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ABSTRACT ARTICLE HISTORY
Nonfouling materials have attracted increasing interest for their Received 9 November 2021
excellent biocompatibility and low immunogenicity. Strong hydra- Accepted 21 January 2022

tion is believed to be the key reason for their resisting capability
to nonspecific protein adsorption. However, little attention has
been paid to quantifying their strong water binding capacity. In
this study, we synthesized four zwitterionic polymers, including
poly(sulfobetaine methacrylate) (pSBMA), poly(carboxybetaine
methacrylate) (pCBMA), poly(carboxybetaine acrylamide) (pCBAA)
and poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC), and
compared non-freezing water of these zwitterionic polymers with
typical antifouling polymer poly(ethylene glycol) (PEG) using dif-
ferential scanning calorimetry (DSC). And non-freezing water of
their monomers was also investigated. The water binding capacity
of the polymers (per unit) is pMPC (10.7+1.4) ~ pCBAA (10.8+
1.5) > pCBMA (9.0+0.6) > pSBMA (6.6+0.4) > PEG20000 (0.60+
0.04). Similar trend js observed for their monomers. For all studied
zwitterionic materials, they showed higher binding capacity than
PEG. We attribute the stronger hydration of zwitterionic polymers
to their strong electrostatic interactions.

KEYWORDS
Non-freezing water;
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1. Introduction

Nonfouling materials, which have strong resistance to non-specific protein adsorp-
tion, cell adhesion, and biofilm development, show significant importance in various
fields from drug delivery to surface modification [1-5]. Besides hydrophilic materials
(i.e. PEG-based materials), zwitterionic materials have attracted much interest for
their excellent biocompatibility and low immunogenicity over the last two decades
[6-11]. Lin et al. [12] reported that super-hydrophilic f-cyclodextrin-carboxybetaine
polymers exhibit ultra-long half-life in blood circulation (>40h), and no accelerated
blood clearance was found after multiple injections. In the following study,
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f-cyclodextrin-sulfobetaine polymers showed obvious shorter circulation time than
B-cyclodextrin-carboxybetaine polymers [13]. Shen et al. [14] investigated the antibac-
terial properties of implants functionalized with polyzwitterionic materials (pCBMA
and pSBMA, via a single-step photo-grafting process). pPCBMA coatings cause a sig-
nificant reduction in both S. aureus and S. epidermidis adhesion compared to
PSBMA coating in vitro. In vivo antimicrobial properties of pCBMA coating persists
during 2-week implantation period. All these results indicate that nonfouling materi-
als are playing crucial roles in many biomedical applications.

PEG and zwitterionic materials, as the most commonly studied nonfouling materi-
als, have been compared in previous reports [15]. For example, Robinson et al.
immobilized antibody to pSBMA and PEG, and investigated their difference for anti-
gen detection both in vitro and in vivo. They found that pSBMA-coated devices
showed significantly higher capture efficiency compared to PEG-coated ones, and
they suggested this may be due to the higher immobilized antibody density of
pSBMA than PEG [16]. Wang et al. grafted pCBMA, pMPC, and PEG to branched
polyethyleneimine (PEI), and used them to coat bovine serum albumin-poly(N-3-
acrylamidophenylboronic acid) (BSA-PAPBA) nanoparticles. The found that pMPC
coated nanoparticles showed the longest blood circulation and tumor accumulation.
They suggested the differences should correlate with the chain structure of pCBMA,
pMPC, and PEG in physiological and pathological environments [17]. Leng et al.
used sum frequency generation (SFG) vibrational spectroscopy to investigate the in
situ and real time surface hydration of pPSBMA and poly|[oligo(ethylene glycol) meth-
acrylate] (pOEGMA) upon contact with proteins. And the results indicated that the
surface hydration of pSBMA remained unaffected, but the water ordering at the
pOEGMA surface was disturbed [18].

