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The role of natural experiments in hepatology research:
filling the gap between clinical trials and service evaluations
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Abstract

Research developing and testing interventions that address the social

determinants of liver disease are urgently needed; however, this cannot

be achieved using conventional clinical research designs. A different

approach is needed to conduct widely applicable, inclusive, and

community-based research that addresses upstream factors driving liver

morbidity. Natural experimental studies encompass a well-established

field of research methodology that is less familiar to clinical hepatologists

than conventional research methods such as the randomized control trial.

The key strength of natural experiments is that, when robustly designed,

they can be used to imply causality from routinely collected data. As such,

they are well placed to test the impact of community interventions that aim

to address social determinants of liver disease that cannot feasibly be

assessed in a randomized control trial. In this review, we define natural

experiments and their potential utility. We then work through examples of

where they have already been used in clinical hepatology to highlight a

range of research designs, analytical approaches, and best practices

regarding their conduct and reporting. In doing so, we hope to equip

clinical hepatologists with another tool to ensure the hepatology

community can meet the global liver disease epidemic with evidence-

based interventions.

INTRODUCTION

The European Association for the Study of the Liver–
Lancet commission stresses the inconsistency in
models of care for liver disease in Europe and the
scarcity of programs delivering testing and treatment for
early-stage disease. The commission highlights the

enormous number of lives that could be saved if
measures that address disease prevention and detec-
tion are properly validated and implemented.[1]

Both the European Association for the Study of the
Liver–Lancet commission and field leaders in the US[2]

emphasize the need to study the “social determinants
of liver disease” (eg, stigma, discrimination, and

Abbreviations: GP, General Practice; ITS, interrupted time series; IV, instrumental variable; MRC, Medical Research Council; NES, natural experimental studies.
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asymmetrical resources allocation[3]) if meaningful
progress is to be made. Presently, the quantity and
quality of interventional studies addressing upstream
social determinants of health in gastroenterology and
hepatology are described as “grim.”[4] There are many
barriers to conducting research in this area: (1) the
causal relationship between social determinants of
health and liver disease is convoluted and complex, (2)
in the short term, intervention leads to “soft” nonclinical
outcomes (eg, reduced alcohol intake), (3) interven-
tions are often multimorbidity focused, and (4) potential
research participants are predominantly in the com-
munity rather than hospital settings—limiting the
accessibility of the research population to predom-
inantly hospital-based hepatologists.[3] An important
additional contributory factor to this lack of evidence is
our collective professional insistence on using clinical
research methods to solve what are essentially public
health problems. This leads to a lack of diversity in
research[5] and a particular lack of evidence for
interventions targeting social determinants of liver
health in marginalized and deprived populations—a
lack of evidence that leads to a lack of spending and
policy change.[3,6]

The gold standard clinical experiment is the random-
ized controlled trial (RCT). An RCT has 4 defining
features: (1) it includes 2 or more groups, (2) 1 or more
group is assigned to a treatment or series of treatments,
(3) subjects are randomly assigned to 1 group, and (4)
the treatment can be manipulated by the researcher.[7]

The random assignment of the individuals to groups
means that “on average,” they should have the same
characteristics. Thus, statistically similar groups are
exposed at the same time to 2 or more different
conditions, which reduces or eliminates confounding
and supports causal inferences. There are, however,
many circumstances when an RCT is impossible and
many cases when, even though an RCT is possible,
such a trial has not been funded, has not been done
and will not be done in a timescale that helps the policy
maker or clinician.

The challenges in using RCTs to evaluate complex
interventions to overcome social determinants of health
are well described,[8,9] and most strategic decisions—
particularly in Public Health—are made without the
benefit of evidence from an RCT. So, what else
constitutes acceptable evidence? Figure 1 (adapted
from Ogilvie et al[10]) describes 2 pathways that lead to
health policy change. The first (pathway A) includes
RCTs and is more typical of the hospital-based system
that is familiar to clinical hepatologists. Expert opinion
and observational data are collected, collated, and
presented. This leads to the development of an
intervention, which is tested in an RCT and leads
(usually with support from further trials, meta-analysis,
and cost-effectiveness evaluation) to policy action. A
recent example from clinical hepatology is the changing

indications for carvedilol in patients with liver cirrhosis.
Observational data indicated that beta-blockers should
be effective at preventing decompensation in patients
with clinically significant portal hypertension.[11,12] These
studies led to an RCT that showed positive results,[13]

and this has started to alter international policy.[14]

