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A B S T R A C T

We propose an optimal architecture for deep neural networks of given size. The optimal architecture obtains
from maximizing the lower bound of the maximum number of linear regions approximated by a deep neural
network with a ReLu activation function. The accuracy of the approximation function relies on the neural
network structure characterized by the number, dependence and hierarchy between the nodes within and
across layers. We show how the accuracy of the approximation improves as we optimally choose the width
and depth of the network. A Monte-Carlo simulation exercise illustrates the outperformance of the optimized
architecture against cross-validation methods and gridsearch for linear and nonlinear prediction models. The
application of this methodology to the Boston Housing dataset confirms empirically the outperformance of our
method against state-of the-art machine learning models.
1. Introduction

Neural networks and, more specifically, deep learning models are
extremely popular in high-dimensional problems such as pattern recog-
nition, biomedical diagnosis, and others (see (Schmidhuber, 2015;
LeCun et al., 2015) for overviews of the topic). These models are
widely used in prediction tasks due to their unrivaled performance and
flexibility in modeling complex unknown functions of the data. The
success of these techniques rests in their ability to approximate complex
unknown functional forms for the relationship between the outcome
variable and the predictors.

The literature contemplates two types of models depending on the
number of hidden layers characterizing the architecture of the network.
A neural network with only one hidden layer (shallow network) can
adequately approximate any given continuous function if its width is
large enough (Cybenko, 1989; Hornik, 1991; Barron, 1994; Anthony
and Bartlett, 1999). However, the width of such a hidden layer has
to be exponentially large in order to approximate a given function
to arbitrary precision, see Montufar et al. (2014). In contrast, when
multiple layers are involved (deep neural networks), recent literature
(Hanin and Sellke, 2017; Lu et al., 2017) has shown that to approximate
any given integrable function to arbitrary precision multi-layer neural

∗ Correspondence to: Department of Economics, University of Southampton, Highfield Campus, SO17 1BJ, Southampton, UK.
E-mail addresses: J.B.Olmo@soton.ac.uk, joseolmo@unizar.es (J. Olmo).

1 All authors have worked equally on this manuscript.
2 We can compare the expressiveness of neural networks that use rectified linear units (ReLUs) by the number of linear regions, reflecting the number of pieces

of the continuous piecewise linear functions modeled by such networks.

networks with width given by at most d + 1 units, with 𝑑 the dimension
of the input variables, are better suited. There is no consensus, though,
on the depth of the network, that depends on the given function
and may be very large. Furthermore, there are few hints on how to
determine the suitable architectures needed to realize a given function
or which architectures are more efficient.

Similarly, based on the literature of piecewise functions and func-
tion oscillation, Telgarsky (2016) shows that the function composition
characterizing deeper architectures returns highly oscillatory functions
and thus, it is better suited to fit an unknown target function compared
to shallow structures of similar size. Deeper architectures, by capturing
and learning the repeated regularities or hierarchical structures in the
data, allow learning the underlying function with a lower level of model
complexity (Aggarwal, 2018). For example, Telgarsky (2016) shows
that, for any positive integer 𝑁 , there exist some networks with depth
𝑂(𝑁3), width 𝛩(1), and 𝛩(1) parameters, that cannot be approximated
by an 𝑂(𝑁)-layer network unless it has a width of 𝛺(2𝑁), where 𝑁
is the number of nodes in the neural network. Their results confirm
further that deeper networks usually have more powerful expressivity
of functions, which provides an explanation for why deeper networks
outperform shallow networks with the same number of parameters in
many practical tasks.2
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The approximation power or expressivity of neural networks not
only depends on the number of hidden units but also on their allocation
across layers. For example, in a rectifier network of depth 𝑁 , not all
configurations and in some cases none can reach the ceiling of 2𝑁 active
units, see Serra and Ramalingam (2019). On the one hand, we can
construct networks where the number of active regions is exponential
on network depth (Pascanu et al., 2013; Montufar et al., 2014). On the
other hand, there is a bottleneck effect by which the number of active
units on each layer affects how the regions are partitioned by subse-
quent layers, up to the point that even shallow networks define more
linear regions than their deeper counterparts as the input dimension
approaches 𝑁 , see Serra et al. (2018). The correct specification of the
width and depth of the network, together with other factors, ensures an
efficient balance between bias and variance of the model predictions
and thus, it ensures that the model will not over- or under-fit the
underlying function.

One popular strategy in the implementation of neural networks is to
determine the architecture of the network during training of the model.
These methods use 𝑘-fold cross-validation to determine the width and
depth of the network. In this scenario both variables are treated as
model hyperparameters that are optimized while training. However,
the performance of cross-validation approaches depends on (i) the num-
ber of variants of the learning models — if too few models are tuned
we may miss the global optimum or if too many we may over-fit (Rao
et al., 2008); (ii) the optimal division of the folds — observations must
be i.i.d. and the distribution of the target variable must be similar across
different folds; and (iii) the number of observations available — too few
and it is not possible to correctly implement 𝑘-fold cross-validation.