The key to nonfouling materials is the tightly bound hydration layer (non-freezing
water layer) on the polymers, which is responsible for their resistance to protein
adsorption, due to unfavorable change in free energy when removing the tightly
bound water in the interface [19-23]. Other than the tightly bound water, other sur-
face characteristics, such as water structure, polymer length, and polymer density,
also affect the nonfouling properties [20, 24]. The state of water in a polymer can be
measured in many ways, such as differential scanning calorimetry (DSC), nuclear
magnetic resonance (NMR), fourier transform infrared spectroscopy (FI-IR), attenu-
ated total reflectance infrared spectroscopy (ATR-IR), and X-ray [25,26]. Differential
scanning calorimetry (DSC), as a powerful technique in thermal analysis is used to
measure enthalpy changes due to changes in the physical and chemical properties of
a material as a function of temperature or time [27]. The wide application of DSC
includes investigation of glass transition temperature, melting and crystallization
behavior [27], and the states of water can be easily analyzed using DSC [28]. Due to
these reasons, DSC was chosen for this study. Tanaka et al. [25] have proposed that
water in polymers exists in three states, non-freezing water, freezing-bound (or inter-
mediate) water, and free water. The non-freezing water is non-crystallizable even at a
temperature .—100 °C, while intermediate water crystallizes at the temperature below
0°C and free water crystallized at 0°C [25, 29]. On the other hand, Morisaku et al.
[23] and Hirata et al. [30]-and classified the water into two states: non-freezing and
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Flgure 1. Structure of monomers MPC, CBAA, CBMA, SBMA, their respective polymers, and PEG
used for antifouling materials.

freezable water. In this classification, freezable water includes both freezing-bound (or
intermediate) water and free water. In this study we are mainly interested in studying
the non-freezing water, so we refer the different types of water as non-freezing water
and freezable water, otherwise will specify clearly.

Unlike PEG molecules with amphiphilic characteristic that bind water via hydrogen
bond, zwitterionic polymers, which are superhydrophilic, bind water stronger via electro-
static origin [31-33]. Researchers studied the water binding capacity for both PEG and
zwitterionic polymers. Wu et al. [31] compared the hydration capacity of pSBMA and
PEG using low-field nuclear magnetic resonance and DSC. Zhao et al. [32] studied the
hydrogels’ properties of four different zwitterionic materials, pCBMA, pMPC, pCBAA,
and pSBMA, and DSC was used to study the state of water in hydrogels. Tran et al. [34]
studied the relationship between states of water and ion transport properties in hydrated
neutral, zwitterionic, cation exchange, and anion exchange polymers. Though researchers
have been studying zwitterionic polymers and PEG, and comparing them two, up to
date, there is no systemic study comparing their non-freezing water with similar molecu-
lar weight and their monomers. In this study, we prepared four most studied zwitterionic
polymers, pMPC, pCBAA, pCBMA, and pSBMA (structures of their monomers were
shown in Figure 1). The non-freezing water of these zwitterionic polymers and their cor-
responding monomers were compared using DSC. PEG was also studied as a control.

2. Materials and methods
2.1. Materials

[2-(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)Jammonium  hydroxide (SBMA,
97%) was purchased from Sigma-Aldrich (Shanghai, China). 2-(N, N’-dimethylami-
no)ethyl methacrylate (DMAEMA), 2,2'-azobis-(isobutyronitrile) (AIBN), PEG with
an average molecular weight of 550, 5000, 20000 were purchased from Aladdin
Reagent (Shanghai, China). Methanol was purchased from Sinopharm Chemical
Reagent (Shanghai, China). f-Propiolactone was purchased from J&K (Beijing,
China). CBMA was synthesized as previously reported [35,36]. Briefly, f-propiolac-
tone (3.53mL, 55mmol) was diluted with 5mL anhydrous acetone, and the mixture
was added dropwise to a solution of DMAEM (8.43mL, 50 mmol) in 45mL
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anhydrous acetone. The reaction was kept under nitrogen protection with constant
stirring at 15°C for 6h. Then the reaction mixture was filtrated, and a white solid
was collected. The compound was washed with 50 mL anhydrous acetone, and stored
at —20 °C before use. MPC was a kind gift from Prof. Jian Ji’s group (Department of
Polymer Science and Engineering, Zhejiang University).

2.2. Synthesis of zwitterionic polymers

Various polymerization techniques have been used for the preparation of zwitterionic
polymers [37-40]. In this study, all polymers are synthesized by conventional free-
radical polymerization with AIBN as an initiator. A typical polymerization of
pCBMA was carried out as follows. CBMA (0.311g, 1.35mmol) and AIBN (0.018g,
0.11 mmol) were added to a Schlenk tube, dissolved in a mixture of MeOH/H,O at a
volume ratio of 4/1. Then purged with nitrogen for 30 min to remove the oxygen.
The monomer concentration was fixed at 5% (w/v), and the polymerisation was car-
ried out at 65°C for 24 h, then terminated by exposing to air. The polymer was puri-
fied by dialyzing using a 3500 MW cutoff membrane against water (purified by a
Millipore purification system with a resistivity >18.0 MQ-cm) for 24h, which was
changed every 8 h. The polymer was collected by freeze-drying. The molecular weight
was determined by gel permeation chromatography (GPC). pMPC, pCBAA, and
pSBMA were prepared in the same method with fixed monomer/initiator ratio and
monomer concentration by only changing the monomers.

