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A B S T R A C T   

This paper reports a novel method to build a model for nonlinear resonance behaviour of very-high-frequency 
(VHF) silicon nanoelectromechanical (NEM) resonators, measured via 1-ω mixing resonance measurements. 
Systematic fitting results for the experimental data of a 1.5-μm-long beams have been achieved with explicit 
explanation of the amount of intrinsic mechanical nonlinearity and nonlinear voltage-tuning effect. Asymmetric 
line shape and onset of hysteresis on nonliner resonance behavour have been well demonstrated with less fitting 
errors. The development of a modelling method of nanoscale resonator devices which includes nonlinear 
response is beneficial for seamless technology transfer from individual devices to integrated systems in the 
future.   

1. Introduction 

Nonlinear responses of micro- and nano-electromechanical (MEM/ 
NEM) resonators have been well documented since the first experi
mental observation of nonlinear MEM resonance, reported by Andres 
et al. [1] in 1987, and then in recent years are attracting much more 
attention in NEM resonators as nonlinear resonance regime can be easily 
reached thanks to their small mass and size [2]. While nonlinear be
haviours are generally considered undesirable characteristics of com
mon micro- and nanoelectromechanical systems (MEMS/NEMS) when 
operated in the linear regime, there have been some cases reported 
where nonlinear characteristics are actively utilised to improve the 
performance of devices, or even required to achieve desireble func
tionality. Sansa et al. [3] proved a concept of a nonlinear detection 
scheme which amplified the resonance response and enhanced the dy
namic range for sensing applications. To implement a neural network by 
using coupled MEM oscillator arrays, nonlinear behaviour of MEM res
onators with hysteric characteristics is suggested to play a pivotal role in 
fading memory functionality [4]. An alternative approach of developing 

neural computing hardware based on nolinear MEM oscillators has also 
been proposed [5,6]. 

This trend strongly suggests that detailed analysis of nonlinear dy
namic behaviour of MEM/NEM resonators is important. In particular, 
towards highly-integrated MEM/NEM resonator arrays for neuro
morphic computing or active system-level integration of MEMS/NEMS 
sensor arrays for Internet-of-Things (IoT) applications, it is very 
important to develop analytical or mathematical models to describe the 
operation of MEN/NEM resonators, including their nonlinear behaviour 
with a certain level of accuracy. 

Silicon NEMS devices possess great technological advantage in terms 
of integration capability as their fabrication processes are designed well 
compatible with advanced Si-based integrated circuits (IC) technologies 
[7]. Since the first demonstration of Si NEMS resonators in ultra-high- 
sensitivity mass sensors [8,9], ultra-low-leakage current switches 
[10,11] and in-plane resonators on a silicon-on-insulator (SOI) platform, 
which is compatible with complementary metal-oxide-semiconductor 
(CMOS) technology [7,12], are among those devices developed to 
extend Si NEMS. We have fabricated doubly-clamped silicon NEM 

* Corresponding authors. 
E-mail addresses: F.Ben@soton.ac.uk (F. Ben), yt2@ecs.soton.ac.uk (Y. Tsuchiya).   

1 Present address: Department of Electrical and Electronic Engineering, University of Bristol, Woodland Road, BS8 1UB Bristol, United Kingdom.  
2 Present address: School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan. 

Contents lists available at ScienceDirect 

Micro and Nano Engineering 

journal homepage: www.sciencedirect.com/journal/micro-and-nano-engineering 

https://doi.org/10.1016/j.mne.2023.100212 
Received 9 January 2023; Received in revised form 2 May 2023; Accepted 22 May 2023   

mailto:F.Ben@soton.ac.uk
mailto:yt2@ecs.soton.ac.uk
www.sciencedirect.com/science/journal/25900072
https://www.sciencedirect.com/journal/micro-and-nano-engineering
https://doi.org/10.1016/j.mne.2023.100212
https://doi.org/10.1016/j.mne.2023.100212
https://doi.org/10.1016/j.mne.2023.100212
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mne.2023.100212&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Micro and Nano Engineering 19 (2023) 100212

2

resonators on an SOI platform with CMOS-compatible processes and 
reported in-plane resonance characteristics [13] and out-of-plane reso
nance with their fundamental-mode resonance frequencies of up to 330 
MHz, which is over the higher end of the very-high-frequency (VHF) 
band (30–300 MHz) [14]. Recently, the nonlinear resonance behaviour 
of doubly-clamped Si NEM resonators has been measured via a fre
quency modulation (FM) detection method and analysed by comparing 
with the nonlinear Duffing oscillator equation to develop systematic and 
accurate models of nonlinear NEM resonators [15]. Further details of the 
modelling procedure for the FM detection data will be published 
elsewhere. 

