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Supplemental Methods 
 

Specimen Characteristics and Assay Methods 

For the discovery cohort, formalin-fixed paraffin-embedded (FFPE) specimens from hepatic resections were 

histologically reviewed by an expert pathologist.1 Three spatially separated 2-mm punch biopsies of tumor-rich 

areas within each metastasis was obtained for each specimen. Nucleic acids were extracted using the 

RecoverAll Total Nucleic Acid Isolation Kit. RNA integrity and quantity was assessed using an Agilent 2100 

Bioanalyzer. Ribosomal RNAs were removed using the Illumina Ribo-Zero rRNA Removal Kit. Reverse-

stranded paired-end 75 base-pair sequencing libraries were constructed using Illumina Total RNA Stranded 

Kits. Subsequently, libraries were sequenced on a HiSEQ2500 machine. For miRNA expression profiling, 500 

ng of total RNA was processed for biotin labeling and the biotin-labeled targets were hybridized to Affymetrix 

miRNA 4.0 Array Chips in an Affymetrix 640 hybridization oven. Arrays were washed and stained in an 

Affymetrix Fluidics Station 450 and the arrays were scanned using the Affymetrix GeneChip Scanner 3000 

7G. CEL intensity files were generated using GCOS software.   

 

For the validation cohort, as part of the S:CORT consortium, archival liver metastasis and primary tumor FFPE 

blocks at the time of surgical resection from the New EPOC clinical trial were profiled.2,3 Briefly, tumor 

material was identified on an adjacent hematoxylin and eosin–stained slide for macrodissection. Total RNA 

was extracted from sequential 5-mm sections using the Roche High Pure FFPE Extraction Kit (Roche Life 

Sciences) and amplified using the NuGen Ovation FFPE Amplification System v3 (NuGen San Carlos). The 

amplified product was hybridized to the Almac Diagnostics XCEL array (Almac), a cDNA microarray-based 

technology optimized for archival FFPE tissue, and analyzed using the Affymetrix Genechip 3000 7G scanner 

(Affymetrix). Quality control metrics relating to monitor image quality, in vitro transcription, hybridization to 

the array, and RNA degradation were assessed prior to uploading to the S:CORT server, where further quality 

control was performed. Expression data was downloaded from a privately accessed cBioPortal repository from 

S:CORT. CEL files were processed using Affymetrix Array Power Tools (APT).  

 

Neural Network Classifier Training for Molecular Subtyping 

In the discovery cohort, a machine learning neural network classifier was trained to classify colorectal cancer 

liver metastases into one of three molecular subtypes (canonical, immune, and stromal) using mRNA and 

miRNA expression features. The reference standard for training the neural network classifier were the 

molecular subtypes previously published using the similarity network fusion (SNF) clustering algorithm in the 

discovery cohort.1 Of importance, although molecular subtypes were ultimately associated with survival in our 

discovery set, the original SNF algorithm clustered tumors based only on molecular features and not survival 

outcomes.  

 

For 93 patients in our discovery set, expression data was available for 17,162 mRNAs and 778 miRNAs. After 

principal component analysis (PCA), 400 mRNAs were selected based on having the highest PC1 and PC2 

loadings. 41 miRNAs were also selected because they were present in both our discovery and validation 

expression datasets. Notably, the neural network classifier performed most accurately when utilizing both 

mRNA and miRNA features, with suboptimal accuracy when using either mRNA or miRNA alone. This is 

consistent with the original clustering-based approach to define molecular subtypes.1 Only the combination of 

mRNA and miRNA expression identified prognostic subgroups, while using mRNA or miRNA alone did not. 

The discovery set was split into 60% of the samples to train the model and 40% to test model accuracy. Using 

the standardized Z-score of the 441 features (400 mRNAs and 41 miRNAs) as input, a neural network 

containing a single hidden layer of 35 neurons was trained. In this way, 100 total neural networks were trained 

using 100 random 60% (training) / 40% (testing) groupings of the discovery set to optimize the model 

performance.  