2.3. GPC measurements

Shimadzu GPC system (Shimadzu Corporation, Japan) equipped with a Waters Ultra-
hydrogel column and a Shimadzu refractive index detector was used for all the GPC
measurements in this study. The measurements were performed with 0.2M NaNO;
(in order to suppress the strong interaction between zwitterionic polymer with the
column[41,42]) as the eluent at a flow rate of 0.5 mL/min. The column temperature
was kept at 40°C. The molecular weight and polydispersity index (PDI) were cali-
brated using polyethylene glycol standards.

2.4. DSC measurement

Careful heat calibration of DSC was made by measuring the heats of reference pro-
cess using aluminum using according to ICTAC Kinetics Committee recommenda-
tions [43]. For DSC measurement, an aluminum pan with 6-7 mg polymer mixed
with water at different ratio was hermetically sealed. An empty aluminum pan was
used as a control. During the cooling and heating experiments, the sample cell was
purged with nitrogen gas at a flow rate of 50 mL/min. The samples were initially
cooled from room temperature to —60°C at a rate of 5°C/min and then heated to
40°C at the same rate. When all samples were first cooled from room temperature to
—60°C, water mixed would be frozen except for non-freezing water. Then samples
were heated to 40°C, the frozen water (both free and intermediate water) would
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undergo an ice-to-water transition, and this was reflected by the endothermic peak.
This would allow us to calculate the number of non-freezing water.

3. Results and discussion
3.1. Calculation of non-freezing water molecules bind to each polymer unit

DSC has been used as a well-established way to calculate the freezable and non-freez-
ing water. In this study, we mixed polymers or their monomers with water at differ-
ent molar ratios (water to polymer unit or monomer), then samples’ thermal
transition behaviour was monitored by DSC. If water molecules were tightly bound
to polymers, no thermal transition would be expected to be observed, and these water
molecules are called non-freezing water. Only water molecules that can be frozen
would contribute to the thermal transition over the temperature range similar to the
ice-to-water transition for bulk water [31]. And we can calculate the enthalpy change
of freezable water of the mixture of different polymers with water (AHg) by using TA
Instruments Universal Analysis 2000. Because the endothermic peak of intermediate
and free water overlap, the AHf was the combination of the two peaks [44]. AH; of
different polymers or monomers are summarized in Table 1. For example, to calcu-
late the number of non-freezing water molecules (N, bind to per polymer unit, we
can use equations below,

Wy —W4q

W, = (1;

Wdq

where W is the weight of water relative to the weight of the polymer in a polymer
solution. While w,, and wy are the weight of the polymer solution and the weight of
the polymer (freeze-dried).

o AWy
- Akuter

*(1+ W) (25

Table 1. Enthalpy changes of water and number of non-freezing water measured by DSC at
different water/polymer unit ratio.

Content Water/Unit ratio AHf (J/g) Nnf
pMPCa 15 46.1+14.6 10.7+1.4
pCBAAb 15 512+17.6 10.8+1.5
pCBMAC 15 72.8+6.7 9.0+£0.6
pSBMAd 15 923144 6.6 04
MPC 15 40.7+4.6 11.2+04
CBAA 15 47.0+£2.5 11.1+£0.2
CBMA 15 575+6.4 10.2+0.5
SBMA 15 62.5+9.3 9.3+0.8
PEG 20000 1.5 76.2+3.5 0.60 +0.04
PEG 5000 15 81.7+£13 0.53+£0.02
PEG 550 1.5 - -

PEG 550 5 142.8+3.6 1.8+0.1

2. pMPC, M, =22 kDa, M,,=32 kDa, PDI= 1.4.

b. pCBAA, M,=16 kDa, M,,=29 kDa, PDI = 1.8.
<. pCBMA, M,=33 kDa, M,,=49 kDa, PDI = 1.5.
 PSBMA, M, =25 kDa, M,,=40kDa, PDI = 1.6.
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Figure 2. Number of non-freezing water of different nonfouling materials.

where W is the weight of freezable water relative to the weight of the polymer in a
polymer solution. AHy is the enthalpy change associated with the melting of freezable
water and AH,,, is the enthalpy change for the melting of bulk water (333.5]/g).

