UNIVERSITY OF

Southampton

Copyright (©) and Moral Rights for this thesis and, where applicable, any accompanying data are
retained by the author and/or other copyright owners. A copy can be downloaded for personal non-
commercial research or study, without prior permission or charge. This thesis and the accompanying
data cannot be reproduced or quoted extensively from without first obtaining permission in writing from
the copyright holder/s. The content of the thesis and accompanying research data (where applicable)
must not be changed in any way or sold commercially in any format or medium without the formal

permission of the copyright holder/s.
When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the

University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]

UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering and Physical Sciences
Web and Internet Science

Applying Web Technologies
to Large Scale IoT Deployments

by
Alex Owen

MEng, MSc
ORCiD: 0000-0001-9152-8932

A thesis for the degree of
Doctor of Philosophy

August 2022

http://www.southampton.ac.uk
http://orcid.org/0000-0001-9152-8932

University of Southampton
Abstract

Faculty of Engineering and Physical Sciences

Web and Internet Science

Doctor of Philosophy

Applying Web Technologies
to Large Scale IoT Deployments

by Alex Owen

This thesis investigates the potential for using Web technologies, namely the Document
Object Model (DOM), Cascading Style Sheets (CSS), and JavaScript, to describe and control
large-scale Internet of Things (IoT) deployments. These are not yet present in the typical
home, however, the trajectory of integration between everyday objects and computers
suggests that, in future, many homes and commercial spaces will contain thousands of IoT
devices. These environments will require complex and scalable orchestration. Web
technologies could fulfil these requirements.

While there have been many attempts to integrate the IoT with the Web, thus far none have
taken advantage of existing technologies to the degree demonstrated here. Several new
approaches were explored, each with the aim of representing IoT devices and their
components using the DOM, whereafter, CSS was used both to control and store the state of
the DOM. The DOM elements became digital twins of the devices they represented,
allowing actions upon the DOM to be replicated across the IoT environment it mirrors.
Through applying this approach, there is the potential for Web developers to use their
existing skills to transition from their current role and become Web of Things (WoT)
developers with little effort.

The investigation occurred across four experiments, approaching a Web-native solution.
The final implementation was tested in a study with experienced Web developers, yielding a
positive outcome. Participants showed an interest in the subject matter and quickly learned
the skills necessary to implement the technology. Also explored are ideas on how this
approach could, in future, be integrated with the social machine of the Web, including with
other WoT projects, development communities, and end users.

The proposals within this thesis introduce a new concept for modelling the IoT, and, as
such, they put forth many avenues for future research. These include the potential to share
curated themes for physical environments; to build complex virtual devices from the
components of others; and to allow Web pages to spill out into the physical environment
they are viewed within.

http://www.southampton.ac.uk

Contents

List of Figures

List of Tables

Declaration of Authorship

Acknowledgements

Abbreviations

1 Introduction

2 Literature Review

2.1
2.2

2.3
2.4
2.5
2.6

TheInternet e e e
The Web e e

Mosaic: RRP e
ViolaWWW:PWP i
Steve Heaney’s Proposal (SHP)
Cascading HTML Style Sheets (CHSS)

XSL e

2.22.6 JavaScript
2.2.3 Scale and the Internetof Things
224 TheWebofThings
IdentificationontheInternet
DescribingloT Devices o i e
TheSemanticWeb
The Historyof Digital Twins

xiii

xvii

© © © o O

vi CONTENTS
2.7 ReadingStateofIoT Devices, 25
2.8 ControllingIoTDevices ittt 26

2.8.1 Push vs Pull Control MethodsontheWeb 26
2.8.2 ThePublish/SubscribeModel 27

2.9 Historical [oT Implementations 29
2.9.1 TheFirstloTDevice 29
2.9.2 Envisioning Connected/Smart Environments 29
2.9.3 Ubiquitous and Pervasive Computing 29
2.9.4 CoiningtheTermIoT 30
2.9.5 HP’sCooltown Project 30
2.9.6 The First Industrial Physical [oT Products 31

2.10 IoT Management Systems i e 32
2.10.1 Open Source, Mass Market 32
2.10.2 Open Source,Personal 32
2.10.3 Closed Source, Mass Market 32
2.10.4 Closed Source, Personal 33
2.10.5 Open Source, Mass Market 33
21051 OpenHAB e 33

2.10.5.2 HomeAssistant 34

21053 Node-RED e 34

2.10.5.4 WebThings (formerly Mozilla) 34

2.10.6 Open Source,Personal 35
2.10.7 Closed Source, Mass Market 36
2.10.7.1 Nest e e e 36

2.10.7.2 PhilipsHue 36

2.10.7.3 GoogleHome 36

2.10.7.4 AmazonAlexa. 37

21075 AppleHome 37

2.10.7.6 IFTTT o e e e 37

2.10.7.7 Thread and OpenThread 38

2.10.7.8 Matter e e e e e e 39

2.10.7.9 High-End Smart Home Systems 39

211 SmartCities L e 40
212 W3Candthe WoT e e e 41
2.12.1 W3C WoT Based Management Systems 41
2.12.2 Matterandthe W3C e 41

2.13 The Human Influence onthe Weband IoT 42
2.13.1 MetaphorsontheWeb 42
2.13.2 ACoginaSocialMachine 43

2.14 The Future and IoT Environment Design 45
2.14.1 The CaseforOpenStandards 45
2.14.2 The Case for Re-Use of Web Standards 46

2.15 Limitations of ExistingResearch 49

3 Theoretical Framework 51
3.1 Challenges 51

32 TheGap e 52

CONTENTS

3.2.1 Specifics and Justification
3.21.1 Technical

3212 Social

3.2.2 How This Fits Into the Timeline of the WoT and IoT

3.3 AimsofThisThesis
3.3.1 Aim 1: Treating IoT Devices as DOM Elements
3.3.2 Aim 2: Building an IoT System Using Browser Technology
3.3.3 Aim 3: Gaining Acceptance from the Community

3.4 Scopeand Assumptions e e
3.5 Framingofthe Analysis
3.5.1 Possibility
3.5.2 Practicality
3.5.3 UserAcceptancet

3.5.3.1

UserTesting it

3.5.3.2 HeuristicTesting,

4 Methodology

4.1 Hierarchical Modelling of Physical Environments

4.2 Using Web Technologies to Model Environments
4.3 StoringDeviceState
4.4 LinkingtoDevices e

4.5 AssessmentStrategieso e

5 Experiments

5.1 Experiment 1: Using Attributesto Store State
5.1.1 DISCUSSION o e e e
5.1.1.1 Possibility
5.1.1.2 Practicality
5.1.1.3 UserAcceptance
HeuristicAnalysis

1) Visibility of system status

2) Match between system and therealworld

3) Usercontrolandfreedom

4) Consistency and standards

5) Error prevention

6) Recognition rather thanrecall

7) Flexibility and efficiencyofuse

8) Aesthetic and minimalistdesign

9) Help users recognize, diagnose, and recover from errors . .

10) Help and documentation.

5.2 Experiment 2: A Centralised, Hub-Based, HTML5 and CSS WoT System
5.2.1 Technical Implementation
52.1.1 TheHub
5.2.1.2 TheubjsLibrary,
52.1.3 TheWebInterface
5.2.1.4 PhysicalClients
52.1.5 VirtualClients.

53
53
56
57
60
60
61
61
62
63
63
63
64
64
65

71
71
73
74
75
75

viii CONTENTS
5.2.1.6 ComposedDevices. 96
5.2.1.7 MesSsagingt e e e e 98
5.22 DISCUSSION o o v ittt e e e e e e e e 99
5.2.2.1 Possibility 99
5.2.2.2 Practicality 100
5.2.2.3 UserAcceptancet 105
HeuristicAnalysis 105
1) Visibility of system status 105
2) Match between system and therealworld 105
3) User control and freedom 105
4) Consistency and standards 106
5) Error prevention, 106
6) Recognition rather thanrecall 106
7) Flexibility and efficiencyofuse 106
8) Aesthetic and minimalistdesign 107
9) Help users recognize, diagnose, and recover from errors . . 107
10) Help and documentation. 107
5.3 Experiment 3: A Distributed, Browser-Based, Web Components WoT System . . 108
5.3.1 Technical Implementation 108
53.1.1 TheUserInterface 113
5.3.2 DISCUSSION o i ittt e e e e e e e 114
53.2.1 Possibility 114
5.3.2.2 Practicality 114
5.3.2.3 UserAcceptance 115
HeuristicAnalysis 115
1) Visibility of system status 115
2) Match between system and therealworld 115
3) User control and freedom 116
4) Consistency and standards 116
5) Errorprevention, 116
6) Recognition rather thanrecall 117
7) Flexibility and efficiencyofuse 117
8) Aesthetic and minimalistdesign 117
9) Help users recognize, diagnose, and recover from errors . . 118
10) Help and documentation. 118

5.4 Experiment 4: Assessing Developer Acceptability of a WoT System: Designing
CSSforan Environmento 119
5.4.1 ParticipantBreakdown 120
54.2 StudyStructure e 122
5.4.3 Part1: LearningtheApproach 122
54.3.1 Task1l. e 123
54.3.2 Task2. e 123
5433 Task3. e 124
54.3.4 Task4. e 124
5435 Results 125
5.4.4 Part 2: Understanding Participants’ Perception 128

54.4.1 Results e 129

CONTENTS ix

5.4.5 Part 3: Assessing the Acceptability 131

545.1 Results 132

54.6 Bias e e 134

6 Discussion 135

6.1 HavetheAimsBeenMet? 135
6.1.1 Aim 1: To treat IoT devices as we do the elements of a Web document by

representing them withinaDOM 135

6.1.2 Aim 2: To build a system for controlling and monitoring IoT environ-
ments using only browser technology, ideally with CSS and JavaScript. . 136

6.1.3 Aim 3: To produce an approach which is acceptable to existing Web de-
velopers that could allow them to easily transition into WoT develop-

ment, thereby following existing best practice for Web development . . . 138

6.2 Benefitsof ThisApproach 139
6.2.1 Zero-knowledge Environments, 139
6.2.2 Integration with Web Documents 140
6.2.3 Style Sheets for Environments 141

6.3 Issues With ThisApproach. 141
6.3.1 Taxonomies 141
6.3.2 Functionality and Permissions 142
6.3.3 IndustrySupport e 142
6.3.4 Why Not Just Use JSON Instead of CSS? 143

6.4 Issues That Have Not Been Directly Addressed 144
6.4.1 Security. e 144
6.4.2 Scalability 144

6.5 LimitationsoftheResearch, 145
6.6 Relationshipsto Other IoT Systems 146
6.7 TheImportanceof ThisResearch. 147
7 Conclusions and Future Work 149
7.1 Applications e e 149
7.1.1 HybridDocuments 149
712 Themes. e 150
7.1.3 ComposedDevices 152
7.1.4 PhysicalSpaces 154
7.1.4.1 SharedSpaces. 154

7.1.4.2 Multi-purposeSpaces 155

7.1.4.3 DynamiclInventories 156

7.2 EXIEnSIONS i it e e e e e e e 157
7.2.1 Integration with Existing Frameworksand Tools 157
7.22 PervasiveComputing. 157
7.2.3 Distributed DOMs 158
7.2.4 Multiple Concurrent DOMS ittt 158
725 MediaQueries e e e e 159
7.2.6 Abstracting Away From Classes and Properties Using the Semantic Web 159
7.2.7 Accessibility 160
7.2.8 Technologyvs. HumanFactors 160

7.3 Problems 161

CONTENTS

7.3.1 CSSasaStoreofState
7.3.2 CSS,the DOM, and Security
7.3.3 Physical Limitations of Devices
7.3.4 Duplication of Digital Twins.
7.35 Responses
7.3.6 Languages
7.3.7 Openvs Closed Property Taxonomies
74 FinalThoughts

AppendixA Experiment 2: Message Schemas
Appendix B Experiment 4: Participant Scenes
Appendix C Experiment 4: Participant Scene Descriptions

References

167

173

183

227

List of Figures

2.1 A schematic of the ARPANET in late 1973, from DARPAs 1978 report. 6
2.2 Aschematic of the ARPANET in 1977, from DARPA’s 1978 report. 7
2.3 Communication types as used within the Internetand IoT. 8
2.4 Asking someone to look up some information using the Internet. 8
2.5 Table 7 taken from Hdkon Wium Lie’s PhD thesis. 15
2.6 The first webcam, in the computer lab at the University of Cambridge. 21
2.7 AQRcodeonabillboard., 31
2.8 AQRcodeinamusSeum. i it it ittt e e e e e 31
2.9 Node-RED’s visual programming interface. 35
2.10 Thescopeof Matter. 40
2.11 Examples of skeuomorphicdesign. 44
2.12 An example of CSS being used in a non-document domain, from Hakon Wium

Lie’s PhD Future Work chapter. 47
2.13 Captures from the video of the ‘Let there be light’ presentation demonstrating

the utility of CSS and SCSS to control stagelights. 48
3.1 Situations Current 1 (C1), Current 2 (C2), Proposed 1 (P1) and Proposed 2 (P2),

in which a user presses a button which then acts upon adevice. 54
4.1 AlistofloTdevices.. 72
4.2 A hierarchy of IoT devices with a single virtual music system element. 73
4.3 A<div>elementlinkedtoanloTdevice. 74
4.4 Two examples of bespoke elements, an XML element (top), and an HTML Cus-

tom Element (bottom). e e e e e e 74
4.5 An example of referencing data for an IoT deviceinthe DOM.. 74
5.1 A ‘src’ attribute on an image element, which shows the location of them image

tobedisplayed. 78
5.2 Adeviceelementwithstate., 78
5.3 An example XML tree of IoT devices, with state represented using attributes. . . 79
5.4 Settingthestateonjusttheparent. 80
5.5 Setting the state on the parentand all children. 80
5.6 Firefox developer tools showing a folded DOMtree.. 82
5.7 A comparison of attributesandclasses. 86
5.8 Thearchitectureofthehub. 89
5.9 TheWebinterface. 92
5.10 The Web interface’s debuggingpage. 93
5.11 A sequence diagram of the key features of the clientlibrary. 95

5.12 A plan view of the climate control system. 97

xii LIST OF FIGURES
5.13 Example messages. e e 99
5.14 The IoT environment, represented usingthe DOM. 100
5.15 A hub forwarding messages tootherhubs. 102
5.16 The architecture of a complete system, with the implemented part indicated. . 109
5.17 An example DOM using Web Components showing a basic kitchen. 110
5.18 A simplified sequence diagram showing a custom CSS property changing as a

resultofaclasschange. 111
5.19 The user interface of Experiments3and4. 113

6.1 AJavaScript object linked to a <div> element (top), vs. a Web Component (bot-
TOIM). . . e o e e e e e e e e 137
6.2 A]JSONrepresentationofafirealarm. 143

7.1 Example style sheets for different scenarios. 151

xiii

List of Tables

3.1

5.1
5.2
5.3
5.4

A comparison of key events in the Internet and Web with the IoT and WoT. . . . 59
Results from all 61 participants who beganthestudy. 121
Results of the 22 participants that completed the entire study. 121
Results from all participants who completed atleastonetask. 126

Results from participants who completed all four tasks.

Declaration of Authorship

I declare that this thesis and the work presented in it is my own and has been generated by

me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree at this

University;

2. Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated;
3. Where I have consulted the published work of others, this is always clearly attributed;

4. Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;
5. Thave acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published as: A. Owen and K. Martinez, “A dynamic
hierarchical approach to modelling and orchestrating the web of things using the
DOM, CSS and javascript,” in CHI EA "19: Extended Abstracts of the 2019 CHI

Conference on Human Factors in Computing Systems. ACM, May 2019.

Signed: Date:

xvii

Acknowledgements

I wish to thank my lead supervisor Kirk Martinez for being persistently supportive of my
work and for being on my side through the personal challenges I overcame during the
course of this project. His positivity and optimism gave me hope when I was less than
hopeful, and the many chats we had gave me a wealth of knowledge about the field. I would
also like to express my appreciation for my second supervisor, Erich Graf, who helped me to

find the direction I wanted to take during the initial stages of my course.

Additionally, the members of the faculty postgraduate office helped more than they likely
realised, by providing breathing space and navigating the university system when I was not
able to.

My study would not have been possible without the help of the many participants who gave
up their valuable time for the slim chance of winning a voucher. Their combined hours of

work gave validity and context to my own.

I would also like to express my gratitude for the support given by Eva, Sami and Spencer at
various times throughout my project. It would have been a different and far less enjoyable

experience without them.

Finally, thank you to my parents, for supporting my interest in computers both financially
and with their time and patience. As well as to my Grandad, for showing me how to program

in BASIC for the first time, which is one of my earliest memories.

With the oversight of my main supervisor, editorial advice has been sought. No changes of

intellectual content were made as a result of this advice.

Xix

Abbreviations

DSSSL

FOSI

HTML

IEEE

IFTTT

IIoT

IoT

IOTML
I10TSS

IP

IPv4

IPv6

JS

JSON

MAC Address
MQTT

NAT

OSI Model
Project CHIP

IPv6 over Low-Power Wireless Personal Area Networks
Application Programming Interface

Address Resolution Protocol

American Standard Code for Information Interchange
Amazon Web Services

Arbitrary XML Rendering

Cascading HTML Style Sheets

Create, Read, Update, Delete

Cascading Style Sheets

Distributed Control System

Department of Defense

Document Object Model

Don’t Repeat Yourself

Document Style Semantics and Specification Language
Formatting Output Specification Instance
HyperText Markup Language

The Institute of Electrical and Electronics Engineers
If This Then That

Industrial IoT

Internet of Things

IoT Markup Language

IoT Style Sheets

Internet Protocol

Internet Protocol version 4

Internet Protocol version 6

JavaScript

JavaScript Object Notation

Media Access Control Address

Message Queuing Telemetry Transport

Network Address Translation

Open Standards Interconnect Model

Project Connected Home over IP

XX LIST OF TABLES

PWP Pei Wei’s Proposal

QR Code Quick Response Code

RRP Robert Raisch’s Proposal

SCADA Supervisory Control And Data Acquisition
SHP Steve Heaney’s Proposal

SMTP Simple Mail Transfer Protocol

TCP Transmission Control Protocol

TD Thing Description

uUDP User Datagram Protocol

Ul User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

Ux User Experience

W3C World Wide Web Consortium

WHATWG Web Hypertext Application Technology Working Group
WoT Web of Things

WoTIG WoT Interest Group

XSL Extensible Stylesheet Language

XSL-FO XSL Formatting Objects

XSLT XSL Transformations

Chapter 1

Introduction

This thesis describes the journey towards a standards-compliant approach to integrating
the Internet of Things (IoT) with the Web; the merger of these being commonly referred to
as the Web of Things (WoT). This work goes on to explore whether the approach put forth
for realising the WoT could be deemed to be both technically rational, and helpful for the
development community. What sets this thesis apart from other research and commercial
implementations is the idea that IoT devices could become an integral part of the fabric of
the Web rather than merely a service called upon by users. Such tight integration could
enable information to flow beyond the confines of the screen to become represented within
the user’s physical space, wherein their physical devices become a dynamic part of the
content they are viewing. It is hoped that this can be achieved by working within the existing
landscape of the Web and, in so doing, would result in far less resistance from the

community than a more radical approach.

The questions this thesis sets out to explore are if it is feasible to build a WoT system from
this perspective; whether it is practical and efficient; and whether the community would
embrace or reject such a system. While these questions cannot all be answered
unreservedly, they nonetheless provide a solid basis for exploring the potential of the

concepts described herein.

Three variations of a technical approach are explored, all of which centre around using
extant Web technologies to solve the relatively new problem of integrating large numbers of
IoT devices with other elements of the pre-existing infrastructure. Re-use, expansion and
evolution of existing specifications is a core aspect explaining how the Web has grown to the
size it is today and thus it is logical to explore this avenue before seeking to create a new
technology to solve this problem. When this project started there had been no previous
attempts at such a close integration between the IoT and Web (while using Web standards)

and even now, none have progressed beyond superficial implementations [1] [2] [3].

The front-end, or user-facing part, of the Web is built almost entirely upon three standards,

namely: HTML [4] (describing document structure); CSS [5] (a group of specifications

2 Chapter 1. Introduction

defining presentation); and JavaScript (an implementation of ECMAScript [6]). Together,
they allow structured data and text to be presented to the user in a functional, pleasing and
interactive manner. At the simplest level, HTML contains data and text in a
machine-readable format, while CSS determines how it is presented to the user using a
rules-based engine, and JavaScript provides a programming layer that renders the content
both dynamic and easier to navigate. Each is an evolving standard, but all have been in
mainstream use since the mid-1990s. So far these technologies have underpinned trillions
of user interactions with blogs, online retailers, information kiosks, mobile phone
applications, refrigerators and cars, inter alia. Using them for applications beyond the
confines of the documents they were originally created for is not in and of itself novel [7] [8],

although embedding physical devices within documents is entirely new.

By pushing the limits of HTML and the Document Object Model (DOM) [9], it relies on,
digital twins of IoT devices can be represented as elements within the document. These
twins and the devices they represent can be treated as having equal status, so that a
command sent to one will affect both. For example, a ‘power on’ command sent to a lamp
would be received by both the twin and device or else propagated by one to the other, such
that both change state to ‘on’. Although the state may be represented differently by each,
both hold equal precedence and, in any practical way, both are the same lamp. This enables
the placement of these digital twin elements into the hierarchical structure of the DOM,
alongside other HTML elements containing text and data. Once these physical devices are
embedded within the document, they can be manipulated in the same way as any other
element of the document, in that CSS can be applied to them, and JavaScript can
manipulate them. This thesis tells the story of arriving at this juncture, and discusses where

it could, and should, go beyond this point.

Exploring the space involved progressive steps from the genesis of the idea through to
failures and technological advancements. This line of enquiry eventually resulted in a
system that is nearly compliant with Web standards, and can control IoT environments of
nearly any size. The initial experiment was not a practical success, as the approach would
have only allowed the use of the DOM and some aspects of JavaScript; however, its
XML-based implementation proved to be the seed for the remainder of the project. While it
was abandoned early on, it is included as a background, underpinning the later
experiments. The second and third experiments grow closer to alignment with how a Web
browser manages a Web document and reveal how the project grew alongside the
development of the browsers they were based within. The second experiment is a fully
functional, yet flawed, IoT system using HTML, CSS and JavaScript; while the third is a far
less flawed, yet altogether more superficial simulation of an IoT environment that
demonstrates how far this approach could go. The system built for the third experiment
embeds IoT devices within the DOM and makes them almost indistinguishable from other

elements therein, and thus serves as the most successful aspect of this project.

Measurement of success is not trivial, as there are no systems to directly compare against.
Most IoT systems are either proprietary commercial ventures with closed source; open
source integrations between closed platforms; or academic systems designed to
demonstrate a particular feature or effect. The systems built for this project fall into the
latter category and, therefore, any comparisons of performance or completeness would be
unfavourable and thus ultimately pointless. Instead, success was measured based on the
parameters of possibility, practicality and acceptability. Possibility, which addresses whether
an idea can be built into a functional system, is almost always positive, yet comes with
nuances. Practicality and acceptability are much more complex and frequently only
addressed via subjective measurements. Practicality attempts to answer the question of
whether an idea should be used, while acceptability extends this by investigating whether it
would be a sufficiently good solution for those who would use it. The fourth experiment
delves deepest into this last element by engaging the community with testing and direct
feedback.

Overall, the results were very positive. The first experiment was abandoned because it was
ultimately impractical, while the second and third were both deemed practical solutions to
differing degrees. The system of the third experiment was the only one that was considered
viable for testing by those other than the author and this was done so in the fourth
experiment. The fourth experiment received a great deal of constructive positive feedback
and suggestions, albeit with the caveat that the participants were pre-filtered by both
selection bias and survivorship bias. However, the results suggest that a significant
proportion of Web developers, a group suggested to be around 24 million globally [10],
would be able to use the system and would find it intuitive and enjoyable.

Community acceptance is of substantial importance as developers are under great pressure
to keep up with the pace of Web technology which entails constantly learning new
frameworks, tools, and applications (and new iterations of each). Current development for
the IoT is a fragmented landscape of proprietary systems and APIs, and even the newer
approaches of Matter [11] and the W3C WoT Group [12] are complex and require learning
new mental models and syntaxes. If [oT development on the Web (WoT development) were
a progression from Web development, this would mean that developers could build on what
they already know, using their pre-existing knowledge to occupy the new niche of the WoT.
Thus they would not need to treat it as a new technology and it would not require them to
learn new concepts from scratch. This could mean faster adoption of the WoT or else a

decreased mental burden for those choosing to adopt it.

To provide context to this problem, this thesis first explores the background to the WoT
within the literature review. This addresses the history and evolution of the Internet and the
Web and compares their development with that of the IoT and WoT. These two progressions
follow many of the same milestones, which may indicate that a similar approach to
problem-solving can be applied to both. Once the background is established, the theoretical

framework chapter outlines the potential use of Web standards to resolve issues in the WoT,

4 Chapter 1. Introduction

defines the niche that this thesis intends to fill, and lists the aims it will explore. This chapter
also describes the approaches for determining the possibility, practicality and acceptance of

each experiment.

The subsequent chapter details the four experiments carried out in pursuit of a WoT system
based on Web standards. The experiments are progressive and each builds heavily on the

previous one. Each experiment is self-contained and, within it, are the methodology, results,
and discussion. The ensuing discussion chapter draws these four experiments together and

looks into the implications of what was achieved and conveyed.

The conclusions chapter takes a higher perspective of what has been produced and
discovered and examines how it sits within the wider context of the Web, including the
social and technical structures it affects. This final chapter concludes by addressing future
work which could be carried out using the ideas presented in this thesis. It provides a list of
potential applications for this implementation of the WoT alongside other technical and

social considerations that the author feels should be explored.

Chapter 2

Literature Review

2.1 The Internet

The precursor to the modern Internet was the Advanced Research Projects Agency Network,
or ARPANET. It was a long-distance network with only a few nodes located within those
organisations which assisted in its development. When the ARPANET was first built in 1969
[13], it was simply a connection between the UCLA and SRI International at Menlo Park,
California. Later that same year, UCSB and UTAH were added to the network. In 1970, a
connection was extended from the west coast to the east coast of the USA, linking MIT, BBN
and Harvard. By 1973 the network had grown to around 40 nodes at different locations,
integrating approximately 45 computers. These computers were room-filling mainframes
and would be almost unrecognisable to today’s average user. Also in mid-1973, a connection
was made to University College London via satellite link, as seen in Figure 2.1, establishing it
as an international network for the first time. Over the first few years, the network continued
to grow, serving as a bridge between many smaller academic and military networks and, by
1977, many other institutions had been incorporated, as seen in Figure 2.2. The growth of
the ARPANET was steady and rapid and it was very soon impossible to graph the entire
network due to its size, rate of expansion, and shifting topology. Other smaller networks rose
alongside the ARPANET and these were all slowly linked together, eventually forming one
larger network which has since become what we now call the Internet. Today the Internet is
a planet-wide network connecting billions of devices and, as such, has become the basis of
almost all modern communication. Connected devices vary from warehouse filling
supercomputers to smartphones as well as smaller embedded computers inside other

objects.

The core of the Internet is machine-to-machine communication and the continued
existence of the Internet relies on devices being able to communicate with one another
using a shared language or, at the very least, a set of languages that can be translated

automatically. This interoperability is largely upheld by shared standards and protocols

6 Chapter 2. Literature Review

ARPA NETWORK, LOGICAL MAP, SEPTEMBER 1973

FOP-I0 FOP-I]
P- . x
L8 LA TLL IS POP-G m{: ORI,
316 TIP WP IMP

[IMP] il il WMIT - IPE

: 316
@ H-6180 s
TIP [(PDP10)
oo

CASE

WL

TiP
FOCE, CARNEGIE

aie P10 IMP Ay HARVARE

MAWAN AMES usc
TIP TP [—{3500ad @ IMP @

s0C FOP-10
BEL VIR ABEROEEN

95'5 e IMP

STANFORD

so4c VORSAR
PDP-10 JMEl

FIGURE 2.1: A schematic of the ARPANET in late 1973, from DARPA’s 1978 report [13].

such as the Internet Protocol Suite [14], which was proposed in 1974 [15] to support the
ARPANET. This collection of protocols allows individual devices to find paths to one another
and to send messages in an agreed format which can be reconstructed and read upon
arrival. The Internet Protocol Suite is arranged into a series of layers which each perform

functions at a different levels of abstraction.

The Internet Protocol Suite

The constituents of the Internet Protocol Suite are Transmission Control Protocol
(TCP), which handles ordering and error checking of streams of packets, and In-
ternet Protocol (IP), collectively called TCP/IP [16] which routes packets from their
source to destination based the packets’ headers and unique addresses. Alterna-
tively to TCP, devices can use UDP (User Datagram Protocol) which is a simpler and

sometimes faster protocol, but one that lacks an error checking capability.

IPv4 has been prevalent for much of the life of the Internet. However, the scale of the
connections and the need for direct connectivity to devices (rather than hiding them
behind routers) led to the development and implementation of IPv6. It was first
proposed in 1998 [17] and subsequently revised in 2017 [18]. IPv6 is a key enabler
for the IoT as the IoT brings many more devices into the network, and IPv6 has a

2.1. The Internet 7

ARPANET LOGICAL MAP, MARCH 1977

- DATA - " =
% . [For11] [Forn) ouP [Por-1] [Dec-2050] [PLURIBUS]
6 B B FOP-1
uorrsv'r cbceecdl e UTAH WLLINOIS wearg (EDF7I0 FDP-10 L) A .
O ; WITE 'ccA RCCS] ree
Gzl w oI L T
HAWAL] amEsis) PO W 44 [POP-11 |
POP-11 N
. 7 .mg 5 '] q ——m%%c [PDP-10 |
Foen] {FoP 1 |xenox [ECLIPSE] [DEC-1060]
Forii] o {axc] Ee0-50.7 318 L onso [CHCEE0D
[5T) o S—— uncown oo 30 e
: NOVA-B00 . . LY noc — .
= H-6180) Bro/ica) oEC COCT600
STANFORD SuMEx ¥ YMSHARE e -6160] PP D COCBE00
O " VARIAN 7 2 = = =
/ 5COTT [5PE-41] PDP-11
POPI0 HARVAR| T FDP- T
POP-1 YU
FOP-1 Gwe POP -1
PP IO EFs-a1) 565500 (ece-] Por-15 GRIVAC-iIGE
[Pop-1TN]) PDP- 10 POP_11
UNIVAC 1108 Qpoce RUTGERS TEoFon
H7I6 BELVOIR OF -
| [ror-n PATLEN
PLI use
Forrg e o
[FPS aP-1208)
_rorn | 3701581

- { xGP_| [hpOP-1 | [="For-9]
= 151 53{POP-10) 3607195
£} 5, GEC 4080
Isi22 AFWL TEXAS GUNTER EGLIN]] PENTAGON | 1ot 470
|_poP-11 CDCEa00
OIMP A PLURIBUS IMP . CDC6600] | BSSCO | €OC 6600
DO TIP ~w SATELLITE GIRCUIT . COCTE00

(PLEASE NOTE THAT WHILE THIS MAP SHOWS THE HOST POPULATION OF THE NETWORK ACCORDING TO THE BEST
INFORMATION OBTAINABLE,NO CLAIM CAN BE MADE FOR (TS ACCURACY }

MAMES SHOWN ARE IMP NAMES, NOT INECESSARILY} HOST NAMES

FIGURE 2.2: A schematic of the ARPANET in 1977, from DARPA’s 1978 report [13].

much larger address space than IPv4. Without it, very large-scale IoT deployments

would be difficult or impossible.

However, machines are not the only part of the Internet. While there is a lot of
machine-to-machine communication, there is a very large human component of the
Internet, creating a highly complex sociotechnical machine. This is particularly evident as
we move towards the realisation of the IoT [19]. People use the Internet to communicate
indirectly with one another, but also provide data and close interaction loops between
systems that have no programmatic link. Given the Internet is formed of both machines and
people, at the lowest level of complexity, interactions can come in three formats: between
human and machine, machine and machine, and human-to-human communication, as

seen in Figure 2.3.

Human-to-human communication can arise directly within this social machine, for
example by asking someone to look up some information as in Figure 2.4. It can also emerge
indirectly in a chain of interaction types comprising of human-to-machine communication,
followed by machine-to-machine, and ending with machine-to-human. Such
communication can also manifest in both real-time or delayed (asynchronous) forms. Voice
and video messaging can be almost real-time, although some services allow for messages to

be recorded and picked up later. Text chat can be real-time or asynchronous depending on

8 Chapter 2. Literature Review

S
7
MACHINE MACHINE
S
7
HUMAM MACHINE
S
7
MACHINE HUMAM
S S
7 7
HUMAM MACHINE HUMAM
S S
7 7
MACHINE HUMAM MACHINE

FIGURE 2.3: Communication types as used within the Internet and IoT.

whether all parties are online at the same time. Many forms of communication can involve
two parties, yet also allow for many more to join. It can be multi-directional, such as in a
conference call, or unidirectional, as a broadcast message. Despite having three relatively

simple building blocks, the machine as a whole can become very complex.

N4
A\ 4

N
N

HUMAM HUMAM MACHINE

FIGURE 2.4: Asking someone to look up some information using the Internet.

Human-to-machine and machine-to-human communication will often be concurrent as
the human will anticipate some form of feedback from the machine they have commanded
or queried. However, they can be seen alone, such as in an automated, scheduled message
from a weather service to a user. Such communication can be either explicit or implicit. An

example of explicit communication would be a user clicking a button to request traffic

2.2. The Web 9

information, but they could also receive this information implicitly by arriving at a certain
location. Such implicit communication blurs the line with machine-to-machine
communication as, while the user would have given permission for their smartphone to
track their location and send it to a traffic server, they have not actually sent that location
message themselves, rather, they have given agency to their smartphone and delegated a
task.

Machine-to-machine communication is much more common on the Internet, as every
indirect communication that arises between humans also involves many messages
transferred between machines. In the case of audio and video, this could amount to many
thousands of messages per second. There are also autonomous machines communicating
with other autonomous machines, for instance a rain sensor sending messages to a window
to let it know it needs to close; or a robot on a production line sending alerts when it needs

maintenance.

Various forms of communication are extremely important in a world where there are
growing numbers of computers embedded within everyday objects causing us to
increasingly delegate agency to automated systems. The Internet and the Web are the basis
for taking this agency beyond the confines of the device with which we interact, further
delegating it to remote servers or actuating remote systems. The needs and desires for
people to do this have driven many technical advances surrounding User Experience (UX)
and Human Factors research. Currently, the Web is the user-facing part of many of these

interactions, which may imply that the WoT could become another aspect of this interface.

2.2 The Web

2.2.1 Precursors to the Web

The concept of hypertext has a history that dates as far back as “The Garden of Forking
Paths”, a story that was written in 1941 by Jorge Luis Borges [20] and the Memex machine
envisioned by Vannevar Bush in 1945 [21]. The first hypertext computer system was Project
Xanadu [22] which was created by Ted Nelson in 1960. Nelson also coined the terms
‘hypertext’ and ‘hypermedia’ in or before 1965 [23]. These, and other systems, all served as

inspiration for the Web.

2.2.2 The World Wide Web

The World Wide Web is a layer on top of the Internet that was predominantly created for
asynchronous, indirect human-to-human communication. The concept of the Web was
initially put forward by Tim Berners-Lee while working at CERN in 1989 [24], where he

created an internal system for sharing knowledge based on hypertext [25]. However, the

10 Chapter 2. Literature Review

limits of the Web have extended far beyond this initial idea and, in modern systems, many
machines use Web-based technologies to communicate with one another, both as a part of

the human-to-human chain, and completely separate from it.

The Web, when used by a person, is primarily engaged with via a Web browser such as
Google Chrome [26], Microsoft Edge [27], Mozilla Firefox [28], Opera [29], or a task-specific
browser, such as a messaging application or social media application. Regardless of their
specificity, an item of Web software must have an implicit understanding of the protocols
necessary to communicate with Web servers so that it can both send requests to the server
and decode and present the responses it receives. This, in turn, implies that it must also be
able to use the Internet Protocol Suite upon which the Web is constructed. The key Web
protocols include HTTP and FTP, while the technologies required to decode the data include
parsers for HTML, XML, CSS and JavaScript. HTML thus provides the structure of the data
and CSS the presentation, while JavaScript allows for interactivity between the user and the
data. HTML and the document structure of the Web are foundational to this thesis. A Web
page stores information as a hierarchy of nodes containing text and images and, more
recently, videos, embedded applications and much more. This structure came to be
standardised as the Document Object Model, or DOM [9].

Read/Write vs. Read-Only

Initially, the Web was designed to be both read and write [25]. Web pages allowed
users to edit the page’s content and replace what was already there. This was later
changed so that users who did not control the server could only read a page’s con-
tent. It was not until the era of Wikipedia [30] and Web 2.0 in the early 2000s that
this concept returned, and then it usually came with strict permissions structures to
prevent misuse. Wikipedia initially allowed any user to edit a page, but after several
disingenuous edits which harmed the site’s reputation for accuracy, a permissions
and approval process was put in place. This was accompanied by a hierarchy of
editors who monitor high profile pages. In a 2012 study commissioned by Wiki-
media (Wikipedia’s parent company), an independent review found its accuracy to
be extremely high [31]. While the consensus was that it is not suitable for citing in
most academic contexts, it has since achieved a level where it is generally equiva-
lent to any other tertiary source and is thereby useful for referencing concepts and
definitions. This marks a milestone for the read/write Web and demonstrates that

collaboration can lead to a positive outcome.

The IoT follows a similar read-only and read/write structure to the modern Web,
excepting that devices join humans as actors within the system in that they can read
from, or write to databases and interfaces, provided they have been explicitly or

implicitly granted permission. Devices and humans can also write new states to

2.2. The Web 11

devices, such as updating the volume of a speaker. In this way, parallels can be

drawn between a document on the Web and a device within the IoT/WoT.

The Web is defined by an ever-changing group of specifications that have grown both in
number and complexity, with new features constantly added by its guardians, the World
Wide Web Consortium (W3C). One particularly interesting and relevant recent development
is that of Web Components. This is a group of four specifications which combine to allow
the user to define a new element of a Web page with a specific function, much like a <div>
or <header>, but with a purpose as defined by the developer. These specifications are
delineated as Custom Elements [32]; the Shadow DOM [33]; the HTML Template Element
[34]; and ES Modules [35]. These four combined enable Web Components to function and,
while it is not self-contained, for brevity they will henceforth collectively be referred to as
the Web Components specification. This specification allows the developer to create new
elements by creating a new type of DOM object that can be inserted into the DOM tree and
processed at runtime in the same way as an HTML element. The aim of the specification is
to allow for easy re-use of complex custom components, much like Angular [36], React [37]
or Vue [38] have done. For example, a developer may create a component for a form, a
button, or a video player. However, the specification is deliberately unconstrained and this
new element could semantically represent anything, including a digital twin for a physical

device, a concept that will be explored in much more detail from Chapter 3 onwards.

In addition to the W3C, the Web Hypertext Application Technology Working Group
(WHATWG) is another group which develops standards for HTML. They were formed after a
W3C workshop in 2004 [39] as an alternative forum for discussion as to how to progress the
language after growing frustration that the W3C was not paying due attention to it. The
founding members were Apple, Mozilla and Opera, although it was intended to be an open
community, given that anyone can submit a proposal to their GitHub repositories [40]
which hold the standards. The membership and ideas of the two groups often overlap, with
the WHATWG being more commercially-focused than the W3C.

2.2.2.1 HTML and the DOM

HTML contains the structure of a Web page in the form of tags that are nested within one
another, each representing an element within the DOM tree. It was typically used to mirror
paper documents at the origin of the Web, but has since expanded to include semantically
marked up audio, video, code in various languages, and many others. Each element has a
semantic meaning. For example, this may include a paragraph, heading, or article. The
DOM is the model used to hold the data which can be represented in HTML format [4]. It is
a tree structure wherein each node is an HTML element and each is either a child of the root

node or else of another HTML element.

12 Chapter 2. Literature Review

HTML elements can have attributes that describe the state of the element, such as
disabled, type or value, or provide implicit links to other resources, such as the location
of a given CSS file, media file, or script. While these are fixed for the core HTML elements,
Custom Elements and XML elements are not restricted to a list of allowed attributes. This

approach of linking state to HTML elements is used extensively in Experiment 1.

SGML, XML and XHTML

SGML [41] is a meta language designed to define markup languages, including HTML
and XML. Both HTML and XML were intended to be implementations of SGML de-
spite HTML being created in parallel to SGML.

XML [42] was created as a more generic version of HTML [43] with the ability to add
arbitrary tag names and attributes. It is mostly used to represent data in a similar
way to JSON. XML parsers tend to be deliberately less fault-tolerant as a method to
encourage better-formed data. Rather than throwing an error and continuing, they
will usually fail the entire process. A key difference between XML and HTML is that

every tag must be closed.

XHTML [44] is a version of HTML represented as XML. The differences to HTML
are slight, and mostly around including closing tags, but the result is a markup that
can be rendered as HTML but processed as XML. A key benefit the creators saw was
modularisation [45], which would have allowed sections of reusable XHTML to be
defined with XML schemas. However, this never materialised as a need within the
development community, especially after the advent of component-based frame-

works.

While the DOM structures data, its presentation to the user and interaction are
administered by CSS and JavaScript, respectively. These handle how the contents and state
of the data are presented to the user and enable the user to alter the state locally, as well as
to communicate alterations to the server if required. CSS provides set-based rules which can
determine how the DOM is displayed, but beyond that, it contains a language for describing
the state of nodes in a tree. JavaScript, amongst its many other features, offers the potential
to integrate other data sources with the data in the DOM to present a unified experience, or
else to produced derived data. Ultimately, it can build a DOM on the fly, which is not
directly sourced from an HTML file, yet can still be represented as HTML due to the two-way
relationship arising between the DOM and HTML.

2.2. The Web 13

2.2.2.2 CSS

For a time, the Web simply comprised text and basic images wherein each page was treated
as a digital data store. It was not until later that presentation of that data started to become
more important. The direct precursor to CSS, CHSS was first proposed in 1994 by Hakon
Wium Lie [46] and was one of several attempts to standardise a method for describing the
layout and style of a document. Initially, it aimed to replicate typeset documents in a digital
format but, as the Web has grown exponentially, it has since expanded to contain much
more. While it originally implemented static designs, it now contains animations and

transitions, within an ever-growing feature set.

CSS is designed to work in conjunction with HTML and uses unique identifiers known as ‘id’
properties, and classes, defined in terms of ‘class’ properties, attached to HTML elements.
Each element can have multiple classes but only one identifier, and an identifier should be
unique within a document. This allows CSS to define presentation rules that apply to
individual nodes or sets of nodes, thereby allowing union, intersection and complement

operations to be applied with relative ease.

CSS and Set Theory

CSS is designed to select both individual elements and sets of elements. It has a

variety of operators that allow for coverage of basic set theory concepts.

An individual element can be selected with the # operator. For example, #switch

selects an element with an id of ‘switch’ (e.g. <button id="switch"></button>).

An entire class of elements can be selected with the . operator. For example, . text
selects all elements with a class of ‘text’ (e.g. <p class="text other-class">
</p>).

Union:

A union can be described using the , operator: Thus .button, .carousel would
select all elements with a class of ‘button’ or a class of ‘carousel’, including those that

have both: button U carousel, or logical OR.
Intersection:

An intersection can be achieved by not leaving a space between selectors: Thus
.carousel . images would select those elements which have both a class of ‘carousel’

and ‘images’: carousel N images, a logical AND.

14 Chapter 2. Literature Review

Absolute Complement:

The absolute complement is found with the :not () operator, where
:not (.banner) selects all elements except those with a class of ‘banner’, a logical
NOT.

Relative Complement/Set Difference:

The relative complement can be selected using the :not () selector.
.carousel:not (.images) would select elements which have a class of ‘carousel’
but not those that have a class of ‘images’. If an element has both, it is also excluded:

carousel \ images, which does not have an equivalent logical operator.
Symmetric Difference/Disjunctive Union:

The symmetric difference also uses the :not () selector in a similar way to the rela-
tive complement: .carousel:not(.images), .images:not(.carousel) isa lit-
tle verbose but achieves the goal of selecting all elements that have either the class

of ‘carousel’ or ‘images’, but not both: carousel A images, a logical XOR.

The CSS Cascade

Cascading is a feature of CSS that sets it apart from many other approaches. The
cascade defines the order that rules are applied to the document, based upon a
pre-determined hierarchy of the importance of these rules. The implementation
of which allows multiple style sheets to be imported and combined without earlier
imports being overwritten by later ones. While the order in which they are imported
into the document provides a reconciliation for two equally important rules, rela-
tive importance based on rule type is far more critical. The CSS cascade specifica-
tion [47] lays out the precedence for these rules and includes deciders such as rule

specificity and source.

2.2.2.3 Precursors and Parallels to Web-based Style Sheets

The following two sections (see also Section 2.2.2.4) are heavily influenced by Hakon Wium
Lie’s PhD [7], as it is useful as both a primary and secondary source, and is laid out in an
appropriate structure for this thesis. The standards and proposals outlined in this section
are those which arose between the late 1980s and mid-1990s and had an influence on both
the creation and ongoing development of CSS. There were many proposals for how to style

documents and, while many contributed directly or indirectly to the final CSS concept as

2.2. The Web 15

developed by Hakon Wium Lie and Bert Bos, some were also developed in parallel and
influenced the standard much later on. CSS was adopted by the W3C as the preferred
approach for HTML and, as a result, has the largest adoption of all those in the group of style
sheet specifications.

FOSI Formatting Output Specification Instance (FOSI) [48] was a style sheet language
initially created by the US Department of Defense (DoD) and posted to the www-talk
mailing list and comp.infosystems.www newsgroup. It was written for SGML and was later
adapted specifically for XML. It is itself written in SGML, similarly to Document Style
Semantics and Specification Language (DSSSL), and was only ever intended as an interim
solution [49] which was designed to fill a need while DSSSL was being developed. It was
used in the period between the codification of SGML by the ISO in 1987 and the release of
DSSSL. However, it was never widely used outside of the DoD, nor was it intended to be, yet

it was an important step in the progress of styling structured data.

Mosaic: RRP RRP was a proposal by Robert Raisch (of O’Reilly) and subsequently referred
to by those involved as Robert Raisch’s Proposal. It was an RFC made to the www-talk
mailing list for “an easily parsable format to deliver stylistic information along with Web
documents” [50]. Up until this point, browsers presented the content in the way they
thought best, which often led to inconsistent results. This was not helped by the mix of
text-based and graphical browsers at the time. The RFC goes on to iterate and reiterate that
the “stylistic information” should be considered only as a suggestion, and not as a “required

behaviour”, an ethos that is contrary to modern CSS.

The syntax is different from CSS and was designed to be very compact, as connection speeds
were slow and GZIP [51] was not yet available. Specifically, this choice aimed to “minimize
the time required to retrieve and interpret” the style. The specification lacks many features
of CSS, yet the concepts are superficially similar. It used the @ symbol to select elements by
their name, but did not allow for selection based on attributes or allow concurrent use of
selectors in a single rule. It also had a set of 35 properties, grouped into eight categories, as

shown in Figure 2.5 from Hakon Wium Lie’s PhD thesis [7].

Category |Properties

font (fo) family (fa), spacing (sp), size (si), weight (we), slant (sl), foreground (fo), background (ba), line (li), number (nu), longname (lo)
justify (ju) |style (st), hyphen (hy), kern (ke)

column (co) |num (nu), width (wi)

break (br) |style (st), object (ob)

mark (ma) |object (ob), preceed (pr), before (be), replace (re), succeed (su), after (af)

vert (ve) before (be), after (af), spacing (le), offset (of)

indent (in) |left (le), right (ri), first (fi)

link (li) location (lo), mark (ma), line (li), number (nu), before (be), after (af), hide (hi)

FIGURE 2.5: Table 7 taken from Hakon Wium Lie’s PhD thesis [7].

16 Chapter 2. Literature Review

For example, @H1 fo(si=32,we=bo) would set the font (fo) for an H1 element to a size of

32pt (si=32) and give it a bold weighting (we=bo), which has the equivalent in CSS of:

h1 {
font-size: 32pt;
font-weight: bold;

RRP was limited in that it did not have the cascading features of CSS or allow for multiple
style sheets in a single document. While Marc Andreessen was aware of RRP [52], it was
never added to Mosiac and he instead opted to use presentational HTML. This is where the
HTML defines the appearance directly using tags such as <BLINK> and <CENTER>. Many saw
this as a backward step in the process of developing standards and, in 1997, the W3C agreed,
publishing a recommendation that style sheets be used over presentational HTML [53].
However, it was only much later that the last remnants of presentational HTML were
removed by the HTML5 standard [4] in favour of making HTML more semantically

meaningful.

ViolaWWW: PWP Pei Wei’s Proposal (PWP) was made on the same www-talk mailing list
as RRP. It was designed for the ViolaWWW browser which Pei Wei — also of O’Reilly — created
and maintained, and was loosely based on RRP with some significant differences. It used
parentheses to allow for multi-level selectors (e.g. H1 within BODY). This allowed for basic
AND and OR functionality, using separate rules at the same level of parentheses for OR and
commas for AND. PWP did not abbreviate properties and instead used full names such as
fontSize and fontFamily which are very similar to CSS’s font-size and font-family
and otherwise identical to the JavaScript style object of an HTML element which uses camel

case. PWP was however not implemented in other browsers and quickly fell out of use.

Steve Heaney’s Proposal (SHP) Steve Heaney would appear to have taken objection to
PWP as he almost immediately published his own outline [54] for re-using FOSI for style
sheets and SGML notation. He felt that it was better to re-use than to create another
standard, a sentiment that has been echoed many times in Computer Science. Ultimately,

the outline never progressed to a specification as no one took up the task of writing it.

Cascading HTML Style Sheets (CHSS) CHSS [46] is the original language created by
Hékon Wium Lie, one that would later evolve into CSS [55]. It was the first to introduce the
idea of a cascade, even though the style sheet hierarchy was very different. In this proposal,
the suggestion was that users or developers could specify how strong a preference a given

style sheet would receive and this would, in turn, decide which rules would be prioritised

2.2. The Web 17

and to what degree. The syntax of the examples presented in his thesis is very different from
that of CSS, and CHSS offers conditional statements that CSS deliberately does not.

DSSSL DSSSL [56] was a language first published as a draft in 1994 and was used to style
SGML-compatible documents. It used a subset of Scheme [57] to manipulate SGML
documents, altering both their structure and appearance. This is beyond the capabilities of
CSS and especially what CSS could do at the time (which was only to alter the appearance of
data). Modern CSS pre-processors such as SCSS and LESS, discussed later in this chapter,
have adopted some of the capabilities of FOSI and DSSSL as they can perform basic
programmatic functions. Ultimately, DSSSL fell out of popularity as SGML has largely been
replaced by the HTML and XML standards in modern implementations although DSSSLs
successor, XSL, continues to thrive in certain scenarios. Today, DSSSL is rarely used outside

of Linux documentation.

2.2.2.4 Modern Alternatives to CSS

XSL Extensible Stylesheet Language (XSL) is a family comprised of three parts [58];
namely: XSLT, XPath and XSL-FO. In combination, these enable customisation of the
presentation of XML documents. XSL is the only style sheet language still in widespread use
other than CSS. It is based on DSSSL and was an attempt to port that same approach to
XML. It is designed to manipulate the structure of XML documents and, as a result, is more
complex than CSS. The W3C has long recommended CSS first [59], and suggests only using
XSL if its more advanced features are required, such as transforms. This sentiment is shared
by Bert Bos (the co-creator of CSS) who said that “XSL is only an alternative at the high-end,
for advanced users” in his 2008 essay [60] concerning CSS variables. It has a place in modern
Web development although, due to its limited use cases, it would be rare to find a developer

who is proficient in it.

The Components of XSL

XSL Transformations (XSLT) allow for “transforming XML documents into other XML
documents” [61], including the manipulation and sorting of XML, and by extension
XHTML, based content.

XPath is primarily a “means of hierarchic addressing of the nodes in an XML tree”
[62]. The latest version supports JSON as well as XML.

XSL Formatting Objects (XSL-FO) are designed to help an “XSL transformation into
a tangible form for the reader or listener” [63].

18 Chapter 2. Literature Review

SASS, LESS and Pre-Processors SASS/SCSS [64], Stylus [65] and LESS [66] are style sheet
languages designed to be processed into CSS and sit at a higher level of abstraction than
CSS. They add many extra features which can reduce the length of CSS and hide repetition
from the developer, a feature which is often useful when building websites. These languages
include some features that are deliberately left out of the initial CSS specifications, including
looping, variables and ‘if” statements. Some of these features, including variables, have
since been added to CSS although in different ways to those used by the higher abstractions.
The key difference between CSS and these languages, however, is the use of nested selectors

to replace duplication of the same prefix for several consecutive selectors.

CSS-in-JS CSS-in-JSS, later renamed to JSS [67], is an approach that removes the CSS and
replaces it with a JSON-based definition of style. This is similar to how using
HTMLElement.style = {} allows for setting style on an element using only JavaScript
objects. Its key feature is that it automatically namespaces sections of CSS which allows for
identical selectors in different parts of the code, ultimately resulting in shorter selectors for
the developer to have to understand. Similar to SASS and LESS, it can compile to CSS and, in
doing so, will automatically create namespaces for the various sections of CSS to prevent

conflicts from arising.

AXR Arbitrary XML Rendering (AXR) [68] was a proposal that was made to replace HTML
and CSS with XML and HSS, respectively. HSS, an acronym that was never publicly defined,
began as a specification for a superset of CSS, yet ended up becoming a replacement that
followed many of the same paradigms and used a similar syntax. The ultimate goal was
native browser support although, initially at least, the creators had planned to offer a
browser plugin for rendering. Functionally, it offered many of the same features of LESS and
SCSS, including variables and nested selectors, but had a focus on object orientation and
allowed the derivation of properties based on how another element was rendered.

Ultimately, the idea was abandoned around 2013 due to a lack of support in the community.
Much of this was likely due to the creators’ insistence that the W3C and WHATWG were
flawed in that they were too slow and were “made up of companies fighting each other” [69],
instead advocating a grassroots movement of developers and designers. Unfortunately,
many of the perceived “companies fighting each other” were the very browser vendors
through which they intended to implement their new standard and so this conversation was
not initiated on the best footing. There were also technical issues with basing the style of
one component on another. Particularly, it could require re-rendering the page many times,
as each referenced element in a chain is settled and thus loops would be quite likely to arise
in complex designs. Overall, while AXR has not had a significant influence on the
technology of style sheets, it does serve as an important lesson that working with the

standards bodies is far more productive than challenging them.

2.2. The Web 19

2.2.2.5 The Evolution of CSS

While the progression from the original CSS standard to CSS3 was fairly linear, progress
since then has been deliberately fragmented by the working group. Due to the size of the
language, it no longer exists as a versioned progression, rather the language has been split
into modules and each of these will be progressed separately. While there is a CSS4
community group [70] at the W3C, the opening statement outlines that it is a name to be
used for teaching and promotion and will not be applied to any specifications. Browsers
have always taken a rolling approach to the implementation of CSS, with vendor-prefixed
versions of properties released initially and further standards-conforming versions later.
Developers refer to sites such as caniuse.com [71] and the Mozilla Developer Network [72] to
see whether a particular version of a browser will support the features they want to use and

then cross reference that with the browsers and those versions their userbase employs.

2.2.2.6 JavaScript

JavaScript, initially called LiveScript, came into existence in 1995 soon after the arrival of
CSS while the Web was still growing quickly. JavaScript offered a way to add interactivity to
Web pages and allowed the content to change dynamically based on user interactions. It is a
weakly typed programming language that is interpreted at runtime rather than being
compiled into an executable form. As a result, it can be delivered as text to the Web browser.
This fits well with the textual nature of HTML and CSS, and its simplicity, compatibility and
timing have helped it to become the dominant programming language for the Web [73].

Over time there have been several programming languages which have coexisted alongside
JavaScript, but none thus far has proven as resilient as JavaScript. Java [74], primarily a
desktop language, was embeddable within Web pages for a while. However, it required a
browser plugin and a working installation of Java on the client computer. Adobe Flash [75]
was also used to make Web page embeddable applications, as was Macromedia/Adobe
Shockwave [76]. All of these have been since discontinued due to security issues or simply
because they have been superseded by new languages like WebAssembly [77]. Furthermore,
advances in the JavaScript language have rendered them obsolete. There are also several
other languages, including Dart [78] and Rust [79], which compile into JavaScript or
WebAssembly. Despite this competition, JavaScript has thrived and is still among the world’s
most widely used programming languages. One of its defining features is its ability to evolve

and expand alongside the needs of the Web.

