
1

IRS-aided Wireless Powered MEC Systems: TDMA
or NOMA for Computation Offloading?

Guangji Chen, Qingqing Wu, Member, IEEE, Wen Chen, Senior Member, IEEE,
Derrick Wing Kwan Ng, Fellow, IEEE, and Lajos Hanzo, Fellow, IEEE

Abstract—An intelligent reflecting surface (IRS)-aided wireless-
powered mobile edge computing (WP-MEC) system is conceived,
where each device’s computational task can be divided into two
parts for local computing and offloading to mobile edge computing
(MEC) servers, respectively. Both time division multiple access
(TDMA) and non-orthogonal multiple access (NOMA) schemes are
considered for uplink (UL) offloading. To fully unleash the poten-
tial benefits of the IRS, employing multiple IRS beamforming (BF)
patterns/vectors in the considered operating frame to create time-
selectivity channels, i.e., dynamic IRS BF (DIBF), is in principle
possible at the cost of additional signaling overhead. To strike a
balance between the system performance and associated signalling
overhead, we propose three cases of DIBF configurations based on
the maximum number of IRS reconfiguration times. The degree-
of-freedom provided by the IRS may introduce different impacts
on the TDMA and NOMA-based UL offloading schemes. Thus, it
is still fundamentally unknown which multiple access scheme is
superior for MEC UL offloading by considering the impact of the
IRS. To answer this question, we provide a comprehensively theo-
retical performance comparison for the TDMA and NOMA-based
offloading schemes under the three cases of DIBF configurations
by characterizing their achievable computation rate. Analytical
results demonstrate that offloading adopting TDMA can achieve
the same computation rate as that of NOMA, when all the devices
share the same IRS BF vector during the UL offloading. By
contrast, computation offloading exploiting TDMA outperforms
NOMA, when the IRS BF vector can be flexibly adapted for UL
offloading. Then, we propose computationally efficient algorithms
by invoking alternating optimization for solving their associated
computation rate maximization problems. Our numerical results
demonstrate the significant performance gains achieved by the
proposed designs over various benchmark schemes and also unveil
that the optimal time allocated to downlink wireless power transfer
can be effectively reduced with the aid of IRSs, which is beneficial
for both the system’s spectral efficiency and its energy efficiency.

Index Terms—IRS, wireless powered mobile edge computing,
dynamic beamforming, NOMA, TDMA.
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I. INTRODUCTION

With the rapid development of popular Internet-of-Everything
(IoE) technologies, the unprecedented proliferation of mo-
bile sensors, electronic tablets, and wearable devices is set
to continue in support of smart transportation, smart homes,
and smart cities [2]. For realizing the IoE, next generation
wireless networks are expected to support massive number of
connections and to accommodate huge data traffic. As such,
superior multiple access (MA) schemes are required to attain
high spectral efficiency (SE) for a massive number of IoE
devices in next generation wireless networks [3]. Recently, it
has been shown that non-orthogonal multiple access (NOMA)
is capable of improving the SE by allowing multiple users to
simultaneously access the same spectrum. Therefore, NOMA
has been recognized as one of the key technologies in next
generation wireless networks [3].

On the other hand, an IoE device is often equipped with a
low-performance processor and limited battery capacity, given
their small practical size and cost constraints. In particular, the
emerging applications, such as unmanned driving and automatic
navigation, generally rely on the execution of low-latency and
computation-intensive tasks, thus imposing new challenges on
IoE devices [4]. As a remedy, by incorporating radio frequency
(RF)-based wireless-power transmission (WPT) and mobile
edge computing (MEC), wireless-powered MEC (WP-MEC)
becomes a promising solution for granting self-sustainability
and high computational capabilities to IoE systems [5]–[14].
Specifically, RF-based WPT enables energy harvesting (EH)
from RF signals and it is capable of prolonging the battery
recharge-period of devices [14]–[16]. To improve the computa-
tional capabilities for IoE systems, the MEC technology enables
IoE devices to offload their tasks to nearby MEC servers in real
time, which can compute their tasks remotely and timely [4].

To enhance the computational efficiency of traditional WP-
MEC systems, sophisticated resource allocation designs relying
on optimization objectives, such as computation rate maxi-
mization [6]–[8], energy consumption [10]–[12], and latency
minimization [13], etc, have been proposed. For instance, in
[5], the WP-MEC framework was proposed for a single-user
setup, where the probability of successfully processing a given
amount of data was maximized subject to both end-to-end
latency and EH constraints. In general, MEC supports a pair of
basic operational modes, namely binary and partial offloading
modes [5]–[9]. Specifically, for the partial offloading mode, the
computational task can be divided into two parts for partial local
computing and offloading, respectively, while for the binary
offloading mode, the computational task cannot be partitioned,
hence it is either executed at the local device or offloaded



2

to MEC servers [9]. Based on the concept of binary and
partial offloading modes, the corresponding computation rate
maximization problem was investigated in [6]–[8] for a multi-
user setup, where time division multiple access (TDMA) was
adopted for uplink (UL) offloading. As a further advance,
the superiority of employing NOMA over TDMA in WP-
MEC systems was quantified in terms of its energy efficiency
improvement [10]–[12] and latency reduction [13]. Therefore,
NOMA is regarded as an attractive scheme for UL offloading
in traditional WP-MEC systems.

However, the efficiency of both the downlink (DL) WPT and
UL offloading may become severely degraded by the wireless
channel attenuation between transceivers, which thus funda-
mentally limits the performance of WP-MEC systems. With
the goal of tacking this issue, the authors of [14] exploited the
multiple-input multiple-output (MIMO) technique for improv-
ing the WPT efficiency and studied the corresponding energy
consumption minimization problem. Although the massive MI-
MO technology can considerably improve the efficiency of both
WPT and offloading by exploiting the huge beamforming (BF)
gain [17], [18], the associated high hardware cost and energy
consumption are still grave obstacles in the way of its practical
implementation. Recently, intelligent reflecting surfaces (IRSs)
have been proposed as a cost-effective technology for improving
the spectral efficiency and energy efficiency of next generation
wireless networks [19]–[22]. Specifically, an IRS is a planar
array comprised of a large number of low-cost passive reflecting
elements, which can reflect incident signals and intelligently
adapt their phase shifts according to the real-time channel
conditions [20]. As such, IRSs are capable of reconfiguring
the wireless propagation environment for achieving e.g., signal
enhancement and/or interference suppression. In particular, the
fundamental squared-power gain of IRSs was originally un-
veiled in [23], which then inspired intensive research interests
in investigating various IRS-aided wireless systems.

The new research paradigms of IRS-aided wireless informa-
tion transmission (WIT), WPT, and MEC have been extensively
studied in the literature. For IRS-aided WIT systems, joint
passive BF at IRSs and active BF at base stations (BSs) was
designed either for minimizing the transmit power of BSs
or for maximizing the system capacity, e.g., [23]–[28]. As a
further practical development, the analysis and optimization
of IRS-aided wireless communications were studied by con-
sidering both discrete phase shifts [29], [30] and amplitude-
dependent phase shifts [31]. In addition to exploiting IRSs
for improving the WIT performance, the IRS technology is
also appealing for WPT in IoE applications, thanks to its
beneficial passive BF gain [32]. Specifically, a promising line
of research focused on passive BF design for simultaneous
wireless information and power transfer (SWIPT) systems [33]–
[35]. Another line of research investigated IRS-aided wireless
powered communication networks (WPCNs), where the devices
first harvest energy in the DL and then transmit information in
the UL [36]–[39]. However, in traditional MEC systems, the
task offloading efficiency may not be satisfactory due to the
harsh propagation conditions of the wireless links. To address
this issue, the authors of [40], [41] exploited the IRS technology
for improving the offloading efficiency of MEC systems by
studying the associated computation rate maximization and

offloading latency minimization problems, respectively.
Given the aforementioned benefits of the IRS technique, its

employment in WP-MEC systems is attractive for realizing IoE,
since both the efficiency of DL WPT and UL offloading can
potentially be improved. Despite the fruitful results of the afore-
mentioned research works on the topic of IRS-aided MEC/WP-
MEC, one fundamental issue still remains unsolved. It is still
unknown whether NOMA outperforms TDMA regarding the
computation rate in an IRS-aided WP-MEC system. Thanks to
the adaptive BF capability of the IRS, favourable time-varing
channels can be proactively generated by properly designing
IRS BF vectors over different time slots, which facilitates
the exploitation of the multiuser diversity over time. For the
TDMA-based offloading scheme, each device is capable of
employing its dedicated IRS BF vector/pattern for enhancing
its channel quality by harnessing the favorable time-selectivity
wireless channels created by the IRS. It is generally believed
that the time-varying channels introduced by the IRS have
significantly positive effects on the TDMA-based offloading
scheme. Regarding the NOMA-based offloading scheme, it is
not clear whether it can be benefited by the time-varying chan-
nels. Different from previous works considering a conventional
MEC/WP-MEC system [10]–[13], the conclusion on TDMA
versus NOMA in our considered system needs to be reexam-
ined by carefully characterizing and analyzing the impact of
the IRS. This knowledge-gap motivates us to investigate the
achievable computation rate in IRS-aided WP-MEC scenarios
by considering the interplay between IRSs and MA schemes.
To characterize the achievable computation rate of IRS-aided
WP-MEC systems, the main challenges we identify are as
follows: 1) the specific IRS configuration required for reaping
the potential benefits of WP-MEC systems has to be identified;
2) the design of IRS BF and resource allocation for WP-MEC
systems is generally intractable.

To address the above issues, this paper investigates the
achievable computation rate maximization problems of IRS-
aided WP-MEC systems by considering two types of offloading
schemes, i.e., TDMA and NOMA. Specifically, we focus our
attention on a typical setup, where a hybrid access point (HAP)
is exploited both as the energy transmitter and the MEC server.
Moreover, an IRS is deployed for enhancing the efficiency of
both DL WPT and UL offloading. Our main contributions are
summarized as follows:

• We propose an offloading framework for investigating the
performance of IRS-aided WP-MEC systems, where three
different levels of dynamic IRS BF (DIBF) schemes are
considered: Case 1: both DL WPT and UL offloading
share the same IRS BF vector; Case 2: two different
IRS BF vectors are exploited for DL WPT and UL
offloading, respectively; Case 3: the IRS BF vectors can
be further adapted for UL offloading with respect to each
individual device. Under this framework, we formulate the
corresponding computation rate maximization problems by
jointly optimizing the resource allocation and the IRS BF
for the aforementioned three cases.