1-ω mixing measurement is an alternative method to detect the 
resonance behaviour of NEM resonators by using the NEM resonator as a 
mixer of radio frequency (RF) signals, where the data analysis is found to 
be much simpler than that in the FM method. In this paper, we develop a 
novel model for the solutions of NEM resonators nonlinear dynamics 
characerisation and successfully implement it to the analysis of 
nonlinear resonance for a 1.5-μm-long silicon NEM beam with 1-ω 
mixing measurement. The correspondence between the dimensional or 
material parameters of physical silicon NEMS resonators fabricated on 
SOI-CMOS platform and the physical parameters appearing in the 
Duffing equation will be discussed systematically. Our discussion will 
include an analysis of characteristic hysteric behaviours and of the 
conversion coefficient between the detected current and the displace
ment of the beam. 

2. Mathematical model for nonlinear NEM resonators 

Fig. 1(a) shows a schematic diagram of a NEM resonator which we 
focus on this study. A doubly-clamped silicon suspended beam is placed 
in proximity to three electrodes: a back electrode from the substrate and 
two side electrodes which are laterally alighed with the beam. Only the 
back electrode is used in this study to actuate out-of-plane motion of the 
beam, to be modelled in the following. Due to the ultra-small size of the 
suspended beam, the external driving force should be large enough to 
achieve the required signal-to-noise ratio between the resonant and off- 
resonant states, resulting in the regime with the largest amplitude of 

vibrating motion, where nonlinearity has to be taken into account. In 
general, nonlinearity stems from various sources such as the mechanical 
properties of materials, geometrical asymmetry, or types of external 
driving force, as has been investigated previously in [5,6,13–15]. 

Our modelling starts from the one-degree-of-freedom universal 
equation of motion, 

mb
¨x(t)+C ˙x(t)+Kx(t) = Felec (1)  

where mb is the effective mass, C is the damping coefficient, K is the 
measure of stiffness, and Felec is the external electrostatic driving force. 
The effective mass mb of a doubly-clamped silicon nanobeam with a 
surrounding SiO2 layer is obtained from the similar analysis reported in 
[8] in detail. The damping coefficient C is substituted by ω0mb/Q, where 
ω0 is the mechanical resonance frequency and Q is the quality factor. At 
the nanoscale, energy dissipation from the resonator can come from 
different damping sources which are primarily contributed by fluidic or 
gas, anchor, and thermoelastic damping. The effect by fluidic dissipation 
can be computed via boundary integral equation (BIE) proposed by [16] 
and further simplified and validated by [17,18] where anchor and 
thermoelastic damping model for MEMS have been reported by [19]. In 
particular, all of the above reported damping models are closely linked 
with the deformation and proportional to the package air pressure. 
Details about the dissipation model and temperature dependence can be 
found in [13,14], which used identical NEM resonators to those 
described in this paper. The quality factor is considered to be constant 
for same sample with a fixed temperautre (300K) and vacuum pressure 
(3×10− 2 mbar) in this study. 

By following the approach presented in [5,13], the restoring force 
Kx(t) is written into a perturbation series as, 

Kx(t) = k0
[
x(t) + k1x(t)2 + k2x(t)3 + … + knx(t)n+1 + …

]
(2)  

where k0 is the linear stiffness coefficient and kn is defined as a stiffness 
coefficient of an xn + 1 term. The even-order restoring energy (n = 2, 4, 
6 …) is cancelled out due to the symmetry of the structure, while the 
displacement x(t) remains less comparable to the initial gap g0, so the 
higher order terms of n > 4 are negligible. The remaining x(t)3 term 

Fig. 1. (a) A schematic of a NEM resonator. The designed SOI thickness is 45 nm. (b) An SEM image of a 1.5-μm-long beam. (c) A 1-ω-mixing measurement diagram. 
VDC, VAC, and VL are the actuation voltage, RF, and modulation signal amplitudes, respectively. ωL is the modulation frequency. 
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represents the nonlinearity derived from the mechanical stiffness term 
and the cofficient k2 is equivalent to the mechanical nonlinear stiffness 
βm. 

