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A numerical twin model for the magneto-thermal analysis of an induction heating device is proposed. The non-linearity of magnetic
permeability against temperature—which characterizes the workpiece—is captured by the model, while the use of a convolutional
neural network (CNN), trained by a number of finite-element (FE) analyses, makes it possible to solve the following inverse problem:
given a temperature map in the workpiece section, identify current and relevant frequency in the inductor coil, as well as the time
instant at which the map refers to. The testing electromagnetic analysis method (TEAM) problem 36 is considered as the case study.

Index Terms— Convolutional neural network (CNN), coupled problems, testing electromagnetic analysis method (TEAM) problem.

I. INTRODUCTION

IN THIS article, a study is presented dealing with the
feasibility of solving direct and inverse coupled field prob-

lems by resorting to deep learning techniques and surrogate
models. Nowadays, surrogate models based on deep neural
networks are increasingly used in computational electromag-
netics (EMs); to give some examples, deep learning techniques
have been used for field analysis in single-physics [1], [2] and
multiphysics [3] domains, while fully unsupervised approaches
have been shown to be effective in solving problems of
material property identification [4]. The coupled field prob-
lem deals with the mass heating of a steel billet that is a
“classical” induction heating application, where the calcula-
tion of the time-dependent temperature field results from a
coupled magneto-thermal analysis, traditionally carried out by
numerical methods such as finite elements (FEs) or finite
differences. Recently, the objective of this investigation has
been added to the testing electromagnetic analysis method
(TEAM) benchmark problems as “Problem 36: Multiphysics
Field Analysis of an Induction Heating Device” [5], [6].

The authors have already assessed, for the same benchmark
problem, the possibility of applying convolutional neural net-
works (CNNs), both on a pretrained neural network—notably
GoogLeNet—and on a neural network trained from scratch [7].
In the previous work, CNNs were trained by a limited number
of FE solutions, with a database that incorporates two data
sets: a reduced one with 120 FE solutions and a larger one with
1654 solutions, both calculated through a simplified approach

Manuscript received 4 November 2022; revised 10 January 2023; accepted
14 January 2023. Date of publication 23 January 2023; date of current
version 25 April 2023. Corresponding author: M. E. Mognaschi (e-mail:
eve.mognaschi@unipv.it).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TMAG.2023.3238767.

Digital Object Identifier 10.1109/TMAG.2023.3238767

to consider the temperature dependence and non-linearities
of material properties. In particular, the simplified approach
was based on the assumption of a two-level linearized model:
taking the magnetic and electrical properties of the billet
constant values below and above the Curie temperature,
respectively [7].

The training data were the input variables, current density,
and frequency of the inductor supply and the resulting duration
of the heating process to reach 1200 ◦C at least at one point
on the billet and the corresponding final temperature map
sampled on a regular grid of 32 × 12 points [7]. In contrast,
in this work, training data have been obtained from FE coupled
problems developed using a full-transient thermal analysis
with non-linear material properties: the database of results
incorporates the temperature maps, sampled on a 30 × 60 reg-
ularly spaced grid, as calculated during the time transient; in
particular, 24 temperature maps, relevant to 24 time instants,
have been stored for each FE solution. The complete training
set contains about 40 000 temperature maps that arise from
1600 combinations of input data, frequency, and current,
thus preserving the knowledge of the transient evolution of
temperature for each case.

II. TEAM 36 MULTIPHYSICS PROBLEM:
THE FIELD MODEL

The use of numerical models for the design of induction
heating systems has been characterized by a rapid evolution
in recent years; in fact, they have become a dominant method
of designing electrothermal systems [8]. Moreover, numer-
ical modeling has made it possible to significantly reduce
design times and costs, as before the introduction of advanced
and reliable software, the design depended on the expertise
of the designer who could rely only on formulae based
on simplified analytical models. In the TEAM 36 problem,
an induction heating problem related to coupled EM and
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Fig. 1. (a) Geometry of the system h/2 = 50 cm, r = 3 cm, hc = 2 cm,
and wc = 1 cm; (b) magnetic field map; and (c) thermal map at t = 7 s,
I = 6 kA, and f = 6 kHz.

thermal calculations is proposed [5] and is used in this article
to evaluate the possibility of using metamodels based on neural
networks for coupled problem. The device under study is
composed of a solenoidal inductor coil and a cylindrical steel
billet, coaxially located with respect to the inductor and of
the same axial length, presented in Fig. 1 with reference to a
cylindrical coordinate system {ρ, φ, z}.

The billet is made of the C45 steel, whose material prop-
erties, specific heat capacity, thermal conductivity, electrical
conductivity, mass density, and permeability, as functions of
temperature and/or magnetic field intensity, are given in [6].

