -2.668 0.00 0.49 0.00 0.00 0.00 0.00 -1.84 -2.07 -2.07

SMAD3 0.004 -2.848 0.00 0.00 0.00 0.00 -1.64 -2.19 -2.14 -2.37 -2.32

Gene p-value z-score



Upstream transcriptional regulators in matched sputum cell pellets from the U-BIOPRED 186 

cohort (n=97), as determined by Ingenuity Pathway Analysis for the sputum lipidomics TDA 187 

groups. All fold changes in gene expression are relative to the basal TDA group C1 (‘healthy’). 188 

The heat map is sorted by p-values and z-score of a Jonckheere-Terpstra test for ranked 189 

alternatives. 190 