The second pathway (pathway B) is more typical of
public health and will be less familiar to clinical
hepatologists. Expert opinion and observational data
lead to policy change, policy action, and the implemen-
tation of an intervention. A good example of a wide-
spread practice in clinical hepatology that lacks
evidence from RCTs (with the exception of a study in
China[15]) is HCC surveillance with liver ultrasound.
Observational data about the relative incidence of HCC
in patients with liver cirrhosis and expert opinion have
led to the practice being recommended in international
guidelines.[16,17] The impact of HCC surveillance has
been evaluated in observational cohort studies that
have compared outcomes for patients with HCC
“exposed” to surveillance or presenting outside of
surveillance.[18] These studies are at risk of lead time
bias and selection biases (including length-time bias) for
which they have been partially adjusted.[18] The results
have been used to parameterize cost-effectiveness
models and support the widespread implementation of
surveillance.[19] Despite the widespread implementa-
tion, some authors have advocated that there is still a
need for an RCT, but others have highlighted the lack of
acceptability, large sample sizes needed to demon-
strate significant effects, and high study costs.[20–22]

In 2014, the Centre for Disease Control in the US
recommended cohort screening for HCV of the baby-
boomer generation.[23] This was a massive program that
received high-level criticism calling for an RCT.[24]

However, the call was met with a response from the
clinical community that indicated such a trial was
unacceptable. Through online responses, other experts

F IGURE 1 Two pathways to policy action (A) classic clinical
pathway and (B) pragmatic public health pathway (adapted from
Ogilvie et al[10]).
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cited the high costs involved, the timescale required,
and that modeling had already explored some of the
uncertainties that would be addressed by a trial. In a
similar example, NHS England has recently funded a
widespread scale-up of community testing for early-
stage liver disease. The program follows the recent
publication of the NHS long-term plan[25] and a political
focus on early identification of disease—specifically
cancer. In keeping with pathway B in Figure 1, the policy
has led to rapid implementation without utilizing the
evidence-generation steps in pathway A.

What can help clinicians decide whether interven-
tions implemented into practice without passing through
the traditional hierarchy of medical evidence is the right
thing for their patients and the communities they look
after? As we have highlighted, observational data can
help but are subject to biases that limit causal
inferences. In the remainder of this article, we will
discuss how natural experimental studies (henceforth
abbreviated to NES)—sitting somewhere between
experimental and observational research methods—
can help. We describe this method in detail for the
clinical audience of this journal because we believe
NES are key to better evaluations of large-scale health
interventions for patients at risk of, or with liver disease
outside of the hospital walls. Unlike other research
methods, they are undertaught and underutilized.

What are NES?

To illustrate what we mean by NES, we will work
through historical, famous, widely cited, but infrequently
fully explained examples of Public Health research. It is
well known that in 1854 John Snow identified the source
of cholera outbreaks in London, UK, and undertook a
simple Public Health intervention—he is famously
credited with removing the handle from the Broad
Street water pump—thereby cutting off a key source of
contaminated water. However, the study design John
Snow used to draw his conclusions is less well
known.[26]

Sometime before his study, 1 of the 2 water
companies serving London situated their intake pipe in
the River Thames upstream of the city in (what turned
out to be) less contaminated water. The other company
continued to take water from the Thames as it ran
through the city. To test his hypothesis that cholera was
waterborne, John Snow looked at cholera cases in
households served by each water company. He noted
that the incidence of cholera in households served by
the downstream water company was 10 times that of
households served by the company with the upstream
source. John Snow recognized the risk of bias and
worked hard to prove that the supply of water to each
household was not associated with other factors that
could be associated with cholera (ie, confounders). In

fact, he was able to show that the supply of water was
almost random: many households were unaware of
which water company they used, and neighboring
houses were often served by different companies.

In his study, John Snow highlighted the “rules” that
now define NES[10,27] (Box 1) The “intervention” (in this
case a change in water pipe location) should be outside
of the researchers’ control, the allocation of the
intervention should be “as if” random or at the very
least variation in exposure should be unrelated to
factors that may influence the outcome[7,28,29] and the
experiment should be relevant to current health policy/
service decisions. Crucially, it should be possible for
causal inferences to be drawn from the study.[30] We will
return to these rules again when we evaluate examples
of NES in hepatology research.