Due to the centrality of the problem, alternative approaches have
been proposed in the literature. Among many, Reiners et al. (2022) and
Burke and Flanders (1995) explain how a key aspect in the learning and
training of deep neural network is the capability of correctly selecting
the network architecture. An optimal network structure ensures not
only to avoid overparameterization and overfitting, but also to improve
the optimization performance. Burke and Flanders (1995) propose to
leverage a new class of networks called ontogenic neural networks that
iteratively learn the optimal network structure during backpropagation
via prototype units. Conversely, Reiners et al. (2022), suggest to con-
sider a biobjective optimization problem. Implementing such a strategy
entails differentiating – while training the neural network – between
a measure used for prediction accuracy evaluation (e.g., cross-entropy
in classification problems), and a penalty function used to assess the
total complexity of the network parameters. This final component is
coupled with a pruning algorithm that reduces the network structure
while adding minimal additional computational cost.

In this paper, we show that it is possible to optimize the network
architecture based on recent theoretical contributions that characterize
the minimum expressive power of rectifier networks, i.e. a novel Neural
Architecture Search (NAS) method for DNNs with ReLu activation
functions. Similar approaches based on completely different techniques
have been recently studied to automate the discovery of top-performing
neural networks, e.g. TE-NAS by Chen and Gong (2021) or NASWOT
by Mellor et al. (2021). The relevant question is whether we can
select the best neural architectures without involving any training and,
therefore, eliminating a large portion of the search cost. While Chen
and Gong (2021) propose a novel framework called training-free neural
architecture search (TE-NAS) based on optimally balancing the ex-ante
trainability of the network and its expected accuracy, Mellor et al.’s
(2021) method relies instead in identifying and minimizing the num-
ber of input space regions ‘blind’ to the neural network architecture.
Instead, we propose an alternative methodology based on optimizing
the allocation of units within and across layers so that the lower bound
on the maximal number of linear regions approximated by ReLu DNNs
is maximized. In doing so, we reduce the set of hyperparameters to be
determined by cross-validation to the learning rate, number of epochs
2

and drop-out rates. By optimizing width and depth prior to training
architectures of a given size, our proposed method substantially saves
upon the necessary time and computing power involved in tuning while
training. More importantly, we reduce the approximation error and
improve, in turn, the predictive ability of the DNN.

In most problems, it is not possible to obtain the number of active
regions corresponding to the continuous piecewise linear functions
expressed by rectifier networks. We approximate this number by the
lower bound, more specifically, we focus on maximizing the lower
bound of the theoretical maximal number of linear regions for a given
dimension of the input variables and choice of nodes. By doing so,
we obtain an architecture of the neural network that guarantees a
theoretical minimum maximal number of active regions. Our study
considers as benchmark the lower bound derived by Montufar et al.
(2014) for deep fully-connected ReLU neural networks. Following their
work, various results on the lower and upper bounds for the maximal
number of linear regions of fully-connected ReLU neural networks have
been obtained (Bianchini and Scarselli, 2014; Telgarsky, 2016; Poole
et al., 2016; Montufar, 2017; Raghu et al., 2017; Serra et al., 2018;
Croce et al., 2018; Serra et al., 2018; Hanin and Rolnik, 2019a,b).
Xiong et al. (2020) obtain upper and lower bounds for the number of
linear regions of multi-layer ReLU convoluted neural networks (CNNs).
We focus on maximizing the lower bound because the upper bound is
uninformative as the actual theoretical maximal number of activation
regions may be far below the upper bound. Interestingly, though, the
literature concerned with deriving upper bounds of the expressivity of
a neural network is much more abundant than the literature studying
lower bounds, see recent contributions by Raghu et al. (2017), Mont-
ufar (2017), Serra et al. (2018) and Hanin and Rolnik (2019a,b), as
seminal contributions deriving theoretical and empirical upper bounds
for the average and maximal number of linear regions approximated
by rectifier networks.

Our choice of objective function for searching an optimal neural
network architecture is derived from Montufar et al. (2014), but can
be challenged from different angles. Many expressible functions are
not efficiently learnable, at least by gradient descent (Shalev-Shwartz
et al., 2017). Hanin and Rolnik (2019a,b) show that to adequately
explain the power of deep learning it is necessary to consider networks
with parameters as they will naturally occur before, during, and after
training. These authors find that the number of linear regions is far
below exponential (theoretical maximum). The typical behavior of a
network used in practice, or practical expressivity, lags significantly
behind its theoretical expressivity. Hanin and Rolnik (2019a,b) also
suggest that for certain measures of complexity, trained deep networks
are remarkably similar to the same networks at initialization implying
that the improvement in the expressivity of the neural network during
training is small. We overcome some of these criticisms with our
proposed NAS optimization for rectifier networks. Other aspects such
as the difference between the practical and theoretical expressivity of
the neural networks are of an empirical nature and need to be studied
on a case-by-case basis.