JavaScript has typically been employed as a front-end language where it can be seen in use
on nearly every Web page although, in recent years, it has made a shift into server-side
operations, particularly with the rise of Node.js [80], a headless JavaScript interpreter which

was released in 2009. There are also embedded JavaScript interpreters, including Espruino

20 Chapter 2. Literature Review

[81], which run on very constrained hardware, albeit not as efficiently as C would run on the

same hardware due to overheads in the interpreter and its relative immaturity.

2.2.3 Scale and the Internet of Things

Over the past three decades, both the scale and heterogeneity of Internet-connected devices
have increased beyond reliable measurement. It is this variety of devices that has led to the
need to differentiate between those devices which are primarily for computation, such as
laptops and desktop PCs, and those for which computation and connection to the Internet
is a secondary function (e.g. an Internet-connected light bulb). This is just one of many
definitions used by a superset of the Internet which we collectively know as the IoT and the

term which will be used for the duration of this thesis.

Peripherals vs. IoT Devices

There has to be a line drawn between that which is a discrete device and that which
is a peripheral of another device. This line is understandably blurred. Many periph-
erals are exceptionally complex. For example, an electron microscope attached to
a workstation would probably be considered a peripheral, even though it contains

technology many times more advanced than the workstation.

For the purposes of this thesis, the line will be drawn using the relationship type.
A peripheral can connect to only a single device at any one time, while a device
itself is capable of connecting to many other devices. This would mean that a USB
camera is defined as a peripheral, while a network camera is a device. This is a
simple delineation but one which means that the definition of a device is usually
straightforward and the demarcation between devices is clear. This could of course
lead to objects that could be both devices and peripherals in different modes, but
such cases are relatively rare. There are complexities. For example, the first webcam
in the computer lab at the University of Cambridge (Figure 2.6) was a peripheral,
yet the could be considered an IoT device if a line is drawn around the computer,
camera, and coffee pot. This line of argument, however, quickly strays into the realm
of a metaphysical discussion.

2.2.4 The Web of Things

The WoT is to the IoT as the Web is to the Internet; it is a set of principles and technologies
which can be used to involve people in the IoT so that they can understand and engage with

it. The WoT is strongly related to the Web, and the two share protocols and

2.2. The Web 21

FIGURE 2.6: The first webcam, which was used to monitor a coffee pot in the Trojan Room
of the computer lab at the University of Cambridge, operated from 1991 to 2001 [82].

implementations. However, several groups are seeking to add new Web standards which

could help to solve some of the unique problems that interaction with the IoT presents.

These groups are both for-profit groups and not-for-profit organisations. The key player is
the W3C [83], the organisation that leads the way in developing standards for the Web. They
attempt to tread the line between the needs of the general user, those of the businesses
involved, and building a sustainable, scalable, secure and efficient system. This process
takes time and, in the IoT space, several business consortia have formed to accelerate the
adoption of interoperable standards. However, this has often resulted in the effective
exclusion of those outside the group. These groups, organisations and consortia are

mentioned in context throughout this chapter.

There is currently no equivalent of a Web browser for the WoT, although the W3C’s WoT
Group sees their Scripting API [84] as the foundation of a browser equivalent [85] for the
WoT. However, as there are no finalised global standards, most current IoT devices currently
employ Web technologies directly through proprietary applications and not via separate
WoT technologies.

Of the major browser players (Google Chrome, Apple Safari, Mozilla Firefox and Opera),
none are publicly integrating their browser product with IoT devices. Google and Apple are
pursuing separate IoT systems although, for the moment, they currently have not publicised
any intention to integrate these with their browsers. Mozilla created Mozilla WebThings [86]
although, in September 2020 it became simply WebThings and split from its parent

company after funding was removed. WebThings comprises a gateway operating system

22 Chapter 2. Literature Review

that is designed to run on an embedded device such as a Raspberry Pi or router and a set of
libraries for common languages to allow for the easy creation of WoT devices. The concept
broadly follows the W3C’s approach by including actions, properties and events as seen in
the W3C'’s architecture document [12] and the Thing Description [87]. Opera has not made

any overt movements towards the WoT space.

2.3 Identification on the Internet

There are several ways in which a device can be identified on the Internet, and without this
the Internet itself would cease to function, as messages could not be delivered efficiently.
Within the Open Standards Interconnect (OSI) model [88], a physical interface can be
identified using a Media Access Control (MAC) address. MAC addresses are in the EUI-48
format and administered centrally by the IEEE [89] so that no two devices have the same

identifier.

Accuracy of the OSI Model

While the OSI model is a useful teaching tool, it is not necessarily strictly followed
in practice. However, for the purposes of this thesis it constitutes a sufficient model

to illustrate some of the different identification methods present.

At a higher level, interfaces can be identified using IP addresses, each of which can be
converted to a MAC address at the time of use employing the Address Resolution Protocol
(ARP) [90]. IP addresses are either IPv4 or IPv6, with the latter having a much larger address
space and, therefore, is able to address far more devices. The IP address of a device is unique
within the network it is a part of and this may be a local network or the Internet as a whole.
Traffic is commonly routed between networks using Network Address Translation (NAT)
which allows for the routing of traffic between two devices with IP addresses that are not
globally unique.

MAC addresses operate at the Data Link Layer (Layer 2) of the OSI model, while IP addresses
operate at the Network Layer (Layer 3). Uniform Resource Identifiers (URIs) operate at Layer
7 and above in the model, but are not strictly a part of it in of themselves. URIs are
simultaneously a machine- and human-friendly method of identifying a resource on the
Web, and one may or may not have its own IP or MAC address associated with it. A resource
is most commonly a document, but could be other data, such as a video, computer, or

application instance, or else a physical object or person.

A URI is particularly useful within the IoT because it can be used to represent a device,

component of a device, or a service that uses devices. When queried by a browser, a URI

2.4. Describing IoT Devices 23

could provide access to the device directly or to a digital twin of the device. Identification of
IoT devices is critical to their operation. Unlike in the context of a Web service, which could
be replicated across many servers with traffic load-balanced across each of these, [oT

devices have to be identified and controlled very specifically.

URIs and URLs

The URI, finalised in 2005 [91], is the generally accepted way of identifying a virtual
or physical resource on the Web. A URL (Uniform Resource Locator) is a subtype
of URI and, when used by a Web browser, will return an instance of the resource. If
returning an instance is not possible, it will return information or metadata about
the resource or an error code. In contrast, a URI needs only to identify a resource
and may or may not return it. URIs are universal across the Web and are one of the

core technologies it relies on.

There were (and in some there cases still are) criticisms of the nature of URIs on
the Web. Ted Nelson, a computer scientist and philosopher, is amongst the most
vocal, having said that links should be bidirectional [92] meaning that a 404 missing
resource error would be impossible. However, the unidirectional nature of URIs is
very entrenched in the Web and it would take a significant shift in implementation

to change this.

The Semantic Web Interest Group at the W3C puts forward several ways of using
URIs with both real objects and their representations [93] and these are being inte-

grated into the W3C’s WoT Working Group to represent WoT devices.

2.4 Describing IoT Devices

There have been many alternative ideas for describing devices, from academia, open
standards and commercial enterprises. What many have in common is the concept of a
‘digital twin’ [94], which is a data-based representation of a physical device. Digital twins are
especially useful because devices may not always be available. They may be slow to access
or offline for extended periods. In these cases, and many others, it can be beneficial to
create a skeletal version of the object, one that contains only those features and properties
which are useful to the system it is a part of. For example, a digital twin for a light bulb in a
smart home may have its power status and brightness as variables as well as the ability to
read and change those two variables as functions. In contrast, a digital twin for a light bulb
in a machine in a factory may also need to have variables for the number of hours it has
been illuminated for, its current temperature, the surrounding humidity, any any other
pieces of information relevant to its maintenance and continued operation. This makes it

24 Chapter 2. Literature Review

simple to interact with, easy to create a homogeneous interface across manufacturers, and
allows for the light bulb to lose connectivity and synchronise with the expected state after

reconnection without the user having to resend commands.

The W3C, as keepers of many of the prevailing Web standards, have been developing the
concept of a Thing Description (TD) as part of their WoT project. The TD is a JSON-LD [95]
document that behaves as a template for a digital twin of a device. It lists several aspects of
the device, including its ID, which actions can be performed on it, events it can create, and
properties it may have. It is strongly related to the W3C'’s semantic data projects which allow
the linking of entities on the Web to the data that describe them. Using these together, a
physical device can be linked to a TD which describes it in terms of the WoT and, in turn,

this can be linked to other Semantic Web resources to further describe it.

2.5 The Semantic Web

The Semantic Web [96] is a collection of standards that aims to make data on the Web much
easier for a machine to understand. The W3C'’s proposals and standards allow defining data
in terms of one another and connecting them to one another using semantic triples, thereby
forming linked data. A semantic triple is not simply a connection, rather it is a connection
with meaning attached. A triple could take a form such as ‘A belongs to B’, or ‘X is a daughter
of Y’, whereby the first and last elements are related data and the middle phrase describes
the nature of their interrelationship. These examples are understandable to humans, but
with the correct machine-readable definitions, computers can also process them. They
provide a uniform data format but, more importantly, allow for machines to infer
information by traversing data and relationships. For example, the parent of a parent can be
inferred to be the grandparent of the starting node. Using SPARQL [97] complex data can
thus be queried and distilled to provide useful information.

Linked data is often stored as RDF [98] or JSON-LD. Both of these formats allow semantic
data to be created which references other items within the document, although they also
allow references to items from external sources. It is these references that are important for
the W3C’s WoT Group’s implementation and also the future of the work presented in this

thesis.

2.6. The History of Digital Twins 25

Data vs. Information

For the purposes of this thesis, and following the categorisations often attributed
to Russell Ackoff [99], data are defined as raw facts and figures, while information
is anything inferred from aggregating or interpreting data. Above these are knowl-
edge, understanding and wisdom. The Semantic Web aims to allow computers to
move beyond data to being able to represent information, and then, using SPARQL

or equivalent, store knowledge.

2.6 The History of Digital Twins

In some ways, digital twins are an evolution of a specification or technical drawing which, in
and of themselves, represent the minimal set of information needed to create or describe an
object. However, on top of this static document, they add interactivity via two-way
communication between device and its abstraction. They can be used for simulation, as a
buffer or cache for commands and state, or as a high-level abstraction of a more complex
device. In the 1960s, NASA modelled Apollo 13’s [100] systems on the ground when the
mission suffered a dramatic system failure. Updates to the live mission were reflected in the
equipment on the ground and potential solutions were tested using the various simulators
and replicated systems in the laboratories. While this was not formally intended to be a
twinning situation, nor was the phrase coined then, it is an early example of one system

reflecting another for the purposes of easier access and simulation.

The application to physical products was recognised in a presentation [94] for the
manufacturing industry on Product Lifecycle Management by Michael Grieves, and the
concept came to be known as the ‘Mirrored Spaces Model’ soon after. This name is
reminiscent of the 1991 book by David Gelernter called Mirror Worlds [101] which described
a similar concept. The term ‘digital twin’ was not used until its introduction in Grieve’s 2011
book, ‘Virtually Perfect: Driving Innovative and Lean Products through Product Lifecycle
Management’ [102], having been coined by John Vickers, his collaborator and occasional
co-author. The direct application to the IoT grew as the manufacturing sector began to

overlap the consumer IoT space.

2.7 Reading State of IoT Devices

The reading of state from IoT devices is linked heavily to both their identification and
description. A device’s state can be requested by ID or else it can be published by the device

via a channel. If a digital twin mechanism is used, then the state can be held within the twin

26 Chapter 2. Literature Review

and requested from there. Knowing the current state of a device, keeping it synchronised

with its twin, and resolving any conflicts are all key considerations for any IoT system.

2.8 Controlling IoT Devices

IoT devices can be controlled in many ways, although data can only flow in two directions.
This means that all control will either occur through data or via commands being pushed to
a device, or else through its pulling data from another source and reacting to it. The key
difference between these scenarios is the level of autonomy. Where a device receives a
command, it will either carry it out, or else perform an assessment of it and decide whether
to execute it. However, in a situation where it pulls data, it must decide what to do and
whether to do it. This means that actions in the IoT fall somewhere on the spectrum from
remote control to completely autonomous devices. There is naturally some division [103] as
to whether the IoT is separate to remote control approaches such as SCADA (Supervisory
Control And Data Acquisition) [104] as used by manufacturing; whether the IoT is the
evolution of these; or if one necessarily encompasses the other. For the purposes of this
thesis, a clear distinction is not essential as the primary concern is the underlying modelling
of the constituent interactions, rather than the level of autonomy with which they are

performed.

2.8.1 Push vs Pull Control Methods on the Web

When the Web was first developed browsers could ‘request’ (or pull) data from a server and
the server would return that data via a ‘response’. This remains a very important paradigm
today, although it has since been joined by several others. In a pull scenario, the client
requests the data they want from a server as and when they want it. However, this can lead
to inefficiencies in those instances in which the client wants to monitor data, as it does not
know when the data has changed. To combat this, an alternative approach was produced. In
modern systems, data can also be pushed to a client from the server using WebSockets [105]
or similar technologies. In this push scenario, messages are only sent when the data
changes. In some applications, this leads to a significant reduction in the amount of
processing being carried out by the client as it no longer has to ask for data that may not
have changed in the interim. The server also saves resources as it does not need to deliver
identical responses to the same client. In the IoT, this does not necessarily translate to
longer battery life or lower resource requirements, but having the option of both methods

helps to find lower power solutions.

2.8. Controlling IoT Devices 27

Polling

Polling [106] is a pull-based approach for a client to get current data from a server.
It arises when a system requests the state of another system at intervals, rather than
when the user explicitly requests it. The intervals could be regular, or more complex,
with exponential or Fibonacci-based gaps depending on the response. In the IoT, a
device could poll a URL where it expects to see a command or data to respond to,

for example, a weather data feed, or it can poll its own digital twin.

A key advantage of polling is that it can be achieved with very few resources on very
constrained platforms, making it an ideal technology for very low power devices
that can power on, poll, and then sleep until the next cycle. This is something not
readily possible with push systems, as they typically require a constant connection

between devices, thereby not allowing the device to sleep.

An early example of a push-based protocol is the SMTP (Simple Mail Transfer Protocol)
[107] which was first published in 1982. It is still used to push email messages from one
computer to another, usually between servers, until it reaches the users mail box, after

which point the end-user will pull it to their device when they connect to their mail server.

A push model was also used in early instant messaging, including IRC [108] which allowed
files to be pushed from one user to another. Early data delivery services such as PointCast
[109] a dashboard screensaver that displayed various live data, used a similar model.
Despite the popularity of push messaging in the 1990s, it was not added to the HTTP
specification until HTTP/2 [110] in May 2015.

2.8.2 The Publish/Subscribe Model

Publish/Subscribe, often abbreviated to pub/sub, is a method of messaging wherein
messages are usually, but not always, pushed to a list of subscribers to a channel, meaning
that only those entities subscribed to the channel can receive them. Messages are either
sent to a broker which maintains a list of subscribers or else a list is sent to each subscriber

to maintain internally.

A very early implementation of pub/sub was implemented in 1987 by Birman and Joseph
[111]. In this paper, the authors use the model for coordinating processes in a distributed
system, a phenomenon they called ‘virtual synchrony’. It used what is termed a ‘group
identifier’ to represent what we would now call a channel, and this identifier was given to
the various group members (or subscribers). Their implementation differs from modern
implementations in that it includes the ability to have a shared pool of data. The model itself

is similar to a mailing list, which pre-dates this implementation both physically and digitally.

28 Chapter 2. Literature Review

RSS [112] is an example of a combination of pull-based pub/sub, often using polling, which
was first created in March 1999 by Dan Libby and Ramanathan V. Guha. A publisher adds
messages to an XML document that is analogous to the channel, and a user subscribes to a
feed implicitly by obtaining the URL. The user can then poll the document at regular
intervals to receive updates, or else unsubscribe implicitly by forgetting the URL. RSS is also
a good example of a tiered pub/sub system, wherein some members have read and write

permissions and can publish while others can only subscribe and read.

In the 10T, the pub/sub model may create a one-to-many relationship, whereupon one
device sends updates to many listeners; or a many-to-many relationship, in which any
device on the channel can both send and receive messages to all others. This may be
decided informally by the devices on the channel themselves if there happens to only be one
producer present, or else formally using permissions for publishing and subscribing.

Devices can also subscribe to multiple channels, further complicating the topology.

The concept of pub/sub fits the IoT very well and the use of many concurrent, yet
distributed, processes in Birman and Joseph'’s system maps well to the many distributed
devices of an IoT environment. There is no formal definition of how a pub/sub channel
should be named or what it should represent, so as a result their properties are completely
at the discretion of the owner of the system. In the IoT, channels can be used to represent
physical attributes, such as colour or location; or social aspects, such as ownership or

purpose.

One of the key advantages of a pub/sub model is that the broadcaster does not need to have
knowledge of any of the subscribers. However, this can also be a weakness in that there is no
mechanism for receipt confirmations because a broadcaster has no way of knowing how
many to expect. In fact, there may not be any subscribers and no error thrown. The only
error state in many implementations arises when a broadcaster is unable to send a message
after repeated attempts and an undeliverable report is created. Another important benefit of
the model is that of its unlimited scale. A channel, as a concept, has no predetermined limit
to the number of subscribers it can have, although the system may be limited either by

storage of the subscriber list, or by the flow rate for sending messages.

A modern example of a common IoT pub/sub technology is Message Queuing Telemetry
Transport (MQTT) [113], an ISO standard. It was first developed in 1999 by Andy
Stanford-Clark at IBM and Arlen Nipper at Eurotech and is widely used in IoT applications.

2.9. Historical IoT Implementations 29

2.9 Historical IoT Implementations

2.9.1 The FirstIoT Device

The first recorded instance of an IoT device was a Coca-Cola machine [114] in Pittsburgh
that was connected to the ARPANET in 1982. It was initially a typical soft drink bottle
dispenser and had no inherent Internet connectivity. The only outputs were the lights next
to the dispensing buttons which would flash if a drink was successfully dispensed or else

turn on continuously if the machine was empty.

On realising that they spent a great deal of time going to the vending machine only to find
that the drink they wanted was no longer available (or that the dispensed drink was warm),
David Nichols, Mike Kazar, Ivor Durham and John Zsarnay decided to make some
improvements. They built a circuit that would poll the lights associated with each variety
and recognise when the machine had been restocked. They connected this to the ARPANET
and added an interface which showed the stock status as well as whether the drinks were
cold (based on a timer triggered when they were restocked). Later, another student

connected a nearby M&Ms machine in a similar manner.

2.9.2 Envisioning Connected/Smart Environments

In the late 1980s, Mark Weiser and his team at Xerox PARC were working on imagining a
connected environment [115]. This is the first published work that is close to the modern
vision of IoT environments, and several concepts are present today. Not all the devices
within the team’s environment were IoT devices, as some were equivalents of tablet
computers and smart whiteboards, but all fed into the same vision. This project also let to
the creation of the term ‘ubiquitous computing’ in 1988. This, and ‘pervasive computing,

are among the most important precursors to today’s IoT.

2.9.3 Ubiquitous and Pervasive Computing

Alongside the Web, other movements were quickly growing in popularity. While the Web
dominated the commercial space, in academia both ubiquitous and pervasive computing
were gaining support, and the same concept was also seen under the names ‘Ambient
Intelligence’ and ‘EveryWear’. The two concepts of ubiquitous and pervasive computing are
sometimes differentiated, yet they are often regarded as being synonyms. Both are lenses for
the movement that embedded computing devices within environments, which eventually

grew into the IoT.

Within this field of research was an area that Weiser and Brown called ‘calm technology’.

They initially shared it in their 1995 blog post [116], and this concept was later formalised in

30 Chapter 2. Literature Review

their 1996 paper [117]. It was derived from Weiser’s idea that the data held inside computers
would eventually become a part of the environment in the same way that writing is in our
visual society. We see writing everywhere on road signs and labels, and we passively absorb
the information it contains. We can choose whether to actively engage with it or act upon
what it says. Calm technology tried to extend this to live data, and used intelligent
environments to disseminate it to the user without them having to directly access or pay
attention to a computer. The data could be displayed on everyday objects which the user
could choose to focus on, or else could peripherally absorb data from without direct
attention. Weiser and Brown’s simplest illustration was a piece of string attached to a motor
which moved in relation to network traffic. A much better known implementation would be

the power and hard disk lights on a computer signalling activation and activity, respectively.

There are some who believe the idea of pervasive computing and, therefore, a great deal of
the potential of the IoT has been held back by the creation of smart phones [118] as they
tend to centralise control and commercial influences that are often at odds with the notion

of frictionless data access.

2.9.4 Coining the Term IoT

The current term, the ‘Internet of Things’, was chosen by Kevin Ashton in 1999 in a
presentation to Proctor & Gamble [119]. However, it was not to be used in mainstream
media until a decade later. Ashton claims that this was due to an initial lack of applicability,
as data was not stored in ‘the cloud’, and also because it gained success online because the
term ‘ToT’ was easy to use as a hashtag on Twitter, which saw a large increase in popularity

during this period [120].

2.9.5 HP’s Cooltown Project

In 2001, a group of researchers at HP published a description of a project they called ‘Web
Presence for the Real World’ [121]. The aim was to tackle the problem of “nomadic”
resources or, simply stated, that things and people move around within and between

environments.

They thus assigned URLs to people and objects and embedded Web servers into devices that
would not normally have IP connectivity. They did this in HP’s test environment known as
Cooltown, a synthetic space which contained a museum and bookstore. Users were given a
PDA that was combined with infrared beacons to track their location. The principle is very

similar to modern tracking using Bluetooth beacons which has widespread use in retail.

As the visitor moved through the environment, their experience was augmented by URLs
sent to them by the objects they viewed. When the URLs were accessed on the PDA they
would show the visitors more information about the object. In recent years, a technically

2.9. Historical IoT Implementations 31

different, yet socially similar construct to this type of augmentation has been implemented
in the form of QR codes in museums (Figure 2.8) and on advertising billboards (Figure 2.7).
Cooltown is an early example of Web technologies being applied to a domain outside of
virtual documents, and one of the first large scale IoT deployments.

BE AT
YOUR BEST

AND BE BETTER WITH US

Dm

JOIN US TODAY
MEM FEE

i

1D Watch video

FIGURE 2.7: A QR code on a billboard [122].

FIGURE 2.8: A QR code in a museum [123].

2.9.6 The First Industrial Physical IoT Products

The Industrial IoT (IIoT) has a slightly different history from that of the consumer IoT,
although the two ultimately converge. The IIoT grew out of the Distributed Control Systems
(DCS) of the 1970s built by Yokogawa [124] and Honeywell [125]. These allowed the
monitoring and control of factory machines from centralised locations and, later, with

widespread Internet adoption, also from remote locations.

32 Chapter 2. Literature Review

In the 1980s and 1990s they were integrated with computer networks and, as the Web and
consumer interest in the Internet and, subsequently, IoT grew, they became more similar to
commercial consumer solutions. The IoT has enabled the construction of increasingly
automated factories, as well as saving money within existing factories by allowing the
detailed monitoring and management of energy consumption. However, the advent of

entirely ‘lights out’ factories has not yet materialised.

2.10 IoT Management Systems

IoT management systems can be broadly organised using similar classifications to other
software projects. Software can be open or closed source and comprise mass market or
personal projects. Most open source projects are free, at least at the basic level, while most

closed source projects are commercial.

Accordingly, there are four possible pairings, as follows:

2.10.1 Open Source, Mass Market

These are projects created by a group or individual, often with large numbers of
contributors later on in their development. An example of this type of software is the Linux

kernel, created by Linus Torvalds, which has had many thousands of contributors [126].

2.10.2 Open Source, Personal

These tend to fall into two categories. Firstly, there are those projects designed to solve a
specific problem encountered by the author. These are however disregarded from this
section due to their highly specific nature, leading to their not becoming full-featured
management systems. The second category contains academic projects which tend not to
be fully featured, yet contain sufficient features to be classified as a management system

when considered with their underlying theories and ideas which complete the picture.

2.10.3 Closed Source, Mass Market

These are mostly walled ecosystems created by a company or a consortium, for example
Apple’s Home product [127]. They may, or may not be open to extension by developers, and
they may be partially open or open at a cost. They may have open source parts, yet have a
proprietary piece which is very important to the system. An example of this could be a

system with an open source client and a closed source server.

2.10. IoT Management Systems 33

Included in this section are those consortia which produce open source software or
standards, but gate keep contributors by charging high fees. They are technically open

source, yet lack the communal inclusivity of traditional open source projects.

2.10.4 Closed Source, Personal

These are very rare in the software space as commercial projects generally need to appeal to
a large enough market to be viable. These projects are scarce and not otherwise comparable
with other systems. An example of this type of project (unrelated to the IoT) is the DeMux
project [128]. It solves a personal problem the developer had in that the 2011 MacBook Pro
incurred a widespread manufacturing defect in the GPU. The project was then released as a
very niche commercial product in April 2019 [129]. However, by their very nature, it is

impossible to gauge how many of these projects exist but have never been publicised.

2.10.5 Open Source, Mass Market

Unlike commercial systems, the larger open source IoT systems do not have to worry as
much about acquiring and keeping users, and so they are at liberty to find the best
user-centric solution to a problem. Commercial systems often adopt a closed ecosystem
approach to maintaining a user base, one which is often misaligned with the users’ best
interests. For instance, it is unlikely that the washing machine and car best suited to the user
are made by the same manufacturer, and so the chance of their being within the same
ecosystem is reduced. However, open source projects can chart a more inclusive approach.
They usually have no outright allegiance to a brand, and even those initially started by a
company can be drawn toward a new course by other contributors. The result is that they
are freer to cater to multiple ecosystems and devices outside of specific ecosystems.
However, without corporate funding, they often do not have full-time staff and instead rely
on contributors donating large amounts of their free time. This outcome can impact both
quality and support.

Within the IoT space, many of the largest open source projects are orchestration platforms
which are designed to bridge proprietary ecosystems using official, documented APIs or,
occasionally, unofficial and undocumented APIs. Of these, the biggest are openHAB and

HomeAssistant, each catering to a slightly different demographic.

2.10.5.1 OpenHAB

OpenHARB is marketed as “Some Hacking Skills Required” [130] and targeted towards
technically-minded people, with the specific aim of customisation over usability. The focus

is on the core server implementation and, while there are three user interfaces (Uls)

34 Chapter 2. Literature Review

available, the majority of the necessary configuration occurs across many different text files.

The control of devices is largely automated, but can also be carried out using the UL

OpenHARB is designed to connect existing systems, services and applications, including
proprietary systems, rather than to replace them. This means that those devices which are
accessible to the system will pair and communicate in the way the manufacturer intended.
This is important for both stability and usability, but also decreases the amount of

maintenance required to keep pace with manufacturers’ software and firmware changes.

2.10.5.2 HomeAssistant

HomeAssistant [131] has a greater focus on usability and integration with a single,
user-friendly interface. Similarly to openHAB, it integrates with manufacturers’ ecosystems
rather than attempting to replace them. The key difference is that HomeAssistant is
centralised around the Ul rather than the server back end. Control is mostly carried out
using the UI, with a centralised configuration file for anything that is not present within the
visual interface. It uses YAML [132] for configuration, which can be slightly restrictive as it is
a descriptive language and not a programming one. It can be used to store configuration
data but not to provide scripting or the specific control that openHAB provides. This is
instead provided by an automation plugin using a similar ‘trigger’, ‘condition, ‘action’
schema to IFTTT [133].

2.10.5.3 Node-RED

Node-RED [134], originally an IBM project but now run by the Open]S Foundation [135] is a
flow-based programming language for automating IoT systems. It integrates with other
systems, including openHAB and HomeAssistant, and allows for complex automations
based on events and states. It is centred around a visual programming interface which can
be seen in Figure 2.9. It aims to be accessible to everyone but also highly configurable and
customisable for technical experts. Originally, it was designed to work with MQTT topics,
but now connects to any HTTP or MQTT channel and parses data from JSON, XML, YAML
and CSV files.

2.10.5.4 WebThings (formerly Mozilla)

As mentioned previously, WebThings was founded by Mozilla but later became a separate
entity when funding was removed. The platform is JavaScript-based and uses the W3C WoT

Group’s implementation of the WoT and adds a layer of usability for developers.

Stark et al. [137] attempted to create a WebThings-based system for controlling devices

within a house, with some success. For the moment at least, WebThings is concerned with

2.10. IoT Management Systems 35

=<, Node-RED

Q < Flow 6 Flow 7 SAP RFC + info debug dashboal

[— - - Yallnodes | | @
y Start select _ - msgpayioad
) ‘ J) 81472015, 84810 AW node; 75801086.653824
| feedparse ()
- mogpayioad : aray{100]
s 1
C | Y | » [0 .. 9]
= »[10 .. 19]
o =[] > (20 .. 29]
v Nest v 130 .. 39]
Start —_ ~30: object
nest request B — MATNR: "000000000000000004"
MTART: "ZHB1"
nest status D‘ R — — MEINS: "“ST"
D opm- e — OO e -

" g L)
[timestamp () usmo2 () — / msg »33: object
. — s »34: object
OIS [e =V et
L imestamp (= X 7 »37: object

‘ - ‘ »38: object
_ (0] timestamp »39: object
» [40 .. 49]
OFEEE = oo - 60
catch(§) ' msg.sapEmror |;L e Sl
1 '

~ dashboard » 180 . 89]

FIGURE 2.9: Node-RED’s visual programming interface [136].

the identification, connection and control of devices, which is a lower level than the
outlined goals of this thesis. However, the approach and ethos of both are aligned in terms
of aspirations. Its Ul is similar to the second experiment in this thesis (which is discussed in

Section 5.2), but the two were developed independently.

2.10.6 Open Source, Personal

Many academic IoT systems fit into this category, but only one uses Web technologies
directly applied to IoT devices in a similar way to this project. Amalgam [2] shared many
goals and ideologies with this thesis, despite both being conceived and developed in
isolation and without knowledge of one another. It aimed to leverage CSS and HTML to
describe and build IoT devices at a component level and integrate these within a Web page.
It did this by the use of an additional CSS property called hardware. This property allowed
the developer to specify that the referenced element was a physical device or component. As
per this thesis, Amalgam sought to allow Web developers to easily produce code for the IoT
although, a Web developer using Amalgam would also need to understand basic electronics

to design and program an IoT device.

There are several key differences between the two approaches in that Amalgam aims to aid
the development of the IoT device itself, whereas this thesis seeks to interact with
pre-existing devices. Further, where Amalgam focuses on the construction of a single

device, this project sought to orchestrate the large-scale deployment of devices.

The technical approach of Amalgam is very similar to the approach use in the third
experiment in Section 5.3, in that both use Web Components to represent physical objects.
Amalgam has Web Components such as <physical-pot> which map to existing built-in

elements, in this case <input type="range">, creating a one-to-one relationship between

36 Chapter 2. Literature Review

a Ul element and a hardware component. They also recognised the potential for the re-use

of libraries as mentioned in Chapter 7.

2.10.7 Closed Source, Mass Market

The closed source, mass market systems include those which are wholly owned by one

company, as well as those that are owned and operated by consortia.

2.10.7.1 Nest

Nest, now rebranded as Google Nest [138], began its existence as an IoT thermostat and was
one of the first successful consumer IoT products. In 2014, Nest was acquired by Google
[139]. Subsequently, in 2020, the brand merged with the rest of the Google Home ecosystem.
It has since become a flagship brand for Google’s IoT offerings. The underlying technology is
largely proprietary, except for the Thread protocol [140] which is jointly owned by the
Thread Group. The Nest Thermostat is important because it represents one of the first
products to put an emphasis on usability, offering features beyond the capabilities of a
normal thermostat. However, it was not originally designed to work as a part of an
ecosystem and, as such, could be said to be closer to a remote control over the Web than a
true IoT technology. Later, it was integrated with IFTTT which brought it closer to the IoT

devices we have today.

2.10.7.2 Philips Hue

Philips Hue [141] is a range of smart lighting that closely followed Nest as one of the first
widely successful IoT ecosystems. The first product was released in October 2012 [142] and
sold exclusively through the Apple Store. It continues to be a (non-exclusive) partner of
Apple Home. It is centred around RGB light bulbs that connect to a network bridge device.
The bridge communicates with a Philips server which, in turn, allows the bulbs to be

controlled using a smart phone either from inside or outside the environment.

Hue was the first ecosystem to offer scenes, that resemble simplistic style sheets in that they
allow the end-user to assign a colour to lights, either individually or in groups, and save that
state for later use. Philips also distributed a range of pre-prepared scenes which could be

applied generically across any of their lighting products.

2.10.7.3 Google Home

Google Home is the name of an application [143] for controlling IoT deployments in the

home. The same name is used for the ecosystem of physical IoT products that can be used

2.10. IoT Management Systems 37

with the application. All devices in the ecosystem can be used independently, in
collaboration with Google Assistant, and in association with hardware from other vendors.
As of December 2020, the brand was merged with Google’s 2014 IoT acquisition, Nest [138].

The product is mostly proprietary but offers users and developers the ability to integrate
with its system via a public API [144]. This approach is common to nearly every commercial
IoT vendor, as it strikes a balance between delivering enough value to the expert customer
while keeping commercial intellectual property protected. Importantly, this leaves the
architecture and implementation of the system in the hands of the company, which can
elect to hinder the creation and development of standards, particularly when a vendor has a

strong market presence.

2.10.7.4 Amazon Alexa

Amazon’s Alexa [145] assistant service integrates with many IoT devices and services
(including their own Echo [146] smart speakers) and provides a management interface
centred around voice control. It is very similar to Google Home in its business model, again
offering a public API for developers to use. It comes with the benefit of Amazon Web Services

(AWS) [147] integration, which offers many more integrations than Google Cloud [148].

2.10.7.5 Apple Home

Apple’s Home [127] application is the centrepiece of Apple’s HomeKit [149] ecosystem.
Homekit is an API and certification programme for third-party IoT hardware, as well as their
proprietary HomePod smart speaker. Apple offers voice control through integration with
their Siri voice assistant product [150]. They also offer an API [149]. While they lack the
connected services of AWS or Google Cloud, they have a very large and loyal userbase from

the longstanding and tight integration of Siri with their line of hardware devices.

2.10.7.6 IFTTT

IFTTT (If This Then That) differs from the other large players in this area in that it was
originally incorporated in 2010 [151] as a service, and not as a hardware vendor. It links
together other online services using simple, reusable scripts, and only later expanded into
the IoT when they integrated with IoT APIs from the major vendors aforementioned. It does
not produce hardware or IoT products itself, but rather allows users to manage their existing

devices within a contiguous system.

As the name implies, the service is a basic programming interface that enables the user to
integrate APIs from different IoT services and data providers. It is unique in that it does not

aim to provide a directly controlled UI. It does, however, allow products and services,

38 Chapter 2. Literature Review

including Uls, from other vendors to be used to trigger routines. For example, Amazon Alexa

skills can be created as inputs to IFTTT.

This automation-centred approach sits in stark contrast to Amazon’s and Google’s products
which focus on direct control with an emphasis on voice commands. However, it has
commonalities with both Philips Hue and Apple Home which offer their own basic

automation steps.

IFTTT is one of only a few services which initially targeted expert users as the end-user of
their product and is, by far, the most successful in this domain. However, its enforced
simplicity and heavy reliance on integrations built by the IFTTT team means that it is
limited in what it can ultimately achieve and is thus far from ideal for developers who may

want to attain more complex outcomes.

2.10.7.7 Thread and OpenThread

Thread [140] is a project that was started in 2014 by Google as a way to utilise IPv6 and
6LoWPAN to send messages to IoT devices, but has since expanded into a larger consortium
of companies. It is designed to be a mesh communication network that sits between IoT
devices to create a network within a building or environment, while having no single point
of failure. It links explicitly to the Zigbee Alliance’s Matter Project (formerly Project
Connected Home Over IP). Its key advantages are that it is standards-based and low power,
using IEEE 802.15.4, IPv6 and 6LoWPAN to achieve this.

IPv6 and 6LoWPAN

IPv6 [17] is a replacement for IPv4 [14] which solves the problem of the limited
number of IPv4 addresses as well as offering several other enhancements. The IPv4

namespace is limited to 232

addresses, and many of these are reserved for private
networks and other special purposes. IPv6 has a namespace that allows addressing

of 2128 devices, also with reserved ranges.

6LoWPAN [152] is the use of IPv6 over low-power wireless personal area networks,
in particular using the IEEE 802.15.4 standard [153]. The aim of 802.15.4 was to
produce a wireless standard that could be used by devices with low computational
and power resources, and 6LoWPAN allows these devices to use IP. The project was
launched with a wide variety of use cases [154] for IoT devices, and this has included

deployments from small homes to long-distance sensor networks [155].

2.10. IoT Management Systems 39

Mesh Networks

Mesh networks are an alternative to the star topology, wherein there is no central
router that all traffic passes through. Instead, messages are broadcast to all nodes
within range and then passed on to nodes within the network which are out of range
of the first node. While this can be used in a wired network, this concept has recently
gained popularity within the commercial space for wireless networks. The topology
allows for easy deployment in a large or noisy space by placing extra nodes until the
required signal strength and coverage are achieved. The nodes themselves require
little manual configuration within the network, beyond being given credentials to

join a secure network, as they are all identical.

This approach is useful for IoT devices, as the node can be embedded within a de-
vice and the device placed within an existing space. Provided the node is within
range of at least one other node, it will be able to join the network and the process

will be almost transparent to the user.

2.10.7.8 Matter

Matter [156], formerly called Project Connected Home over IP (Project CHIP), is a group
formed by the Connectivity Standards Alliance (formerly the Zigbee Alliance [157]), with the
aim of creating a set of open and free protocols for the IoT. It is backed by Google, Apple and
Amazon who, as of 2020, are three of the biggest players in the consumer IoT space. It also

has members from several other global IoT vendors.

While Matter is quite new, having only started life in December 2019, it appears to have very
similar goals to the W3C, although with a much broader scope. The W3C is concerned with
identifying and controlling devices at a semantic level, whereas Matter is attempting to
converge entire stacks of multiple vendors from IP connectivity, through security and data
models, to the application level. This can be seen in Figure 2.10. As of 2021, they have
released some reference implementations and several incomplete specifications, but it

would seem that they have a long way to go before achieving their goals.

2.10.7.9 High-End Smart Home Systems

Some systems are targeted at wealthy individuals, and these tend to have more features and
integrations than some of the other systems listed previously. However, they come at a cost
to usability at the installation and configuration stages. They are designed for coherent
whole-home installations and come complete with installation and support packages so

that the owner rarely, if ever, has to interact with anything other than the front-end. These

40 Chapter 2. Literature Review

Data Model Structure

Action Framing
Security: Encryption & Signing

IP Framing & Transport Management

FIGURE 2.10: The scope of Matter [11].

include Control4 [158], Crestron Home [159] and Savant [160]. These systems are
deliberately priced beyond the average consumer and so are unlikely to gain significant

market share outside of their niche.

As these systems are installed and configured by professionals, they support scenes much
more readily. In the case of Savant and Control4, these are primarily based around presence
and situation, offering different setups for parties, relaxation and work. They also offer

different profiles for different people, including staff.

2.11 Smart Cities

‘Smart cities’ is the term used to describe the concept of city-scale IoT deployments of
Internet-connected amenities and municipal systems; for instance, a network of smart
electricity meters, Internet-connected streetlights, buses, or water and sewerage monitoring
systems. The idea is to allow an overview of every system that affects larger groups of
people. This should make it possible to reduce inefficiencies, reroute around problems, and
coordinate between systems far more effectively. For example, if there is a large event
happening in a specific area, then smart rubbish bins could trigger an alert when they need
to be emptied; public transport could respond to local demands; and traffic lights could
automatically route passing traffic around any busy areas. Smart cities represent the largest
IoT environments developed thus far which could potentially include millions of devices.
However, in popular culture, the term has been heavily overused wherever a city improves

anything related to Internet connectivity.

2.12. W3C and the WoT 41

2.12 W3C and the WoT

The W3C has maintained slow and steady progress in implementing a WoT system since the
inception of the WoT Interest Group (WoTIG) on January 20th, 2015 [161].

One of the precursors for this was the webofthings.org Web site [162] which was started in
2007 by EVRYTHNG founders Dominique Guinard and Vlad Trifa. These two people also
submitted the original Web Thing Model to the W3C which was published in 2015 [163].

2.12.1 W3C WoT Based Management Systems

As of 2021, the only consumer-facing management systems openly based on the W3C WoT
approach are WebThings [86], and Thingweb [164]. The latter is built and maintained by
WoT Working Group members. However, judging by the activity of the WoT Working Group
[165] there seems to be ongoing development of systems at Siemens, Huawei, Fujitsu,

Hitachi, Oracle, Panasonic and Intel.

The March 2021 introduction video [166] shows that the target market for the W3C’s WoT
project is existing Web developers. It introduces how simple it can be to integrate existing
projects with the W3C’s WoT implementation, and the promotional video references
Thingweb as a flagship example of a WoT library. Thingweb and WebThings both have
public-facing documentation which explain the concept of the W3C’s WoT approach,
including concrete examples of using TDs, actions and events, and reading and updating

properties.

Based on the supporter from commercial companies and the standing of the W3(C, it can
reasonably be assumed that this implementation will eventually become dominant,

however it may have to go through an integration phase with Matter for that to be realised.

2.12.2 Matter and the W3C

The Matter project and the W3C WoT project are the two foremost projects at this time. Both
have considerable industry and institutional backing as well as sharing many of the same
stakeholders and contributors. However, interoperability seems to be almost an
afterthought at this stage. The W3C is making the assumption that it will just work with
Matter, as Matter is an application layer and the WoT describes application layers using

Thing Descriptions and Binding Templates [167].

The Matter project has thus far shown no outward intent to work with the W3C or of
developing in line with the other’s project. In the initial webinar [168], Jon Harros said that it

“may be possible” to collaborate, but that there were no plans to do so. His tone and lack of

42 Chapter 2. Literature Review

definite response when asked seemed to suggest that he was unaware of the W3C'’s project

at that time.

2.13 The Human Influence on the Web and IoT

While the Internet and the Web are very technical systems that based on a many aligned
protocols that link machines together, their growth and use are very heavily influenced by
their human components. Even with the IoT bringing more machine-to-machine
communication to the Internet, the vast networks of connected devices are designed to fit
within a human environment and, as such, are often designed to make people’s lives simpler
or more productive. It is also people that provide the majority of programming for the Web.
While there are tools, compilers and post-processors that will take a human-readable
abstraction and create a more efficient version, the initial need identification, solution

design and abstracted code development has been completed by humans.

2.13.1 Metaphors on the Web

Concepts in Computer Science have always been explained to users with metaphors [169].

The reasons for this are twofold.

Firstly, it is known in the field of Philosophy of Computer Science that the originators of
concepts tend to create them based on metaphors [170]. Particularly in Computer Science,
this often comes about as an explicit desire to replace a physical concept with a virtual one,
such as the Bulletin Board System replacing physical bulletin boards. The first example of
this was Community Memory [171]; a terminal that allowed visitors to various stores to save,
retrieve and print messages. This type of direct replacement naturally leads to the use of the
metaphor as it is simpler to replicate the existing methods and terminology, in this case

‘posting a message’, than to create a new one and retrain the users.

Secondly, both the Philosophy of Computer Science and User Experience Design suggest
that user adoption is simpler when the users can relate an idea to one they already know
[169] as there is less to learn and so the cognitive load is reduced. This could be a result of
survivorship bias as those products and ideas that did not have a relatable metaphor may

have not survived.

These metaphors may be very general, such as the notepad, or else be very domain-specific,
in the case of the ‘save icon’ frequently represented by a floppy disk. They may prevail
throughout the lifetime of a system, such as the page metaphor used by the Kindle and
other e-readers, or else they may be transitional to help introduce users to a foreign
concept. Transitional metaphors were heavily relied upon by the iPhone from Apple in the

form of skeuomorphic design.

2.13. The Human Influence on the Web and IoT 43

Metaphors may also ‘die’, although this does not necessarily mean that they cease to be
used; rather the representation becomes more recognisable than the original source. A
particularly famous example is that of younger generations no longer equating the save icon
with a floppy disk. The clipboard, address book, carbon copy and folders are other
metaphors whereupon the digital concept has replaced the original physical version in most

scenarios.

The IoT similarly uses metaphors as per other digital systems. An application for controlling
a device may show the user switches and dials that mirror or replace the switches and dials
of the physical device it controls, as with Amalgam. In the case of a virtual device, it may
show the user a representation of a physical interface, despite the device itself not actually

existing.

Skeuomorphic Design

Skeuomorphic design is an approach to design in which the digital representation
of a metaphor is visually similar to tat of its physical counterpart. For example, both
the Notes and Books applications supplied in the initial versions of Apple’s iOS took
advantage of this and were designed to resemble lined paper and a bookshelf re-
spectively. However, this is only a new name for an old concept. WinAmp also used
this approach heavily throughout its existence, and the idea of simulated 3D ‘but-
tons’ in an interface dates back to at least Apple OS 1 in 1984. Examples of skeuo-

morphic design can be seen in Figure 2.11.

2.13.2 A Cogin aSocial Machine

While the Internet and the Web and, as a consequence, the IoT and WoT, can be viewed from
purely a technical point of view, they can also be viewed as a part of a larger ‘social machine’
of people and technology. Shadbolt et al. [176] describe these social machines as networks
of people and machines that come together to complete a task or support a community.
Among the examples given are crowdsourcing maps and those groups that have formed to
support those with specific health conditions. The machines may be centred around a
single platform, such as a social network, but they extend beyond it, similar to the way Agile
Development [177] is adaptive and will use the best tools for the job at hand. In fact, a
project using the principles of Agile Development could be framed as a social machine
integrating many people, including developers, customers and other stakeholders. It could
also include an array of different platforms and technologies to support the development
and communication that arises within it. One of the issues with this approach is that it is

hard to draw the line between the start and end of a social machine, as it is more of an

44 Chapter 2. Literature Review

® File Edit Uiew Special

System Folder Note Pad
6 items 173K in folder

ilal
This is a Note Pad test.

Inside
Apple

HILLIER

L

will ATET LTE 11:47 AM % @ | st AT&T LTE <, 11:38 AM

Notes New Note "~ Games

Toda Z
g “» 3 of 24 Recommendati(

t\& Doodle Jump Downloa
ko ok

3@ Nimble Quest Downloa
Fkxkk

1. DJ Mike Liama - Llama Whipping Intro 0:05 "‘
Il
I
|
|

Hrnumpa

FIGURE 2.11: Examples of skeuomorphic design: Apple System 1 (top-left) [172]; Apple
i0S Books (top-right) [173]; a WinAmp skin (bottom-right) [174]; and Apple iOS Notes and
Games (bottom-left) [175].

analysis tool than a concrete specification, especially given that many systems involved will

not be closed.

Madaan et al. [178] take this a step further into the realm of the IoT and define these systems
as Cyber-Physical Social Machines. These machines can be interacted with directly, as with
most social machines, and also passively through sensors, to the point that an actor may be

unaware that they are integrated within a machine at all.

Using the social machine as a lens is important for this thesis, as the product of it has to be
evaluated with respect to the social machine that it could be a part of and not just the
technical potential of its construction. While it is essential to know whether the approaches
used here are possible to build, it is also very important to know whether they could be used
beyond this thesis as a viable part of a larger ecosystem. One of the potential outcomes
could be to enable Web developers to transition to new roles as WoT developers more easily,
a view shared by the W3C’s WoT Group. In which case, any technologies would become a

key, though small, cog in a much larger social machine.

2.14. The Future and IoT Environment Design 45

2.14 The Future and IoT Environment Design

The IoT and anything surrounding it will need to consider both the technical problems that
come with scale as well as the human problem of explaining new paradigms in a relatable
way. It will also have to cater to the audience, using metaphors that are broadly
understandable to the general user, as well as metaphors that are useful in specific domains.
Even in highly technical domains such as programming, metaphors will help people to

understand and implement key ideas in the IoT.

Despite the scale of the IoT increasing every year, deployment sizes are likely to form a
power law, as for many other aspects of the Web. This means that while large-scale
deployments have to be catered for, many — if not most — deployments will be smaller in
scale. Any potential solution has to provide for all of these potential deployment equally

well.

2.14.1 The Case for Open Standards

Open standards enable users to take control of their devices, a notion that can be contrary
to the interests of the businesses that produce them. Apple, for example, has long been a
proponent of a ‘closed ecosystem’ wherein users can only use their devices in conjunction
with other Apple devices and services. Before he passed away, Steve Jobs emphasised this in

a 2011 internal memo [179].

An important issue within the IoT is support for older devices and this can be aided,
although not solved, by open standards. There is little reason for a company to keep
supporting a product that is no longer profitable or else offers non-tangible benefits to
them, thus leading to obsolescence. Among the outcomes of this lack of support are the
manufacturer deciding not to upgrade firmware for continued compatibility and security;
not providing parts to repair it; disabling a cloud service it relies on; or simply going out of
business. Open standards allow the expert user to mitigate some of these scenarios and
potentially help novice users in that, at the very least, they can replace missing cloud

services with alternatives or else produce generic tools.

Obsolescence is a serious issue for typical computing-based devices such as mobile phones
and smart watches, but is arguably even more complex for IoT devices. It is perfectly
reasonable to assume, where a device is composed of a mechanical device and a computer,
that the mechanical part could outlive the computer or the cloud service the computer links
to. However, if the device relies on the computer or service to function at all, then this leads
to inconvenience for the user when the service or computer fails. There are plenty of
examples of kitchen devices and tools which have survived since the 1950s on Reddit’s ‘Buy
It For Life’ subreddit [180]. While there is obviously a large amount of survivorship bias [181]
involved, this does not negate the fact that devices have survived for 70 years and continue

46 Chapter 2. Literature Review

to function, while IoT devices today would have likely suffered either a failure of their
internal computers or those services upon which they rely. Additionally, there is an
environmental factor to this, as an average user would have to dispose of a device that is no

longer supported, despite the mechanical parts being in a potentially functional state.

The Little Printer

One early example of IoT obsolescence was the Little Printer [182], a receipt printer
repurposed as an ambient display and news feed. The company shipped the first
items in 2012, yet the product did not survive beyond 2014, leaving a lot of users
with an unusable, but still perfectly functional device. A few years later in 2019, a
digital studio brought the Little Printer back to life as a promotion for their business
[183]. However, this was only possible due to the work of Matt Webb in hacking
the device and producing the open source Sirius Server [184] for it, which he was
only able to do because the device itself used open standards for communication.
This type of approach is a workaround to the problem and not a solution per se, but
becomes impossible with devices that have been actively protected from tampering
using encryption or even simply hard-coded URLs. Some devices go further and
employ closed or modified versions of standards in their hardware, such as many of

Apple’s chips used for communication in their headphones and watches.

AWS Outage

While the loss of services may not be permanent, even a temporary service outage
can cause a lot of problems. In November 2020, AWS (a major supplier to thousands
of IoT businesses) had a major service outage [185], causing many IoT devices to
stop functioning for the duration of the issues. Devices which were more open could
have readily switched to an alternate service, but such devices are at odds with the

ethos of systemic control as practiced by many of the large IoT players.

2.14.2 The Case for Re-Use of Web Standards

There is a recurring theme in the literature that the re-use of Web standards should form the
core of the WoT [186]. However, the direction of the industry — as shown in the previous
section — indicates a disparity with this. Companies have again chosen to produce closed
systems akin to AOLs ‘walled garden’ of the late 1990s [187] which was widely regarded as a

bad move.

2.14. The Future and IoT Environment Design 47

They have thus each created their own closed ecosystem with little or no active
development supporting interoperability, and this has already led to a fragmented
marketplace in which it is nearly impossible for two devices from two different
manufacturers to communicate seamlessly. Matter may help or even solve this, but it does
not yet have the momentum necessary to overwhelm the competition, and its lack of
cooperation with open standards groups, together with the large financial barrier to entry,

will likely hinder universal acceptance.

Re-use of Web technologies could help in this area, as the initial push of open standards
overcame the walled gardens of the past. Specific to this thesis is the notion of re-use of the
DOM and HTML, JavaScript, and CSS, as they represent the core of the Web. People have
long attempted to envision the use of CSS in other situations, and even Hakon Wium Lie’s
PhD asked whether “style sheets describe presentation in domains other than electronic

documents?” Hakon Wium Lie’s PhD [7]. One example he gave can be seen in Figure 2.12.

Norway Oslo Drammensvn 97 b {
floors: 3;
color: #FCA;
roof: mansard;

b

FIGURE 2.12: An example of CSS being used in a non-document domain, from Hékon Wium
Lie’s PhD Future Work chapter [7].

The CSS specification itself allows for the typesetting of physical documents, which is the
only supported use of the standard outside of digital media. It offers several features,
including page numbering, physical units of measurement, print layouts and odd/even
page selectors, although many of these lack proper implementation in most of the systems
that use them. One of the very few systems to use CSS for typesetting is the proprietary

Prince: Print with CSS [8] product, whose chairman is Hakon Wium Lie.

The specification also allows for styling spoken output using the Speech Module [188];
including defining pauses, tone of voice, volume, pitch, gender and voice family. The latter
is the equivalent of a font for a voice. While this is largely an accessibility feature, it shows

support from the maintainers of CSS for the standard to be used outside of simple
typesetting.

Other examples of using CSS outside of digital media are scarce, but in 2015 Martin
Schuhful} gave a demonstration entitled ‘Let there be light’ [1] at the commercial JSConf
where he used CSS to overlay the DMX protocol [189], as seen in Figure 2.13. As part of the

demonstration he controlled the stage lights in real-time using CSS commands.

Another case of thought which runs parallel with some of the concepts introduced in this
thesis is an article by Mate Marschalko [190] from 2017 in which he presents the idea of

48 Chapter 2. Literature Review

css to the rescue

pretend dmx-params were css-properties

' pan: ©; tilt: O; uses rework to parse Css
dimmer: ©; shutter: open;
white;

“computed style results from applying all
properties in reverse specifity-order

let dmxOutput = new DmxOutput(.);
let cueloader = new CssCueloader(dmxOutput);

daxOutput .start(20);
cueloader . 10adCss(£s. readF 1 1eSync(

cuel.oader . setCue(

just load the css-file and set a ligt

finally...

‘position-presets’;

*{
pan: ©; tilt: 0; speed: 1;
dimmer: ©;

7 color ;

8 shutter: open;

spot {
; zoom: 0; iris: @;

spot-position-mirrorball;
wash-position-roof;

FIGURE 2.13: Captures from the video of the ‘Let there be light’ presentation demonstrating
the utility of CSS and SCSS to control stage lights using the DMX512 protocol [1].

using XML to represent environments and CSS to control them. He calls these IoT Markup
Language (IOTML) and IoT Style Sheets (IOTSS), respectively, and the concept is very similar
to some presented within this thesis, yet is more limited in scope. His approach uses a
hierarchy of DOM elements in XML to represent devices and attributes attached to the
elements to represent their state. In many ways it is similar to the first iteration of the first
experiment of this thesis which was presented [191] at a commercial SkillsMatter

conference in October 2015, initially called Real CSS.

Re-use of these specifications could not only prove faster than producing new ones, but also
allows the re-use of existing tools and frameworks, thereby requiring less effort from existing
Web developers to make the transition between domains. It also goes some way to treating
the WoT as a social machine, one which is evolving from the current social machine of the

Web rather than just being a mere technological advancement.

2.15. Limitations of Existing Research 49

2.15 Limitations of Existing Research

The prevailing systems seem to be converging on an outcome wherein the W3C’s WoT
system will be able to describe many other systems and, most likely, Matter will be the
dominant consumer system with a fairly comprehensive industry backing. Alongside this
will be several bespoke systems, and the high-end systems will likely continue to operate as
proprietary IoT implementations. However, there are a few challenges that these current

and near-future projects cannot overcome easily.

The commercial projects are very focused on solving those issues faced by the backers of the
specific project while keeping control within the project. Matter is a good example of this, as
a certain amount of it is open source, while a lot of its standards and implementations are
closed [11]. However, membership of the group is prohibitively expensive and it is the group
members that ultimately define and drive the goals. Their unwillingness to work with other
groups — like the W3C - is fairly typical of commercial ventures. Consortia such as this have
the joint aims of creating marketable goods, while simultaneously creating barriers to entry

into the marketplace through secrecy and fees.