Some authors have contended this relatively straight-
forward definition of NES, summarized by the Medical
Research Council[30] and Box 1, does not capture their
full complexity. Dawson et al[31] classify NES into type 1
and type 2 (Figure 2). Type 1 fits most closely with the
MRC definition and the examples we have already
discussed—researchers have no control over the
implementation and exposure to the intervention. In
type 2, researchers may have some control. For
example, they could influence how and where a health
intervention is being deployed to influence the semi-
natural formation of groups. Type 2 NES get close in
structure to quasi-experimental designs, which are, in
turn, closer to the RCT design (Figure 2). The term
“quasi-experiment” is often used interchangeably with
natural experiment, and there remains debate in the
literature over their exact definitions.[29] Generally,
quasi-experiments are recognized to include designs
where the researcher has full control of the intervention,
but there is still an absence of control over
randomization[31] and hence would not meet the rules
of the definition of NES (Box 1). A good example of
a quasi-experimental study was when uptake of
a researcher-led intervention relies on volunteers
(forming the intervention “arm”) with people who do
not volunteer to become a control group. In this
example, very careful consideration needs to be given
to controlling for potential confounders that are
associated with the act of volunteering and the
outcome of interest.[31,34]

NES have strengths over other study designs: they
can evaluate the effect of events or interventions that
are impossible to manipulate experimentally, interven-
tions are generally less distorted than in strict exper-
imental conditions, and control groups are less likely to
alter their normal behaviors.[35] In addition, NES can be
used with retrospective data and are less susce-
ptible to confounding than conventional observational
designs.[29] Accordingly, NES can provide strong causal
information with large effect sizes[29] that are compara-
ble in some circumstances to randomized designs[36]
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(Figure 2). However, to do this, NES need to be
carefully planned, well conducted, and accurately
reported.

Examples of NES in hepatology

NES have been widely used in global health care–related
research with a broad range of examples, including
interventions aimed at reducing gun fatalities in the US,[37]

improving road safety,[38,39] improving maternal health,[40]

reducing suicide with pesticides,[41] and reducing cycling
accidents.[42] We will now consider a few examples of
where NES have been used in studies relating to liver
disease or the direct risks of liver disease (Table 1). In
keeping with the recommendations in the recent
European Association for the Study of the Liver–Lancet
Commission[1] and its previous editions,[47] these studies
have an appropriate focus on early identification or
prevention of liver disease in community settings.

Concerns about overburdening stretched hepatology
services have led to novel pathway designs that stratify
patients as “high risk” for significant liver disease before a
referral is made (for an overview of novel pathways, see
Abeysekera et al[48]). A good example is Srivastava et al
[43] published in 2019. This article has had impact with
over 200 citations in 3 years. In the study, the authors
compared the proportion of significant liver disease in

patients referred to the hospital through a novel pathway
with others that were referred without the novel pathway
and showed that the pathway significantly reduced
unnecessary referrals. The study broadly meets the
“rules” for a NES (Box 1) (Table 1). The study met an
important clinical/public health concern; the researchers
lacked control over the implementation of the intervention,
circumstance dictated which population was exposed,
and there was a reasonable argument that the exposed
and unexposed groups were broadly similar.

Our second and third examples describe interven-
tions to enhance HCV treatment engagement in people
who inject drugs (PWIDs). In both, the populations who
are exposed to the intervention live in areas where there
has been the early implementation of enhanced
services for HCV treatment, and the “control” or
unexposed populations live in areas with slow adoption
of the interventions. Hickman and colleagues describe
the study protocol for the Epitope study (results
unpublished at the time of writing). They compare the
prevalence of HCV in the Tayside area of Scotland to
other parts of Scotland where HCV services for PWID
were in their relative infancy.[44] Jugnarain et al[45]

describe the impact of peer-supported engagement
with HCV treatment in PWID living in areas of England
where peer support has been implemented and
compare the number starting and completing treatment
with areas that have not started a peer-supported
program. They observed a significant increase in the
rates of treatment initiation and contended that this was
unlikely to be due to hidden confounders:

“given the magnitude of the change and the large
number of networks involved it is difficult to envisage a
common confounding factor that could have led to the
changes we observed.”