The external force is induced via capacitive coupling between the 
suspended beam and the backside electrode where DC and AC voltages 
are applied (See the 1-ω measurement diagram in Fig. 1 (b)). The elec
trostatice force Felec is with the change of capacitance due to the motion 
of the beam, therefore can be expressed as a function of DC bias voltage 
VDC, driving AC voltage VAC, and with the gap g = g0 − x(t), 

Felec =
ε0SVDC(VDC + VAC)

[g0 − x(t) ]2
=

ε0SVDC(VDC + VAC)

g0
2

[
1
g0

+ … +
n

g0
n x(t)n

]

(3)  

where ε0 is the vacuum permittivity, S is the cross-sectional area of the 
capacitance, g0 is the initial gap distance, and the equation is expanded 
about x = 0. For the same reason discussed for Eq. 1, Felec can be 
simplified as, 

Felec = F0
elec +

2ε0SVDC(VDC + VAC)

g0
3 x(t) +

4ε0SVDC(VDC + VAC)

g0
5 x(t)3 (4)  

where F0
elec is the initial term of Felec in time domain. The coefficients of 

x(t) and x(t)3 are defined as ke and βe, which are the equivalent electrical 
linear and nonlinear stiffnesses, respectively. Eq. (1) can be re-written 
as, 

x(t)′′ +
ω0

Q
x(t)′ + ω2

0x(t) − kex(t) + ω2
0βmx(t)3 − βe x(t)3 =

F0
elec

mb
(5)  

ke =
2ε0SVDC(VDC + VAC)

mbg0
3 , βe =

4ε0SVDC(VDC + VAC)

mbg0
5 (6) 

Note that the coefficient of x(t), ω2
0 − ke, is related to the shift of 

resonance peak position under biasing, whereas the coefficient of x(t)3, 
ω2

0βm − βe represents the degree of nonlinearity which can be tuned by 
external voltage. 

There are various approaches to solving the nonlinear ordinary dif
ferential equation (ODE) as Eq. (5). Besides commonly used computa
tional method like harmonic balance and 4th Runge-Kutta, Frangi’s 
group [18,20–24] have made a consistent effort at using a continuation 
approach to study nonlinear characteristics for various MEMS designs. 
The definition of arclength control enables the continuation approach to 
be a versatile method to simulate the dynamics of MEMS with high 
nonlinearity, allowing the intermedia solution to be visible in simula
tion. Homotopy analysis method (HAM) is a similar ODE solving 
approach that uses a pre-defined controller to trace the final solutions 
from initial guesses with assistance from Newton-Raphson iteration 
[25,26]. This paper employs a numerical method called the Petrov- 
Galerkin (P-G) method to obtain an approximated solution of Eq. (5), 
which is known to be ideal for solving differential equations for a 
symmetric system that contains odd-order terms only and to convert the 
system function to another domain [27]. Hence, this feature makes the 
P-G method intrinsically suitable to solve the problem in this paper, as 
Eq. (5) is a time-domain equation and the target fitting model is for 
frequency-domain analysis. 

Here we use a test function x(t) = A(ω)cos(ωt)+ B(ω)sin(ωt), where 
A(ω) and B(ω) are frequency-dependent coefficients of two orthogonal 
components for x(t). The P-G method focuses on minimising weighted 
residuals, in this case, the residual work. For a steady-state symmetric 
oscillation, the total residual work in each periodic oscillation cycle is 
balanced to be zero [15,26,28]. From Eq. (5), the instantaneous residual 
force R(t) is defined as, 

R(t) =
[

x(t)
′′ +

ω0

Q
x(t)

′

+ ω2
0x(t) − kex(t) + ω2

0βmx(t)3 − βe x(t)3
]

−
F0

elec

mb

(7) 

Therefore, the residual work is a product of the residual force and the 
displacement, which is expressed as 

R(t)x(t) = R(t)A(ω)cos(ωt) + R(t)Bsin(ωt). (8) 

By integrating Eq. (8) through a period of 2π/ω, we obtain 

G1(A,B,ω) =

∫ 2π
ω

0
R(t)A(ω)cos(ωt)dt = 0

G2(A,B,ω) =
∫ 2π

ω

0
R(t)B(ω)sin(ωt)dt = 0

(9)  

where G1(A,B,ω) and G2(A,B,ω) are two orthogonal functions of the 
residual work per cycle, which are equal to zero. 