We assess empirically the performance of our optimal rectifier net-
work architecture by measuring its predictive ability in different simu-
lation experiments and in a toy example widely used in the empirical
machine learning literature. The simulation exercise evaluates the out-
of-sample performance of deep neural networks equipped with our
optimal architecture against different benchmarks, depending on the
data generating process considered. The main competitors that we
consider for nonlinear data generating processes are state-of-the-art
methods such as 𝑘-fold cross-validation and randomized grid search.
In this setting, the predictive ability of our approach is shown to be
superior to those methods. The simulation section also considers a
linear data generating process that helps us understand the limits of
our optimization procedure. We do this by comparing the predictions
of our optimal DNN against the predictions of ordinary least squares
(OLS) methods, that are known to be best linear unbiased estimators

(BLUE) in linear settings. The out-of-sample mean square prediction
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error (MSPE) and mean absolute prediction error (MAPE) obtained
from our optimized ReLU DNN are comparable to those obtained from
OLS methods in this unfavorable setting.

Empirically, we apply our optimal architecture to a ReLu DNN with
the aim of predicting median house prices from the Boston Housing
Dataset. The dataset originally adopted by Harrison and Rubinfeld
(1978) for modeling willingness to pay for clean air in the Boston area
is a toy example extensively used in the machine learning literature
to validate new learning techniques; such as Al Bataineh and Kaur
(2018), Papadopoulos and Haralambous (2011), Granitto et al. (2001),
Nado et al. (2018), Bakker and Heskes (2003), Myshkov and Julier
(2016), and Zhou et al. (2001). The optimal structure selected by our
novel methodology is a DNN with three layers and nodes equal to
[52, 39, 39]. Our results provide an improvement in prediction accuracy
MSE) in between 28.55% and 47.32% in comparison to those studies
nd highlight the performance gains of our optimal DNN for prediction
elative to the aforementioned studies.

The accuracy of the approximation function provided by our optimal
NN model not only depends on the disposition of the network in

erms of width and depth. It also depends on the number of nodes in
he neural network. Our method is flexible on the number of nodes
nd allows to experiment with different choices depending on the
omplexity of the problem and dimension of the dataset.

Our work is also strictly related to the literature in operation
esearch that has studied the application of neural network models
o different areas of knowledge. For example, the literature focusing
n on-line training aims at defining training strategies that reduce
he computational time of deep structure to ensure continuous model
pdate. The optimal network structure identification strategy proposed
n the present paper could be coupled with the Tabu Search approach
roposed by Marti and El-Fallahi (2004) to enhance the Multi-Start
rocedure. Alternatively, focusing on the branch of the literature study-
ng the network training performance, the feature engineering strategy
eveloped by Piramuthu et al. (1998) that ensures reduction in training
omplexity, could also be leveraged to provide an optimal feature di-
ension strategy to be used by the approach proposed in the following
aper.

The rest of the paper is organized as follows: Section 2 reports
he definitions and notations used in the paper, briefly reviewing
he relationship between function class expressivity and universal ap-
roximation theorems for rectifier networks. Section 3 presents the
ovel methodology used for neural architecture search (NAS), reporting
umerical results for the optimization. Section 4 presents a Monte Carlo
imulation exercise that provides empirical evidence in finite samples
f the performance of our method in improving the out-of-sample
oodness of fit of deep neural networks for different data generating
rocesses and input dimensions. In Section 5 the novel methodology is
pplied to the Boston Housing dataset. Section 6 concludes.

. Background

Section 2.1 introduces relevant definitions and notations, briefly
eviewing the literature on universal approximation theorems and the
elation that subsists between continuous piecewise linear functions
CPWL) and rectifier networks (i.e. ReLu DNNs). Section 2.2 reports
he main theory analyzing the number of linear regions approximated
y both shallow and deep neural networks, illustrating the width-depth
rade-off in the allocation of hidden units that informs our neural
rchitecture search (NAS) strategy in Section 3.

Let 𝑦𝑖 for 𝑖 = 1,… , 𝑛 denote the outcome variable of interest and
𝑖 = (𝑥1𝑖,… , 𝑥𝑑𝑖) a set of input variables used to predict the outcome.

The contribution of the different variables is assumed to be additive
such that

𝑦 = 𝑓 (𝐱 ) + 𝜀 , (1)
3

𝑖 𝑖 𝑖
with 𝜀𝑖 interpreted as an error term. The question of interest is to
approximate the unknown function 𝑓 (𝐱). Under the assumption that the
function 𝑓 (𝐱) is linear on the observable input variables, OLS estimation
provides unbiased, consistent and efficient estimators of the coeffi-
cients associated to 𝐱. Nonlinear specifications of 𝑓 (𝐱), the presence
of unobserved heterogeneity, high-dimensional problems and complex
datasets, require of alternative methods to approximate the function
𝑓 (𝐱). Recent advances in machine learning have shown that neural
network methods provide accurate predictions that do not require of
specific knowledge of the data generating process and, hence, are not
affected by model misspecification. Neural networks approximate the
function of interest by combining and composing different types of
activation functions over one or more layers of nodes.