Our final example tested the impact of the implemen-
tation of the minimum unit alcohol pricing policy in
Scotland. In many respects, this is a “classic” NES.
Observational data[49] describing the association between
cost and consumption led directly to a policy change.

F IGURE 2 Observation to experimental design spectrum (adapted from Ogilvie et al.[10]).
†This is not universally true, for example, the causal association between smoking and lung cancer is primarily based on observational data. For a
different perspective on causality in observational research designs, see Vandenbroucke et al.[32]. Specific criteria that “upgrades” the strength of
observational data such that causal inferences may be considered are available in the GRADE statement.[33] ††The definition of quasi-experiment
does vary—for an alternative, see de Vocht et al[29].

Ground rules that define a natural experiment
1. Researchers lack control over the implementa-

tion of the intervention

2. Variation in exposure to the intervention should
be unrelated to the outcome such that causal
inference can be drawn

3. The intervention should be relevant to public
health/health service decisions
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TABLE 1 Examples of natural experiments in hepatology

References
Aim of
intervention Intervention

Implementation of
intervention Group allocation process

Measured primary
outcome Method of analysis

Srivastava
et al[43]

Reduce
inappropriate
referrals to
hospital
hepatology
services

Referral pathway,
including
noninvasive
fibrosis
assessment
before referral

Commissioned
novel pathway in
2/25 CCGs
referring patients
to 3 hospital trusts

Iterative service development and
funding in 2 CCGs
(2—intervention) but not others
(23—control)

Change in the
proportion of patients
referred to hospital
care with significant
fibrosis or cirrhosis

Compared OR of having primary
outcome before and after pathway in
intervention patients and between
control and intervention patients after
implementation

Hickman
et al[44]

Reduce the
prevalence of
HCV in PWID

Multifaceted
community HCV
service
innovation

Expanded HCV
care pathways in
1 geographical
area

Asymmetrical iterative service
development with early adopter
and late adopters

Chronic HCV
prevalence in PWID

Adapted Bayesian synthetic control
methods

Jugnariain
et al[45]

Increase the
proportion of
PWID starting
and completing
treatment for
HCV

Peers to support
engagement
with HCV
treatment

Peer-supported
engagement with
HCV treatment

Asymmetrical iterative service
development with early adopter
and late adopters. Timing
dependent on funding application
and operational readiness

Total numbers starting
treatment (presented
as a relative ratio)

Mixed effects model

O’Donnell
et al[46]

Reduce alcohol
consumption

Minimum unit price
for UK unit—50p
(0.61$)

Implemented in
Scotland

Policy implemented in Scotland, not
implemented in England

No. grams of alcohol
purchased per
household

Interrupted controlled time series
analysis

Abbreviations: CCGs, clinical commissioning groups; PWID, people who inject drugs.
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Evaluation of the impact then relied on observational data
and NES. O’Donnell et al[46] compared the amount spent
per household on alcohol in Scotland and England
(where the policy was not implemented) and separately
in northern areas of England—to control for “cross-border
contamination.” The authors showed an immediate drop
in alcohol purchasing in Scotland and no comparable
decrease in England. The authors summarized the
rationale and strength of their natural experiment:

“although the randomised controlled trial remains the
ideal research standard, interrupted time series analysis
provides a strong alternative where an experimental
study design is infeasible or unethical, such as the
evaluation of policy initiatives in healthcare.”

Design and analysis in NES

By definition, in NES, the researcher has little or no
influence over exposure to the intervention.[27] In all NES,
exposure to the intervention is therefore at risk of
selection bias as the implementation is very rarely
completely random—an exception may be a study that
compares lottery winners to members of the general
population. Selection bias becomes a problem when it
leads to confounding. A confounder is a covariate
associated with the intervention and the outcome of
interest. Figure 3A illustrates this as a directed acyclic
graph, and as an example, Figure 3B illustrates how
observed and unobserved differences (covariates)
between patients with cirrhosis exposed and unexposed
to HCC surveillance could lead to confounding in
observational studies evaluating its effectiveness.