A set of two equations as functions of A, B, and ω in Eq. (9) can be 
solved numerically by using Newton-Raphson iteration [29]. The iter
ation equation is written as 

[AN+1(ω) BN+1(ω) ] = [AN(ω) BN(ω) ] −
G
J
, (10)  

where G, J are the matrix (G1, G2) and the Jacobian matrix of G, 
respectively. 

J =

⎛

⎜
⎜
⎜
⎝

∂G1

∂A
(A,B,ω) ∂G1

∂B
(A,B,ω)

∂G2

∂A
(A,B,ω) ∂G2

∂B
(A,B,ω)

⎞

⎟
⎟
⎟
⎠

(11) 

After a number of iterations N = 500, steady-state approximate so
lutions for A and B as a function of ω are obtained and the absolute value 
of the displacement, |x(ω) | is expressed as |x(ω) | =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
A(ω)2 + B(ω)2

√
. 

3. Experimental methods and analysis 

NEMS resonator samples used in this study were fabricated by SOI- 
CMOS compatible process with top-down hybrid electron-beam/deep- 
ultraviolet (EB/DUV) lithography. Fabrication detail can be found in 
[14]. The beam consists of n-type heavily-doped silicon with doping 
concentration of doping concentration of 4 × 1019 cm3 and surrounding 
thermal SiO2 layer. The designed dimensions of the silicon nanobeams 
are 1.5 μm in length, 45 nm in thickness, and 105 or 135 nm in width. An 
SEM image of a 1.5-μm-long NEM resonator sample is shown in Fig. 1 
(b), showing a successful definition of nanoscale Si suspended beam 
structure. 

Fig. 1 (c) shows a schematic diagram of a 1-ω mixing measurement 
system to detect the resonance of NEM resonators. An RF signal with the 
frequency ω, generated by Agilent N5181A MXG signal generator, is 
split into two by the power splitter. One is fed to a bias tee where the RF 
signal is combined with DC bias, generated by an Agilent B1500A 
seimconductor device analyser, and then applied to the back electrode of 
a NEM resonator. Another is connected to a mixer, where a reference 
signal VωL with the frequency of ωL, generated by a Stanford Research 
Systems SR830 DSP lock-in amplifier, is mixed and then routed to the 
input electrode for the suspended nanobeam. The output electrode of the 
beam is connected to the lock-in amplifier to detect the current modu
lation of the beam for the frequency ωL. The conductance change results 
from the change of the induced charge δQ in the beam, given by δQ =

δ
(
CgVg

)
= CgδVg + VgδCg, where Cg is the capacitance between gate and 

beam, and where Vg is the constant part of the signal VDC applied at the 
back electrode, δVg is the varying signal applied on the back electrode, 
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which is VAC [30]. The change of charge δQ is a sum of the standard 
transistor gating effect CgVAC, which is modulated by the changing of the 
back electrode signal and the change of capacitance due to the motion of 
the beam [30]. The current modulated due to the conductance change is 
detected by using the NEM beam as a mixer. The change of the current is 
the product of the beam signal δVBeam and the conductance δG, which 
can be expressed as follows [30], 

δI = δGδVBeam =
1

2
̅̅̅
2

√
δG
δVg

(

VAC + VDC
δCg

Cg

)

δVBeam (12)  

in terms of the transconductance δG/δVg and the gate-beam capacitance 
modulation δCg/Cg. VBeam is the signal applied to the beam. At the 
resonance, the capacitance modulation is enhanced due to the increase 
of the beam displacement, resulting in the appearance of a peak of the 
current modulation signal at the resonance with respect to the frequency 
sweep. Eq. (12) is used to link between the current modulation data 
which were obtained experimentally and the theoretically-deduced 
displacement value in the follwing comparative study. The displace
ment simulated by using the model displayed in the last seciton con
tributes the change of capacitance δCg, leading to the final calculation of 
δI. Given the frequency control ω, the current-frequency response δI can 
be obtained accordingly, and then used for the fitting of experimental 
data to extract key parameters ω0,Q, βm by giving avaliable fitting pa
rameters such as dimensional parameters L,W, thickness, g0, and 
experimental conditions VDC,VAC. 