 

In addition, to reduce the number of model input features while optimizing model accuracy, recursive feature 

elimination was performed, where input features that did not contribute significantly to the model accuracy 

were successively eliminated. Recursive feature elimination used a support vector machine (SVM) classifier to 

select the lowest number of features that maximized the F1 model score (which represents the harmonic mean 
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of the precision/positive predictive value and recall/sensitivity of a test). 5-fold cross-validation was used. The 

final neural network model contained 24 mRNAs and 7 miRNAs. 100 neural networks were again trained 

using 100 random 60% (training) / 40% (testing) splitting. Each model outputs the probability that a given 

sample corresponds to canonical, immune, or stromal subtypes. The subtype selected by each model was the 

subtype that had the highest probability. The overall subtype classification for each sample was the most 

frequent subtype chosen across the 100 neural network models. 

 

Application of the Molecular Subtype Classifier in Validation Cohort 

In the validation cohort, xCel CEL files were quantitated, RMA background normalized, and log2 transformed 

using APT version 2.11.4. Of 110,425 total xCel probesets, model input was limited to the probesets that 

corresponded to the 31 features (24 mRNAs and 7 miRNAs). If multiple probes corresponded to a gene of 

interest, the probe with maximum mean expression was selected. Each feature value was normalized across all 

samples to produce Z-scores. For each specimen, these standardized Z-scores for each of the 31 features served 

as model input into the trained 100 neural network models. As in the discovery cohort, the subtype selected for 

each model was the subtype with the highest probability. The overall molecular subtype assigned for each 

sample in the validation cohort was the most frequent subtype chosen across the 100 models. The “predicted 

molecular subtype” in the validation cohort was referred to as the “molecular subtype” for simplicity. 

 

Robustness and internal consistency of the classifier was evaluated. Because the overall predicted molecular 

subtype for each specimen was the most commonly predicted subtype of the 100 neural network models, 

concordance across each of the 100 models could be assessed. A truly random (i.e. non-predictive) classifier 

would be expected to have 33.3% concordance across the 100 models.  

 

When computing the molecular subtype of a liver metastasis (utilized for the primary statistical analyses), gene 

expression data from the liver metastasis alone was utilized as model input. To investigate if the signature’s 

prognostic performance was specific to application in metastases only, the molecular subtypes were also 

predicted for corresponding primary tumors. In this case, model input for each patient was limited to gene 

expression data for the primary tumor alone. To compare the prognostic performance of consensus molecular 

subtypes (CMSs) with our study’s metastasis subtypes, CMSs of both the liver metastases and primary tumors 

were also determined.4 Finally, an exploratory analysis assessing any relationship between CMS of the primary 

tumor and molecular subtype of the liver metastasis was performed utilizing Fisher’s exact test.  

 

Single Sample Gene-Set Enrichment Analysis 

To confirm that the neural network classifier accurately captured the molecular phenotype of the computed 

molecular subtypes within the validation cohort, a single sample gene-set enrichment analysis (ssGSEA) was 

performed using the EGSEA package in R and the Hallmark gene set database. For each gene feature, the 

probe with the maximum average signal was selected. A gene matrix was created with row names 

corresponding to the Entrez IDs and columns corresponding to the sample IDs. The EGSEA function egsea.ma 

was performed using the gene expression data and the algorithm method set to ssgsea. The ssgsea algorithm is 

an expansion of the GSEA algorithm.5 In brief, for each sample the gene expressions were rank-normalized 

and the Empirical Cumulative Distribution Function (ECDF) was calculated for each gene in the pathway as 

well as all the remaining genes. An enrichment score for a given pathway was then calculated by integrating 

the differences between the ECDFs. 