The study design and analytical approach taken
should be the best available to mitigate the effect of
selection bias and confounding on the outcome. There
are many approaches to maximize causal inferences in
NES, which in many instances equally apply to
observational and randomized designs. Broadly speak-
ing, these approaches fall into 2 groups—those
designed to deal with recorded covariates and those
designed to deal with things the researcher does not
know about the study population (see Figure 3B for an
example). We summarize the approaches in Table 2
and highlight how our examples of NES in hepatology
research have maximized causal inferences in the
following text. A more comprehensive overview of
different approaches to maximize causal inferences is
available elsewhere.[30,50]

Srivastava and colleagues compared patients
referred through a novel service pathway to patients
referred from other areas in London (UK), where the
pathway had not been implemented. The results are
presented as an “Odds” that patients seen in the clinic
will have significant fibrosis/cirrhosis—that is, are they
appropriate referrals? The results were positive with
patients referred from General Practice (GP) with the
novel pathway being more likely to have a significant
disease; however, it is unlikely the patients coming from
the 2 areas are exactly the same, that is, there will be
some selection bias in exposure to the novel pathway.
Had this same study been an RCT, the unit of
randomization would have been GP practices. A
confounder would therefore arise from a variable
associated with GP services in one area that is
associated with the outcome of interest (Figure 3). For
example, an education program aimed at GPs in
the intervention area could have improved the
appropriateness of referral independently of the new
pathway. To support their assertion that the new
pathway (rather than hidden confounders) caused the
improved selection of patients referred to secondary
care, the authors conducted a supplementary analysis.

F IGURE 3 Confounding is visualized as a directed acyclic
graph. In (A), as indicated by the arrows, a patient characteristic is
associated with exposure to the intervention, and the outcome is
therefore confounding. (B) Patient characteristics are associated
with engagement with HCC surveillance, for example, abstinence
from alcohol may plausibly be associated with increased attend-
ance at ultrasound appointments and is plausibly independently
associated with reduced 1-year mortality. When designing an
observational study, it is important to measure the covariates that
could introduce confounding and use design and analytical
approaches that mitigate their impact. By design, natural exper-
imental studies are devised a priori to deal with confounding and
therefore strengthen causal inferences that can be drawn from the
results.
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Further analysis showed a significantly increased
proportion of appropriate referrals within the intervention
area if the novel pathway was followed compared
with those where it was not.

However, in their analysis, Srivastava and col-
leagues do not account for background trends in the
primary outcome. When outcomes are analyzed
discreetly, underlying trends are unaccounted for,
this can lead to misleading results. For example, the
development of the intervention with community
partners could have led to a change of behavior in
referring primary care physicians before the novel
pathway was introduced. The observed effect could
have been a continuation of this behavior change
after the pathway was introduced rather than an
effect of the pathway itself. Figure 4A and B show 2
hypothetical time series data of time (x-axis) and a
percentage (y-axis). In Figure 4A, the mean monthly
percentage is 51% before the intervention
versus 70% after. In Figure 4B, the means are 51%
versus 74%, respectively. If just considering mean
proportions before and after the intervention, we may
determine that it was effective in both scenarios.

However, the benefit of examining the trends in
Figure 4 is clear—we can see the evidence of an
intervention effect in Figure 4A and no effect in
Figure 4B.

Interrupted time series (ITS) is a common analytical
approach in NES (Table 2). A review in 2019 identified
over 200 articles that reported using ITS in a health care
setting (although only 116 met the full inclusion criteria
for the review).[51] As per our example, (Figure 4) in
an ITS, equally spaced data points are compared
before and after the intervention (the interruption) is
implemented.[52] To conduct ITS analysis, a large
number (typically at least 8) of data points are needed
before and after the interruption.[52] Regression
modeling is used to estimate the underlying trend in
the preinterruption data and consequently the expected
trend if the interruption had not occurred, what is
termed the “counterfactual.”[53] The counterfactual is a
comparator for the observed postinterruption data to
examine whether the interruption had an effect
significantly different from the expected trend. In doing
so, the ITS design controls for any pre-existing trends in
the data.