4. Results and discussion 

Prior to measuement of resonance behaviour and subsequent com
parison with the theoretical model, we estimated the transconductance 
δG/δVg by using the background baseline noise current Ibg of a NEM 
resonator at off-resonance [31], detected by the lock-in amplifier 
without applying VDC. Ibg is derived from Eq. (12) with VDC = 0 as 

⃒
⃒Ibg

⃒
⃒ =

1
2

̅̅̅
2

√
δG
δVg

|VBeam| • |VAC| (13) 

Ibg of a NEM resonator with L = 1.5 μm and W = 105 nm has been 
measured with increasing applied RF power and plotted in Fig. 2. 
Because the value of VBeam is a product of AC and reference signals, the Ibg 

shall be proportional to V2
AC. Taking VAC

2 as a horizontal axis, the clear 
linear relationship between Ibg and VAC

2 indicates the transconductance 
δG/δVg is constant in this power range. With VωL = 50 mV, the trans
conductance δG/δVg is estimated to be 54.5 nS/V, which will be used in 

subsequent data analysis. Note that we assume δG/δVg at VDC = 0 is not 
changed with applying VDC in our heavily doped conductive silicon 
beam. 

Fig. 3 (a) presents how the resonance lineshape is developed with 
changing VDC for the modulation current of the NEM resonator with L =
1.5 μm and W = 105 nm. Marks plotted in Fig. 3 (a) are experimental 
data. At VDC = 3 V, the resonance appears at around 124.1 MHz and then 
the resonance frequency is shifted leftwards with increase of VDC. Note 
that the current amplitude at the resonance has increased with 
increasing VDC, from 830 pA to 2.47 nA when VDC is increased from 3 V 
to 6 V. Fig. 3(b) summarises the VDC dependence of the resonance fre
quency and amplitude of the current modulation. The red solid lines in 
Fig. 3 (a) are curves fitted with the numerical solutions of the Duffing 
equation (Eq. (5)). The well-fitted results suggest our approximated 
solutions can explain well how the resonance is changed with respect to 
the actuation voltage VDC. The downshift of the frequency with the 
application of VDC corresponds to the effects of equivalent electrical 
linear stiffness ke. The total amount of stiffness is characterised as a 
coefficient of the x(t) term in Eq. (5), which is ω2

0 − ke. With increasing 
VDC, ke increases according to Eq. (6) so that the total amount of linear 
stiffness is decreased, resulting in the leftward shift of the resonance. 
This is an electrical softening effect. The increase of the current ampli
tude with increasing VDC is also consistent with Eq. (12), where the VDC 
increase contributes directly, as well as the increase of increase of 
electrostatic force, leading to further displacement of the beam and then 
modulation of the capacitance. 

A set of graphs in Fig. 4 display the result of resonance characteristics 
of the 1.5-μm-long and 105-nm-wide NEM resonator beam under varied 
RF power P, which has the unit of dBm. For each fixed VDC of 3, 4, 5, and 
6 V (Fig. 4 (a) – (d)), the RF power is changed from 2 dBm to 10 dBm 
with a step of 2 dBm, and each lineshape of resonance curve for the 
current amplitude is plotted accordingly with respect to the frequency. 
Again, marks are based on experimental data, whereas the red lines are 
based on the numerical solution of the Duffing equation (Eq. (5)). For all 
four groups of RF power dependence in Fig. 4 (a) – (d) under different 
VDC, the current amplitude increases with increasing the RF power. 
Looking into the details, in Fig. 4 (a), the resonance frequency moves 
slightly higher with the increase of power, which corresponds to a linear 
hardening effect. This effect is still observed at VDC = 4 V in Fig. 4 (b). On 
the other hand at VDC = 5 V in Fig. 4 (c), the resonance curve with higher 
RF power starts showing assymmetry and the top of the peak tends to 
bend towards lower frequencies. This is commonly known as Duffing 
nonlinear softening effect, which is observed more explicitly in Fig. 4 (d) 
at VDC = 6 V. Strength of nonlinearity is directly proportional to the 
displacement according to Bartsch et al. [32], which is consistent with 
our observation that nonlinear behaviour becomes more prominent with 
increasing VDC and RF power. Note that the aforementioned P-G nu
merical method does not consider the case where the beam is under a 
driving frequency ω = 0. In this case, the beam is no longer driven by RF 
and the deflection is solely due to the static force with respect to the 
existing DC. We have employed the Euler-Bernoulli model to investigate 

the static deflection, having EI
(

d4y/dx4
)