N= Wy 3
/ i Mwater
where N¢ is the number of freezable water molecules per polymer repeating unit, M,

and M.er are the molecular weight per polymer repeating unit and the molecular
weight of water.

an = Nyater — Nf (4

where Ny, is the total number of water molecules added to per polymer repeating
unit, and N, is the number of non-freezing water molecules per polymer unit. The
N,¢ of each polymer or monomer were summarized in Table 1 and Figure 2 (these
da-ta would be discussed in later sections). There was no enthalpy change in the tem-
perature range of the DSC measurements, which means the subtle conformation
change of polymers doesn’t contribute to the total enthalpy change. Indeed, the glass
transition temperatures of these zwitterionic polymers have been measured above
100°C [45].

3.2. Hydration capacity of different zwitterionic polymers

The zwitterionic materials could bind water molecules tightly through electrostatic
attraction, however, different charged groups would grant the materials different
properties. We investigated four most studied zwitterionic polymers, namely pMPC,
pCBAA, pCBMA, and pSBMA. To investigate the non-freezing water of different
zwitterionic polymers, we mixed the four types of zwitterionic polymers with water at
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Figure 3. DSC thermograms of water mixed with pCBAA, pCBMA, pMPC, pSBMA separately at a
ratio of H20/repeating unit = 15.

a molar ratio of 1/15 (polymer repeating unit/water molecule). To decide the polymer
repeating unit/water molecule ratio, we also tested 1/10, but under this condition, not
all the polymers investigated showed endothermic peak (data not shown), then the
ratio was increased to 1/15. Since the N, of zwitterionic materials were almost con-
stant with regard to the water content [23], the N,¢ of zwitterionic polymers was
compared at a single point of added water content in this study. Then using DSC
method to calculate the non-freezing water. The non-freezing water numbers and
DSC thermograms are shown in Figures 2 and 3. As we can see, pMPC and pCBAA
haye similar non-freezing water, around 10.7-10.8 water molecules per repeating
unit. The number for pMPC is less than what Toshinori et al. [23] reported 23-24
water molecules per repeating unit, which maybe because they were investigating in
hydrogel form. The high binding capacity of pCBAA could be attributed to the amide
group comparing to the ester group in pCBMA and pSBMA [32]. pMPC is more
hydrated than pCBMA and pSBMA, which is consistence with literatures[45-47] and
might be due to its unique hydration state [8]. And for pCBMA and pSBMA, they
can bind 9.0 and 6.6 non-freezing water molecules respectively, which are similar to
what we reported before, 9.3 and 6.0, respectively [13]. Shao et al. discussed the dif-
ference in hydration between carboxybetaine and sulfobetaine using molecule simula-
tions [48]. They found out that the positively charged groups in both betaine
molecules are similar, and the negatively charged groups in carboxybetaine can bind
less water molecules while interact stronger than the negatively charged groups in sul-
fobetaine. Though the simulation is not for the non-freezing water research purpose,
we can still conclude that different charged groups would affect many parameters, for
example, dipole orientation distribution and then eventually affect the non-freezing
water binding capacity. This also applies to pMPC and pCBAA. Moreover, we need
to point out, that though we used polymers with similar molecular weight, but they
varied a bit from each other. As the molecular weight also affect the polymers’
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Figure 4. DSC thermograms of water mixed with PEG at a ratio of H20/EG unit = 1.5 for PEG
20000, PEG 5000, PEG 500, and H20/EG unit = 5 for PEG 500.

Endotherm

\/

nonfouling properties [49], the relationship between molecular weight and non-freez-
ing water worth further investigating.

Interestingly, we can also see, in Figure 3, the melting peak of the freezable water
added to these four polymers, showed a trend that pMPC ~ pCBAA < pCBMA <
pSBMA. This trend js consistent with different polymers’ non-freezing water binding
capacity. With higher binding capacity, the melting peak of freezable water js lower.
This indicates that the freezable water in the pSBMA solution behave more like free
water than in the pMPC, pCBAA, and pCBMA ones, which may be attributed to
lower water binding capacity of pSBMA. When the water binding capacity of one
polymer is weaker, it has a weaker influence on the intermediate water, which will
shift to a higher melting peak.

