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ABSTRACT
Programming is becoming increasingly common in mathematics
degrees as it is a desirable skill for new graduates. However, research
shows that its use is mostly restricted to computational or modelling
tasks. This paper reports a study on students’ perceptions of and dif-
ficulties with Lean, an interactive theorem prover introduced as part
of a transition to proof first-yearmodule. The data consist of first-year
university mathematics students’ questionnaire responses (n = 99)
and sections of 37 semi-structured interviews with students from
the same cohort. Findings highlight students’ difficulties with syn-
tactic and strategic knowledge, in line with similar research on pro-
gramming, and how conceptual knowledge is discussed in terms of
conceptual-mathematics and conceptual-programming. Moreover,
some students share how the experience with Lean changed their
perception of mathematics by contributing to the epistemological
shift from school to university, which is necessary for students to be
successful. However, many students failed to engage with Lean due
to its difficult syntax and because they perceived programming to
be disconnected from the activity of proving and not worth the time
investment needed to become proficient with this tool. We conclude
with some reflections on the implications of this study for university
teaching and suggestions for future research.
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1. Introduction

Programming is becoming one of the most important skills for knowledge transfer in
mathematics. In a recent review commissioned by the Engineering and Physical Sciences
Research Council in the United Kingdom (Bond, 2018) one of the recommendations for
knowledge transfer is that:

All mathematics students should acquire a working knowledge of at least one programming
language. (p. 13)

Indeed, at least in the United Kingdom, the presence of computational modules1 in math-
ematics at university is increasing steadily (Iannone & Simpson, 2022). However, there is
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still very little research on how the use of programming in mathematics degrees impacts
students’ learning of mathematics at the university level. Lockwood andMørken (2021) in
a recent editorial, call for more research in this field, stressing the importance of investigat-
ing the effect that the use of programming has on students’ engagement withmathematical
practices such as proving.

This paper reports findings of an investigation of students’ perceptions of the introduc-
tion of an interactive theorem prover2 in a first-year pure mathematics module and how
this experience impacted their engagement with proof, their beliefs about the role of proof
and the nature of mathematics. We first review the relevant literature on programming
in university mathematics, we then briefly introduce the literature on interactive theorem
provers and focus on Lean, which was used in the study. Then, we discuss our data collec-
tion methods and the context of our study. We present our study’s findings and conclude
with some implications for teaching undergraduate mathematics.

2. Programming in university mathematics

Undergraduate mathematics students, during their degree, engage with several program-
ming packages such as SPSS, Excel, R, MATLAB and Python. To clarify what we mean
by programming we adopt a definition of programming as an activity that requires stu-
dents to write linked lines of code, debug, implement logical loops and use some vari-
ables. According to this definition, therefore, using SPSS or Excel does not constitute
programming, while using Python or MATLAB does. A study on the teaching of pro-
gramming in mathematics degrees in the UK (Sangwin & O’Toole, 2017) found that
while computational applications of programming are relatively widespread in UK uni-
versities, the use of interactive theorem provers in pure mathematics is not. Moreover, a
survey of Canadian mathematicians reported that 43% of the 302 participants used com-
puter programming in their research, while only 18% included programming in their
teaching (Buteau et al., 2014). Given the importance placed on programming skills, the
findings of these studies seem to indicate the need for more varied use of program-
ming in mathematics degrees and highlight the discontinuity between mathematicians’
practices and their teaching – a gap often reported in mathematics education (Artigue,
2016).

The literature on the impact of programming on learning mathematics at the univer-
sity level so far has focused either on the description of interventions using programming
in teaching or on the impact of the use of programming on activities such as combina-
torial thinking, modelling and proof-writing. The former comprises articles published in
professional journals such as the MSOR Connections in the UK and describes the imple-
mentation of some aspects of programming in teaching. One typical example of this work
is the paper by Lynch (2020) where the author describes how programming has been
embedded in the mathematics curriculum at Manchester Metropolitan University (UK).
Such papers offer many examples of implementations and practical suggestions for pro-
gramming tasks and are mainly aimed at practitioners. The second strand of literature
comprises a small number of papers that document the impact of programming on uni-
versity students’ mathematics learning. Three examples are the study by Lockwood and De
Chenne (2019) in the context of combinatorics, by Buteau et al. (2020) on mathematical
modelling tasks and by Thoma and Iannone (2022) on proof production. These studies
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explore how asking students to use programming can contribute to their learning and to
the consolidation of productive mathematical habits.

One area that has not been investigated in the mathematics education literature regards
the difficulties that students encounter when starting to learn programming within pure
mathematics, and what impact this experience has on their views of mathematics, or in
other words, on their mathematics epistemologies. For a review of the literature on stu-
dents’ difficulties with programming, we therefore turn to the computer science education
literature.

2.1. Students’ difficulties with programming

In a comprehensive review of the literature, Qian and Lehman (2017) highlighted three
types of difficulties students encounter when programming:

• Syntactic difficulties – when students cannot follow the syntax of the programme. Cases
include the misuse of commas and semicolons, failing to define variables before using
them and many more. These issues are thought to be the easiest to overcome and are
indicated to be the most common difficulties that students have with programming.

• Conceptual difficulties – when students fail to grasp the basic mechanisms of the
programme they are using. Such difficulties include not being able to use variables
appropriately, for example thinking that the variables can hold more than one value
or being unable to use loops.

• Strategic difficulties – these include difficulties in planning, writing and debugging a
code, and generally include what some of the literature calls expert-level knowledge in
computing.

Together with thesemain categories of difficulties the authors also propose other factors
that contribute to difficulties students experience when programming. These include the
complexity of the programming task, the confusion between natural language and techni-
cal (computing) language and previous mathematics knowledge. Qian and Lehman (2017)
conclude that most of the difficulties that students encounter when learning programming
originate from previous knowledge and previous experience, therefore, encouraging the
study of programming difficulties in context.

In our study, we investigate programming difficulties in context both by considering
the nature of the programme used, therefore contextualizing the investigation to a specific
programming type, and the mathematical nature of the tasks for which the programme
was used, contextualizing the investigation to pure mathematics and proof. Our study
reports both on the difficulties students perceive they had when programming and how
the students perceived that their attempts to use the interactive theorem prover impacted
their views of mathematics. Below we provide an overview of the literature on proof and
programming.