= F0
elec(ω = 0), where E, I, y(x)

are Young’s modulus of silicon, the moment of inertia for rectangular 
cross-section of the beam, and the static deflection solutions of the beam, 
respectively. The equation has been solved numerically to obtain the 
deflection solutions with respect to VDC. Results show the static deflec
tion is quadratically proportional to VDC and the maximum static 
deflection is 37.7 pm when VDC is 2 V, which is far less than the nano
metre scale deflection at resonance. 

It is noticeable that our model fitting results are consistent with the 
experimental data throughout the RF power variation in this study. The 
nonlinear equivelant electrical stiffness βe, defined Eq. (6), can explain 
how nonlinearity can be tuned by changing VDC and VAC. Another key 
parameter representing the nonlinearity is the mechanical nonlinear 
stiffness βm, which denotes the intrinsic amount of nonlinearity from the 

Fig. 2. Background signal versus VAC. δG/δVg is extracted from the 
linear fitting. 
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mechanical structure of the device. Without changing the dimensions, 
design and material of the device, βm is considered to remain constant 
theoretically. Upon this hypothesis, we have successfully obtained βm as 
a fitting parameter in current fitting of the whole four groups of power 
dependence data with resprct to the fitting variables of VDC and VAC. 

For the purpose of validation of the method, we use another NEM 
resonator sample with a slightly wider beam (L = 1.5 μm, W = 135 nm) 

and apply the identical approach to extract the fitting parameters in our 
analysis, the resonance frequency ω0, quality factor Q, and the me
chanical nonlinear stiffness βm. Table 1 summarises the parameters 
extracted from the fitting results for the two samples with different 
widths. The transconductance of the sample where W = 135 nm is also 
estimated from the baseline noise. The wider beam shows a higher 
resonance frequency and a slightly lower quality factor, corresponding 
to the increase of stiffness, and has a higher transconductance which is 
consistent with the increase of conductive cross-sectional area. As for the 
mechanical nonlinearity stiffness βm, a relatively large negative value for 
a wider beam could be linked with the increase of overall stiffness of the 
beam as well. Overall, throughout the comparison of the fitting results 
between two different NEM resonator samples, we have confirmed very 
good consistency between the experimental results and numerical 
solutions. 

Hysteric behaviour is known to appear in nonlinear resonance when 

Fig. 3. (a) DC bias dependence of the resonance line shape. (b) A summary of how the resonance frequency and peak current change with respect to the DC bias.  

Fig. 4. Power dependence of the resonance line shape at varying DC bias at (a) 3 V, (b) 4 V, (c) 5 V, and (d) 6 V.  

Table 1 
A summary of extracted parameters in fitting for 1.5-μm-long beams with 
different designed widths.  

Width(nm) 105 135 

ω0 (MHz) 125.38 127.62 
Q ~560 ~528 
βm

(
m− 2) − 5.58× 10− 5 − 7.72× 10− 5 

δG/δV(nS/V) ~54.5 ~63.3  
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a larger external force is applied. The hysteresis stems from the funda
mental bifurcation of a nonlinear system where multiple stable states 
can exist simultaneously. According to [1] the onset of hysteresis can be 
defined as a point where the shift of resonance peak due to nonlinearity 
is just about to exceed the bandwidth. For a Duffing oscillator system 
with an x3 term, two stable states plus one intermediate state are 
considered to occur at the vicinity of bifurcation regime [33]. This often 
leads to a seperation of resonance curves between the data taken with 
the frequency swept upward and downward. The mechanism of the P-G 
method focuses on the equilibrium point when integrating the residual 
energy, and therefore, only stable branches of the hysteresis can be 
simulated in our model. For the study of unstable branches, [18] re
ported their simulation by using continuation appraoch to analyse 
MEMS nonlinear hysteric dynamics. In our case, the model is for the 
preparation of further applications that utilise the bi-stability of MEMS/ 
NEMS for neuromorphic computing. In addition, only stable branches 
can be obtained from experiment, hence, this paper will only focus on 
the fitting with respect to the stable solutions of hysteresis, where the 
intermedia unstable solution will be considered in the future. Fig. 5 (a) – 
(c) shows how hysteric behaviour is developed with the increasing of the 
power at the fixed VDC of 8 V. Blue and red open circles represent 
experimental data from a forward frequency sweep and a backward 
frequency sweep, respectively. By extracting the maximum and mini
mum solutions of the Duffing equation in Eq. (5), the experimental data 
with hysteresis are successfully fitted as the red lines in Fig. 5 (a) – (c). 
Fig. 4 (d) shows how the resonance frequencies are shifted in the hys
teric regime with respect to the RF power. The separation of two reso
nance frequencies becomes larger with increasing the RF power, leading 
to the frequency difference of 0.5 MHz at P = 12 dBm. 