Academic research in the area investigates the very granular technical problems or else
studies large social issues brought about by existing developments. This is very useful, and
the findings are often employed by larger groups, although this approach rarely looks at the

larger picture of interoperability, and almost never considers the end-user or implementer.

Other organisations, like the W3C, focus more on the implementer and aim to create a more
homogeneous system, one that follows expected best practice. This is an approach that
favours the implementer with the hope that it will create a predictable and consistent
experience for the end-user. However, in this case, they have chosen to discard a great
number of their own potentially useful technologies in favour of a much more semantic
approach. While this seems to be a very sensible and well thought out approach, it risks
alienating existing Web developers, as their skill-set will not easily transfer to this new set of
standards. Many Web developers have no formal Computer Science training, and some of
the concepts involved in the W3C’s approach require an academic knowledge of entity
relationships and semantic data, amongst other things. This is a mindset that may not be

compatible with more visual-thinking and design-oriented Web developers.

In the following chapters, this thesis attempts to avoid some of the highlighted pitfalls of the
ecosystems and methodologies outlined in this chapter, through an alternative to the W3C'’s
mental model for the WoT. Re-use of the existing standards of HTML, CSS and JavaScript,
that have so far been ignored by the W3C’s WoT Group, could allow for control of
environments containing IoT devices using the metaphor of a Web page. The hope is that
this could be a palatable transition for Web developers, while being compatible with the

Web as it exists today. There is no implication that it should override or replace either

50 Chapter 2. Literature Review

commercial implementations or the W3C'’s approach, but it could potentially replace

aspects of them, or simply provide a familiar overlay for a complex new technology.

51

Chapter 3

Theoretical Framework

This chapter explores the high-level challenges of the thesis; the knowledge gap it addresses;
how it addresses both; and why it is important to do so. The aims described in Section 3.3
are threaded throughout this thesis from methodology and planning, to experimentation,

and finally to the discussion of the potential impact of the resultant findings.

There were three aims identified as key stages in the development of the approach taken by
this project. Collectively, these aims target the theoretical, practical and social challenges of
mapping IoT environments to the DOM. They were executed through four key experiments
(discussed in detail in Chapter 5) which encompassed: a theoretical approach in
Experiment 1; a working implementation in a real environment in Experiment 2; a more
refined simulation of multiple environments in Experiment 3; and finally, an assessment of

the idea through the eyes of the wider development community in Experiment 4.

This chapter sets the scene for the following chapters, and is followed by Chapter 4,
containing decisions that were made before experimentation could commence, and
Chapter 5, which describes the approach, results and conclusions of each experiment in
detail.

3.1 Challenges

The key opportunity mentioned in the previous chapter is an approach that allows Web
developers to use their existing knowledge to program for the IoT. This gap exists because
the systems described thus far all struggle to overcome a couple of challenges.

All of the offerings are, to some degree, external to the Web of documents. For example,
many loT devices are accessible through the API of a server, hub or device. This means that
they may be controlled or queried using a request from a browser, and data can be shown in

the browser, yet they are not intrinsically a part of the document in any way. The W3C WoT

52 Chapter 3. Theoretical Framework

Group’s system allows a description of a device to be requested in the form of a TD, then the
device can be controlled or events subscribed to, although the device remains external to
the extant Web. This leaves a gap for a system that more tightly integrates the Web and IoT,
for example by allowing a device to be placed on an even footing with a block of text or a
video within a Web page. In a similar manner to how a <video> element is placed in a Web
page brings an external video resource into the DOM, it would also be possible for an
element representing an IoT device to bring an external physical resource into the DOM.

The re-use of technology in this way could save developers both time and effort.

Existing IoT solutions require a substantial body of new knowledge to be learned, which is a
barrier to entry that incoming IoT developers must overcome. Even in the case of the W3C
WoT Group’s project, which aims to be Web-native, a different mental model has to be
adopted in relation to other Web development. Each approach and system requires Web
developers to significantly increase their mental burden, at a juncture when they are already
strained by a large number of ever-evolving frameworks. The consequence of this could be a
wholesale rejection of the technology or else the forcing of developers to specialise into a
narrower niche. In doing so they would either suffer increased stress, or else limit their
opportunities considerably. An alternative solution could narrow the gap between the
mental model for a Web page and that of an IoT deployment, and approach which could

hopefully mitigate some of these negative outcomes.

While neither of these challenges is likely to be an insurmountable barrier for an
implementation or the development of the WoT as a whole, it is possible to do better.
Through the re-use of existing technologies and standards, it will hopefully be possible to
create an approach that could simply repurpose existing developers toward new WoT
projects using their current skillsets. We treat IoT devices as a part of the Internet and so, by

extension, we may also be able to treat the WoT as an integral part of the Web.

Guinard, Trifa and Wilde [192] made a first step towards this by describing a WoT system
which connected devices using REST [193] rather than RPC [194] approaches. However,
there exists a chance now to go a step further and bring the devices into Web documents.
Guinard, Ion and Mayer [195] recorded the phrase from a developer that “Everybody who is
using a browser already knows a little about [REST]”, and it follows that everybody who is

using a browser also already knows a little about the DOM.

3.2 The Gap

As already alluded to, there exists a gap in the WoT wherein devices become more tightly
integrated within the Web and particularly within Web browsers. Specifically,
representations (or digital twins) of the devices can be slotted into a DOM as nodes in the
tree. These twins are then mapped to real world devices, and thus any change to either is

reflected in the other. The DOM in question may or may not also be a Web page, but if it is,

3.2. TheGap 53

then the device elements could be treated transparently and with equal weighting to any

other element.

The use of the DOM also opens up the potential to apply many other Web technologies, but
this thesis explores only HTML, CSS and JavaScript. It focuses on the use of CSS to represent
and control the state of an IoT environment in much the same way as it is used on a Web

page to control the visual state.

The potential for this approach is very obvious for presentational and visual properties of an
environment, such as the colour of lights, which was briefly explored by Martin Schuhfuf$
[1], but does not have to be limited to this. As Hikon Wium Lie alluded to in his thesis [7],
CSS can be applied to much more than just Web documents. There is no technical
difference between controlling the colour of a light, the temperature of a refrigerator, or the
height of a block of a stage. As yet this approach is an almost completely unexplored area,
yet one with huge potential. This thesis demonstrates how an environment represented
using a DOM can be controlled and monitored using CSS and JavaScript in ways that have
never been attempted before. In doing so, a truly Web-native approach is explored,

implemented and tested.

3.2.1 Specifics and Justification

Simply having a gap in knowledge is insufficient to justify a thorough investigation, as there
must also be a technical or social reason to explore that niche. In this case, there are both

technical and social reasons for doing so.

3.2.1.1 Technical

Technically, current approaches to controlling the IoT are inefficient and relatively naive.
They are inefficient in that, for the most part, they do not take advantage of many of the
benefits that existing Web technology has to offer, and naive because they offer very limited
control over the devices within their respective ecosystems. Commercial systems are

particularly guilty of these failings.

54 Chapter 3. Theoretical Framework

USER BUTTOM SERVER PlealTAL TWIM PEVICE.
\ PRESS N | I I
I I NOTIFY J | |
I I | | |
I I READ I |
RECIPIEMNTS
I I | I |
I | | | COMMAMP N|
I 1 71
al I | I |
I _ >I | I |
I I | I |
MNOTIFY
I I i I |
I I | |
READP
I | | RECIPIENTS | |
I | | COMMAND)l |
I | | | COMMAMD)l
c2l I | I |
I I | I |
PRESS N
I I | I |
MOTIFY R
I I i I |
I I |
GUERY POM
I I | | |
I I | COMMALID J |
| | | | comme
P.‘ 1 _____ l o _____ P o ____ - _ _.
USER BUTTOM WEB PAGE PlalTAL TWIM PEVICE
I | | | |
PRESS N
I I | I |
NOTIFY .
I I i I |
I I | I |
I | | GUERY POM |
I I | I |
X COMMAKD N
| | | ! |
) COMMAND N
[I | | ’
I I | I |
PZI | | | |

FIGURE 3.1: Situations Current 1 (C1), Current 2 (C2), Proposed 1 (P1) and Proposed 2 (P2),
in which a user presses a button which then acts upon a device.

3.2. TheGap 55

Considering the most basic case of a device being turned on by a button, modern IoT
systems use two messaging approaches for remote control (C1 and C2 in Figure 3.1) which
both rely on a hub or server. A third method also exists, wherein the user’s application sends
a message directly to the device without an intermediary. This type of direct control is less
common commercially as many users want remote access and it is simply more secure to do
this via a hub or hosted service. With the advent of IPv6 [17] and 6LoWPAN [152] we may yet
see more direct control without hubs in the near future, once the security issues of doing so

have been overcome.

Figure 3.1 shows the two current server-based situations for messaging an IoT device using
the Web (C1 and C2) and, also two other proposed alternatives (P1 and P2). These proposals
attempt to overcome the failings of C1 and C2 by taking advantage of existing Web
technologies. Both C1 and C2 use Web and Internet technologies, but for the most part, they
fail to take advantage of the scalability, granular control, or interoperability that the Web
offers. Moreover, they also ignore the vast amount of optimisation and pre-existing code
that has been written for the Web and Web browsers.

Both C1 and C2 require proprietary code to be written for each API route, which from a
development point of view can be complex, repetitive and time-consuming. A developer
would need to produce a hub API with many routes, a Ul that calls these routes, and devices
with their own APIs called by the hub. P1 improves upon this by using the DOM as the
engine for all routes, meaning that the developer would only have to write the interface
between the hub API and the selection engine once, and this would work across many
scenarios. P2 moves this selection away from the server and into the domain of the browser
which already contains a DOM, so the developer no longer needs to have a central hub (or

else only a very basic hub) and instead must just write the device APIs.

C1 and C2 demonstrate a loss of control for the user whereupon their action is not linked
directly to the outcome. The action the user takes could be the same, but the server might
perform any action when a specific route is called. The control and power rest entirely with
the hub software and not with the user. P1 does not improve this scenario, but P2 places the
power in the user’s hands. While this is unlikely to affect novice users, it could be very useful
for advanced users and developers. Both P1 and P2 offer granular control over devices
within the DOM, although P1 requires the developer to trust the hub’s implementation of
the DOM.

C1 and C2 require that the button makes either a single call to one server, or else need
custom code to be written to contact multiple servers with multiple requests. P2 allows for
all communication from the UI to be delegated to the digital twins which should already be
linked to their physical counterparts. In this situation, the button code does not need to be

customised beyond a selector which chooses which twins to send the command to.

P2, once fully realised, would enable control of the IoT with almost no proprietary code.

This would be far quicker more robust. Use of the DOM enables massive scalability and

56 Chapter 3. Theoretical Framework

granular control, which can be aided by the use of CSS selectors to direct messages to sets of
devices. Interoperability comes with this by default, not only between devices within the

same DOM, but also between existing documents and code libraries.

P1 and P2 are explored further in Experiments 1-4 in Chapter 5.

3.2.1.2 Social

Current systems typically require a developer to master a new system or paradigm or, at the
very least, a new API. While developers are very adept at doing this, each new approach
forces them to either generalise and increase their mental burden, or else to specialise and
reduce their employability. Within the front-end development space there are currently
three competing frameworks, namely React [37], Angular [36] and Vue [38], with many
smaller frameworks of varying popularity. Each of these follows a similar approach, yet they
are all sufficiently divergent that experience with one does not necessarily mean that a
developer will be able to work with another without acquiring new skills. However, as they
are based on the same underlying technologies, it is possible to move relatively quickly from
one framework to another. The IoT space has yet to reach this level of complexity, as most
interactions are from one user to one device and employ relatively simple APIs. Although, as
the complexity of the environments increases, it is not unreasonable to assume that the
complexity of control frameworks will also increase. Treating the WoT as a new problem

requiring new solutions only increases the number of skills a Web developer must learn.

Socially, this presents something of a problem. Provided there are a finite number of
developers and assuming that they would generally rather focus on a niche area than suffer
the stress of trying to know everything, then forcing increasing specialisation upon them
will lead to a fragmented pool of talent with fewer developers able to perform work in each
area. The re-use of extant Web technologies could aid this approach by not forcing a
division to arise between the Web and the WoT. Directly applying such approaches and tools
of the Web to the WoT could make it possible for developers to become both Web
developers and WoT developers. The analogy is somewhat similar to React and React Native
[196], which share a common approach and, for the most part, a common language, but

which are applied to quite different problems.

This strategy could also have a cascading benefit to less technically proficient users, as it
may be more likely that generic and user-friendly tools and applications could be built if
more developers are focused on a smaller number of technologies. In this case, the market
competition would be shifted from competing standards to competing implementations; an
echo of the change which benefited the users in the first browser wars [197]. Once all the
browser implementers began using the same standards, they began to compete in terms of

usability and supporting features.

3.2. TheGap 57

3.2.2 How This Fits Into the Timeline of the WoT and IoT

While this initially seems to be a parallel development, at least when compared to the
current state of the 10T, it can also be seen as filling in a few missing niches and allowing for
a natural progression from naive young technologies into more mature and fully featured
ones. It seems most likely that it could do this by becoming a standards-compliant layer on
top of the W3C WoT Group’s implementation which is, in itself, a layer on top of other IoT
control systems. However, this level of integration is beyond the scope of this thesis, one
which instead aims to validate whether using the DOM and CSS is a sound approach and

therefore worth pursuing.

The literature review has revealed that there has been a logical progression to realising the
Web we use today, and this can be seen mirrored in the progression of the IoT and WoT. Both
follow a few linear steps and both share important stages in their development; pioneered
as proprietary solutions only to be subsequently replaced with a standards-compliant and
open version. The two timelines are compared in a very simplified and tailored way as
outlined in Table 3.1.

58

Chapter 3. Theoretical Framework

The Internet and the Web

The IoT and WoT

The Internet began life as two
mainframes connected over a large
distance. This proprietary protocol
evolved into the Internet Protocol, an

open standard.

The IoT began its journey as a computer
and drinks machine connected over

a (much shorter, but still significant)
distance. This proprietary approach of
probing an open port has been replaced
with REST APIs and sockets.

The Internet grew to many connected
mainframes which communicated with

each other.

The IoT grew from single device control,
to multiple devices communicating with
each other within an environment at
Xerox PARC [115]. Later deployments
have used proprietary implementations,
although more recently they are being
replaced with Thread, Apple Homekit
and other commercial (but largely open)
standards. Soon they will be replaced
with Matter, which is another step
towards a universal, yet still commercial,

standard.

The Bulletin Board System allowed
for the direct connection to stores of

documents through a dial-up interface.

IoT ecosystems allow for direct
connection to hubs of devices through
sockets and APIs.

The Web uses the DOM to represent
structured groups of document

components.

IoT systems have many ways to group
devices, including lists of channel
subscribers in MQTT, although there
is nothing as structured as the DOM.

The Web creates a network of documents
that can be navigated through links.

In the early days there were many
discussions about how links should

be implemented, which led to a few
competing options put forward by
various influential people. To this day
there remains disagreements between
browser implementers and the W3C

about the direction of new features.

The W3C’s WoT project creates a network
of devices and TDs that can be navigated
through links. This could replace a

number of proprietary digital twin-based

systems.

3.2. TheGap

59

The Internet and the Web

The IoT and WoT

The creation of CSS allowed for styling
and theming Web pages, but this
emerged from a set of other competing

and precursor technologies.

This represents a key divergence as there
is not yet an open or universal way to
style or theme the IoT. Many systems
offer the scene concept which allows for
styling and theming of IoT environments
in various proprietary ways, yet are quite
restricted in their features.

The introduction of JavaScript in
the browser allowed for dynamic
interactions with Web page elements

and data sources.

Projects such as Node-RED and IFTTT
allow for scripting of interactions (and
automation) with the IoT, but these will
likely be replaced or augmented with the
W3C’s WoT Scripting AP

Many systems and frameworks have
been created and layered over the Web
since the mid-1990s to produce large
interactive ecosystems. Doing so would
not have been as straightforward without
the open and free nature of the protocols
and homogeneity of the process of

development for the Web.

The IoT and WoT are far from this level
of developer engagement as there

is not yet that level of homogeneity.
There are several systems with large
amounts of developer engagement,

for example Amazon’s Alexa platform.
This, however, is closer to AOLs walled
garden of information than it is to an

open equivalent like Wikipedia.

These layers over the Web have enabled
the Web 2.0 push, as well as the potential
for non-technical content creators to
engage directly with the Web and their

audiences.

The IoT and WoT are also quite a long
way from this, with current scene
sharing being distant from even a
MySpace or WordPress theme of the

early millennium.

TABLE 3.1: A comparison of key events in the Internet and Web with the IoT and WoT.

The gaps in the current WoT vision, as highlighted in Table 3.1, are a lack of a DOM

equivalent and the dearth of a CSS equivalent. As a result of building these, it is conceivable

that a barrier could be lowered for developers wanting to engage with the IoT.

Representing IoT devices in a DOM could open up several avenues for more closely

mirroring the progression of the Internet and Web and aligning them with other

technologies in that chain. Use of the DOM may require a few tweaks, but once complete

the device and its components would be in the same format as a section of a Web page and

its children. This opens the WoT to the use of CSS, or else a close cousin, in order to provide

a more standardised way of providing themes as well as control over larger deployments.

These, in conjunction with JavaScript and potentially the W3C’s WoT Scripting API, could

mean that not only is there a WoT ‘piggybacking’ on the Web we already have, but also that

60 Chapter 3. Theoretical Framework

existing frameworks and tools may only require minimal changes to allow them to work
with the WoT as well. Hopefully, a by-product of this thought process might yield a vastly
simplified mental model of development for the WoT. This could possibly even save many
years of unnecessary re-development in building new frameworks for a new WoT by instead
re-using existing technology through a compatibility layer sandwiched between the IoT and
the Web.

3.3 Aims of This Thesis

The fundamental conclusion from the literature review is that there is a common arc to the
development of the Internet and Web. It is the underlying assumption of this thesis that the
IoT and the WoT share a similar trajectory. Further, there are some gaps in this arc for the
WoT which could be filled using technologies from the Web. With this in mind, this thesis
will attempt to push the progression of the WoT closer to the progression of the Web via

three overarching aims:

Aim 1: To treat IoT devices as we do the elements of a Web document by representing them
within a DOM

Aim 2: To build a system for controlling and monitoring loT environments using only

browser technology, ideally with CSS and JavaScript

Aim 3: To produce an approach which is acceptable to existing Web developers that could
allow them to easily transition into WoT development, thereby following existing best

practice for Web development

These three aims are addressed further below:

3.3.1 Aim 1: Treating IoT Devices as DOM Elements

The building blocks of a Web page are the HTML elements of which it is comprised.
Similarly, the building blocks of an IoT environment are those devices of which it is
composed along with their components. Treating an IoT environment of devices similar to a
document of HTML elements allows for an application of existing Web technologies.
Notably, devices could be added to a DOM in a hierarchy, and the resulting tree would be a
representation of the environment in which they exist. This was explored initially in

Experiment 1 and continued throughout the other experiments.

Experiment 1 was a first attempt at modelling an IoT environment using the DOM and took
advantage of XML elements to represent an environment’s devices and the components of
those devices. It did so as a hierarchy which was structurally identical to any other XML
resource, and similar to a Web page. While the XML approach was replaced with HTML in

3.3. Aims of This Thesis 61

the real environment of Experiment 2 and the simulated environments of Experiment 3, the
devices and their components continued to be represented using DOM elements.
Experiment 4 used the simulated environments of Experiment 3 and therefore also aligned

with this aim.

3.3.2 Aim 2: Building an IoT System Using Browser Technology

Following on from the previous aim, once the IoT devices are represented within a DOM, it
is possible to apply the existing technology in browsers to both monitor and control them.
This would afford considerable potential for the significant re-use of existing approaches in
keeping with the prevailing mental model that Web developers use to build the Web today.
Key applicable technologies are HTML, CSS and JavaScript as they are ubiquitous in Web
browsers and were originally present as key ingredients of the Web at an equivalent

developmental stage as the WoT as it stands today.

Combined, the DOM, CSS and JavaScript complete the arc identified earlier and bring the
WoT more into line with the Web, an outcome that could bring significant benefits. This was

first tested in Experiment 2 and was taken further by Experiment 3 and 4.

Experiment 2 was the first to implement a working system, and did so using a headless
browser to house and interact with the digital twin of the environment and the twins of
devices within it. This initial version was limited by the available technology, but was vastly
improved upon in Experiment 3, which was almost entirely browser-native. Both used a
combination of HTML, CSS and JavaScript, and used each of the browsers’ native APIs for

managing the twins they contained.

3.3.3 Aim 3: Gaining Acceptance from the Community

Many of these benefits could only be realised with widespread acceptance. They may
include the creation and adaptation of frameworks, tools and applications that currently use
Web technologies; all of which would require significant investments of time and money. It
is assumed that acceptance is heavily impacted by how easy it is to transition to a new

process, as a small change will always take less effort than a large shift.

Acceptance could also ameliorate the social issues of current approaches. If an acceptable
solution can be found and adopted, then this could become a unifier and reduce the level of

fragmentation within the development space.

This aim was principally investigated in Experiment 4 where members of the development
community were asked to explore the WoT system developed in Experiment 3 and reflect
upon the suitability of the approach. The results were a combination of observations of their
performance and the shift in their mindset during the experiment, followed by their

subjective feedback regarding the experience.

62 Chapter 3. Theoretical Framework

3.4 Scope and Assumptions

This thesis is concerned only with the level of technical complexity that a Web developer
would regularly encounter. This includes code written using HTML, CSS and JavaScript. For
the most part, the inner workings of the browser, operating systems and device firmware are
not considered, and neither are proprietary layers or languages. Also omitted from
consideration are those technologies such as Web Assembly [77] which appeared much later
in the lifecycle of the Web. With respect to the OSI Model [88], this would be the application
layer (Layer 7), with some consideration of the presentation layer (Layer 6). Beyond this

model it also addresses the needs and opinions of the potential expert users.

The Open Systems Interconnection (OSI) Model

The precursor to the model was originally conceived in the 1970s, but took shape
as the OSI model in 1984 when it was jointly published as 1SO:7498 [198] by the
ISO, and as X.200 by the International Telecommunication Union [199]. Both the
original documents have since been withdrawn and replaced by updated versions.
While not a perfect model of modern networking, it is sufficient to help differentiate

what will and will not be considered further in this thesis.

In order to proceed, several assumptions must be made:

* Web browsers are largely similar and run at a high level of efficiency due to their

maturity and the collaborative effort and investment in their creation.

e Web browsers all have the same core functionality, primarily based on W3C,
WHATWG, and ECMA standards. As a result of standardisation, browsers all perform

an almost identical task, with mildly different optimisations and user experiences.

* The lower levels of networking within the system function correctly and without error.
For example, devices will always be discovered, security will always be perfect, and
messages will always be successfully transferred. While these are each very significant

and unresolved issues, they are outside the remit of this thesis.

These assumptions do, of course, ignore many current issues in the IoT, yet they enable
abstraction to a higher level. For the purposes of this thesis, they are someone else’s

problem.

3.5. Framing of the Analysis 63

3.5 Framing of the Analysis

The analysis within this thesis will use a set of analytical tools to assess how well the
solutions meet their respective aims. As the aims are both technical and social, the

approaches to each must be very different.

The outputs of the experiments in this thesis will be assessed by looking at them from both a
technical and social perspective. The overall framework is a new creation, but the method
used within each is not. The approach to each experiment will first be assessed for whether
it is possible to implement, then if it is practical from an engineering perspective, and
finally, whether the outcome is acceptable to and usable by the target demographic. Each of
these steps mostly depends on the success of the preceding one, and each probes the
solution a little further to ultimately show whether it can be considered a good solution or
merely an engineering curiosity. This is important because, while the approaches used in
this thesis are almost entirely unique from an engineering perspective, it is necessary to

assess their wider potential as a part of their integration into the social machine of the Web.

3.5.1 Possibility

On the surface, possibility is a binary outcome. In technology this tends to be a positive one,
in that anything reasonable can be done, and also that many unreasonable things can too.
The test here is whether the technical aims can be implemented within the browser
environment and within the confines of existing Web technologies. While it is expected that
the approach will be possible, there are many technical details to be considered and worked

through, and several possible implementations remain to be attempted.

3.5.2 Practicality

Looking deeper, it becomes a question of practicality, and whether the time, effort and
resources are worth spending. This applies both on a macro scale for the entire project, as
well as on a micro-scale down to the efficiency of storing the component of a device in the
DOM. A major mitigation of this approach is the use of other people’s work and indeed the
approach of ‘standing on the shoulders of giants’ is a core tenet of modern software

development.

This project is heavily reliant on existing browsers as it would be almost impossible to create
anew browser from scratch. Doing so would break one of the core aims of this thesis which
is to use existing technology as much as possible. It would also be redundant as the most
popular browsers implement the vast majority of Web standards. A key metric of the

practicality of any solution will be to what degree the browser had to be worked around or

64 Chapter 3. Theoretical Framework

against to implement it, and how much the browser would have to change to accommodate

such innovations.

Scale is another concern. While it may be that a solution is very simple to implement in the
browser, it could be incredibly inefficient to do so. For example, if a solution performs worse
than O(n), where n is the number of devices, it would more than likely be impractical in

large-scale deployments.

Luckily, many of the issues of scale have already been answered, as the DOM has been
designed to do this well. However, any workarounds, requirements or extra code required
may not work as efficiently as the browsers’ own code and, if a requirement of this WoT
approach breaks the scalability, then it will present a problem that would need to be

investigated.

3.5.3 User Acceptance

Even if an approach is absolutely possible and practical from a technical point of view this
does not mean it is a good solution. One of the aims of this thesis is to create something
which will enable existing Web developers to easily transition to the WoT. This transition can
only be achieved if the developers can and want to use it. Therefore, the user acceptance, or

in this case developer acceptance, of the solution is very important.

There are countless ways that user acceptance can be assessed, but they all fall into either
user or heuristic testing [200]. User testing could involve directly asking the user about their
experience or observing the user as they carry out tasks. It could happen in real-time as they
carry out the task or retrospectively, and there have been many approaches developed with
various benefits and deficits. Heuristic testing is performed by an expert and assesses an
idea from the point of view of a user. User testing is ideal for testing systems that already
exist, while heuristic testing is best used either before a system is built or within the
constraints of a purely theoretical system, however heuristic testing has merits in any

project.

3.5.3.1 User Testing

The methods of user testing employed within this thesis will involve observation of potential
users completing tasks and questionnaires. These are well established in the field of UX so
provide a good basis for evaluation. The specifics of these will be discussed within the

experimental methods.

3.5. Framing of the Analysis 65

3.5.3.2 Heuristic Testing

The majority of user acceptance will be assessed with heuristic testing performed by the
author, as an expert Web developer with experience in building and controlling IoT devices.
This is not a perfect approach, as noted by Nielsen and Molich [201]. One assessor is
insufficient as everyone has gaps in their knowledge and perception. This can be mitigated
somewhat by using established sets of heuristics for the analysis, and augmenting these
with the responses from the user testing as outlined above. Overall, this is enough to
ascertain whether the idea is good or bad from the point of view of the developer, although

some nuances will be lost.

The heuristics used here are those created by Nielsen and Molich [201]. Although the
original paper was co-authored by Rolf Molich, the 10 rules in use today are commonly
attributed to Jakob Nielsen as he later tested [202] and rewrote [203] them to “derive a set of
heuristics with maximum explanatory power” [204]. They were developed in 1990 and 1994
and are still relevant and in common use today, even though there are many alternatives.
The type of problems they can be applied to is deliberately loosely defined, and they have
been used for both software and industrial product design [205]. This is ideal for the IoT, as
itis a blend of both physical and virtual Uls.

Nielsen and Molich commented on alternatives to heuristic testing [201] and classified them
as formal, automatic and empirical approaches. They concluded that heuristics are a good
way to assess the usability of a system, as the alternatives are not always feasible. This is
often true for this thesis too. Formal approaches do not exist in any generically applicable
way, automatic approaches are limited, while empirical approaches are too labour intensive
and are ultimately deficient in scope. While there have been many advancements in
modern technology, particularly in relation to automation, the developer interface for the

systems described in this thesis is sufficiently novel not to be able to take advantage of these.

Nielsen’s Heuristics, verbatim from the original [204]

1. “Visibility of system status: The design should always keep users informed
about what is going on, through appropriate feedback within a reasonable

amount of time.”

2. “Match between system and the real world: The design should speak the
users’ language. Use words, phrases, and concepts familiar to the user, rather
than internal jargon. Follow real-world conventions, making information ap-

pear in a natural and logical order.”

66 Chapter 3. Theoretical Framework

3. “User control and freedom: Users often perform actions by mistake. They
need a clearly marked ‘emergency exit’ to leave the unwanted action without

having to go through an extended process.”

4. “Consistency and standards: Users should not have to wonder whether dif-
ferent words, situations, or actions mean the same thing. Follow platform and

industry conventions.”

5. “Error prevention: Good error messages are important, but the best designs
carefully prevent problems from occurring in the first place. Either eliminate
error-prone conditions, or check for them and present users with a confirma-

tion option before they commit to the action.”

6. “Recognition rather than recall: Minimize the user’s memoryload by making
elements, actions, and options visible. The user should not have to remember
information from one part of the interface to another. Information required
to use the design (e.g. field labels or menu items) should be visible or easily

retrievable when needed.”

7. “Flexibility and efficiency of use: Shortcuts - hidden from novice users - may
speed up the interaction for the expert user such that the design can cater
to both inexperienced and experienced users. Allow users to tailor frequent

actions.”

8. “Aesthetic and minimalist design: Interfaces should not contain information
which is irrelevant or rarely needed. Every extra unit of information in an in-
terface competes with the relevant units of information and diminishes their

relative visibility.”

9. “Help users recognize, diagnose, and recover from errors: Error messages
should be expressed in plain language (no error codes), precisely indicate the

problem, and constructively suggest a solution.”

10. “Help and documentation: It’s best if the system doesn’'t need any additional
explanation. However, it may be necessary to provide documentation to help

users understand how to complete their tasks.”

Despite the widespread use of heuristics, and the analysis by Nielsen (concluding that it is
usually sufficient), there is a great deal of value to be gained from direct interaction with the
development community, for three reasons. First, as the experimental systems will be both
built and tested by the same person (the author, who is professionally aware of the
heuristics), the system will likely, to a certain degree, meet the heuristics through design.
This is not inherently bad as, assuming that the heuristics are the measure for a good system

and the system can be built within those parameters, then it will have at least some of the

3.5. Framing of the Analysis 67

characteristics of a good system. However, an external opinion will always highlight those
issues and ideas which would otherwise be missed. Second, as mentioned, one expert is
insufficient for a true heuristic analysis, and finding another person willing to understand
each experiment to the necessary extent, with no material benefit to themselves, is both
unrealistic and unlikely. Additional user research will help to form a more holistic view,
revealing either consensus or disagreement with the author’s analyses. Finally, one of the
central aims is that the development community can use the approaches as laid out in this
thesis, and so direct feedback on this aspect will be very valuable not only in assessing the

feasibility of the technical approach but also in gauging its potential for adoption.

Several other sets of heuristics have been created since the late 1980s, although none are as
influential or as widely applied as Nielsen’s. The only other set worth mentioning here is
Schniederman’s Eight Golden Rules [206].

Schneiderman’s rules were the first set of published usability heuristics and were made
available in 1985. They have since undergone minor revisions, yet remain, at their core,
much the same. They are the heuristics on which Nielsen and Molich based their own set, so

have weight as context.

Schneiderman’s Eight Golden Rules of Interface Design, verbatim from the origi-
nal [206]

1. “Strive for consistency Consistent sequences of actions should be required in
similar situations; identical terminology should be used in prompts, menus,
and help screens; and consistent color, layout, capitalization, fonts, and so on,
should be employed throughout. Exceptions, such as required confirmation
of the delete command or no echoing of passwords, should be comprehensi-

ble and limited in number.”

2. “Seek universal usability Recognize the needs of diverse users and design for
plasticity, facilitating transformation of content. Novice to expert differences,
age ranges, disabilities, international variations, and technological diversity
each enrich the spectrum of requirements that guides design. Adding features
for novices, such as explanations, and features for experts, such as shortcuts
and faster pacing, enriches the interface design and improves perceived qual-

ity ”

3. “Offer informative feedback For every user action, there should be an inter-
face feedback. For frequent and minor actions, the response can be modest,
whereas for infrequent and major actions, the response should be more sub-
stantial. Visual presentation of the objects of interest provides a convenient

environment for showing changes explicitly.”

68 Chapter 3. Theoretical Framework

4. “Design dialogs to yield closure Sequences of actions should be organized
into groups with a beginning, middle, and end. Informative feedback at the
completion of a group of actions gives users the satisfaction of accomplish-
ment, a sense of relief, a signal to drop contingency plans from their minds,
and an indicator to prepare for the next group of actions. For example, e-
commerce websites move users from selecting products to the checkout, end-

ing with a clear confirmation page that completes the transaction.”

5. “Prevent errors As much as possible, design the interface so that users cannot
make serious errors; for example, gray out menu items that are not appropri-
ate and do not allow alphabetic characters in numeric entry fields. If users
make an error, the interface should offer simple, constructive, and specific
instructions for recovery. For example, users should not have to retype an en-
tire name-address form if they enter an invalid zip code but rather should be
guided to repair only the faulty part. Erroneous actions should leave the inter-
face state unchanged, or the interface should give instructions about restoring
the state.”

6. “Permit easy reversal of actions As much as possible, actions should be re-
versible. This feature relieves anxiety, since users know that errors can be
undone, and encourages exploration of unfamiliar options. The units of re-
versibility may be a single action, a data-entry task, or a complete group of

actions, such as entry of a name-address block.”

7. “Keep users in control Experienced users strongly desire the sense that they
are in charge of the interface and that the interface responds to their actions.
They don’t want surprises or changes in familiar behavior, and they are an-
noyed by tedious data-entry sequences, difficulty in obtaining necessary in-

formation, and inability to produce their desired result.”

8. “Reduce short-term memory load Humans’ limited capacity for information
processing in short-term memory (the rule of thumb is that people can re-
member “seven plus or minus two chunks” of information) requires that de-
signers avoid interfaces in which users must remember information from one
display and then use that information on another display. It means that cell-
phones should not require reentry of phone numbers, website locations should

remain visible, and lengthy forms should be compacted to fit a single display.”

There are, as expected, several overlaps with Nielsen’s list. However, Nielsen’s were selected
for use here as they are far more refined and have a clarity gained from extensive field
testing. Schniederman’s, in contrast, were produced by summarising the extant literature on

software user interface design and this is evident in the otherwise incongruous mention of

3.5. Framing of the Analysis 69

dialogs. Neilsen’s were designed to be more generalisable, as is demonstrated by the
mention of emergency exits as an illustrative use case, despite their evolving from a software
and hardware background. Nielsen’s business partner Don Norman goes on to expand on

this generality in great detail in his book ‘The Design of Everyday Things’ [205].

Heuristic testing has some significant drawbacks as was highlighted by Nielsen in his
papers. The key drawback, as aforementioned, is that every assessor has gaps in their
knowledge. However, this can be mitigated by multiple assessors with varying degrees of
knowledge. More specifically, it was found that experienced assessors overlooked simple
issues, while inexperienced assessors, as anticipated, missed complex ones. Further
experimentation determined that multiple assessors of varying skill levels will tend to be
more efficacious than one truly expert assessor, a finding in agreement with the concept of
the “wisdom of the crowd” as explored by Surowiecki in his 2004 book [207]. A related
drawback is that the assessment is subjective in terms of what is deemed to be good or bad.
Every developer will have their own experiences and opinions and this will inevitably lead to

a variation in how they view and rate the system they use.

An important advantage of heuristic testing is that anyone can perform it, although the level
of completeness will tend to vary with knowledge and skill. Linked to subjectivity, it is also a
matter of opinion as to what level of completeness is deemed adequate. This has been
mathematically explored by Nielsen and Landauer [208], who found that the number of
users required for a good result is usually surprisingly low, although the threshold for any

particular study remains a subjective choice.

71

Chapter 4

Methodology

This chapter explains the globally-applicable methodological choices made to implement
the aims of this thesis in the experiments described in Chapter 5. The methodology of the
experiments are described separately within self-contained sections of the next chapter.
The aims of this thesis are necessarily high-level and, as such, taking them from this
high-level abstraction to practical implementations required that several evaluations,

refinements and decisions be made.

Treating IoT devices as elements of a Web page is quite a theoretical aim and one that can be
assessed without the need to build anything. A thought experiment is all that is necessary,
although an implementation is more convincing and may highlight any obvious issues. By
contrast, building a system for controlling IoT devices that uses browser technology is a
practical experiment and one that requires a working prototype to demonstrate its
feasibility. Finally, exploring acceptance is less technical, yet requires critical evaluation and
the opinions of others within an experimental setting. These complementary, yet different

scenarios are explored in Experiments 1 through 4 in Chapter 5.

4.1 Hierarchical Modelling of Physical Environments

Physical environments are not typically modelled as a hierarchy or tree. They are often
described as a list of objects, or else visually represented as a 3D model. The use of a
hierarchical structure to represent a physical environment is not without its flaws, but
provides many benefits that are demonstrated in the following chapters. This approach,
called a compositional hierarchy, is used both in computer vision [209] and object-oriented
programming [210] and, as such, is frequently recommended to user experience and digital
designers [211] and so will align with how many Web developers see the world. It also suits
the construction of a built environment, as we first build a room and then fill it with
furniture. Then we fill that furniture with other objects in turn. However, how we perceive

and reason this environment on a day-to-day basis is beyond the scope of this thesis.

72 Chapter 4. Methodology

Compositional hierarchies, abridged to ‘hierarchies’ from here on, are employed in this
thesis as they are relatively simple to understand, particularly to a developer, while not
inherently dictating the semantic context of the relationships of their contents. The
relationship between two objects in the tree may be based on their physical positions or
something else, such as ownership or connectivity through a protocol. There are
undoubtedly situations where this approach does not work, including where an object has
multiple parents. This could be, for example, choosing to model a desk as a tabletop placed
on multiple legs. This can also often be solved, for example by making the legs into children

of the tabletop, or by creating a pseudo-parent that contains the legs and top.

Hierarchies, as a tree structure, come with potential benefits over a list, which is the obvious
alternative. A list is simple but does not allow for semantic ideas such as ‘contained within,,
‘part of’ or ‘owned by’ which can be implied by a hierarchy. For example, a list of devices as
in Figure 4.1 compared to a hierarchy of those same devices in Figure 4.2. The hierarchy
shows that the bulb is a part of the lamp and that the lamp is on the table. While the
relationship is not explicit, it can be easily inferred by a user. A hierarchy is particularly
powerful when used with virtual elements to group devices. In the case of Figure 4.2 this is
demonstrated by the ‘Music System’ element. A tree structure also brings with it efficiencies
in relation to search; for example when you are searching for a lamp and you know that it is
on a desk. In this case, the lamp could be found by inspecting 5 elements within the
hierarchy in Figure 4.2, yet would take 11 inspections in an ordered traversal of the list in
Figure 4.1. These are important reasons as to why a hierarchical modelling approach was

chosen over a simple list.

- Desk

- Bulb

- Monitor

- Laptop

- Mouse

- Keyboard

- Amplifier

- Left Speaker
- Right Speaker
- Chair

- Lamp

FIGURE 4.1: Alist of IoT devices.

4.2. Using Web Technologies to Model Environments 73

- Chair
- Desk
- Laptop
- Mouse
- Keyboard

- Music System
- Amplifier
- Left Speaker
- Right Speaker
- Lamp
- Bulb
- Monitor

FIGURE 4.2: A hierarchy of IoT devices with a single virtual music system element.

4.2 Using Web Technologies to Model Environments

When building a WoT system, it seems logical to use as many of the technologies that form
the Web as possible, and while Web protocols such as HTTP/2 [110] are widely used in other
projects, it would seem that the DOM, HTML, XML, and CSS are under-utilised. As a result,
the Web browser and its attached optimisations have hitherto been mostly ignored. In a
browser, the DOM [9] is used to model elements of a Web page and their physical
interrelationships. This project reuses the DOM in multiple ways to model IoT devices and
their resultant interrelationships. With this comes the ability to make CSS a part of the WoT,

and to use JavaScript as it is used in a browser.

The DOM and HTML specifications allow an element to be stored in multiple ways. They
could be stored using existing HTML elements (e.g. a <div> or <section>) with some kind
of identifier to show how they are connected to an IoT device (e.g. Figure 4.3). However, it
makes more sense to use a semantic element of some kind, as shown in Figure 4.4. This
figure shows two alternatives that were explored separately. The first, an XML-based system
which used <device> elements was explored in Experiments 1 and 2. These are valid XML
but not valid HTML. Later, the HTML Custom Element specification [32] became more
prominent and gained near-universal browser support and so a new, more
browser-compliant system was built in Experiments 3 and 4. Figure 4.4 shows the syntax
used for each, the key visual difference being that HTML Custom Elements require a ‘-’ in
the name. HTML Custom Elements are much more useful to a Web developer as they can be
included within existing HTML documents and so can seamlessly create hybrid data/IoT

documents.

74 Chapter 4. Methodology

<div device-id="14529f74-4d8b-4e43-abb1-384101819e75"></div>

FIGURE 4.3: A <div> element linked to an IoT device.

<device />
<iot-lamp />

FIGURE 4.4: Two examples of bespoke elements, an XML element (top), and an HTML Cus-
tom Element (bottom).

4.3 Storing Device State

Once the DOM can reliably represent the relationship of IoT devices, the question of
representing the devices themselves can be explored. There are many options when it
comes to storing data about an IoT device within the DOM, and digital twins have become
the industry standard. This thesis takes a slightly different approach to digital twins from
other implementations. Often, the digital twin is stored as a self-contained object, with its
affordances, properties and state defined within this object. Experiment 1 follows this
approach fairly closely, with the state stored in the XML element as attributes; however,
Experiments 2 through 4 diverge from the standard. Despite this, the implementations are
not at odds with the overall progression of the Web, and thus remain somewhat compatible
with the W3C WoT Group’s approach of using Thing Descriptions as a template for WoT

devices. This could be achieved using a reference, as seen in Figure 4.5.

<device twin="https://example.com/device_11232" />

FIGURE 4.5: An example of referencing data for an IoT device in the DOM.

Experiments 2 to 4 use custom CSS properties to represent state and store that state
externally to the element. This allows for some level of de-duplication and is aligned with
how the visual state of HTML elements is stored. This marks a key step in progressing
towards an implementation that is more closely aligned with the workflow and approaches
that Web developers use to build the Web.

4.4. Linking to Devices 75

4.4 Linking to Devices

Only Experiment 2 involves connections to physical and virtual devices, however, the
approaches of the other experiments also have the potential for the digital twins to be linked
to the devices they represent. Experiments 1 and 2 assume a 1:1 mapping of a digital twin to
a device and so any changes to either the device or the twin itself would be copied to the
other. Experiment 2 puts this into practice through a complicated event-based messaging

system.

The system built for Experiments 3 and 4 differs because it does not presume this 1:1
relationship. Instead, the device and its multiple twins are all treated as equals, and thus any
change to one of them would be propagated through the system until they all reflect the
same, correct state. This is more representative of a Web 2.0 system, whereby a user may
send a message to a channel and this message propagates to the other users, either directly

or else via a server.

4.5 Assessment Strategies

The experiments were designed to assess the three potential approaches identified during
the course of this project. Each approach and experiment grew from the previous one, and
added something extra to the overall picture. They were all assessed using the methods

outlined in the previous chapter, although to varying degrees and with differing foci.

Initially, it was important to know that the DOM could be used, and so Experiment 1 was a
largely theoretical exercise. This assessment required heuristic analysis, which helped to
find the flaws in the approach and pave the way for Experiment 2. Experiment 2 was
performed with the knowledge that the implementation was possible and so focused more
on its practicality. This led to the construction of a working Web-based IoT control system,
one which included physical and virtual devices. The issues in the assessment of
practicality, as well as technological advances, helped to specify the system used in
Experiments 3 and 4. Experiment 3 was the closest to a browser-based WoT system, yet
lacked a full physical implementation and so, once again, a heuristic analysis was chosen to
assess it. When this approach was found to be adequately acceptable, Experiment 4 was
devised to engage experienced Web developers who would be the target market for such a
system and thereby probe its acceptability. The following chapter describes and analyses

the experiments both separately and in detail.

Chapter 5

Experiments

77

78 Chapter 5. Experiments

5.1 Experiment 1: Using Attributes to Store State

It is generally encouraged that parameters relating to the state of an element that need to be
stored within the DOM will be stored as attributes of the element itself. The HTML Element
specification [4] demonstrates this, and the newer Custom Elements specification [32] also
relies on attributes and properties for passing data to a user-created element. An example

can be seen in Figure 5.1.

FIGURE 5.1: A ‘src’ attribute on an image element, which shows the location of them image
to be displayed.

The initial implementation of a WoT system employed this recommended approach, and
used XML to allow for the assignment of arbitrary element tag names such as <device> and
<component>. This was conceived before there was widespread support for Web
Components, so was the optimal choice. HTML was initially more restrictive and only
allowed a short list of Web-related tag names [212]. With HTML5 and the Custom Elements
specifications this has since been relaxed, allowing for arbitrary tag names in the former and
elements with internal processing and semantic meaning in the latter. The initial plan was
to use the DOM purely as a data structure to hold the environment, rather than as a part of a

document as delineated in later experiments.

A device could be represented using a <device> element. Then, any state was stored as
attributes on the device, as in Figure 5.2. A device was placed within a <context> element
and could have children which were <components>. Each of these could have data stored in

its attributes.

<device type="lamp" power="on" color="red"></device>

FIGURE 5.2: A device element with state.

The result was a DOM represented in XML, wherein each element was a device or else a
container for devices. The element could contain state, such as temperature or brightness,
again stored as attributes on the element. The approach not only allowed for representation
as a simple list, but also as a tree, which inspired subsequent experiments. Each device was
a digital twin that could be linked to a real device via a 1ink attribute. An example tree is

shown in Figure 5.3.

5.1. Experiment 1: Using Attributes to Store State 79

<context name="living_room">
<device name="television" link="https://example.com/device" power="on">
<component name="power_light"></component>
</device>
</context>

FIGURE 5.3: An example XML tree of IoT devices, with state represented using attributes.

Initially, this approach was designed to use only XML and JavaScript, but it became the
inspiration for using CSS as a state store and control method in later experiments.

5.1.1 Discussion

It was realised early on that this approach could be significantly improved upon and so it
never reached the implementation stage. This was for several reasons relating to practicality.
However, it is included because it played a large part in inspiring the future direction of the
project and is the first example of using a DOM to represent an environment. It is also

foundational to the approaches used later in this thesis.

5.1.1.1 Possibility

The concept of using JavaScript to manipulate XML is well established and JavaScript is

designed to work with XML in the same way as HTML. The system behind it would have
been very much the same as the one in Experiment 2. There are no open questions as to
whether it could have been done and it only failed to be implemented when it was

considered whether it should be done at all.

The thought experiment shows that the environment can be represented in a DOM and,
further, that this environment could be extended to nearly any practical size, as XML can
comfortably accommodate millions of elements; the actual number being limited only by

the parser.

5.1.1.2 Practicality

Ultimately, the experiment was cut short because it would not have scaled well or integrated
effectively with other Web technologies, despite following a standard approach.

Scaling was an issue because of the hierarchical nature of the tree structure. There were two
options for storing the state of a component within a device wherein that state also
depended on the parent device (e.g. a power state). Either the state would be set on the

device (as in Figure 5.4), or on the device and all children (Figure 5.5).

80 Chapter 5. Experiments

<context>
<device power="on">
<component></component>
<component></component>
<component></component>
</device>
</context>

FIGURE 5.4: Setting the state on just the parent.

<context>
<device power="on'">
<component power="on"></component>
<component power="on"></component>
<component power="on"></component>
</device>
</context>

FIGURE 5.5: Setting the state on the parent and all children.

The first is optimal for writing as it requires changing a single attribute, yet is inefficient for
reading as a component as it would have to read its own state and the state of all parents,
which is O(log n) (where n = number of nodes under a device). It would also present a
confusing user experience as, similarly to HTML and CSS, not all states should be inherited

by children, and not all states of a parent would apply to a child.

The second is optimal for reading as it would only require reading a single attribute, yet is
inefficient with respect to writing and the storage size of the DOM, given that the attribute
would have to be applied to a parent and all children which is an O(n) operation (where n =
number of nodes under a device). It has a mildly better user experience as it is explicit about
the state of each element within the DOM. While O(n) is not usually considered a bad
outcome, and O(log n) is often considered good, neither can take advantage of the browser’s
built-in optimisations, or use its native code, as the inheritance of attributes is outside the
DOM specification. Additionally, applying a state to multiple devices would always be an
O(n) (where n = number of devices) action as every device would need to have an attribute
created or updated. In contrast, changing the state purely in CSS - ignoring rendering — is
almost always an O(1) action as the state is updated in a rule rather than within the

elements themselves.

The approach also did not integrate well with other Web technologies. Using XML
immediately excluded a large number of existing libraries which were designed only for
HTML. This would have created a large barrier to adoption and acceptance by the
community. During the experiment it became increasingly obvious that the use of CSS as a
selection language could provide many benefits over the more traditional XPath used for

XML and, ultimately, pursuing this path rendered the attribute-based approach increasingly

5.1. Experiment 1: Using Attributes to Store State 81

obsolete. It was this decision that was the overriding reason that this experiment was not
implemented in code. While CSS can work with XML, the selection approach used by CSS is
heavily targeted towards the IDs and classes in HTML. Using the attribute selector (e.g.
device [power="on"]) to select all devices that are currently turned on was considered, but
this approach is clumsy and works around the problems within the approach, rather than
working with the language and the established industry standard approaches for the
application of CSS.

The one advantage of this approach over any of the later ones is the ability to select devices
based on their state. As in the previous example, being able to select all devices that are
currently powered on could be a useful feature, but ultimately is only made possible due to

the state being available within the device’s attributes.

Had this approach been continued, it would have resulted in an inefficient XML approach
which would have worked, yet remained very verbose, both within the XML and the CSS
selectors. However, the idea of using a DOM and CSS selectors together seemed possible
and sensible, albeit in a way that is more conducive to industry standard approaches, and
building as the specifications intended. Using the DOM with CSS selectors would allow the
system to take advantage of native browser methods such as querySelectorAll to select all
devices, components, or any subset of them. This was incredibly useful and powerful as the
time and money which has been invested in Web browsers over the last 30 years has led to
highly optimised renderers and selection engines that lie far beyond the capabilities of any
that a solitary developer can produce. The adoption of CSS selectors naturally led to the use
of HTML over XML and this, in turn, opened up the possibility of using other CSS features.
However, this approach was not directly compatible with the work in this experiment and so

aline was drawn and a new experiment started.

5.1.1.3 User Acceptance

Heuristic Analysis As the experiment never progressed to the implementation stage, the
best approach for assessing it in any detail is a heuristic one. Applying each of Nielsen’s
heuristics in turn, the system can be examined and the good features allowed to persist

while flaws are analysed. This led to the following analysis, deconstructed by heuristic:

1) Visibility of system status The visibility of status is a key benefit of using the DOM to
represent devices and environments. In this initial version there are two options for showing
status. Either the current state is replicated on each component and device, or else the
device inherits its state from its parent. In the former, the state of anything in the DOM is
very visible as a developer can read the state from any device or component in isolation. In
the latter, it is a little harder as the developer must know the position of the component

within the tree and work up to the root to determine any state which may be inherited.

82 Chapter 5. Experiments

There is also a level of conflict resolution that must be overcome. Typically this would be
that the child state overwrites the parent state in the case of a conflict, although there are
exceptions in the modern Web. A notable exception is the use of ! important in CSS, which

elevates the value to a higher position in the evaluation process.

In all cases, an expert user can immediately look at any component and see its state, for
instance whether it is turned on or what colour it is. In this respect, the approach is a

resounding success.

Both alternatives have an issue of verbosity to different degrees, and this makes the raw XML
much harder to parse visually than a document without multiple attributes per node. This

can be overcome using tools which are designed to help the user to traverse a DOM tree. For
example, the developer tools present in most modern browsers which only show the section

of the tree the user is interested in and folds away the rest, as seen in Figure 5.6.

tips://www.google.com/

FIGURE 5.6: Firefox developer tools showing a folded DOM tree.

Timeliness of feedback is beyond the scope of this implementation as it would be almost
entirely dependent on the connection latency arising between the user and hub and also the

hub and its associated devices.

2) Match between system and the real world The system mirrors the world, but it shows
only one interpretation at a time. The DOM is a hierarchy, but this could be positional,
based on ownership or even arrange in a domain-specific way; for example, it may be the
best option to arrange all devices into colour groupings rather than by where they physically
sit in a room, the limitation being that, once the devices are in a DOM, their interpretation is
fixed until the DOM is rearranged. Due to the nature of digital twins, it would be possible to

5.1. Experiment 1: Using Attributes to Store State 83

have multiple DOMs representing the same set of devices or environment and this is

discussed further in Chapter 7.

As mentioned previously, a compositional hierarchy is a familiar structure to developers,
particularly Web developers. The usage here is a reasonable way to model a physical space
for this audience and so, from that perspective, the DOM is an appropriate metaphor for

describing the problem.

In terms of the appropriate use of words and phrases, the recycling of technology brings
with it the re-use of terms, and those terms relate to the same concepts in this
implementation as they would within any other XML document. This is one of the key

benefits of this approach as it avoids new jargon or mental models.

3) User control and freedom The control of a system described in this way is solely in the
hands of the developer. They are free to make changes and reverse them, and the process for
each is the same. While there is no handholding in the form of a record of changes they can
simply ‘undo’, there is nothing in the architecture that prevents the tool they are using from
implementing it. Beyond this, the ability to control a device is identical to that of any other

IoT system.

4) Consistency and standards This approach is designed to follow Web standards, yet
there are a lot of different standards that could be applied to solve the problem. In this case,
the standards selected are not ideal for the reasons explained above. Overall, the system
would be very standards-compliant, meaning that a developer should be able to understand

it with only minimal training, although this alone does not make it a good system.

Consistency is challenged when considering the human aspect of the system. Where
synonyms, homonyms and different languages are considered then a lot of issues are raised.

This is discussed in far greater detail in Chapter 7.

5) Error prevention Some errors can be prevented by design, because an incorrectly
formatted DOM will not render in a browser. Errors should also be highlighted during any
manual editing in the developer’s IDE, provided the syntax is accounted for. From a logical
standpoint, there is nothing presented so far that would actively prevent logical errors. This
is a problem across the development field and one which is usually mitigated by warning

and error messages aimed at the developer.

6) Recognition rather than recall This is an approach in which this system could excel. As
it uses Web standards and presents the environment in a format that all Web developers
would recognise and understand, it scores very highly here. However, it falls down where
any XML-based system would, because while the structure is very recognisable, the set of

84 Chapter 5. Experiments

attributes used is an open taxonomy and thus the specific attributes have no semantic
meaning attached to them. This is contrary to HTML, in which most attributes, such as src,
href or class, have meaning attached to them. In this case, a developer would need a
reference as to what power means with respect to the device it is attached to. They would
also need to know which attributes are applicable to each device so as to save adding too
many attributes resulting in both unexpected results and a bloated DOM. This aspect would

be entirely dependent on recall, which is a strongly negative feature.

7) Flexibility and efficiency of use The flexibility of this approach is very good, as the
DOM can be reconfigured in any way that is desired, and attributes can be freely attached to
any element. Its downfall may be in having too much flexibility in some cases. As mentioned
above, a developer could add too many attributes to an element which in turn could create
unintended consequences, or else present a confusing document to the next editor. Overall,
the approach is designed to be as open-ended as the Web is, to allow developers to

implement it across any environment and integrate it within any pre-existing system.

8) Aesthetic and minimalist design The choice of XML and its associated attributes here
is not minimalist and if the state is not inherited then it is quite the opposite. It would be
very likely that a complex device with many sub-components would have a lot of
duplication of state replicated from the parent to all its children. Using an inherited state
would be more minimal, but having both structure and state in the same document is a

fairly cluttered approach.

9) Help users recognize, diagnose, and recover from errors Any critical errors or syntax
errors would be reported in the browser’s console or the IDE during development, although
logical errors would be hard to find. The document would be very densely laden with
attributes, and finding one that is missing, or noticing an incorrect (or additional one)
would be hard, due to its highly repetitive nature. Specialist tools would be needed as

currently the best help a developer would have would be syntax highlighting in their IDE.