3. Proof and programming

Proof is one of the stumbling blocks for students in the transition from school to university
mathematics, and indeed Gueudet et al. (2016) speak about a cognitive and epistemologi-
cal crisis that students face in this transition. Understanding proof and its requirements is
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therefore one of the important steps students must take to become part of the community
of mathematicians (Dawkins &Weber, 2017). Among the issues that prevent this shift are
students’ difficulties with the technical language of mathematics (Lee & Smith III, 2009),
with understanding the roles and necessity of proof (Hanna, 1990) and many others. It is
beyond the scope of this paper to comprehensively review the literature on proof in univer-
sity mathematics, but here we note that many interventions have been trialled to alleviate
this situation, some of them including the use of programming languages such as ISETL
(Dubinsky, 1995). However, these interventions have not lasted much beyond the time of
the studies ofwhich theywere the focus. Even programmes such as ISETL,which has awide
set of resources for its use and that was shown to be effective in supporting students’ learn-
ing of pure mathematics, are not in use – at least in the UK (Sangwin &O’Toole, 2017).We
hypothesize, following Dawkins and Weber (2017), that this is because such interventions
did not align with mathematicians’ practices and therefore were not sustained beyond the
initial interest of some motivated individuals who adopted them. The case of interactive
theorem provers could be different as their use is gaining momentum in pure mathematics
research. Investigating cases of teaching involving interactive theorem provers could help
ascertain their pedagogical potential.

3.1. Interactive theorem provers

Interactive theorem provers are different from computational programmes such as
MATLAB in that they have a symbolic library of mathematical objects that can
be used to check and (potentially) write mathematics proofs. Such programmes
include COQ (https://coq.inria.fr) and Lean (https://Leanprover.github.io/). Python
(https://www.python.org), which is becoming very popular not only in mathematics
degrees but in engineering and biochemistry too, does have a symbolic mathematical
library but this is not well developed and, to the best of our knowledge, is not used by
pure mathematicians. Already Crowe and Zand (2001) mentioned interactive theorem
provers as an emerging tool that could support logic teaching, but no example was offered
of their use or the drawbacks or affordances of its introduction in first-year undergradu-
ate mathematics teaching. More recently Hanna and Xiaoheng (2021) offer the theoretical
underpinnings of why interactive theorem provers could be successfully used in teaching
pure mathematics at the university level. They discuss the need for approaches to teach-
ing pure mathematics that incorporate new technologies, therefore taking into account the
demands of the modern workplace.

Interactive theorem provers have been in use in pure mathematics and computer sci-
ence research since the 1960s with de Bruijn’s Automath prover (Bruijn’s, 1980), but they
have just now started to make their way into the teaching of undergraduate mathematics
and the first reports of their use are encouraging. Avigad (2019) reports the experience
of a first-year module in logic that included Lean programming in the curriculum and
observes how the use of Lean supported the students in the transition to the rigour of
mathematics and helped them appreciate both the need for proof and the need for tech-
nical language (of mathematics and computing). Buzzard (2020) reports his experience of
using Lean both as a research tool and for teaching a pure mathematics module in the first
year of undergraduate mathematics. In educational research, Thoma and Iannone (2022)
analyse written proofs by students who had or had not engaged with Lean programming

https://coq.inria.fr
https://Leanprover.github.io/
https://www.python.org
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and show how learning to use Lean can help students overcome some of the difficulties of
their first encounter with proof, even when writing proofs with pen and paper. The anal-
ysis on aspects of students’ proof production included using the mathematical technical
language, being able to divide a proof into goals and subgoals and generally writing proofs
in a style that aligns with what mathematicians expect (for a discussion of mathematicians’
expectations of proof-writing see Lew &Mejía-Ramos, 2019).

Proof and proof-writing have been long recognized as one of the stumbling blocks for
students starting a university degree, both for writing and producing proofs (Moore, 1994),
and for accepting the values conveyed by the place that proof has for the mathematics
community (Dawkins & Weber, 2017). It therefore appears important to investigate the
impact of the use of a programme designed to code proofs on students’ interaction with
proof. In the following section, we discuss Lean in some detail as this was the interactive
theorem prover used in this study.

3.2. Lean

Lean is a programming language designed for research in mathematics that is now attract-
ing increasing interest as a tool for teaching pure mathematics to undergraduate students
(Avigad, 2019). The aim of Lean, an open-source theorem prover, is to bring interactive
and automated reasoning together and build a theorem prover with powerful automation
and an automated reasoning tool that can check and produce proofs (although the latter
aim is not realized yet).

The Lean project started in 2013 and currently both a downloadable and an online ver-
sion of the software are available. Lean requires the user to clarify the goal of a proof, to
break the goal of a proof in smaller sub-goals, to make sure that mathematical symbols are
used consistently. The code is checked, and the user receives instant feedback regarding
symbol and logical consistency of the statements.

Lean is currently one of the few programming languages used in pure mathematics
research and shows potential in terms of possible support in pure mathematics teaching,
particularly transition to proof and logic modules. Figures 1 and 23 show Lean’s interface.
The user writes on the left-hand side of the screen between the begin and end. Lean shows
the goals on the right-hand side and each time a line of code is added the goal changes. If
the code is incorrect an error message appears to help the user identify where the written
code is incorrect (Figure 2).

4. Aims of the study

The literature on students’ difficulties in programming framed our research, however, stu-
dents need to understand mathematics conceptually to be able to handle (and eventually
contribute to) Lean’s symbolic library or programme proofs in Lean. Therefore, the current
study not only focuses on students’ perceptions of the use of one interactive theoremprover
but also includes an investigation of how becoming familiar with an interactive theorem
provermay impact students’ views of mathematics. To conduct this investigation, we asked
the following research questions:

RQ1 What are the difficulties that students report they encountered when using Lean while
studying a transition to proof module?
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Figure 1. Multiple screenshots showing an example of breakdown in goals and subgoals in Lean –
with correct use of tactics with our explanatory note on the rw tactic. Note: Tactic mode and term
modes are themodesmost used to code proofs in Lean. The Leanmanual (https://Leanprover.github.io/
reference/tactics.html) describes a tactic as ‘a sequenceof instructions bracketedby keywordsbeginning
and end’.