• We analytically show that appropriately adjusting the IRS
BF vectors for UL offloading is capable of improving the
computation rate of TDMA, while it is not beneficial for
that of NOMA. By analyzing the relationship between the
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computation rate maximization problems of TDMA and
NOMA, we prove that the computation rate achieved by
TDMA is the same as that by NOMA for both Case
1 and Case 2. By contrast, since TDMA-based IRS-
aided WP-MEC systems are capable of benefiting from
varying the IRS BF vectors in the UL offloading stage,
the computation rate of TDMA exceeds that of NOMA
for Case 3.

• To gain insights into the beneficial effect of IRSs on WP-
MEC systems, we first consider a single-user setup, where
we derive a threshold-based UL offloading activation con-
dition. Specifically, we demonstrate that UL offloading is
activated if and only if (iff) the transmit power of the HAP
is above a certain threshold and increasing the number of
IRS elements is capable of reducing the threshold. For
the more general multi-user setup, we develop an efficient
alternating optimization (AO) algorithm for solving the
resultant problems, where the resource allocation and the
IRS BF design subproblems are solved alternatingly.

• Our numerical results show that the proposed IRS-aided
WP-MEC designs are capable of substantially improving
the computation rate compared to the benchmark schemes.
It is also found that exploiting IRSs not only increases
the total energy harvested via DL WPT, but also leaves
more time available for UL offloading, which unveils a
further benefit of IRSs for WP-MEC systems. Moreover,
the computation rate of Case 3 significantly exceeds that of
Case 1 and Case 2, while the performance loss of Case
1 compared to Case 2 is negligible. The results imply
that the associated signaling overhead can be reduced by
opting for Case 1 instead of Case 2 at the cost of a modest
performance erosion.

The rest of this paper is organized as follows. Section II
presents our system model and problem formulations. Section
III provides the theoretical performance comparison of NO-
MA and TDMA-based UL offloading. Section IV focuses on
studying the impact of IRSs on the UL offloading activation
condition. Section V proposes computationally efficient algo-
rithms for solving the formulated problems for the different
scenarios. Section VI provides numerical results for evaluating
the proposed designs. Finally, Section VII concludes the paper.

Notations: Cx×y stands for the set of complex x× y matrix.
Z+ represents the set of positive number. For a complex-
valued vector a, the n-th entry is denoted by [a]n, aH and
aT denote Hermitian transpose and transpose, respectively,
diag (a) denotes a diagonal matrix with each diagonal entry
being the corresponding entry in a. The real part and the phase
of a complex number c are denoted by Re (c) and arg (c),
respectively. O (·) is the big-O computational complexity nota-
tion.

II. SYSTEM MODELS AND PROBLEM FORMULATIONS

A. System Model

As shown in Fig. 1, an IRS-aided WP-MEC system is
considered, which consists of a HAP, an IRS1, and K wireless-

1Note that the associated problems in this work can be readily extended to
the scenario with multiple IRSs as in [35]. As such, our proposed algorithm
and analytical results are also applicable to the multiple IRSs case without any
modifications.

Fig. 1. An IRS-aided wireless powered MEC system.

powered devices. In particular, a MEC server and an RF energy
transmitter are integrated at the HAP so that it can broadcast
wireless energy to devices and execute computational tasks,
while each device has a rechargeable battery and an EH circuit
component which can store the harvested energy to power its
operation. The HAP and all the devices are equipped with
a single-antenna2 and the IRS has N reflecting elements. To
ease their practical implementation, all the devices and the
HAP operate over the same frequency band. The DL WPT
and UL offloading are assumed to operate in time-division
multiplexing manner by following the typical “harvest-and-
then offload” protocol of [7], [8], as shown in Fig. 2. Without
loss of generality, we assume that each channel coherence
block consists of multiple frames and the operation time of
each frame is denoted by T . The channels from the HAP
to device k, from the HAP to the IRS, and from the IRS
to device k are denoted by hd,k ∈ C, g ∈ CN×1, and
hHr,k ∈ C1×N , ∀k ∈ {1, . . .K}, respectively. It is worth
noting that all the theoretical performance comparisons and the
proposed algorithms in this paper are applicable to any wireless
channel model. Hence, the type of wireless channel model is
not specified here without loss of generality. The channel state
information (CSI) is assumed to be perfectly acquired by the
HAP, based on the channel acquisition methods discussed in
[20]. The results with perfect CSI in this work actually provide
a theoretical performance upper bound for the practical system.

In this paper, we assume that the partial computation of-
floading mode is used. Specifically, the computational tasks of
each device can be partitioned into two parts: one for local
computing and the other for offloading to the HAP. Similar
to [7], [8], [10], we assume that the local computing at each
device adopts a different component from that used for EH
and task offloading. Thus, local computing can be executed
throughout the entire frame of duration T . The number of
central processor unit (CPU) cycles required for computing one
bit of raw data at each device is denoted by C and its value
is determined by the properties of the specific application [7].
Let fk denote the CPU’s chosen frequency (cycles-per-second)

2To unveil the potential benefits of the IRS in WP-MEC systems, we assume
that the HAP is equipped with a single antenna. Note that the AO principle
harnessed in this paper is also applicable to the case of multiple antennas
equipped at the HAP. Specifically, the optimal receive beamformers conceived
for the TDMA and NOMA schemes are maximum ratio combiner [14] and
minimum mean square error-based arrangements [12], respectively. The BF
adopted for DL WPT can be designed as in [14].
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Fig. 2. The structure of a transmission frame.

at device k. Therefore, the bits computed locally by device k
and the corresponding dissipated energy by local computing are
Tfk/C and Tγcf3

k , respectively [7]. Note that γc represents the
computational energy efficiency of specific CPU chip, which
depends on the architecture of the chip [5].

As shown in Fig. 2, the transmission frame is comprised
of four segments. First, the HAP broadcasts wireless energy
to all devices with the aid of the IRS. Then, all the devices
can decide to offload their tasks to the HAP by using TDMA
or NOMA. In the third stage, the MEC server at the HAP
executes the computational tasks offloaded from all devices.
Finally, the computational results are downloaded from the
HAP to each device. Given the availability of sufficient CPU
computing capability at the MEC server, the computation time
required by the MEC server may be deemed negligible [7], [8].
Furthermore, since the HAP tends to have a high transmit power
and because the computation results are usually of small size,
the downloading time may also be neglected [14]. The first and
second segments are described as follows.

For DL WPT, an energy signal is broadcasted by the HAP
at a constant transmit power PE for a time duration of τ0. The
reflection phase-shift matrix of the IRS for DL WPT is denoted
by Θ0 = diag

(
ejθ1 , . . . , ejθN

)
, where θn ∈ [0, 2π) ,∀n. Since

the noise power is much lower than the power received from
the HAP [42], we assume that the energy harvested from noise
is negligible. Based on the linear EH model3 of [6]–[8], the
energy harvested at device k is

Ek = ητ0PE
∣∣hd,k + hHr,kΘ0g

∣∣2 = ητ0PE
∣∣hd,k + qHk v0

∣∣2, ∀k,
(1)

where η ∈ (0, 1] represents the energy conversion efficiency of
each device, qHk = hHr,kdiag (g) and v0 =

[
ejθ1 , . . . , ejθN

]T
denotes the IRS BF vector of the DL WPT.

3Although the non-linear EH model can capture the relationship between
the harvested RF power and the converted direct current power more precisely
[15], the key results regarding to theoretical performance comparison between
NOMA and TDMA for UL offloading are directly applicable to a more general
non-linear EH model. It will be discussed later in Remark 3. The linear EH
model is adopted here to facilitate us to explicitly demonstrate the impact of
IRS on UL offloading activation condition.

At the UL offloading stage, all devices can offload their
tasks to the HAP by the TDMA or NOMA schemes. Adopting
different IRS BF vectors during the NOMA/TDMA frame, i.e.,
DIBF, is in principle possible and may potentially improve the
computation rate at the cost of additional signaling overhead.
This is because the algorithm is usually executed by the HAP
due to the limited processing capability of the IRS and thus
the HAP has to feed back the IRS BF vectors to the IRS for
reconfiguration. Specifically, we propose three different levels
of DIBF schemes as follows: Case 1: The same IRS BF vector
is adopted during the entire frame; Case 2: The IRS BF vectors
of the DL WPT and UL offloading can be different, but the
same IRS BF vector is adopted in the UL offloading stage for
all devices; Case 3: The IRS BF vectors of the DL WPT and
UL offloading of each device can be different, i.e., K different
IRS BF vectors can be used for UL offloading. Considering the
aforementioned three cases, the details of UL offloading using
TDMA and NOMA are presented as follows.

1) Offloading Using TDMA: The time duration of offload-
ing, namely τ1, is further partitioned into K orthogonal time
slots (TSs). The time duration for the k-th TS is denoted by
τ1,k,∀k ∈ {1, . . .K} and

∑K
k=1 τ1,k = τ1. Device k offloads

its data in its k-th TS τ1,k. Let pk denote the transmit power
of device k. For Case 1, the DL WPT stage and the UL
offloading stage share the same IRS BF vector v0. In this case,
the achievable offloading sum-rate is written as

RTDMA
off−case1 = B

K∑
k=1

τ1,klog2

(
1 +

pk
∣∣hd,k + qHk v0

∣∣2
σ2

)
, (2)

where B represents the system bandwidth and σ2 denotes the
power of the additive white Gaussian noise at the HAP.