10) Help and documentation Specific documentation does not apply to this experiment
as it was not implemented. However, as it follows Web standards, then the same
documentation for those standards would apply here too. While developers would need
basic documentation to learn how to represent an environment within a hierarchy, they
should already be familiar with all of the technology used here. There are also excellent
alternative sources of documentation to the official specifications which are available

around the Web for learning about Web standards and how to apply them.

5.2. Experiment 2: A Centralised, Hub-Based, HTML5 and CSS WoT System 85

5.2 Experiment 2: A Centralised, Hub-Based, HTML5 and CSS WoT
System

The second approach was a practical experiment that resulted in the creation of a
JavaScript-based hub application, several client libraries, and some physical devices built to
demonstrate it. The system was run in a real environment of varying complexity for several
months. This section is focused on the choices made, their impacts, and what was learned

from the implementation.

This experiment intended to take what was learned from the previous experiment and apply
it to building a new system that would address some of the shortcomings, while also testing

some new ideas in a deployment to a real environment.

The aims were to:

* Build a working physical prototype of a WoT system in JavaScript;

* Continue using the DOM to store the environment representation;

Use CSS selectors for deciding which devices to route messages to;

* Use classes and IDs on DOM elements and CSS for storing state.

The test environment chosen for the experiment was a bedroom. This was an easy
environment to access and monitor, but was also a relatively private space with one primary
user. This reduced complexity, but also allowed for a better evaluation of the system from

having to live within the experiment for many months.

A big advancement inspired by Experiment 1 was the the use of style sheets to represent
state. This is an example of a DRY (Don’t Repeat Yourself [213]) approach to code and
separates the representation of the environment from its state. It solves the issue in the last
experiment where the state required either storing many repeated attributes or retrieval
required traversal up the tree. It does this by replacing attributes with style rules which are
applied through CSS selectors, as demonstrated in Figure 5.7. The figure also demonstrates
the ability to use the CSS cascade to override state. This solution directly parallels the use of
style sheets on the Web which serve to prevent repeated style attributes on HTML
elements and separate the visual state from the structure and its data. This approach is in
line with the ethos of this thesis, namely that a lot of IoT problems could be solved using

existing solutions.

The system stores the application state in the same way as any other JavaScript application,
using a combination of memory, databases and configuration files. However, this state is
distinct from the environment state and can be disregarded for the purposes of this

experiment. The important state is that which is stored in CSS and is used to describe the

86 Chapter 5. Experiments

Attributes:

<device power="on" color="red"></device>
<device power="on" color="red"></device>
<device power="off" color="red"></device>
<device power="off" color="blue"></device>
<device power="off" color="blue"></device>

Classes:

<device class="class_a'"></device>
<device class="class_a"></device>
<device id="device_x" class="class_a"></device>
<device class="class_b"></device>
<device class="class_b"></device>

.class_a {
power: on;
color: red;

}

.class_b {
power: off;
color: blue;

}

#device_x {
power: off;

}

FIGURE 5.7: A comparison of attributes and classes.

state of the environment. In particular, the CSS describes the state of the digital twins within
the environment. This is a departure from the normal use of CSS within a document, which
describes style — that is the visual appearance or visual state — only. In this system, the CSS
describes the complete state of the device although, with some creative thinking, this state
could be considered to be akin to the style of the digital twins.

The working prototype for this approach used an HTML5 DOM tree stored inside a
Phantom]S [214] instance within a Node]S [80] application that was developed specifically
for this project. Phantom]S was a headless implementation of the WebKit [215] browser
which was, at the time, the basis for Google Chrome and Apple Safari browsers. The DOM
was XML-based, although very similar to XHTML. The main difference was that it contained
a container root node called <context> which replaced the <html> node which would
normally be present. In all other respects it was treated as an HTML document rather than
an XML one.

The DOM was held within a central hub, which also housed the Web-based UI and other

components that were convenient to place there. The system was designed to be open and

5.2. Experiment 2: A Centralised, Hub-Based, HTML5 and CSS WoT System 87

devices were free to connect to the hub and register themselves, forming a star topology.
Once registered, they were assigned a node in the DOM which would become their digital
twin. From then on, anything that happened to the digital twin was communicated to the

device, and vice versa. This meant that the two would be synchronised as much as possible.

Once registered, devices could register their own components, which would also be created
in the form of nodes within the DOM. For example, a refrigerator could register itself, and
then the light and compressor inside it. A key benefit here is that the components could be
referenced and controlled individually, and even combined to form new virtual devices, a
concept which is explored further in Section 5.2.1.6. This concept of Virtual Device
Composition was explored by Schuster et al. [216], where composed devices are built from
the parts of other physical or virtual devices. For example, a multi-room hi-fi system from
several independent speakers and an audio source. It is also similar to the idea of service
and device composition demonstrated by Merabti et al. [217], however they did not

consider the components within a device.

After the DOM was populated, developers were free to interact with it using various
commands sent to the hub. These were limited in scope, yet powerful. They are discussed
further in Section 5.2.1.7. The hub would act upon these commands using CSS selectors and
built-in browser functions or to add a new rule to the internal style sheet. The use of CSS
selectors allowed for the complex targeting of nodes using the set-based concepts laid out in
the aside in Section 2.2.2.2.

The rules in the internal style sheet contained properties such as power, position (withx,y,
z measurements), and color. The syntax of this language was the same as for CSS, but
browser CSS processors have an allow list for properties that are valid CSS, so the hub
application had to have additional code to replicate and replace some functionality. This
could have been overcome with CSS Custom Properties, although they were not yet available
in most browsers, including Phantom]S. The rules were used in the same way as CSS, but

rather than rendering them on a Web page, they were instead ‘rendered’ in an environment.

The system did push the concept of using front-end Web technologies a little too far. It
experimented with using CSS selectors for routing messages, an approach that would seem
in of itself to be a novel idea, but ultimately not overwhelmingly successful. The failings of

this are discussed later in this section.

The initial version of this system was published in the Late-Breaking Work section of CHI

2019 [218], but it developed significantly after that extended abstract was written.

5.2.1 Technical Implementation

The system was composed of a central hub device running a JavaScript server application
(the server). A client library — nicknamed ub.js — was written in JavaScript and carefully

88 Chapter 5. Experiments

designed to be universal across all the hardware platforms used. This was embedded within
several devices and Web applications (the clients). The server ran Node]S while the clients
were running either in various Web browsers, on other NodeJS based servers, or on
constrained hardware devices using an embedded JavaScript implementation called
Espruino [81]. There was also a failed attempt to use an Arduino [219] running a client in
Arduino C.

The clients communicated with the server using a variety of protocols, including Web
Sockets and REST, and also over a serial port. The specifics of these implementations are of
a lower level than is relevant, although the diversity demonstrated that the system was

viable in a real environment with real heterogeneous devices.

A key feature was that the clients had no knowledge of the rest of the system. They did not
need to maintain a list of other devices, as they simply had to send a message to the hub and
this message would either match devices or it would not. The developers of the clients
would need to know whether the device classes were present within the environment, and
could optionally know the IDs of specific devices, but ultimately they would not need to

know whether other devices were present, or how many of them were available.

5.2.1.1 The Hub

The hub was central to the system and handled connection to devices, the hosting of
services, and contained the DOM. The hub’s DOM was the source of truth for the system and
this truth was reflected by the devices connected to it. Practically, this meant that when a
client or device requested the state of another device, the hub returned the value from its
DOM, rather than querying the device itself. This assumption was fine for this system, yet
was likely not to be acceptable for safety-critical systems or those that might pose a threat or
danger (e.g a gas oven). In this case it would be potentially catastrophic if the DOM did not

accurately represent the state of the device.

The Web-based Ul was hosted by the hub as it was an efficient use of hardware, although it
could have been hosted elsewhere. The Web Ul was itself a client of the system once loaded
by the user’s browser, but needed a basic Web server to distribute the static files. The hub
also contained virtual devices and composed devices, although this was again a matter of
practicality rather than a constraint of the system, as they could have been hosted

anywhere. An overview of the complete architecture can be seen in Figure 5.8.

5.2. Experiment 2: A Centralised, Hub-Based, HTML5 and CSS WoT System 89

]
1 1
—>
:
PEVICE
VIRTUAL
PEVICES WEBUI
|
| | L 1
u
B
EXTERMAL SERVICE
COMPOSED
POM PEVICES
HUB

FIGURE 5.8: The architecture of the hub.

The hub had a basic but powerful API for performing functions on the DOM. It allowed

clients to:

* Register themselves and their components

* Read the state of a device or devices matching a CSS selector

* Update the classes or ID of a device or devices matching a CSS selector
* Update the whole digital twin for a device matching an ID

* Remove a device from the DOM

* Send a new rule to be added to the hub’s internal style sheet

* Delete a rule from the style sheet

A New Publish/Subscribe Model

Additionally to the DOM AP], the hub also had an API for a publish/subscribe model
based on the DOM. This allowed devices to create and delete channels, which were
created as nodes in a separate DOM. Each channel could have and ID and classes.
Devices could then subscribe or unsubscribe to these channels using a CSS selector
to select the channels they were interested in. For example, subscribing to

.temperature would subscribe them to all temperature channels in the system,
and there was a built-in feature to subscribe them to all future matching channels
using a style sheet to store their preferences. A subscription was simply adding the
device as anode in the DOM under the channel parent node. Once inside a channel,

90 Chapter 5. Experiments

the devices could publish messages which were received by the hub and forwarded

to all children of the channel node.

This structure enabled devices to subscribe to multiple channels in a very flexible
way. The result was a publish/subscribe model which far surpassed MQTT’s wild-
card room/+/temperature approach and allowed for an unknown amount of com-
plexity in the structure. This was outside the final scope of this thesis, but was an

interesting and related application of Web technologies nonetheless.

5.2.1.2 The ub.js Library

The library which formed the core part of each client was nicknamed ub.js. It was designed
to be familiar to Web developers and, as a result, it was decided that it would use a

jQuery-like syntax [220] rather than a new API structure.

jQuery is a library that was released in 2006 and designed to give a universal interface to the
DOM across varying browsers. At the time there were large differences in how the major
browsers implemented Web standards and how much of each standard they implemented.
jQuery used JavaScript to wrap these inconsistencies with an API that was the same across
all browsers and, more importantly, produced consistent results. While it is not used as
widely now due to improved consistency across the major browsers, it is still familiar to

most Web developers.

ub.js uses a similar API to jQuery and developers can use it to select devices within the hub’s
DOM in much the same way that they select DOM elements on a Web page. For example,
ub('#lamp') selects the device with an ID of ‘lamp’, whileub (' .1ight.blue') selects all
devices with the classes of 1ight and blue. The selectors here are CSS selectors in both
jQuery and ub.js. Modern browsers have a similar interface which uses

document .querySelectorAll('.1light.blue'), although this was only implemented in
2009. It was also hard to override built-in browser functions on HTML elements until the
Web Components specification was fully implemented, so jQuery added a simple interface

for manipulating these.

Once a developer had chosen a selector, they could then call upon a number of functions on

devices or device components matching that selector using ub.js. These included:

* Applying a CSS property from an extended allow list (including power and

temperature)
e Directly calling an action

» Reading the device’s current state as CSS

5.2. Experiment 2: A Centralised, Hub-Based, HTML5 and CSS WoT System 91

* Updating the ID
» Updating the class(es)
* Publishing a message to a channel (or channels) matching the selector

* Subscribing to a channel (or channels) matching the selector

Additionally, the library could:

* Register a new device in the DOM
* Register a new component of a device in the DOM
* Register a new channel in the DOM

¢ Remove each of the above from the DOM

5.2.1.3 The Web Interface

The Web interface was a client and ran a copy of the ub.js library. However, it was designed
for direct human interaction, which sets it apart from other devices in the system as these
were all automated. A screenshot of the final interface can be seen in Figure 5.9. It was
composed of switches, sliders and indicators which were analogous to sensors and
actuators in physical devices. The first iteration of the Web interface was the first client of
the system due to the relatively low temporal and effort cost of implementation as

compared with building and programming hardware.

The first version of the Web interface was a virtual lamp that was rendered in a browser on
the same computer which was running the hub software. It connected using the ub.js client
library and appeared to the server in precisely the same way as a physical lamp would have.
The fact that devices can either be physical or virtual with almost no effect on the
underlying functionality of the approach is also exploited in Experiments 3 and 4. The lamp
was the simplest possible device and only had a bulb and a switch, with two power states

(i.e. on and off).

Two approaches were investigated to toggle the power to the bulb. Initially, the switch would
toggle the bulb and then transmit the new state to the hub which was then used to update
the digital twin within the hub’s DOM. However, this had two issues. The first was that it was
not very useful for testing the selector-based messaging and, second, it broke the
assumption that the hub’s DOM was the source of truth. In this case, the lamp was the
source of truth and the DOM was updated later to match it. The alternative was following a

more complex process, one which was more useful for the experiment:

92 Chapter 5. Experiments

Temperature All Heaters Fan Heater

15.4
Wall Heater Dehumidifier
15-1 7°c m

Humidity

55 Bedside Lamp All Sockets

50-60% 55-65% Ceiling Lights Speakers

O O

m
“

FIGURE 5.9: The Web interface.

* The switch targeted the lamp using a selector and sent a message to the hub. This
message contained the selector and a command to turn the power on, i.e.

.lamp { power: 'on'; }.

* Once the message arrived at the hub, it used the selector on the internal DOM and

retrieved a list of matching devices. In this case, it returned a single device.

* The hub appended the new rule to its internal style sheet for the environment so that

any new devices connected later could be ‘styled’ correctly.

* For each matching device, the hub forwarded the message so that the device could act

upon it. In this case, only the lamp received the message.

* The receiving device interpreted the message and acted accordingly. Here, the lamp
understood what power refers to, and understood that on should trigger a specific

action.

This second approach treated the DOM as the source of truth, albeit with some obvious

downsides as discussed later in this chapter.

After this initial success, the Web interface was progressively expanded to control other
clients built for the system. By the end of the deployment it had sliders for controlling

temperature, humidity and speaker volume; a colour picker for a real lamp; a text box for

5.2. Experiment 2: A Centralised, Hub-Based, HTML5 and CSS WoT System 93

sending messages to an LCD screen; and various switches for speakers and mains powered
devices. It also had a debugging interface for sending messages as text (as seen in
Figure 5.10), and a page which showed the hub’s DOM and internal style sheet.

FIGURE 5.10: The Web interface’s debugging page.

5.2.1.4 Physical Clients

After the system had been validated with the virtual bulb, several real devices were built or

else connected through adaptors. These included:

An RGB LED desk lamp
* An LCD screen for displaying short messages

e Adeskfan

A dehumidifier

¢ An electric heater

94 Chapter 5. Experiments

* Atemperature sensor

* A humidity sensor

* Three wireless buttons

* A Raspberry Pi hat with red, amber and green lights

* Abed side desk lamp

Most of these clients were either connected to an ESP8266 [221], an Espruino Development
board, or a Raspberry Pi. Some were plugged into radio frequency plug sockets which were
controlled by an Arduino-based serial to 433MHz adaptor and virtual device on the hub.
This was due to safety concerns arising from modifying devices that used mains electricity.
With time, the devices could have been safely modified to contain a relay, rather than the

radio-controlled sockets as these were sometimes imperfect.

Due to the constraints of running Espruino on small, embedded devices, the ub.js library
had to have a limited number of variables stored in memory at any one time, meaning that
the stack size could never be more than a few levels deep. The specific depth allowed
depended on the complexity of the functions, but was always very limited. To avoid crashing
the devices, an event-based approach was used. As opposed to calling a function directly
from another function, each function pushed a message to a queue, and other functions
would listen to that queue and respond accordingly. In this way, even complex tasks could

be achieved with a very small memory footprint, although callbacks were more complex.

Arduino: A Failed Experiment

Initially, it was planned to use an Arduino as the client due to their low cost and the
high availability of compatible hardware. Ultimately, this was a failure as a standard
Arduino cannot concurrently support an IP stack, the client software, and parse

JSON messages, mostly due to a lack of available memory.

A client library was created in Arduino C which communicated over serial and could
parse short JSON messages, although this was sufficiently far removed from the idea

of the IoT that it ceased to be relevant.

After this failure the ESP8266 was chosen as a replacement device. It has a supe-
rior capacity and separate Wi-Fi chipset that handles the IP stack without detract-
ing from the main processor. Coupled with the Espruino JavaScript virtual machine,

this made it the logical choice for this project.

Figure 5.11 shows how the client library could connect to the hub, register the device, and

control another device via the hub. Clients registered sensors and actuators with the hub,

5.2. Experiment 2: A Centralised, Hub-Based, HTML5 and CSS WoT System

95

which would subsequently add them to its DOM. The client could then either send

messages to the hub or else respond to messages from the hub. Once a message was

received, the client could choose whether to act on it or forward it on to its components

which may also be independently running the same client library. This loosely coupled

approach is very important to the way the entire system operated, as it meant that no device

needed to know about the other devices on the network, or maintain a list of active devices.

USER INTERFACE LIBRARY HUB PEVICE
| HAUPSHAKE. J I
| | |
| | AUTHETICATE |
l, HAUPSHAKE COMPLETE. | |
| | | |
HANPSHAKE WITHSERVER o R
SEND CREATE >	
	REGISTERMEN
PEVICE	
l, RESPOMSE	
REAIFTER ANEWNPEVICE PRCOMPOMNENT	
PRESS BUTTOM ,l	l
SEMD UPPATE)l	
	SELECT
ELEMENTS	
	SEMP UPPATE J
	RESPOMSE
. RESPOMSE .	
K	
¢ UPPATE	
COMNTROL APEVICE

FIGURE 5.11: A sequence diagram of the key features of the client library.

ACT OM
MESSAAGE

96 Chapter 5. Experiments

5.2.1.5 Virtual Clients

Virtual clients were implemented in software and either interacted with services, other

devices, or else were a proxy for other hardware. These included:

* The original Web-based lamp

* A basic media controller, sending volume and play/pause/stop commands to the OS
* A Web page that could change background colour

¢ Aservice to send SSH commands to another computer

* Aservice that retrieved the sunset and sunrise times

* Alogging client which subscribed to channels and output messages to a file or

database
¢ A Twitter client
¢ A weather service

¢ An Internet uptime monitor

These virtual clients allowed for slightly more complex interactions than the physical
devices, as time, cost and skill are limiting factors in building complex hardware. The media
controller allowed for prototyping control over a complex sound system, and the SSH
controller allowed almost unlimited control over a computer, its software and connected

hardware.

While some used the ub.js library and ran in their own Node.js servers, many were functions
within the hub that behaved more like plugins than devices. However, the messaging

approach was consistent and all virtual devices had to be represented within the DOM.

The Web page with a changing background colour was built to test the effect of having a
document synchronise with hardware. In this case, the document’s background

synchronised with the desk lamp to provide a more immersive experience.

5.2.1.6 Composed Devices

Composed devices evolved last and through necessity. These were devices that were
presented to the system in the same way as a physical or virtual device, yet were formed
from the combination of two or more devices or components of devices. Composed devices
have been explored previously by others [216] [217], however the method of exposing

components used in this project allows for this to happen in an entirely Web-native manner.

5.2. Experiment 2: A Centralised, Hub-Based, HTML5 and CSS WoT System 97

The simplest example was a light controller, which used the time of sunrise and sunset to
turn the bedside desk lamp on and off. This could also be manually overridden. It stored its
state in CSS and existed in the DOM although, otherwise, it was represented in exactly the

same manner as any other physical or virtual device.

A more complex and well-rounded example of a composed device in this system was the
climate control system. It contained a fan, a dehumidifier, an electric heater, a temperature
sensor and a humidity sensor. While it was far from perfect, it fulfilled its role of keeping the
room warm and dry during winter. As this system was built in the UK, the humidity is
typically too high and temperatures too low, especially as the room in question had neither
adequate ventilation nor central heating. During the winter it was sufficient to turn off the

heater and, due to the lack of insulation, it would mean that no cooling device was needed.

The climate controller composed device presented to the hub as any other device would. It
responded to commands and gave feedback in precisely the same way as a physical device
would have. However, it was entirely virtual and only existed as a concept within the system,
running on the same Node.js server as the hub. It was the sum of many parts, yet no part
could have individually fulfilled the requirements placed upon it. It internally monitored the
humidity and temperature and stored them as CSS on the hub. It also maintained a target
temperature and humidity range and used the devices at its disposal to do this. Using the
fan ensured the large room had a fairly even climate. The layout of the hardware can be seen

in Figure 5.12.

PESK LAMP

&

N

HEATER =

BEP

E— PEHUMIPIFIER

O ¢—

¢ P

I I
SPEAKER SPEAKER ~ TEMPERATURE AWD
FAL HUMIPITY SEMSORS

FIGURE 5.12: A plan view of the climate control system.

The system’s interoperability and homogeneity lend themselves very well to building
devices like this, and the level of customisation possible is unparalleled in either commerce

or academia. Such a system could allow composed devices to be built automatically to fulfil

98 Chapter 5. Experiments

specific requirements and then be torn down afterwards to save processing resources. A
device could be made to send an emergency alert across all speakers and lights on every
device within a building without affecting those devices of which the speakers and lights are
a constituent part. Another could be built across an apartment block to search for
inefficiencies in infrastructure and then destroyed once the survey was completed. Before

security and privacy concerns are taken into consideration, its potential is almost limitless.

5.2.1.7 Messaging

All messages were sent as JSON objects containing an ID (in order to identify responses to
messages and prevent duplication), a CSS selector (used to identify which devices to send
the message to), together with a payload (containing the CSS property and new value).

Figure 5.13 shows some example messages created by the system.

An obvious alternative messaging protocol would have been MQTT [113] owing to its
widespread use and acceptance in the IoT. However, MQTT is too constrained for this
approach and cannot adequately fulfil the requirements. MQTT relies on devices and
programs publishing messages to channels and then other devices and programs
subscribing to those channels to receive messages. The channels, called topics, are
hierarchical and allow for wildcards, although there are several situations in which MQTT is
either inefficient or insufficient. For example, CSS selectors such as

.building :not(.light) cannot be represented in MQTT. Nor does it, by design, contain
simple ideas such as #device_one, without creating a topic per device, or

.building .1light where there are unknown numbers of layers situated between the
building and the lights. MQTT does have benefits over the CSS approach asitisa
well-developed and well-supported binary messaging format, but ultimately it is not a good
choice in combination with the DOM. This was also seen as a good opportunity to

investigate CSS as a message routing method.

A message would be sent from the device to the hub, whereupon the hub would use the
selector to choose the appropriate devices and then forward the message on to each of the
matching devices. After a device had processed a message, it could optionally send a

response message back to the originating device.

Messages within the hub were of the same format as messages between the hub and devices.
They were sent over a global ‘bus’ which had a publish/subscribe model. All internal
components and virtual devices would subscribe to the channel, and each could post

messages to it. It was a practical, but insecure and inefficient method of communication.

The schemas for messages can be seen in Appendix A.

5.2. Experiment 2: A Centralised, Hub-Based, HTML5 and CSS WoT System 99

A create device message:

{
"r": "hvny6",
"o": "websocket",
"dv": {
"id": "websocket"
}
}

Update a temperature range on a thermostat virtual device:

{
Ildvll: {
"ecss": {
"temperatureMin": "18c",
"temperatureMax": "22c"
}
},
Ilr||: Iltedlsll’
"o": "thermostat",
"s": "#thermostat"
}

A message forwarded from the hub to a specific device:

{
Ilr|| . ||t7mv4ll ,
llo|| . |lhubll .
"s": "#WEB312",
"t" . "'Llpdate" R
"st": 1

}

FIGURE 5.13: Example messages.

5.2.2 Discussion

5.2.2.1 Possibility

This experiment was principally one of possibility. It took a concept from Experiment 1 and
adapted it, grew it and implemented it into a working system. While the system was far from
production ready, it remained largely stable for several months. It demonstrated that it was
possible to describe a somewhat simple environment as shown in Figure 5.14, using the
DOM. It also showed that the state could be held in CSS and that CSS selectors were a valid
method for selecting devices and routing messages to them. It not only showed that
JavaScript was a useful language for controlling the environment but also, from the evident,
albeit limited success with Arduino, that the language used is less relevant than the

hierarchical structure of the digital twins.

100 Chapter 5. Experiments

The key aims of the experiment were all realised: The WoT system was fully functional; it
used the DOM, CSS and JavaScript; and showed that the theory could be applied to a real
environment. Actions were converted to messages by the clients and those messages passed
through the system to their correct destinations. Devices were built which had IDs and

classes assigned to them and the environment was ‘styled’ like a Web page.

<context>
<device></device>
</context>

FIGURE 5.14: The IoT environment, represented using the DOM.

This systems possibility meant that it comfortably satisfied the first aim of this thesis,
namely to represent IoT devices within a DOM. While Experiment 1 theorised that this
would be possible, the system in this experiment showed that it is. While it had many

failings from a practical point of view, it nonetheless met the most basic aim.

It also came close to meeting the second aim of this thesis which is to build an IoT control
system using only browser technology. While it only used the DOM, CSS and JavaScript, it
did so in a way that was not an entirely standard approach. The DOM is hidden on the hub
and not available to developers and it uses non-standard and somewhat unfriendly

messaging approaches.

5.2.2.2 Practicality

Initially, there was not too much consideration for the practicality of the system or its
approach, and important features of a production system, such as latency, were ignored in

favour of demonstrating its feasibility.

From a developmental perspective, the processes for building either a new physical or
virtual device were relatively similar and straightforward. A physical device could be any
existing device with an API that could be integrated with the ub.js library. Standalone virtual
devices were implemented similarly, meanwhile plugin-type devices were written as a
simple JavaScript function or as an instance of a class that would push messages directly to

the internal ‘bus’ channel.

An important advance over Experiment 1 was the reduction in duplication. Each CSS rule or
command could be applied to many elements, simply by assigning all the elements the
same class. This means that any number of elements would have the same state defined by
a small set of rules. This is simpler to read for the developer, and there is less chance for an

error to occur here. Of course, errors can still be introduced by an incorrect class applied to

5.2. Experiment 2: A Centralised, Hub-Based, HTML5 and CSS WoT System 101

an element or an incorrect value in a CSS rule. However, unlike the previous
implementation, where an error could be small and go unnoticed (e.g. an incorrect colour
on one element), these errors are much more apparent. An incorrect class would be
self-evident because the element would have no state at all as well as an incorrect value as

all elements would have the same error visible.

The new approach is also more efficient for scripting. Rather than using JavaScript to loop
over all elements to read or write their state, a class or property can be changed and the
developer can rely on the built-in browser functions to carry out the update, a process that
has been greatly optimised by browser maintainers and which is implemented in more
efficient languages than JavaScript. This preference for built-in functionality is an important

part of this thesis and one which is pushed further in Experiment 3.

An unintended benefit of using CSS allowed for swapping entire style sheets at once to
change the state of an environment, like themes on a Web page. This is discussed further in
Chapter 7.

However, this approach is not without its downsides. An obscure but important issue was
the lack of CSS Custom Property support in the Node.js packages used. Custom Properties
[222] allow the developer to specify their own property names by simply prefixing the name
with ‘--". This absence meant that CSS properties had to be parsed manually and acted
upon using custom logic. While this was necessary, it was contrary to the aim of using
built-in browser technologies. This required the use of an allow list of CSS properties that
could be found and used by the hub application, although this meant that the final system
was very closed and proprietary. It necessitated a rigid taxonomy rather than allowing a
looser ‘folksonomy’ as may be expected in an unregulated system. Browser prefixes and
varied browser API support are good parallels to draw here as they show companies
implementing their own allow lists. The W3C releases specifications which are implemented
by the main browsers, but despite this, they each develop their own features. In CSS these
can be seen in the form of prefixes such as -moz- for Firefox and -o- for Opera. These are
features that are either found in an unfinalised state at the W3C, or else are the browser’s
own proposals which may, or may not be progressed. While this system is a good illustration
of how an individual browser handles a finite list of CSS properties, an IoT system would
have to handle properties from many different client devices built by many manufacturers
and it would not be possible to maintain a list of allowed prefixed properties for each. More
modern virtual browsers (and all modern desktop and mobile browsers) implement the CSS
Custom Properties specification to at least a degree which could make this form of manual

processing obsolete. This concept is further explored in Experiment 3.

The reliance on a centralised hub also brings some difficulties in that it is a single point of
failure within the system. If a hub fails, then all devices connected to it will be uncontrollable
and the user will not be able to retrieve their state. A mesh or broadcast approach would be

a potential solution to this, but it would add a lot of complexity to register devices with

102

Chapter 5. Experiments

multiple hubs for redundancy and then ensure commands are not duplicated. This was

partially investigated when exploring communications arising between multiple hubs,

wherein a hub would forward all messages to other hubs, which would then act upon them,

if relevant. This is illustrated in Figure 5.15. The system assigned a unique ID to each

message so that this could be possible, although the increase in traffic would be non-linear.

CLIEMT
MESSAGE.
HUB
BROAPCAST
N4
HUB

DEVICE
UPPATE
BROADCAST
7z
Hue
UPPATE .
v
Yoevice

FIGURE 5.15: A hub forwarding messages to other hubs.

5.2. Experiment 2: A Centralised, Hub-Based, HTML5 and CSS WoT System

103

Latency in the System

A more practical, but less than directly relevant issue was that the latency within
the system was quite high. This was partially due to the implementation, in that
JavaScript is not a particularly fast language and may be held up by garbage col-
lection which is automatic and impossible to schedule. Largely, however, it was a
result of the number of hops necessary to control a device. A message from the user
would have to travel to the hub, which would then query the DOM and then send it
on to the relevant devices. These would then send a response back to the hub which
forwarded it to the user. This flow of messages was in addition to any usual net-
work hops. This journey was made worse by the hardware involved, as it included
devices such as low-cost ESP8266 Wi-Fi chips and Arduinos connected over serial.
This round trip time was often very obvious to the user and created a disconnect
between the user’s interaction and the subsequent action occurring in the environ-
ment, as triggered by the hub. It has been found that most users can detect a latency
of over 40ms in a virtual touch-based system [223], however, it should be noted that
similar research has not yet been conducted for IoT systems. Violating this threshold
without UI mitigations, such as loading graphics, will make the user second guess
their inputs and disrupt both their enjoyment and the flow of their interaction. This
could have been improved with the caching of DOM searches, but the other factors

were unavoidable.

Optional and Plural Responses

Another issue came about in trying to mirror HTTP responses in the architecture.
A device that has matched a selector was free to return a response to inform the
initiator that the action had occurred although, as this was optional, the initiator
would not know if a lack of response was due to the device not existing, its failure to

complete the action, or simply because it had not implemented responses.

The opposite problem occurred when multiple devices received messages. The ini-
tiator would receive multiple responses, but would not necessarily know how many

it was expecting due to the zero-knowledge nature of the clients.

Possible solutions are presented in Chapter 7.

From a more practical standpoint, due to the system being experimental rather than

production ready, it had a number of smaller issues that were never resolved. None of these

however affected the outcome of the experiment, although they were recorded as areas for

future improvement. These were:

104 Chapter 5. Experiments

* Due to the large amount of proprietary handling of CSS properties, the CSS cascade
was not fully implemented. CSS has a highly defined hierarchy of overrides based on
the specificity of a selector and the order in which the rules are parsed. This hierarchy
was was too complex to re-implement for the purposes of this experiment. This, in
combination with a desire to test the approach with a broader set of users, were

driving forces behind Experiments 3 and 4.

* There was no conflict resolution, or indeed any concept of a hierarchy of importance
or order for the messages; they were were acted upon in the order in which they
arrived. There was the potential for a message with a simple selector to be sent after
one with a complex selector but, due to the computation time, the complex message
could have arrived at the device at a later point in time. This was never observed in
practice, as most input was either manual or derived from sensors polled every few

seconds, but it was also not accounted for in the engineering of the system.

* The internal publish/subscribe model of the ‘bus’ object was inefficient and insecure.
There were no restrictions on reading messages and the large number of subscribers
using event triggers could very well have accounted for a great deal of the latency

observed within the system.

* The communication used by the system was based on JSON, but did not follow any
particular standard schema and so, therefore, was adding a proprietary technology to
an already fairly overloaded space. It contained abbreviations and single-character
properties as the devices using it did not have sufficient memory to store long variable
names and parse long JSON objects. This would have made it hard for developers to

understand.

e The hub relied on Phantom]S to hold the DOM and, while this is a full-featured
WebKit browser, development was suspended in 2018 [214] and so has only had minor
updates since. It also never reached the level of development that desktop browsers

have.

* The hardware that controlled the radio frequency plug sockets was never very reliable
and so it could not be guaranteed that a device was in the same state as the hub’s
DOM said it was. This manifested on at least two occasions during testing where the
radio-controlled plug socket repeatedly failed to receive messages due to interference
or an internal error and the safe, oil-filled heater did not turn off when it was
unaccompanied. A workaround was to send each message five times with a
one-second spacing. This issue was amplified because the plug sockets could not

send success or failure messages back.

Overall, the system built was a very practical research system, but not sufficiently practical
for the wider community, a conclusion which helped to define Experiment 3 which is

aligned even more closely to extant Web standards.

5.2. Experiment 2: A Centralised, Hub-Based, HTML5 and CSS WoT System 105

5.2.2.3 User Acceptance

From a research point of view, the system was more than adequate for demonstrating that a
WoT system could be built using the DOM as a foundation, especially as there was only one
developer involved. However, it was not suitable, even for testing, within the wider
community. The system was overly complex and took too long to develop hardware and
software for it to be useful outside of the prototype system. Any tests of user acceptance
were not possible, as there was no way to allow developers to interact with it without
requiring several hours for them to become properly familiarised. This, and technological
advances, serve as drivers for Experiment 3. In this respect, it fails the third aim of this

thesis, which was to produce a system acceptable to developers.

However, it is still possible to assess it through a heuristic analysis.

Heuristic Analysis

1) Visibility of system status The status of this system was almost deliberately hidden
within the hub. As such, it was somewhat of a black box to any device or client connected to
it. Visibility was achieved only through the Web interface or else by directly looking at the
device in question. For an end-user, this would be fine although, for a developer, it is less
than ideal. A developer could not know the contents of the DOM easily unless they took a
copy from a specially made page on the Web Ul and this was a snapshot that did not reflect

changes in real time.

Messages in the system could be monitored as they were broadcast. However, the format
was not friendly to humans, as it employed a lot of abbreviations to save space on
constrained devices. A converter could have been written to parse it into a longer form, but

it would still have been a non-standard schema.

2) Match between system and the real world The system matched the real world by
reflecting changes arising between the device and the digital twin on the hub in that any
change to one was mirrored to the other. This mirroring helped the developer and user to
interpret the state of the environment, as every state in the hub had a real world equivalent,
meaning that metaphors were largely unnecessary. However, the Web UI used metaphors
for sliders and switches with its virtual devices. These virtual representations of physical
interfaces were in line with the users’ expectations of control (e.g. a switch for alamp). This
type of interaction should have been both familiar and intuitive. However, this was limited

by the creative talents of the developer of the system.

3) User control and freedom Developers had a lot of freedom to create devices, both

physical and virtual, and then connect them to the system. The system itself had the facility

106 Chapter 5. Experiments

for plugins and modules within the hub, but the interface to this was proprietary and, as of

writing, is already obsolete technologically speaking.

4) Consistency and standards As mentioned, the system was quite proprietary in its
architecture, despite using a lot of open standards. It used an internal event-based
messaging system which was not standard, and the messaging format, while JSON, was
developed specifically for this project. This is an easy trap to fall into and one which is not

unique to this system.

5) Error prevention The system was incomplete with respect to error prevention. In the
case of a spelling mistake, it could have silently sent messages to the wrong device which
could have had negative consequences or, at the very least, left the developer or user

confused. The lack of a proper response framework hindered this further.

The system also required a lot of knowledge of how it worked and why, before anything
could be written for it, which presented a very considerable barrier to enabling Web

developers to transition to a WoT system of this type.

6) Recognition rather thanrecall The jQuery-like client was the most usable part of the
system as it was deliberately written to be familiar to the developer. However, as of the time
of writing, jQuery is losing popularity and, very soon, will become obsolete. A better
alternative would be to use proper Web APIs for selection, but with this architecture, it

would be a complex proposition to develop and it could potentially create instabilities.

The hub code was written in JavaScript and so, as with any application, a skilled developer
could familiarise themself with it, although they would need to learn its idiosyncrasies. The
data structures would be familiar, but the overall architecture was as unique as any
unframeworked application. If a developer specialises in front-end Web development, then
they would probably have trouble developing for the hub or, if they specialise in back-end
development, they may have trouble developing for the clients. Due to the lack of
transparency in the hub, potential developers require a great deal of knowledge before

creating a hub plugin, but much less so to connect a client.

7) Flexibility and efficiency of use Flexibility was an important part of the system and the
range of client libraries — Node.js, browser, embedded JavaScript — allowed developers to
add various devices and components, connect to external services, and build virtual devices
fairly easily. They were also free to layer frameworks on top of the libraries to make their
work faster. However, the client libraries were nowhere near as compatible with external

frameworks as the system used in Experiment 3.

5.2. Experiment 2: A Centralised, Hub-Based, HTML5 and CSS WoT System 107

8) Aesthetic and minimalist design The system was minimalist in what it exposed, in that
it only exposed a messaging interface with a limited command set. Developers could send
messages to the hub which then forwarded them to clients and they did not necessarily
need to know what happened inside the hub to do so. However, this came at the expense of

information, particularly in relation to errors.

9) Help users recognize, diagnose, and recover from errors The system did not report
errors effectively. Messages would either have a target in the DOM and be forwarded on, or
they would not and would therefore stop at the hub. A comprehensive error reporting
system, similar to HTTP response codes, could be produced and would help with error
diagnosis. However, in the case of multiple hubs, it may be impossible or inefficient for any
single hub to know that there are no matching targets and so it may not be possible to send

an equivalent of a 404 response.

10) Help and documentation A long document was written as a guide to the ub.js system.
However, the fact that a long and fairly confusing guide was required is an indicator that the
system was not developer friendly. Many concepts required explaining and the client

similarity with jQuery could have easily brought confusion as developers would have had to

remember or look up the differences between the two.

108 Chapter 5. Experiments

5.3 Experiment 3: A Distributed, Browser-Based, Web
Components WoT System

This experiment built on Experiment 2 in a few important ways. First, it was more closely
aligned with Web standards, largely thanks to advancing technology. Second, it aimed for
simplicity, and third, to be a system that could be tested within the wider community. It
retained many of the core approaches of the previous experiments, using the DOM, CSS and

JavaScript for similar purposes.

The limited scope of this approach blurred the lines between an IoT control system and
digital twins, as the devices were assumed to exist but not actually implemented. The digital
twins were acted upon directly rather than via an interface to a hub. Devices and their
components were again arranged within a DOM tree and the same hierarchical approach
was taken to modelling them. However, in this implementation, they took advantage of
more Web standards than before, as several standards had been finalised and integrated
into the core Web browsers since the last experiment took place. This experiment was more
superficial than the previous one because it only simulated an environment and devices,
rather than actually controlling them. There was no back end and commands were not sent
outside of the browser. It was still a fairly complete and very flexible WoT management
system and, in a real situation, commands would have been forwarded from the DOM
element digital twins to the physical devices. It was assumed that this connection to real
devices is both possible and irrelevant to this experiment as per the findings of Experiment
2.

5.3.1 Technical Implementation

The system handled the representation of devices, their state and their affordances using
Web technologies while, at the same time, assuming there would be either a local or remote
service that detected devices, registered them and proxied control messages to the correct
format. Given that the second approach in the previous section demonstrated that control
of devices using CSS is both possible and relatively trivial, this implementation focused on
the developer experience and the use of more standardised Web APIs. Here, Web
Components were used to represent devices, and CSS Custom Properties were used to

control and record state.

The key difference between this approach and the previous one is that the system ran
entirely within the browser. The DOM was held locally within the user’s browser and would
thus be duplicated across all instances of the system. Multiple users could have opened
multiple copies of the Web page and each would have been shown a representation of the
same environment. A hub with a controller was no longer necessary, as all the control and

state management happened within the Web page instance. Changes to the environment

5.3. Experiment 3: A Distributed, Browser-Based, Web Components WoT System 109

DOM would have been pushed to other instances and the appropriate devices. The
complete system may still have needed a hub, but it would have been limited to a bridge
connecting the instances and devices. The hub may have had another instance of the DOM,
but would not necessarily have needed to have any primacy over the browser instances,
unlike the hub delineated in Experiment 2. The architecture of this system can be seen in
Figure 5.16.

r—— - - — — — — — — /1
| I 11 | |
I 11

| |
| |
| |
Y |

M
| — | PoM (poCcUMENT) POM(PEVICES) | Sviic WeB
| el 3 [lzerver SERVER ¢ N
| | OPTIONAL =
| | Hue E;Cujzr\q/lczsm

8

=

BUILT IM
LIBRARIES FUNCTIONS |

B
| L

B
| 1 BROWSER |

U |

IMPLEMENTER

FIGURE 5.16: The architecture of a complete system, with the implemented part indicated.

The DOM in the browser contained digital twins for all devices and components of devices
within the environment. Each device and component was modelled as an HTML element in
the DOM using the Web Components. The instance of each Web Component was placed
into the DOM tree either at the appropriate place, or multiple places if there were multiple
instances of similar devices. An example DOM can be seen in Figure 5.17. Shifting much of
the logic to the browser meant that a server in this system would have simply been a router
sending commands between browsers and devices, mitigating conflicts, holding composed
devices, and potentially caching their respective states to prevent flooding the IoT devices
with requests. The logic the server could employ here is far less interesting from the point of
view of the research in this thesis, as it has already been solved for so many Web sites before
and thus was ignored in this implementation. Addressing each function of a potential hub:
the process of routing commands is very trivial; conflict mitigation is another area of
research entirely; composed devices have been demonstrated in the previous
implementation; and while caching can be implemented with varying levels of complexity,
for the current purposes it is almost inconsequential. Synchronisation and hierarchy of

messaging importance would be an interesting avenue, although tangential to the core aims

110 Chapter 5. Experiments

of this thesis. For simplicity’s sake, it was assumed that there was a single user of the system
and that all of their commands held equal weight (i.e. a command to flash a light for an

incoming message was treated equally to one to flash a light for a fire alarm).

<html>
<body>
<iot-room>
<iot-door />
<iot-cooker>
<iot-hob>
<iot-hob-ring id="hob_ring_859" />
<iot-hob-ring id="hob_ring 194" class="power-on" />
<iot-hob-ring id="hob_ring_ 504" class="power-on" />
<iot-hob-ring id="hob_ring 439" class="power-on" />
</iot-hob>
<iot-clock />
<iot-switch />
<iot-oven id="oven_958" />
</iot-cooker>
<iot-table />
<iot-fridge-freezer>
<iot-fridge class="iot-cupboard open too-hot" />
<iot-freezer class="iot-cupboard" />
</iot-fridge-freezer>
<iot-counter />
</iot-room>
</body>
</html>

FIGURE 5.17: An example DOM using Web Components showing a basic kitchen.

CSS Custom Properties were used to overcome the allow list limitation of Experiment 2 and
enabled arbitrary state to be controlled with CSS and stored within CSS rules. The power-on
class could contain a property called --power with a value of on, as well as any other
standard CSS for a document. This property could be read by the element representing a
device and, if appropriate, the element could act on it. A state diagram of how this process

occurred can be seen in Figure 5.18.

5.3. Experiment 3: A Distributed, Browser-Based, Web Components WoT System 111

Working Around Browser Limitations

The step where an element acts on a change to its style is the only time a workaround
had to be used to implement this approach. HTML elements are not inherently
aware of changes to their style, as it does not affect the behaviour of built-in ele-
ments. The browser is aware of the style change and applies presentational changes,
but the underlying custom element is not notified that its appearance has changed.
To work around this, a window. getComputedStyle () call was added when the style
or class of an element was changed. However, this is imperfect at best, and broke
down in some cases of inheritance, for example when setting a class on a parent
would trigger the children to re-render but would not trigger any actions defined in
the Web Component.

USER ELEMENT BROWSER
! CHAMGE CLASS J !
rd
| | LOTIFY \l
rd
| | |
| |
EVALUATE.
| | | CASCAPE
| | |
| | SELECT
| | | ELEMEMTS
| | |
| e APPLY STYLE |
k |
| | |
ACT OMSTYLE
I | CHAMGE |

FIGURE 5.18: A simplified sequence diagram showing a custom CSS property changing as a
result of a class change.

The use of CSS Custom Properties allowed for using the browser’s built-in interpretation of
cascading rules in CSS, which is a marked improvement over the previous implementation,

and a milestone in reaching full integration with Web standards.

112 Chapter 5. Experiments

The architecture of the Web Component was designed to align with the principles of the
W3C'’s WoT implementation. Each device class is inherited from a generic WoTElement class,
which itself is inherited from the HTMLElement class. This reliance on the HTMLElement
parent was a requirement of the current browser implementations of Web Components and
could be removed in a later version. The WoTElement contained properties, actions and
events which are similar to, but slightly limited versions of, the W3C’s WoT definitions. It
also utilised the Shadow DOM for presentational markup which generated a visual
representation of the device. This visual representation was a 3D version of the device
within a 3D environment, but it could also be a UI element within a control interface. This
allowed either the control Ul to be separate from the device DOM or for the device DOM to
generate the interface from itself. This was briefly experimented with by making the
elements of the 3D representation clickable, wherein a click turned them either on or off, or
closed or opened a door. This was removed from the user study in Experiment 4, as it was

not relevant to that specific line of investigation, but its potential is discussed in Chapter 7.

Properties, Actions and Events
The W3C’s WoT Group defines these as [87]:

Property: an “affordance that exposes the state of the thing”, which can be read from

and written to.
Action: an “affordance that allows to invoke a function of the thing”.
Event: an “affordance that describes an event source”.

The interpretation of these within this specific implementation was loose, largely
due to the evolving nature of the W3C’s document. In this system, the following

definitions were used:
Property: the state of a thing, which can be read or written.
Action: a function that can be invoked on the thing.

Event: an event that is initiated by the thing, and which can be subscribed to using

an event listener.

The result of using the DOM in this way meant that it was directly available to the developer,
as they could use the browser’s built-in inspector tool to view and edit the DOM itself. This
was a great step forward from Experiment 2 which hid the DOM within the hub. This is not
only a benefit for visibility, but also allows developers to follow a more familiar debugging

experience, or even potentially use browser plugins to aid them.

5.3. Experiment 3: A Distributed, Browser-Based, Web Components WoT System 113

5.3.1.1 The User Interface

Unlike Experiment 2, the UT for the system was designed for developers and made to fulfil
the requirements of Experiment 4 for which it was later used, and therefore it was not
conducive to use by an inexperienced user. There was an interactive 3D isometric
representation of the environment built from the devices within the DOM themselves. This
preview could be panned, zoomed and rotated to allow the developer to see the effects of
their changes on the environment. This, too, is a marked improvement on the previous
experimental system. On the right were a section for instructions and a text box containing
the current CSS rules for the environment. Editing the CSS rules and pressing the ‘Test’
button applied the rules to the Web page’s DOM. As the devices were a part of the page,
there was no separation between style that was applied to the page and the style applied to
the devices. However, on this page there was a cosmetic function that prefixed any rules
with a namespace so they would only apply to the devices. This was a user experience
feature to prevent participants from inadvertently changing the document and breaking the

experimental interface. The layout can be seen in Figure 5.19.

FIGURE 5.19: The user interface of Experiments 3 and 4.

114 Chapter 5. Experiments

5.3.2 Discussion

5.3.2.1 Possibility

Much of the possibility of representing an environment using the DOM was settled in
Experiments 1 and 2. However, this experiment took advantage of some new technologies to
bring this closer. The use of Web Components and Custom Properties allowed for
standards-based digital twins to be produced in a very lean and efficient way. The total size
of the WoTElement class was less than 150 lines of code, including comments and white
space, as compared to the many hundreds required to achieve a similar outcome in

Experiment 2.

This experiment also showed that the approach chosen could be aligned with the W3Cs TD
approach and that the two could work together harmoniously. While it was not explicitly
tested, it would be reasonable to assume that if the two were aligned completely, a class of

device within the DOM could be automatically generated from a TD.

5.3.2.2 Practicality

The approach was much more practical than Experiment 2, as indicated by the simplicity of
the code required to produce it. Any developer new to a system like this would have far less
to learn than one using the system in Experiment 2. Despite its relative simplicity, the
system still demonstrated an effective and fast method of controlling IoT devices via their
digital twins using only Web technologies. It also did this in a way that followed not only the
technologies, but also the general approach to making a Web page. This was a significant
contribution to both the second and third aims of this thesis, as it followed Web standards
and had a relatively low barrier to entry for Web developers. The latter was tested explicitly

in Experiment 4.

However, some limitations could be addressed in future. First, browsers do not notify an
element’s JavaScript representation that its style has changed. This presented a problem
that could not be adequately overcome within this experimental system. However, the
browsers clearly have an internal event that triggers a re-render and so it should be possible
to expose this event to the JavaScript engine. This would require a custom build of the
browser that would technically break the requirement that the system be built within the

constraints of existing browsers and thus was beyond the scope of this experiment.

Second, the use of CSS for storage of state was shown to be less than ideal. It worked very
well for defining rules to apply state to elements, and Experiment 2 showed it was a good
method for routing messages through the system. However, the use of a style sheet to store
state makes reading it very inefficient. This is because the browser must evaluate the whole

cascade to return a value for a property every time it is read. This is not dissimilar from one

5.3. Experiment 3: A Distributed, Browser-Based, Web Components WoT System 115

of the issues with Experiment 1, wherein the inheritance of properties would have required
the browser to traverse the DOM tree. While the values for properties are almost certainly
cached, making the read action an O(1) operation at the time of execution, it is still not ideal

as this value has to be calculated at some point.

Additionally, CSS was intended to store presentational state and not data, and so is limited
in many ways. For example, it has no concept of permissions or security and so cannot
police whether an action should be allowed. It also does not have properties which can only
be read from and not written to (e.g. the temperature from a sensor can be read, but writing
to it will have no effect). An alternative may be to have a backing database of state, possibly
using the Indexed DB [224] specification within the browser, and to employ CSS to request
changes to the state rather than to contain both the changes and state. This would naturally
add complexity and would require more work (as outlined in Chapter 7) but would remain

within the limitations of the browser.

5.3.2.3 User Acceptance

User acceptance of this approach will be assessed in far more detail in Experiment 4 in the
next section, although a heuristic analysis is still useful to explore some of the underlying

approaches rather than the interface.

Heuristic Analysis

1) Visibility of system status This system had excellent visibility, with the caveat that all
the changes were occurring locally and not replicated to a server or devices. With each
digital twin in the environment under control having a single wireframe representation on
screen, it was clear how they related to one another and what the effects of commands were.
This approach to displaying an environment should work for any single room or group of
devices, although it would need to be reconsidered for more complex deployments (e.g. the
very large concert environment in task 4 of Experiment 4 was hard to navigate and too
detailed to see all at once). Due to the inherent flexibility of the system, any environment
could be made to produce any number of representations and it could present these
simultaneously to the same user or many users. Making this experience user or developer

friendly would ultimately be the job of user experience and graphical designers.

2) Match between system and the real world The preview was arranged to be visually
similar to a real room, with the key objects and furniture represented in some way. This 1:1
mapping of representation to a device was a product of this heuristic and as such it provided
areasonable facsimile. With a better 3D engine and 3D modelling skills it could have been

vastly improved, but may then have required an interface from the 3D scene to the DOM

116 Chapter 5. Experiments

which would have added further complexity. The Ul was a compromise to make a usable

system in a reasonable time and this is very apparent in places.

Conceptually, the space in the Ul responded similarly to the real world scenario, having
three dimensions. However, it lacked many physical properties, notably gravity and
collisions between objects. Within the representation, many devices could occupy the same
space and they could be floating above the ground without support. The potential work

needed to overcome this is discussed further in Chapter 7.

In terms of status, the system did an excellent job in communicating this, both through the
CSS and via direct access to the DOM, and also by allowing the user to see at a glance the

colour of a light or the position of a chair.

3) User control and freedom With the adoption of Web standards, the expert user gained
unprecedented control over the system and, therefore, the environment to which is was
connected. Within the confines of the UI, they could change the CSS to alter the
environment, but beyond this they could potentially write JavaScript or browser plugins, or

even export the DOM to an external system.

During the production of this experiment, it became clear that it was trivial to use an IDE
‘off-the-shelf” without modification to create and control the interface for the environment.
This is very important as it is a cornerstone of the aim to make the WoT widely available to
Web developers. With an IDE comes complex editing, syntax highlighting, source control
integration, linting, and hundreds of other tools and integrations. Along with this
complexity comes advanced debugging and error handling from tools that already exist.

Very few other IoT or WoT systems can offer this.

4) Consistency and standards The system conformed to Web standards in all but one
place which means that, in theory, any Web developer could be given access to the source
code and be able to use it within a very short period. Experiment 4 explored this in greater

depth by allowing real developers without knowledge of the system to use it.

5) Error prevention Error prevention arises in two instances, firstly during the creation of
the code, and secondly in the use of it. The latter is entirely in the hands of the developer. In
this system, there was very little error handling, as it was assumed that the developers using
it would be sufficiently knowledgeable to produce error-free code. It was also too large an
undertaking to produce error correction and handling for the Ul There was, however, full
access to the browsers’ developer tools from which users could track down errors for

themselves.

One major benefit of using standard approaches is that, during the creation of code for the

system, the developer’s IDE would provide linting and syntax highlighting. This would

5.3. Experiment 3: A Distributed, Browser-Based, Web Components WoT System 117

reveal many syntactical errors in familiar places and logical errors would appear as normal

in the browser’s console at run time.

6) Recognition rather than recall This approach excels at recognition as every part of it
will be familiar to a Web developer. With the addition of Web Components and Custom
Properties, the journey to a Web-based solution is almost complete. Web developers would
recognise the format of the CSS and JavaScript, as well as the DOM behind an environment.

This was also explored further in Experiment 4.

7) Flexibility and efficiency of use The openness of the approach meant that there was
almost infinite flexibility in approaching and solving a problem. However, the structured
and well-known boundaries of Web technologies mean that transition from Web

programming to WoT programming could be achieved very efficiently.

The ability to create a Ul meant that the end-user could be shown a very simple or very
complex interface, or one which can be tailored to their skill level. The developer, too, had
the option to use simple Web APIs to achieve simple goals or layer pre-existing and
well-known libraries and plugins over the top of the DOM to produce vast and complex

solutions.

The programmatic efficiency of the system was based on over 30 years of advancements in
Web and browser technology, and so began its life with all of the pre-existing shortcuts and
optimisations. This facet alone gave it a vast benefit over almost any other non-Web-based

IoT solution.

8) Aesthetic and minimalist design Interaction design is not a key driver of this
experiment, although it is an important measure of a well designed system, as one that is
not well designed has limited options for interactivity. Take, for instance, the Arduino. When
it was first released it was an incredibly flexible platform in terms of features, but had to be
interacted with through a proprietary IDE containing many bugs. It was easier to use than
any other embedded platform and many people persisted with it. However, it suffered
because the developers had to do a lot of work to achieve parity with the IDEs for other areas
of development. The WoT could easily inherit this problem, but this approach does not.

With it, developers are free to take their current IDE and program the WoT almost instantly.

In terms of the end-user, the design of the Ul in this experiment, while deliberately
minimalist, demonstrated how straightforward it could be to create a UI for a WoT
deployment. However, even that interface could have been reduced to text, speech, or
braille, if the developer so chose. In fact, due to Web integration, it could offer all three
accessible options with very little change to the underlying code. This prospect is discussed
further in Chapter 7.

118 Chapter 5. Experiments

9) Help users recognize, diagnose, and recover from errors Web developers have a shared
domain language of error codes and syntax, one which is acquired over time. It is baffling to
the novice yet routine to the seasoned expert. While this system did not offer errors in plain
English, it presented them in such a way that would be familiar to an expert Web developer.
They appeared in the same console and were written in the same syntax. They could be
thrown in the same way in the JavaScript code as for any other Web-based system and they
could be investigated using the same tools. While learning how to understand errors such as
these is not trivial, it is transferable back and forth between this approach and normal Web

development and so the effort is not wasted nor expended multiple times.

10) Help and documentation The documentation for the system is almost entirely the
same as that for the Web. It has been written over the last 30 years by teams of experts
addressing the underlying technologies and by those who specialise in accessible technical
writing. There are third-party tutorials pertaining to every aspect of the construction of the
system used in this experiment and nothing is proprietary. In this way, to an expert Web
developer, the system was self documenting. However, the application itself did benefit from
some additional explanation in the form of documented code. Due to the distributed nature
of the knowledge behind the approach, no specific help or guidance was needed, although it
would most likely be appreciated if the approach were to be applied on a wider scale.