RQ2What was the effect of students’ encounter with Lean on their views of mathematics?

5. Methodology, methods and analysis

5.1. The study of students’ perceptions in educational research

The perspective through which we frame the study is that of the investigation of students’
perceptions of Lean and how those perceptions impacted on their views of mathematics.
This approach is not new, Entwistle andRamsden (1983) and laterMarton and Säljö (1997),
in discussing the relationship between approaches to learning and differences in outcomes
of learning, found that the differences in outcomes of learning depend on the differences in
the way in which students engage to achieve such learning. They found two ways of engag-
ing that may be adopted by the students and described those as approaches to learning.
Entwistle andRamsden (1983) named these approaches as deep learning and surface learn-
ing. They characterize deep learning as learningwith the intention of understanding, which

https://Leanprover.github.io/reference/tactics.html
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Figure 2. Multiple screenshots showing an example of breakdown in goals and subgoals in Lean –with
incorrect use of tactics and error message, with our addition of the box around the error note.

in mathematics is akin to relational understanding (Skemp, 1978) while surface learning is
learning for memorizing, passively accepting ideas and information, which in mathemat-
ics is akin to procedural understanding (Skemp, 1978). In subsequent studies, Marton and
Säljö (1997) found that a key influence on the way in which students engage with learn-
ing are the perceived demands of the learning task. This is to say that the way in which a
student perceives the task – its difficulties, what questioning is valuable for learning, what
are the required outcomes of that learning – is a big influence on their engagement with
learning. From the research outlined here, it appears that students’ self-report on aspects
of their learning experience offers invaluable insight into their engagement with learning.
It is within this line of research that our study and its research tools were designed.

5.2. Methods

The data reported in this paper are part of a larger dataset collected in one university
in the South of England in the academic year 2018–2019. The mathematics department
of this university ranks consistently in the top five in the research assessment in the UK
and students need to achieve the highest marks in mathematics at the end of the school
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examinations to be admitted to this university. The cohort that took part in the study con-
sisted of about a third of international (i.e. non-UK) students, which is the norm for this
university. The students that took part in the project were enrolled in a transition to proof
module in the Autumn term of their first year. The module was taught traditionally with
a mixture of lectures and seminars and the Professor who taught the module held volun-
tary workshops on the use of Lean4 every Thursday evening during the teaching period
and used Lean in their research. During these workshops, the students and the Professor
worked on coding some of the modules’ proofs in Lean and wrote code for mathematics
objects aiming to expand the Lean library. The module materials, lectures and exercise
sheets were designed so that they could be solved by using Lean. It is important to note,
that at the time of data collection, very few learning resources existed to support the teach-
ing of Lean, apart from the Lean manual (https://Leanprover.github.io/reference/) which
the Professor thought was difficult to follow.

There were 300 students enrolled in this cohort and of those only 18 took up the volun-
tary workshops on a regular basis, although many more attended once or twice during the
semester. The Professor also discussed the use of Lean during some of the compulsory lec-
tures. In those instances, he showed how some of the proofs included in the syllabus could
be programmed in Lean by displaying the coding of the proofs on the screen overhead and
at times coding live in class. In this way, students could see how this interactive theorem
prover worked and what was required to be able to use it.

The data analysed for this paper concern students’ difficulties with and perceptions of
Lean programming. We collected two data types. The first data type was responses to a
questionnaire which was administered to the whole cohort near the end of the teaching
period. The aim of the questionnaire was to ascertain students’ level of engagement with
Lean and reasons for engagement or disengagement (n = 99, for the text of the question-
naire see the Appendix) and was anonymous. The questionnaire included biographical
questions, two closed questions about the familiarity of the students with Lean and their
reasons for engaging (or not) with this programme, and several open questions regarding
students’ experiences with Lean.

The second data type consisted of the first 10minutes (on average) of semi-structured
interviewswith 37 volunteering students during the last twomonths of the teaching period.
These interview sections investigated students’ perceptions of the use of Lean inmore detail
(see Figure 3 for a breakdown of the participants in the different data collection periods).
The remaining parts of the interviews asked students to go through some pen and paper
proof tasks and the analysis of these data is not part of this study. The interviews were
carried out by the second author of this paper. The relevant sections of the interviews were
transcribed for ease of analysis. Of the students that participated in the interviews, seven
were Lean users and regularly participated in the Lean workshops.

5.3. Analysis

The questionnaire contained ten questions, three closed and seven open-ended. In this
study, we focused on the analysis of seven questions (Q1, Q5 – Q10 – see the Appendix for
the full questionnaire. Responses to Q10 were considered if the response mentioned Lean
or programming in relation to pure mathematics). For the three closed questions (Q1, Q5

https://Leanprover.github.io/reference/
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Figure 3. Break down of participants and data collection.

ad Q9), numbers of responses are reported. Students’ responses to the open-ended ques-
tions (Q6, Q7, Q8, Q10) and the interview transcripts were analysed following thematic
analysis in two stages:

(1) Stage 1: the first cycle of analysis followed loosely the categories of difficulties related
to programming found in Qian and Lehman (2017). To those, we added categories
for students’ affective response to the use of Lean, and Lean’s impact on students’
perceptions of mathematics.

(2) Stage 2: the second cycle of analysis was carried outwithin each of the categories found
in the first cycle to further refine the categories.

In the first cycle of analysis, we observed that most of the difficulties with using Lean
could be coded according to Qian and Lehman’s (2017) framework as difficulties in con-
ceptual, syntactic and strategic knowledge. To those, we added a category for affect (when
students expressed emotions related to the use of Lean) and a category for epistemology
(when students reflected on the nature of mathematics). This first cycle of coding was akin
to structural coding (Saldaña, 2021) in that the data was broken down into segments and
then grouped into overarching themes. The overarching themes originating from this first
cycle of coding are reported in Table 2 together with sample statements.