For Case 2, we adopt v1 =
[
ejϕ1,1 , . . . , ejϕ1,N

]T
to denote

the common IRS BF vector in the UL offloading stage. The
achievable offloading sum-rate is represented as

RTDMA
off−case2 = B

K∑
k=1

τ1,klog2

(
1 +

pk
∣∣hd,k + qHk v1

∣∣2
σ2

)
. (3)

For Case 3, the IRS BF vector used for UL offloading in
k-th TS is denoted by v1,k =

[
ejϕk,1 , . . . , ejϕk,N

]T
. Thus, the

achievable offloading sum-rate is given by

RTDMA
off−case3 = B

K∑
k=1

τ1,klog2

(
1 +

pk
∣∣hd,k + qHk v1,k

∣∣2
σ2

)
.

(4)

2) Offloading Using NOMA: When NOMA is adopted for
UL offloading, all the devices simultaneously transmit their
respective data to the HAP throughout the whole time duration
of τ1 at the transmit power pk. To mitigate the inter-user inter-
ference, successive interference cancellation (SIC) is performed
at the HAP. Taking device k as an example, the HAP will first
decode the message of device i, ∀i < k, before decoding the
message of device k. Then, the offloading message of device
i, ∀i < k, will be subtracted from the received composite
signal. Meanwhile, the offloading message received from device
i, ∀i > k, is treated as noise. For Case 1, the IRS BF vector is
denoted by v0 for the UL offloading stage using NOMA. As
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such, the offloading rate of device k is

rk = Bτ1log2

(
1 +

pk
∣∣hd,k + qHk v0

∣∣2∑K
i=k+1 pi

∣∣hd,k + qHk v0

∣∣2 + σ2

)
, ∀k.

(5)

Based on (5), the achievable offloading sum-rate for all the
devices can be written as [38]

RNOMA
off−case1 = Bτ1log2

(
1 +

∑K
k=1 pk

∣∣hd,k + qHk v0

∣∣2
σ2

)
. (6)

Accordingly, the achievable offloading sum-rate of Case 2
for the NOMA-based UL offloading can be written as

RNOMA
off−case2 = Bτ1log2

(
1+

∑K
k=1 pk

∣∣hd,k+qHk v1

∣∣2
σ2

)
. (7)

To ensure a fair comparison for the TDMA and NOMA-based
offloading schemes, the number of IRS BF vectors should be set
identical for both TDMA and NOMA schemes. As such, Case 3
is also considered for applying to the NOMA-based offloading.
We assume that K IRS BF vectors are available for assisting
UL offloading, which are denoted by v1,i,∀i ∈ {1, . . .K}.
Correspondingly, the offloading time τ1 is partitioned into K
TSs and the time duration for the i-th TS is denoted by
τ1,i,∀i ∈ {1, . . .K} such that τ1 =

∑K
i=1 τ1,i. In the i-th TS,

the IRS BF vector v1,i is employed and all devices transmit
simultaneously with power pk. As such, the corresponding
number of offloading bits for all devices in the i-th TS is given
by

RNOMA
i−case3 =Bτ1,ilog2

1 +

∑K
k=1 pk

∣∣∣hHd,k + qHk v1,i

∣∣∣2
σ2

 ,

∀i ∈ {1, . . .K} . (8)

Then, the total number of offloading bits during the UL offload-
ing stage can be expressed as

RNOMA
off−case3

= B

K∑
i=1

τ1,ilog2

1 +

∑K
k=1 pk

∣∣∣hHd,k + qHk v1,i

∣∣∣2
σ2

. (9)

Due to the limited computing capability of the low-cost
IRS and devices, the HAP is in charge of all the algorithmic
computations. Then, the HAP sends the optimized IRS BF
vectors and resource allocation results to the IRS controller
and devices, respectively. It is reasonable to assume that the
algorithmic computations can be successfully carried out by
the HAP thanks to its powerful computational capability, e.g.,
[5]–[9], [36]–[38]. Our considered three cases strike a balance
between the degrees-of-freedom to adjust the IRS BF vectors
and the associated signaling overhead. According to the number
of IRS BF vectors available to be employed, the feedback IRS
phase shifts information required for Case 1, Case 2, and Case
3 are given by N , 2N , and (K + 1)N , respectively. Although
Case 3 enjoys the highest flexibility for IRS reconfiguration, its
associated signaling overhead is significantly higher than that
of Case 1 and Case 2. For the scenarios where the capacity
of the feedback link is limited, Case 1 and Case 2 may be

more appealing than Case 3 since they require less feedback
resources.

B. Problem Formulation
In this paper, we aim for maximizing the total number of

computed bits of our IRS-aided WP-MEC systems, by jointly
optimizing the IRS BF vectors, the time allocation of WPT
and offloading, the transmit power of each device, and the
local CPU frequency at each device. Both TDMA and NOMA
are considered for UL offloading leading to the following
formulation:

1) TDMA-based Offloading: When the TDMA scheme is
applied, Case 1, Case 2, and Case 3 are considered for
evaluating the impact of DIBF on the computation rate. The
computation rate maximization problem of Case 1 can be
formulated as4

(P
case1
TDMA) : max

τ0,τ1,k,pk,v0,fk
RTDMA

off−case1 +
∑K

k=1

Tfk
C

(10a)

s.t. τ1,kpk + Tγcf
3
k ≤ Ek, ∀k, (10b)

τ0 +

K∑
k=1

τ1,k ≤ T, (10c)

τ0≥0, τ1,k≥0, pk≥0, fk≥0,∀k,
(10d)

|[v0]n| = 1, n = 1, . . . N. (10e)

In
(
Pcase1

TDMA

)
, (10b) represents the energy harvesting causality

constraint that the total dissipated energy cannot be higher than
the total harvested energy5 [7], [8], [14]. Furthermore, (10c) is
the constraint on the time duration of the DL WPT and UL
offloading, while (10d) contains the non-negativity constraints
for the optimization variables and (10e) is the unit-modulus
constraint for the IRS BF vector. It is worth noting that for
general wirelessly powered communication systems, including
WPCN and WP-MEC, the main bottleneck of them is the low
amount of energy available for communication, rather than the
peak power constraint, e.g., [5]–[9], [36]–[38]. This is because
the amount of energy harvested by the devices is generally of a
low level due to the severe path loss during WPT and owing to
the low energy conversion efficiency. Hence, the peak power
constraint is not considered similar to previous works, e.g.,
[5]–[9], [36]–[38]. For Case 2 and Case 3, the corresponding
computation rate maximization problems can be formulated,
respectively, as:

(P
case2
TDMA) : max

τ0,τ1,k,pk,v0,v1,fk
RTDMA

off−case2 +
∑K

k=1

Tfk
C

(11a)

s.t. |[v1]n| = 1, n = 1, . . . N, (11b)
(10b), (10c), (10d), (10e), (11c)

4To facilitate comparing the fundamental limits of the achievable computation
rate for both the TDMA and NOMA-based offloading schemes, the quality of
service (QoS) constraints of the individual devices are not considered here.
Nonetheless, the proposed algorithm is potentially applicable to the operating
scenarios under specific QoS constraints. Please refer to Remark 5 in Section
V for further details.

5Since we assume that each channel coherence block is long enough to
accommodate multiple frames, the energy consumed here is comprised of two
parts. Explicitly, part of it is used for UL offloading in the current frame, while
the remaining part is assigned to local computing throughout the UL offloading
process during the current frame and during the DL WPT in the next frame.
Note that constraint (10b) was also adopted in [7], [8], [14].
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(P
case3
TDMA) : max

τ0,τ1,k,pk,v0,v1,k,fk
RTDMA

off−case3+
∑K

k=1

Tfk
C

(12a)

s.t.
∣∣[v1,k]n

∣∣ = 1,∀n, ∀k, (12b)
(10b), (10c), (10d), (10e). (12c)

2) NOMA-based Offloading: When NOMA is applied for
UL offloading, the corresponding computation rate maximiza-
tion problems are formulated according to the aforementioned
three cases, respectively, as follows:

(P
case1
NOMA) : max

τ0,τ1,pk,v0,fk
RNOMA

off−case1 +
∑K

k=1

Tfk
C

(13a)

s.t. τ1pk + Tγcf
3
k ≤ Ek, ∀k, (13b)

τ0 + τ1 ≤ T, (13c)
τ0≥0, τ1≥0, pk≥0, fk≥0,∀k,

(13d)
(10e), (13e)

(P
case2
NOMA) : max

τ0,τ1,pk,
v0,v1,fk

RNOMA
off−case2 +

∑K

k=1

Tfk
C

(14a)

s.t. (10e), (11b), (13b), (13c), (13d), (14b)

(P
case3
NOMA) : max

τ0,τ1,i,pk,
v0,v1,i,fk

RNOMA
off−case3 +

∑K

k=1

Tfk
C

(15a)

s.t. τ0 +

K∑
i=1

τ1,i ≤ T, (15b)

τ0 ≥ 0, τ1,i ≥ 0,

pk ≥ 0, fk ≥ 0,∀k,∀i, (15c)∣∣[v1,i]n
∣∣ = 1, n = 1, . . . N, ∀i, (15d)

(10e), (13b). (15e)

III. TDMA OR NOMA FOR UL OFFLOADING?

When multiple devices are activated for UL offloading, it
still remains unknown which MA scheme is more efficient for
UL offloading in terms of computation rate, especially when
considering the impact of the IRS. To answer this question,
the theoretical performance comparison between NOMA and
TDMA-based UL offloading is provided in this section. First,
the impact of DIBF on the computation rate of both NOMA
and TDMA-based WP-MEC systems is analyzed. Then, we
analytically compare the computation rate achieved by NOMA
and TDMA schemes for Cases 1, 2, and 3.

A. Impact of DIBF on NOMA and TDMA

For notational simplicity, we use Rcase−m
TDMA and Rcase−m

NOMA to
denote the sum computation rate for Case m, (m = 1, 2, 3) of
TDMA and NOMA at the optimal solution, respectively. To
shed light on the impact of DIBF on the computation rate of the
NOMA and TDMA schemes, we first introduce the following
lemmas.

Lemma 1: For IRS-aided WP-MEC systems employing NO-
MA for offloading, it follows that Rcase1

NOMA ≤ Rcase2
NOMA =

Rcase3
NOMA.