2.1. Definitions and notations

We will consider throughout the family of Rectified Linear Unit
(ReLU) activation functions. These functions have proved recently more
suitable to deep learning problems than sigmoidal activation functions
(Jarrett et al., 2009; Nair and Hinton, 2010; Goodfellow et al., 2016;
Géron, 2019). A ReLu activation function is defined as follows. Let
𝜃(𝐱) ∶ R𝑑 → R𝑑 , with

(𝐱) = (max{0, 𝑥1},max{0, 𝑥2},… ,max{0, 𝑥𝑑}),

where 𝑑 is the dimension of the input variables. One prominent ad-
vantage of ReLu functions is the projection property given by 𝜃◦𝜃 = 𝜃,
where ◦ denotes function composition (Schmidt-Hieber, 2017).

The corresponding DNN with ReLu activation functions is repre-
sented in Fig. 1 and defined as follows.

Definition 1 (ReLu DNN). For any two natural numbers 𝑑, 𝑛2 ∈ N,
which are called input and output dimension respectively, a R𝑑 →

R𝑛2 ReLu DNN is given by specifying a natural number 𝑁 ∈ N, a
sequence of 𝑁 natural numbers 𝑍1, 𝑍2,… , 𝑍𝑁 and a set of 𝑁 +1 affine
transformation 𝑇1 ∶ R𝑑 → R𝑍1 , 𝑇𝑖 ∶ R𝑍𝑖−1 → R𝑍𝑖 for 𝑖 = 2,… , 𝑁 and
𝑇𝑁+1 ∶ R𝑍𝑁 → R𝑛2 . Such a ReLu DNN is called a (𝑁 + 1)-layer ReLu
DNN, and is said to have 𝑁 hidden layers. The function 𝐺 ∶ R𝑑 → R𝑛2

represented by this ReLu DNN is:

𝐺 = 𝑇𝑁+1◦𝜃◦𝑇𝑁◦⋯◦𝑇2◦𝜃◦𝑇1. (2)

The depth of a ReLu DNN is defined as 𝑁 + 1. The width of the 𝑛th
hidden layer is 𝑍𝑛, and the width of a ReLu DNN is max{𝑍1,… , 𝑍𝑁}.

he size of the ReLu DNN is 𝑍 = 𝑍1 + 𝑍2 + ⋯ + 𝑍𝑁 . The number of
ctive weights (different from zero) in the 𝑛th hidden layer of a fully
onnected ReLu DNN is 𝑤𝑛 = 𝑍𝑛 ×𝑍𝑛−1. The number of active weights in
fully connected ReLu DNN is then 𝑤1 +𝑤2 +⋯ +𝑤𝑁 . Moreover, we
ave that:

𝑛 = 𝐖(𝑛)𝐱 + 𝐛(𝑛), (3)

here - for 𝑁 = 1 - 𝐖(𝑛) ∈ R𝑍1×𝑑 , 𝐱 ∈ R𝑑×1 is the input layer, and
(𝑛) ∈ R𝑍1 . For 𝑁 ≠ 1, 𝐖(𝑛) ∈ R𝑍𝑛×𝑍𝑛−1 , 𝐱 is the value from the previous
idden layer 𝐡𝑛−1 ∈ R𝑍𝑛−1 , and 𝐛(𝑛) ∈ R𝑍𝑛 .

The ReLu activation function can be also formulated as 𝜃(𝑠) = I(𝑠)⋅𝑠,
where I(𝑠) is an indicator function that takes a value of 1 if 𝑠 > 0 and
ero, otherwise. Using this characterization of the activation function,
ee Pascanu et al. (2013), we can define a single hidden layer ReLu
eural network 𝐺 ∶ R𝑑 → R as

(𝐱) = 𝝎⊤
𝑂diag

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

I(𝐖(1)
1 𝐱 + 𝑏(1)1 )

⋮
I(𝐖(1)

𝑍1
𝐱 + 𝑏(1)𝑍1

)

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

(𝐖(1)𝐱 + 𝐛(1)) + 𝑏𝑂 , (4)

here 𝐖(1)
𝑗 identifies row 𝑗 for 𝑗 = 1,… , 𝑍1 of the matrix 𝐖(1) ∈ R𝑍1×𝑑 ,

∈ R𝑑×1 is the input layer, 𝑏(1)𝑗 ∈ R is the element 𝑗 for 𝑗 = 1,… , 𝑍1 of
he random vector 𝐛(1) ∈ R𝑍1 , 𝝎 ∈ R𝑍1 , and 𝑏𝑂 ∈ R.
𝑂
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Definition 2 (Continuous Piecewise Linear Functions (Arora et al., 2018)).
We say a function 𝐺 ∶ R𝑑 → R is continuous piecewise linear (CPWL) if
here exists a finite set of closed sets whose union is R𝑑 , and 𝐺 is affine
inear over each set (note that the definition automatically implies the
ontinuity of the function). The number of pieces of 𝐺 is the number
f maximal connected subsets of R𝑑 over which 𝐺 is affine linear.3