In the second cycle of coding the utterances in each of the themes in Table 2 were coded
again line by line. During this part of the coding exercise, the broad categories were refined,
and sub-themes were obtained. A small part of the first cycle of coding was carried out by



10 P. IANNONE AND A. THOMA

Table 1. Data reporting the reasons students did not
engagewith Lean – for this question students were allowed
to choose more than one reason for non-engagement.

Reasons for not engaging with Lean Number of students

Time constraints 49
Difficulty with the programming language 23
Not interesting enough 14
Other 9
Not applicable – I am still using Lean 13

the two authors independently and then compared to achieve a shared understanding of
code meanings (as in triangulation analysis, Mok & Clarke, 2015).

6. Results

6.1. Closed questions

The gender breakdown of the respondents to the questionnaire reported 71 male students,
27 female students and one student who preferred not to say.5 This gender distribution is
not surprising as itmirrors the gender distribution ofmathematics degrees in theUK, espe-
cially in research-intensive universities like the one where the data were collected. When
students were asked to state their familiarity with Lean the responses confirmed the very
low uptake of the voluntary sessions offered by the Professor. Only eight students replied
that they were extremely or moderately familiar with Lean while 43 students admitted to
not being familiar at all with the software. We recall here that the Professor had shown
proofs written in Lean and had done some live coding during lectures. They also discussed
the use of this interactive theorem prover in class with the students. Therefore, students
who admitted to not being familiar at all with Lean would have seen its use and some cod-
ing during lectures. Finally, the last closed questions asked students the reasons why they
did not engage with Lean. The results are reported in Table 1.

We observe that themost common reason for not engagingwas the lack of time. As Lean
workshops were offered as an extra-curricular activity, many students did not feel that they
could spare the time in an already very busy schedule. This is reflected in the analysis of
the qualitative comments as this quote shows:

Yeah. Basically, I’ve just been trying to keep up with problem sheets. If I did have spare time,
I would look into Lean. But right now, I feel like just keep on top of what being given is more
important. So yeah, as soon as if I did ever catch up, I would probably check out Lean if it was
still an option. But as of right now I’m just getting further behind. (Nick6 – non-Lean user)

6.2. Qualitative analysis

The definitions of the codes in the first level of coding and examples of utterances are
given in Table 2. In what follows the main themes are discussed in turn to present students’
experiences with Lean.
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Table 2. List of first-level coding with definitions and examples adapted from Qian and Lehman (2017).
The numbers next to the utterances indicate students’ allocated numbers as given in the spreadsheet of
the collected data.

Codes and their definition Examples

Affect
Emotional response to using LEAN.

It’s a cool language. If I have [the] chance and time in the
future, I’d like to learn it. [83]

Conceptual
General and specific knowledge about how LEAN
works, constructs and operations.

Seeing how dependent type theory can be used as a
foundation of all of maths. [85]

Syntactic
General and specific knowledge about the
vocabulary and syntax of LEAN.

It’s hard to remember all the command in LEAN. It’s really
different from normal maths. [56]

Strategic
Applying programming – use of tactics.

Proofs for the equivalence relation lectures could be
transliterated easily into LEAN, but the early sheets
involving sets and polynomials were difficult, even with
tactics such as norm_num. [64]

Epistemologies
Utterances about the nature
of mathematics and proof in particular.

Yes, doing Lean makes me constantly see maths from a
different perspective, thus giving me extra insight into
what I’m trying to prove. [1]

Definitely, seeing the way maths is built from the bottom
up is very beneficial to actually understanding content [11]

6.2.1. Affect
In this category are utterances that concern students’ emotional responses to Lean. Emo-
tional responses were, as expected, both positive and negative. For the positive emotions,
fun and enjoyment were most frequently mentioned, both in the questionnaire and in the
interviews. Fun was mostly linked to programming and for some this feeling of fun was
enough motivation to carry on engaging with Lean:

Definitely, it forces you to think more about how you’re proving something. And it’s fun, so
more likely to do it. [97]

Yes. Programming is fun.Maths is fun. Combining the two is evenmore fun. Fun is good. Fun
is life. [3]

The feeling of enjoyment wasmostly linked to the enjoyment of the achievement that could
be obtained by using Lean, to the discovery of new ways of doing mathematics and to the
newly found interest for mathematical rigour:

I enjoyed seeing properly rigorous proofs for the first time. [12]

I enjoyed the Professor, and the art of some of the foundations of maths. [68]

However negative emotions such as helplessness, being unpleasantly challenged, percep-
tions of Lean being too hard to learn and being overwhelmed by the challenge were by far
the most common in our sample. Such feelings were especially evident in the interviews:

I struggled a lot. I think it’s very different to not only thinking about normal proofs. I think
it’s very different to any other programming language. So essentially using any knowledge of
any other programming language is irrelevant. And when I say I didn’t had a bad experience
of . . . , I think I was just put off with just how new it is. (Nataly – non-Lean user)

Other students simply did not enjoy learning about Lean and did not think that Lean added
anything to their learning:

All very complicated and confusing as I have no idea how to understand Lean. [10]
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These feelings of helplessness, challenge and difficulty, especially the feeling that this pro-
gramming language was very different from any other programming language the students
had seen, stopped many students from engaging. Also, the fact that using Lean was not a
compulsory part of themodulemay have demotivated students whowere already very busy
and were struggling to keep pace with the demand of their degree.

6.2.2. Syntactic knowledge
This umbrella theme contains utterances where students raised concerns in terms of the
syntactic knowledge needed to use Lean. Students discussed issues with the vocabulary
and syntax of Lean which hindered their use of the software at great length, both during
the interviews and in the questionnaire answers. We note that the difficulty with the pro-
gramming language was also the second most selected reason of disengagement with Lean
as reported in the summary of the results from the closed questions (Table 1). Indeed, 43
utterances across the 99 students in the open comments refer to explicit difficulties with
syntax. Students who expressed their problems with the syntax, discussed the ‘intuition’
needed to be able to understand the Lean code and the time investment needed to learn
the syntax:

Syntax, as a non-Leaner requires a lot of intuition about the code to understand what’s
happening. [16]

Syntax took time to get used to. [88]

For some students, writing code in Lean to prove a statement was very different from writ-
ing the same proof on pen and paper and this posed a real challenge. They could not
connect what they were trying to do in Lean to the way in which proofs are written on
paper. In their responses, some students drewparallels betweenwriting in Lean andwriting
in a different language.