Proof: Assume that an optimal solution of (Pcase3
NOMA) is

given by
{
τ∗0 , τ

∗
1,i, p

∗
k, f
∗
k ,v

∗
0,v
∗
1,i

}
. Then, the optimal value of

(Pcase3
NOMA) can be expressed as

Rcase3
NOMA =

K∑
i=1

τ∗1,ilog2

(
1 +

∑K
k=1 p

∗
k

∣∣hd,k + qHk v∗1,i
∣∣2

σ2

)

+

K∑
k=1

Tf∗k
C

. (16)

There always exists an IRS BF vector denoted by
v∗1,p, p ∈ {1, · · · ,K}, which satisfies v∗1,p =

arg max
v∗
1,i,i∈{1,··· ,K}

K∑
k=1

p∗k

∣∣∣hHd,k + qHk v∗1,i

∣∣∣2. As such, we have

Rcase3
NOMA ≤

K∑
i=1

τ∗1,ilog2

(
1 +

∑K
k=1 p

∗
k

∣∣hd,k + qHk v∗1,p
∣∣2

σ2

)

+

K∑
k=1

Tf∗k
C

= τ̃1log2

(
1 +

∑K
k=1 p

∗
k

∣∣hd,k + qHk v∗1,p
∣∣2

σ2

)

+

K∑
k=1

Tf∗k
C
≤ Rcase2

NOMA, (17)

where τ̃1 =
K∑
i=1

τ∗1,i. The equality holds if v∗1,i = v∗1,p,∀i.

Meanwhile, by setting v1,i = v1,j ,∀i, j, problem (Pcase3
NOMA) is

reduced to (Pcase2
NOMA), which yields Rcase2

NOMA ≤ Rcase3
NOMA. Thus,

we have Rcase2
NOMA = Rcase3

NOMA. Similarly, problem (Pcase2
NOMA)

is reduced to (Pcase1
NOMA) by setting v1 = v0, thus we have

Rcase1
NOMA ≤ Rcase2

NOMA.
Lemma 2: For IRS-aided WP-MEC systems employing T-

DMA for offloading, it follows that Rcase1
TDMA ≤ Rcase2

TDMA ≤
Rcase3

TDMA.
Proof: By setting v1 = v0, problem (Pcase2

TDMA) is reduced
to (Pcase1

TDMA), which yields Rcase1
TDMA ≤ Rcase2

TDMA. For Case 3, the
equivalent channel power gain of each device can be maximized
by setting v1,k to align the cascaded link with the direct link

hHd,k. Thus,
∣∣∣hd,k + qHk v∗1,k

∣∣∣2 ≥ ∣∣hd,k + qHk v∗1
∣∣2 holds for

device k,∀k, which yields Rcase2
TDMA ≤ Rcase3

TDMA.
Lemma 1 and Lemma 2 provide the following insights and

also serve as the theoretical foundation for comparing TDMA
and NOMA-based offloading, which will be discussed later.
• For NOMA-based UL offloading, varying the IRS BF

vectors in the UL offloading stage does not necessarily
attain performance improvements over a static IRS BF
vector. By contrast, for TDMA-based UL offloading, the
computation rate can be further improved by varying IRS
BF vectors for UL offloading.

• For both TDMA and NOMA-based WP-MEC systems,
having different IRS BF vectors for the DL WPT and UL
offloading generally outperforms its counterpart using the
same IRS BF vector throughout the entire frame.

B. TDMA versus NOMA-based UL Offloading

To compare the achievable computation rate performance
between offloading using TDMA and NOMA, the relationship



7

between (Pcase2
TDMA) and (Pcase2

NOMA) is presented in the following
theorem.

Theorem 1: Assuming that
{
τ∗0 , τ

∗
1,k, p

∗
k,v
∗
0,v
∗
1, f
∗
k

}
and

{τ?0 , τ?1 , p?k,v?0,v?1, f?k} are the optimal solutions of (Pcase2
TDMA)

and (Pcase2
NOMA), respectively, we have Rcase2

TDMA = Rcase2
NOMA with

τ?0 = τ∗0 , τ
?
1 =

∑K
k=1 τ

∗
1,k, e

?
k = e∗k,v

?
0 = v∗0,v

?
1 = v∗1 and

f?k = f∗k , where e?k = p?kτ
?
1 and e∗k = p∗kτ

∗
1,k.

Proof: Please see Appendix A.
Note that the similar results presented in Theorem 1 can be

directly extended to capture the interrelation between (Pcase1
TDMA)

and (Pcase1
NOMA), i.e., Rcase1

TDMA = Rcase1
NOMA. Theorem 1 explicitly

shows that the solutions of problem (Pcase1
NOMA) and (Pcase2

NOMA)
can be directly obtained based on those of (Pcase1

TDMA) and
(Pcase2

TDMA), respectively.
Remark 1: The results presented in Lemma 1, Lemma 2,

and Theorem 1 answer the fundamental question regarding the
computation rate comparison between offloading using TDMA
and NOMA. Specifically, the comparison outcome depends on
which DIBF scheme is applied. For Case 1 and Case 2, it is
shown that the same computation rate can be achieved by using
TDMA and NOMA for offloading. Since the computation rate
of TDMA can be further improved by adapting IRS BF vectors
over different TSs in the UL offloading stage, the computation
rate of TDMA becomes higher than that of NOMA for Case 3
at the cost of extra signaling overhead. As such, we have the
inequality chain as follows:

Rcase1
TDMA = Rcase1

NOMA ≤ Rcase2
TDMA

= Rcase2
NOMA = Rcase3

NOMA ≤ Rcase3
TDMA. (18)

Remark 2: Considering the high C regime, i.e., C → +∞,
which implies that the device has nearly no computing capabil-
ity to deal with computationally intensive tasks, the computa-
tions completely rely on offloading the tasks to MEC servers.
In this case, the computation rate maximization problem is
equivalent to the throughput maximization problem of WPCNs.
For Case 2, our previous work [38] unveiled that the same IRS
BF vector can be exploited for the DL and UL in WPCNs
without loss of optimality, i.e., v∗0 = v∗1 . Based on the results
provided in Theorem 1, we have the following relationship in
the high C regime:

Rcase1
TDMA = Rcase1

NOMA = Rcase2
TDMA

= Rcase2
NOMA = Rcase3

NOMA ≤ Rcase3
TDMA. (19)

In contrast to (18), (19) suggests that for Case 2, DL WPT and
UL offloading can adopt the same IRS BF vector without loss
of optimality at a lower signaling overhead.

Remark 3: Note that the theoretical comparison provided in
Remark 2 can be directly extended to a more general non-
linear EH model. For a general EH model, the output direct
current power can be generally expressed as a function of

the input RF power, i.e, Qk

(
PE

∣∣∣hHd,k + qHk v∗0

∣∣∣2). Replacing

ηPE
∣∣hd,k + qHk v∗0

∣∣2 by Qk
(
PE
∣∣hd,k + qHk v∗0

∣∣2) in Appendix
A, the results can be directly obtained through similar steps.

Remark 4: It can be readily verified the conclusions regard-
ing TDMA versus NOMA drawn in terms of computation rate
are also applicable to IRS-aided WP-MEC systems employing
binary offloading.

IV. UL OFFLOADING ACTIVATION CONDITION IN
SINGLE-USER SYSTEMS

Before deriving the solutions of the aforementioned com-
putation rate maximization problems, we consider the special
case of a single-user setup, i.e., K = 1, to gain important
insights into the efficiency of IRSs for UL offloading activation.
Note that the conclusions drawn in this section regarding the
effectiveness of the IRS for activating UL offloading are also
valid for general multi-user systems, which will be verified
by simulations in Section VI. In the single-user case, the
MA schemes have no impact on the results, and thus the
computation rate maximization problems are simplified to:

max
τ0,τ1,p,v,f

Bτ1log2

(
1 +

p
∣∣hd + qHv

∣∣2
σ2

)
+
Tf

C
(20a)

s.t. τ1p+ Tγcf
3 ≤ τ0ηPE

∣∣hd + qHv
∣∣2, (20b)

τ0 + τ1 ≤ T, (20c)
τ0 ≥ 0, τ1 ≥ 0, p ≥ 0, f ≥ 0, (20d)
|[v]n| = 1, n = 1, . . . N. (20e)

Problem (20) has not been investigated in previous articles to
the best of our knowledge, e.g., [40], [41]. Note that for a
WP-MEC system, UL offloading may not be activated, when
suffering from severe wireless channel conditions. Hence, we
focus our attention on a single-user case to unveil the impact
of IRSs on the UL offloading activation condition. For problem
(20), the optimal IRS BF vector v can be directly obtained
as [v∗]n = ej((arg(hH

d )+arg([q]n))), which aligns the cascaded
channel between a typical device and the HAP via the IRS
with the end-to-end channel. By setting v as the optimal form,
the channel power gain between a typical device and HAP is
determined. Let h =

∣∣hHd + qHv∗
∣∣2 for notational simplicity.

Then, problem (20) can be further transformed into a resource
allocation optimization problem (OP) as follows

max
τ0,τ1,e,f

Bτ1log2

(
1 +

eh2

τ1σ2

)
+
Tf

C
(21a)

s.t. e+ Tγcf
3 ≤ τ0ηPEh, (21b)

τ0 ≥ 0, τ1 ≥ 0, e ≥ 0, f ≥ 0, (21c)
(20c), (21d)

where e = τ1p. It may be readily shown that problem (21) is a
convex OP. By analyzing the KKT conditions of problem (21),
the UL offloading activation condition admitting a threshold-
based structure and the optimal solution of problem (21) are
obtained in the following proposition.