TABLE 2 Examples of study design and analytical tools to enhance causal inferences in natural experiments

Positive effect Limitation in NES

Tools to manage measured covariates as potential confounders

Control
population

Gives a counterfactual to support a more robust analysis May not be available in natural experimental conditions.
Likely to be unknown underlying differences between
groups

Multiple control
populations

Reduces confounding associated with just a single control
group. Groups need to differ in a meaningful way such
that potential confounders in 1 control group but not
another can be dismissed

Challenging to identify more than 1 control group that
closely matches the intervention group yet differ from
each other

Matching, eg,
through
propensity
scores

Creates a subpopulation with similar characteristics to
those exposed to the intervention

Matching can only be ascribed using measured covariates

Regression
analysis

Adjusts for observed differences between control and
intervention groups

Cannot account for confounding caused by unobserved
covariates

Tools to manage unmeasured covariates as potential confounders

Repetition of
experiment in
multiple
settings

Increases sample size, reduces unmeasured biases if
factors associated with exposure to intervention differed
between settings

May not be available, potentially costly

Mixed method
design

Supports triangulation of qualitative and quantitative data More costly and time consuming, nested qualitative study
likely to need ethical approval

Difference in
differences
analysis

Follows the same unit through time and therefore is
invulnerable to unobserved differences

Only applicable to data measured at 2 (or more) time
intervals in the same unit or individual. Relies on
underlying assumptions, eg, parallel trends assumption.

Time series
analysis

Accounts for underlying trends in data before and after the
implementation of the intervention

Needs data from multiple time points before and after the
intervention is implemented. Time intervals need to be
equal.

Instrumental
variable (IV)
analysis

Uses covariate associated with exposure to the
intervention but not the outcome to control for
unmeasured confounders

Difficult to identify IVs in NES that do not violate
fundamental assumptions for their use

Abbreviation: NES, natural experimental studies.
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However, ITS can still give misleading results: the
before and after populations may not have the same
characteristics, time may have affected the primary
outcome independently of the tested intervention, and
hidden environmental confounders that cannot be
adjusted for may have altered the observed trends.

The addition of a group that is unexposed to the
intervention adds validity by controlling for hidden
confounding.[54] O’Donnell et al[46] (Table 1) conducted
a controlled ITS. Two control groups were used, the
whole of England and a sub-group that just included
those in Northern England. Figure 4C and D illustrate
the benefit of a control group using hypothetical data.
Figure 4C illustrates similar effects in the control and

intervention time series, indicating that a confounder—
common to both groups—rather than the intervention is
increasing the percentages. In Figure 4D, we see an
absence of change in the control time series, supporting
the assertion that the observed effect is a result of the
intervention.

The control group needs to be carefully chosen. One
needs to be confident that the control group is exposed
to the same environmental influences as the interven-
tion group—except for the intervention itself—and be
confident that the control group cannot be affected by
the intervention through contamination.

In their study protocol, Hickman and colleagues
describe their intention to use an adapted causal impact

F IGURE 4 Graphical representation of interrupted time-series analysis (A&B) and a controlled interrupted time series analysis (C&D).
Vertical black dotted lines represent the interruption - i.e. the implementation of the intervention. In A&B the solid red line represents the pre-
intervention trend, black solid line the post intervention trend and the red dotted line represents the counterfactual (predicted trend). In C&D the red
solid line shows the pre and post intervention trend in the group exposed to the intervention and the blue dotted line represents the pre and post
intervention trends in the group exposed to control conditions.
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synthetic control model[55] to assess the impact of
changing service design on HCV. The synthetic control
population is based on preintervention population
characteristics and provides a counterfactual trend
against which the impact of the intervention can be
compared. The use of a synthetic control population has
the advantage of being less subjective and should
ensure it is more representative of the wider
population.[30]

Conducting and reporting NES

One of our selected studies (Table 1) presents a
protocol.[44] The Medical Research Council (MRC) and
others recommend the publication of a study protocol in
advance of conducting NES. Otherwise, there is a risk of
a blurring of intended target populations, outcomes,
and analytical approaches.[9,56] Alongside the robust
approaches to assess causal inference we have
described, a published a priori protocol adds validity to
the findings and has the potential to broaden the
acceptability of NES as admissible evidence for
causation. For reference, a detailed framework of what
to include in the protocol has been recently published.[29]

In their study, O’Donnell and colleagues used a
recognized reporting guideline.[46,57] The reporting guide-
line they used is specific to studies using an ITS design
and describes 8 quality criteria. The first 4 criteria relate
to the general quality of NES, and the remainder is
specific to ITS. Alternatively, other authors recommend
using the TREND guideline.[27] These were developed by
the Centre for Disease Control in the US to improve the
quality of studies testing interventions designed to tackle
the HIV epidemic and were modeled on the EQUATOR
guidelines for RCTs.[58] The TREND guidelines are now
widely used, frequently requested by journal editors, and
are specific for studies that evaluate interventions

using nonrandomized designs.[59] The TREND checklist
includes 5 sections; many subsections are more appli-
cable to quasi-experiments as they assume the
researcher has control over the intervention and (non-
randomized) allocation of participants.[60] The MRC gives
an adapted, brief, and more specific summary of what
should be reported in NES to convey validity (Table 3).