The Relative Root Mean Square Error (RRMSE) is introduced to 
evaluate this method by quantifying the difference between experi
mental and numerical data as a fitting error. RRMSE is defined as, 

RRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
Ii

exp − Ii
model

)2
√

∑n

i=1
Ii

exp

× 100% (14)  

where Ii
exp and Ii

model are the i-th point of experimental data and model 
simulation data, respectively. Compared with a common error param
eter such as the root mean square error (RMSE), RRMSE is more versatile 
to apply for comparison between different discrete set of data. By 
applying this error evaluation method for the 1-ω mixing measurement 
data taken in the study, RRMSE of 4.72% are evaluated. The fitting 
accuracy is considered to be excellent when RRMSE is <10% based on 
the RRMSE criteria given by [34]. 

Our method provides with a new solution that can explain the 
experimental data from existing silicon-based doubly-clamped silicon 
NEM resonators with the resonance frequency in the VHF range of up to 
120 MHz. Structural and material parameters are provided experimen
tally, whereas the Duffing equation is solved numerically under the 
specific condition where the external force is applied electrically to the 
oscillator via capacitive coupling. As a result, VDC dependence, RF power 
dependence, and hysteric behavour of nonlinear resonance of NEM 
resonators have been consistently well explained. For advancing the 
development of silicon-based integrated systems for various applications 
such as neuromorphic information processing or IoT devices, simple and 
accurate modelling of individual devices becomes more important. We 
believe this attempt is a key first step of model development for NEM 
resonator/oscillator devices by including their behavour in nonlinear 
regime. 

5. Conclusion 

We have built a mathematical model for nonlinear resonance 
behaviour of very-high-frequency (VHF) silicon nanoelectromechanical 
(NEM) resonators. Electrostatic force, to be applied in 1-ω mixing 

Fig. 5. Hysteresis behaviour observed experimentally is plotted with the power level at (a)10 dBm, (b)11 dBm, (c)12 dBm, respectively. (d) A summary shows the 
difference of resonance frequency in power dependence with respect to forward frequency sweep and backward frequency sweep. 
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resonance measurements has been incorporated into the Duffing oscil
lator equation, which is solved numerically via the Petrov-Galerkin and 
Newton-Raphson methods to fit a set of experimental data with variation 
of the actuation DC voltage and RF power. Systematic fitting results for 
the resonance data of 1.5-μm-long beams, with reasonable fitting pa
rameters, have successfully traced the characteristic asymmetric line 
shape and the onset of hysteresis at around the frequency of 125 MHz for 
the first time. The numerical results are compared with a set of experi
mental data by adjusting the resonance frequency ω0, quality factor Q, 
mechanical nonlinear coefficient βm. With the value of βm obtained from 
the fitting, the overall amount of nonlinearity can be analysed quanti
tatively by giving the expression of equivalent electrical nonlinearity βe. 
Two stable solutions of the Duffing equation in the hysteric regime 
enable the model to be fitted with bi-stability, and thus be used to 
investigate the bifurcation phenomenon. Fitting errors are evaluated via 
the calculated RRMSE, showing a good alignment between our model 
and 1-ω mixing measurement result. This work can be a key step towards 
the development of an accurate and simple device model for NEM 
resonators. 
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modelling and experimental validation of a MEMS gyroscope test-structure 
exhibiting 1:2 internal resonance, Sci. Rep. 11 (1) (2021) 16390, 08/12 2021. 
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