Proposition 1: For the single-user setup, UL offloading for
the typical device will be activated if and only if the following
condition is satisfied,

PE > thre (h) = γc
1

ηh

((
σ2 + p∗h

)
ln 2

3ChγcB

) 3
2

, (22)

where p∗ is the unique solution of

G (p, h)
∆
= log2

(
1 +

ph

σ2

)
− ph

(σ2 + ph) ln 2

− ηPE
h2

(σ2 + ph) ln 2
= 0. (23)
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In this case, the optimal solution for problem (20), denoted by
{τ∗0 , τ∗1 , f∗, e∗}, is given by

f∗ =

√
(σ2 + p∗h) ln 2

3ChγcB
, τ∗1 =

ηPEh− γc
(

(σ2+p∗h) ln 2

3ChγcB

) 3
2

p∗ + ηPEh
T,

τ∗0 = T − τ∗1 , e∗=τ∗1 p∗. (24)

In contrast, if (30) is not satisfied, the UL offloading is not
activated and the corresponding optimal solution is given by

τ∗0 = T, τ∗1 = 0, f∗ =

(
PEηh

γc

)1/3

, e∗ = 0. (25)

Proof: Please see Appendix B.
Proposition 1 directly provides the optimal solution of prob-

lem (20) in a (semi) closed-form, which thus avoids the com-
putational complexity incurred by using numerical optimization
solvers, such as CVX. Moreover, Proposition 1 unveils the UL
offloading activation condition from a mathematical perspec-
tive. Specifically, it shows that a typical device would prefer
UL offloading for maximizing its computation rate, when the
transmit power of the HAP is higher than a minimum threshold
thre (h), which depends on the channel’s power gain h.

Proposition 2: The threshold thre (h) decreases with the
equivalent channel power gain h.

Proof: Since ln (thre (h)) has the same monotonic rela-
tionship with h as that of thre (h), we focus our attention on
showing that ln (thre (h)) decreases with h instead. Taking the
first order derivative of ln (thre (h)) with respect to h, we obtain

∂ ln (thre (h))

∂h
=
∂
(
− 5

2 lnh+ 3
2 ln

(
σ2 + hp∗(h)

))
∂h

= −5

2

1

h
+

3

2

p̄+ hdp
∗(h)
dh

σ2 + hp∗(h)
. (26)

Note that p∗ is a function of h, which is determined by (23).
As such, we use p∗ (h) instead of p∗ in the following. Based
on the method of implicit differentiation, we obtain

∂p∗(h)

∂h
= −∂G (p, h)/∂h

∂G (p, h)/∂p
=
ηPE

(
2σ2 + hp∗(h)

)
− (p∗(h))

2

h (ηPEh+ p∗(h))
.

(27)

Substituting (27) into (26) yields

∂ ln (thre (h))

∂h
=
− 5

2p
∗(h)− 1

2ηPEh

h (p∗(h) + ηPEh)
< 0. (28)

Thus, thre (h) decreases with h.
Proposition 1 and Proposition 2 serve as a solid theoretical

foundation for further investigating the impact of IRSs on the
UL offloading activation condition. For ease of exposition, we
assume that the IRS can establish pure line-of-sight (LoS) links
with both the device and the AP. By setting the IRS BF vector
as the optimal form, the equivalent channel power gain can be
formulated as

h =
∣∣hd + qHv∗

∣∣2
= βd−αAD

AD

(
1 +N

√
dαAD

AD d−αAI

AI

√
βd−αID

ID

)2

, (29)

where dAD (αAD), dAI (αAI), and dID (αID) denote the length
(path-loss exponent) of the HAP-device, HAP-IRS, and IRS-
device links, respectively, and β represents the channel power
gain at a reference distance of 1 meter (m).

Remark 5: For a specific dominant LoS scenario, the UL
offloading activation condition can be expressed as

PE >
γc

ηβd−αAD

AD

×


(
σ2+p∗

(
1+N

√
βd−αID

ID dαAD

AD d−αAI

AI

)2
)

ln 2

3C

(
1+N

√
βd−αID

ID dαAD

AD d−αAI

AI

) 10
3

γcB


3
2

. (30)

It is plausible that the value of h using IRSs becomes(
1 +N

√
βd−αID

ID dαAD

AD d−αAI

AI

)2

times higher than that without

IRSs. By increasing the number of IRS elements N , the channel
power gain h can be significantly increased, which substantially
reduces the threshold thre (h) for UL offloading. Thus, a
typical device is more willing to perform task offloading upon
increasing of N due to the improved channel conditions. This
confirms the practicality of deploying IRSs in next generation
communication networks.

V. PROPOSED SOLUTIONS FOR GENERAL MULTI-USER
SYSTEMS

In this section, we focus our attention on solving the
computation rate maximization problems of TDMA-based UL
offloading, i.e.,

(
Pcase1

TDMA

)
,
(
Pcase2

TDMA

)
, and

(
Pcase3

TDMA

)
. Solving

the same problems for NOMA is similar to those of TDMA
according to the results of Section III.

A. AO Algorithm Proposed for Solving
(
Pcase1

TDMA

)
and(

Pcase2
TDMA

)
Since problem

(
Pcase2

TDMA

)
is more complex than

(
Pcase1

TDMA

)
,

we commence with Case 2, i.e.,
(
Pcase2

TDMA

)
. It will be shown

later in this section that an algorithm designed for solving(
Pcase2

TDMA

)
may also be directly applicable to

(
Pcase1

TDMA

)
. For

problem
(
Pcase2

TDMA

)
, the optimization variable pk is closely

coupled with the variables τ1,k and v1, while τ0 is coupled with
v0. Moreover, the unit-modulus constraints in (10e) and (11b)
render problem

(
Pcase2

TDMA

)
non-convex. In order to deal with

the closely-coupled non-convex terms in problem
(
Pcase2

TDMA

)
,

we decompose the original problem into a pair of subprob-
lems. Specifically, the resource allocation OP with respect to
{τ0, τ1,k, pk, fk} and the IRS BF OP with respect to {v0,v1}
can be efficiently solved in an alternating manner as described
next.

1) Resource Allocation Optimization: Under any given fea-
sible IRS BF vectors v0 and v1, the resource allocation OP
with respect to {τ0, τ1,k, pk, fk} may be written as

max
τ0,τ1,k,pk,fk

B

K∑
k=1

τ1,klog2

(
1 +

pkg
off
k

σ2

)
+

K∑
k=1

Tfk
C

(31a)

s.t. τ1,kpk + Tγcf
3
k ≤ τ0ηPEh

wpt
k ∀k, (31b)

(10c), (10d). (31c)

Here, we use hwpt
k =

∣∣hd,k + qHk v0

∣∣2 and goff
k =∣∣hd,k + qHk v1

∣∣2 to denote the equivalent channel power gains of
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device k for the DL WPT and UL offloading links, respectively.
Observe that (31) is still a non-convex OP due the coupled
variables τ1,k, pk in (31b) and the non-concave objective
function. To tackle this issue, problem (31) can be equivalently
transformed into the following OP by letting ek = τ1,kpk

max
τ0,τ1,k,ek,fk

B

K∑
k=1

τ1,klog2

(
1 +

ekg
off
k

τ1,kσ2

)
+

K∑
k=1

Tfk
C

(32a)

s.t. ek + Tγcf
3
k ≤ τ0ηPEh

wpt
k ∀k, (32b)

τ0 ≥ 0, τ1,k ≥ 0, ek ≥ 0, fk ≥ 0 ∀k, (32c)
(10c). (32d)

It can be verified that problem (32) is a convex OP whose opti-
mal solutions can be efficiently obtained by standard numerical
methods, e.g., the interior point method [43].

2) Optimization of IRS BF Vectors: For any given feasible
set {τ0, τ1,k, pk, fk}, the OP with respect to {v0,v1} can be
written as

max
v0,v1

B
K∑
k=1

τ1,klog2

(
1+
pk
∣∣hd,k+qHk v1

∣∣2
σ2

)
+

K∑
k=1

Tfk
C

(33a)

s.t. (10b), (10e), (11b). (33b)

Although v0 does not appear in objective function (33a) di-
rectly, it appears in constraint (10b) and determines the total
harvested energy at each device, which has direct impacts on
optimizing the transmit power and local computing frequency
for each device when solving problem (32) in the next iteration.
As such, v1 and v0 need to be jointly optimized for achieving
the higher objective value. Problem (33) is challenging to solve
due to the non-concave objective function and non-convex
constraints in (33b). To make problem (33) more tractable,
we first relax the unit-modulus constraints (10e) and (11b)
into |[v0]n| ≤ 1 and |[v1]n| ≤ 1, which yields the following
problem:

max
v0,v1

B

K∑
k=1

τ1,klog2

(
1 +

pk
∣∣hd,k + qHk v1

∣∣2
σ2

)
+

K∑
k=1

Tfk
C

(34a)
s.t. |[v0]n| ≤ 1, n = 1, . . . N, (34b)

|[v1]n| ≤ 1, n = 1, . . . N, (34c)
(10b). (34d)

In the following, we focus our attention on the IRS BF vector
OP relying on continuous amplitudes. To handle the non-
concave objective function, we introduce a slack variable Sk
and reformulate problem (34) as follows

max
Sk,v0,v1

B

K∑
k=1

τ1,klog2

(
1 +

pkSk
σ2

)
+

K∑
k=1

Tfk
C

(35a)

s.t. (10b), (34b), (34c), (35b)

Sk ≤
∣∣hd,k + qHk v1

∣∣2, ∀k. (35c)

Note that problem (35) is equivalent to problem (34) s-
ince constraint (35c) is satisfied with equality at the opti-
mal solution. Problem (35) is still a non-convex OP due
to constraints (35b) and (35c). However, the convexity of∣∣hd,k + qHk v0

∣∣2 and
∣∣hd,k + qHk v1

∣∣2 allows us to apply the
SCA technique to deal with constraints (10b) and (35c). Let

∣∣hd,k + qHk v0

∣∣2 =
∣∣q̄Hk v̄0

∣∣2 and
∣∣hd,k + qHk v1

∣∣2 =
∣∣q̄Hk v̄1

∣∣2,
where v̄0 =

[
v̄H0 , 1

]H
, v̄1 =

[
v̄H1 , 1

]H
, and q̄Hk =

[
qHk , hd,k

]
.