5.3. Experiment 4: Assessing Developer Acceptability of a WoT System 119

5.4 Experiment 4: Assessing Developer Acceptability of a WoT

System: Designing CSS for an Environment

In this experiment, participants were asked to complete a series of tasks using the system
developed in Experiment 3. These were designed to test whether the approach used is
intuitive and can be learned swiftly. An expert sampling approach was used, and the
participants chosen were all software developers with some experience in Web
development. They were recruited from personal and professional contacts as well as
through targeted posts on Reddit and LinkedIn. The study was completed using the
interface and system developed in Experiment 3 and a data collection back end written in

JavaScript.

Participant Sources

LinkedIn

The author’s LinkedIn network is composed of distinct groups of people:

¢ Those in and around London, as that is the largest city near to where the au-

thor grew up, went to university in, and had their first job.

¢ Students and staff from the Electronics and Computer Science department at

the University of Southampton.

* Professional and personal connections from Australia and New Zealand.

Reddit

A Reddit account was created for this project, and was publicised in the following
subreddits:

¢ /r/css_irl - for people who take photos of real things they see that look like a

developer has made a mistake with their CSS syntax.

¢ /r/homeautomation - for discussion of home-based automation and IoT de-

ployments.
* /r/webdev - a group of professional and amateur Web developers.

e /r/IOT - discussion about the IoT, both from an industry and practical per-

spective.

e /r/css - a group of enthusiasts who share developments in the CSS specifica-

tion, as well as uses of it and those seeking help.

120 Chapter 5. Experiments

The study had three aims:

1. Discover whether an expert developer can learn the approach promptly

2. Begin to understand how developers view an environment, and whether that aligns

with a hierarchical representation

3. Assess the acceptability of the approach to expert developers

Each of these aims was assessed differently, albeit within the same study.

5.4.1 Participant Breakdown

All the results shown here should be framed by the abandonment rate. Of 61 original
participants, only 22 completed the study, with a further two offering feedback at a later
stage. Some 25 completed all four main tasks and 22 submitted the final scene and feedback.
Two additional pieces of feedback were gained through a request for feedback from those
who did not complete the study. This was possibly due to a higher abandonment rate than
would have been realised had the study been carried out in person, as the social pressure
from walking out of a room mid-experiment is higher than closing a browser window.
However, 22 is a sufficiently large cohort to draw some useful conclusions [208]. As can be
seen in Table 5.3, there was a consistent loss of participants between tasks. This may suggest
that they found the tasks hard, uninteresting or otherwise time-consuming, yet advanced to
the next stage in the hope of some kind of improvement or that it may be the end of the

ordeal. However, this is mere conjecture as data on abandonment was not collected.

Demographic data was requested as it colours the results, although more extensive
demographics were deemed excessive and therefore not collected. Age was used to screen
out those who were under the age granted by the ethics committee (18) and self-reported
experience was collected as it may have been linked to acceptance or understanding of the
technology.

As shown in Table 5.1 and Table 5.2, the participants were spread over a wide age range, but
were skewed heavily towards younger ages for both populations. Despite the younger ages,
all participants who completed the study had at least 1 year of prior experience in Web
development and at least 2 years of general development experience, while some had much
more than this. The participants who completed the study may have been slightly more
experienced in Web development, and development overall, as none of the least
experienced developers completed the study (although the median development and Web
development experience remained the same for both groups). Overall, the shape of the
population which began the experiment and those that finished was mostly the same, and

so no conclusions can be drawn as to why some of them may have abandoned the study.

5.4. Experiment 4: Assessing Developer Acceptability of a WoT System

121

Age

Mean 25.30
Median 24
Mode 18
Min 18
Max 52

Length of experience
Median 5-10 years
Mode 2-5years
Min less than 1 year
Max greater than 10 years

Length of Web-specific experience

Median 2-5years
Mode 5-10 years
Min less than 1 year
Max greater than 10 years

TABLE 5.1: Results from all 61 participants who began the study.

Age

Mean 23.82
Median 23
Modes 18, 21, 22, 25
Min 18
Max 33

Length of experience
Median 5-10 years
Mode 2-5years
Min 2-5years
Max greater than 10 years

Length of Web-specific experience

Median 2-5years
Mode 2-5years
Min 1-2 years
Max greater than 10 years

TABLE 5.2: Results of the 22 participants that completed the entire study.

122 Chapter 5. Experiments

5.4.2 Study Structure

The study was arranged with the following provisions:

* An introduction page, with a brief description of the study, its purpose, and links to

the ethics approval.
* A structured demographic and experience questionnaire.

* Animage of a scene, for which the participant was asked to describe it without

prompts for the preferred structure of the answer.
* Four tasks, each of which used the interface and system from Experiment 3.

* Animage of the same scene as previously presented, but this time with a light negative

prompt for the structure of the answer.

* A semi-structured questionnaire about the participant’s opinions of the approach

used by the study.

* A thank you page informing the participant that the study was complete.

5.4.3 Part 1: Learning the Approach

Their ability to learn the syntax was assessed by giving the participants four problems to
solve. These problems began very simply and became progressively more complex. This
learning approach should by now be familiar to any developer, as it is how most practical
university work is completed, and the way in which most online tutorials for Web
development are structured. Each step was accompanied by a list of CSS Custom Properties
that could be used to solve the task, a brief, and an image of a scene. The user could interact
with the scene using a text box which contained an initial incorrect or incomplete
description of the scene using CSS, and they could then see the results in a panel showing a
dynamic scene created from a provided DOM and the CSS in the text box. The interface can
be seen in Figure 5.19 in Experiment 3. The participant then had to correct the CSS to make
the dynamic scene match the image and brief. The exception was task 4 which only
provided an open-ended brief. Results were saved for each attempt at each task and also for

the final version.

The experiment was carried out remotely. This was partially as a result of COVID-19, but it
also offered the opportunity to reach a wider variety of people without geographical

limitations.

5.4. Experiment 4: Assessing Developer Acceptability of a WoT System

123

Participant Rewards

The participants were motivated with a chance to win a £50 Amazon voucher, with
an additional voucher being added per 10 study completions. This was an attempt
to encourage sharing as the participant would not suffer a diminished reward for en-
couraging others to take part. This method of encouragement was chosen because
a single £5 reward did not seem sufficient to motivate professionals who would typ-
ically earn many times that per hour and the potential to win more may have been

a bigger motivator, despite the final payout per person remaining the same.

5.4.3.1 Taskl1

The first task was an object which needed to be moved in two dimensions and had the

following prompt, followed by a list of available properties. The prompt provided was:

In this first task you will reposition and close an IoT fridge, and set the correct

temperature.

Edit this CSS to set the temperature of the fridge to 4°C, and close it. Then
change the room and fridge to match the image by setting the room size and
fridge position.

You can use the following properties. Each must be preceded with a ‘--’ as the

system uses CSS Custom Properties.

Press ‘Test’ to try out your CSS in the environment to the left, and ‘Submit Final

Version’ when you are happy with the result and want to move to the next step.

This task contained very straightforward closed commands to complete a simple task, while

introducing the participant to the interface and concepts involved. It also introduced the

problem as a scenario, which is important for later tasks.

5.4.3.2 Task2

The second task presented the user with a more complex environment, a more open task,

and a scenario without explicit instructions. The prompt for this task, again followed by a

list of available properties, was as follows:

When you get home from the shops you realise you accidentally left the hob on
and the fridge door open. You also forgot to turn the oven on to heat up to 180°C

ready for dinner.

124 Chapter 5. Experiments

Luckily, your house is CSS compliant. This means you can make a style sheet
that you can apply before you next go shopping which will both make you house

safe, and turn your oven on to heat up while you're away.

The CSS below shows the current state of the room. Edit it to make a new style

sheet you could apply.

This style sheet describes the current state of the kitchen. Edit it so that the

room matches the image above, and sets the oven to 180°C.

The end result will be a style sheet you can instantly apply to the kitchen before

you leave, or remotely via your house’s app.

Tip: you may want to use ‘iot-oven’ as a selector

The description is deliberately open. However, there are still defined success criteria,
namely setting the oven temperature, turning off the hob, and closing the fridge door. The

user was still given an initial scene to work from.

5.4.3.3 Task3

The third task was more open and did not present the user with an initial style sheet. The
participants were still given a list of available properties, but the prompt had much less

well-defined success criteria:

Your company has just invested in IoT furniture which can automatically
reconfigure a space depending on what it’s being used for. It uses magnets or

something.

You've been asked to create a style sheet to set up the office for a normal
morning. Jesse (desk 2) and Alyssa (desk 6) asked you to make sure their
computers and lamps are turned on at the start of the day as they both like to

get to work early and get working immediately.

This task was designed to discover whether the participants would be able to navigate the
DOM tree for the IoT environment and understand the hierarchical nature of the

environment.

5.4.3.4 Task4

The final task was intended as a blank canvas for the participant to experiment with what

they had learned. The prompt was:

5.4. Experiment 4: Assessing Developer Acceptability of a WoT System 125

There is no reference image or correct answer for this task. Be creative!

You've been employed by a venue to implement a style sheet for a concert they
are planning. The organiser has sent over a list of requests, and the venue
manager has sent you a list of controllable devices in the venue. Don’t worry
about fire exits, and assume the entire architecture is configurable around your

design.
Below is an equipment and CSS property list from the venue:
... a list of furniture and equipment, with the properties that apply to each ...

Note: These have already been added to the DOM for you by a junior dev but

they may have added some items you don't need.

Requirements, from the event organiser:

* The company brand colour is #££4422, so we'd like to emphasise that on

the stage.

* We'll have music playing initially, but we don’t want it to overwhelm the

guests, so please keep the volume fairly low.

* The stage will have a lot of equipment on it, so we'll need to keep the
artists cool. However, if we cool the whole auditorium to the same level it

will cost too much and the guests will be too cold.

* While we don’t want the ceiling lights to overpower the stage lights, we
have fire safety requirements that mean we need to keep the lights at the

back of the venue at 80% or more.

Other than this, we will leave the layout and design in your capable hands.

The task was designed to be as close to a realistic scenario as possible. Although it is
deliberately demanding, the expectation was that not every participant who started the task
would produce a complete solution. It was hoped that their thinking and use of the system

would be revealed to some degree.

5.4.3.5 Results

Results from tasks:
These results are based on the participants who completed each stage of the study.

The data on the number of attempts shows significant investment in the task by the
participants who completed them. Tasks 3 and 4, the more complex ones, had a median
number of attempts of 64.5 and 76, respectively. Each attempt was an instance of the

participant entering a change to the style sheet then clicking the ‘Test’ button to see how it

Chapter 5.

Experiments

Task 1
Total participants/final attempts 46
Total non-final attempts 242
Total attempts by task finishers 286
Min attempts by task finishers 2
Max attempts by task finishers 18
Mean attempts by task finishers 6.22
Median attempts by task finishers 5
Task 2
Total participants/final attempts 45
Total non-final attempts 346
Total attempts by task finishers 390
Min attempts by task finishers 2
Max attempts by task finishers 25
Mean attempts by task finishers 8.67
Median attempts by task finishers 7
Task 3
Total participants/final attempts 35
Total non-final attempts 2661
Total attempts by task finishers 2611
Min attempts by task finishers 6
Max attempts by task finishers 215
Mean attempts by task finishers 76.76
Median attempts by task finishers 64.5
Task 4
Total participants/final attempts 25
Total non-final attempts 1568
Total attempts by task finishers 1534
Min attempts by task finishers 5
Max attempts by task finishers 139
Mean attempts by task finishers 72.86
Median attempts by task finishers 76

TABLE 5.3: Results from all participants who completed at least one task.

5.4. Experiment 4: Assessing Developer Acceptability of a WoT System

127

affected the representation of the environment. All but the final attempt from each

Task 1
Total attempts 156
Min 2
Max 18
Mean 6.24
Median 4
Task 2
Total attempts 204
Min 2
Max 17
Mean 8.16
Median 8
Task 3
Total attempts 1917
Min 41
Max 215
Mean 79.83
Median 65.5
Task 4
Total attempts 1534
Min 5
Max 139
Mean 72.86
Median 76

TABLE 5.4: Results from participants who completed all four tasks.

participant represents the participant completing a feedback loop from input to output and

back again.

The mean is higher than the median on all but Task 4, meaning generally the data are

positively skewed. The openness of Task 4 likely explains this difference, as there were no

concrete success criteria given that the participant was free to stop when they felt they had

done enough, and the task was more creative than the others.

As can be seen in Table 5.3 and Table 5.4, the mean and median attempts by those
participants who finished all tasks were not significantly different from the entire
population of the study who completed any number of tasks (i.e., a participant who

completed three tasks behaved broadly in the same manner as one who completed four,

irrespective of how far they progressed in the study). This adds some weight to the results

from those that finished all the tasks and, while they cannot be extrapolated to larger

128 Chapter 5. Experiments

populations without more data, they suggest that generalising to the larger population of

study participants is not unfounded.

The relatively low numbers of attempts needed to complete the first and second tasks in the
experiment, as well as the number of successes the participants had across all tasks shows
that the participants were capable of completing them. The learning curve was overcome
remarkably quickly and, hopefully, it was quicker than an unfamiliar system would have

been, although this is largely conjecture without supporting data.

The recreations of the participants’ scenes were made by replaying each attempt so that any
bugs or inconsistencies were also replicated in the final version. The full versions can be

seen in Appendix B.

Note: There was a bug found by several participants which meant that the lamps in Task 3
sometimes failed to turn on despite the CSS being correct. As a result, this has been ignored
in the final results. The bug was caused by the window . getComputedStyle () not being

called on the children of a changed element.

5.4.4 Part2: Understanding Participants’ Perception

The developers’ initial view of an environment was tested by asking them to describe a
photograph of a simple scene at the start of the experiment. This occurred before exposure
to any syntax used in the experiment. They were given the following prompt, with a focus on

the audience being similar to themselves:

The image below contains a scene. Please describe it as best you can in the text

box, then press ‘Submit’ when you are happy.

You should describe it in a way that another programmer like you would
understand it. They should be able to replicate it from your description alone.
Assume they will think similarly to you, and please frame your response

accordingly.
Please spend around 5 minutes on this task.

This description can be in plain English, pseudocode, or using any other textual

representation (except ASCII art or equivalent).

Any code used does not have to be syntactically correct.

After completing the four tasks above, they were again told to describe the same scene with

a similar prompt to that before:

In the section below is the same scene you saw earlier, but this time please

describe it in a way that another programmer who has completed this study

5.4. Experiment 4: Assessing Developer Acceptability of a WoT System 129

would understand. They should be able to use your description to recreate the
scene. Assume they will think similarly to you, and please frame your response

accordingly.

There is no obligation to use the syntax from this experiment. Please only use it if
you believe it to be a good option. However, if you do, please feel free to extend it

or alter it in any way you see fit.
Please spend around 5 minutes on this task.

This description can be in plain English, pseudocode, or using any other textual

representation (except ASCII art or equivalent).

Any code used does not have to be syntactically correct.

This prompt emphasises that their target audience was the same, but that the people they
are writing for would have also completed this experiment. The aim was to investigate
whether their experience during the experiment changed the way they answer the prompt.
It was expected that if the CSS-based approach was very acceptable, then the second time
they described the scene they would have used a more structured approach, taking
inspiration from the tasks. However, even if this were not the case, differences in their initial

and final descriptions could reveal more about their experience of the experiment.

5.4.4.1 Results

Some 22 participants described both scenes and completed the tasks in between. The
perceptual change observed between before and after the task is stark and can be seen in
Appendix C. The initial descriptions varied wildly and are mostly written as either
descriptive paragraphs or lists, with only a few written in some kind of pseudocode, despite
the prompt explicitly allowing it. Of the second set of descriptions, however, many use the
syntax in the study, or some variation of CSS syntax, and most show a heightened use of

hierarchy to describe a scene.

Three participants showed clear engagement with the idea beyond the others. Two
produced an entire DOM hierarchy for the room in the image, while the other extended the

syntax to use a nested SCSS-style approach, including the use of SCSS variables.

Interestingly, several participants displayed a pre-existing preference for a hierarchy to
describe the initial scene. While this is not unexpected, as a lot of code is written based on
hierarchy and inheritance, it does help to verify an assumption of this thesis that developers

will try to apply a hierarchy to a spatial problem.

Other interesting points included:

e The amount written in the first and second descriptions were often fairly similar for

the same participant, yet varied greatly between participants. This is to be expected,

130

Chapter 5. Experiments

as both tasks were limited to five minutes. Some participants clearly gave up and did

not fully complete the second description.

The details focused on in the first and second sections were very different for most
participants. In the initial description many people mentioned the appearance of
various parts of the room, including the colours of walls, the floor, the number of
blades on the fan, and the contents of pictures on the wall. In the second description,
they became a lot more intent on describing the position and layout with less focus on
the details. This could be a result of the experiment asking them for simpler
characteristics, often pertaining to position and layout, or an implicit assumption that
the items in the room are already defined and that they can take a higher level

approach. Fatigue could also have been an issue here.

The CSS approach offered a lot less descriptive power than the free text descriptions,
which were much richer in both detail and context. Achieving the same level of detail
using CSS and the DOM would likely require linking to external resources such as

images, and linking to semantic data about each object within the room.

Even some of those who did not choose to use the CSS approach did move from an

abstract description to using coordinates to describe positions.

Some described the same information in both descriptions, despite using elements of
the CSS approach in the second, although others completely changed the way in

which they described the environment over the course of the study.

One participant used an approach in the first description which approximated the
way CSS works, including using ‘position’, ‘width’ and ‘height’ as they would be used
in CSS rules. Another referred to ‘padding’ in the same context to how it would be
used in CSS.

Many described the room first before describing the contents, and some of those also
described a piece of furniture first before describing what it contained. This is

evidence of at least a basic hierarchical view.

Some had a very disordered approach and described objects in the room seemingly at

random, while others chose a sequential or hierarchical approach.

Some people described the social context of the room (e.g. “a bedroom of a possible

streamer”) while most only considered the physical characteristics of the room.

Many initially chose an arbitrary viewpoint in the first image, for example “from the

perspective of the door”, before going on to describe the room from that viewpoint. In
the second image, many more people used the Cartesian coordinate approach. Those
that used coordinates in the first image felt the need to describe the coordinate system

before using it, but those that used it in the second assumed a shared understanding.

5.4. Experiment 4: Assessing Developer Acceptability of a WoT System 131

Many of the observations exhibit a lack of a common language for describing a scene in the
first part of the experiment but, after completing the tasks, the participants made many
more assumptions based on shared experiences. Many assumed a coordinate system and
most assumed that the objects in the room needed less description to be able to reproduce
the scene. It may be that the participants felt they had already described the objects in the
scene so did not need to describe them again. However, it is still promising that they began

to adopt the shared language of the system.

There is undoubtedly a lot more that could be read into the participants’ responses.
However, it is clear that a degree of learning and acceptance of the system occurred over the
course of the study which gives weight to the use of this approach to satisfy the third aim of
this thesis. It does however indicate that this approach could be acceptable to Web

developers.

5.4.5 Part 3: Assessing the Acceptability

The primary measure of the acceptability of this approach was a simple questionnaire with
Likert scales and free text questions. The questions, presented below, were designed to
assess whether the participants subjectively liked or disliked the approach; whether they
would actively engage with it; and whether they would introduce others to it given the
chance. It was assumed that engagement and choosing to advocate the technology would
be reliable proxies for acceptance. Participants were asked whether they would consent to
follow-up research, in which case they could be contacted for clarification or further

questioning.

Additionally, acceptability was assessed using the second scene description, as a tendency
to use the approach, despite being told they do not have to, could indicate that it has

become a preferred method for tackling this problem.

Due to the interactive nature of the Reddit website, some unprompted feedback was also
received as responses to the recruitment posts, which added to the understanding of the

user feedback from this study.

The questions asked were:

1. How intuitive did you find the CSS-based approach to controlling an environment?

A 5-point Likert scale from very unintuitive (1) to very intuitive (5).

2. Would you consider taking a job which used this technology (or a refined derivative

of it) to program environments? A choice was offered from no, maybe or yes.

3. Would you contribute to an open source project which used this technology, or
would you integrate it into an open source project you contribute to or maintain? A

choice from no, maybe or yes was provided.

132 Chapter 5. Experiments

4. How likely would you be to use this approach in a commercial setting, were it to be
specified and supported to the same level as other Web APIs? A 5-point Likert scale
from very unlikely (1) to very likely (5) was used.

5. How would you improve this approach? A free text field followed.

6. Do you have any other thoughts about this project? A free text field followed.

Note that question three focuses on an open source project, while question four specifies a
commercial project as the two have very different processes and criteria for the selection of

technologies.

5.4.5.1 Results

It is important to note that the participants who had access to this questionnaire would have
been those who had managed to complete the tasks before this juncture. Moreover, they
were also those sufficiently motivated to complete the entire study. This may cause the

findings to be more positive than were all participants questioned in the same manner.

In an attempt to combat this, all the participants who had not completed the initial study
and had indicated that they would be willing to be contacted to participate in future
research were emailed and asked to complete the feedback section. Of these 18 individuals,

two responded and completed the final questionnaire.

This questionnaire resulted in some very useful insights into the participants’ opinions of

the system, including many well thought out criticisms and compliments.

Much of the negative feedback pertained to the programming interface itself, including
features such as autocomplete, or the Ul in general. This is understandable, as the interface
was very basic and those features which developers take for granted in IDEs take a lot of
work to implement, and as such was not possible for this study. It did however reveal that
there was at least a minimal interest in integrating the system with other technologies.
There were other useful ideas and criticisms too, which will be addressed in detail in the

discussion section as they apply to the thesis as a whole.

One element of the feedback, itself a response to the recruitment post in the css_irl
subreddit [225], was the best example of engagement with the contents of this thesis. A
person had both taken part in the study and was sufficiently interested to take the time to
suggest an improvement, namely to use media queries to select when a rule would be active.

Specifically, the individual said:

I think this is a phenomenal idea, and would love to be able to script my scenes
with something like this. Added bonus, would love to see media queries for time

of day and similar events (like sunset and sunrise).

5.4. Experiment 4: Assessing Developer Acceptability of a WoT System 133

This idea echoed the idea presented in Mate Marschalko’s blog post [190], which had been
determined to be too complex in the implementation of this system. However, the concept

opens up the potential for many more extensions, as explored in Chapter 7.

On a more quantitative note, those that responded to the questionnaire gave the following

average responses:

How intuitive did you find the CSS-based approach to controlling an environment?

e mean: 3.58

¢ median: 4 (intuitive)

Would you consider taking a job which used this technology (or a refined derivative of it)

to program environments?

* no: 4, maybe: 14, yes: 6

Would you contribute to an open source project which used this technology, or would you

integrate it into an open source project you contribute to or maintain?

* no: 3, maybe: 11, yes: 10

How likely would you be to use this approach in a commercial setting, were it to be
specified and supported to the same level as other Web APIs?

e mean: 3.42

* median: 4 (likely)

These results are promising as they all show at least a slight tendency towards the positive
end of each scale. As mentioned earlier, this could be biased by the nature of the
participants who reached it, particularly those who answered question one. However, the
later questions serve as measures of confidence of the quality of the solution rather than
mere utility, and those too have a strong bias toward the positive. This indicates that the
system, with some obvious user experience enhancements, would be a viable candidate for
adoption by the wider development community and, therefore, provide strong evidence
that the third aim of this thesis has been satisfied.

134 Chapter 5. Experiments

5.4.6 Bias

There were at least two sources of bias in this study, aside from the author’s own
unconscious biases. These were selection and survivorship bias. Selection bias was both
deliberate and a by-product of the method used. Requests for participants were placed only
where they would be seen by those people with an interest in development and, specifically,
in Web development. This was because it was not believed that a normal user would have
been able to complete the task within a reasonable time, if at all, and because developers are
the target demographic. The recruitment posts and study were both in English, thereby
excluding any non-English speakers, as the author does not speak any other language. The
task itself required a fairly modern browser, therefore excluding those without access to a
modern computer. The study was also not accessible to non-visual browsers such as screen
readers. Addressing these issues was beyond the scope of the study, but should be assessed

were wide-scale adoption to be considered.

The tasks within the study were a major cause of survivorship bias, as they were both long
and complex. This is shown by the higher drop-off rate as the tasks increased in complexity.
Emailing those who abandoned the study was an attempt to negate this bias, but was not
very successful as many participants had not consented to further communication and only
two of the other 18 responded. Comparisons of the population of those who began the study
with those who finished it did not show any significant differences in the parameters
measured, and so there is no way to know for sure the cause behind the drop in
participation over the course of the study. Two participants wrote notes to apologise for not
having sufficient time, and it is a reasonable assumption that many others did not complete
it because they also ran out of time. Although, alternatively, participants may have reached

the limit of their attention or skill.

135

Chapter 6

Discussion

This research has investigated several approaches which increasingly take advantage of Web
browser technologies for describing, monitoring and controlling IoT environments. Each
approach has compromises, yet each subsequent iteration has become less proprietary. The
reason for this is two-fold; firstly, exploring the problem afforded greater knowledge of the
problem space and what was required; and secondly, over the period the project took place,
browser technology and Web standards advanced significantly. Specifications such as Web
Components and Custom Properties have made the browser far more adept at representing
non-document elements. While the solutions became increasingly aligned with how
browsers are implemented and designed to work, the browsers themselves became a more

hospitable environment.

This project intended to cater to the IoT without merely producing a Web service that is
accessible to the user, but rather to envision a way that the IoT and, by extension, the
physical world becomes a part of the Web and meshes with the documents the user sees
every day. In doing so it goes a step beyond previous visions of an integrated WoT, including
that of Guinard, Trifa and Wilde [192], which were content that connecting to devices with
Web protocols such as REST was sufficient. Concerning this, the project has been more

successful than originally expected.

6.1 Have the Aims Been Met?

6.1.1 Aim 1: To treat IoT devices as we do the elements of a Web document by
representing them within a DOM

The first aim of this thesis was to find a way of representing IoT devices using the DOM.
While this could have simply been a list of elements in an XML document imported into an

iframe, it was not felt that this would be sufficient to make the IoT truly integral to the Web.

136 Chapter 6. Discussion

Instead, a hierarchical approach was explored, one which progressed from XML to HTML
and, ultimately, allowed for the inclusion of digital twins of the devices directly within the
DOM of an HTML document. In this respect, both the letter and spirit of this aim have been

met.

Experiment 1 laid the foundations for a DOM-based WoT system, and this was expanded on
in Experiments 2 and 3, each of which added an extra dimension to the solution.
Experiment 2 demonstrated that it was not only theoretically possible, but also feasible to
build and execute a WoT system using the DOM as a core component. Experiment 3 took
this a step further by using Web Components to begin to add semantic meaning to the DOM
nodes which were the digital twins.

In every experiment, a DOM node represented a device, although the positioning of the
node within the hierarchy added meaning beyond the device itself. Most widely employed
was the idea of a hierarchy to represent a physical environment, wherein an item on a table
becomes a child of the table node. However, the potential for expanding this beyond purely

physical representations was also touched upon.

6.1.2 Aim 2: To build a system for controlling and monitoring IoT environments
using only browser technology, ideally with CSS and JavaScript

Similar to the first aim, there was both a shortcut solution that could have been taken and a
more honest approach that was taken. The shortcut to building an IoT system using browser
technology would have been to heavily rely on JavaScript to build new functions and
structures that would run within a browser, but not follow the best practices of the Web. To a
certain extent, the system in Experiment 2 took this path. However, where possible the
built-in features of the browser were taken advantage of and every effort was taken to not
misuse them, but rather to implement them in a way that would be expected to a Web
developer. For example, in Experiment 3, the Web Components specification was used to
represent devices and their components rather than taking a simple approach of
representing the environment in a JavaScript object with links to HTML elements on the
page. A comparison of these can be seen in Figure 6.1. Both meet the requirement of using
only browser technology, yet Web Components work with the browser while the other

approach works within the confines of it, although ultimately overlooks integration with it.

Despite every effort, there were some aspects of some browser specifications which had to
be worked around in each experiment. In the first experiment, many opportunities for
integration were missed by seeking an XML approach rather than an HTML one. While the
XML was valid and would likely have succeeded from a technical standpoint, it nonetheless
over-used attributes and would not have worked well with other technologies such as CSS.

This was taken as a learning point early on and informed the design of Experiment 2.

6.1. Have the Aims Been Met? 137

const environment = {
devices: [
{
name: 'cooker',
element: document.querySelector('#cooker'),

<div id="cooker"></div>

<iot-cooker />

FIGURE 6.1: A JavaScript object linked to a <div> element (top), vs. a Web Component
(bottom).

The second experiment suffered from having to work around the CSS property allow list.
CSS only permits certain approved properties such as ‘color’, ‘animation’ or ‘height’, while
any WoT system would require far more freedom to represent the physical states of devices.
A separate parser had to be written to handle the new properties, thereby bypassing many
built-in features and optimisations. This also meant that the approach was abusing the
flexibility of JavaScript to fill a gap that should have had a native solution. This was solved in
Experiment 3, as browsers gained widespread support for Custom Properties, which allowed
for using properties such as --position-z and --power which were not possible in

Experiment 2.

The third experiment had the fewest compromises, yet was still very slightly imperfect. It
relied on an event being triggered on a node when its CSS properties changed, which is nota
current feature of the browser. An example of this is when the power property of alamp
element was set to on and this change to the CSS would then trigger an event to change the
appearance of the digital twin. The same event would have been used to trigger a message
to the device itself in a real system. This change to the property could have arisen directly
through the style attribute or else via a class applied anywhere above the parent. This is
the equivalent of a repaint triggered by a class change that affects the element in question.
However, the browser does not expose this event to the JavaScript engine. Were the event to
be exposed to the JavaScript engine, then the solution would have been almost entirely
native and inline with the spirit of the browser’s specifications. However, as it stood, an
inefficient workaround was necessary to poll for changes to the CSS using

getComputedStyle.

While this aim was not entirely met in practice, it was demonstrated that it would be
possible to meet it with some very minor adjustments to the browsers’ implementations.
That said, even minor changes would require significant justification and work to

implement due to the scale of the social impact of an API or change in functionality to

138 Chapter 6. Discussion

mainstream browsers. Overall, it was considered that despite this, the aim was met as two

functional systems and one theoretical approach were produced which would satisfy it.

6.1.3 Aim 3: To produce an approach which is acceptable to existing Web
developers that could allow them to easily transition into WoT
development, thereby following existing best practice for Web
development

Each experiment brought the solution closer to a standards-based approach and, with this,
it also came closer to best practice for Web developers. While not all best practice follows
standards (e.g. frameworks such as React often work around the standards or overlay them
with a completely new paradigm), all standards form best practice. Once a standard is
implemented in the browser’s native code, more often than not it becomes the most

efficient way to complete a task and, by default, becomes best practice.

From a more human perspective, Experiment 4 demonstrated that there is community
support for this type of approach, with several developers taking the time to explain what
they liked about the approach, while others were sufficiently engaged to share feedback
about both the approach and the UI. Most developers who attempted a task were successful
in completing it and all developers produced an answer for each task they attempted which
used the approach correctly, whether or not the end result was correct. This is strong
evidence that the approach is relatively straightforward to learn and adhere to, which
suggests that the developers who took part could relatively easily transition into using this

process for WoT development.

The feedback at the end of the study revealed a slight leaning towards positive sentiment
when the participants were asked about the approach used, as many would recommend it
to others or use it themselves in future projects. While this is by no means conclusive, it

suggests that developers may willingly accept the system were it to be developed further.

There was also some evidence that the developers quickly learned to think about
environments hierarchically, even if they did not appear to before the study commenced.
The change from an unstructured to a structured, hierarchical description of the scene at
the start and end of the tasks in Experiment 4 reveals a change in their perception brought
about by the study. Again, this is not a conclusive result, but it is yet another indication that

the participants could quickly adjust to the way of thinking necessary to use the system.

It is worth noting that the developers who took part were those that responded to the initial
invitation and were sufficiently interested to complete the study, while those participants
who showed support were those who successfully made it to the end of the experiment. This
means that they had passed the initial explicit and implicit filtering processes of the study.
This is not necessarily a problem, as every development community has filters created

according to interest, knowledge and experience, and a potential community around

6.2. Benefits of This Approach 139

integrating the IoT with the Web would also evolve equivalent selective biases. What
Experiment 4 did successfully demonstrate was that at least some existing Web developers
would be able to transition from Web development to WoT development and, moreover,
that they would do so willingly, potentially advocating this transition to others. There is
more work to be done in exploring the level of acceptability and what can be done to
facilitate it, although it can tentatively be said that this approach is acceptable to some Web

developers in the form presented in Experiments 3 and 4.

6.2 Benefits of This Approach

Many benefits derive from this approach, and these overcome some of the limitations of
existing systems. The approach, as a whole, is far closer to Web standards than the IoT
ecosystems from blue-chip companies such as Google [143], Apple [127] and Amazon [145].
Matter [156] is forging ahead with proprietary integrations between manufacturers, and
even the W3C’s WoT implementation requires a great deal of new technology to function.
The experiments in this thesis demonstrate that there is a way to implement a WoT system

without creating too much new technology.

In addition to the benefits gained from completing the aims of this thesis, there have also
been some additional benefits that surpass the capabilities of other IoT systems, including
zero-knowledge environments, integration with Web documents, and style sheets for

environments.

6.2.1 Zero-knowledge Environments

Experiment 2 was the first system to realise the idea that no single part of the system needs
to know about the rest of the environment, and this was enabled by the use of CSS classes.
Even the hub, which contains a DOM of all the devices does not necessarily need to know
about all the components of the devices, as messages were routed to the devices; yet acting
on them was delegated to the devices themselves, and the components that were acted
upon may or may not have been visible to the hub. Indeed such a device could have had its

own equivalent of a Shadow DOM.

This type of system comes with some useful advantages, notably, that any class-based
action applied to the system is agnostic of the environment it is applied to and can operate
without any implicit knowledge of the contents of its environment, i.e. it is weakly coupled
to the environment. For example, a style sheet can be written generically and applied to any
environment. In this case, only those objects which meet the criteria of the selectors will be
acted upon, and those rules which are not used are ignored. The same cannot be said for
many other IoT systems, including IFTTT [133], Amazon Alexa [145] or Node-RED [134],
which require functions to be written to specifically link actions to devices. In these tightly

140 Chapter 6. Discussion

coupled systems a function in one environment cannot easily be shared with another,

unless they are almost identical.

Aloosely coupled IoT system and environment yield a far more resilient solution.
Considering a hypothetical environment: if a device lasts for an average of three years, then
in an environment with 1,000 devices, one will break critically almost every day, assuming a
uniform distribution of failure. This, of course, does not include routine failures such as
battery failure or loss of connectivity. In an environment with significant complexity,
flexibility is therefore imperative. A loosely coupled system allows for failures and
replacements and, provided the replacements have the same classes applied to them, it will
continue to work seamlessly, regardless of any differences in the underlying hardware. It
also allows for expansion (e.g. replacing a single radiator with two smaller ones), without

any change to the style sheet.

There are of course downsides to a loosely coupled system, and the most glaring is that two
devices may share the same classes, yet have very different functionalities, especially in the
case of homonyms. A device with a class of 1ight may be a light or it may not weigh much.
Turning on this second device may present issues if it is potentially dangerous, such as a

light camping stove.

6.2.2 Integration with Web Documents

Experiment 3 showed the power of fully integrating digital twins into a document wherein
the representation of the environment was generated from the twins themselves. A benefit
of this approach is that the representation of the environment is always up to date as, ifa
device is removed, then its twin is also removed and the representation is updated by
default.

The twin becomes woven into the fabric of the document and so the data it contains
becomes a part of the document rather than using scripts to display data about the device.
This is another example of how the WoT can mirror the Web, as the concept of data fading
into the background is a key feature of Marc Weiser’s notion of calm technology [116]. A
simpler, yet more deeply embedded example of this, is a weather station in which the digital
twin is embedded in a user’s browser homepage so that they can see the current external
temperature, humidity and wind speed. The outcome is arguably similar to that of using a
script to call an API, but with a tighter bond between the device and the document. Using a
similar approach, it would be possible to construct an interface identical to the Web UI used

in Experiment 2 but built from digital twins.

This tight integration is something that lies beyond existing IoT and WoT systems, and only

has brief parallels to the Amalgam project [2].

6.3. Issues With This Approach 141

6.2.3 Style Sheets for Environments

The use of style sheets is very effective at reducing repetition, but also brings to the IoT a
feature that is analogous to visual themes. This was briefly explored in Experiment 2, but
only with small style sheets to swap between scenes. In this case, the scenes had a purpose
such as ‘Reading’ or ‘“TV’, and controlled multiple devices using the zero-knowledge
approach mentioned previously. This is a parallel to the themes offered by some Web sites
and applications, in which users can switch to a different theme. This can be done for the
purposes of self expression; to cope with a change of environment (e.g. a dark theme at
night); or to help them to overcome a disability, for instance a high contrast theme. WinAmp
[174] was famous for allowing its users to download themes and flip between them, and
Apple MacOS and iOS have lead the way recently in encouraging developers to include dark
mode themes [226].

With style sheets for the IoT, users can replicate this functionality in physical environments.
Rather than separately specifying each device on every occasion, they can use a pre-defined
style sheet and switch to it with a single button press rather than via a complex manual
process. This is similar to what is offered by Philips Hue and some high-end smart home
systems, including Savant [160] and Control4 [158], but these are neither generally

applicable nor produced in a standards-compliant way.

6.3 Issues With This Approach

While the approach has many benefits, the experiments also raised several issues which
were not resolved in this thesis. Three of the most important were the CSS property

taxonomy, functionality and permissions, and industry support.

6.3.1 Taxonomies

Experiment 2 highlighted the issue of a CSS taxonomy as it required significant work to
overcome the CSS allow list for property names. New properties had to be chosen and
added to a new allow list within the hub. The decision about which words to choose was
executed as they were needed, rather than in any structured way. Experiment 3 overcame
this by allowing any property name to be used, but this opened the system to the possibility
of spelling mistakes, which were often made, and a sprawling folksonomy of property
names. Neither situation is ideal.

The current list of CSS properties was curated by the W3C and browser vendors to match a
relatively small number of possible states. The same approach would be challenging in the
IoT due to the heterogeneity of the devices such an environment could contain. New

properties had to be added frequently during Experiment 2 to allow for new situations,

142 Chapter 6. Discussion

which could have been hard to predict before they arose. A closed taxonomy was shown to

be insufficient, but opening it was not much better.

Experiment 3 had an open taxonomy, one which did not allow for error checking for the
names of properties. As a result, misspelled properties frequently appeared and took a while
to find. As these were not errors of the system itself, they could never be flagged by it. Again
in this experiment, properties were added as they were needed. This approach required less
overhead for development, but led to a larger taxonomy than ideally required. Both spelling
mistakes and synonyms enlarged the taxonomy unexpectedly and had to be manually

corrected.

6.3.2 Functionality and Permissions

CSS, as it is today, assumes that all fields are both readable and writable. However, this is not
always true for an IoT deployment. It may be that a position of a device can be read, but the
device lacks any actuators which it could use to move and change its position, meaning that
it cannot be written to. This is an issue of functionality. However, permissions may also
incur the same consequence. A user may want to apply a style sheet, yet not have adequate
clearance to do so. For example, they may want to open all the doors of a building, but lack

the permission to open a fire exit or a locked room.

CSS does not have any concept of this type of property, and this is a potentially a serious,
though subcritical issue with the approach used in this thesis. Any style sheet designed for
re-use or use by different users would have to make certain assumptions about the
interactivity of an environment. If a style sheet were a safety-critical one, such as unlocking
all doors and facilitating an evacuation before using a CO; fire extinguishing system, it
would be catastrophic if it assumed the door locks were automated when they were not, or

that the user who initiated it had permissions which they did not.

6.3.3 Industry Support

A large and socially complex issue is that of support in the development industry.
Experiment 4 touches upon this and found that developers may be willing to advocate the
approach in future. However, this is a small part of a much larger process. As AXR [68]
found, support does not come because of a unique or even a good idea, but rather derives
from this in combination with hard work. Matter is seeing success built from overcoming
the competing agendas of large corporations, meanwhile the W3C’s achievements come

from verbose collaboration between individuals and their large body of extant work.

The approach here stands a chance because it is so closely linked to how Web development
is conducted today and, therefore, requires little change to workflows and does not need

much learning to use it. As Experiment 4 found, Web developers were able to use it almost

6.3. Issues With This Approach 143

instantly and, within an hour, most had adapted their thinking to match the hierarchical

modelling required to use it.

However, as with all projects mentioned throughout this thesis, reaching a consensus within
a group of [oT experts takes many years, while implementation takes even longer.
Agreement between groups, as shown by the lack of cooperation between Matter and the
W3C, is even harder to achieve and most likely falls beyond the remit of the work carried out

in this thesis.

6.3.4 Why Not Just Use JSON Instead of CSS?

An additional issue and one which was raised more than once during the project,
particularly by one study participant, was the suggestion that JSON might be better for
representing devices than DOM objects. Hopefully, the content of this thesis implicitly
answers this question. However, it has been so prominent that it is worth addressing
specifically. It would be possible to represent a device in JSON, JavaScript, or several other
object-based data structures. The CSS properties could ultimately become JSON properties,
while the selector could be stored as another JSON property, and it may even resemble
Figure 6.2. However, that is where the utility ends. Beyond that, it would not be able to take
advantage of many of the browser features which CSS can. For example, the browser has a
very advanced engine for calculating cascades and applying CSS rules to DOM elements.
Using JSON would mean that this has to be remade or else the existing engine would need to
be significantly altered. This is possible, yet unfeasible. It also goes directly against the core

purpose of this thesis, namely to explore re-use over new solutions and workarounds.

{
"selector": ".kitchen .ceiling.fire-alarm",
llpowerll : ll0nll .
"volume": "85dB"

}

FIGURE 6.2: AJSON representation of a fire alarm.

The use of JSON would bring with it certain benefits, such as the ability to quickly modify
the rules using JavaScript and being easily serialisable for transmission, although these
benefits are not significant to the aims of this thesis and come at too high a cost to be
considered worthwhile. As mentioned previously, this would again be an approach working

within the confines of the browser, rather than working with the browser.

144 Chapter 6. Discussion

6.4 Issues That Have Not Been Directly Addressed

Security and scalability are two issues which are integral to the IoT, yet have been largely
disregarded in this thesis. They were deemed to be beyond the scope of this project, but it
would be remiss to entirely ignore their potential impact. While they are both important,
their impact on the contributions in this project were minimal. Security, at leastin a
technical sense, was handled by the underlying Web and Internet technologies used.
Meanwhile, both scalability of networks and of the DOM are subjects which are orthogonal
to the concepts put forward here. That is to say, the approaches used here rely on solutions

to security and scalability, but do not seek to solve those problems within this thesis.

6.4.1 Security

IoT security is a field in of itself and, in general, it was assumed that any system based on
Web technologies would both be able to take advantage of existing and future Web security
and that it would be relatively simple to implement security later on. This is a broad
assumption, but one which is necessary to allow the freedom to produce the experimental
systems used. The only concession here is that of the discussion of permissions presented
earlier in this chapter. However, that discussion was deliberately superficial as it falls

beyond the bounds of this project.

6.4.2 Scalability

Scalability is a concern of any IoT system, although much less relevant in the experiments in
this thesis. Large scale [oT deployments are very dependent on their underlying
infrastructure and, as such, latency, bandwidth, addressing, and a large number of other
limitations must be carefully planned for and overcome. In this project, the deployment of
Experiment 2 was small enough for network limitations not to be a concern, and

Experiments 3 and 4 abstracted away from a physical network entirely.

This particular WoT implementation was bounded by the capacity of the DOM to represent
individual nodes. While there was no indication that this limit would be practically reached
in most deployments, it would be a factor for consideration in a real-world environment. In
the cases of the experiments here, none came close to the limitations of the DOM, even on

fairly restricted computers.

While Experiment 2 did suffer from some minor latency issues, Experiment 3 showed that
this was unlikely to be a result of the DOM or the Web technologies used with it. The Web, in
general, and the DOM specifically have significant proven scalability. Therefore, any tests of
the approach outlined here would be a test of the DOM implementation in the browser

running the test. It is already known that modern browsers can cope with millions of

6.5. Limitations of the Research 145

elements in a single Web page, and so it is a reasonable assumption that they could also
cope with millions of digital twins within a DOM representing an environment. The only
aspect which was not scalable in Experiment 3 was the missing event when a component
was redrawn, although it was assumed that this event would later be added to the browser,

were this technology to be advanced to use outside of the laboratory.

The scalability of a hub or communication with devices also falls outside of the scope of this
project. There continue to be many advances in this area which have nothing to do with the

representation of an environment or resolution of raw commands from CSS rules.

6.5 Limitations of the Research

The limitations of this project fell into the categories of deliberate and/or unavoidable. The
experiments were deliberately limited in scope, as mentioned previously, but were also
products of their timing. Experiments 1 and 2 were completed before Web Components and
Custom Properties were made widely available, and so could not exploit these very useful
technologies. However, in some respects at least this is a blessing, as it forced creativity in
the solutions and meant that more alternatives were explored and further problems
highlighted. It also demonstrates the fast-paced nature of the development of Web
technologies and how the growth of the Web can affect the growth of the WoT.

The fidelity of all of the experiments also limited their effectiveness at times. All were
experimental and temperamental research grade systems, yet they still each provided
valuable insights and sufficient information to both draw conclusions and inform the next
experiment. The reliance on hardware limited the scale of Experiment 2, although enough

different devices were produced, while Experiment 3 demonstrated that scale was possible.

However, the biggest restriction came in evaluating the solutions produced as there exists a
lack of equivalent implementations. As seen in the literature review, those that exist are
either research projects, built for evaluating specific features; large, well-funded commercial

projects; or open source projects with many contributors.

None use a similar hierarchical approach for mapping environments and most send
messages between individual nodes, which are people or devices, or from an individual to a
group rather than employing the set-based approach taken here. This made direct
comparisons of features ultimately futile, although there are some overlaps with other

systems which have been considered in the next section.

Similarly, any comparisons of concrete metrics such as speed or availability are also
meaningless, as large projects have had many thousands of hours spent on these aspects,
and research systems do not need to demonstrate this unless it is a factor within the

research itself.

146 Chapter 6. Discussion

The solution was to adopt a more subjective approach in evaluating the implementations,
using both assessments and observations. Both the tasks and assessments were made by

those with experience of Web development, and many of those were experts in the field.

6.6 Relationships to Other IoT Systems

The closest approach to those in this thesis is the one produced by the W3C’s WoT Group
[12], yet it is sufficiently divergent that they would never be in direct competition,
meanwhile preventing the drawing of direct comparisons. Where the W3C seeks to describe
devices and provide an API for discovering and interacting with them, this research provides
structure and hierarchy to the discovered devices and provides a means to select those with
which a user wishes to interact. The W3C'’s implementation stores the state of a device using
a digital twin produced from a template TD [87], while this project enables set-based control
of that state using classes and style sheets. While both produce digital twins, the W3C'’s

digital twin could be represented as a DOM element using the work demonstrated here.

When this project started, it seemed very much at odds with the W3C’s WoT implementation
but, as both have progressed, they have aligned much better than expected. Initially, the
W3C’s WoT Group wanted to produce a way of describing devices, the ‘Thing Description’;
and a way to script devices known as the Scripting API. The Scripting API did not receive an
outline draft until 2017 [227], but eventually came to include a runtime that implemented
the WoT system, plus a WoT browser/discovery feature. This direction was at odds with
Experiment 1, where devices were manually added to the DOM, and also with Experiment 2,
where devices registered themselves with a server rather than being discovered. However,
Experiment 3 is much more compatible with the W3C'’s specifications. As their
specifications became clearer and this project’s scope narrowed from practical issues such
as communication to higher level issues such as orchestration, an alignment of the two
became easier. The result was that Experiment 3 could contain devices linked to a WoT TD
using an attribute (similar to a src or href attribute), and the discovery and messaging
could be handled by the W3C runtime. Once discovered and registered, the devices could be
added to the DOM manually or automatically, represented with the Web Component-based
framework, and controlled via CSS. The TD could provide filtering for those messages which

the device can and cannot understand and also offer hints in an IDE for the expert user.

Provided the Matter project progresses as expected and the W3C is correct in its assumption
that this and the W3C WoT implementation will be compatible, then the work presented
here should be able to act as a layer over both. However, the aims of Matter, the W3C, and

this project are quite disparate.

Commercial systems are yet more distant, and most provide solutions with simple Uls
which are ideal for the average consumer, like Amazon Alexa or IFTTT. The approach

outlined in this thesis permits fine-grained control for an expert user or developer, which

6.7. The Importance of This Research 147

sits at the opposite end of the scale to the simplified Uls in many current IoT systems. While
a simple Ul can be created using the systems built in this project, the reverse is not possible:
fine-grained control cannot be achieved with the blunt edge offered by many commercial
systems. The notable exceptions are those more bespoke systems, including Savant and

Control4, but these are closed source and not available to the average consumer.

Open source IoT systems such as Home Assistant [131] and openHAB [130] can provide an
expert system through offering unlimited customisability, an orientation which is closer to
this project. However, none so far offer a hierarchical approach to orchestration that is as
complex and flexible as this one. Home Assistant allows users to group devices by physical
location [228], while openHAB offers a more complex semantic structure [229]. Both of
these could be used to represent devices in the same way as this project, although neither

actively encourages it.

Academically speaking, much of the research surrounding the IoT and WoT has related to
practical problems. Outside of a wider integration with the Semantic Web [96], very little has
been done to structure the representation of environments in a Web-friendly way. This
could be because existing solutions are sufficient for even the largest modern loT
deployments and so there is little drive to go beyond this. Publish/subscribe models which
use a channel-based approach, such as MQTT [113], and even direct messaging have not
been listed as a limiting factor within any modern IoT deployment in the literature. For the
moment, network speeds and collision detection, processing power, and battery capacity
and efficiency seem to be collectively outpacing the growing scale of IoT deployments.
However, perhaps if this ceases to be the case in future, there will be a need for a tree-based
approach such as this along with the efficiency gains that come from both the structure
itself and the millions of hours of work that developers have put into optimising DOM

traversal in the browser.

6.7 The Importance of This Research

This research is important because it diverges from extant research and technologies being
developed elsewhere although it still follows Web approaches and standards. While it could
prove to be a technological cul-de-sac, one that is never followed by mainstream
technologies, it is a valid exploration nonetheless. Without experiments like these, alternate
ideas would never be explored and we would forever be limited to the local maxima of the

technological landscape.

Approaches such as those explored within this thesis are specifically important because they
enable developers to apply the knowledge they already have to a new domain and this, in
turn, could lead to short cuts in progress. In this case, a knowledge of how to design and
create virtual documents can be applied to designing and creating physical environments,

and Experiment 4 exhibited some success in this area. The same mental models, and even

148 Chapter 6. Discussion

the same language and syntax, can be extended to allow for new goals to be achieved,
without having to build new systems from scratch. The idea that we can re-use the
discoveries and work of others is essential to development in all endeavours of human
society. Transposing skills from one area to another could save time relative to nascent
approaches that require new learning, and that saved time could be used to push the limits
still further. Again, Experiment 4 showed that experienced developers could learn to use the
syntax of the system quickly and could adapt to the process of thinking necessary to be

successful in using it.

On a more tangible note, being able to adapt existing tools in the growing loT space would
benefit businesses both on the supply and consumption sides. Suppliers would be able to
apply a few changes to their existing products to allow for IoT use at a fraction of the cost of
building new products. The consistency of experience could allow designers and developers
on the consumption side to quickly pivot to a new domain without the financial cost of
retraining or the mental burden of learning a new perspective. While revolutionary ideas
may be easier to sell, evolutionary approaches also have their place within the IoT

landscape.

149

Chapter 7

Conclusions and Future Work

This chapter revisits those benefits realised and the issues raised throughout the course of
this project, and goes on to theorise as to where future research may lead. The previous
chapters have analysed the successes and failures of each experiment and the project as a
whole, and concluded that it has achieved the majority of what it set out to do. Here, the
common threads and unexplored opportunities are itemised and examined. To do this, each
was placed into one of three categories; namely applications of the technology, extensions

to it, or problems with it.

7.1 Applications

The experiments in previous chapters explored a select few applications of the technology
and these highlighted some exciting opportunities, although they also revealed that the
potential is far greater than the illustrations employed so far.

7.1.1 Hybrid Documents

Experiments 3 and 4 used a system that embedded the digital twins into the DOM to great
effect. This ‘hybrid document’ concept of physical and virtual elements indicates the border
between the Web and the real world breaking down slightly. The document sits on a
computer within the environment, but the environment also sits in a representation within

the computer, and thus each may act on the other with elegant symmetry.

The application of this principle in Experiments 3 and 4 was to use the digital twins to create
the representation of the environment and, briefly in Experiment 3, to create an interface to
the devices by making them clickable to control their state. Rather than having a separation

between Ul and the twin, the twins themselves became the interface.

150 Chapter 7. Conclusions and Future Work

In a hybrid document, the elements can contain presentational HTML within their shadow
DOMSs, which does not affect the overall functionality of the system, although it could
conceivably contain control elements such as switches and sliders. In a fully implemented
system, it could be that the UI templates and digital twins merge to form an interface that
fluidly changes to represent not only the state, but also the composition of an environment
without any requirement for developer interaction. Were a new device to enter the
environment, it would register with the system, appear within the DOM, and automatically
be rendered within the UI. This UI would be available on any client device that contains the
DOM and a user could then view its state and control it, in the manner of a universal remote
control that adapts to the devices present. In a busy environment, this could be somewhat
chaotic, but the creation of a usable dynamic Ul that is acceptable to users would be a

worthy research goal.

The same hybrid device concept could be taken in another direction, as was briefly explored
in Experiment 2, wherein CSS can be applied to both the document and the digital twins
within it and, by proxy, the devices themselves. In Experiment 2, one of the pages in the Web
Ul was assigned the same class as an RGB lamp in the room and thus a single rule, one that
targeted the appropriate class, was applied to both concurrently. This opens the door for
creating immersive experiences between the Web and the environment the Web is
experienced within. Beyond virtual reality, a user’s actual reality could be affected as they

explore the Web; a kind of augmented reality that does not require a screen and camera.

Besides the challenges of implementing such an approach, there are a number of human
factors that would need careful consideration, least of all being the question of whether
someone would actually want their house to respond to the documents they view.
Additionally, the security and potential to exploit such a system would need significant
attention. Given how commerce has affected the Web, there is a great deal of potential for

even more invasive experiences with the WoT.

7.1.2 Themes

Linked to hybrid documents is the concept of themes. In this case, a theme is a curated
configuration file that can be applied to a space which will bring in some manner of
continuity, much like ‘dark mode’ for a UI makes it suitable for use in low ambient light
environments. Philips Hue [141] has scenes which serve as limited examples of this,
although the freedom and control of the DOM and CSS, coupled with the zero-knowledge
environment, would bring significant improvements to this concept. These were
demonstrated in Experiment 2, wherein style sheets were used to control multiple devices
for different activities; an example can be seen in Figure 7.1. As mentioned in the previous
chapter, style sheets for environments could be created by users for their own use, but
beyond this, they could also be shared.

7.1. Applications 151

For a movie:

.ceiling_light {
--power: off;

}

.television {
--power: on;
--brightness: 70%;
--contrast: 85%;

}

.hifi {
--power: on;
--volume: 65%;
--source: hdmi;

}

For a dinner party:

.ceiling light {
--power: on;
--brightness: 60%;
--color: sunnyday;

}

.television {

--power: off;

}
Jhifi {

--power: on;

--volume: 20%;

--source: url('./dinner-party-mix.m3u');
}

FIGURE 7.1: Example style sheets for different scenarios.

In the early 2000s, MySpace [230] became an extremely popular social network. One of the
key reasons for its success was that it not only allowed users to create a network of friends,
but also they could have a personalised homepage which offered customisability, including
applying themes to sections or the whole page. In what would today be a nightmare of
cross-site scripting vulnerabilities, users could embed CSS and HTML directly into their
page and it would be shown to all visitors. While some users were able to make their own,
the vast majority used themes they found on various theme sharing Web sites. WordPress
[231] has also gained a substantial market share because it allows relatively inexperienced
users to apply expert-created themes to their website. It allows administrators to add CSS,
HTML, JavaScript and PHP [232] to the server to customise the appearance but, as it is based
on a standard API and page structure, it is relatively simple for creators to make themes and
subsequently share them with less skilled users. Both MySpace and WordPress enabled large
movements of both hobbyist and commercial users, creating themes for sharing within

online marketplaces. The same approach is conceivable for the WoT and the IoT.