Actually, it doesn’t [is not helpful], because using Lean is just like talking math in French, I
totally have no idea about what it says. [43]

It’s hard to remember all the commands in Lean. It’s really different from normal maths. [71]

Finally, student [89] shared their experience in terms of the syntax and discusses potential
pedagogical interventions to help support learning the syntax and becomingmore familiar
with the vocabulary in a particular proof:

Once I understood the local syntax (by which I mean the functions specifically required for
that lecture) it was quite straight forward. Perhaps spending a minute listing out the functions
that will be used before the proof would be useful. [89]

In summary, utterances in this category point towards general perceptions of difficulties
for the language syntax and at time frustration with not being able to use Lean due to the
syntax barrier.

6.2.3. Conceptual knowledge
In this category are utterances that concern both conceptual knowledge of mathematics
and links between programming and mathematics.
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Many students (for example we found 41 utterances directly related to rigour and
proof among the answers to Question 6), regardless of their familiarity with Lean coding,
discussed how Lean examines the rigour of the proof. Comments such as:

I liked verifying the proofs that we saw in lectures. [73]

You cannot fall in the trap of trying to explain a proof to a person. You have to use rigorous
water-tight arguments. [74]

are common across the questionnaire replies indicating that many students at this stage
had developed an intuitive concern about rigour in mathematics. During the interviews,
the students discussed this issue inmore detail. In the following extract, we observe how the
student depicted Lean as a knowledgeable other to whom they must communicate mathe-
matics.More specifically, the student observed thatwriting in Lean requires rigorous proofs
and statements. Also, the student added that unclear or inaccurate statements will not be
accepted by Lean.

Well first of all, Lean doesn’t take any handwaving [laughs] right. So that . . . It teaches you
something about rigour, and I think thatwas themost important point about it was the concept
of rigour that . . . that was, I think, the most beneficial part of what Lean has given to me. The
concept of rigour. (Luke – Lean user)

However, the same student later reflected on his concept of rigour.

There’s something that I realised. So, Leanmademe really aware of the idea of rigour right. But
then I also noticed when you’re faced with a mathematical problem initially, rigour is not the
most important point [. . . ] I realised rigour was always a retrospective thing ‘cause I noticed
when I was doing some of the exercises in that book trying to rigourise everything straight
away made me not . . . like I couldn’t work out the solution as quickly as if I just intuitively
thought about it first and I said this is probably the solution. (Luke – Lean user)

In the quote above, the student realized that rigour in proofs is important, especially if the
proof is to be written in Lean code, but in retrospect. They reflected that initially, the proof
must be thought of intuitively and then the writing could be made rigorous, conveying the
importance of mathematical intuition and conjecturing when writing proofs.

One of the features of Lean is the need to break down the proof into goals and subgoals
for programming it. Some students mentioned this feature of the smaller proof steps as
helpful in writing rigorous proofs, while others discussed how this helps in finding the next
step in the proving process and shows the necessity of proof even for trivial statements:

Found it to be an excellent way to keep track of progress through a proof, especially long ones;
Lean tells you what parts of the proof have already been completed and what goals remain.
[98]

In an interview, a Lean user discussed in more details the structure and the steps of the
proof and how in Lean these steps must be explicit and complete for the proof to continue.
Like other students in our study, this student drew a comparison between the Lean proofs
and the pen and paper proofs. In this utterance, the student discussed how different is the
proving process in Lean and pen and paper, especially considering the goals of the proof.
In terms of his Lean proving, since the software provides the steps, he did not focus on the
whole proof but just on each of the parts that Lean required him to prove (see also Figure
1 for Lean’s interface).
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So . . . I don’t know if it’s good or bad, but like sometimes I don’t see the whole picture of
the proof, I just look at the screen on the side and now you have to prove this. [. . . ] And so
when I do pen and paper, it’s more like I’m looking at the whole thing. But like in Lean, it
seems to work even faster because like the computer, like I don’t have to write up everything I
know exactly what I need to prove, like the computer does that for me, at least in tactic mode.
(Larry – Lean user)

Many students remarked on the way in which mathematics is built in Lean starting from
the foundations. One student expressed in their response how interesting was to see that
mathematics can be constructed from Dependent Type Theory.7

Seeing howDependent Type Theory can be used as a foundation of all of maths [. . . ] Partially,
certainly the ideas behind it have been very beneficial. Using Lean would improve my under-
standing of Dependent Type Theory, on the other hand I now understand Dependent Type
Theory enough to help with my proofs and I’m not sure how much using Lean further would
improve my understanding – once you know it, you know it. [99]

Similarly, another student discussed how viewing mathematics being built from first
principle in the lectures, assisted them with understanding the content of mathematics:

Definitely, seeing the way maths is built from the bottom up is very beneficial to actually
understanding content. [56]

Linked to the idea of constructing mathematics from first principles is the comment of a
Lean user who was interviewed. The student was previously discussing how in the pen and
paper proofs sometimes he struggled as he did not recall the definitions exactly, but also
noticed that is not the case when he is proving in Lean.

I guess you could say, like Lean helps with that if you’re doing maths in Lean, because it lit-
erally lists all the definitions. So, it’s like I’m not unconsciously assuming something about a
definition that’s not true or something like that. But yeah, otherwise that . . . The other proofs
that I can’t solve when I do remember the definitions correctly, it’s just I’m not seeing some
trick I need to do. (Larry – Lean user)

Students also commented about the relationship (or lack of) between writing proofs in pen
and paper or writing proofs in Lean. We found at least eight students, among those who
gave detailed answers, who were not able to see a connection between coding in Lean and
writing a pen and paper proof and for this reason they dismissed Lean as a useful tool and
consider it as related only to computer science:

I don’t think it would be beneficial [using Lean]. I would rather spend my time doing maths
problems by myself, instead of trying to write a code. Lean is useful if you are interested in
computer science. [41]

Others linked proving in Lean and proving on pen and paper. In the quote below, a Lean
user reflected on the proof of a theorem related to the greatest common divisor which he
initially solved in pen and paper and then wrote in Lean. Coding his proof in Lean made
this student realize that there were some issues with the pen and paper proof in terms of
assuming statements that were not needed:

I actually realised when I wrote it on paper, I was assuming some extra things that I didn’t.
[ . . . ] So, on paper I did it for positive integers when in Lean I just did it for all the integers.
Yeah. So, that was cool. (Luke – Lean user)
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Another student came to a similar realization. He commented on how he changed his
proof-writing practices because of using Lean and how he now considers the special cases
that hemight havemissed in the past. Since Lean code is very detailed and accounts for each
possible case, he now uses this practice in his pen and paper proofs too and can understand
when he makes this oversight.