Ethical considerations in NES

We argue that the use of NES in hepatology will help
physicians adhere to the World Medical Association
Declaration of Helsinki, specifically natural experiments
will serve to enhance equity of access for disadvan-
taged and marginalized populations to health research
and provide a means to test unproven interventions that
have been implemented into practice.[61] Other aspects
of the declaration are also important when planning and
conducting a natural experiment. Although the inter-
vention is largely or totally outside of the researcher’s
control, the physician-researcher still has obligations to
prevent harm occurring to participants. This is more
complex than in an RCT or quasi-experiment. Consider
Jugnarain et al[45] in Table 1. What if the peer-support
program had been unexpectedly associated with
reduced engagement with HCV treatment or the
researchers observed unanticipated negative effects—
so-called adventitious harms? The research team would
have been ethically obliged to meet with commis-
sioners, publish and publicize their findings and
encourage consideration about the suspension of the
service. However, the ability of a researcher to act to
prevent harm in NES is usually limited. The analysis of a
NES is typically conducted well after the intervention
has been implemented (as in all of the examples we cite
above)—therefore, the findings of the study cannot alter
exposures that have already taken place.[31]

TABLE 3 Key information to report in natural experimental studies (NES)

Study component Key information

Design Describe the study design a priori in published protocol and in full study abstract and methods
Describe how the design meets the definition for NES
Report study using recognized reporting guidelines

Eligible and included
population

Include a precise and detailed definition of the eligible population or service areas a priori in the published protocol
and as part of the main manuscript

Report the characteristics of included population and compare to control population (if using)
Describe any selection biases in exposure to intervention
Justify choice of control population
Describe and justify the choice of measured covariates

Intervention Define the intervention being tested
Describe the level of researcher control over the intervention
Describe the implementation landscape of the intervention
Consider spillover effects between the intervention and control groups

Outcome and analysis Define primary outcome and analysis plan a priori in published protocol and report clearly in study methods
Describe and justify the use of design and analytic tools to maximize causal inferences
Describe how residual confounding may bias the outcome
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Research participants should always give informed
consent[61] for data collection and, in the case of RCTs
and quasi-experiments, allocation/randomization to an
intervention or control group. In NES, the intervention is
outside of the researchers control so there is not a need
to collect informed consent for this; however, ethical
approval is still required for the collection and use of
data about the participants unless it is aggregated,
anonymized, and in public domain.[31]

The future of NES in hepatology

In this review, we have described 2 pathways that lead
to health policy action. One relies on the conventional
hierarchy of evidence before the implementation of an
intervention. The second relies on post hoc analysis.
We have highlighted 3 examples of hepatology clinical
practice that have followed this second pathway,
including HCC surveillance program, baby-boomer
screening for HCV, and a community program to identify
compensated liver cirrhosis and advanced fibrosis.
Importantly, these programs are being implemented
alongside electronic health records and accessible “big
data.”[62] A reliance on conventional observational
research designs to use this data and evaluate these
programs has limitations. NES go some way to
addressing these limitations, and we hope this article
will provoke thought and debate about how they could
be applied. Consider baby-boomer screening for HCV,
which was recommended in 2012. Can NES address
some of the concerns raised by Koretz et al[24] about the
effectiveness of the program? If the implementation of
screening was asymmetrical (eg, between the US
states), did naturally occurring exposed and unexposed
populations take shape that is sufficiently similar and
large enough to observe relative liver transplantation
rates or death in the years that followed?

To address the upstream determinants of liver-related
morbidity and mortality, the field of hepatology is moving
toward a focus on large-scale public health interventions.
Relatively cheap and safe interventions are being
deployed in community settings. We argue NES are
needed to test the effectiveness of these interventions,
and the hepatology community needs to familiarize itself
with their design, strengths, and limitations.
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