The technology in this thesis allows for a similar experience of providing themes. A style
sheet could take advantage of the zero-knowledge environment of this WoT implementation

and, therefore, would not have to reference specific devices or components by ID. It would

152 Chapter 7. Conclusions and Future Work

be very easy for a developer to make a style sheet which targets very generic class names so
that it could be used across a vast array environments. This style sheet could then be shared
within groups, perhaps within an organisation to apply branding, or else between home
users who want to have the feel of a curated space but lack the necessary skills to achieve
this themselves. They could have a colour-based theme for their favourite sports team, or a

sound and light-based theme to use when getting ready for a night out.

As the style sheet can be class-based, it would not necessarily need to be modified if devices
were to be added to or removed from the environment. Provided that a new device was
assigned class names that fitted within the existing schema, it would receive the correct
commands when control messages were sent to the environment. This configuration was
briefly experimented with in Experiment 2 and Figure 7.1 shows two examples of very

generic style sheets.

The research potential extends into both technical and human domains. There is much that
could be done to make environments more conducive to being styled, for instance through
the use of shared taxonomies, although this presents its own problems as discussed later in
this chapter. There is also plenty that could be researched into how to share style sheets

both efficiently and securely.

On the social side, it would be interesting to learn whether people would be interested in
such a concept, and also how frequently they would use them (perhaps daily, only on
special occasions, or more unpredictably). Watching the propagation of themes through
communities and recording how they might evolve, both as users become more accustomed
to the idea and environments become more complex, could yield interesting insights as to
how people actually employ IoT environments. Commercially, it would be useful to know
whether people would pay for themes and treat them as consumable content, much as
expansions for games are consumed now and mobile phone wallpapers were purchased in
the early 2000s.

7.1.3 Composed Devices

‘Composed devices’ are those devices that do not physically exist as a single device, but
rather are constructed from a combination of other devices or the components of multiple
devices. Experiment 2 included a climate control system which exemplifies this; several
devices, including a heater, fan, dehumidifier, and others, were combined and presented as
an integrated ensemble. This is similar to how air conditioning systems are currently
presented, as they too are a group of devices with a single interface which, to the user,
appears to be a solitary device. This type of model has the benefit of abstracting the user
and developer from the constituent devices within the system, allowing them to focus on
the outcomes (i.e., a user can set the desired temperature rather than having to set fan and

pump speeds individually).

7.1. Applications 153

The unique situation presented by the WoT implementation employed in this thesis is that it
allows composed devices to be made from the components of other devices and not just the
devices themselves. Every device exposes not only itself, but also its components to the
DOM. This means that the value of every IoT device is multiplied as new devices are added
to an environment because they not only have their own function, but can also be combined
to form other devices which are more complex than themselves. The use of the DOM and in
particular registering device components in the DOM allows for creating composed devices

from both whole devices and individual components using a Web-native approach.

This approach is not restricted to just devices, as it can also include data sources or
documents. Taking this approach, it would be trivial to create a composed device that
integrates with physical devices and data to create a very pervasive experience. A key benefit
is that the devices themselves do not have to be designed to be a part of it, or even consent
to be used for a chosen purpose, and so a user may avoid the burden of extra cost,
maintenance, and a separate deployment. For example, a user could link their phone to the
power light on their television so that they could comfortably watch a movie while their
phone remains silent, yet still be alerted to any urgent calls. This would give the user many
options as to how they want to experience both their own data, as well as information of
interest from the Web and other external data sources. They could choose to implement an
approach conducive to calm technology or indeed any other approach from the pervasive
and ubiquitous computing movements.

The situation presented by the WoT implementation employed in this thesis is one that
allows composed devices to be made from the components of other devices and not just the
devices themselves. It is unique in that the use of the DOM allows for complex devices to be
built from simple queries using CSS selectors. It also allows composed devices to be made
which contain both physical devices and elements from Web documents interchangeably.

Another Composed Device

Another example of a composed device would be an occupancy and activity mea-
suring system integrating the power usage of various other devices within a home.
Where devices in a room collectively measure an increase in power consumption
it could be assumed that a user is either present or otherwise conducting an ac-
tivity in that room. Combined with other sensors in cupboard doors, chairs, and
other devices, it may be possible to get a very accurate image of occupancy without

specifically purchasing an occupancy detection system.

How well this would work in practice would be a large research area in of itself, and there
would likely be limitations in terms of interoperability, notably concerning security. It would
also be interesting to know whether generic composed device templates could be made that

would apply to any environment, or whether they would have to be tailored to each. It

154 Chapter 7. Conclusions and Future Work

would be sensible to think that, just because a low temperature is recorded by a device that
has a class of . temperature-sensor, it does not mean the room is necessarily cold, as it
could simply reside inside a refrigerator. Whether this could be navigated by the average

user would be a useful question to explore.

There are social aspects that are also worth researching (besides simply sharing device
templates). It may be that users in a neighbourhood could combine aspects of their home
environments to create a street-sized burglar alarm or environment monitoring station,
although there would almost certainly be some trepidation and resistance surrounding that

degree of sharing.

7.1.4 Physical Spaces

Experiment 2 described a system in a simple space, namely a bedroom. After this was
shown to work, Experiment 4 investigated the effectiveness of a DOM-based approach in
virtual representations of several other domestic and commercial environments. These also
seemed to work well for the participants, as many were able to place objects and set their
state, even in complex scenarios. However, these experiments only scratched the surface of
what is possible in the real world. Experiment 2 showed a simple interactive environment,
but a real environment would necessarily be far more complex. Even without more devices,
most environments would be shared between users, rarely used for a single purpose, and

would contain devices that move in and out of them.

7.1.4.1 Shared Spaces

While bedrooms and kitchens are usually fairly private spaces, many spaces are shared with
either a group of known people, or else by a constantly changing stream of different
individuals. At times during Experiment 2, different people used the Web UI to control the

environment, although never concurrently with another user.

In both private and public spaces, some level of security would be needed to prevent users
from changing states that they should not. Whether this manifests as child-friendly
restrictions or simply preventing unauthorised users from affecting an environment, some
level of control is required. CSS does not provide this type of write protection, as discussed
later in this chapter. However, the social aspects are perhaps more interesting and less well
explored than the technical issues arising.

Within a software system, multiple users will often have profiles, although in a physical
space they will concurrently occupy the same environment. Shared profiles in software are
often generic and purpose-driven, for instance a kiosk in a fast-food restaurant. In the IoT, it
may be that a generic system is acceptable in many spaces, much as a movie theatre will

have a set climate and lighting, but in other spaces, a compromise-based approach may be

7.1. Applications 155

more desirable, even if only on shared devices. In a smart space, a control system could
recognise ownership, or mediate compromises, or apply rules according to a social

hierarchy.

Based on this research, research areas could manifest around:

* Combining multiple themes.

* Combining DOM trees when spaces are combined, or when new items enter an
environment. This could be as simple as a laptop entering a room or opening the
doors between two meeting rooms, or as complex as multiple people moving in
together.

* Reconciling disagreements on state, such as room temperature.

* Applying a social hierarchy to an environment (e.g. the space owner may have more
control over the environment, but a space user may have complete control over their

portion of it, such as a desk space or bedroom).

* Maintaining privacy and ownership of portions of the DOM. For example, a hotel
owner may have control over their building, but a guest may bring their own DOM of
devices into a room; in such an eventuality, the guest would not want the hotel to
control their electric blanket, but they may want to have it linked to the temperature

of the room.

These problems are not limited to a DOM-based approach, but the DOM may help or
hinder each uniquely.

7.1.4.2 Multi-purpose Spaces

Multi-purpose spaces are linked to shared spaces, yet are fundamentally different. They
may be shared, like a staff break room, or private, as in a micro-apartment. Often a staff
break room may be used for relaxation, a leaving party, a meeting, or even to sleep.
Currently, staff are forced to work around the environment to make the space conducive to
these activities. However, with themes designed for the space and tailored to each use, it
could become as simple to change the room’s purpose as pressing a button or choosing an

option from a menu, as shown in Experiment 2.

Similar to shared spaces, some spaces are used for a single type of activity, yet need slight
variations. During the COVID-19 pandemic, hospitals were divided into low, medium and
high-risk areas — often labelled green, amber and red — [233], containing patients who had
tested negative, were of unknown status, or who had tested positive, respectively. Due to the

constantly shifting ratios of these groups, the colours assigned to various areas were

156 Chapter 7. Conclusions and Future Work

frequently changed. Often this came with changes in use, for instance changing from an
ordinary ward to a High Dependency Unit or Intensive Care Unit. These changes required a
great deal of manual work to move equipment around, but this also placed a considerable
mental strain on those nurses and doctors who had to remember which area was which
colour. Even a simple automation to change signage and line colours between areas could
have helped to ease this burden. The use of themes for this would have made such a system

trivial to design and implement, provided compatible hardware was installed.

The DOM-based approach would mean that all areas of a certain use could be selected and
modified at once, or else selected individually and had their designated purpose changed.
Moreover, all devices and areas within those areas would also have had the changes applied
automatically. Technically, this challenge would be simple to model, but the challenges
would come from knowing when to implement changes, logistical challenges surrounding
deployment and, perhaps most significantly, reconciling a very technical solution with a

massive and diverse workforce.

Another Hospital Use Case

Another use in hospital would be to allow patients, especially those who are there
for a long time, to feel more at home. At a very basic level, on entering the hospi-
tal they could choose a few simple options for colour and light temperature, along
with some patterns or images they prefer. These decisions could be used to auto-
matically build a style sheet which could then be applied to each room or bay they
are moved to during their stay. It could be particularly helpful for those suffering
from dementia, as a sense of permanence may help them to ground themselves. In
amore advanced system, they could also define more features, such as bed heights,

sounds and furniture locations.

Investigating such a system would constitute a massive undertaking, although im-
plementing it in a way that is both digitally and medically safe would be still harder.

7.1.4.3 Dynamic Inventories

Environments may not be static. If an owner were to allow devices to be added to the DOM
as they appear in an environment (e.g. a mobile phone as you arrive home), then the shape
of the environment will necessarily change over time. None of the experiments however
dealt with this situation, as it is tangential to the aims of this thesis, although it is likely to be
a common situation within any real life IoT deployment. While there are obvious security
issues attendant in allowing unknown devices to register with a system, there are many safe
instances wherein environmental inventories may change significantly (e.g. the stage of a
theatre).

7.2. Extensions 157

The DOM implementation is useful here as, using the example of the stage, it could be
represented as a node in the DOM whereupon only the tree beneath it would change, while
areas such as seating or concessions may stay relatively static. Having a well-defined
structure such as this could help in threat detection (e.g. a device joining under the stage
node may be expected, but one joining the security camera node may require more

investigation or monitoring).

7.2 Extensions

During the course of the experiments, several potential avenues were noted but not

explored, for a variety of reasons. These are discussed in more detail below.

7.2.1 Integration with Existing Frameworks and Tools

Beginning with the most literal extension of this technology, the re-use of tools and
frameworks is almost as important as the re-use of technologies, and the two are closely

interlinked.

The field of Web development is crowded with frameworks and libraries that add a layer of
abstraction or extra features to Web standards. The aims of this thesis all surround making a
system that uses Web technologies to complement modern Web development as far as
possible. Having largely succeeded in this, it would be interesting to see whether the
approach could be compatible with existing Web frameworks. Given that it was shown to
work with Web Components, it would almost certainly be compatible with React, Angular,
and Vue (as well as others such as Polymer/Lit HTML [234]), which are the most widely used
frameworks on the Web today.

Adoption by the communities of these frameworks would open up the WoT to even more
developers and, as a result, even more users. Exploring the engineering changes necessary
would be an interesting line of investigation, as would understanding any shifts developers

would have to make to their mental models so as to accommodate it.

7.2.2 Pervasive Computing

Aspects of pervasive computing and calm technology [116], the concept that data can fade
into the background of an environment, could have been implemented in Experiment 2.
While that experiment reacted to data sourced from the environment as well as sunrise and
sunset data, it equally could have used the same approach to react to other data sources.
The closest it got to this paradigm, however, was showing the weather on a symbol-based

display, although there remains much potential for further development.

158 Chapter 7. Conclusions and Future Work

The CSS-based selection would allow for the use of components of devices for displaying
data unrelated to the device of which they are a part (similar to the composed devices
mentioned previously). A user could have the position of an item on their desk represent
whether they have an unread email or an upcoming appointment, or even the lights on their
keyboard flash when they need to stand up and exercise. Data outputs could be
components of devices, or else tailor-made, though generic ‘data display’ devices.
Regardless of this, the device does not need to be designed for a specific data source or to be

aware that it is being used for displaying data at all.

Much of the research here would be into implementing the technology securely and safely,
while designing devices which are capable of displaying data in such a way that is

acceptable and pleasing to the user.

7.2.3 Distributed DOMs

Larger deployments may require more than one hub device or DOM for many reasons,
including technical limitations of the hardware and multiple ownership of spaces. Following
a similar model to Experiment 2, it could be that it is more efficient to have an area
represented as a DOM within a hub and that hub then shares its DOM with a more powerful
remote server. The idea of a ‘distributed DOM’ presented itself as a possible solution to this.
As the DOM is a tree, it is relatively simple to add a node above the root of two or more DOM
trees which then combines them into one single tree, a process that can be done as often as

necessary.

The idea of merging DOM trees has been discussed already in this chapter, but having a
DOM tree spanning multiple devices has barely even been considered. Devices in
Experiment 2 had the capacity to contain their own DOM as well as to register components
underneath them within the hub’s DOM, although this feature was not fully implemented or
explored. The system also had a feature wherein messages were passed to multiple hubs
and executed on each of them, but this did not treat them as a single DOM. However,
messaging would be an important issue to investigate because, presumably, the root node
would reside on a single primary hub, one which could easily become a bottleneck for
selectors. Efficiency is also a consideration, as specific selectors may only act on a handful of
devices, yet may be sent to many hubs to be executed. Such atomicity of actions may also

play a part in future investigations.

7.2.4 Multiple Concurrent DOMs

Related to distributed DOMs are ‘concurrent DOMs'. These arise when multiple
representations of a set of devices are required. For example, a spatial hierarchy and a

security risk hierarchy; in the first of these instances, the devices are arranged by their

7.2. Extensions 159

position relative to one another, but in the other, the same devices are arranged according to
how much risk they present and thus grouped by the type of risk they present. This was
theorised in Experiment 1, though not explored in any experiment due to the difficulty of

executing it.

This concept adds a significant level of complexity to the WoT model, as selectors which
work in one arrangement may not work in another, or else may have unexpected
consequences. This could be solved using scoping, as is used in many Web frameworks, or
could be worked around by experienced developers. However, the impact of such a layer of

intricacy is unknown.

7.2.5 Media Queries

Another feature that was not implemented was that of media queries. Suggested both by
Mate Marschalko [190] and by a participant in Experiment 4, this feature could allow for CSS
rules to apply only in certain situations. On the Web, this is commonly used to apply styles
based on device width, but in the WoT could be used for any continuous or discrete variable.
For example, a developer could set a rule based on the time of day, or as an extension to the

media query API, data from a sensor, or based on sunrise and sunset.

In addition to values, media queries could also be used with concepts such as ‘home’ or
‘office’, notions that would have a definitive meaning to a user, though less so to a computer
system. This would be particularly useful for mobile devices, which could adapt

responsively to the situation in which they find themselves.

Interesting questions develop around linking social constructs to those ideas which are
sufficiently concrete for a computer to interpret. This could manifest as a system that
contains a user-editable list of these social ideas, in turn linked to a set of values chosen by

the user or else retrieved from an external source, potentially using the Semantic Web.

7.2.6 Abstracting Away From Classes and Properties Using the Semantic Web

The system could benefit from the Semantic Web in other ways too. While TDs have been
mentioned as a template for digital twins within the system, this concept could be pushed
further. As discussed later, language plays a significant role in the choice of class names and
properties attached to a device. Synonyms and different languages would lead to different
class names for the same concept, potentially preventing style sheets from being as effective

as they could be.

One possible solution would be to abstract away from names for classes and in preference
use semantic concepts. For example, rather than giving a television a class of ‘television’ the

device would be given a class that is linked to the concept of a television, which can then be

160 Chapter 7. Conclusions and Future Work

presented in the developer’s local language and dialect. The rest of the CSS implementation

would remain unchanged, though interoperability could be vastly improved.

While this is a technically sound solution, the social dimensions are far more complex.
Besides forcing developers to learn the mental model for the Semantic Web, the burden of
which is at odds with the core aims of this project, the Semantic Web has its own issues

surrounding matching ontologies.

7.2.7 Accessibility

Another extension that was not fully explored is that of accessibility. While accessibility
often seems like an afterthought to the Web, there are standards for text-to-speech
interfaces and simple ways to provide text-only interfaces for those with poor sight or for

conversion to braille.

Due to improved laws and generally changing opinions towards inclusivity, accessibility
would have to be a part of any WoT system from the outset, although its eventual
application may be very different. From a technical point of view, this may not change. For
instance, a device which is a Web Component that may only need an ARIA [235] role
assigned to it and the ability to read its state in text. However, the usability of such a system
may be vastly different. People with different levels of sight may perceive environments
differently, and the hierarchical model presented in this thesis may thus not be applicable.
While visually it makes sense, the DOM tree may need to be reordered or else replaced with
a proxy for users with different accessibility needs. Given the flexibility of the Web
technologies it is built on, this should be possible, although rearranging the DOM would
have effects on the CSS that styles it. Achieving equal access to any system may require an
approach that is not present within the skill-set of Web developers or User Experience

professionals. While the technology is Web-native, the accessibility approaches may not be.

7.2.8 Technology vs. Human Factors

As with accessibility, the user experience of the WoT may be vastly different for
representations of physical spaces as compared to documents. It is apparent when a
non-gamer picks up a controller that there is a learning curve to translating the flat visuals
on the screen to a virtual 3D space. The same could also be true for WoT deployments.
While Experiment 2 showed a UI controlling a physical space, and Experiment 3 showed
developers learning how to control a virtual 3D space, there exists a gap between a real 3D
space and the virtual representation, and this is a chasm that remains to be explored in the
fields of User Experience and Perception. While it is not a Web-specific issue, it will likely

have an impact on WoT systems as they reach inexperienced users.

7.3. Problems 161

7.3 Problems

This chapter has so far focused on the benefits and potential of a DOM-based WoT system,
although it is not without problems, both technological and social. The experimental

systems were all very limited in scope, yet each helped to identify issues with the approach.
Some were fixed by the proceeding experiment, though others were either deliberately left,

or else proved to be more foundational.

7.3.1 CSS as a Store of State

One of the most apparent issues in Experiments 2 and 3 was that CSS can represent state,
though it may not be the ideal place to store it. It is inefficient to read state from a CSS
document or the computed state of an element, as the entire cascade has to be resolved
before the state of an element can be known. This can be optimised, as new rules and state
changes can be composed with the cascade rather than having to reevaluate the whole

document, although this is far from an ideal solution.

No solution to this was found in the course of this project. A backing database could be an
alternative, although it would require the ability to reconcile the CSS cascade with the
current state of the database, which is not trivial. Ultimately, a lot more work would need to
be done to find the best resolution for this. Fortunately, despite this issue with reading state,

CSS proved to be a very good solution for applying state.

7.3.2 CSS, the DOM, and Security

Another limitation of CSS is that it does not have a concept of security. There is no way to
write-protect a property or even to limit who can change it. CSS on the Web has no
requirement for this, as it is generally assumed that all components of the Web page are
trusted and that the impact of changing the style of a Web page by a bad actor presents only

a minimal risk.

A solution could be to expand the CSS specification to fit the use cases presented in this
thesis. A module could be added for permissions, possibly delineating permissions using
the Create, Read, Update, Delete (CRUD) approach [236], or else via an application of HTTP
verbs [237]. Either would however be a further mental burden to developers, but would fit

within the same mental model.

Similarly, the DOM does not have a permissions model. All scripts on the page can modify
all parts of it, with the exception of some aspects of iframes and the Shadow DOM. However,
a WoT DOM may have aspects that the user can change and some that it should not.
Returning to the hotel example, a guest may be granted permission to alter some aspects of

their room, but should not have access to read from or write to anything outside that room.

162 Chapter 7. Conclusions and Future Work

This could potentially be improved by having permissions that propagate downwards
through the DOM, creating a situation where denying access to a node also denies access to
its descendants. However, again this is an extension to the current system rather than

remaining within its confines.

7.3.3 Physical Limitations of Devices

There is one obvious area where a Web document does not align with a physical space, in
that a document contains elements that are not real in any tangible way and can be easily
duplicated, moved or edited programmatically. When building Web documents, the
developer usually has write access to the DOM, while the end-user has only read access. In a
physical space, the layout of the environment would be largely read-only from the point of
view of the developer, but the end-user would have the equivalent of write access by moving
devices around and interacting with them. This could present some interesting challenges,
particularly around how tools could be built that account for this in a way the developer
would be satisfied with.

Other physical limitations would play a part too. For example, on a Web page, an image can
be positioned anywhere but, in an environment, a device is subject to gravity and cannot
overlap the space of any other device. In a fully automated environment it may be the
responsibility of the tool to prevent the developer from making choices that are impossible
or could cause damage, similar to how a linter works, but with far more responsibility.
Finding a way to reliably present this, without placing too much responsibility on the

developer, would be a significant challenge to overcome.

7.3.4 Duplication of Digital Twins

A limitation of the DOM is that each node can only appear once - i.e, a node cannot have
multiple parents. This reinforces the hierarchical model, although there are some cases
when it would be useful to have a node under multiple parents (e.g., the security DOM
mentioned previously). In this structure, a node could be placed under a parent that
determines the type of threat it is subject to. However, a device may be subject to multiple

threats.

As with much of this project, there are two aspects to solving this — technical and social. The
technical side provides a solution, which would be to have multiple DOMs - one for each
threat type — or multiple digital twins in the same tree for a single device. The social part of
the solution is in crafting the DOMs in a technically viable way, but also making sense to the
humans involved. This touches upon another issue, namely domain-specific knowledge, as
the arrangement of the DOMs would likely be impacted by the knowledge and mental

models of the end-users.

7.3. Problems 163

This issue would also impact the ability to merge DOM trees, as mentioned earlier, as two
trees could only merge if they did not contain the same digital twin. Although, at an
architectural level, it would need to be decided whether a digital twin that is present in two

DOM trees is the same twin, or else two separate twins of the same device.

7.3.5 Responses

Experiment 2 raised the problem of responses from devices. In that experiment, it was
impossible to know whether all devices had acted as expected, as the total number of
devices was unknown. Similarly, no response may have been an indication of no devices
acting on the request or simply there being no devices that chose to respond. There was also
the potential situation in which no devices were currently online, yet they could have acted
on it in the future when they were registered and synchronised with the state of the hub’s

internal style sheet.

The solution is not immediately apparent as it stems from the zero-knowledge aspect of the
system, one which enables several of the aforementioned benefits. Hopefully, it could be
overcome, or perhaps the initiating device does not need to receive a response, much like
UDP [238].

7.3.6 Languages

The early Web was very Anglo-centric, having begun life in the USA and branching out first
to the UK. This legacy has lived on and, today, all specifications and much of the day-to-day
business of the Web occurs in English. However, English is not the first language of most of
the world. When building the Web, this was not a large consideration to developers as, with
the implementation of Unicode, they were free to choose variable names and write
comments in their own language (except in those instances in which they had to interact
with libraries, external resources, and APIs). CSS is one such API - the properties are all
English — and so far little or no attempt has been made to change this. Class names,
however, can be in any language, or use any Unicode string (e.g emoji class names are
perfectly valid in both HTML and CSS).

The same is not true in a WoT system akin to those shown in this thesis. A deployment could
contain devices from many manufacturers from across the world and, even if they chose a
common language for implementation, bad translations and spelling mistakes would
disturb interoperability considerably. Even within English, many synonyms could be used
by different people. This could be worked around using the Semantic Web integration as
mentioned previously, or via the use of a closed taxonomy of property and class names,

similar to CSS’s closed list of properties.

164 Chapter 7. Conclusions and Future Work

7.3.7 Open vs Closed Property Taxonomies

The current CSS specification contains a closed taxonomy of properties and, for the most
part, the values of those properties are also restricted. Experiment 2 used a closed
taxonomy, while Experiments 3 and 4 had an open taxonomy using Custom Properties.
Neither presented an immediate issue, as all the devices were created by the same person
and control over them was absolute. Both alternatives have benefits and problems and

consequently neither embodies an ideal solution.

A closed taxonomy has the potential to never be sufficient for every use case, leading to
misuse of properties in cases in which there is no perfect choice. It could also grow to an
extremely long list that is hard for a developer to keep track of. Even with an exhaustive list,

it is still open to misinterpretation where words have ambiguous meaning.

An open taxonomy could leave the system susceptible to developers creating multiple
properties that have the same meaning, either in the same language or different ones. It
could also make generic style sheets almost impossible to produce and maintain, as the
author would not know which properties to set to achieve their goals across multiple

devices.

The Semantic Web could provide a partial solution, as mentioned earlier. It could link
properties to meanings and thereby allow them to be language agnostic. It would also
facilitate a structured, semi-open taxonomy in which each manufacturer or developer uses

their own vocabulary which is codified in a shareable document linked to the style sheet.

In conjunction with this, or alternatively, smart tools could inspect an environment, similar
to the inspector present in the developer tools of most Web browsers. This could give
developers a list of available device types and properties, enabling them to understand the

environment slightly better.

However, either of these would again be an extension of the Web standards and associated

models, thereby placing an increased burden on the developers using the system.

7.4 Final Thoughts

Despite these issues, it is hopefully clear that the use of the DOM to model an IoT
environment presents not only interesting and expansive research opportunities, but also a
chance to make the WoT more widely accessible to Web developers than any other existing

approach.

As has been shown throughout this thesis, it is possible, practical and acceptable to the
community to produce a WoT system that abides by the constraints, rules and intentions of

existing Web technologies. The final system (presented in Experiment 3) is very close to a

7.4. Final Thoughts 165

complete control system and, coupled with a back end that could communicate with real
devices similar to that used in Experiment 2, it could prove a fairly rounded prototype for a
commercial system. From an academic perspective, the project has been very successful.
However beyond the realm of the hypothetical, as with most concepts, it would take a lot of

work, belief and dedication to progress the idea beyond the laboratory.

Many of the ideas presented here surround the direct implanting of devices into the DOM
and then using CSS to apply state. These concepts are almost entirely unique, especially in
terms of their scope and depth. The related implementations by Martin SchuhfuB [1] and
Garza et al. [2] are far more superficial with very different aims, and Mate Marschalko’s [190]
ideas came later and are far less developed than those in this project. Martin Schuhfufy’
demonstration using CSS to control lights was intended for the stage and as a curiosity ata
conference. While it used some of the benefits of CSS, such as classes, it did not use a DOM,
a cascade, or any other browser technologies. Instead, it simply converted CSS into DMX
[189] commands and sent them to the lights. Garza et al.’s approach to using CSS and the
DOM to build IoT devices was tangential to their aims and the inverse of what is
demonstrated here. Where they mapped the virtual to the physical, here the physical is
mapped to the virtual. They used a DOM and CSS, although as a definition language for a
device, rather than to mirror the state of an existing device. Both are interrelated, but
fundamentally different, and neither comes close to a full implementation. It is worth
emphasising here that all three were instances of parallel thought alongside this thesis and

one another and so begin with different problems and end with different solutions.

The experiments within this thesis show the start of what would likely be a much longer
journey to a system that fits perfectly with the Web, not least because standards such as
those from the W3C WoT Group are yet to be finalised. The code used to compose the
experiments in earlier chapters was state-of-the-art for the Web, but the Web develops very
quickly. The W3C is not the only group to be actively working on the WoT, though they are
the foremost towards achieving a complete solution. The Matter Group is closest on the

commercial side, but has yet to release much about how they plan to tackle the WoT.

Experiment 2 is a prime example of the rate of obsolescence in this area. While at the time it
was made it used the most up to date APIs offered by the browser, it has very quickly been
superseded by the Custom Properties and Web Components APIs which could replace much
of the code within the hub with standardised, streamlined, faster, and more reliable
alternatives. Experiment 3 demonstrated these, although it too will become obsolete very
soon. However, both played important developmental roles. Experiment 2 showed that an
efficient and fairly stable WoT system could be built based on the DOM, CSS and JavaScript,
a feat that was essential to this thesis. Experiment 3 was as forward-looking as it is possible
to be, and its simulated nature allowed for the imagining of devices beyond those actually
possible today. It looked forward to a world in which almost every device is connected to
and a part of the IoT environment and, moreover, successfully attempted to provide a

familiar interface to that environment. It demonstrated that, not only would developers be

166 Chapter 7. Conclusions and Future Work

able to use such a system, but also that they could adapt to both the interface and mental

model remarkably quickly.

The impact of the technology would be incremental to the evolution of the Web, but the
benefits of employing a system that is straightforward to use and develop for are fairly
considerable. A familiar overlay for a complex problem could be the difference between
expanding an existing domain of knowledge and creating a new one. Familiarity would
hopefully enable both a faster adoption of the WoT along with a lower mental burden to
already taxed developers. With this could come lower training costs and a larger pool of
developers to pull resources from which, together, would lower both costs and the barrier to
entry. On a personal level, it would require developers to be less specialised and allow them
more flexibility in their career choices. They would not have to make a conscious decision to
become either a Web or a WoT developer, as they could happily be both due to a common

mental model.

The approach here may initially appear to be another competing standard. However, it
could be framed as a complementary solution, one that augments existing and future WoT
proposals. It is already theoretically compatible with what is known about Matter and the
W3C’s WoT implementation and, as these seem to be the dominant players in the WoT field,
this is a good position, although it is still very early in the game. This compatibility is key,
both to the aim of the thesis and to its potential for adoption. It is hoped that working within
the existing landscape in this way would result in a far better result for the community than

a more radical alternative.

167

Appendix A

Experiment 2: Message Schemas

Key:

r message ID

o originating device ID
s: selector

t type

st: status

m: message

d: data

dv: device

ch: channel

Response failure reasons:

ok
general failure
timeout

w N = O

specific failure, see message

168 Chapter A.

Experiment 2: Message Schemas

Create a device in the DOM:

{
"create": {
III.II: II12345II’
"o": "some_device",
Ildvll: {
"id": "ceiling_light",
"class": "light ceiling",
"attr": {
}
}
}
}

Create a component under a device in the DOM:

{
"create": {
"r": "12345",
"o": "some_device",
"em": {
"id": "ceiling_light",
"class": "light ceiling",
"p": "parent",
"attr": {
}
}
}
}

Create a channel in the DOM:

{
"create": {
"rt: "12345",
"o": "some_device",
"ch": {

"id": "ceiling_light",
"class": "light ceiling",
"attr": {

169

Return the DOM element for the device:

{
"read": {
III.II: II12345II’
"o": "ceiling_light",
"s": "#home.bedroom#light",
"dv": {3}
}
}

Returns the DOM element for the channel:

{
"read": {
llrII: II12345|I,
"o": "ceiling_light",
"s": "#home.bedroom#light",
"ch": {}
}
+

Query a device for it’s representation:

{
"read": {
"r": "12345",
"o": "ceiling_light",
"t": "discover"
}
}

Update the device representation in the DOM:

{
"update": {
Ilr||: II12345|I’
"o": "ceiling_light",
"s": "#home.bedroom #light",

ndyt: {
"class": "multicolor touch", // replace, or
"class": "+multicolor touch", // add, or
"class": "-multicolor touch", // remove
"css": {
"background-color": "burgandy",

"power": 1
}
|Id|| . {

// send some data

170 Chapter A. Experiment 2: Message Schemas

Update a device’s id/class (on the device itself):

{
"update": {
"r": "12345",
"o": "ceiling_light",
"s": "#home.bedroom #light",
"dv": {
"id": "new_id",
"class": "multicolor touch", // replace, or
"class": "+multicolor touch", // add, or
"class": "-multicolor touch", // remove
}
}
}

Update a channel in the DOM:

{
"update": {
npn: "12345",
"o": "ceiling_light",
"s": "#home #temperature",
"ch": {
"subscribers": "#some_device", // replace, or
"subscribers": "+#some_device", // add, or
"subscribers": "-#some_device", // remove
"class": "temperature", // replace, or
"class": "+temperature", // add, or
"class": "-temperature", // remove
e {
// send some data
}
¥
}
}

Remove a device from the DOM:

{
"delete": {
llrlI: II12345II,
"o": "some_device",
"s": "#home.bedroom#light",
Ildvll : {}
}

171

Remove a channel from the DOM:

{
"delete": {
III.II: II12345II’
"o": "some_device",
"s": "#home.bedroom#light",
"ch": {3}
}
}

A response from a device after it has acted on a message:

{
response: {
"r": "12345",
"o": "some_device",
"s": "#some_device",
"t": "update", // type: discover, create, update, delete
"st": 1, // status: 1: success, 0: failure
"m": "M, // message: optional
"dv": {3}, // device: optional
g { // data: optional
}
}
}

Publish to a channel:

{
"publish": {
III.II: II12345II’
"o": "ceiling_light",
"s": "#home.temperature",
"d"Z {

173

Appendix B

Experiment 4: Participant Scenes

Part 1

EREEEEEE
FEEEEEREE
o g 9 & & &
b 42 & § & o

Chapter B. Experiment 4: Participant Scenes

176

177

Part 3

Chapter B. Experiment 4: Participant Scenes

179

Part 4

180 Chapter B. Experiment 4: Participant Scenes

181

S

182 Chapter B. Experiment 4: Participant Scenes

183

Appendix C

Experiment 4: Participant Scene

Descriptions

ID 60d87ec5b26cea00154d3111
Before

The Image shows a room with an aspect ration of around 2:1. I will describe the position of things in
the room using the compass. The north-south side is the longer one. The door is in the middle of the
northern wall, east of it is a lit-up shoe rack with a painting above it, and theres a window on the west
wall. next to it is a bed with underglow. In the south-east corner is a gaming setup with an angled
table and a chair. There is an overhead fan-light. In the north-west corner there is a cupboard with

magazines in it. Behind the headrest of the bed are multiple lights.

After -

ID 60dcb0b9fbb87600156f90a6
Before

A square bedroom rotated at 45 degrees. It contains an L shaped desk in the bottom corner with the
opening to the bottom left wall. On the desk is a computer with four monitors and a laptop. There is
a gaming chair in the opening of the desk. There is a bed in the left corner with night stands on either
side of the headboard. There are orange lights coming from the bottom of the night stands. There is a
hardwood floor. There is a bookshelf in the top corner with two upper shelves and a lower cabinet.
On top of the bookshelf are some boxes. There is a window in the middle of the top left wall with a
poster of Darth Vader to the left of it. There is a door in the middle of the top right wall with a poster
to the right and two smaller posters to the left. There is a ceiling fan in the middle of the room.

After -

184 Chapter C. Experiment 4: Participant Scene Descriptions

ID 60dcbd30fbb87600156f90f6
Before
Room is rectangular. Enter at long side of the room, at one third — shorter path of the wall on the right.

Starting from your left, going clockwise through the room:

* shoo cabinet with 5 boards, right next to door.
* above shoo cabinat a wallpaper / painting
e first corner

¢ IN the second corder: desk with pc, laptop, triple monitor, headset holder and 2 speakers,
keyboard, mouse, mousemat. L-shape desk. User would sit such that it is facing first corner.

Gaming chair + chair mat underneath.
* right before third corner, bed with back to wall. Lamp + case at both sides of bed.
e third corner.
* poster
e window
e fourth corner.
* bookcase

e door.

After -

ID 60dcd49dfbb87600156f924d
Before

An isographic rendering of a bedroom, which is rectangular. The room is longer than it is wide. The
room’s floor is a dark purple type of tiling. An L-shaped desk sits closest to the viewer, with a PC tower
on the closest side, three monitors in the corner, and a laptop on the furthest side. The outside
corner of the L is facing the right. A gaming-style chair sits inside the L on top of a mat. To the left of
the desk is a bed with two side tables on either side, with the bed facing the door on the other side of
the room. Both side tables have lamps with rectangular prism shades. A window & shades are on the
middle of the wall far to the left. To the left of the window is a dark-colored poster. In the far corner of
the room is a bookshelf with two shelves of books or games, one shelf with other items, and the top
shelf with three cubic items. The door is opposite the bed on the far right wall fo the room. A poster
or possibly a TV hangs to the right of the door. Below this item is a shoe rack with five shelves and
with three pairs of shoes, two on the lowest shelf and one on the second-to-lowest shelf. A ceiling
lamp & fan hangs slightly over the space between the bed and the desk.

After -

185

ID 60dcebc7fbb87600156f956e
Before

This is a bedroom. On the ground, there is a bed, 2 night stands with lamps on them, bookshelf, shoe
rack, 1-shaped desk with chair. On the walls, there is a window to the East side of the room, and a
wide poster on the North side of the room. The bookshelf height extends to almost the ceiling, while
everything else extends to abound waist height.

After -

ID 60dcf044fbb87600156f9588

Before
{
lengthX: 8,
lengthY: 13,
lengthZ: 8,
objects: [
{
object: "bed",
offsetZ: O,
offsetX: O,
offsetY: 1,
orientation: -90
},
{
object: "nightstand",
offsetZ: O,
offsetX: O,
offsetY: 1,
orientation: -90
},
{
object: "desk",
offsetZ: O,
offsetX: O,
offsetY: 13,
orientation: 90
},
{
object: "ceiling-fan",
offsetZ: 8,
offsetX: 2,
offsetY: 5,
},
]
}

After -

186 Chapter C. Experiment 4: Participant Scene Descriptions

ID 60dd2e0e84bb8c0015a4ala5
Before
The setting is a medium sized bedroom around 12 units long by 7 units deep.

Along the back wall, from left to right, are these items:

1. Abookshelf that has drawers, approximately two units wide, two units deep, and reaches up to
1.5 units below the ceiling. The bookshelf is populated by several books on the top two
shelves, an miscellaneous items on the bottom shelf. On top of the bookshelf are 3 cube-like
structures.

2. To the right of the bookshelf, two paintings on the wall, oriented vertically from one another.

3. To the right of paintings, a white (closed) doorway that is approximately 1.8 units wide, and
reaches about the same height as the bookshelf.

4. To the right of the doorway is a shoe rack that is approximately one unit wide, above it is a

wide painting of an aurora borealis.

Along the left side of the room is a painting of an alien creature, and a closed window around 3 units
wide.

Along the front side of the room, there is a queen-sized bed with two modern nightstands, each with
alamp on top. Then to the right of the bed is a gaming setup, composing of an L-shaped desk with
triple monitors, a laptop on the left, a racing chair, and a desktop on the right.

After -

ID 60dd2fa584bb8c0015a4ala6

Before

Isometric view of a room

Top corner is a bookshelf with books and some things on top.

Right top wall has the bookshelf, the door, an aurora painting and a shoe rack.

top left wall has a whiteboard in the center, a darth vader poster and a bedside table with a lamp.

Following along to the lower left wall of the room there is a bed, a second bedside table with a lamp
and a desk with a computer and 3 monitors.

After -

187

ID 60dd5e6684bb8c0015a4a2e3
Before

Viewing from the door there is a window with blinds in front in the right wall, against the wall the
door is on there is a bookcase on the right and a rack with shoes on the left. Above the rack is a
painting of the northern lights. in front of the door there is a twin sized bed with on both sides tables
with lamps on them. to the left of the bed is a L-shaped desk with three monitors and a laptop on it,
next to the desk is a racing chair. underneath the desk and chair lies a black rug. from the ceiling
hangs a fan with light.

The floor is made up of brown tiles.

After -

ID 60dd628a84bb8c0015a4a323
Before

(from the perspective of the door) There’s a window on the center of the right wall, with a poster to
the left of it.

Right after entering the room, there’s a cabinet and shelving on the corner. Right in front of the door

there’s a queen-sized bed with small bedside tables on both sides, with a lamp on top of each one.
In the center of the room there’s a ceiling fan with the rooms light.

On the left there’s a small shoes shelve and on the left corner, to the side of the bed, there’s a
computer desk that’s L-shapped to the wall, with a “gaming” chair on it. There’s three screens on the
bend of the table, a keyboard and a macbook to the left (from the sitting position) and the computer
is to the right.

After -

ID 60dd72bc84bb8c0015a4a453
Before

The room is a rectangular room, with the long sides around 1.5 times as long as the short side.
Slightly to the left of the middle of the long wall opposite the camera is the door. Left of this, in the
corner, is a cupboard with the same width as the door. Right of the door is a shoe rack. In the corner
closest to the camera is an L-shaped desk with the chair inside the L-shape against the other long
wall. Against this same wall, more to the left, is a 2-persons bed, with small nightstands at both sides
of the headrest. On the left short wall is a whiteboard/window. In the middle of the ceiling hangs a
ceiling fan.

After -

188 Chapter C. Experiment 4: Participant Scene Descriptions

ID 60dd78cf84bb8c0015a4a4a0
Before

This is an isometric rendering of a gamer’s bedroom, at a 45 degree angle as is common for isometric
renderings. Let’s say the NW to SE axis is our x axis and represents “from left to right” and the NE to
SW axis is our Y axis. The left and top wall are drawn as to allow us to look into the room. In the
bottom left is a king size bed, in the bottom right is a desk with a gaming chair and three monitors, in
the top left is a bookcase. Most elements have some type of LED light illuminating the side.

After -

ID 60dd89baa3ae320015ef2226

Before

An isometric view of a bedroom.

The grid of the room is 7x12x5 (x, y, z) squares. Each square is approx 0.5m?.
The point farthest from the camera view is defined as 0,0,0.

The two closest walls and ceiling are not rendered.

Objects in the room (corners):

0,0,0 - 1,0,3 = Shelf with draws

3,0,0 - 5,0,4 = Door

6,0,0 - 7,0,2 = Shoe rack

1,3,0 - 4,7,2 = Bed

0,7,0 - 0,7,2 = Bedside table

5,7,0 - 5,7,2 = Bedside table

7,3,0 - 12,7,2 = Corner computer table with chair

Note: If T had longer I would put more detail on object positioning

After -

189

ID 60dd9045a3ae320015ef223d
Before

A bedroom of a possible streamer, who likes to stream games. He has a high-tech setup with 3
monitors next to each other, a big tower rig, sound-boxes, a fan and a macbook. A Gaming-Chair on a
carpet. Lots of colorful lights everywhere. There’s a shoe rack that has blue light behind it, above that
is a big TV with a very wide angle. The bed as well as the nightstands beside it also have colorful light
behind it. Theres a Poster of Darth Vader and a Window (which is closed) next to it. He has a big

collection of games on a shelve. No plants though, nothing green. Very clean though.

After -

ID 60dd991da3ae320015ef22dc
Before

A bedroom about 6m x 3m x 2m. A white door to enter the room on the lengthwise of the room,
about half a meter wide, with a shoe rack (and a poster above it) to the left of it, with more, smaller
posters to the right of it, and more to the right is a bookcase with gadgets on it. A window posts up on
the widthwise to the right of the door, with a poster on the left of it. 2 lamp stands with a lamp on
each sandwich a king sized bed with mood lighting on the opposite lengthwise wall that is pressed to
the wall with the window. A computer, a laptop, a triple screen monitor setup with wireless keyboard,
mouse, and headset, is present on a table that is shaped like an L, pressed to the other widthwise wall
and the user will be sat facing the door. Finally, a gaming chair and a mat that prevents scratches on
the floor can be seen.

After -

ID 60dda539a3ae320015ef229
Before

Reference frame: standing in front of a bed turned towards it. The size (Or rather the ratio) of the
room is around 1:2 (Width:Length). A bed is located in front of you, it is a double person one. On
both sides on the bed there are 2 boxes/tables with 1 lamp on each. Right behind you is a door, and
on the right of the door there is a bookshelf and on the left of the door there is a shoe holder. On the
right wall there is a table that is roughly “L” shaped with a computer, 3 monitors and a laptop and a
gaming chair right beside it. There is a ceiling fan with alamp mounted in the space between the bed
and the table.

After -

190 Chapter C. Experiment 4: Participant Scene Descriptions

ID 60dde5e4a3ae320015ef23dd
Before

It is an isometric render of a bedroom. Two walls are visible, the other two and the ceiling have been
eliminated so that the inside of the bedroom can be seen. The floor is made of shiny brown tiles.
There is a window in the “top left” wall and the blinds seem to be down. That same wall has a poster.
On the “top right” wall there’s a wooden bookshelf, right on the corner between the two walls, facing
the “bottom left” wall. There are two posters right next to the bookshelf, and then there is a white
door which is closed. Next to the door, there is a wide painting of what looks like the Northern Lights,
and below it, a shoe organizer with 3 different pairs of shoes, that glows for some reason.

The wall that’s closest to the camera (“bottom left”) is where most of the interesting action is
happening. From left to right, we can see a bedside table with a small lamp on it, then a big slightly

undone bed, then another identical bedside table with another lamp.

In the corner, there is a computer desk that has a laptop, a 3-monitor setup, a keyboard and mouse,
what look like speakers, and a desktop computer tower. The desk is in the shape of a horizontally
flipped L, with the long part of the L “pointing” towards the bed. In the inner space, there is a gaming
chair.

After -

ID 60ddee96a3ae320015ef247b
Before

My room starts with a small corridor that is about 1m long, after which you enter the room. In front of
it, there is a small closet. On the left side, there is a Big Closet. On the left wall, there is my desk with
my computer. On the right side of my desk, there is my bed. Vis-a-vis of my bed, there is a couch.

After -

ID 60e0ad89ac638800156ed021

Before

Var ceilinglLightArray;
ceilingLightArray(
X:2;
Y:2;
Z:3;
Type:spot;
Colour:ffffffff;

After -

191

ID 60elaeaf553e3500157a87ef

Before

/*

5 mins is far too short a time for me to describe something like this
but I agree that a CSS style language is a pretty reasonable approach
to describe the layout

*/

:root {
viewpoint: isometric;

}

.room {
width: 12.5;
height: 6.5;
depth: 4;
border: 0.3 solid midgray;

.star-wars-poster {
parent: top-left;
position: absolute;

background: poster-image.png;

top: 1;
left: 0.5;
}
.window {

parent: top-left;
width: 50\%;
height: 40\%;
depth: 0.3;

align: front-face;

model: window-with-blind;

.bookcase {

parent: top-right;

left: 0;

bottom: O;
model: bookcase;
width: 2;

.corner-lighting {
parent: top-right;
width: 2;
height: 1;
align: top-face;
lighting: conical-gradient(light blue 20\%, black);
lighting-style: diffuse;
}

/% and so on */

After -

192 Chapter C. Experiment 4: Participant Scene Descriptions

ID 60ele9a6553e3500157a88ed

Before

It's a bedroom.

The room is a rectangle with a longer width than height. The door is in the middle of the back wall.

The bed is a double bed placed in parallel to the door. Next to the bed are two small dressers with
lamps on it and led lights behind it. The desk (shaped like a L) is on the far left of the room when
entering the door. With the chair facing the door. In the corner right of the door is a closet next to it
(between the door and closet) are two small posters. On the left of the door is a picture on the wall
and a shoe compartment like closet, with some led behind it. There is a big window with roll-down
curtains on the right wall next to the door. Next (left of the window) to that window is a star wars

poster.
I hope this is sufficient enough.

After -

ID 60dddba6a3ae320015ef23da
Before

Consider a rectangular room. The room is 11 units wide and 7 units deep. Orient the room such that
the north and south edges are 11 units in length and the east and west edges are 7 units in length.
The room has red-brown tiles, each of which is 1 unit in width and depth. The walls are a dark gray.

Along the north wall, there is a door position such that its east edge is located at the halfway point of
the north wall. If you know how wide a standard door is, then it may help to know for scale that the
door is approximately 1.5 units in width (from this, you can presumably derive the size of the room,

but if you don’t know how wide a standard door is, good luck).

In the north east corner, positioned against the north wall is a dresser, approximately 1.5 units wide
and 0.75 units deep. On top of the dresser is a bookshelf of the same width as the dresser but only 0.5
units deep containing books and miscellaneous decorative items. On the top of the bookshelf are

some sports balls in display cases. The dresser-bookshelf is mahogany in color.

Centered between the dresser-bookshelf and the door are two pieces of miscellaneous artwork, less
than 1 unit in width and height, positioned on the wall so that one is above the other.

Centered along the west wall is a window 3 units wide, 2.5 units tall and 1.25 units off of the ground.
Centered between the south edge of the west wall and the south edge of the window is a poster of
Darth Vader, approximately 2 units tall and 1.5 units wide, positioned such that its top edge matches
the top edge of the window.

Starting from the west edge, the south wall has a dresser, a queen bed, and a dresser positioned
against it. The two dressers are identical; they are approximately 1 unit wide, 1 unit tall, and 0.5 units
deep. Both have a small lamp on top and are colored a very dark brown (think furniture dark brown).
The queen bed is positioned such that the headboard is against the south wall. It has gray sheets. It is
a platform style frame with no box spring. There is no footboard.

193

In the south east corner is a “battle station”. It features an L-desk. The shape of the L desk can be
described by forming an L with your *right* hand, looking at it such that you are viewing the back of
your hand, and rotating your hand such that the two segments of the mirrored-L occupy the north
and east edges. On the inside of the L is a gaming style rolling chair sitting on a hexagonal mat. On
top of the north edge of the desk, from its west side, is a laptop, a desk speaker, and a keyboard &
mouse on top of a desk pad. In the corner are three monitors arranged horizontally so that they form
a slight curve centered on the sitting position of the desk. On the east edge, starting from the north is
a set of headphones on a headphone holder, a matching desktop speaker, and then a computer

tower.

Along the north wall, to the east of the door is a 3 unit wide, 1 unit tall piece of artwork, whose
bottom edge is 2.5 units above the ground and whose west edge is 0.25 units away from the east edge
of the door. Centered beneath the piece of art is a 1.25 unit wide, 0.5 unit deep, 1.5 unit tall shoe rack

containing 5 shelves and 3 pairs of shoes.

After -

ID 60e47cb851e39400155b0dcc
Before
A room, rectangular, approximately 12 units long (x) by 7 units wide (y)

furniture locations:
bookshelf: (0,0) -> (1,0)
photos: (2,0)[wall]

door: (3,0)[wall]

painting: (5,0) -> (7,0) [wall]
shoe rack: (6,0)

window: (0,2) -> (0,4) [wall]
poster: (0,5) [wall]
bedside table: (0,6)

bed: (1,2) -> (4,6)

bedside table: (5,6)

desk: (3,8) -> (6,11)

After -

194 Chapter C. Experiment 4: Participant Scene Descriptions

ID 60e627f3eb04ee001585226d
Before

A large and simplistic bedroom with a corner office, no open windows and illuminated by multiple

lamps.
There’s one large and two small posters and a wide painting or digital canvas on the wall.

After -

ID 60e88023179d2a0015e96{63
Before

Rectangular room with 4 walls,
North and South walls are the longest walls - roughly 11.5 tiles wide,
East and West walls are roughly 6.5 tiles wide,

Instructions go from Left to Right:

1) West Wall:

There is a bedside cabinet with a vertical rectangular lamp in the corner between West and South
Walls about half a unit wide and slightly away from the South wall.

Darth Vader poster roughly 1 tile along at eye level,

Half a tile further along there is a projector screen slightly higher up than the poster,

The projector screen is roughly 3 tiles wide with similar height,

In the corner between West and North Wall there is a bookshelf with a chest of drawers at the bottom

- this occupies roughly half a tile.

2) North Wall:

In the corner between the West and north walls there is a bookshelf, this bookshelf occupies roughly
2 tiles along the north wall.

There are two pictures hung above one another next to the bookshelf with a slight margin,

The two pictures are aligned in a column and each picture has a different width - they are center
aligned.

There is another margin before a door, the door is 2 tiles wide and 4 tiles from the West wall,

The door does not go from floor to ceiling,

There is a sunset landscape photograph hanging from the North wall at eye level with roughly half a
tile of margin from the door, this photograph is hung around eye level,

Below the landscape photograph there is a 5 tiered vertical shoe rack with an led booklight, it is
placed at floor level and is 1 tile wide.

The shoe rack is center aligned with the landscape photograph,

3) East Wall:
In the corner between the East and South walls there is an L shaped computer desk with a depth of 2
tiles,

The computer desk occupies roughly 3.5 tiles along the East wall starting from the South wall corner.

4) South Wall:

195

The corner between the south wall and the west wall has a bedside cabinet (cabinet 1) with a
rectangular lamp and led backlight,

this bedside cabinet is roughy 1 tile in width,

A double bed with backboard touching the South wall is a small margin east from cabinet 1,

The double bed is roughly 4 units wide and roughly 4.5 units long,

A small margin to the east from the beds east edge is cabinet 2, this cabinet is the same as cabinet 1
in terms of shape and has a rectangular lamp and led backlight,

roughly 2 tiles east of cabinet 2 is the start of a vertically squashed hexagonal mat with a width of
roughly 3 units.

In the center of the mat is a computer desk.

In the corner between south and east wall is the computer desk.
In the center of the room there is a ceiling fan and light.
Further descriptors for the computer desk:

The computer desk runs roughly 3.5 units along the East wall from the corner between east and
south walls,

The computer desk is an L shape with the corner of the L being at its most northern point along the
east wall,

There is a computer tower, 3 monitors horizontally aligned on a single stand center aligned, a

keyboard, mouse, headphone stand and headphones.

The west most point of the computer desk is where the laptop and laptop connector ports are station,
To the east of the laptop is the keyboard and mouse,

to the west of the L corner and at the most northern point of the computer desk is the monitor stand
with the middle screen centered on the stand left most screen facing south, center screen South west
and the right most screen south west west,

The most southern point of the computer desk is where the computer tower and computer

connector port adapter is with and it faces east

After -

ID 610e3a94cc69bb001570a164
Before
There is a room. The room is about 3x6 meters large, and about 2.5m tall.

The room has tiling. The tiles are about 30x30 cm large. The tiles are of dark-ish brown texture. The
tiles are connected via light-brown filling. The walls is dark beige.

There are doors on the longer side of the room, starting 2m from the left. The doors are white and
about 2x1m in size.

There’'s a window on the wall that’s to the left of the wall with the doors. The window is in the middle
of the wall, white, and about 1.5 (W) x 1.2 (H) m in size. In the centre of the room there’s a ceiling
lamp with a ventilator. The lamp is shining in daylight tint (clear white).

196 Chapter C. Experiment 4: Participant Scene Descriptions

The wall with the window has a poster to its left. The poster looks like a Fallout 3 poster, but in blue
and purple colours.

The wall with the doors has cupboard at it’s left end. The cupboard is about 2m high and 1m wide,
wooden, with dark-ish glaze. The cubboard is a combination of a chest of drawers (1m high) and a

bookcase. There’s some stuff in the bookcase, and on top of it.

Above the cupboard, on the wall, in the corner where the wall meets the ceiling, there’s a light-blue
light mounted.

Between the cupboard and the doors, there are 2 small photos.

Next to the doors to the right, there’s an ultra-wide TV mounted on the wall with a screensaver that
youd find on a MacBook.

Underneath the TV, there’s a shoe-rack, about 0.5m wide and 1m high, black, metalic or plastic. The
shoe rack has 4 levels, each level is see-through mesh. The bottom level has 2 shoe pairs, and the
level above it has 1 pair of shoes. The shoerack has light-blue neon lighting mounted at its back
(towards the wall) on the bottom and second-top levels.

In the corner that’s furtherest away from the cupboard, there’s a computer station - an L-shaped
desk. The desk is oriented with one arm of the L-shape parallel with and closer to the wall with the
door, and other arm is parallel with the wall with the window, but away from it. Both arms of the
L-shaped desk are about 1.5m long. The desk is about 0.5m deep. The desk has thin black legs at
each of the corners, about 1m high. The desk is black, with light-blue neon lighting along its rim.
There’s a laptop on the left, and a computer rig with 3 monitors in the corner. There’s a gaming chair
and a black hexagonal rug underneath the chair. Between the gaming setup and the wall with the
window, there’s a double-sized bed with a bed-side drawers on either side. The bed has white sheets,
with light-grey and dark-grey covers on top of it. There’s a soft dark-blue neon lighting installed
underneath the bed. The bed’s headrest also has the dark-blue lighting, and light-green one too at
the top, but in the centre only.