PEG is a well-recognized nonfouling material, so we also include PEG as a com-
parison. We selected PEG with three different molecular weight, 550, 5000, and
20000. The PEGs were first mixed with water at a molar ratio of 1/1.5 (EG unit/water
molecule). The results were summarized in Figure 4. We can see that for PEG550,
there was no thermal transition, which meang all 1.5 water molecules were bound to
PEG 550 as non-freezing water. Therefore, we increased the ratio to 1/5 (EG unit/
water molecule). Then we calculated the non-freezing water for all these PEGs. It
showed that non-freezing water molecules bind to per EG unit is 0.60 for PEG 20000,
0.53 for PEG 5000, and 1.8 for PEG 550. This result is similar to what has been
reported by Wu et al. that PEG 20000 could bind 0.5-1 water molecule per one EG-
unit when testing with DSC [31, 50]. And we could also see PEG with a lower
molecular weight (PEG 550) could bind more non-freezing water comparing to PEG
with higher molecular weights (PEG 20000 and PEG 5000). It is believed that the
higher non-freezing water molecules mainly caused by the higher percentage of
hydroxyl groups in lower molecular weight PEG. Nonetheless, all the zwitterionic pol-
ymers studied showed higher non-freezing water binding capacity than the PEGs in
this study. Furthermore, water structure effects on the nonfouling properties of
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zwitterionic materials are due to electrostatic effects. It is worth-te investigate the salt
effect on the Naf of zwitterionic polymers in the future study. Such result may enable
us to understand the phenomena found in a recent study more clearly [51], where
super-hydrophilic pMPC-stabilized liposomes demonstrated at least one order magni-
tude low friction than weak hydrated peg-stabilized liposomes in 0.15M salt solution.

3.3. Hydration capacity of different nonfouling monomers

To further study the hydration difference between different polymers, we investigated
the water binding capacity of their monomers. The non-freezing water number and
DSC thermograms are shown in Figures 2 and 5. The monomers showed the simillar
non-freezing water binding trend as their polymers, each MPC molecule can bind
11.2 water molecules, 11.1 for CBAA, 10.2 for CBMA, and 9.3 for SBMA. MPC still
has the highest non-freezing water binding capacity. And interestingly, all the zwitter-
ionic monomers showed higher non-freezing water numbers compare to their corre-
sponding polymers, which is attributed to stronger dipole-dipole interaction (mostly)
[52,53]. Among these polymer and corresponding monomer pairs, we can find that
the largest difference in hydration capacity between polymer and monomer is SBMA/
pSBMA (6.6/9.3), which is largely attributed to the large dipole-dipole interactions
between sulfobetaine zwitterion groups {22, 54,55].

As expected, the melting peak of the freezable water added to these monomers
also showed a consistent trend with their non-freezing water binding capacity. The
higher the binding capacity, the lower melting peak of freezable water they have. And
also, when we compare the monomer with its polymer (Figure 6), we can see the
monomers always have lower melting peak. This is consistent with the conclusion,
that higher non-freezing water binding capacity can also increase its influence on its
intermediate water.

=

z

| | — MPC

S| | — CcBAA

= CBMA
Y [ — SBMA

50 40 -30 -20 -10 O 10
Temperature/°C

Figure 5. DSC thermograms of water mixed with CBAA, CBMA, MPC, SBMA monomer separately at
a ratio of H20/monomer = 15.
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Endotherm
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Endotherm
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Figure 6. DSC thermograms of water mixed with MPC (A), CBAA (B), CBMA (C), and SBMA (D)
polymer (solid line) or monomer (dash line) separately at a ratio of H20/repeating unit (or mono-
mer) = 15.

4. Conclusions

The non-freezing water is believed to be the key reason for nonfouling materials to
resist nonspecific protein adsorption. In this study, we compared four different zwit-
terionic materials’ non-freezing water, and showed the monomers have a non-freezing
water binding capacity trend of MPC>CBAA >CBMA >SBMA. Their polymers
share the same trend, but have less non-freezing water comparing to their monomers.
And we also confirmed that zwitterionic polymers have higher non-freezing water
binding capacity compared to PEG due to their strong electrostatic interactions. This
work quantifies non-freezing water of four zwitterionic materials, which may give a
valuable evaluation for their nonfouling performance with different molecular groups.
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