 

Immune Deconvolution 

To additionally validate the molecular phenotype of predicted molecular subtypes in the validation cohort, 

immune deconvolution from the transcriptome was performed to estimate the presence of various immune 

cells in the tumor microenvironment. First, probeset level data was collapsed to gene level by taking the mean 

of the probesets. Then, absolute abundance of eight immune and two stromal features was generated with the R 

package, MCPcounter that provides a matrix table where each row corresponds to a feature and each column to 

a sample.6  

 

 



 

 

10 

Determination of Clinical Risk Score 

The Clinical Risk Score (CRS) was developed by Fong et al and utilizes clinical and pathologic features to risk 

stratify patients undergoing hepatic resection for metastatic colorectal cancer.7 Higher CRS is associated with 

worse survival after resection, and one point is awarded for a node-positive primary tumor, disease-free 

interval < 12 months, >1 metastatic tumor, preoperative CEA > 200 ng/ml, and size of largest metastasis > 

5cm (maximum 5 points). In the original proposal of integrated clinical-molecular risk groups, the liver 

metastasis molecular subtypes were combined with CRS (≥2 or <2) to classify patients as low, intermediate, or 

high integrated risk.1 Patients were excluded from analyses of integrated risk stratification if their CRS could 

not be classified as ≥ 2 or < 2. If a patient was missing one or more components of the CRS but the score was 

already 2 or greater, they were classified as having a high CRS (i.e. ≥2).  
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Supplemental Results 
 

KRAS and BRAF Alterations and Microsatellite Instability 

Among patients with evaluable mutation status, KRAS mutations were present in 34.9% (15 of 43) and 14.7% 

(21 of 144) in the discovery and validation cohorts, respectively, and BRAF mutations were present in 7.0% (3 

of 43) and 5.6% (8 of 143), respectively. Only 1.1% (1 of 90) and 0.7% (1 of 146) exhibited microsatellite 

instability (MSI) in the discovery and validation cohorts, respectively.  

 

Training the Molecular Subtype Classifier in Discovery Cohort 

Expression data in the discovery cohort was based on whole transcriptome RNA sequencing and miRNA 

profiling, comprising 17,162 mRNAs and 778 miRNAs. As described in the Supplemental Methods, this was 

reduced to 400 mRNAs and 41 miRNAs (441 features). When training the single-layer 35 neuron neural 

network using 441 features, average accuracy for predicting molecular subtypes in the cross-validation testing 

set of the discovery cohort was 83%. After recursive feature elimination, a 31-feature signature consisting of 

24 mRNAs and 7 miRNAs resulted in optimal model performance with an average accuracy of 96% across 

cross-validation testing sets. eFigure 2 exhibits model performance as a function of features included in the 

classifier, while eTable 1 lists the specific mRNAs and miRNAs comprising the classifier. Robustness and 

internal consistency of the classifier was supported by the strong concordance of predicted molecular subtypes 

across all 100 neural network models in this independent cohort (eFigure 3). 

 

Classification of Molecular Subtypes in Validation Cohort 

In the validation cohort, 73 (50%), 28 (19%), and 46 (31%) of 147 patients were classified as having 

canonical, immune, and stromal metastases, respectively (eFigure 4A). By integrated clinical-molecular risk 

group, 16 (11%), 25 (17%), and 103 (72%) of 144 patients were classified as having low-risk, intermediate-

risk, and high-risk disease (eFigure 4B). Thus, there was an increase in the canonical subtype and high-risk 

integrated group in the validation cohort, compared to the discovery cohort. Clinical and pathologic features 

across molecular subtypes in the validation cohort are displayed in eFigure 5. Across molecular subtypes, 

there were no differences in the clinical or pathological features included in the CRS, tumor and nodal staging, 

tumor differentiation, age, or sex. The rate of positive margins (i.e. cancer present on cut surface) differed 

across subtypes (P=0.044). However, the incidence did not differ across subtypes in the discovery cohort 

(P=0.70), suggesting this did not represent a true underlying relationship. 

 

Clinical Outcomes for Discovery and Validation Cohorts 

The overall PFS and OS were highly concordant between the discovery and validation cohorts (eFigure 6A). 

Specifically, in the discovery and validation cohorts the 5-year PFS was 24.3% and 23.0% and the 5-year OS 

was 48.2% and 49.0%, respectively. When split by molecular subtype, there were also no significant 

differences in OS between discovery and validation cohorts (eFigure 6B). Similarly, there were no differences 

in OS between discovery and validation cohorts when split by integrated clinical-molecular risk group 

(eFigure 6C). Collectively, these data demonstrated strong concordance in clinical outcomes across the two 

cohorts by molecular subtype and integrated clinical-molecular risk group. 