So-called universal approximation theorems (Cybenko, 1989; Hornik
991; Anthony and Bartlett, 1999) show that even with a single hidden
ayer, i.e., when the depth of the architecture is the smallest possible
alue, one can approximate arbitrarily well any continuous function by
ncreasing the size of the network or the number of neurons used in the
eural network. While this suggests that single layer networks are good
nough from a learning perspective, Hertrik et al. (2021) have recently
ound that for rectifier networks (ReLu DNNs), (i) the class of CPWL
unctions represented by a single layer is a strict subset of the class of
PWL functions represented by two or more hidden layers, obtaining
ii) precise bounds on the size of the network of a given depth that can
epresent CPWL functions. Telgarsky (2016), Eldan and Shamir (2016),
r Arora et al. (2018), show that it can be advantageous theoretically
o increase the depth because a substantial reduction in the size can be
chieved. Being the expressivity of the unknown function to be learned
y rectifier networks characterized by the number of linear regions
pproximated by it (e.g. Montufar et al., 2014; Pascanu et al., 2013;
aghu et al., 2017 or Hanin and Rolnik, 2019a), Hertrik et al. (2021)
rovide a theoretical link between universal approximation theorems
nd the number of linear regions that informs our neural architecture
earch (NAS) strategy.

.2. Number of linear regions

Definition 1 shows that each hidden unit has two operational nodes,
ne takes a value of zero and the other takes a positive value. The
oundary between these two operational regions is given by the hy-
erplane 𝐻𝑗 consisting of all the inputs 𝐱 ∈ R𝑑 with 𝐖(𝑛)

𝑗 𝐱 + 𝑏(𝑛)𝑗 .
herefore, the number of linear regions represented by a shallow ReLu
eural network of size 𝑍1 is defined by the number of regions defined
y the set of hyperplanes {𝐻𝑗}𝑗∈[𝑍1]. Zaslavsky (1975) proves that an
rrangement of 𝑛 hyperplanes can divide an R𝑑 dimensional space in a
umber of regions equal to ∑𝑑

𝑠=0
(𝑛
𝑠

)

.
Being each hidden node in a shallow network a hyperplane, we can

onsider the hidden layer in shallow ReLu networks as an arrangement
f hyperplanes, and thus by extending the result of Zaslavsky (1975) it
s possible to obtain the number of linear regions approximated by a
hallow ReLu Network (Pascanu et al., 2013) as
𝑑
∑

𝑠=0

(

𝑍1
𝑠

)

. (5)

ontufar et al. (2014) extend the result of Pascanu et al. (2013) and
btain the following lower bound to the maximal number of linear
egions represented by a ReLu DNN (with 𝑁 layers) of size 𝑍 =
𝑁
𝑗=1 𝑍𝑗 :

(𝑁−1
∏

𝑗=1

⌊𝑍𝑗

𝑑

⌋𝑑) 𝑑
∑

𝑠=0

(

𝑍𝑁
𝑠

)

(6)

where ⌊⋅⌋ defines the ‘‘floor operator’’ which is the function that returns
the greatest integer less than or equal to its real input argument. Based
on the definition of ReLu DNN (Definition 1), Montufar et al. (2014)
state that each hidden layer in a deep feedforward neural network
folds the space of the previous hidden layer, with the recursive folding
of the input space being determined by 𝐖 and 𝐛. This space folding
implies that the final function computed by the last hidden layer

3 The number of pieces where 𝐺 is affine linear and the number of linear
egions are used as synonyms throughout the paper.
4

(arrangement of 𝑍𝑁 hyperplanes) is applied to all the subsets identified
y the succession of foldings performed by the deep structure, which
or each hidden layer, divides the set of ReLu activation functions in 𝑑
on-overlapping subsets of cardinality ⌊𝑍𝑗∕𝑑⌋.

Corollary 6 of Montufar et al. (2014) compares the expressive
power of single layer ReLu NNs with ReLu DNNs of same size 𝑍 and
conclude that if the number of input variables 𝑑 is 𝑂(1), then the
number of linear regions approximated by the latter DNN behaves
as 𝛺

(

𝑁−𝑁𝑑𝑑−(𝑁−1)𝑑𝑍𝑁𝑑).4 In contrast, the number of linear regions
approximated by its shallow NN counterpart behaves as 𝑂

(

𝑍𝑑). There-
fore, the number of regions grows exponentially in depth (𝑁) and
polynomially in width ( 𝑍

𝑁 ) in ReLu DNNs, which is much faster than
the polynomial growth of shallow ReLu NNs of same size 𝑍. Thus,
an increase in depth of a neural network should always lead to an
exponential increase in the number of linear regions approximated by a
ReLu DNN, which according to Hertrik et al. (2021), results in a better
fit of the DNN architecture to the input data.5

The above results also suggest that a deep neural network is able
to represent the same number of linear regions of a shallow network
with a lower number of trainable parameters (hidden units). However,
empirical studies show that this is not always the case (e.g. Pasupa and
Sunhem, 2016; Kim and Gofman, 2018), motivating the ‘information
bottleneck effect’ behind the width-depth trade-off identified by Serra
et al. (2018). The following numerical examples make use of Eqs. (5)
and (6) to illustrate Serra et al.’s (2018) width-depth trade-off, upon
which we build our neural architecture search (NAS) strategy.