Each bed-side drawers are about 0.3m wide, 0.6m tall and 0.2m deep, black, wooden, with
light-orange backlight at its base. Both have square-ish bed-side lamps on top of them with clear
with colour (same as the ceiling lamp) The drawers are about

After -

ID 60dcc028fbb87600156f9155
Before

A square bedroom rotated at 45 degrees. It contains an L shaped desk in the bottom corner with the
opening to the bottom left wall. On the desk is a computer with four monitors and a laptop. There is
a gaming chair in the opening of the desk. There is a bed in the left corner with night stands on either
side of the headboard. There are orange lights coming from the bottom of the night stands. There is a
hardwood floor. There is a bookshelf in the top corner with two upper shelves and a lower cabinet.
On top of the bookshelf are some boxes. There is a window in the middle of the top left wall with a
poster of Darth Vader to the left of it. There is a door in the middle of the top right wall with a poster
to the right and two smaller posters to the left. There is a ceiling fan in the middle of the room.

197

After

There is a desk in the bottom corner with the computer at z 1 and also in the bottom corner. There is
a chair in the opening of the desk. The desk should be rotated so that the opening is facing the left.
There is a bed in the left corner facing the top right wall. There are night stands on either side of the
headboard with their lights on. There is a bookshelf in the top corner. There is a ceiling fan in the
middle of the room with its light on. There is a door in the middle of the top left wall with a shoe rack

on the floor just to its right. The light on the shoe rack is on. The computer is powered on.

ID 60dcb2e0fbb87600156f90ad
Before

Aroud the perimeter, clockwise, from the door: Image of aurelia borealis above shoe-storage, empty
wall, corner, emty wall, L-shaped desk with three curved monitors and tower, corner, gaming chair
on mat in middle of L, Laptop and keyboard on desk. Nightstand with modern lamp, bed (kingsized),
nightstand, corner, image, window with blinds, corner with books in storage, two small images, door
again.

fan in middle of room, tiled brown floor

After

.bed{
x:0
y:1
}
.nightstand{
y:0
nr=1{x:0}
nr=2{x:4}
}
.desk{
x:8
y:0
}
.fan{
x:5
y:5
z:5
}
.door{
x:3
y:7
}

198 Chapter C. Experiment 4: Participant Scene Descriptions

ID 60dccf3efbb876001569224
Before

An indoor room twice as long as it is tall and wide. The room is portrayed in an isometric view, with
the floor and two walls (north and west) shown. The west wall, which is the shorter of the two, has a
window which is horizontally centered, and vertically placed just slightly above center. As a percent
of the whole wall, the window is about 50%. The window has a closed white shade. Centered
between the left border of the window and what would be the south wall is a poster, which is about
75% as tall as the window, and is about 75% as wide as the space between the wall and the window.
The north wall contains a bookcase, which is positioned in the corner between the north and west
walls. It is about as tall as the highest point on the window. It extends out approximately two feet.
The bookshelf is about three times as wide as it is deep. A space of wall between the right of the
bookshelf and a door is about as long as the bookshelf. In this space, two small landscape pictures
are mounted. A closed, white door is approximately in the middle of the north wall. To the right of
the door, a large, horizontal painting is displayed. Below this painting is a black metal shoe rack with
strip lighting on two of the five layers which it has to hold the shoes. There is empty space in the
North-East corner of the room. The South-East corner of the room has an L-Shaped desk, on which
three computer monitors are held by a single stand in the corner of the desk. The “L’ shape is
mirrored and placed in the south-east corner, so as to make the bottom of the letter touch a wall, and
the side not. A swivel chair is at the desk, and it has a tower computer, laptop computer, keyboard
and mouse, as well as a set of speakers on the desk. In the south-west corner of the room is a bed,
with two bedside tables on either side of the headboard. The headboard is oriented to be against the
south wall of the room. The back of the headboard is illuminated a blue and green color. The back of
both bedside tables are illuminated a warm orange color. Both bedside tables have alamp on top of
them, both of which are illuminated a white color. The room has a centered ceiling fan and light. The

light is illuminated a white color.

After

#room {
size-x: 20;
size-y: 10;

size-z: 10;

#door {
position-x: 4;

position-z: 10;

size-x: 1.5;
size-z: 8;

size-y: 0.01;
color: #fff;

rotation: -90deg;
#bookshelf {

position-x: 0;

position-z: 0;

size-x: 2;

size-z: 7;

199

size-y: 1.5;

rotation: -90deg;
}

#shoerack {
position-x: 6;

position-z: 0;

size-x: 1.5;
size-z: 4;

size-y: 1;

rotation: -90deg;

#shoerack > .led {
power: on;

color: lightblue;
}

#window {
position-x: 0;
position-z: 2;

position-y: 4;

size-x: 0.01;

size-z: 5;

size-y: 6;
color: #fff;
}
#bed {

position-x: 2;

position-y: 10;

rotation: 180deg;

/* Spent a bit over five minutes, stopping here

ID 60dcdb5bfbb87600156f92ec

Before

A room in Isometric view, with the 2 closest walls missing. It has a window in the middle of the

North-west wall, with a poster to the left of it. Against the South-west wall are in order starting from

the north-west wall, but with their backs against the south west wall: A nightstand with a lamp on top

with an orange glow at the bottom of the back, a bed with its headbord against the wall and another

identical (including the lamps and glow) nightstand.

Against the South-east wall is a L-shaped desk going from the corner of the south east and south west

walls first going along the south-east wall and then going towards the middle of the room. Inside the

Lis a desk chair. On the desk in order, starting at the side of the desk closest to the middle, A laptop, a

200 Chapter C. Experiment 4: Participant Scene Descriptions

speaker, a deskpad with mouse and keyboard. Headphones on a headphone stand, another speaker
and a desktop computer. There are 3 screens around the corner of the desk, with the middle one

right in the corner.

Against the North-East wall, starting at the North-West wall but with their backs against the
North-East wall are in order: A shelve with books and balls in boxes on top, 2 small posters above
eachother on the wall, a door, a larger poster of the northern lights and some shoes on some small

shelves under that poster.

After

(x, y, z, [facingl)
room(6.5, 11.5, 5)

nightstand1(0, 0, 0, NE)
lamp1(0, 0, 1, NE)
nightstand2(0, 6, 0, NE)
lamp2(0, 6, 1, NE)

bed(0, 1, 0, NE)

desk(3, 8, 0, SW)
chair(2, 9, 0, NE)
shelve(6.5, 0, 0, SW)
shoeshelve(6.5, 7, 0, SW)

ID 60dcc807fbb87600156f9207

Before

{

"size": "3m x 5m",
"long-sides": ["east", "west"],

"walls-nesw": [
{ "things-1ltr": ["starwars-poster", "window-with-blinds"] },
{ "things-1ltr": ["postcards", "door", "picture" 1},

"none", "none"],

"furniture": [

{ "object": "shelve", "description": "shelf with 3 rows, lamps on top, drawers at the bottom", "
location": "north-east corner, facing west"},

{ "object": "shoe-rack", "description": "4 rows, illuminated", "location": "east wall .5m right
to the door"},

{ "object": "desk", "description": "a corner desk equipped with a pc, 3 monitors, speakers,
headphone-holder + headphones and a mac book", "location": "one side on south wall starting
south-west corner, other side free in the room parallel to east and west wall" },

{ "object": "chair", "description": "office/gaming char with armrests. desk mat below", "
location": "west wall next to the desk"},

{ "object": "bedside table", "description": "has a lamp on it", "location": "north-west cormer
"},

{ "object": "bed", "description": "140x200 bed with mattress and bed sheets", "location": "head
to west wall; between bedside tables"},
{ "object": "bedside table", "description": "has a lamp on it", "location": "west wall next to
bed"}
1,
"other": ["ceiling lamp with fan in the middle of the room"]

}

201

After

The same as before.

ID 60dcb4a3fbb87600156f90b4
Before

It's a top-down, 45-degree isometric view of a room. The fore two walls and ceiling are hidden so we

can see inside. The space is a bedroom with dim lighting.

The floor is made of square red/orange tiles (think saltillo, just with straight edges) that look to be
about 1.5' x 1.5’ in real-world size. The room is about 11.5 of these “long” (along the
northwest-southeast axis) and 6.5 “wide”. Since the half tiles are on the northeast and southeast
edges of the space, let’s treat the west corner as our origin for a coordinate system (x, y), where x is
number of spaces traveling northeast from the origin and y southeast.

Furniture is placed as follows:

- A simple black nightstand with square IKEA lamp (lit) at (0, 0), facing northeast. 0.5 x 1 tile in size,
about 1.5 tiles high
- An identical nightstand and lamp at (0, 5)
- A bed that spans the space between them, jutting out into the room such that the foot of the bed
faces northeast. The bed is about 4.5 tiles long. It looks to be of a similar minimalist IKEA style, black,
with simple headboard, white undersheets, a light gray topsheet, and mid-gray decorative sheet. Top
of mattress about 1 tile high, headboard another 3/4 tile
- Awooden bookshelf/cabinet combo flush with the north corner, facing southwest. The base
(cabinet) bit is 0.5 x 2 tiles in size and a little over 1 tile high, and the shelf on top tapers a bit towards
the wall. Two inner shelves contain books. The “shelf” created by the top of the cabinet has various
red knickknacks that are hard to make out. The very top of the shelf holds what looks to be square
lamps (?)
- An L-shaped desk with simple black surface and cylindrical metal legs, somewhere between 1 and
1.5 tiles high. The L can be described by connecting the point (0, 10.5) to (2.5, 10.5) to (2.5, 7), then
stroking that with a 1-tile-wide line (to the inside). On the desk are:

- a triple monitor setup at the apex

- alarge keyboard and mouse mat (containing both) on the near left

- amacbook pro on the far left

- a black tower on the far right (no wires can be seen, though)

- a headphone stand with over-ear headphones on the near right

- a pair of small bookshelf speakers at mid-left and mid-right
- A gaming chair inside the L on top of a hexagonal pad. The pad is about 2 x 3 tiles in size and is
hexagonal
- Amulti-level shoe shelf at (6, 5.5) facing southwest. 5 shelves evenly divided over the height of
about 2 tiles, 2 pairs of shoes on the bottom shelf, 1 pair on the shelf above that

A white 4-blade ceiling fan with lit lamp is placed in the center of the ceiling space.

There’s a white door with no doorknob on the northeast wall at y coord 3, a tad less than 2 tiles wide.

On the northwest wall is what appears to be a window — it’s just a white panel, but the resolution of

202 Chapter C. Experiment 4: Participant Scene Descriptions

the picture might not be high enough to make out shades/drapes. The window spans (0, 2) to (0, 4),
is about 2.5 tiles high, and is placed about 1.5 tiles off the ground.

Pictures are placed on both visible walls. A poster-sized picture is at the midpoint between the
window and the southwest wall, aligned almost flush with the top of the window. There’s a
panoramic aurora borealis photo above the shoe shelf, and between the door and wooden shelf are
two mid-sized photos stacked on top of each other. Can't make out the bottom one; top one might be

the university of arizona ‘A.

There’s orange underlighting behind both nightstands, subtle blue underlighting underneath the
bed, and brighter blue-white underlighting behind the shoe shelf.

After

/* assumes we've been given pre-made objects to place, so I don't need to re-describe sizes,
details, etc */

room {
--size-x: 6.5;
--size-y: 11.5;

}

end-table {
--position-x: 0;
--position-y: 0;
--power: on; /* let's assume underlighting is built into objects */
--color: #fa6;
--brightness: 60%;

}

#end-table-2 {

--position-y: 5;

}

table-lamp {
--position-z: 1.5;
--power: on;
--color: #fff;
--brightness: 80%;

}

bed {

--position-x: 0;
--position-y: 1;
--power: on;
--color: #54a;
--brightness: 20%;

}

L-desk {
--position-x: 0;
--position-y: 7;
--rotation: 90deg;

}

chair {
--position-x: 1;
--position-y: 9;
--rotation: -20deg;

}

shoe-rack {
--position-x: 6;
--position-y: 6;

--power: on;

203

--color: #eee4dff;
--brightness: 70%;

}

shelf {
--position-x 6;
--rotation: 180deg;

}

door {
--position-x: 6.5;
--position-y: 3;

}

window {
--position-x: 2;
--position-z: 2;

}

fan {
--position-x: 3;
--position-y: 5;
--position-z: 6;
--power: on;

}

ID 60dcd49efbb87600156f924€

Before

* Room is rectangular, 7.5ft wide by 11.5 ft long (assuming floor tiles are 1ft by 1ft)

¢ Floor is tiled, with brown floor tiles (1ft by 1ft)

¢ For the rest of description, assume we are looking at room from the wide 11.5 ft wall.

* Large window 3.5ft wide and 3ft tall centered on left wall.

¢ Poster of character on left wall centered between window and close wall. 1.5ft tall by 2ft wide.

* Black bedside table on near left corner, facing towards far wall. 1.5ft wide by 1ft deep. Lamp on
table.

¢ Bed immediately to the right of the bedside table. 3.5ft wide by 4.5 ft long (which makes me
think my scale is off, but just going with it). Headboard against close wall, bed facing far wall.
Gray sheets on bed

¢ Another identical bedside table immediately right of bed, facing far wall. Lamp on table.

¢ Brown dresser in far left corner of room. 2ft wide by 1ft deep. Two drawers, three shelves on
top (shelves are less deep than drawers below). Boxes on top shelf, books on two shelves
below, misc items on bottom shelf.

* White door to room on far wall 2 ft right of dresser.

¢ Two small pictures on wall between dresser and door. One inline with top of dresser, next
below it and slightly larger.

* 5shelfblack shoe rack 1 ft right of door, two pairs of shoes on bottom shelf, 1 pair on shelf
above.

204 Chapter C. Experiment 4: Participant Scene Descriptions

* Painting of northern light scene on wall centered above shoe rack. 2.5ft wide by 1ft tall.

* Backward-L-shaped black computer desk in near-right corner of room. Bottom of
backwards-L is against right wall. Blue LEDs around edge of desk.

¢ 3side-by-side computer monitors on center corner of desk.

¢ Computer tower on desk, on bottom corner closet to wall.

¢ Headset on headset stand to the left of computer tower.

e Laptop on desk, near the top corner.

¢ Keyboard and mouse on desk mat to the right of laptop (under left-most computer monitor).
¢ Gaming chair inside the gap between backwards L and wall.

¢ Chair is on a black wide hexagonal mat with purple design on it.

¢ 4-blade white ceiling fan centered on ceiling of room.

After

iot-bed {
--position-x: 2;

}

#desk-stand-2 {
--position-x: 5;

}

iot-desk-stand iot-desk-light {
--power: on;

}

iot-dresser {
--rotation: 180deg;
--position-y: 8;

}

iot-shoe-rack {
--rotation: 180deg;
--position-y: 8;

--position-x: 8;

}

iot-desk {
--rotation: 90deg;
--position-x: 12;

}

iot-chair {
--rotation: -4bdeg;
--position-x: 12;

}

iot-ceiling-fan {
--position-z: 8;

}

205

iot-ceiling-fan iot-light {
--power: omn;

}

ID 60dcc8fctbb87600156f9213
Before

The room is rectangular with a door on a long side (for the sake of orientation, this is the east facing
wall) and a window along the short side on the north facing wall, which has a white/grey roller blind
pulled down fully.

The flooring used is a large (I estimate about 60x60cm) red/brown tile.

In the centre of the room, on the ceiling, is a fan with four blades and a light in the centre of the

ceiling fan.
Also on the north wall, there is a painting or other graphical art to the left of the window.

In the corner of the north and east walls is a shelving unit, with its back against the east wall. The
lower portion of the unit is deeper (extends into the room further) than the shelves above it. In this
deeper section there appears to be drawers. There are two shelves above this deeper section, and the
top of the unit (which could be described as a shelf).

The first surface of the unit - the top of the deeper section - has 5 items placed on it. Two are a
red-orange colour, two are a dark purple, and the last is a beige ball.

The next shelf up is half filled with books (the right half) and there are two items placed on the
remainder of the shelf.

The next shelf up is filled almost entirely with books, leaving space for about 2-3 books on the left
side.

The very top of the unit has three items placed on it. These items take up the entire usable space of
the top of the unit and are placed in a 1x3 line. Each item is close to, if not, square in footprint. The
items on the outside edges look to be balls placed within glass boxes, while the item in the middle is
an unidentifiable box shape.

To the right of the shelving unit, on the wall, but between the shelving unit and the door, there are
two small pieces of artwork.

To the right of the door on the east wall, there is a large, landscape artwork of the northern lights.
Underneath this artwork is a shoe rack. The shoe rack has 5 shelves, but there are only 3 pairs of
shoes on it - two on the first shelf up and one on the second shelf up (on the left side). The shoe rack
is only wide enough to accommodate two pairs of shoes per shelf. The shoe rack is illuminated by
two strips of blue light on the back side (against the wall). These light strips line up with the bottom
shelf and the fourth shelf up.

Along the south facing wall, and extending into the middle of the room, is a black, L shaped desk.
The desk starts in the corner of the south and west walls, goes along the south wall about half way,

206 Chapter C. Experiment 4: Participant Scene Descriptions

then extends into the middle of the room about the same amount. Under the end of the desk in the
middle of the room is a set of drawers. On the edges of the desk which touch walls, there is a strip of
blue lighting. The items on the desk, starting from the side with the drawers, are as follows: a laptop
(appears to be a macbook), open, has a pink wallpaper; a small cuboid speaker; a large deskpad; on
the desk pad is a keyboard and a mouse; there are three monitors which are mounted on an arm
which extends from the back corner of the desk, the wallpaper is the Cyberpunk 2077 art; a pair of
over-ear headphones, resting on a stand; a second cuboid speaker; then finishing at the corner of the
room is the PC case, sitting on the desk.

In the L of the desk, on the floor is a rounded-hexagonal shaped mat, on which a ‘gaming’ chair sits.

In the corner of the north and west walls, there is a bedside table with its back to the west wall. It has
alamp on top of it which has a long cuboid-shaped shade. There is an orange strip of light at the
back, along the base of the table. There is a second one of these tables on the other side of the bed.

The bed is next along the west wall, with the headboard along the west wall. It is a double, or larger
bed. The pillows and undersheet are white and there are two blankets/duvets over the bed. Both are
grey in colour, one is darker than the other. The second, darker blanket/duvet is folded in half and is
only over the end part of the bed. The bed’s headboard has a green strip of lighting behind it, against
the wall. The strip of light is about half the width of the headboard, but is in the middle of the
headboard at the top.

After

#bedside-table-1 {
--position-x: 0;

--position-y: O;

}
#bed {
--position-x: 0;
--position-y: 1;
}

#bedside-table-2 {
--position-x: 0;

--position-y: 5;

}

#chair {
--position-x: 1;
--position-y: 8;

}

#desk {
--position-x: 3;
--position-y: 7;

}

#shelf {
--position-x: 7;
--position-y: 0O;
--rotation: 180deg;

}

#shoe-rack {
--position-x: 7;
--position-y: 6;

--rotation: 180deg;

207

ID 60dcf5b2fbb87600156f95a6
Before

Walls are greyish brown, floor is brown wooden tile. Isometric view of the room, closest two walls are
invisible. Room is rectangular, left wall is shorter than right wall. Left far wall has a window centered
on it, with a portrait oriented poster centered between the window and the left edge of the wall at
slightly higher than vertical center. Corner of left and right far wall contains a shelving unit facing
directly away from the right wall, three items on the top, books filling the next shelf down from that,
books filling the right hand side only of the next shelf down from that, various items on the next shelf
down from that, followed by a set of closed drawers connecting the last shelf to the floor. The top of
the shelf reaches around 3/4 of the way up the wall. Drawers make up around 1/3 of the furniture
height. 40% along the far right wall starting on the left is the door. There are two landscape oriented
posters centered between the shelves and the door, starting around half way up the wall vertically,
with a short gap between them. There is a long landscape painting next to the door on the right with
the same gap between it and the door as between the the posters and the door. Centered below the
painting is a unit of 5 shelves with two shoes on the left on the second to bottom shelf and 4 shoes
fully filling the bottom shelf. Along the back left wall starting at the corner between the front and
back left walls, there is a rectangular black cube with a lamp centered on it, followed immediately by
a bed with the headboard against the back left wall, then another identical cube with another lamp
centered on it. The lamp has a rectangular base, a small gap, and then a rectangular lampshade,
taking up around 1/3 of the width of the cube it is sitting on. The bed reaches across 70% of the
room’s width, the bed and cubes combined reach across around 50% of the room’s length. The cubes
with the lamps are only around the width of the bed’s headboard and pillow (not visible). The bed
has a white under sheet with grey over sheets. In the corner between the left and right front walls is a
desk that runs along half the length of the front right wall, turns a 90 degree angle, and continues to
reach around a quarter of the length of the room. There is nothing under the desk, the desk is very
thin with thin black legs at every corner except the corners away from the walls, which reach the
ground as a solid rectangular piece. There is a black rectangular computer tower closest to the room’s
corner, with a small black square next to it, followed by a bank of 3 monitors curving around the
corner of the desk, and headphones on the desk near the inside corner of the desk on the same edge
that the tower is on (the edge against the front right wall). On the edge sticking out into the middle of
the room is a placemat, a keyboard on the placemat, a mouse to the right of the keyboard, anther
black cube to the left of the edge of the monitor, and a small laptop to the left of everything else on
the desk near the edge of the desk. In the alcove of the desk, facing directly away from the camera, is
a gaming chair with no gaps in the back padding, with armpads reaching around half the length of
the arm supports starting from the front and 6 pronged wheel array. Under the chair is a floor mat
that does not lay flush with the back left wall, but has a tapered point sticking out from it that comes
close to the wall in its middle. There is a 4 bladed ceiling fan centered on the ceiling.

After

side table at 0, 0; bed at 0, 1 through 0, 3 facing away from the wall; another side table at 0, 4, wooden
shelves at 6, 0 and 6, 1 facing away from the wall; shoe stand at 6, 6; gaming desk from 0, 12 to 3, 12
and then it makes a right angle to 3, 8; gaming chair centered on a floor mat that covers 0, 8 to 2, 10 in
a square; ceiling fan at the ceiling centered in the room

208 Chapter C. Experiment 4: Participant Scene Descriptions

ID 60dd3dc984bb8c0015a4alfa
Before
Room - 11.5 tiles long by 7.5 tiles wide. x = tiles along length, y = tiles along width

Nightstand 1x1 at x0,y0. Lamp on top. Poster on x0 wall above lamp
Bed 4x5 from x1,y0 to x4,y4. Headboard against wall

Nightstand 1x1 at x5,y0. Lamp on top

Window on wall along x0 line from y2 to y4

Bookshelf in corner 2x1 from x0,y6 to x1,y6

Photos on the wall immediately right of bookshelf

Door immediately right of photos (two tiles wide) at x3,y6.5 to x4,y6.5
Photo immediately right of door (three tiles wide)

Shoe rack centered below this photo, 1 tile wide

L shaped desk from x7,y3 to x10.5,y3 to x10.5,y0

Triple curved monitor on desk with tower, keyboard, laptop, headphone stand
Desk chair in the corner of the L desk

Floor is a reddish tile.
Walls are brown.

Ceiling light+fan centered in room

After

<room>
<nightstand id="1"><lamp /></nightstand>
<bed />
<nightstand id="2"><lamp /></nightstand>
<ceiling-light-with-fan />
<window />
<poster id="starwars" />
<bookshelf />
<door />
<shoerack />
<desk><computer /><chair /></desk>
</room>

room {

--size-x: 11.5;

--size-y: 7.5;
--size-z: 7;

}

bed {

--size-x: 3;
--size-y: 5;
--position-x: 1;
--rotation: 180deg;

color: gray;

nightstand#2 {
--position-x: 5;

}

209

lamp {
--position-z: 1;
--power: on;
--brightness: 100%;
}

ceiling-light-with-fan {
--position-x: 5;
--position-y: 3;
--power: on;

--fan-speed: 0%;

}

window {
--size-y: 3;
--size-z: 2;
--position-y: 2;
--position-z: 1;
--rotation: -90deg;

}

poster#starwars {
--position-z: 1;

--rotation: -90deg;

bookshelf {
--size-y: 2;
--size-z: 3;

--position-y: 6.5;

}

door {
--size-y: 2;
--size-z: 3;
--position-y: 6.5;
--position-x: 4;

}

shoerack {
--position-x: 7;

--position-y: 6.5;

}

desk {
--size-x: 3;
--size-y: 3;
--position-x: 7;

}

computer {
--position-x: 2;
--position-y:
--position-z: 1;
--power: on;

}

210 Chapter C. Experiment 4: Participant Scene Descriptions

chair {
--rotation: -10deg;

}

ID 60dd5a8184bb8c0015a4a2el
Before
Isometric top down view on single room.

Walls:

- West
-width: 0.5fr
-windows
-window
position: centered
width: 50%;
height: 50%
-accessories:
-poster

- North
-width: 1fr
-accessories:
-small image
-small image
-door

-wide image

The room contains:

¢ one cupboard placed in the west-north corner of the room
¢ one shoe-rack placed center of the north wall, slighly east of the door. its backlit blue

* one L-shaped desk, placed along the east wall, starting in the south east corner of the room
with its long side reaching into the room. Desk contains from west to east: one macbook,
small spaker, keyboard an mouse on a deskmat, 3 monitors, 1 headsetstand, second small

speaker, one desktop PC case
¢ in front of desk: 1 gaming chair on a chair mat

¢ 1 double bed on the south wall, placed in the south-west corner of the room with the
headpiece at the south wall. next to the headpiece are two symmetrically placed nightstands.
the bed headframe is backlit green, the nightstands are backlit orange ant the bottom back
side.

¢ mounted at the center of the rooms ceiling is a fan, light combo

211

After

iot-room {
--width: 7;
--length: 13;
--height: 6;

}

iot-window {
--position-x: 2;
--position-y: O;
--position z: 2;

--rotation: 90deg;

iot-poster{
--width: 1;
--height: 2;
--position-x: 1;
--position-y: 0;
--position z: 2.5;

--rotation: 90deg;

iot-cupboard {
--position-x: 7;
--position-y: 0;

--rotation:180deg;

iot-poster:nth-of-type(2){

--width: 0.5;

--height: 0.25;
--position-x: 7;
--position-y: 3;
--position z: 4;

--rotation: 180deg;

iot-poster:nth-of-type(3){

--width: 0.55;
--height: 0.3;
--position-x: 7;
--position-y: 2.5;
--position z: 4;
--rotation: 180deg;

iot-door{
--position-x: 7;
--position-y: 4;
--rotation: 180deg;
--closed: true;

iot-poster:nth-of-type(4){

--width: 2;
--height: 1;
--position-x: 7;

--position-y: 7;

212 Chapter C. Experiment 4: Participant Scene Descriptions

--position z: 4;
--rotation: 180deg;

iot-shoerack {
--position-x: 7;
--position-y: 8;
--rotation: 180deg;
--backlight: on;
--backlight-color: blue;

iot-L-shape-deskd{
--position-x: 0;
--position-y: 9;
--backlight: on;

--backlight-color: orange;

}

iot-bed{
--position-x: 1;
--position-y: 1;
--backlight: on;
--backlight-color: orange;

}

ID 60ddbba3a3ae320015ef234c
Before

arectangular room (orthographic rendering, ceiling and two walls omitted)

- grey walls

—wall on the right is around 2x length of other wall, going from left to right:

— bookshelf, wooden

—- two parts:

— lower part has drawers

— upper part has books, three levels

—- 3 boxes with large balls in them on top

— two small paintings above each other at eye level

— white door, closed, plain

— painting of an aurora, wide (4:1)

— below painting a rack for shoes with 5 partially transparent levels, each fits two pairs of shoes
—- blue led illuminated, two strips

—- two pairs of shoes at the bottom, one above that

— unused space (1/4 of the wall)

—wall on the left (orthogonal to eachother since room is rectangular), going from left to right:
— darth vader poster at eye level

— window, medium large, white, can’t see through (white cover?)

- brown square tiled floor, has following things going from top left to bottom right:
—bed area:

— wide bed with white sheets, light gray blanket, dark gray blanket (smaller)

213

— black headboard, blue and green illumination

— two nightstands, each:

—- orange/red bottom illumination

—- small lamp with tall square lampshade, on

—desk area:

— desk:

—- L-shaped, L-corner pointing towards right (room is rendered at 45 degree angle)

—- light blue led strip along edge

—- wide round feet on legs at each corner

—- items going from top to bottom:

— macbook, open

— small speaker

—— desk mat with keyboard and mouse (right side)

— three screens, not curved, on monitor arm arranged in quarter-circle, cyberpunk 2077 wallpaper
— gaming headset on stand

—— small speaker

—— computer, black

— gaming chair with headrest on rounded hexagon floor mat (black with purple design)

- ceiling has ceiling fan in center

After

<structure>
<room>
<wall>
<bookshelf>
<part>
<drawer/>
<drawer/>
</part>
<part>
<shelf>
<book/>
<book/>
</shelf>
<shelf>
<book/>
<book/>
</shelf>
</part>
</bookshelf>
<painting/>
<painting/>
<door/>
<part>
<painting/>
<rack>
<level></level>
<level>
<light/>
</level>
<level></level>
<level>
<light/>
<shoes/>

214

Chapter C.

Experiment 4: Participant Scene Descriptions

</level>
<level>
<shoes/>
<shoes/>
</level>
</rack>
</part>
</wall>
<wall>
<poster/>
<window/>
</wall>
<floor>
<part>
<bed/>
<head>
<nightstand>
<lamp/>
</nightstand>
<headboard/>
<nightstand>
<lamp/>
</nightstand>
</head>
</part>
<part>
<part>
<mat/>
<chair/>
</part>
<desk>
<macbook/>
<speaker/>
<mouse-mat>
<keyboard/>
<mouse/>
</mouse-mat>
<monitor-arm>
<screen/>
<screen/>
<screen/>
</monitor-arm>
<headphone-stand>
<headphones/>
</headphone-stand>
<speaker/>
<computer/>
</desk>
</part>
</floor>
<ceiling>
<fan>
<lamp/>
</fan>
</ceiling>
</room>

</structure>

215

<styling>
fan lamp {
power: on;
}
rack light {
power: on;
color: blue;
}
rack level {
position-z: calc(child-index())
}
door {
color: white;
}
floor {
material-color: brown;
material-type: tiles;
}
part:has(bed) lamp {
power: on;
}
part bed {
position-x: 2;
}
... etc
</styling>

ID 60dddc72a3ae320015ef23db

Before

House (

Size = 7 tiles, 12 tiles, 5 tiles
)
Floor (

Color = Maroon

Texture = Tiled
Reflection = Glossy

)
Walls (

Color = Gray

Texture = Smooth
Reflection = Glossy

)

Shelvingl (

Color = Black

Size = 0.5t1 1tl 2t1
Shelves = 5

Position = 1tl 7tl Otl
LightsColor = lightblue
LightsPosition = first shelf, fourth shelf
Lights = on

)

Shoes (

PositionReference = Shelving

Placement = 4 at the bottom shelf, 2 at the second to bottom shelf.

216

Chapter C.

Experiment 4: Participant Scene Descriptions

Painting (

Position = 1tl 7tl 3tl

)
Desk (

Shape = (111, 001, 00 1)
Position = 6tl 9tl 0Otl

Size = 3tl 3tl 1tl

Color = black

Panels = top

LightsColor = white
LightsPosition = side
Lights = On

)

Screen (

PositionReference = Desktop
Position = 1 3

Screen = On

)

Keyboard (

PositionReference = Desktop
Position =1 2

)

Laptop(

Position Reference = Desktop
Position =1 1

Screen = on

Open = yes

Yaw = 135\degree{}
)

Chair(

Position = 6tl 9tl 0tl
Yaw = 315\degree{}

)

Mat (

Position = 6tl 9tl1 Otl
)

Bed(

Position = 5tl1 3tl 0tl
Size = 4tl1 4tl1 1tl
Color = white

)

Mattressi(
PositionReference = Bed
Color=LightGrey

)

Mattress2(
PositionReference=Bed
Color=DarkGray

(on top of Mattressi)
)
BedsideTableWithLamp1 (
Position= 6tl 6tl Otl
Color=black
LampColor=Black
LampLightColor=white
LampLight=0n

)
BedsideTableWithLamp2(
Position= 6tl 1tl Otl

217

Color=black
LampColor=Black
LampLightColor=white
LampLight=0n

)

Poster(

Position= 6tl 1tl 3tl
)

Window (

Postion = 3tl 1tl 3tl
Color= white
Height=2t1

Width=3t1l

)

Bookshelf (

Position = 1tl 2tl1 0Otl
Size= 1tl1l 2tl1l 3tl
Txture=wood
Color=brown

)

Door (

Color=white
Position=0tl 4tl 0Otl
Height=4t1

Width=2t1

)
CeilingFanWithLamp (
Color=white
LightColor=white
Light=on
Position=3tl 6tl 5tl
)

After

Room{sizex:7; sizey:12; sizez:4; floorcolor:brown; wallcolor:gray;}

Desk{positionx:3; positiony:11; rotation=90deg} > display {position y:2 power:on rotation:120deg;

rotation:}, > laptop{rotation:150deg}
Chair{positionx:2; positiony:10; rotation=270deg}
Mat{positionx:2; positiony:10)
Bed{positionx:3; positiony:3; rotation:180deg}

Lectern{power:on; lightcolor= white}[number="1"]{positiony:1}[number="2"]{positiony:6}

Bookshelf{positionx:7; positiony:7; rotation:90deg}
Window{positionx:4; positionz:2;}
Door{positionx:7; rotation:90deg}

Poster{positionx:2;}

Painting{positionx:7; positiony:6; positionz:3; rotation:90deg}

Shelving{positionx:7; positiony:6; rotation:90deg}

CeilingFanWithLamp{positionx:4; positiony:5; positionz:1; power:on; lightcolor:white}

218 Chapter C. Experiment 4: Participant Scene Descriptions

ID 60ddefdfa3ae320015ef2496
Before

A isometric view of a room about twice as long as it is wide. In the sort far wall is a window and on the
same wall hangs a poster of a robot. In the other far wall is a door with a bookcase to the left for us.
On the same wall is a painting with the northern lights. Against the long wall closest to us is a bed
with two nightstands next to it. In the corner closest to us is a L shaped desk with a computer tower, 3
monitors, a keyboard and mouse and a laptop. In the space made by the L is a gaming chair.

After

room {
size-xyz: 7,12,7;

}

book-case {
position-xyz: 6,0,0;
size-xyz: 1,2,5;

}

night-stand-1 {
position-xyz: 0,0,0;
size-xyz: 1,1,1;

}

night-stand-2 {
position-xyz: 0,6,0;
size-xyz: 1,1,1;

}

bed {
position-xyz: 0,6,0;
size-xyz: 5,4,1;

}

chair {
position-xyz: 2,9,0;
size-xyz: 1,1,3;

}

desk {
position-xyz: 4,9,0;
size-xyz: 4,3,2;

}

ID 60de377¢c2c08e9001539b3ab
Before

The floor has a dark amber colour and is divided in 11.5 times 6.5 square tiles.
The entrance doors spans (3/6.5) to (5/6.5).

A bed spans (1]0) to (5|0) with a padding of about 0.5.

There are shelves on tiles (0|0) and (0]|5) with lamps on them.

219

A shelf with shoes is placed at the half-tile at (6/6).

A gaming chair is placed at (9]1) with a L-shaped table around it covering tiles
(912),(102),(11]2),(11]1),(11]0)

After

desk {

ID 60df1cc86138fb00154af407
Before

There is a rectangular room. On one of the longer walls, there is a door about 1/3 from a corner.
Across from that door is a bed with feet facing the door (not very feng shui). From the inside of the
room, facing the door, to the left of the door is a bookshelf. To the right of the door is a shoe rack and
a panoramic painting of an aurora above it. To the right of the bed while inside the room and facing
the door is a desk and chair. On the desk is a laptop, desktop, and three monitors all in landscape
orientation, and side by side at the corner of the desk. The are small rectangular end tables with
lamps at either end of the bed.

After

¢ There is aroom (30(x), 15(y), 10(z))

e Thereis abed at 5, 0, 0, facing the y direction

¢ There is a desk at 20, 0, 0, facing the y direction

¢ Upon that desk are monitors that round the corner

* Atthat desk is a chair rotated -45deg from the y direction

¢ There are end tables at 0,0,0 and 10,0,0, facing the y direction
* There is a bookshelf at 14,0,0

* There is a shoe rack at 14,18,0

¢ thereis a door at 15,8,0

¢ there is a window at 0,3,9

ID 60e02cba84240200154c75f4
Before

There is a bed on the longer wall of the room. On both sides of the bed there are lamps on
nightstands. To the right of the bed there is an L-shaped desk with a computer and a chair next to it.
On the opposite wall, there is a door. To the right of the door there is a shoe rack. To the left there is a

220 Chapter C. Experiment 4: Participant Scene Descriptions

shelf with books on it. On the wall to the left of the bed there is a big window and a poster. There also
is a fan on the ceiling.

After

Window on the left wall. On the near wall, against the left wall is a night stand with a lit lamp. Next to
itis a bed, and a second night stand with a lamp on the other side of the bed. In the corner between
the near wall and the right wall is a desk, with a chair next to it. On the far wall is a bookshelf next to
the left wall, then doors and a shoe rack. In the middle of the room, on the ceiling, is a lit lighting

fixture with a fan;

ID 60e09ae5ac638800156ed00f
Before
Begin room description:

A rectangular room, about 3 times as long as it is wide. The North and South walls are considered
Short, east and West long. The ceiling is about 75% as high as the horizontal dimension of the short
wall. The room has red stone tiles as floor, about 6.5 long on the short side and 11 or 12 on the long

side? The walls are a dark beige.
Begin ingress/egress description:

A window is centered on the north wall with bland shades drawn. It takes up about half the width of
the height and a third of the width of the wall.

A white door, about 80% the height of the room and 10% the width, sits on the East wall. Its right
edge sits along the center line of the wall.

Begin interior of room:

A large bed, perhaps a full or queen size, is opposite the door against the West wall. its short side is
along the wall. its right edge matches the right edge of the door. It does not reach the north wall.r It
has a light grey comforter, wrinkled at the top as if someone got out of bed, up along 80% of it. There
is another darker grey blanket folded along the bottom half of the bed, extending to about 90% of its
length.

The bed has a simple thin headboard that may rise to about 40% the height of the room and is only a
few inches thick

The bed and headboard are flanked by 2 small nightstands that come up to the height of the bed. If
their widths were to be summed, it would be less than half the width of the bed. They are half as deep
as they are wide. Atop each nightstand is a small brass lamp with a square base. An edge of their
square base is about 50% the depth of the nightstand. After a few inches of a stem, they each have a
square diffusing lampshade. The total height of the lampshade comes just past the height of the
headboard.

A ceiling fan is centered on the room, with 4 white blades and a dome lamp. The ceiling fan is
perhaps equal in width to the door. It has a white dome light. The entire fan/lamp hangs maybe 2
feet from the ceiling.

221

Begin computer desk description:

A L shaped computer desk is in the southwest corner. The edges of the L run along the south wall,
and then extend north into the room. The south section of the L is on thin black legs, a few inches in
diamter with round feet. The north end of the L has some sort of cabinet as its supposed. A laptop
resembling a macbook sits atop this section of the desk, and the cabinet is slighter sider than the

macbook. The desk is rimmed in a blue glow.

A nondescript black computer tower sits on the desktop, looks like an ATX mid tower. It is a foot from
the west edge. 3 monitors are mounted in an arc, anchoring near the southeast corner. The mount
sits on the east edge, but a foot or 2 from the south edge. The monitors are maybe a foot up from the
desk surface

The arc of monitors is flanked by small squarish speakers. Speaker height is tallest dimension,
followed by depth then width. They seem to have blue accents on the edges.

A large mousepad covers much of the desk surface, about twice as wide as the keyboard. It is a dark
blue with a light blue trim.

A typical DX-Racer style gaming chair sits at the desk. It is on a mat in the shape of a hexagon, but
with soft edges and it is wider than it is tall. It has a purple design on it.

End desk description
Begin interior along east wall:

A canvas painting or print of an aurora landscape is on the east wall, from about 60% of the height to

80%. It is maybe 4x as wide as it is tall. It is less than a foot to the south of the door.

Centered beneath it is a black wire shoe rack, that seems to be backlit blue. It is wide enough to
accomodate 2 pairs of shoes on each of its 5 shelves. 2 pairs of sneakers sit on the bottom shelf, and 1

pair on the left side of the second from bottom.

Directly to the left of the door on the east wall are 2 small paintings, one about 55-65% of the height
and another 70-75% of the height. It is unclear what is on them.

In the northeast corner is a piece of wooden furniture, extending to about 75% the height of the
room. The bottom 1/3 seems to be drawers, the top portion is 3 shelves. The top 2 shelves have
various books. On top are 3 balls running the length of it, each in what may be a glass
commemorative case. The end ones may be white soccer or volleyballs, while the center one may be
a football. The bottom shelf has various toys or other belongings.

Begin north wall:

To the left of the window is a poster with the profile of Darth Vader of the Star Wars franchise, stylized
in front of an X Wing. It may be a promo poster for a video game. It takes up about half the horizontal

space between the wall and window, and takes up maybe 50-80% of the height of the wall.

After

/* hello, I am sorry, this seems a bit out of my abilities/time available. I hope what I have

contributed so far is useful to you */

222 Chapter C. Experiment 4: Participant Scene Descriptions

ID 60e435126b67780015392b1f
Before

Aroom, 6.5 by 11.5 tiles big.

Wooden, tiled floor, grey walls.

Window in the middle of the left wall.

Door 3 tiles from the left, 2 tiles wide.

Ceiling fan with light bulb in the middle of the ceiling.

Bed 1 tile from the left wall, 3.5 tiles wide with a square, 1 tile wide night stand to either side, both
topped with a lamp.

3.5 by 5 tiles gaming setup, with “L’-desk, chair, pc tower, 3 displays and a notebook.

1 by 0.5 tile wide shoe rack to the right of the door.

After

A room, 6.5 by 11.5 tiles big.

At 0x, Oy and 0z is a night stand, then a bed at 1y and then another night stand at 5y.
A night light is at the same xy as each the night stand, but with z1.

A “I’-desk at 0%, 7y and 0z with a chair at 0x, 8y and 0z.

A ceiling light at 3x, 5y and 10z.

ID 60ef390426b99e0015a5e6¢c9
Before

The room has grey smooth walls. The floor is lined with dark red tiles. On the left side of the room,
there is a window and a poster on the wall. On the front side of the room there is a white door,

colorful posters, a wooden bookcase and a mesh shoe rack. On the back side of the room there is a
king size bed with gray sheets, two black bedside tables with lamps on them and a desk with three

monitors and a notebook on them. There’s also a ceiling fan with a lightbulb.

After

iot-desk {
--position-x: 10;

--position-y: 5;

}

iot-bed {
--position-x: 1;
--position-y: 4;

}

iot-night-table {
--position-y: 8;

}

ID 60f8389e4c03fd0015ad1ff9

Before

223

type DeviceGroup = {
name: string;
uuid: string;

};

type Light = {
name: string;
uuid: string;
model: string;
isOn: boolean;
brightness: number;
color?: string;
group?: DeviceGroup;

};

type Scene = {
name: string;
uuid: string;
devices: Array<Light>;
deviceGroups?: Array<DeviceGroup>;

};

After

export type DeviceGroup = {
name: string;
uuid: string;

}s

export interface Device {
name: string;
uuid: string;
model: string;
power: 'on' | 'off';

deviceGroups?: Array<DeviceGroup>;

export interface Speaker extends Device {
volume: number;
isPlayingMedia: boolean;

}

export interface Light extends Device {
brightness: number;
color: string;

}

export interface Computer extends Device {

isIdle: boolean;

export type Scene = {
name: string;
uuid: string;
devices: Array<Device>;

deviceGroups?: Array<DeviceGroup>;

224

Chapter C. Experiment 4: Participant Scene Descriptions

export type Room = {
name: string;
uuid: string;
temperature: number;
isOccupied?: boolean;
scenes?: Array<Scene>;

devices?: Array<Device>;

deviceGroups?: Array<DeviceGroup>

ID 60fc2661259e7800150ee849

Before

The scene contains a rectangular room with sides approximately 15x30 ft in size. In the center of the

ceiling is a fan with four blades. On the far, longer, wall, there is a shelf and dresser in the leftmost

corner, followed by a pair of pictures. Next to the right, slightly to the left of the center of the room, is

a door. Next is a lerger picture above a shoe rack.

On the near longer wall, a bed with two tables (one on each side) rests against the wall with the foot

facing the door, with the leftmost dresser in the left corner. On the rightmost side (also against the

corner), is an l-shaped desk. The I rests against the right shorter wall and extends out near the center

of the wall, creating a small, semi-enclosed space where a gaming chair sits on top of a rug.

On the far (leftmost) shorter wall, there is a window and shade and a picture in the left/bottom

corner.

After

shelf {
position: top left;
facing: bottom;

}

bed {

position: bottom left;
offset-left: width(bed-table);
facing: top;

}

bed-table {
position: bottom left;
[number="2"] {

offset: width(bed-table) + width(bed);

fan {

position: ceiling center center;

light: on;
}

desk, chair {
position: bottom right;
}

225

chair {

offset-right: width(desk) / 2;

facing: 100deg;
}

shoe-rack {

positon: top center;
offset-left: .5m;

}

picture {
position-z: center;
wall: top;

}

picture [number=1] {
wall: left;

}

picture [number=2] {
offset-z: .2m;

}

227

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

M. Schuhful3, “Let there be light!,” Sep 2015. [Online]. Available:

https://www.youtube.com/watch?v=ani_MOZt5_c

J. Garza, D. J. Merrill, and S. Swanson, “Amalgam: Hardware hacking for web
developers with style (sheets),” Lecture Notes in Computer Science Web Engineering, p.
315-330, 2019. [Online]. Available: https://cseweb.ucsd.edu/~jgarzagu/pdfs/Garza_
ICWE2019_AmalgamHardwareHackingForWebDev.pdf

T. Meier and U. Schemmert, “Applying web-technologies for device state processing
in iot middleware,” in Proceedings of the 19th International Middleware Conference
(Posters), ser. Middleware '18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 13-14. [Online]. Available:
https://doi.org/10.1145/3284014.3284021

S. Faulkner, A. Eicholz, T. Leithead, A. Danilo, and S. Moon, Eds., HTML 5.2. 'W3C, Jan
2021. [Online]. Available: https://www.w3.org/TR/html52/

B. Bos, “CSS specifications,” 2021. [Online]. Available:
https:/ /www.w3.org/Style/CSS/specs.en.html

J. Harband, S. yu Guo, M. Ficarra, and K. Gibbons, Eds., ECMA-262, 12th edition.
ECMA International, June 2021. [Online]. Available:
https://262.ecma-international.org/12.0/

H. Wium Lie, “Cascading style sheets,” Ph.D. dissertation, University of Oslo, 2005.
[Online]. Available: https://www.wiumlie.no/2006/phd/

YesLogic Pty. Ltd., “Prince - convert HTML to PDF with CSS.” [Online]. Available:

https://www.princexml.com/

J. Robie, Ed., What is the Document Object Model? 'W3C, July 1998. [Online].
Available: https://www.w3.org/ TR/WD-DOM/introduction.html

S. Liu, “Number of software developers worldwide in 2018 to 2024,” September 2021.
[Online]. Available:

https://www.statista.com/statistics/627312/worldwide-developer-population

https://www.youtube.com/watch?v=ani_MOZt5_c
https://cseweb.ucsd.edu/~jgarzagu/pdfs/Garza_ICWE2019_AmalgamHardwareHackingForWebDev.pdf
https://cseweb.ucsd.edu/~jgarzagu/pdfs/Garza_ICWE2019_AmalgamHardwareHackingForWebDev.pdf
https://doi.org/10.1145/3284014.3284021
https://www.w3.org/TR/html52/
https://www.w3.org/Style/CSS/specs.en.html
https://262.ecma-international.org/12.0/
https://www.wiumlie.no/2006/phd/
https://www.princexml.com/
https://www.w3.org/TR/WD-DOM/introduction.html
https://www.statista.com/statistics/627312/worldwide-developer-population

228 REFERENCES

[11] Connectivity Standards Alliance, “Connected home over IP GitHub repository.”
[Online]. Available: https://github.com/project-chip/connectedhomeip

[12] M. Lagally, R. Matsukura, T. Kawaguchi, K. Toumura, and K. Kajimoto, Eds., Web of
Things (WoT) Architecture 1.1. 'W3C, November 2020. [Online]. Available:
https://www.w3.0rg/TR/2020/WD-wot-architecture11-20201124/

[13] E Heart, A. McKenzie, J. McQuillan, and D. Walden, Eds., Completion Report, A History
of the ARPANET, the First Decade. DARPA, January 1978. [Online]. Available:
https:/ /www.w3.0rg/TR/2020/WD-wot-architecture11-20201124/

[14] Information Sciences Institute, University of Southern California, RFC-791: Internet
Protocol. 1ETF, September 1981. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc791

[15] V. G. Cerfand R. E. Kahn, “A protocol for packet network intercommunication,” IEEE
Trans on Comms, vol. 22, no. 5, May 1974. [Online]. Available:
https://www.cs.princeton.edu/courses/archive/fall06/cos561/papers/cerf74.pdf

[16] R.Braden, Ed., RFC-1122: Requirements for Internet Hosts — Communication Layers.
IETF, October 1989. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc1122

[17] S.Deering and R. Hinden, RFC-2460: Internet Protocol, Version 6 (IPv6) Specification.
IETF, December 1998. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc2460

[18] S. Deering and R. Hinden, RFC-8200: Internet Protocol, Version 6 (IPv6) Specification.
IETF, July 2017. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc8200

[19] D. Shin, “A socio-technical framework for internet-of-things design: A
human-centered design for the internet of things,” Telematics and Informatics, vol. 31,
no. 4, pp. 519-531, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0736585314000185

[20] J. L. Borges, The Garden of Forking Paths: Jorge Luis Borges. Editorial Sur, 1941.

[21] V. Bush, “As we may think,” The Atlantic, July 1945. [Online]. Available:
https://www.theatlantic.com/magazine/archive/1945/07/as-we-may- think/303881/

[22] Project Xanadu, “Project xanadu: Founded 1960, the original hypertext project,” May
2007. [Online]. Available: https://www.xanadu.net/

[23] L. Wedeles, “Prof. nelson talk,” Vassar Miscellany News, February 1965. [Online].
Available: https://web.archive.org/web/20031230152224/http:

/ /faculty.vassar.edu/mijoyce/MiscNews_Feb65.html
[24] T. Berners-Lee, “Information management: A proposal,” CERN, Tech. Rep., 1989.

https://github.com/project-chip/connectedhomeip
https://www.w3.org/TR/2020/WD-wot-architecture11-20201124/
https://www.w3.org/TR/2020/WD-wot-architecture11-20201124/
https://datatracker.ietf.org/doc/html/rfc791
https://www.cs.princeton.edu/courses/archive/fall06/cos561/papers/cerf74.pdf
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc8200
https://www.sciencedirect.com/science/article/pii/S0736585314000185
https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
https://www.xanadu.net/
https://web.archive.org/web/20031230152224/http://faculty.vassar.edu/mijoyce/MiscNews_Feb65.html
https://web.archive.org/web/20031230152224/http://faculty.vassar.edu/mijoyce/MiscNews_Feb65.html

REFERENCES 229

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

T. Berners-Lee, Weaving the Web: The Original Design and Ultimate Destiny of the
World Wide Web by its inventor. Harper San Francisco, 1999.

Google LLC, “Google chrome: The browser built by google.” [Online]. Available:

https://www.google.com/intl/en_uk/chrome/

Microsoft Corporation, “Microsoft edge: Choose the web browser that puts you first.”

[Online]. Available: https://www.microsoft.com/en-us/edge

Mozilla Corporation, “Firefox browser: Get the browser that protects what’s

important.” [Online]. Available: https://www.mozilla.org/en-GB/firefox/new/

Opera Norway, “Opera web browser: A browser for the real you.” [Online]. Available:

https://www.opera.com/

Wikipedia contributors, “History of wikipedia,” Wikipedia, September 2021. [Online].
Available: https://en.wikipedia.org/wiki/History_of Wikipedia

I. Casebourne, C. Davies, M. Fernandes, and N. Norman, Assessing the accuracy and
quality of Wikipedia entries compared to popular online encyclopaedias. Epic, August
2012. [Online]. Available:
https://upload.wikimedia.org/wikipedia/commons/2/29/EPIC_Oxford_report.pdf

Web Hypertext Application Technology Working Group, “Custom elements,” in
HTML: Living Standard. Web Hypertext Application Technology Working Group,
September 2021. [Online]. Available:
https://html.spec.whatwg.org/multipage/custom-elements.html

Web Hypertext Application Technology Working Group, “Shadow tree,” in DOM:
Living Standard. Web Hypertext Application Technology Working Group, August
2021. [Online]. Available: https://dom.spec.whatwg.org/#shadow-trees

Web Hypertext Application Technology Working Group, “The template element,” in
HTML: Living Standard. Web Hypertext Application Technology Working Group,
September 2021. [Online]. Available:
https://html.spec.whatwg.org/multipage/scripting. html#the-template-element

Web Hypertext Application Technology Working Group, “Module-related host hooks,”
in HTML: Living Standard. 'Web Hypertext Application Technology Working Group,
September 2021. [Online]. Available: https://html.spec.whatwg.org/multipage/

webappapis.html#integration-with-the-javascript-module-system
Google LLC, “Angular.” [Online]. Available: https://angular.io/

Facebook Inc., “React - a javascript library for building interfaces.” [Online]. Available:

https://reactjs.org/

https://www.google.com/intl/en_uk/chrome/
https://www.microsoft.com/en-us/edge
https://www.mozilla.org/en-GB/firefox/new/
https://www.opera.com/
https://en.wikipedia.org/wiki/History_of_Wikipedia
https://upload.wikimedia.org/wikipedia/commons/2/29/EPIC_Oxford_report.pdf
https://html.spec.whatwg.org/multipage/custom-elements.html
https://dom.spec.whatwg.org/#shadow-trees
https://html.spec.whatwg.org/multipage/scripting.html#the-template-element
https://html.spec.whatwg.org/multipage/webappapis.html#integration-with-the-javascript-module-system
https://html.spec.whatwg.org/multipage/webappapis.html#integration-with-the-javascript-module-system
https://angular.io/
https://reactjs.org/

230

REFERENCES

(38]

[39]

[40]

(41]

(42]

(43]

[44]

(45]

[46]

(47]

(48]

[49]

E. You, “Vue.js: The progressive javascript framework.” [Online]. Available:

https://vuejs.org/

Web Hypertext Application Technology Working Group, “WHATWG - FAQ,”
whatwg.org, 2021. [Online]. Available: https://whatwg.org/faq

Web Hypertext Application Technology Working Group, “WHATWG GitHub
repository.” [Online]. Available: https://github.com/whatwg

International Organization for Standardization, Information processing - Text and
office systems - Standard Generalized Markup Language (SGML). International

Organization for Standardization, October 1986.