 

Prognostic Significance of Primary Tumor Gene Expression Data 

The neural network classifier was also applied to the primary tumor expression data to determine whether 

these subtypes were also discernable in primary tumors. There was no statistically significant association 

between predicted molecular subtypes in primary tumors and PFS or OS (eFigure 8). When consensus 

molecular subtypes were determined for the primary tumors, there was no association between the CMS of the 

primary and the molecular subtype of the metastasis (eTable 2).4 Finally, neither the CMS subtype of the 

primary tumors nor the CMS subtype of the matched liver metastases were associated with PFS and OS, 

though 8 (6.5%) patients with primary tumor CMS1 exhibited a trend for worse OS, consistent with prior 

literature (eFigure 9).4 Thus, the liver metastasis molecular subtypes were prognostic when applied to liver 

metastasis samples (with immune subtype demonstrating superior PFS and OS), while the liver metastasis 

molecular subtypes applied to the primary tumors and the CMS subtypes applied to either the primaries or 

metastases were not.  



 

 

12 

eFigure 1 
Diagram representing training and application of neural network classifier to predict molecular subtypes 
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eFigure 2  
Optimization of model performance (measured by the F score) as features are eliminated using recursive 

feature elimination 
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eTable 1 
List of mRNAs and miRNAs included in the neural network classifier to predict molecular subtypes 

 
Features Included 

in Classifier 
Feature Type 

JAML mRNA 

PREX2 mRNA 

FAP mRNA 

MITF mRNA 

LDB2 mRNA 

LRRC8C mRNA 

DDR2 mRNA 

TSSC4 mRNA 

CRIPT mRNA 

TCIRG1 mRNA 

PKD2 mRNA 

ITPR1 mRNA 

ERF mRNA 

CFAP97 mRNA 

RARS2 mRNA 

PIK3CA mRNA 

ATAD1 mRNA 

CEBPZ mRNA 

RYK mRNA 

REST mRNA 

RIF1 mRNA 

USP34 mRNA 

INO80D mRNA 

RBMX mRNA 

MIR548X miRNA 

MIR21 miRNA 

MIR8072 miRNA 

MIR762 miRNA 

MIR92B miRNA 

MIR7515 miRNA 

MIR30C1 miRNA 
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eFigure 3 
Histogram representing the robustness and internal consistency of the molecular subtype classifier for liver 

metastases in the validation cohort. Of 100 neural network models applied for each specimen in the classifier, 

the distribution of model concordance for predicting molecular subtypes is visualized. P value corresponds to 

single sample T-test (N = 147) with Ha: mean percentage of concordant models across participants > 33.3% 

(i.e. better than a truly random classifier). 
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eFigure 4 
Distribution of molecular subtypes and integrated clinical-molecular risk groups in the discovery and 

validation cohorts. 
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eFigure 5 
Distribution of clinical and pathologic features across molecular subtypes in the validation cohort 
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eFigure 6 
 (A) PFS and OS for overall discovery and validation cohorts; (B) OS for canonical, immune, and stromal 

subtypes; (C) OS for low-risk, intermediate-risk, high-risk integrated risk groups; X-axis represents time after 

surgery for the discovery cohort (in months) and time after randomization on the New EPOC trial for the 

validation cohort (in months)  
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eFigure 7 
Box and whisker plots for detailed visualization of (A) Single-sample gene set enrichment analysis across 

molecular subtypes in the validation cohort; (B) Immune deconvolution across molecular subtypes in the 

validation cohort 
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eFigure 8 
Survival outcomes in validation cohort by predicted molecular subtype of primary tumor; (A) PFS; (B) OS; X-

axis represents time after randomization on the New EPOC trial in months 
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eTable 2 
Association of consensus molecular subtype of the primary tumor with molecular subtype of the liver 

metastasis in the validation cohort  

 