Let us consider a ReLu DNN given by 𝑑 = 4 and 𝑍 = 30. The number
f linear regions approximated by a shallow network is ∑4

𝑠=0
(30
𝑠

)

=
1931. In contrast, if we consider a ReLu DNN with 𝑁 = 2, we can
ither have

⌊

7
4

⌋4
∑4

𝑠=0
(23
𝑠

)

= 10903 for 𝑍1 = 7 and 𝑍2 = 23 or
⌊

8
4

⌋4
∑4

𝑠=0
(22
𝑠

)

= 145744, for 𝑍1 = 8 and 𝑍2 = 22. Similarly, if we
increase the depth of the ReLu DNNs to 𝑁 = 3, we can either have
(

⌊

8
4

⌋4 ⌊ 8
4

⌋4
)

∑4
𝑠=0

(14
𝑠

)

= 376576 for 𝑍1 = 8, 𝑍2 = 8 and 𝑍3 = 14

r
(

⌊

7
4

⌋4 ⌊ 7
4

⌋4
)

∑4
𝑠=0

(16
𝑠

)

= 2517, for 𝑍1 = 7, 𝑍2 = 7 and 𝑍3 =

16. Finally, if we increase the depth to 𝑁 = 4, we can either have
(

⌊

8
4

⌋4 ⌊ 8
4

⌋4 ⌊ 8
4

⌋4
)

∑4
𝑠=0

(6
𝑠

)

= 233472 for 𝑍1 = 8, 𝑍2 = 8, 𝑍3 = 8 and

𝑍4 = 6 or
(

⌊

7
4

⌋4 ⌊ 7
4

⌋4 ⌊ 7
4

⌋4
)

∑4
𝑠=0

(9
𝑠

)

= 256, for 𝑍1 = 7, 𝑍2 = 7, 𝑍3 = 7

and 𝑍4 = 9.
These examples show that under certain conditions a shallow net-

work can provide better expressivity of the neural network than a DNN.
The following results provide sufficient conditions that guarantee this
result. Let 𝑍 = 𝑧 denote the total number of hidden nodes in the ReLu
DNN.

Lemma 1. Let a ReLu DNN satisfy the condition (𝑍1∕𝑑) < 2. Then, the
number of linear regions approximated by the ReLu DNN is lower than the
number of linear regions approximated by the shallow network counterpart.

The proof of this result is immediate by noting that the condition
(𝑍1∕𝑑) < 2 implies the following:
⌊

𝑍1
𝑑

⌋𝑑 𝑑
∑

𝑠=0

(

𝑧 −𝑍1
𝑠

)

<
𝑑
∑

𝑠=0

(

𝑧
𝑠

)

, (7)

hat represent the expressivity of a DNN (left expression) and a shallow
eural network (right expression). This proposition can be extended to
onsider the condition (𝑍𝑗∕𝑑) < 2 for all 𝑗 = 1,… , 𝑁−1. More formally,

4 Two real-valued functions 𝑓 (ℎ) and 𝑔(ℎ) satisfy that 𝑓 (ℎ) = 𝛺(𝑔(ℎ)) if there
is a positive constant 𝑐 such that 𝑓 (ℎ) ≥ 𝑐𝑔(ℎ), for all ℎ sufficiently large.

5 For completeness, we also note that an upper bound for the maximal
number of linear regions of a function approximated by a network architecture

with rectified linear units of size 𝑍 is of order 𝑂
(

[

𝑍
𝑁

]𝑍𝑑
)

, as recently shown

by Raghu et al. (2017), Theorem 1).
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Lemma 2. Let a ReLu DNN of depth 𝑁 satisfy the condition (𝑍𝑗∕𝑑) < 2
for 𝑗 = 1,… , 𝑁 − 1. Then,
(𝑁−1
∏

𝑗=1

⌊𝑍𝑗

𝑑

⌋𝑑) 𝑑
∑

𝑠=0

(

𝑧 −
∑𝑁−1

𝑗=1 𝑍𝑗
𝑠

)

<
𝑑
∑

𝑠=0

(

𝑧
𝑠

)

. (8)

Under the conditions in these lemmas, we cannot guarantee that
the architecture of the DNN improves over the architecture of the
corresponding shallow network.

3. Optimal deep neural network structure

In this section we derive an optimal architecture of the DNN based
on expression (6). This optimal architecture is obtained before bringing
the model to the data, in line with but very different from recent neural
architecture search (NAS) contributions (e.g. TE-NAS by Chen and Gong
(2021) or NASWOT by Mellor et al. (2021)). In a second stage, we show
how the optimal DNN outperforms cross-validation methods under
mean square error (MSE) evaluation criteria implemented to simulated
data (Section 4 ) and a real data example in Section 5.