When I’m coming up with proofs, thanks to Lean, I see the, like the special cases that I’m
not accounting for, like I really break everything down thanks to doing Lean like. Yeah, I see
the, like, special cases. Like if I do some assumption, then I see like exactly what does this
assumption hold for. Like, or when I do assume a prime is odd like before, like I could easily
make the mistake that like not go through the case where the prime is two then it’s even. So
now I spot that mistake easily. (Larry – Lean user)

The same student also commented on the differences between pen and paper proofs and
proofs in Lean in terms of the steps that are needed to be proven and written about in each
case, as we can see from the quote below:

Although that’s why it exists. Isn’t it? Because the computer is better than us at checking.
But then I suppose using Lean is the best way of finding the error when Lean doesn’t accept
your proof. So maybe it isn’t. Maybe it doesn’t make us better at checking proofs ourselves
no. Maybe it doesn’t make us better at identifying false proofs, but it does make us better at
going through the proof and tweaking it so that’s right. I think, I think that that’s what it does.
(Larry – Lean user)

Another student stated that since starting the module he now considers how they would
code a proof into Lean while writing in pen and paper. Note however how the student
expressed how he is not yet able to do more complicated proofs in Lean because of a lack
of familiarity with the syntax needed.

For pen and paper proofs. Hm.. Let’s see. Yeah, I try and think about how I can if I’m writing
a proof how I would type that into Lean, but I don’t think I know because we’re doing quite
complex things in math already and I just don’t know how the syntax or any of that would
work in Lean. So I’m not sure how much of a help that is yet. (Luke – Lean user)

Finally, during the interviews, students referred to their Professor’s discussions, taking
place during the lectures, of the differences between mathematics and computer science
and how they found these remarks interesting and contributing to their understanding of
the role of proof in mathematics:

And then also during the lectures, the Professor [. . . ] how to say [. . . ] philosophical remarks
that he places here and there about foundations of maths. And he references like type theory a
lot . . . and the difference between likemaths proofs and computer science proofs and how they
actually sometimes are the same. And also their differences. Yeah, that’s very, very thought-
provoking, which is good. (Luke – Lean user)

Summarizing this section, some students seemed to be receptive to moving between pro-
gramming and mathematics and to consider different types of proofs. This appears to
contribute to their transition into the rigour of university mathematics. For most students
however the difficulties inherent to the complexity of Lean prevented them from actively
engaging with the language, which they perceived did not contribute to their mathematics
learning and was not to be related to doing mathematics and writing proofs in pen and
paper.
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6.2.4. Strategic knowledge
There are relatively few utterances linked to strategic knowledge in our data, and they are
different between Lean users and non-Lean users. For Lean users, those are mostly related
to the use of tactics. Students found at time difficult to understand how and when to apply
some specific tactics to solve somemathematics problems. The discussion of specific tactics
such as the tactic intro H′

which introduces a hypothesis in the proof and is usually one
of the first steps in the proof writing stage, the tactics linarith, which is used when solving
goals (parts of proof) with linear arithmetic, and simp (simplifier), which is used to simplify
the main goal using hypotheses and lemmas introduced earlier, dominates this theme:

Introducing H′
[38]

Knowing some of the shortcuts like linarith and the simp. [6]

Other students reported difficulties relate more closely to problem-solving skills in using
Lean, as in the extract of the interview below:

But if I use it myself, I can only, I only do what he [the Professor] did but I don’t know how to
change variables, change statement like that. (Ned – Non-Lean user)

We hypothesize that the relatively little attention to strategic knowledge is linked to the
fact that not many students engaged actively with Lean. While it could be easy to appre-
ciate syntactic logic difficulties only by following the Professor programming during the
lectures, it may have been necessary to engage actively in Lean programming to appreciate
the subtleties connected to strategic knowledge and the use of tactics.

6.2.5. Epistemology – the nature ofmathematics
Perhaps the most surprising of the themes emerging from the analysis of the qualitative
data is the link that some students seemed to establish between their experiences of Lean
and their perceptions of the nature of mathematics. Of the 52 utterances given as answers
to Question 8 which mention proof directly, 16 explicitly referred to the newly acquired
preoccupation with rigour, and of the necessity for proof. Therefore, at least for some stu-
dents, the Lean experience allowed them to review their ideas about what mathematics
is and helped them moving towards a view of mathematics more relevant to university
studies:

It made me re-evaluate my view on maths. [63]

INCREDIBLY [emphasis in the text] rigorous building up of mathematical knowledge means
my understanding has never been deeper, problem sheets were actually really fun. [4]

More specifically, the first important change is related to the perception of necessity of
proof. Some students stated how learning about Lean helped them understand how even
simple or obvious facts need to be proved (at least when they started to study more formal
mathematics) before they can be accepted:

I enjoyed finding out where the maths I take for granted comes from. I enjoyed learning how
to prove things and how much of the maths I do needs proof. [69]

Learn how to prove intuitive things rigorously. [92]

Such impact resonates also in the interviews. Liam (a Lean user) summarized these ideas
as follows:
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[. . . ] my idea of what proof is and rigour specifically, especially with Lean. [. . . ] But it it’s really
changed since I got here. (Liam – Lean user)

These data seem to indicate that the Lean experience helped at least some of the students to
overcome some of the epistemological difficulties with pure mathematics that characterize
the transition to university studies.