T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and E Yergeau, Eds., Extensible
Markup Language (XML) 1.0 (Fifth Edition). W3C, November 2008. [Online].
Available: https://www.w3.org/TR/2008/REC-xml-20081126/

M. Stachowiak, “Understanding HTML, XML and XHTML,” WebKit Blog, September
2006. [Online]. Available:
https://webkit.org/blog/68/understanding-html-xml-and-xhtml/

S. Pemberton, D. Austin, J. Axelsson, T. Celik, D. Dominiak, H. Elenbaas, B. Epperson,
M. Ishikawa, S. Matsui, S. McCarron, A. Navarro, S. Peruvemba, R. Relyea,

S. Schnitzenbaumer, P. Stark, M. Altheim, E Boumphrey, J. Burger, A. W. Donoho,

S. Dooley, K. Hofrichter, P. Hoschka, M. Ishikawa, W. ten Kate, P. King, P. Klante,

Z. Nies, D. Raggett, P. Schmitz, C. Wilson, T. Wugofski, and D. Zigmond, XHTML 1.0
The Extensible HyperText Markup Language (Second Edition). 'W3C, January 2000.
[Online]. Available: https://www.w3.org/TR/xhtml1/

D. Austin, S. Peruvemba, S. McCarron, M. Ishikawa, M. Birbeck, M. Altheim,
E Boumphrey, S. Dooley, S. Schnitzenbaumer, and T. Wugofski, Eds., XHTML
Modularization 1.1 - Second Edition. 'W3C, July 2010. [Online]. Available:
https://www.w3.org/TR/xhtml-modularization/

H. Wium Lie, Cascading HTML style sheets — a proposal. 'W3C, October 1994.
[Online]. Available: https://www.w3.org/People/howcome/p/cascade.html

E.]. Etemad and T. A. Jr., Eds., CSS Cascading and Inheritance Level 3. W3C, February
2021. [Online]. Available: https://www.w3.org/TR/css-cascade-3/

S. Napoleon, Practical FOSI for Arbortext Editor [Excerpts]. FOSlexpert LLC, 2008.
[Online]. Available: https://community.ptc.com/sejnu66972/attachments/
sejnu66972/Arbortext/29167/1/practical-fosi-excerpts.pdf

D. Kennedy, “DSSSL; an introduction,” Microcomputer Systems, Inc., February 1997.
[Online]. Available: https://web.archive.org/web/19990429162526/http:

/ /www.mcs.net/~dken/dslintro.htm

https://vuejs.org/
https://whatwg.org/faq
https://github.com/whatwg
https://www.w3.org/TR/2008/REC-xml-20081126/
https://webkit.org/blog/68/understanding-html-xml-and-xhtml/
https://www.w3.org/TR/xhtml1/
https://www.w3.org/TR/xhtml-modularization/
https://www.w3.org/People/howcome/p/cascade.html
https://www.w3.org/TR/css-cascade-3/
https://community.ptc.com/sejnu66972/attachments/sejnu66972/Arbortext/29167/1/practical-fosi-excerpts.pdf
https://community.ptc.com/sejnu66972/attachments/sejnu66972/Arbortext/29167/1/practical-fosi-excerpts.pdf
https://web.archive.org/web/19990429162526/http://www.mcs.net/~dken/dslintro.htm
https://web.archive.org/web/19990429162526/http://www.mcs.net/~dken/dslintro.htm

REFERENCES 231

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

(61]

(62]

(63]

R. Raisch, “Request for comments: Stylesheets,” www-talk Mailing List, June 1993.
[Online]. Available:
http://1997.webhistory.org/www.lists/www-talk.1993q2/0445.html

P. Deutsch, RFC-1952: GZIP file format specification version 4.3. 1ETF, May 1996.
[Online]. Available: https://datatracker.ietf.org/doc/html/rfc1952

M. Andreessen, “Stylesheet language,” www-talk Mailing List, October 1993. [Online].
Available: http://1997.webhistory.org/www.lists/www-talk.1993q4/0266.html

D. Raggett, A. L. Hors, and I. Jacobs, Eds., HTML 4.01 Specification. W3C, December
1999, ch. 4.1: Definitions. [Online]. Available:
https:/ /www.w3.0rg/ TR/html40/conform.html#h-4.1

S. Heaney, “Re: Stylesheet language,” www-talk Mailing List, October 1993. [Online].
Available: https:
/ lwww.w3.org/Style/History/www.eit.com/www.lists/www-talk.1993q4/0295.html

Z. Bloom, “The languages which almost became CSS,” Eager Blog, 2016. [Online].

Available: https://eager.io/blog/the-languages-which-almost-were-css/

ISO/IECJTC 1/SC 34: Document description and processing languages, Information
technology — Processing languages — Document Style Semantics and Specification
Language (DSSSL). International Office for Standardization, April 1996. [Online].
Available: https://www.iso.org/standard/18196.html

R. B. Findler and J. Matthews, Revised (6) Report on the Algorithmic Language Scheme,
M. Sperber, R. K. Dybvig, M. Flatt, A. V. Straaten, R. Kelsey, W. Clinger, and J. Rees, Eds.
Cambridge University Press, September 2007. [Online]. Available:
http://www.r6rs.org/final/r6rs.pdf

XSLT Working Group, The Extensible Stylesheet Language Family (XSL). W3C, June
2017. [Online]. Available: https://www.w3.org/Style/XSL/

B. Bos, “CSS & XSL,” W3C: Web Style Sheets, January 2021. [Online]. Available:
https://www.w3.org/Style/CSS-vs-XSL.en.html

B. Bos, “Why “variables” in CSS are harmful - an essay,” W3C: Member pages,
September 2008. [Online]. Available: https://www.w3.org/People/Bos/CSS-variables

M. Kay, Ed., XSL Transformations (XSLT) Version 2.0 (Second Edition). W3C, March
2021. [Online]. Available: https://www.w3.org/TR/2021/REC-xslt20-20210330/

J. Robie, M. Dyck, and J. Spiegel, Eds., XML Path Language (XPath) 3.1. 'W3C, March
2017. [Online]. Available: https://www.w3.org/TR/2017/REC-xpath-31-20170321/

A. Berglund, “Formatting objects,” in Extensible Stylesheet Language (XSL) Version 1.1.
W3C, December 2006. [Online]. Available: https://www.w3.org/TR/xsl/#fo-section

http://1997.webhistory.org/www.lists/www-talk.1993q2/0445.html
https://datatracker.ietf.org/doc/html/rfc1952
http://1997.webhistory.org/www.lists/www-talk.1993q4/0266.html
https://www.w3.org/TR/html40/conform.html#h-4.1
https://www.w3.org/Style/History/www.eit.com/www.lists/www-talk.1993q4/0295.html
https://www.w3.org/Style/History/www.eit.com/www.lists/www-talk.1993q4/0295.html
https://eager.io/blog/the-languages-which-almost-were-css/
https://www.iso.org/standard/18196.html
http://www.r6rs.org/final/r6rs.pdf
https://www.w3.org/Style/XSL/
https://www.w3.org/Style/CSS-vs-XSL.en.html
https://www.w3.org/People/Bos/CSS-variables
https://www.w3.org/TR/2021/REC-xslt20-20210330/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/xsl/#fo-section

232

REFERENCES

[64]

[65]

[66]

[67]

(68]

(69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

The Sass team, “Sass: Syntactically awesome style sheets.” [Online]. Available:

https://sass-lang.com/

T. Holowaychuk, “Stylus: Expressive, synamic, robust css.” [Online]. Available:

https://stylus-lang.com/

The core Less team, “Less: It's CSS, with just a little more.” [Online]. Available:

http://lesscss.org/

130 contributors at https://github.com/cssinjs/jss/graphs/contributors, “JSS.”
[Online]. Available: https://cssinjs.org/?v=v10.4.0

Marc G.,]. Petroules, and M. Keller, Eds., The AXR Project. The AXR Project, October
2013. [Online]. Available: https://github.com/axr/specification

M. Keller, “Manifesto: AXR project,” AXR Blog, December 2010. [Online]. Available:
https://web.archive.org/web/20150810085821/http:
/ /axrproject.org/about/manifesto

W3C Community Development Team, “CSS4 community group,” W3C Community
and Business Groups, February 2020. [Online]. Available:

https://www.w3.org/community/css4/

A. Deveria and L. Schoors, “Can i use... support tables for HTML5, CSS3, etc.” [Online].

Available: https://caniuse.com

Mozilla and individual contributors, “CSS: Cascading style sheets,” MDN Web Docs,
2022. [Online]. Available: https://developer.mozilla.org/en-US/docs/Web/CSS

D. Flanagan, JavaScript, the Definitive Guide, 6th Edition. O’Reilly Media, Inc., 2011.

J. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley, D. Smith, and G. Bierman, The Java
Language Specification, Java SE 16 Edition. Oracle, February 2021. [Online].
Available: https://docs.oracle.com/javase/specs/jls/sel6/jls16.pdf

Adobe Systems Incorporated, SWF File Format Specification, Version 10. Adobe
Systems Incorporated, 2008. [Online]. Available: https://www.adobe.com/content/

dam/acom/en/devnet/pdf/swi-file-format-spec-v10.pdf

Wikipedia contributors, “Adobe shockwave,” Wikipedia, June 2021. [Online].
Available: https://en.wikipedia.org/wiki/Adobe_Shockwave

A. Rossberg, Ed., WebAssembly Specification, Release 1.1 (Draft 2021-09-16).
WebAssembly Community Group, September 2021. [Online]. Available:
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf

Google LLC, Dart Programming Language Specification, 5th edition. Google LLC,
April 2021. [Online]. Available:
https://dart.dev/guides/language/specifications/DartLangSpec-v2.10.pdf

https://sass-lang.com/
https://stylus-lang.com/
http://lesscss.org/
https://cssinjs.org/?v=v10.4.0
https://github.com/axr/specification
https://web.archive.org/web/20150810085821/http://axrproject.org/about/manifesto
https://web.archive.org/web/20150810085821/http://axrproject.org/about/manifesto
https://www.w3.org/community/css4/
https://caniuse.com
https://developer.mozilla.org/en-US/docs/Web/CSS
https://docs.oracle.com/javase/specs/jls/se16/jls16.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/swf-file-format-spec-v10.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/swf-file-format-spec-v10.pdf
https://en.wikipedia.org/wiki/Adobe_Shockwave
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf
https://dart.dev/guides/language/specifications/DartLangSpec-v2.10.pdf

REFERENCES 233

[79]

(80]

(81]

(82]

(83]

[84]

(85]

(86]

(87]

(88]

(89]

[90]

(91]

[92]

The Rust Team, The Rust Reference. The Rust Team, September 2021. [Online].
Available: https://doc.rust-lang.org/reference/

Open]S Foundation, “Node.js.” [Online]. Available: https://nodejs.org/

G. Williams, “Espruino - javascript for microcontrollers.” [Online]. Available:

http://www.espruino.com/

Q. Stafford-Fraser. [Online]. Available:

https://en.wikipedia.org/wiki/File:Trojan_Room_coffee_pot_xcoffee.png
“World Wide Web Consortium (W3C).” [Online]. Available: https://www.w3.org/

Z.Kis, D. Peintner, C. Aguzzi, J. Hund, and K. Nimura, Eds., Web of Things (WoT)
Scripting API. ' W3C, November 2020. [Online]. Available:
https://www.w3.org/TR/wot-scripting-api/

M. Kovatsch, R. Matsukura, M. Lagally, T. Kawaguchi, K. Toumura, and K. Kajimoto,
“WoT scripting APL,” in Web of Things (WoT) Architecture. W3C, April 2020. [Online].

Available: https://www.w3.org/TR/wot-architecture/#sec-scripting-api
Krellian Ltd., “WebThings.” [Online]. Available: https://webthings.io/

S. Kaebisch, T. Kamiya, M. McCool, V. Charpenay, and M. Kovatsch, Eds., Web of
Things (WoT) Thing Description. W3C, April 2020. [Online]. Available:
https://www.w3.org/TR/wot-thing-description/

M. W. Murhammer, O. Atakan, S. Bretz, L. R. Pugh, K. Suzuki, and D. H. Wood, “The
open systems interconnect (OSI) model,” in TCP/IP Tutorial and Technical Overview,
October 1998, pp. 9-11.

IEEE, Guidelines for Use of Extended Unique Identifier (EUI), Organizationally Unique
Identifier (OUID), and Company ID (CID)). 1EEE, August 2017. [Online]. Available:
https://standards.ieee.org/content/dam/ieee-standards/standards/web/

documents/tutorials/eui.pdf

M. W. Murhammer, O. Atakan, S. Bretz, L. R. Pugh, K. Suzuki, and D. H. Wood,
“Address resolution protocol (ARP),” in TCP/IP Tutorial and Technical Overview,
October 1998, pp. 68-72.

T. Berners-Lee, R. Fielding, and L. Masinter, RFC-3986: Uniform Resource Identifier
(URD): Generic Syntax. 1ETF, January 2005. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc3986

T. Nelson, “Ted nelson’s computer paradigm, expressed as one-liners,” Xanadu
Australia: Archived Keio Home Page of Ted Nelson, January 1999, Available:
https://xanadu.com.au/ted/ TN/WRITINGS/TCOMPARADIGM/
tedCompOneLiners.html.

https://doc.rust-lang.org/reference/
https://nodejs.org/
http://www.espruino.com/
https://en.wikipedia.org/wiki/File:Trojan_Room_coffee_pot_xcoffee.png
https://www.w3.org/
https://www.w3.org/TR/wot-scripting-api/
https://www.w3.org/TR/wot-architecture/#sec-scripting-api
https://webthings.io/
https://www.w3.org/TR/wot-thing-description/
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/eui.pdf
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/eui.pdf
https://datatracker.ietf.org/doc/html/rfc3986
https://xanadu.com.au/ted/TN/WRITINGS/TCOMPARADIGM/tedCompOneLiners.html
https://xanadu.com.au/ted/TN/WRITINGS/TCOMPARADIGM/tedCompOneLiners.html

234 REFERENCES

[93] L. Sauermann, “Using the semantic web [presentation],” W3C Semantic Web, April
2008. [Online]. Available: https://www.posccaesar.org/svn/pub/SemanticDays/2008/
LeoSauermann-semantic_web_in_use_semwebdaysnorway2008.pdf

[94] M. Grieves and J. Vickers, “Digital twin: Mitigating unpredictable, undesirable
emergent behavior in complex systems,” in Transdisciplinary Perspectives on Complex
Systems, 2017, pp. 85-113.

[95] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, P-A. Champin, and N. Lindstrém,
JSON-LD 1.1, G. Kellogg, P-A. Champin, D. Longley, M. Sporny, and M. Lanthaler, Eds.
W3C, July 2020. [Online]. Available: https://www.w3.org/TR/json-1d11/

[96] W3C, “Linked data,” W3C Standards: Semantic Web, 2015. [Online]. Available:
https://www.w3.org/standards/semanticweb/data

[97] S.Harris, A. Seaborne, and E. Prud’hommeaux, Eds., SPARQL 1.1 Query Language.
W3C, March 2013. [Online]. Available: https://www.w3.org/TR/sparqll1-query/

[98] R. Cyganiak, D. Wood, M. Lanthaler, G. Klyne, J. J. Carroll, and B. McBride, Eds., RDF
1.1 Concepts and Abstract Syntax. W3C, February 2014. [Online]. Available:
https://www.w3.org/TR/rdf11-concepts/

[99] R. L. Ackoff, “From data to wisdom,” Journal of applied systems analysis, vol. 16, no. 1,
pp. 3-9, 1989.

[100] J. Uri, “50 years ago: Apollo 13 crew returns safely to earth,” NASA Online, April 2020.
[Online]. Available:
https://www.nasa.gov/feature/50-years-ago-apollo-13-crew-returns-safely-to-earth

[101] D. Gelernter, Mirror Worlds, or: The Day Software Puts the Universe in a Shoebox ...
How it Will Happen and What it Will Mean. Oxford University Press, Inc., 1991.

[102] M. Grieves, Virtually Perfect: Driving Innovative and Lean Products through Product
Lifecycle Management. Space Coast Press, 11 2011.

[103] S.Locks, “Know the difference between IoT and telecontrol,” Sofia, March 2018.
[Online]. Available: https://medium.com/sofialocks-en/
know-the-difference-between-iot-and-telecontrol-d9489f8bal75

[104] Wikipedia contributors, “SCADA,” Wikipedia, September 2021. [Online]. Available:
https://en.wikipedia.org/wiki/SCADA

[105] I.Fette and A. Melnikov, RFC-6455: The WebSocket Protocol. 1ETF, December 2011.
[Online]. Available: https://datatracker.ietf.org/doc/html/rfc6455

[106] Wikipedia contributors, “Polling (computer science),” Wikipedia, November 2020.

[Online]. Available: https://en.wikipedia.org/wiki/Polling (computer_science)

https://www.posccaesar.org/svn/pub/SemanticDays/2008/LeoSauermann-semantic_web_in_use_semwebdaysnorway2008.pdf
https://www.posccaesar.org/svn/pub/SemanticDays/2008/LeoSauermann-semantic_web_in_use_semwebdaysnorway2008.pdf
https://www.w3.org/TR/json-ld11/
https://www.w3.org/standards/semanticweb/data
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/rdf11-concepts/
https://www.nasa.gov/feature/50-years-ago-apollo-13-crew-returns-safely-to-earth
https://medium.com/sofialocks-en/know-the-difference-between-iot-and-telecontrol-d9489f8ba175
https://medium.com/sofialocks-en/know-the-difference-between-iot-and-telecontrol-d9489f8ba175
https://en.wikipedia.org/wiki/SCADA
https://datatracker.ietf.org/doc/html/rfc6455
https://en.wikipedia.org/wiki/Polling_(computer_science)

REFERENCES 235

[107]

(108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

J. Klensin, RFC-5321: Simple Mail Transfer Protocol. 1ETF, October 2008. [Online].
Available: https://datatracker.ietf.org/doc/html/rfc5321

J. Oikarinen and D. Reed, RFC-1459: Internet Relay Chat Protocol. 1ETF, May 1993.
[Online]. Available: https://tools.ietf.org/html/rfc1459

C. Cooper, “PointCast’s painful post-mortem,” ZDNet, 1999. [Online]. Available:

https://www.zdnet.com/article/pointcasts- painful-post-mortem/

M. Belshe and R. Peon, RFC-7540: Hypertext Transfer Protocol Version 2 (HTTP/2),
M. Thomson, Ed. IETF, May 2017. [Online]. Available:
https://tools.ietf.org/html/rfc7540

K. P Birman and T. A. Joseph, Eds., Exploiting Virtual Synchrony in Distributed
Systems. DARPA, February 1987. [Online]. Available:
https://apps.dtic.mil/sti/pdfs/ADA221858.pdf

W3C ga-dev group, RSS 2.0 Specification. W3C, 2002. [Online]. Available:
https://validator.w3.org/feed/docs/rss2.html

A. Banks, E. Briggs, K. Borgendale, and R. Gupta, Eds., MQTT Version 5.0. OASIS,
March 2019. [Online]. Available:
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

J. Teicher, “The little-known story of the first IoT device,” IBM Blogs, February 2017.
[Online]. Available:
https://www.ibm.com/blogs/industries/little-known-story-first-iot-device/

M. Weiser, “The computer for the 21st century,” Scientific American, vol. 265, no. 3, pp.
94-105, 1991. [Online]. Available: http://www.jstor.org/stable/24938718

M. Weiser and J. S. Brown, “Designing calm technology,” PowerGrid Journal, vol. 1,
no. 1, pp. 75-85, 1996.

M. Weiser and J. S. Brown, “The coming age of calm technology,” in Beyond

calculation. Springer, 1997, pp. 75-85.

M. P. Aylett and A. J. Quigley, “The broken dream of pervasive sentient ambient calm
invisible ubiquitous computing,” in Proceedings of the 33rd Annual ACM Conference
Extended Abstracts on Human Factors in Computing Systems, ser. CHI EA’15. New
York, NY, USA: Association for Computing Machinery, 2015, p. 425-435. [Online].
Available: https://doi.org/10.1145/2702613.2732508

K. Ashton, “That ‘internet of things’ thing,” RFID Journal, June 2009. [Online].
Available: http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%200f%
20Things%20Thing.pdf

https://datatracker.ietf.org/doc/html/rfc5321
https://tools.ietf.org/html/rfc1459
https://www.zdnet.com/article/pointcasts-painful-post-mortem/
https://tools.ietf.org/html/rfc7540
https://apps.dtic.mil/sti/pdfs/ADA221858.pdf
https://validator.w3.org/feed/docs/rss2.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://www.ibm.com/blogs/industries/little-known-story-first-iot-device/
http://www.jstor.org/stable/24938718
https://doi.org/10.1145/2702613.2732508
http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf

236

REFERENCES

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

J. Elder, “How kevin ashton named the internet of things,” Avast Blog, August 2019.
[Online]. Available:

https://blog.avast.com/kevin-ashton-named-the-internet- of-things

T. Kindberg, J. Barton, J. Morgan, G. Becker, D. Caswell, P. Debaty, G. Gopal, M. Frid,
V. Krishnan, H. Morris, J. Schettino, B. Serra, and M. Spasojevic, “People, places,
things: Web presence for the real world,” in Proceedings Third IEEE Workshop on
Mobile Computing Systems and Applications, 2000, pp. 19-28.

qr-code-generator.com, [Edited from original]. [Online]. Available:
https://www.qr-code-generator.com/wp-content/themes/qr/new_structure/assets/

media/images/qr_codes_on/gallery/billboards/v2/billboard-05.png

T. Boyle, January 2013. [Online]. Available:
https://qfuse.com/blog/wp-content/uploads/2013/01/MatressQR_2-800x600.jpg

“Yokogawa electric corporation.” [Online]. Available: https://www.yokogawa.com/

Honeywell, “Industrial automation and control solutions from honeywell.” [Online].

Available: https://www.honeywellprocess.com/

M. Larabel, “The linux kernel enters 2020 at 27.8 million lines in git but with less
developers for 2019,” Phoronix, January 2020. [Online]. Available: https:

/ Iwww.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019
Apple Inc., “Home.” [Online]. Available: https://www.apple.com/uk/ios/home/

DosLab Electronics, LLC, “Demux.” [Online]. Available:

https://doslabelectronics.com/Demux.html

dosdudel, “Permanently disable 2011 15"/17" macbook pro dedicated GPU - gMux IC
bypass,” MacRumours, April 2019. [Online]. Available:
https://forums.macrumors.com/threads/
permanently-disable-2011-15-17-macbook-pro-dedicated-gpu-gmux-ic-bypass.
2134019/post-27296142

The openHAB Community and the openHAB Foundation e.V., “Who we are: Our
vision and philosophy,” openHAB Website, 2021. [Online]. Available:

https://www.openhab.org/about/who-we-are.html

Home Assistant, Inc., “Home assistant.” [Online]. Available:

https://www.home-assistant.io/

O. Ben-Kiki, C. Evans, and I. dot Net, Eds., YAML Ain’t Markup Language (YAML)
Version 1.1. YAML Language Development Team, November 2005. [Online].
Available: https://yaml.org/spec/1.1/current.html

https://blog.avast.com/kevin-ashton-named-the-internet-of-things
https://www.qr-code-generator.com/wp-content/themes/qr/new_structure/assets/media/images/qr_codes_on/gallery/billboards/v2/billboard-05.png
https://www.qr-code-generator.com/wp-content/themes/qr/new_structure/assets/media/images/qr_codes_on/gallery/billboards/v2/billboard-05.png
https://qfuse.com/blog/wp-content/uploads/2013/01/MatressQR_2-800x600.jpg
https://www.yokogawa.com/
https://www.honeywellprocess.com/
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019
https://www.apple.com/uk/ios/home/
https://doslabelectronics.com/Demux.html
https://forums.macrumors.com/threads/permanently-disable-2011-15-17-macbook-pro-dedicated-gpu-gmux-ic-bypass.2134019/post-27296142
https://forums.macrumors.com/threads/permanently-disable-2011-15-17-macbook-pro-dedicated-gpu-gmux-ic-bypass.2134019/post-27296142
https://forums.macrumors.com/threads/permanently-disable-2011-15-17-macbook-pro-dedicated-gpu-gmux-ic-bypass.2134019/post-27296142
https://www.openhab.org/about/who-we-are.html
https://www.home-assistant.io/
https://yaml.org/spec/1.1/current.html

REFERENCES 237

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

IFTTT, “IFTTT: Do more with the things you love.” [Online]. Available:
https://ifttt.com/

Open]S Foundation and Node-RED contributors, “Node-red.” [Online]. Available:
https://nodered.org/

“OpenJS Foundation.” [Online]. Available: https://openjsf.org/

P Wieland. [Online]. Available:

https://flows.nodered.org/node/node-red-contrib-saprfc

E. Stark, E Schindler, E. Kucera, O. Haffner, and A. Kozdkovd, “Adapter implementation
into mozilla webthings IoT platform using javascript,” in 2020 Cybernetics &
Informatics (K &), 2020, pp. 1-7.

Google LLC, “Google nest, build your connected home.” [Online]. Available:

https://store.google.com/gb/category/connected_home?hl=en-GB

M. Wohlsen, “What google really gets out of buying nest for $3.2 billion,” Wired
Magazine (Online), January 2014. [Online]. Available: https://www.wired.com/2014/

01/googles-3-billion-nest-buy-finally-make-internet- things-real-us/

Thread Group, “Thread benefits,” Thread, 2022. [Online]. Available:
https://www.threadgroup.org/What-is-Thread/Thread- Benefits

Signify Holding, “Smart lighting: Philips hue.” [Online]. Available:
https://www.philips-hue.com/en-gb

J. Khan, “Philips launching app controlled ‘hue personal wireless lighting’ bulbs at
apple stores tomorrow,” 9TO5Mac, October 2012, Available:
https://web.archive.org/web/20121031233442/https://9to5mac.com/
2012/10/29/philips-launching-app-controlled-hue-personal-

wireless-lighting-bulbs-at-apple-stores-tomorrow/.

Google LLC, “Google home - apps on google play.” [Online]. Available: https:

/ Iplay.google.com/store/apps/details?id=com.google.android.apps.chromecast.app

Google LLC, “Integrate with google nest,” Device Access, 2022. [Online]. Available:

https://developers.google.com/nest/device-access

Amazon.com, Inc., “Amazon.co.uk: Meet alexa.” [Online]. Available:

https://www.amazon.co.uk/gp/browse.html?node=12728352031

Amazon.com, Inc., “Amazon.co.uk: Smart speakers.” [Online]. Available:

https://www.amazon.co.uk/gp/browse.html?node=21832611031

Amazon Web Services, Inc., “What is AWS?” [Online]. Available:

https://aws.amazon.com/what-is-aws/

https://ifttt.com/
https://nodered.org/
https://openjsf.org/
https://flows.nodered.org/node/node-red-contrib-saprfc
https://store.google.com/gb/category/connected_home?hl=en-GB
https://www.wired.com/2014/01/googles-3-billion-nest-buy-finally-make-internet-things-real-us/
https://www.wired.com/2014/01/googles-3-billion-nest-buy-finally-make-internet-things-real-us/
https://www.threadgroup.org/What-is-Thread/Thread-Benefits
https://www.philips-hue.com/en-gb
https://web.archive.org/web/20121031233442/https://9to5mac.com/2012/10/29/philips-launching-app-controlled-hue-personal-wireless-lighting-bulbs-at-apple-stores-tomorrow/
https://web.archive.org/web/20121031233442/https://9to5mac.com/2012/10/29/philips-launching-app-controlled-hue-personal-wireless-lighting-bulbs-at-apple-stores-tomorrow/
https://web.archive.org/web/20121031233442/https://9to5mac.com/2012/10/29/philips-launching-app-controlled-hue-personal-wireless-lighting-bulbs-at-apple-stores-tomorrow/
https://play.google.com/store/apps/details?id=com.google.android.apps.chromecast.app
https://play.google.com/store/apps/details?id=com.google.android.apps.chromecast.app
https://developers.google.com/nest/device-access
https://www.amazon.co.uk/gp/browse.html?node=12728352031
https://www.amazon.co.uk/gp/browse.html?node=21832611031
https://aws.amazon.com/what-is-aws/

238 REFERENCES

[148] Google LLC, “Cloud computing services: Accelerate your transformation with google
cloud.” [Online]. Available: https://cloud.google.com/

[149] Apple Inc., “Homekit: Developing apps and accessories for the home.” [Online].
Available: https://developer.apple.com/homekit/

[150] Apple Inc., “Siri: Siri does more than ever. even before you ask.” [Online]. Available:
https://www.apple.com/uk/siri/

[151] IFTTT Inc., “What is IFTTT?” November 2010. [Online]. Available:
https://web.archive.org/web/20101115034046/http://ifttt.com/wtf

[152] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, RFC-4944: Transmission of IPv6
Packets over IEEE 802.15.4 Networks. 1ETF, September 2007. [Online]. Available:
https://tools.ietf.org/html/rfc4944

[153] IEEE P802.15 Working Group, IEEE 802.15.4-2020 - IEEE Standard for Low-Rate
Wireless Networks. The Institute of Electrical and Electronics Engineers, Inc., July
2020. [Online]. Available:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9144691

[154] E.Kim, D. Kaspar, N. Chevrollier, and J. Vasseur, Design and Application Spaces for
6LoWPANs. 1ETF, July 2011. [Online]. Available: https://tools.ietf.org/html/rfc7540

[155] A.Fabre, K. Martinez, G. Bragg, P. Basford, J. Hart, S. Bader, and O. Bragg, “Deploying a
6LoWPAN, CoAP, low power, wireless sensor network,” in ACM Conference on
Embedded Networked Sensor Systems, November 2016.

[156] Connectivity Standards Alliance, “Matter.” [Online]. Available:
https://buildwithmatter.com

[157] Connectivity Standards Alliance, “Connectivity standards alliance: Building the
foundation and future of the IoT.” [Online]. Available: https://csa-iot.org/

[158] Snap One, LLC, “Home automation and smart home control: Control4.” [Online].
Available: https://www.control4.com/

[159] Crestron Electronics Inc., “Crestron home.” [Online]. Available:
https://www.crestron.com/Products/Market-Solutions/Crestron- Home

[160] Savant Systems, Inc., “Smart home automation: Savant.” [Online]. Available:
https://www.savant.com/

[161] D. Raggett, “Launching the web of things interest group,” W3C WoT Interest Group
Blog, January 2015. [Online]. Available:
https://www.w3.0rg/blog/2015/01/launching-the-web- of-things-interest-group/

[162] D. Guinard and V. Trifa, “Web of things: Architecting the web of things, for techies and

thinkers!,” 2007. [Online]. Available: https://webofthings.org/

https://cloud.google.com/
https://developer.apple.com/homekit/
https://www.apple.com/uk/siri/
https://web.archive.org/web/20101115034046/http://ifttt.com/wtf
https://tools.ietf.org/html/rfc4944
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9144691
https://tools.ietf.org/html/rfc7540
https://buildwithmatter.com
https://csa-iot.org/
https://www.control4.com/
https://www.crestron.com/Products/Market-Solutions/Crestron-Home
https://www.savant.com/
https://www.w3.org/blog/2015/01/launching-the-web-of-things-interest-group/
https://webofthings.org/

REFERENCES 239

[163]

[164]

[165]

[166]

[167]

[168]

(169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

V. Trifa, D. Guinard, and D. Carrera, Eds., Web Thing Model. 'W3C, August 2015.
[Online]. Available: https://www.w3.org/Submission/wot-model/

Thingweb, “thingweb.” [Online]. Available: http://www.thingweb.io/

W3C WoT Working Group, “Web of things working group - participants,” W3C WoT
Working Group, 2021. [Online]. Available:

https://www.w3.org/groups/wg/wot/participants

W3C WoT Working Group and Interest Group, March 2021. [Online]. Available:
https:/ /www.youtube.com/watch?v=WMFXg-kni0U

J. T. Collins and E. Korkan, “Relationship to project connected home over IP,” W3C
WoT Working Group GitHub: WoT Architecture, September 2020. [Online]. Available:
https://github.com/w3c/wot-architecture/issues/536

E. Bunker and J. Harros, “Zigbee alliance: Getting started with project connected
home over IP (webinar),” December 2019. [Online]. Available:
https://www.smarthomepoint.com/wp-content/uploads/2020/01/

Getting- Started-with-Project- CHIP-final.pdf

I. Meyer, V. Zaluski, and K. Mackintosh, “Metaphorical internet terms: A conceptual

and structural analysis",” Terminology. International Journal of Theoretical and

Applied Issues in Specialized Communication, vol. 4, no. 1, pp. 1-33, 1997.

T. Colburn and G. Shute, “Metaphor in computer science,” Journal of Applied Logic,
vol. 6, no. 4, pp. 526-533, 2008, the Philosophy of Computer Science. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S1570868308000463

B. Doub, K. Hayden, , and S. C. Lott, “Guide to the community memory records,”
Online Archive of California, September 2015. [Online]. Available:
http://pdf.oac.cdlib.org/pdf/camvchm/102733953- Community- Memory.pdf

Apple Computer, Inc. [Online]. Available:
https://upload.wikimedia.org/wikipedia/en/5/50/Apple_Macintosh_Desktop.png

Apple, Inc. [Online]. Available:
https://apiumhub.com/tech-blog-barcelona/skeuomorphic-design/

Nullsoft, Inc. [Online]. Available: https://archive.org/details/winampskin_kenwood

J. Clover, May 2013. [Online]. Available: https://www.macrumors.com/2013/05/01/

apple-engineers-working-overtime-on-ios-7s- deforstallization/

N. Shadbolt, K. O’Hara, D. De Roure, and D. Hall, The Theory and Practice of Social
Machines. Springer Cham, 2019.

https://www.w3.org/Submission/wot-model/
http://www.thingweb.io/
https://www.w3.org/groups/wg/wot/participants
https://www.youtube.com/watch?v=WMFXg-kni0U
https://github.com/w3c/wot-architecture/issues/536
https://www.smarthomepoint.com/wp-content/uploads/2020/01/Getting-Started-with-Project-CHIP-final.pdf
https://www.smarthomepoint.com/wp-content/uploads/2020/01/Getting-Started-with-Project-CHIP-final.pdf
https://www.sciencedirect.com/science/article/pii/S1570868308000463
http://pdf.oac.cdlib.org/pdf/camvchm/102733953-Community-Memory.pdf
https://upload.wikimedia.org/wikipedia/en/5/50/Apple_Macintosh_Desktop.png
https://apiumhub.com/tech-blog-barcelona/skeuomorphic-design/
https://archive.org/details/winampskin_kenwood
https://www.macrumors.com/2013/05/01/apple-engineers-working-overtime-on-ios-7s-deforstallization/
https://www.macrumors.com/2013/05/01/apple-engineers-working-overtime-on-ios-7s-deforstallization/

240

REFERENCES

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

(185]

[186]

[187]

[188]

[189]

K. Beck, M. Beedle, M. A. van Bennekum, M. A. Cockburn, M. W. Cunningham, M. M.
Fowler, M. J. Grenning, M. J. Highsmith, M. A. Hunt, M. R. Jeffries, M. J. Kern, M. B.
Marick, M. R. C. Martin, M. S. Mellor, M. K. Schwaber, M. J. Sutherland, and M. D.
Thomas, “Principles behind the agile manifesto,” Manifesto for Agile Software

Development, 2001. [Online]. Available: http://agilemanifesto.org/principles.html

A. Madaan, J. Nurse, D. De Roure, K. O’Hara, W. Hall, and S. Creese, “A storm in an IoT
cup: The emergence of cyber-physical social machines,” University of Southampton,
Tech. Rep., 09 2018.

S. Jobs, “Top 100 - a,” Internal Memo, October 2010. [Online]. Available:
https://twitter.com/TechEmails/status/1428400060019068933/photo/1

reddit inc., “Buy it for life: Durable, quality, practical.” [Online]. Available:
https://www.reddit.com/r/BuyltForLife/

Wikipedia contributors, “Survivorship bias,” Wikipedia, October 2021. [Online].
Available: https://en.wikipedia.org/wiki/Survivorship_bias

BERG Ltd., “Hello, little printer,” Berg Cloud, December 2011. [Online]. Available:
https://web.archive.org/web/20120915003521/http://bergcloud.com/

Nord Projects Ltd., “Little printers, a friendly new messaging app and cloud platform.”
Nord Projects, 2019. [Online]. Available:
https://nordprojects.co/projects/littleprinters/

M. Webb and teh, “GitHub: Sirius server.” [Online]. Available:
https://github.com/genmon/sirius

C. Cimpanu, “AWS outage impacts thousands of online services,” ZDNet: Tech
Industry, November 2020. [Online]. Available:

https://www.zdnet.com/article/aws- outage-impacts-thousands- of-online-services/

D. Zeng, S. Guo, and Z. Cheng, “The web of things: A survey (invited paper),” JCM,
vol. 6, pp. 424-438, 09 2011.

D. Winseck, “Netscapes of power: Convergence, network design, walled gardens, and
other strategies of control in the information age,” in Surveillance as Social Sorting:

Privacy, risk and digital discrimination, D. Lyon, Ed., 2003, pp. 176-198.

D. Weck, D. Raggett, D. Glazman, and C. Santambrogio, Eds., CSS Speech Module.
W3C, March 2020. [Online]. Available: https://www.w3.org/TR/css-speech-1/

Control Protocols Working Group, ANSI E1.11 - 2008 (R2018): Entertainment
Technology - USITT DMX512-A: Asynchronous Serial Digital Data Transmission
Standard for Controlling Lighting Equipment and Accessories. Entertainment
Services and Technology Association (ESTA), April 2018. [Online]. Available:
https://tsp.esta.org/tsp/documents/docs/ANSI-ESTA_E1-11_2008R2018.pdf

http://agilemanifesto.org/principles.html
https://twitter.com/TechEmails/status/1428400060019068933/photo/1
https://www.reddit.com/r/BuyItForLife/
https://en.wikipedia.org/wiki/Survivorship_bias
https://web.archive.org/web/20120915003521/http://bergcloud.com/
https://nordprojects.co/projects/littleprinters/
https://github.com/genmon/sirius
https://www.zdnet.com/article/aws-outage-impacts-thousands-of-online-services/
https://www.w3.org/TR/css-speech-1/
https://tsp.esta.org/tsp/documents/docs/ANSI-ESTA_E1-11_2008R2018.pdf

REFERENCES 241

[190]

[191]

[192]

(193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

M. Marschalko, “Using XML and CSS for electronic projects,” Mate Marschalko, 2017.

A. Owen, “Skills matter skillscast: CSS and the internet of things,” October 2015.
[Online]. Available:
https://skillsmatter.com/skillscasts/6750-css-and- the-internet- of- things

D. Guinard, V. Trifa, and E. Wilde, “A resource oriented architecture for the web of
things,” in 2010 Internet of Things (I0T), 2010, pp. 1-8.

Wikipedia contributors, “Representational state transfer,” Wikipedia, May 2022.
[Online]. Available: https://en.wikipedia.org/wiki/Representational_state_transfer

Wikipedia contributors, “Remote procedure call,” Wikipedia, May 2022. [Online].

Available: https://en.wikipedia.org/wiki/Remote_procedure_call

D. Guinard, I. Ion, and S. Mayer, “In search of an internet of things service
architecture: Rest or ws-*? a developers’ perspective,” in Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering, vol.
104, 05 2012.

“React native: Learn once, write anywhere.” [Online]. Available:

https://reactnative.dev/

T. Wang, L. Wu, and Z. Lin, “The revival of mozilla in the browser war against internet
explorer,” in Proceedings of the 7th International Conference on Electronic Commerce,
January 2005, pp. 159-166.

ISO/IECJTC 1 Information technology, ISO/IEC 7498-1:1994: Information technology
- Open Systems Interconnection - Basic Reference Model: The Basic Model.
International Office for Standardization, November 1994. [Online]. Available:

https://www.iso.org/standard/20269.html

Telecommunication Standardization Sector of ITU, X.200: Information technology -
Open Systems Interconnection - Basic Reference Model: The basic model.
International Telecommunication Union, July 1994. [Online]. Available:
https://www.itu.int/rec/T-REC-X.200-199407-1/en

W. siong Tan, D. Liu, and R. Bishu, “Web evaluation: Heuristic evaluation vs. user
testing,” International Journal of Industrial Ergonomics, vol. 39, no. 4, pp. 621-627,
2009, special issue: Felicitating Colin G. Drury. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S016981410800053X

J. Nielsen and R. Molich, “Heuristic evaluation of user interfaces,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, ser. CHI '90. New
York, NY, USA: Association for Computing Machinery, 1990, p. 249-256. [Online].
Available: https://doi.org/10.1145/97243.97281

https://skillsmatter.com/skillscasts/6750-css-and-the-internet-of-things
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Remote_procedure_call
https://reactnative.dev/
https://www.iso.org/standard/20269.html
https://www.itu.int/rec/T-REC-X.200-199407-I/en
https://www.sciencedirect.com/science/article/pii/S016981410800053X
https://doi.org/10.1145/97243.97281

242

REFERENCES

(202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

(210]

[211]

(212]

[213]

[214]

J. Nielsen, “Enhancing the explanatory power of usability heuristics,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, ser. CHI '94. New
York, NY, USA: Association for Computing Machinery, 1994, p. 152-158. [Online].
Available: https://doi.org/10.1145/191666.191729

]. Nielsen, Heuristic evaluation. John Wiley & Sons, 1994.

J. Nielsen, “10 usability heuristics for user interface design,” Neilsen Norman Group
Website, November 2020. [Online]. Available:

https://www.nngroup.com/articles/ten-usability- heuristics/
D. Norman, The Design of Everyday Things. Basic Books, 1988.

B. Shneiderman, The Eight Golden Rules of Interface Design. Pearson, 2016. [Online].

Available: https://www.cs.umd.edu/users/ben/goldenrules.html

J. Surowiecki, The Wisdom of Crowds: Why the Many Are Smarter Than the Few and
How Collective Wisdom Shapes Business, Economies, Societies and Nations.
Doubleday, 2004.

J. Nielsen and T. K. Landauer, “A mathematical model of the finding of usability
problems,” in Proceedings of ACM INTERCHI'93 Conference, ser. INTERCHI '93, April
1993, pp. 206-213.

B. Neumann, “Bayesian Compositional Hierarchies - A Probabilistic Structure for
Scene Interpretation,” in Logic and Probability for Scene Interpretation, ser. Dagstuhl
Seminar Proceedings (DagSemProc), A. G. Cohn, D. C. Hogg, R. Méller, and

B. Neumann, Eds., vol. 8091. Dagstuhl, Germany: Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2008, pp. 1-16. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2008/1605

R. S. Wazlawick, 7.8: Organizational Hierarchy. Elsevier Inc., 2014, ch. Chapter 7:
Conceptual Modeling: Patterns.

M. Philips, “Design principles - an introduction to visual hierarchy,” Toptal: Designers
Blog, 2016. [Online]. Available:

https://www.toptal.com/designers/visual/design-principles-hierarchy

D. Raggett, A. L. Hors, and I. Jacobs, Eds., HTML 4.01 Specification. W3C, December
1999. [Online]. Available: https://www.w3.org/TR/html40/

Wikipedia contributors, “Don’t repeat yourself,” Wikipedia, August 2021. [Online].
Available: https://en.wikipedia.org/wiki/Don’t_repeat_yourself

Phantom]JS contributors, “Phantom]S - scriptable headless browser.” [Online].

Available: https://phantomjs.org/

https://doi.org/10.1145/191666.191729
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.cs.umd.edu/users/ben/goldenrules.html
https://drops.dagstuhl.de/opus/volltexte/2008/1605
https://www.toptal.com/designers/visual/design-principles-hierarchy
https://www.w3.org/TR/html40/
https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://phantomjs.org/

REFERENCES 243

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

Apple Inc., “Webkit: A fast, open source web browser engine.” [Online]. Available:
https://webkit.org/

M. Schuster, A. Domene, R. Vaidya, S. Arbanowski, S. M. Kim, J. W. Lee, and H. Lim,
“Virtual device composition,” in Eighth International Symposium on Autonomous
Decentralized Systems (ISADS’07), 2007, pp. 270-278.

M. Merabti, P. Fergus, O. Abuelma’atti, H. Yu, and C. Judice, “Managing distributed
networked appliances in home networks,” Proceedings of the IEEE, vol. 96, no. 1, pp.
166-185, 2008.

A. Owen and K. Martinez, “A dynamic hierarchical approach to modelling and
orchestrating the web of things using the DOM, CSS and javascript,” in CHI EA ’19:
Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing
Systems. ACM, May 2019. [Online]. Available: https://eprints.soton.ac.uk/432772/

Arduino AG, “Arduino - home.” [Online]. Available: https://www.arduino.cc/

Open]S Foundation, “jQuery: Write less, do more.” [Online]. Available:

https://jquery.com/

Espressif Systems (Shanghai) Co., Ltd., “ESP8266 Wi-Fi MCU.” [Online]. Available:

https://www.espressif.com/en/products/socs/esp8266

T. A.Jr., Ed., CSS Custom Properties for Cascading Variables Module Level 1. 'W3C,
December 2015. [Online]. Available: https://www.w3.org/TR/css-variables-1/

R.Jota, A. Ng, P. Dietz, and D. Wigdor, “How fast is fast enough? a study of the effects
of latency in direct-touch pointing tasks,” in Proceedings of the SIGCHI conference on

human factors in computing systems, 2013, pp. 2291-2300.

A. Alabbas and J. Bell, Eds., Indexed Database API 3.0. W3C, August 2021. [Online].
Available: https://www.w3.org/TR/IndexedDB/

reddit inc., “css_irl.” [Online]. Available: https://www.reddit.com/r/css_irl/

Apple Inc., “Supporting dark mode in your interface,” Apple Developer
Documentation, 2021. [Online]. Available:
https://developer.apple.com/documentation/uikit/appearance_customization/

supporting_dark_mode_in_your_interface

Z. Kis, K. Nimura, and D. Peintner, Eds., Web of Things (WoT) Scripting APl. 'W3C,
September 2017. [Online]. Available:
https://www.w3.0rg/TR/2017/WD-wot-scripting-api-20170914/

Home Assistant, Inc., “Home assistant: Area registry.” [Online]. Available:

https://developers.home-assistant.io/docs/area_registry_index

https://webkit.org/
https://eprints.soton.ac.uk/432772/
https://www.arduino.cc/
https://jquery.com/
https://www.espressif.com/en/products/socs/esp8266
https://www.w3.org/TR/css-variables-1/
https://www.w3.org/TR/IndexedDB/
https://www.reddit.com/r/css_irl/
https://developer.apple.com/documentation/uikit/appearance_customization/supporting_dark_mode_in_your_interface
https://developer.apple.com/documentation/uikit/appearance_customization/supporting_dark_mode_in_your_interface
https://www.w3.org/TR/2017/WD-wot-scripting-api-20170914/
https://developers.home-assistant.io/docs/area_registry_index

244

REFERENCES

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

The openHAB Community and the openHAB Foundation e.V., “openHAB: semantic
model,” openHAB Website, 2021. [Online]. Available:
https://www.openhab.org/docs/tutorial/model.html

T. Anderson, “MySpace.” [Online]. Available: https://myspace.com/

WordPress Foundation, “Blog tool, publishing platform, and CMS - wordpress.org.”
[Online]. Available: https://wordpress.org/

P. Cowburn, Ed., PHP: PHP Manual. The PHP Documentation Group, October 2021.
[Online]. Available: https://www.php.net/manual/en/

UK Health Security Agency, COVID-19: guidance for maintaining services within
health and care settings - infection prevention and control recommendations. UK
Health Security Agency, September 2021, Available:
https://www.gov.uk/government/publications/
wuhan-novel-coronavirus-infection- prevention-and- control/covid-19-guidance-
for-maintaining-services-within-health-and- care-settings-infection- prevention-

and-control-recommendations.
Google LLC, “Lit: Simple. fast. web components.” [Online]. Available: https://lit.dev/

J. Diggs, S. McCarron, M. Cooper, R. Schwerdtfeger, and J. Craig, Eds., Accessible Rich
Internet Applications (WAI-ARIA) 1.1. 'W3C, December 2017. [Online]. Available:

https://www.w3.org/TR/wai-aria/

Wikipedia contributors, “Create, read, update and delete,” Wikipedia, October 2021.
[Online]. Available: https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee,
RFC-2616: Method Definitions. W3C, June 1999. [Online]. Available:
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

J. Postel, RFC-768: User Datagram Protocol. 1ETF, August 1980. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc768

https://www.openhab.org/docs/tutorial/model.html
https://myspace.com/
https://wordpress.org/
https://www.php.net/manual/en/
https://www.gov.uk/government/publications/wuhan-novel-coronavirus-infection-prevention-and-control/covid-19-guidance-for-maintaining-services-within-health-and-care-settings-infection-prevention-and-control-recommendations
https://www.gov.uk/government/publications/wuhan-novel-coronavirus-infection-prevention-and-control/covid-19-guidance-for-maintaining-services-within-health-and-care-settings-infection-prevention-and-control-recommendations
https://www.gov.uk/government/publications/wuhan-novel-coronavirus-infection-prevention-and-control/covid-19-guidance-for-maintaining-services-within-health-and-care-settings-infection-prevention-and-control-recommendations
https://www.gov.uk/government/publications/wuhan-novel-coronavirus-infection-prevention-and-control/covid-19-guidance-for-maintaining-services-within-health-and-care-settings-infection-prevention-and-control-recommendations
https://lit.dev/
https://www.w3.org/TR/wai-aria/
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://datatracker.ietf.org/doc/html/rfc768

	List of Figures
	List of Tables
	Declaration of Authorship
	Acknowledgements
	Abbreviations
	1 Introduction
	2 Literature Review
	2.1 The Internet
	2.2 The Web
	2.2.1 Precursors to the Web
	2.2.2 The World Wide Web
	2.2.2.1 HTML and the DOM
	2.2.2.2 CSS
	2.2.2.3 Precursors and Parallels to Web-based Style Sheets
	FOSI
	Mosaic: RRP
	ViolaWWW: PWP
	Steve Heaney's Proposal (SHP)
	Cascading HTML Style Sheets (CHSS)
	DSSSL

	2.2.2.4 Modern Alternatives to CSS
	XSL
	SASS, LESS and Pre-Processors
	CSS-in-JS
	AXR

	2.2.2.5 The Evolution of CSS
	2.2.2.6 JavaScript

	2.2.3 Scale and the Internet of Things
	2.2.4 The Web of Things

	2.3 Identification on the Internet
	2.4 Describing IoT Devices
	2.5 The Semantic Web
	2.6 The History of Digital Twins
	2.7 Reading State of IoT Devices
	2.8 Controlling IoT Devices
	2.8.1 Push vs Pull Control Methods on the Web
	2.8.2 The Publish/Subscribe Model

	2.9 Historical IoT Implementations
	2.9.1 The First IoT Device
	2.9.2 Envisioning Connected/Smart Environments
	2.9.3 Ubiquitous and Pervasive Computing
	2.9.4 Coining the Term IoT
	2.9.5 HP's Cooltown Project
	2.9.6 The First Industrial Physical IoT Products

	2.10 IoT Management Systems
	2.10.1 Open Source, Mass Market
	2.10.2 Open Source, Personal
	2.10.3 Closed Source, Mass Market
	2.10.4 Closed Source, Personal
	2.10.5 Open Source, Mass Market
	2.10.5.1 OpenHAB
	2.10.5.2 HomeAssistant
	2.10.5.3 Node-RED
	2.10.5.4 WebThings (formerly Mozilla)

	2.10.6 Open Source, Personal
	2.10.7 Closed Source, Mass Market
	2.10.7.1 Nest
	2.10.7.2 Philips Hue
	2.10.7.3 Google Home
	2.10.7.4 Amazon Alexa
	2.10.7.5 Apple Home
	2.10.7.6 IFTTT
	2.10.7.7 Thread and OpenThread
	2.10.7.8 Matter
	2.10.7.9 High-End Smart Home Systems

	2.11 Smart Cities
	2.12 W3C and the WoT
	2.12.1 W3C WoT Based Management Systems
	2.12.2 Matter and the W3C

	2.13 The Human Influence on the Web and IoT
	2.13.1 Metaphors on the Web
	2.13.2 A Cog in a Social Machine

	2.14 The Future and IoT Environment Design
	2.14.1 The Case for Open Standards
	2.14.2 The Case for Re-Use of Web Standards

	2.15 Limitations of Existing Research

	3 Theoretical Framework
	3.1 Challenges
	3.2 The Gap
	3.2.1 Specifics and Justification
	3.2.1.1 Technical
	3.2.1.2 Social

	3.2.2 How This Fits Into the Timeline of the WoT and IoT

	3.3 Aims of This Thesis
	3.3.1 Aim 1: Treating IoT Devices as DOM Elements
	3.3.2 Aim 2: Building an IoT System Using Browser Technology
	3.3.3 Aim 3: Gaining Acceptance from the Community

	3.4 Scope and Assumptions
	3.5 Framing of the Analysis
	3.5.1 Possibility
	3.5.2 Practicality
	3.5.3 User Acceptance
	3.5.3.1 User Testing
	3.5.3.2 Heuristic Testing

	4 Methodology
	4.1 Hierarchical Modelling of Physical Environments
	4.2 Using Web Technologies to Model Environments
	4.3 Storing Device State
	4.4 Linking to Devices
	4.5 Assessment Strategies

	5 Experiments
	5.1 Experiment 1: Using Attributes to Store State
	5.1.1 Discussion
	5.1.1.1 Possibility
	5.1.1.2 Practicality
	5.1.1.3 User Acceptance
	Heuristic Analysis
	1) Visibility of system status
	2) Match between system and the real world
	3) User control and freedom
	4) Consistency and standards
	5) Error prevention
	6) Recognition rather than recall
	7) Flexibility and efficiency of use
	8) Aesthetic and minimalist design
	9) Help users recognize, diagnose, and recover from errors
	10) Help and documentation

	5.2 Experiment 2: A Centralised, Hub-Based, HTML5 and CSS WoT System
	5.2.1 Technical Implementation
	5.2.1.1 The Hub
	5.2.1.2 The ub.js Library
	5.2.1.3 The Web Interface
	5.2.1.4 Physical Clients
	5.2.1.5 Virtual Clients
	5.2.1.6 Composed Devices
	5.2.1.7 Messaging

	5.2.2 Discussion
	5.2.2.1 Possibility
	5.2.2.2 Practicality
	5.2.2.3 User Acceptance
	Heuristic Analysis
	1) Visibility of system status
	2) Match between system and the real world
	3) User control and freedom
	4) Consistency and standards
	5) Error prevention
	6) Recognition rather than recall
	7) Flexibility and efficiency of use
	8) Aesthetic and minimalist design
	9) Help users recognize, diagnose, and recover from errors
	10) Help and documentation

	5.3 Experiment 3: A Distributed, Browser-Based, Web Components WoT System
	5.3.1 Technical Implementation
	5.3.1.1 The User Interface

	5.3.2 Discussion
	5.3.2.1 Possibility
	5.3.2.2 Practicality
	5.3.2.3 User Acceptance
	Heuristic Analysis
	1) Visibility of system status
	2) Match between system and the real world
	3) User control and freedom
	4) Consistency and standards
	5) Error prevention
	6) Recognition rather than recall
	7) Flexibility and efficiency of use
	8) Aesthetic and minimalist design
	9) Help users recognize, diagnose, and recover from errors
	10) Help and documentation

	5.4 Experiment 4: Assessing Developer Acceptability of a WoT System: Designing CSS for an Environment
	5.4.1 Participant Breakdown
	5.4.2 Study Structure
	5.4.3 Part 1: Learning the Approach
	5.4.3.1 Task 1
	5.4.3.2 Task 2
	5.4.3.3 Task 3
	5.4.3.4 Task 4
	5.4.3.5 Results

	5.4.4 Part 2: Understanding Participants' Perception
	5.4.4.1 Results

	5.4.5 Part 3: Assessing the Acceptability
	5.4.5.1 Results

	5.4.6 Bias

	6 Discussion
	6.1 Have the Aims Been Met?
	6.1.1 Aim 1: To treat IoT devices as we do the elements of a Web document by representing them within a DOM
	6.1.2 Aim 2: To build a system for controlling and monitoring IoT environments using only browser technology, ideally with CSS and JavaScript
	6.1.3 Aim 3: To produce an approach which is acceptable to existing Web developers that could allow them to easily transition into WoT development, thereby following existing best practice for Web development

	6.2 Benefits of This Approach
	6.2.1 Zero-knowledge Environments
	6.2.2 Integration with Web Documents
	6.2.3 Style Sheets for Environments

	6.3 Issues With This Approach
	6.3.1 Taxonomies
	6.3.2 Functionality and Permissions
	6.3.3 Industry Support
	6.3.4 Why Not Just Use JSON Instead of CSS?

	6.4 Issues That Have Not Been Directly Addressed
	6.4.1 Security
	6.4.2 Scalability

	6.5 Limitations of the Research
	6.6 Relationships to Other IoT Systems
	6.7 The Importance of This Research

	7 Conclusions and Future Work
	7.1 Applications
	7.1.1 Hybrid Documents
	7.1.2 Themes
	7.1.3 Composed Devices
	7.1.4 Physical Spaces
	7.1.4.1 Shared Spaces
	7.1.4.2 Multi-purpose Spaces
	7.1.4.3 Dynamic Inventories

	7.2 Extensions
	7.2.1 Integration with Existing Frameworks and Tools
	7.2.2 Pervasive Computing
	7.2.3 Distributed DOMs
	7.2.4 Multiple Concurrent DOMs
	7.2.5 Media Queries
	7.2.6 Abstracting Away From Classes and Properties Using the Semantic Web
	7.2.7 Accessibility
	7.2.8 Technology vs. Human Factors

	7.3 Problems
	7.3.1 CSS as a Store of State
	7.3.2 CSS, the DOM, and Security
	7.3.3 Physical Limitations of Devices
	7.3.4 Duplication of Digital Twins
	7.3.5 Responses
	7.3.6 Languages
	7.3.7 Open vs Closed Property Taxonomies

	7.4 Final Thoughts

	Appendix A Experiment 2: Message Schemas
	Appendix B Experiment 4: Participant Scenes
	Appendix C Experiment 4: Participant Scene Descriptions
	References