Specifically, we use l (l ∈ Z+) to denote the iteration index.
At the l-th iteration, where a given local point is denoted by{

v̄
(l)
0 , v̄

(l)
1

}
, we have∣∣hd,k + qHk v0

∣∣2 = v̄H0 Qkv̄0

≥ 2Re
(
v̄

(l)H
0 Qkv̄0

)
− v̄

(l)H
0 Qkv̄

(l)
0 , (36)

∣∣hd,k + qHk v1

∣∣2 = v̄H1 Qkv̄1

≥ 2Re
(
v̄

(l)H
1 Qkv̄1

)
− v̄

(l)H
1 Qkv̄

(l)
1 , (37)

where Qk = q̄kq̄
H
k . As such, problem (35) can be transformed

into the following tractable form

max
Sk,v0,v1

B

K∑
k=1

τ1,klog2

(
1 +

pkSk
σ2

)
+

K∑
k=1

Tfk
C

(38a)

s.t. τ1,kpk + Tγcf
3
k

≤ ηPEτ0
(

2Re
(
v̄

(l)H
0 Qkv̄0

)
− v̄

(l)H
0 Qkv̄

(l)
0

)
,∀k,

(38b)

Sk ≤ 2Re
(
v̄

(l)H
1 Qkv̄1

)
− v̄

(l)H
1 Qkv̄

(l)
1 ∀k, (38c)

(34b), (34c), (38d)

where (38) is a convex problem and thus it can be optimally
solved by standard convex program solvers [43].

Algorithm 1 AO Algorithm
1: Initialization: Set iteration index to l = 1 and IRS BF

vectors to v̄0=v̄
(1)
0 , v̄1=v̄

(1)
1 .

2: repeat
3: Solve problem (32) for given

{
v̄

(l)
0 , v̄

(l)
1

}
based on the

interior point method and denote the optimal solution as
Ξ(l) =

{
τ

(l)
0 , τ

(l)
1,k, p

(l)
k , f

(l)
k

}
.

4: Solve problem (38) for given Ξ(l) and
{

v̄
(l)
0 , v̄

(l)
1

}
, where

the optimal solution is denoted by
{

v̄
(l+1)
0 , v̄

(l+1)
1

}
.

5: Update l = l + 1.
6: until the fractional increase of the objective value falls

below a threshold ξ > 0.
7: Let

[
v̄l0
]
n

=
[
v̄l0
]
n

/∣∣[v̄l0]n∣∣, [v̄l1]n =
[
v̄l1
]
n

/∣∣[v̄l1]n∣∣, and

solve problem (32) for given
{

v̄
(l)
0 , v̄

(l)
1

}
.

3) AO Algorithm Proposed for Solving
(
Pcase2

TDMA

)
: An

efficient AO algorithm where the IRS BF vectors and re-
source allocation are alternately optimized until convergence is
achieved can be proposed. For arbitrary continuous amplitudes,
the objective value of (Pcase2

TDMA) is non-decreasing by alternately
optimizing {τ0, τ1,k, pk, fk} and {v̄0, v̄1}, and also upper-
bounded by a finite value. The proposed AO algorithm is
guaranteed to converge when relaxing the unit-modulus con-
straints. Note that the converged solution, denoted by {v̄∗0, v̄∗1},
may not satisfy the unit-modulus constraints. In this case,
the feasible IRS BF vectors, denoted by {v̄?0, v̄?1}, can be
obtained as [v̄?0]n = [v̄∗0]n/|[v̄∗0]n|, [v̄?1]n = [v̄∗1]n/|[v̄∗1]n|,∀n.
Finally, problem (32) is solved for a given {v̄?0, v̄?1} pair and
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the feasible solution obtained for
(
Pcase2

TDMA

)
is denoted by{

v̄?0, v̄
?
1, τ

?
0 , τ

?
1,k, p

?
k, f

?
k

}
. The details of the AO procedure are

summarized in Algorithm 1.
It is worth noting that Algorithm 1 can be directly applied

for obtaining the solution of
(
Pcase1

TDMA

)
by setting v1 = v0.

The details are omitted here for its simplicity.
4) Complexity Analysis: The computational complexity of

Algorithm 1 is dominated by Step 3 and 4. Specifically,
in Step 3, problem (32) can be solved by the interior-
point method, whose complexity is O

(
(3K + 1)

3.5
)

[43].
In Step 4, the complexity of solving problem (38) is
O
(

(2N)
3.5
)

. Therefore, the total complexity of Algorithm 1 is

O
(
Liter

(
(2N)

3.5
+ (3K + 1)

3.5
))

, where Liter denotes the
number of iterations for Algorithm 1.

B. Extension to Problem
(
Pcase3

TDMA

)
In this subsection, we focus our attention on solving problem(

Pcase3
TDMA

)
for the scenario, where different IRS BF vectors can

be adopted in different TSs where each device offloads its own
tasks. It may be readily shown that the n-th phase shift of the

optimal v∗1,k =
[
ejϕ

∗
1,k , . . . , ejϕ

∗
N,k

]T
is given by

ϕ∗n,k = arg (hd,k) + arg ([qk]n) , n = 1, . . . N. (39)

After determining the optimal v∗1,k, we use goff
k =∣∣∣hHd,k + qHk v

(k)∗
1

∣∣∣2 to represent the channel power gain of de-
vice k for the UL offloading link. Then,

(
Pcase3

TDMA

)
is rewritten

as follows

max
τ0,τ1,k,pk,v0fk

B

K∑
k=1

τ1,klog2

(
1 +

pkg
off
k

σ2

)
+

K∑
k=1

Tfk
C

(40a)
s.t. (10b), (10c), (10d), (10e). (40b)

Note that Algorithm 1 proposed in Section V-A can be directly
applied to solving problem (40) with slight modifications.
Specifically, for a fixed {v0}, the subproblem is simplified
to problem (32), whose optimal solution can be efficiently
solved by standard solvers. For the fixed {τ0, τ1k, pk, fk}, the
subproblem with respect to {v0} can be efficiently solved by
exploiting the SCA technique proposed in Section V-A. The
details are omitted here for brevity.

Remark 6: Although the individual rate constraint of each
device is not considered in this paper, the proposed algorithm
is applicable to the corresponding problems subject to such con-
straints. Specifically, for Case 1, the individual rate constraint
of each device is given by

Bτ1,klog2

(
1 + pk

∣∣hd,k + qHk v0

∣∣2
σ2

)
+
Tfk
C
≥ Rk,min, ∀k,

(41)

where Rk,min is the minimum number of computational bits
required by device k. For any given v0, by letting ek = pkτ1,k,
constraint (41) can be transformed to

Bτ1,klog2

(
1 +

ek
∣∣hd,k + qHk v0

∣∣2
τ1,kσ2

)
+
Tfk
C
≥ Rk,min, ∀k.

(42)

The left-hand-side of (42) is concave with respect to
{ek, τ1,k, fk}. As such, (42) is convex and thus it can be
handled by standard solvers. For a given {pk, τ1,k, fk}, (41)
can be rewritten as∣∣hd,k + qHk v0

∣∣2 ≥ 2(Rmin
k −Tfk/C)/(Bτ1,k) − 1

pk
, ∀k. (43)

The left-hand-side of (43) is convex with respect to v0 and
thus it can be handled by the SCA technique proposed in
Section V-A. Therefore, the proposed AO algorithm can be
readily extended to solve the corresponding problem for Case
1 subject to the individual rate constraint of each device.
Replacing v0 by v1, the method is also applicable to solving
the associated problem for Case 2. For Case 3, the optimal
v1,k is obtained in (39) and the resource allocation OP with
respect to {pk, τ1,k, fk, τ0} can be handled in a similar way.

Remark 7: Notice that although in this paper we consider the
partial offloading, the design principles are also applicable to bi-
nary offloading [7], [9]. Actually, the proposed algorithm in this
paper offers a heuristic method to determine the computational
mode selection for binary offloading. For instance, for systems
employing binary offloading, we adopt two mutually exclusive
sets K0 and K1 to denote the indices of devices that operate in
local computing and task offloading modes, respectively, such
that K0 ∪ K1 = {1, . . .K}. The detailed method is described
as follows:

First, the AO algorithm is adopted to solve the formulated
optimization problems in this paper. Based on the obtained
solutions, the ratio of the energy used for offloading of each
device to its harvested energy can be computed as mk =

p?kτ
?
k

/(
τ?0PE

∣∣hd,k + qHk v?0
∣∣2). Then, we exploit the rounded

result of mk to indicate the computational mode for device k.
Specifically, the device sets for K0 and K1 can be obtained as

K0 = {k : 0 ≤ mk < 0.5, k ∈ {1, . . .K}} ,
K1 = {k : 0.5 ≤ mk ≤ 0.5, k ∈ {1, . . .K}} , (44)

respectively. Given the obtained K0 and K1, the joint optimiza-
tion of IRS BF and resource allocation can be solved by the
algorithm proposed in this paper with slight modifications.

VI. NUMERICAL RESULTS

In this section, numerical results are provided for character-
izing the performance of the proposed schemes and for gaining
insights into the design and implementation of IRS-aided WP-
MEC systems. The HAP and IRS are placed at (0, 0, 0) m and
(10, 0, 3) m, respectively. The pathloss exponents of both the
HAP-IRS and IRS-device channels are set to 2.2, while those
of the HAP-device channels are set to 3. The signal attenuation
at a reference distance of 1 m and noise power are set as
30 dB and σ2 = −75 dBm, respectively. Furthermore, the
bandwidth is set to B = 200 KHz since we consider narrow-
band wireless systems. The system parameters related to the
EH and computational model are set as follows: η = 0.8,
γc = 10−28, C = [400, 800, 2000] cycles/bit and T = 1 s.

A. Activation Condition in Single-User Setup

To verify our analysis of the UL offloading activation con-
dition in the single-user setup, we provide the following pair
of numerical examples. The location of a typical device is
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Fig. 3. Illustration of UL offloading condition in pure LoS channel scenario.
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Fig. 4. Illustration of UL offloading condition in general Rician channel scenario.

set to (12, 0, 0) m. For the illustration of the optimal τ1, we
assume that all the links are LoS dominated, i.e., the Rician
factor is high. The time allocated to UL offloading under
C = [400, 800] cycles/bit is presented in Fig. 3. The region
where τ1 > 0 indicates that the UL offloading is activated. It
can be observed that the transmit power PE of the HAP which
ensures τ1 > 0 decreases as N increases. This is consistent with
Proposition 2, because the device is more likely to offload, when
enjoying better channel conditions and the channel power gain
can be improved by increasing the number of IRS elements N .
Additionally, we can observe that the device tends to offload,
when C becomes higher. This is because the computation rate
attained by local computing becomes marginal at large C,
which forces the device to offload more tasks for improving
the computation rate. This is also consistent with (30), namely
that the threshold used for activating UL offloading decreases
as C increases.