7. Discussion

The aim of this study is to investigate students’ perceptions of and difficulties with the
interactive theorem prover Lean in a first-year transition to proof module. The focus on
students’ perceptions is motivated by the fact that those perceptions play a big role in
students’ engagement with learning and with the learning resources in a conceptual way
(Entwistle &Ramsden, 1983). Because of the nature of the interactive theoremprover used,
the investigation focused on students’ difficulties with Lean and the impact that using Lean
may have on students’ perception of mathematics and of proof. Although there are many
studies of students’ difficulties with programming (see Qian & Lehman, 2017), we believe
that the case of interactive theorem provers deserves attention for the educational impact
that using such programmes may have on the learning of pure mathematics. The nature of
the introduction of Lean in this module – where Lean was a voluntary part of the curricu-
lum, but examples of live coding and of coded proofs were also discussed in the compulsory
lectures – allowed students to familiarize themselves with Lean and its functions even if
they decided they could not fully engage in the coding activity.

We posed two research questions for this study and below we report our findings. The
first research question [RQ1] concerned the difficulties that students encountered when
engaging with Lean, and what benefits/drawbacks they perceived this engagement had on
their ability to write proofs. The classification by Qian and Lehman (2017) in syntactic,
conceptual and strategic difficulties, also discussed in the work ofMcGill and Volet (1997),
was reflected in our data regarding students’ difficulties with programming – with some
noticeable differences due to the nature of Lean. The focus on students’ perceptions also
brought to the fore affective reactions to engagement with Lean and reflections on the role
and nature of mathematics. Students found that the Lean syntax was difficult to learn, and
was a stumbling block for engagement for some, even for those who had previous program-
ming experience. This perceived difficulty gave rise to negative emotions of helplessness
and prevented many students to pursue the learning of Lean. Also, the feeling of help-
lessness that many students experienced reflects the perceived lack of adequate resources
available at the time, such as a simple coding manual or a variety of worked-out examples.
Moreover, most students felt they did not have the time to engage with the software in an
already busy schedule and did not have the motivation to take up a non-compulsory part
of the module. These findings regarding difficulties with syntactic knowledge are not new;
already in a study describing the inclusion of MATLAB in first-year university mathemat-
ics, Tonkes et al. (2005) report that learning the syntax was the first hurdle students had to
overcome to engage with the programme.

We did not find many utterances that related to difficulties concerning strategic knowl-
edge and the ones we found related mainly to the use of tactics in Lean. We hypothesize
that the absence ofmany references to strategic knowledge is due to the very low number of
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students who took up the voluntary Lean workshops. Strategic knowledge comes into play
when actively planning and debugging programmes and it may not be immediately visible
to those who did not actively engage, but only saw Lean used in lectures. Therefore, our
data do not warrant a finding of what difficulties related to strategic knowledge students
may encounter.

The novel findings of our study concern how students referred to conceptual knowledge
(in programming) in relation to conceptual knowledge in mathematics, therefore dis-
cussing the affordances and drawbacks of this programme in context, as recommended by
Qian and Lehman (2017). In our study, the context is the students’ first encounter with the
requirements for proof in university mathematics. Some students reported a clear impact
that learning about proof automation had on their perceptions of what a proof is and of
the role that proof has in mathematics. Amongst the areas of impact mentioned in the data
there are the recognition of the necessity for proof, the necessity for rigour in mathematics
and the realization that mathematics can be built from its first principles. These are well-
known stumbling blocks for mathematics students in their first year. Many studies report
how students struggle to justify the need to prove statements they are familiar with and see
as obvious (e.g. Almeida, 2000), and how students find the rigour required for university
mathematics writing difficult to conceptualize and implement in their own mathematics
writing (Selden & Selden, 2008).

Moreover, our analysis highlighted that some students in our sample saw how certain
characteristics of Lean may be beneficial for their proof-writing with pen and paper. They
made a direct link between these two modes of proving, indicating that habits acquired
while writing proofs in Lean could also be transferred to writing proofs on pen and paper.
One such example is the way in which proofs can be structured. Selden (2011) reports how
undergraduate students struggle to organize proofs because they cannot see what the inter-
mediate goals are to eventually prove the main result. Some of the students in our study
stated how learning the division in goals and subgoals necessary to programme in Lean
helped them acquiring this habit also when writing proofs on pen and paper. Indeed, the
study by Thoma and Iannone (2022) offers some empirical evidence that this transfer of
habits acquired for Lean programming to proofs written on pen and paper may indeed
happen. Lastly, some students emphasized how the distinction between technical and nat-
ural language can be clarified using an interactive theorem prover, as Avigad (2019) had
also hypothesized.

However, many students did not see the link between pen and paper proofs and Lean
proofs and thought that the difficulties that were brought by using the new programme
got in the way of their learning mathematics. Those students, who also experienced nega-
tive emotions related to Lean, were unsure of the benefits of engaging with the interactive
theorem prover. They considered mathematical language completely distinct from pro-
gramming language, with one student even equating learning to programme a proof in
Lean to learning mathematics in a foreign language. This lack of appreciation of the role
of the interactive theorem prover paired with the difficulties with the Lean syntax, there-
fore, preventedmany students from engagingwith the programme and thismay represent a
stumbling block for the adoption of this tool.We hypothesize that these negative responses
to the use of Lean weremotivated by two factors. The first regards themodule organization
in that Lean was not a compulsory part of instruction and the Lean learningmaterial avail-
able at the time of the study was not well developed or linked to the curriculum directly.
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The second factor may be linked to the general use of programming inmathematics. As we
have seen programming in university (but also in schools in the UK) is mostly taught in
the context of computational methods and mathematical modelling (Sangwin & O’Toole,
2017). Itmay be the case that the students in our sample did notmake the link between pro-
gramming andproving because theywere unfamiliarwith the nature of interactive theorem
provers. Writing a proof is a very distinct activity from mathematical modelling or com-
putational mathematics and students – some of whom were versed in other programming
languages – just did not see the link between programming and proof.