An FE model of the device was derived using Comsol
Multiphysics [9] and, due to the symmetries, it was possible
to apply a 2-D axisymmetric model to half of the inductor
and steel billet as well as the air for the coupled solution. The
following boundary conditions were applied:

1) tangential flux lines along ρ = 0;
2) normal flux lines along z = 0.
In turn, the thermal domain is composed of half of the billet,

with relevant boundary conditions applied to the external con-
tour of the billet, to describe convective and radiation losses
from the billet surface. The convective exchange coefficient
was assumed to be equal to 7 W/m/◦C and the emissivity
coefficient equal to 0.8, while the room temperature was equal
to 70 ◦C along the lateral surface of the billet (ρ = 3 cm) and
equal to 25 ◦C at the end surface (z = h/2 = 50 cm).

The EM problem is solved in time harmonic, while the
thermal one is in time-dependent conditions. The distribution
of Joule’s losses in the billet, as computed at each EM step,
is the coupling term with the transient thermal, where it is
applied as a heating source.

In turn, the resulting temperature distribution at the end
of each time step is the coupling term with the EM solver,
where material properties are updated accordingly to the actual
temperature.

The benchmark problem refers to a specific process,
where the inductor is supplied by a sinusoidal current of
3500 A (rms), at frequency f = 2 kHz. The heating process
lasts 250 s, and the calculated temperature distributions along

Fig. 2. Temperature distribution along the billet radius at z = 0, with different
time instants considered.

the billet radius located on the symmetry plane (i.e., at z = 0)
are shown in Fig. 2.

In practice, the coupled solution requires several EM solu-
tions, which are non-linear below the Curie temperature, and
thermal solutions, which also exhibit strong nonlinearities,
mostly related to the specific heat and radiation losses.

Typical computational times of each coupled problem are
quite high, even if calculations are performed on powerful
workstations and taking advantage of parallel computing for
solving the big complex and real matrix produced by the
FE method. For a typical FE simulation, there are about
170 000 degrees of freedom considering both magnetic and
thermal problems.

III. CNN-BASED APPROACH TO THE
IDENTIFICATION PROBLEM

Starting from the temperature distribution in the billet cross
section at a given time instant, the proposed method aims at
recovering the electrical input of the inductor coil, as well as
the time instant itself. Hence, an identification problem arises
that reads as follows: given a matrix representing a temperature
map, identify the corresponding vector of current, frequency,
and time instant. More generally, the temperature map can be
understood as a representative of a prescribed thermal field
that should be inverted.

For solving the problem, a CNN-based approach is used.
In such a case, the network is a surrogate of the inverse
problem, meaning that applying an image of the temperature
field as an input to the CNN, the current, frequency, and time
instant of the heating process is identified without the use of
an FE model.

In order to train the CNN for solving this problem,
a database of field solutions, based on the FE model, was
created as follows.

Along the radius r , Nr points were taken inside the billet
domain, as well as Nz points on the semi-length z; by consider-
ing a given time instant t∗, a temperature matrix of dimension
[Nr × Nz] was defined, whose rows corresponded to the
radius coordinates, while the columns corresponded to the
semi-length ones: each element was equal to the temperature
value at the relevant point and at the instant t∗. This matrix
can be built for each instant tk , k = 0, 1, . . . , nt , with nt the
total number of selected instants, in order to obtain a tensor of
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Fig. 3. Structure of the database.

dimension [Nr × Nz × nt ] that stores the temperature values
in the Nr × Nz points of the billet and for the nt time instants,
as shown in Fig. 3.

It is important to note that each analysis case, distinguished
by the amplitude and the frequency of the source current flow-
ing into the coil, exhibits a final time different to each other
since the heating power is affected by the above parameters.

Furthermore, the number of intervals actually computed in
each case is different because the solution time steps are
automatically and adaptively set by the transient solver in
Comsol (the interpolated solutions are discarded). For this
reason, in order to enhance and simplify the training process
of the CNN, the number of time instants stored for each case
has been standardized by taking the same number of computed
intervals nt ; in this way, it was possible to include only the
effectively computed solutions and to build a 5-D tensor of
size [Ncurr × Nfreq × Nr × Nz × nt ], with Ncurr and Nfreq
the numbers of the studied values of current amplitude and
frequency, respectively. The last component of the proposed
database is a tensor of dimension [Ncurr × Nfreq × nt ], whose
elements are the time instants relevant to each case, since the
sampling process is carried out on the numbers of computed
time steps and not on the absolute time.

The database of solutions is the training set for the CNN and
comprises all the results obtained by applying a current density
ranging from 2000 up to 6000 A (rms values) and frequency
ranging from 2000 up to 6000 Hz. Overall 1600 transient field
analyses have been performed.