  Molecular Subtype of Metastasis 

  Canonical 

Subtype 

Immune 

Subtype 

Stromal 

Subtype 
Total 

 P = 0.37 N=59 N=27 N=38 N=124 

CMS of 

Primary 

CMS1 5 (62%) 2 (25%) 1 (12%) 8 (100%) 

CMS2 30 (53%) 10 (18%) 17 (30%) 57 (100%) 

CMS3 3 (33%) 4 (44%) 2 (22%) 9 (100%) 

CMS4 9 (56%) 4 (25%) 3 (19%) 16 (100%) 

Unclassified 12 (35%) 7 (21%) 15 (44%) 34 (100%) 
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eFigure 9 
Survival outcomes in the validation cohort based on consensus molecular subtypes of either the primary tumor 

or liver metastasis; (A) PFS by primary tumor CMS; (B) OS by primary tumor CMS; (C) PFS by liver 

metastasis CMS; (D) OS by liver metastasis CMS; X-axis represents time after randomization on the New 

EPOC trial in months 
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eTable 3 
Sensitivity analysis demonstrating Cox proportional hazards model for PFS and OS in validation cohort, 

including cetuximab, age, tumor differentiation, margin status, WHO performance status, KRAS and BRAF 

mutation status, and primary tumor location in the model.  

 

 

PFS by Molecular Subtype 

Variable Hazard Ratio (95% CI) P 

Molecular Subtype   

Canonical Reference  

Immune 0.43 (0.22 to 0.87) 0.018 

Stromal 0.55 (0.32 to 0.92) 0.024 

Clinical Risk Score   

1 Reference  

2 2.2 (1.1 to 4.5) 0.033 

3 2.6 (1.3 to 5.4) 0.0090 

4 2.7 (1.0 to 7.2) 0.043 

5 1.7 (0.19 to 15.0) 0.63 

Cetuximab   

No Reference  

Yes 1.0 (0.64 to 1.6) 0.96 

Age (years) 0.97 (0.95 to 1.0) 0.018 

Tumor 

Differentiation 
  

Well/Moderate Reference  

Poor 1.8 (0.85 to 3.8) 0.12 

Shortest Margin 

Between Cancer and 

Cut Surface 

  

Margin ≥ 1cm Reference  

Margin < 1cm 1.0 (0.60 to 1.7) >0.99 

No Margin 

(Cancer Visible on 

Cut Surface) 

1.4 (0.61 to 3.3) 0.42 

WHO Performance 

Status 
  

0 Reference  

1 1.3 (0.76 to 2.1) 0.36 

KRAS Mutant   
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Wildtype Reference  

Mutant 1.3 (0.65 to 2.6) 0.46 

BRAF Mutant   

Wildtype Reference  

Mutant 0.88 (0.36 to 2.2) 0.78 

Primary Tumor 

Location 
  

Right Colon Reference  

Left Colon 0.59 (0.28 to 1.3) 0.17 

Rectum 0.64 (0.32 to 1.3) 0.20 

Recto-Sigmoid 0.62 (0.29 to 1.3) 0.21 

Other 0.98 (0.47 to 2.0) 0.96 

   

OS by Molecular Subtype 

Variable Hazard Ratio (95% CI) P 

Molecular Subtype   

Canonical Reference  

Immune 0.44 (0.18 to 1.1) 0.082 

Stromal 0.75 (0.39 to 1.4) 0.38 

Clinical Risk Score   

1 Reference  

2 1.6 (0.57 to 4.7) 0.36 

3 2.6 (0.95 to 7.2) 0.064 

4 2.4 (0.72 to 7.8) 0.16 

5 0.69 (0.07 to 7.1) 0.75 

Cetuximab   

No Reference  

Yes 2.0 (1.2 to 3.5) 0.014 

Age (years) 0.99 (0.97 to 1.0) 0.66 

Tumor 

Differentiation 
  

Well/Moderate Reference  

Poor 1.0 (0.37 to 2.7) 0.98 

Shortest Margin 

Between Cancer and 

Cut Surface 
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Margin ≥ 1cm Reference  