With respect to the second research question [RQ2] we observe some impact of the
experience of becoming familiar with Lean on students’ views of the nature of mathemat-
ics, even for studentswho only sawLean used in the lectures.Many studies on the transition
from school to university mathematics report that students experience an epistemological
crisis during their first year at university (e.g. Gueudet et al., 2016). During this transi-
tion, students are asked to move from thinking of mathematics as a set of calculations and
procedures to thinking of mathematics as an abstract subject where (at least in pure math-
ematics) proof is the main mechanism to accept or reject a statement8 and where proof is
obtained by a chain of deductive logical reasoning. For some of the students in our sample,
the need for rigour is brought to the fore by the programming experience and is linked
to the fact that a mathematics statement can be accepted only if it has been proved rig-
orously, in this case, if Lean does not return an error message. This is not just a formal
requirement for the students, but our data suggest that for some students this becomes
an epistemological one. The utterances by the students who engaged actively with Lean
may indicate how they now see the requirement for formal proof of all mathematics state-
ments for them to be accepted as true, even those which seem self-evident, and how this
requirement for correct deductive reasoning is a fundamental part ofmathematics. Indeed,
some students reported that their perception of mathematics changed when faced with the
requirements of an interactive theorem prover. They also added that they now appreciate
the role of proof and abstraction in advancedmathematics, indicating that their experience
with Lean may have facilitated this epistemological shift. Therefore, using an interactive
theorem prover at the start of a mathematics degree could also support students during
the transition to advanced mathematics and help alleviate the epistemological crisis that
the students experience in their first year at university which often causes students to drop
out from mathematics degrees (Gueudet, 2008).

Summarizing the findings of our study, when students held positive attitudes towards
Lean and engaged with the programming language – even if not extensively – we detected
an impact on their epistemologies of mathematics and on their perceptions of rigour and
necessity of proof. However, our analysis shows that most students were discouraged from
using Lean due to its difficult syntax, the lack of teaching material, and the absence of a
clear link between coding in Lean and learning mathematics.

8. Concluding remarks and future research

In this paper, we outlined the findings of an exploratory study on students’ perceptions of
the use of an interactive theorem prover in a first-year mathematics module. The findings
show that interactive theorem provers may be useful to alleviate some of the difficul-
ties related to the role and construction of proof that students encounter when joining
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a mathematics degree. Introducing interactive theorem provers also gives students much
sought-after programming experience. Our data shows however that for some students,
who were not able to make the link between a programming language and the activ-
ity of proof writing, or that found learning Lean too demanding, the experience brought
frustration and ultimately disengagement.

This study has all the limitations of an exploratory study. Engagement with Lean was
not a compulsory requirement of the module, although all students were exposed to Lean
during the lectures, and this meant that only a few students engaged with it in a consis-
tent way. Another limitation is that the university where the study took place is very high
ranking in the UK and the students who access it achieved the highest marks at the end
of their school. The findings of the study therefore can be considered in this context, and
future studies could investigate whether these findings can be supported also when par-
ticipants are students who are not enrolled in high-ranking research universities. We can
also not ignore the impact that the Professor had on the students’ perceptions, his enthu-
siasm and above all his experience of using Lean in his own research which were reflected
in his teaching. Larger studies where an interactive theorem prover is a compulsory part
of instruction would help refine and better support our initial findings.

Our data also show the importance of adequate teaching material which is paramount
to the success of any intervention. Many of the students’ difficulties with the syntactic and
strategic knowledge could be alleviated by appropriate learning resources, which were not
well developed at the time of the study given the novelty of the use of an interactive theorem
prover in undergraduate teaching. As the use of interactive theorem provers in teach-
ing mathematics becomes more widespread, steps are made to produce teaching material
that can help students overcome the first difficulty with syntactic knowledge. The Natural
Number Game,9 for example, takes the students through the construction of the natural
numbers – a mathematics topic familiar to them – while learning Lean. Finally, we believe
that future research should focus on the investigation of the reasoning skills that students
employwhen programming proofs with an interactive theoremprover and how these relate
to reasoning skills related to proof production.

Notes

1. University degrees in the UK are typically modularized. To progress from one year to the next,
each student needs to accrue a certain number of credits by completing appropriate modules.
Each module has between 3 and 4 contact hours per week, depending on the stage at which it
is offered, and can be compulsory or optional. The number of weeks in a module vary between
universities – in our study the module was 11 weeks long.

2. Interactive theorem provers are sometimes also called ‘automated theorem provers’. The first
naming stresses the interactive nature of the proof writing, while the latter the capacity of the
software to eventually produce proofs. Given the stage of the development of Lean and the use
the students made of the tool we have adopted the first name.

3. The screenshots are taken from the Natural Number Game (https://www.ma.imperial.ac.uk/
buzzard/xena/natural_number_ game/).

4. The version used in this module was lean v3.
5. We note that no field in the questionnaire was mandatory so response numbers may not always

add to 99.

https://www.ma.imperial.ac.uk/buzzard/xena/natural_number_
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6. To distinguish between the quotes coming from the interviews and the questionnaire responses
we use different labels. We use pseudonyms when the quote is coming from the interview data
and numbers, 1–99, when we report utterances from the questionnaire.

7. The mathematics in Lean is underpinned by Type Theory and not by Set Theory as the
mathematics generally taught at university.

8. Of course, we exclude axioms from this consideration.
9. https://www.ma.imperial.ac.uk/ buzzard/xena/natural_number_game/.
10. Module code, redacted to preserve confidentiality.
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Appendix

Below are the questions included in the questionnaire.

(1) Please tells us your gender (drop-down menu: Female, Male, Prefer not to say)
(2) Reflecting on the whole term, please write two aspects of the10 course that you enjoyed, if any.
(3) Reflecting on the whole term, please write two aspects of the course that you found challeng-

ing if any.
(4) What changes would you recommend for the course, if any?
(5) How would you describe your familiarity with Lean? (Drop-down menu: Not at all familiar,

Slightly familiar, Somewhat familiar, Moderately familiar, Extremely familiar)
(6) What did you find interesting (or not) about the use of Lean in the lectures?
(7) What did you find challenging (or not) about the use of Lean in the lectures?
(8) Do you think that using Lean would be beneficial (or not) for you and why?
(9) If you have attempted to use Lean but then stopped, what was themain reason for this? (Drop-

down menu: Time constraints, Difficulty with the programming language, Not interesting
enough, Not applicable – I am still using Lean, Other. For the choice of other there was the
possibility of writing in a blank field).

(10) Do you have any further comments that you would like to make?
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