To further verify the impact of the number of IRS elements
on the offloading decisions of devices in random channels, we
consider the setup that the small scale fading of all links follow
Rician fading with a Rician factor of 3 dB. For C = [400, 800]
cycles/bit, the probability of the device chooses to offload ver-
sus the transmit power under different N is shown in Fig. 4. It is
observed that the probability of offloading can be significantly
improved by increasing the number of IRS elements, which
validates that our analysis regarding the effectiveness of IRS for
activating UL offloading is also applicable to general channel

models.

B. Performance Comparison

Next, we consider a general multi-user setup to provide
further performance comparisons and for demonstrating the
efficiency of the proposed solutions. Specifically, five devices
are uniformly and randomly distributed within a radius of 1.5
m centered at (10, 0, 0) m. The small scale fading of all links
is characterized by a Rician factor of 3 dB. We set PE = 40
dBm in this subsection.

1) Efficiency of IRSs in WP-MEC Systems: To demonstrate
the efficiency of IRSs in WP-MEC systems, the following
benchmark schemes are considered for comparision: 1) Pro-
posed AO in Algorithm 1 to solve

(
Pcase1

TDMA

)
; 2) Proposed

AO in Algorithm 1 to solve
(
Pcase1

TDMA

)
by ignoring the unit-

modulus constraints; 3) Fixed WPT time but optimizing all
other variables; 5) Fixed IRS phase shifts but optimizing all
other variables; 4) Without IRS.

In Fig. 5(a), we plot the average total number of computed
bits versus the number of IRS elements. It is observed that
the average total number of computed bits output by our
proposed Algorithm 1 over the benchmark schemes increases
upon increasing N . In particular, the performance gap be-
tween “Proposed Algorithm 1” and “Relaxed unit modulus
constraints” is small, which indicates that the performance
loss incurred by using the relaxation method is negligible.
Additionally, the performance gain of the scheme using the
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(b) Average sum computation rate versus PE

Fig. 5. Performance Comparison with different schemes when C = 2000 cycles/bit and N = 70.
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Fig. 6. Impact of N on WPT time and harvested energy.

fixed phase shifts over the system without IRS is marginal,
which highlights the importance of carefully designing the
IRS BF. Moreover, for small N , the scheme using fixed WPT
duration performs even worse than that without IRS, but for
large N , it significantly outperforms the fixed phase shifts-based
scheme. This demonstrates that the gain of IRS BF compensates
the performance loss due to a fixed WPT duration. Nevertheless,
the results unveil the importance of the joint design of the WPT
duration and IRS BF. In Fig. 5(b), we plot the average total
number of computed bits versus PE . It can be observed that
our proposed design outperforms a range of benchmark schemes
and the performance gap is enlarged as the HAP transmit power
increases, which further demonstrates the importance of jointly
designing the WPT duration and the IRS BF.

To further demonstrate the benefits brought out by IRSs
for WP-MEC systems, we investigate the impact of N both
on the DL WPT duration and on the total energy harvested
at each device. As shown in Fig. 6(a), the optimized WPT
duration decreases with N for both C = 400 and C = 2000,
which indicates that the energy consumed at the HAP, namely
EHAP = τ0PE , can be reduced by increasing N . Meanwhile,
more time can be reserved for each device’s UL offloading,
which increases the total number of computed bits. This im-
plies that embedding IRSs into WP-MEC systems achieves
both computation rate improvements and energy consumption
reductions. Although a higher N leads to a reduced DL WPT
time τ0, Fig. 6(b) shows that the total energy harvested by each

device even increases with N . This is because the energy signal
reflected by the IRS towards devices becomes more focused,
which in turn improves the efficiency of WPT upon increasing
N . Indeed, the high passive BF gain attained by IRSs increases
the degrees of freedom for enhancing the flexibility of resource
allocation design. Thanks to the improved channel conditions
granted for both the DL WPT and UL offloading links, more
time is available for offloading, while maintaining sufficient
harvested energy, which achieves substantial computation rate
improvements.

2) Comparison of Different Computational Modes: For com-
parison, we consider different computational modes as follows:
1) The partial offloading mode: Algorithm 1 is applied for
solving

(
Pcase1

TDMA

)
; 2) Offloading only: The algorithm proposed

in [38] is adopted for solving the resultant problem, when
all devices only perform UL offloading; 3) Local computing
only: All the devices only perform local computing and v0 is
optimized based on the method in Section V-A. The average
total number of computed bits versus N is plotted in Fig. 7 for
different values of C. As expected, the partial offloading mode
performs the best among all the specific schemes. The reason
for this trend is that all the devices can flexibly select their
computational mode based on the specific channel conditions
under the partial offloading mode. Additionally, the offloading
only mode significantly outperforms the local computing mode.
This is because the IRS can only benefit the DL WPT for local
computing mode, while the efficiency of both DL WPT and
UL offloading can be improved with the aid of IRSs for the
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Fig. 7. Performance comparison of different computation modes.
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Fig. 8. Performance comparison of different DIBF schemes.

offloading-only mode. Moreover, it is observed that the gain of
partial offloading mode over the offloading only-mode becomes
marginal for large C, since the number of bits computed locally
is low for a high C.

3) Impact of DIBF: To illustrate the impact of DIBF on the
computation rate, the average total number of computed bits
versus N is presented in Fig. 8 for three cases. Note that the
performance of NOMA is the same as that of TDMA for both
Case 1 and Case 2. It is observed in Fig. 8 that the computation
rate difference between Case 3 and Case 1/Case 2 expands as
N increases, which highlights the potential benefits of using
dynamic IRS BF in TDMA-based UL offloading. The results
reveal that the performance of TDMA may in fact become
better than NOMA by using different IRS BF vectors for UL
offloading in IRS-aided WP-MEC systems. Additionally, the
performance gain of Case 3 over Case 1/Case 2 becomes more
significant, when C is high. This is because using dedicated IRS
BF vectors for UL offloading only improves the computation
rate contributed by UL offloading, but has no effect on local
computing. Furthermore, for high C, the computation rate
is dominated by that of UL offloading, while that of local
computing is negligible. Finally, Case 2 only attains a marginal
gain over Case 1, especially for high C, which is in line
with our analysis in Remark 2. The results suggest that using
the same IRS BF vector is appropriate for both the DL WPT
and UL offloading in scenarios, where the devices have weak
computing capability and/or the system is sensitive to the
signaling overhead.
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Fig. 9. Sum/invidual device computation rate versus IRSs horizontal location
when N = 70 and C = 2000 cycles/bit.

C. Deployment of IRS for Doubly-Near-far Problem

Note that the “doubly-near-far effect” is a critical issue in
wireless-powered communication systems. For our considered
WP-MEC system, the device which is located far away from the
HAP would generally harvest less energy through the DL WPT
but it may require more energy to perform UL offloading than
that of a device close to the HAP. Therefore, the computation
rate of a distant device may be significantly lower than that of a
nearby device, which leads to the severe user unfair issue. For-
tunately, this issue can be readily mitigated by the appropriate
deployment of the IRS. To illustrate this, we consider a setup,
where the two devices, namely the near device (N-device) and
the far device (F-device), are located at (7, 0, 0) m and (10, 0, 0)
m, respectively. The IRS is located at (x, 0, 3) m. We show
in Fig. 9 the individual devices’ computation rate versus the
horizontal coordinate of the IRS, i.e., x. It can observed that
the computation rate of the N-device is significantly higher than
that of the F-device without IRS. By contrast, when deploying
the IRS near to F-device, the computation rate of the F-device
approaches that of the N-device and can be even higher than
that of the N-device, when x = 10 m. Thanks to the ability of
the IRS to reconfigure the wireless channels, the computation
rates of the two devices can be well comprised and become
much higher than those in the absence of the IRS. The result
demonstrates the benefits of deploying the IRS for resolving
the rate fairness issue imposed by the “doubly-near-far” effect.

VII. CONCLUSION

The achievable computation rate performance of IRS-aided
WP-MEC systems was studied in this paper. By taking into
account the interplay between IRSs and the MA schemes, we
answered a fundamental question: Does NOMA improve the
achievable computation rate of IRS-aided WP-MEC systems
compared to traditional TDMA? We first unveiled that offload-
ing adopting a TDMA scheme achieves a better computation
rate than that of NOMA, when the IRS BF vector can be
flexibly adapted for UL offloading. The conclusions are quite
different from the previous works regarding conventional MEC
systems, e.g., [10]–[13]. The obtained results provide important
guidelines for selecting MA schemes for UL offloading in IRS-
aided WP-MEC systems: it is preferable to exploit TDMA
instead of NOMA for improving computation rate at the cost
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of extra signaling overhead. Furthermore, we proposed compu-
tationally efficient algorithms for maximizing computation rate
under different DIBF schemes. Our numerical results validated
the efficiency of our design over the benchmark schemes and
also confirmed the benefits of IRSs in WP-MEC systems under
different setups. In our future work, it is worth investigating the
effectiveness of different MA schemes in relevant MEC systems
by considering the impact of IRS in terms of other performance
metrics, such as latency, power consumption, energy efficiency,
etc.