Margin < 1cm 0.84 (0.45 to 1.6) 0.58 

No Margin 

(Cancer Visible on 

Cut Surface) 

2.4 (0.96 to 5.9) 0.060 

WHO Performance 

Status 
  

0 Reference  

1 1.6 (0.88 to 3.0) 0.12 

KRAS Mutant   

Wildtype Reference  

Mutant 1.9 (0.92 to 4.1) 0.083 

BRAF Mutant   

Wildtype Reference  

Mutant 1.3 (0.48 to 3.6) 0.58 

Primary Tumor 

Location 
  

Right Colon Reference  

Left Colon 1.3 (0.54 to 2.9) 0.60 

Rectum 0.61 (0.26 to 1.4) 0.25 

Recto-Sigmoid 0.69 (0.27 to 1.8) 0.44 

Other 0.99 (0.43 to 2.3) 0.97 

   

PFS by Integrated Risk 

Variable Hazard Ratio (95% CI) P 

Integrated Risk   

Low 0.34 (0.16 to 0.71) 0.0042 

Intermediate 0.59 (0.32 to 1.1) 0.091 

High Reference  

Cetuximab   

No Reference  

Yes 1.0 (0.67 to 1.5) 0.95 

Age (years) 0.97 (0.96 to 1.0) 0.020 

Tumor 

Differentiation 
  

Well/Moderate Reference  

Poor 1.5 (0.75 to 3.0) 0.26 
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Shortest Margin 

Between Cancer and 

Cut Surface 

  

Margin ≥ 1cm Reference  

Margin < 1cm 1.1 (0.68 to 1.7) 0.74 

No Margin 

(Cancer Visible on 

Cut Surface) 

1.4 (0.66 to 3.0) 0.38 

WHO Performance 

Status 
  

0 Reference  

1 1.5 (0.96 to 2.4) 0.072 

KRAS Mutant   

Wildtype Reference  

Mutant 1.5 (0.84 to 2.8) 0.17 

BRAF Mutant   

Wildtype Reference  

Mutant 1.0 (0.42 to 2.5) 0.96 

Primary Tumor 

Location 
  

Right Colon Reference  

Left Colon 0.68 (0.34 to 1.36) 0.28 

Rectum 0.84 (0.43 to 1.7) 0.62 

Recto-Sigmoid 0.67 (0.33 to 1.4) 0.28 

Other 1.1 (0.58 to 2.2) 0.73 

   

OS by Integrated Risk 

Variable Hazard Ratio (95% CI) P 

Integrated Risk   

Low 0.28 (0.08 to 0.92) 0.036 

Intermediate 0.72 (0.33 to 1.6) 0.41 

High Reference  

Cetuximab   

No Reference  

Yes 1.8 (1.1 to 3.0) 0.021 

Age (years) 0.99 (0.97 to 1.0) 0.56 

Tumor 

Differentiation 
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Well/Moderate Reference  

Poor 1.1 (0.43 to 2.6) 0.89 

Shortest Margin 

Between Cancer and 

Cut Surface 

  

Margin ≥ 1cm Reference  

Margin < 1cm 0.82 (0.46 to 1.5) 0.51 

No Margin 

(Cancer Visible on 

Cut Surface) 

2.1 (0.97 to 4.7) 0.060 

WHO Performance 

Status 
  

0 Reference  

1 1.9 (1.1 to 3.3) 0.016 

KRAS Mutant   

Wildtype Reference  

Mutant 2.2 (1.1 to 4.3) 0.021 

BRAF Mutant   

Wildtype Reference  

Mutant 1.4 (0.51 to 3.7) 0.53 

Primary Tumor 

Location 
  

Right Colon Reference  

Left Colon 1.1 (0.50 to 2.5) 0.79 

Rectum 0.63 (0.28 to 1.4) 0.27 

Recto-Sigmoid 0.75 (0.31 to 1.8) 0.53 

Other 1.0 (0.46 to 2.3) 0.96 
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