3.1. Maximizing the lower bound of the number of linear regions

Our strategy for the identification of the optimal structure of a
neural network is to maximize the lower bound of the maximal number
of linear regions approximated by the ReLu DNN. By doing so, our aim
is to maximize the expressivity of the ReLu DNN. The above subsection
shows that not always DNNs outperform shallow networks as some of
the recent literature confirms, see Serra et al. (2018). Our aim is to
provide a methodology that allows us to maximize the expressivity of
the neural network. We choose the lower bound of the number of linear
regions derived by Montufar et al. (2014) in expression (6) but other
objective functions are also possible.6 Our optimization problem is to
choose the optimal number of hidden layers 𝑁 and nodes per layer
(𝑍1,… , 𝑍𝑁 ), for a given neural network size 𝑧. More formally, our
optimization problem is laid out as follows:

max
𝑁,{𝑍𝑙}𝑁𝑙=1

(𝑁−1
∏

𝑗=1

⌊𝑍𝑗

𝑑

⌋𝑑) 𝑑
∑

𝑠=0

(

𝑍𝑁
𝑠

)

s.t. 𝑍1 +𝑍2 +⋯ +𝑍𝑁 = 𝑧

𝑍𝑗 ≥ 𝑑 for 𝑗 = 1, 2,… , 𝑁

(9)

The number of nodes cannot be smaller than 𝑑 since the difference
enters the denominator of the binomial coefficient in Eq. (6). Note
that this is a standard assumption in the literature (Montufar et al.,
2014; Pascanu et al., 2013; Mei et al., 2018; Hornik, 1991), and that
— as stated by Aggarwal (2018) - the ’’probabilistic regularization’’ char-
acterizing the stochastic gradient descent learning algorithm ensures
a proper training of the hidden layers. The optimization procedure
is complex and, in most cases, difficult to obtain analytically. The
Lagrangian of the above objective function is

max
(𝑁,{𝑍𝑙}𝑁−1

𝑙=1 ,{𝜇𝑙}𝑁𝑙=1)
𝐿𝐵(𝑁, {𝑍𝑙}𝑁−1

𝑙=1 ; 𝑑) +
𝑁−1
∑

𝑙=1
𝜇𝑙(𝑑 −𝑍𝑙) + 𝜇𝑁 (−𝑁)

where {𝜇𝑙}𝑁𝑙=1 ∈ R𝑁 denotes the collection of 𝑁 Lagrange multipliers
associated with the 𝑁 − 1 constraints, 𝑍𝑙 ≥ 𝑑, 𝑙 = 1,… , 𝑁 − 1,
and with the constraint 𝑁 > 0, because we have incorporated the
equality constraint 𝑍 =

∑𝑁
𝑙=1 𝑍𝑙 into the lower bound objective func-

tion; 𝐿𝐵(𝑁, {𝑍𝑙}𝑁−1
𝑙=1 ; 𝑑) ≡

(

∏𝑁−1
𝑙=1

⌊

𝑍𝑙
𝑑

⌋𝑑
)

∑𝑑
𝑟=0

(𝑍−
∑𝑁−1

𝑙=1 𝑍𝑙
𝑟

)

. This is

6 By maximizing the lower bound of the number of linear regions we follow
minimax strategy that aims to provide an optimal architecture of the ReLu

eural network under the worst case scenario. Other authors such as Montufar
2017) or Hanin and Rolnik (2019b) focus on the upper bounds or the expected
umber of linear regions, respectively.
5

a

a combinatorial optimization problem because the decision variables
{𝑁,𝑍1,… , 𝑍𝑁−1} are integer values. Judd (1990) shows that optimiz-
ing a NN is an NP-hard problem, meaning that a polynomial time
algorithm that solves it is not known but could be found.7

One could instead try to approximate the combinatorial optimiza-
tion problem by its continuous counterpart and obtain the following
first order conditions (FOCs) characterizing an approximate optimal
solution:

𝜕𝑍𝑙′
𝐿𝐵(𝑁∗, {𝑍∗

𝑙 }
𝑁∗−1
𝑙=1 ; 𝑑) − 𝜇𝑙′ = 0, for 𝑙′ = 1,… , 𝑁 − 1,

𝜕𝑁𝐿𝐿𝐵(𝑁∗, {𝑍∗
𝑙 }

𝑁∗−1
𝑙=1 ; 𝑑) − 𝜇𝑁 = 0,

𝜇𝑙′ (𝑑 −𝑍∗
𝑙′ ) = 0, for 𝑙′ = 1,… , 𝑁 − 1

−𝜇𝑁𝑁∗ = 0.

(10)

he FOCs of this problem represent a system of 2𝑁 equations in 2𝑁
nknowns, (𝑁∗, {𝑍∗

𝑙 }
𝑁∗−1
𝑙=1 , {𝜇∗

𝑙 }
𝑁∗

𝑙=1) ∈ R2𝑁 . Note, however, that the
umber of equations and the number of unknowns is part of the solu-
ion of the problem, 𝑁∗, which is ‘problematic’. Typically, this problem
an be solved in two stages: a first step that – given 𝑍 = 𝑧 and 𝑁 – iden-
ifies the optimal layerwise widths of the network (𝑍∗

1 ,… , 𝑍∗
𝑁 ); and a

econd step that given the optimal widths for different depths, identifies
he optimal depth of the network 𝑁∗ such that the optimal network
rchitecture is given by the vector (𝑍∗

1 ,… , 𝑍∗
𝑁∗ ). In this case the above

agrangian function simplifies but it is still a complex exercise.
We illustrate the latter optimization procedure with a simple ex-

rcise with 𝑑 = 2 and 𝑍1 + 𝑍2 = 𝑍, so that 𝑁 = 2 > 0 and the
orresponding constraint is omitted for simplicity (𝜇3 = 0). If 𝑍1 is an
ven number the optimization problem in the first step is

(𝑍1, 𝑍2;𝜇) =
(

𝑍1
2

)2 [

1 +𝑍2 +
𝑍2(𝑍2 − 1)

2

]

− 𝜇[𝑍1 +𝑍2 −𝑍].