APPENDIX A: PROOF OF THEOREM 1
The key idea of the proof for Theorem 1 lies in the following

two aspects. First, based on the arbitrary solution of TDMA, we
can always construct a solution for NOMA which achieves the
same objective value as that of TDMA and thus it indicates that
the optimal value of NOMA is no smaller than that of TDMA.
Second, based the arbitrary solution of NOMA, a solution of
TDMA can be always constructed which achieves the same
objective value as that of NOMA and thus it indicates that the
optimal value of TDMA is no smaller than that of NOMA. The
detailed procedures are as follows:

The proof starts by showing that Rcase2
TDMA ≤ Rcase2

NOMA. We
denote the set characterizing the devices whose UL offloading
is activated as Koff . Given that v0 = v∗0,v1 = v∗1, fk = f∗k
for (Pcase2

TDMA), the optimal pk can be expressed as p∗k =(
τ0ηPE

∣∣hd,k + qHk v∗0
∣∣2 − Tγcf∗3k ) (τ1,k)

−1 for k ∈ Koff , be-
cause each device will deplete all of its energy. Now, we first
discuss some properties of τ∗1,k and τ∗0 . To this end, (Pcase2

TDMA)
can be simplified by optimizing τ0 and τ1,k as follows:

max
τ1,k,τ0

B
∑
k∈Koff

τ1,klog2 (1 + fk (τ0, τ1,k)) (45a)

s.t. (10c), (45b)

where

fk (τ0, τ1,k)

=
τ0ηPE

∣∣hd,k + qHk v∗0
∣∣2 − Tγcf∗3k

τ1,kσ2

∣∣hd,k + qHk v∗1
∣∣2. (46)

Note that problem (45) is a convex problem and its Lagrangian
function is

L(TDMA) (τ0, τ1,k, λ) =B
∑
k∈Koff

τ1,klog2 (1 + fk (τ0, τ1,k))

+ λ

(
T − τ0 −

K∑
k=1

τ1,k

)
, (47)

where λ ≥ 0 is the dual variable associated with (45b).
According to the Karush-Kuhn-Tucker (KKT) conditions, we
have
∂L(TDMA) (τ0, τ1,k, λ)

∂τ1,k

= B

(
log2 (1+Γk)− Γk

(1+Γk) ln 2

)
− λ∆

=M (Γk)=0, (48)

∂L(TDMA) (τ0, τ1,k, λ)

∂τ0

= B
τ0ηPE

∣∣hd,k + qHk v∗0
∣∣2∣∣hd,k + qHk v∗1

∣∣2
σ2 (1 + Γk) ln 2

− λ = 0, (49)

where

Γk =
τ0ηPE

∣∣hd,k + qHk v∗0
∣∣2 − Tγcf∗3k

τ1,kσ2

∣∣hd,k + qHk v∗1
∣∣2 (50)

denotes the received signal-to-noise ratio (SNR) of device k.
Since M (Γk) is an increasing function with respect to Γk,
each device shares the same SNR at the optimal solution, i.e.,
Γk = Γm = Γ∗,∀k,m. In particular, Γ∗ is the solution of the
equation:

H (Γ)
∆
=log2 (1 + Γ)− Γ

(1 + Γ) ln 2

−
ηPE

∣∣hd,k + qHk v∗0
∣∣2∣∣hd,k + qHk v∗1

∣∣2
σ2 (1 + Γ) ln 2

= 0, (51)

which can be readily obtained by applying the bisection search
method, since H (Γ) is an increasing function with respect to
Γ. Accordingly, τ∗1,k and τ∗0 are given by

τ∗0 =
T +

∑
k∈Koff

Tγcf
∗3
k |hd,k+qH

k v∗
1 |2

Γ∗σ2

1 +
∑
k∈Koff

ηPE|hd,k+qH
k v∗

0 |2|hd,k+qH
k v∗

1 |2
Γ∗σ2

,

τ∗1,k=
τ∗0 ηPE

∣∣hd,k + qHk v∗0
∣∣2 − Tγcf∗3k

Γ∗σ2
∣∣hd,k + qHk v∗1

∣∣−2 , (52)

respectively. Since Γk=Γm = Γ∗,∀k,m, the optimal value of
(Pcase2

TDMA) can be rewritten as (53) shown at the top of the
next page, where τ∗1 =

∑
k∈Koff

τ∗1,k. It is plausible that
{τ∗0 , τ∗1 , p∗k,v∗0,v∗1, f∗k} is a feasible solution for (Pcase2

NOMA),
which yields Rcase2

TDMA ≤ Rcase2
NOMA.

Next, we show that Rcase2
TDMA ≥ Rcase2

NOMA. At the optimal
solution of (Pcase2

NOMA), we can always construct a new solution
satisfying τ̃0 = τ?0 ,

∑
k∈Koff

τ̃1,k = τ?1 , so that all devices share
the same received SNR in the TDMA case, i.e.,(

τ̃0ηPE
∣∣hd,k + qHk v?0

∣∣2 − Tγc(f?k )
3
)

τ̃1,kσ2
∣∣hd,k + qHk v?1

∣∣−2

=

(
τ̃0ηPE

∣∣hd,m + qHmv?0
∣∣2 − Tγc(f?m)

3
)

τ̃1,mσ2|hd,m + qHmv?1|
−2 ,∀k 6= m. (55)

It is easy to verify that {τ̃0, τ̃1,k,∀k} is also feasible for
(Pcase2

TDMA) and always exists, which yields (54) shown at the
top of the next page, where (a) follows that

∑
k∈Koff

τ̃1,k = τ?1
and all devices share the same SNR at the constructed so-
lution. At the optimal solution of (Pcase2

TDMA), it follows that
Rcase2

TDMA ≥ Rcase2
NOMA.

Given Rcase2
TDMA ≤ Rcase2

NOMA and Rcase2
TDMA ≥ Rcase2

NOMA, we have
Rcase2

TDMA = Rcase2
NOMA, which thus completes the proof.

APPENDIX B: PROOF OF PROPOSITION 1

Assume that the optimal solution of problem (21) is
{τ∗0 , τ∗1 , f∗, e∗}, where τ∗1 > 0 indicates that UL offloading
should be activated for maximizing the computation rate. By
contrast, the device would only perform local computing if
τ∗1 = 0.

We first consider the case that τ∗1 > 0. Then, the optimal
solution {τ∗0 , τ∗1 , f∗, e∗} can be derived by analyzing the partial
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Rcase2
TDMA=Bτ∗1 log2

1+

∑
k∈Koff

(
τ∗0 ηPE

∣∣hd,k + qHk v∗0
∣∣2 − Tγcf∗3k ) ∣∣hd,k + qHk v∗1

∣∣2
τ∗1 σ

2

+

K∑
k=1

Tf∗k
C

, (53)

R̃case2
TDMA = B

∑
k∈Koff

τ̃1,klog2

(
1 +

τ̃0ηPE
∣∣hd,k + qHk v?0

∣∣2 − Tγc(f?k )
3

τ̃1,kσ2

∣∣hd,k + qHk v?1
∣∣2)+

K∑
k=1

Tf?k
C

(a)
= Bτ?1 log2

1 +

∑
k∈Koff

(
τ̃0
∣∣hd,k + qHk v?0

∣∣2 − Tγc(f?k )
3
) ∣∣hd,k + qHk v?1

∣∣2
τ?1 σ

2

+

K∑
k=1

Tf?k
C

=Rcase2
NOMA, (54)

Lagrangian function of problem (21), which can be written as

L (Ξ) =Bτ1log2

(
1 +

eh

τ1σ2

)
+
Tf

C
+ µ (T − τ0 − τ1)

+ λ
(
ητ0PEh− e1 − Tγcf3

1

)
, (56)

where Ξ = {τ0, τ1, e, f, λ, u}, λ ≥ 0 and µ ≥ 0 are the
corresponding Lagrange multipliers. Since problem (21) is
convex, its optimal solution can be obtained through analyzing
the KKT conditions. Taking the partial derivative of L (Ξ) with
respect to τ1, τ0, e, and f , respectively, we have

∂L (Ξ)

∂τ1
= Blog2

(
1 +

eh

τ1σ2

)
− Beh

(τ1σ2 + eh) ln 2
− u, (57)

∂L (Ξ)

∂τ0
= ληPEh− u, (58)

∂L (Ξ)

∂e
=

Bτ1h

(τ1σ2 + eh) ln 2
− λ, (59)

∂L (Ξ)

∂f
=
T

C
− 3λTγcf. (60)

In this case, UL offloading is activated at the optimal solution,
i.e., τ∗1 > 0, e∗1 > 0. Furthermore, τ∗0 > 0 always holds at
the optimal solution. Therefore, we have ∂L(Ξ)

∂τ∗
0

= 0, ∂L(Ξ)
∂τ∗

1
=

0, ∂L(Ξ)
∂e∗ = 0, and ∂L(Ξ)

∂f∗ = 0. After some further algebraic
operations, p∗ = e∗/τ∗1 satisfies

log2

(
1 +

p∗h

σ2

)
− p∗h

(σ2 + p∗h) ln 2
− ηPEh

2

(σ2 + p∗h) ln 2
= 0,

(61)

which yields (30) and can be obtained by bisection search.
Accordingly, f∗ is given by

f∗ =

√
1

3Cλ∗γc
=

√
(σ2 + p∗h) ln 2

3ChγcB
. (62)

Since the device depletes all of its harvested energy and τ∗0 +
τ∗1 = T , we have

τ∗1 =

ηPEh− γc
(

(σ2+p∗h) ln 2

3ChγcB

) 3
2

p∗ + ηPEh
T, τ∗0 = T − τ∗1 . (63)

According to (63), it can be observed that τ∗1 > 0 always holds

if ηPEh > γc

(
(σ2+p∗h) ln 2

3ChγcB

) 3
2

. Thus, (23) serves as the UL

offloading activation condition. Under the condition of (23), the
optimal solution for problem (21) is

f∗ =

√
(σ2 + p∗h) ln 2

3ChγcB
, τ∗1 =

ηPEh− γc
(

(σ2+p∗h) ln 2

3ChγcB

) 3
2

p∗ + ηPEh
T,

τ∗0 = T − τ∗1 , e∗=τ∗1 p∗. (64)

For the scenario of ηPEh < γc

(
(σ2+p∗h) ln 2

3ChγcB

) 3
2

, i.e., (23)

is not satisfied, the UL offloading is not activated. The optimal
solution of problem (21) is given by

τ∗0 = T, τ∗1 = 0, f∗ =

(
PEηh

γc

)1/3

, e∗ = 0. (65)
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