The generation of the database of solutions took about
40 days of calculations distributed on three different worksta-
tions characterized by 2× Intel Xeon E5-2620 v4 processors
(2.10 GHz, 16 cores, and 32 threads) and 256 GB of RAM.

For solving the identification problem, a CNN trained from
scratch is used. The CNN is composed of 18 layers, in which
four blocks can be highlighted. Each block is composed of a
convolutional layer, a batch normalization layer, and a rectified
linear unit (ReLU) function, as shown in Table I.

The ReLU function is one of the most used activation
functions for CNN because it has shown good performances
in training this kind of neural networks in terms of avoiding
the overfitting phenomenon.

The convolutional layers are characterized by filters of
size 3 × 3, while the number of filters varies from 128 to 8,
depending on the block. Moreover, two average pooling layers
with filter of size 2 × 2 are applied in order to obtain a more

TABLE I
CNN ARCHITECTURE

stable solution. In the final block, a dropout layer is used and
a fully connected layer followed by the regression layer allows
a vector of three elements to be obtained as the output.

The architecture of each block in Table I is typical of CNNs
that have a field image as the input. The number of blocks
is a tradeoff between two conflicting criteria: a low number
of blocks could result in an oversimplified net despite the
complexity of the field problem to solve and a high number
of blocks could result in a larger dataset for training purposes.

The CNN is able to treat images as input, and here, it is
used as follows: given a temperature map, the corresponding
vector of current, frequency, and time instant is predicted; this
mapping is a model of the inverse induction heating problem.

In terms of an error estimate, for evaluating the quality of
the CNN prediction, the root-mean-square error e is calculated
on N points of the validation set, namely,

e =

√√√√∑N
i=1

(
Ŷ i − Yi

)2∑N
i=1 Y 2

i

(1)

where Y is the true value used in the finite element model
(FEM) and Ŷ is the value predicted by the CNN (both
normalized in the range between −1 and 1). The error is
evaluated for each of the three quantities: current, frequency,
and time instant.

IV. RESULTS

The CNN is trained following roughly the 80/20 rule,
i.e., 80% of the dataset for the training set and 20% for
the validation set. Thus, training and validation sets have
different sizes depending on the dataset, as shown in Table II.
The training was performed with ADAM solver and lasted
1000 epochs.

The plane “true versus predicted values” shows the relevant
level of agreement: the closer the points are to the diagonal, the
more accurate the solution. The prediction for the time instant
is accurate for those instants at the beginning of the process,
while the final time instants are not very well predicted,
as shown in Figs. 4–6 (red squares for which the true value is
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TABLE II
SIZE OF TRAINING AND VALIDATION SETS

Fig. 4. True versus predicted values of current (circle), frequency (cross),
and time instant (red square) for Dataset 1.

Fig. 5. True versus predicted values of current (circle), frequency (cross),
and time instant (red square) for Dataset 3.

Fig. 6. True versus predicted values of current (circle), frequency (cross),
and time instant (red square) for Dataset 5.

equal to 1). Hence, when the number of time instants increases,
this error is lower percentagewise, considering the whole set of
time instants. In Table III, an estimate of the error e, computed
for the validation set according to (1) and referring to the
values normalized in the range [−1,1], is reported.

From Table III, it will be noted that the current predic-
tion is slightly more accurate than the frequency prediction.
Moreover, it appears that, when increasing the number of time

TABLE III
ERROR FOR DIFFERENT DATASETS (N , VALIDATION SET SIZE,

AND nt , NUMBER OF TIME INSTANTS)

instants, the accuracy of the frequency prediction remains
almost unaltered and so does the prediction relevant to the
time instant; in contrast, the accuracy of the current prediction
decreases.

However, parameters N and nt proportionally increase:
therefore, the information increases, but the number of time
instants to learn increases as well. Hence, it is not reasonable
to expect a reduction of the error. On top of that, all these
training experiments were developed using the same CNN.

V. CONCLUSION

A surrogate model of the inverse induction heating problem
has been successfully developed.

In terms of computational costs, the database created for
training purpose is based on 1600 multiphysics field analyses
in which up to 24 time instants can be identified. For the
sake of comparison, an algorithm of evolutionary optimization
lasts about a hundred iterations, for a prescribed convergence
accuracy, each one requiring an FE analysis. Supposing that
the same set of 24 time instants is used, along with the
relevant current and frequency pair, the algorithm would
approximately require 2400 field analyses, i.e., more than the
network training.

In general, it could be stated that once a surrogate model is
available, it can be used in optimization and design to great
effect and significantly reduce the time to get a solution.
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