The FOCs of this problem with respect to 𝑍1, 𝑍2 are

𝜕L
𝜕𝑍1

=
𝑍1
2

2
∑

𝑠=0

(

𝑍2
𝑠

)

− 𝜇 = 0

𝜕L
𝜕𝑍2

=
(

𝑍1
2

)2
( 1
2
+𝑍2

)

− 𝜇 = 0

𝜕L
𝜕𝜇

= −𝑍1 −𝑍2 +𝑍 = 0.

Solving the above system, we obtain that:

𝑍1
2

[

1 +𝑍2 +
𝑍2(𝑍2 − 1)

2

]

=
(

𝑍1
2

)2
( 1
2
+𝑍2

)

𝑍1 +𝑍2 = 𝑍

rom which:

1 +
𝑍2
2

+
𝑍2

2
2

)

=
(

𝑍 −𝑍2
2

)

( 1
2
+𝑍2

)

. (11)

Similarly, if 𝑍1 is an odd number the optimization problem is

L(𝑍1, 𝑍2;𝜇) =
(

𝑍1 − 1
2

)2 [

1 +𝑍2 +
𝑍2(𝑍2 − 1)

2

]

− 𝜇[𝑍1 +𝑍2 −𝑍].

The FOCs of this problem with respect to 𝑍1, 𝑍2 are

𝜕N
𝜕𝑍1

=
𝑍1 − 1

2

2
∑

𝑠=0

(

𝑍2
𝑠

)

− 𝜇 = 0

𝜕L
𝜕𝑍2

=
(

𝑍1 − 1
2

)2
( 1
2
+𝑍2

)

− 𝜇 = 0

𝜕L
𝜕𝜇

= −𝑍1 −𝑍2 +𝑍 = 0,

7 Algorithms that require an ‘intractable’ exponential amount of time to find
solution are called NP.
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Fig. 1. ReLu Deep Neural Network with bias terms 0.
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and solving the above system, we obtain that:

𝑍1 − 1
2

[

1 +𝑍2 +
𝑍2(𝑍2 − 1)

2

]

=
(

𝑍1 − 1
2

)2
( 1
2
+𝑍2

)

𝑍1 +𝑍2 = 𝑍

rom which:

1 +
𝑍2
2

+
𝑍2

2
2

)

=
(

𝑍 −𝑍2 − 1
2

)

(1
2
+𝑍2

)

. (12)

o obtain a numerical solution, let 𝑧 take a specific value for the num-
er of total nodes 𝑍, e.g. 𝑧 = 60. Then, the first order conditions (11)
nd (12) accept the following two solutions:

𝑍∗
2 = (117 +

√

14585)∕8 = 29.72 ≈ 30
𝑍∗

2 = (117 −
√

14585)∕8 = −0.47 ≈ 0
(13)

n this case the only feasible solution is 𝑍∗
2 = 30 that entails 𝑍∗

1 = 30.
he computation of the Bordered Hessian matrix

𝐵 =
⎡

⎢

⎢

⎣

0 𝑔1 𝑔2
𝑔1 L11 L12
𝑔2 L21 L22,

⎤

⎥

⎥

⎦

(14)

hows that the solution 𝑍∗
1 = 𝑍∗

2 = 30 yields a maximum. Note that
𝑖 indicates the derivatives of the constrains with respect to the choice
ariables (𝑍𝑖), and L𝑖𝑗 captures the second and cross-partial derivatives
f the Lagrange function. Therefore, for a depth of 2 and 𝑧 = 60, the
ptimal architecture of the ReLu neural network is given by two layers
f equal length. To complete the solution, in the second step, we would
eed to repeat the maximization exercise for 𝑁 = 3 and beyond up
o 𝑁 ≤ ⌈

𝑧
𝑑 ⌉. The optimal architecture of the ReLu neural network is

efined by the quantities (𝑁∗, 𝑍∗
1 ,… , 𝑍∗

𝑁∗ ).

The left panel of Fig. 2 plots the function
⌊

𝑍1
2

⌋2 [
1 + 𝑧−𝑍1

2 + (𝑧−𝑍1)2

2

]

assuming that 𝑍1 is a real number defined on the set 𝑍1 ∈ [2, 𝑧 − 2],
or 𝑧 = 60. The plot shows the saw type function implied by the
loor operator. Despite this, the existence of a global maximum is clear
nd is found at 𝑍∗

1 = 30 as shown in our analytical derivation. For
ompleteness, we also plot in the right panel the smooth version of
unction (6) that does not consider the floor operator.

The above example confirms the presence of an interior solution to
6

he optimization problem (9) for low-dimensional DNNs. In practice,
he difficulty of the optimization for realistic values of the number of
odes and layers implies that the solution to (9) needs to be achieved
hrough numerical methods.

.2. Numerical optimization

The multivariate optimization imposes restrictions on the optimal
ariables: each hidden layer must be defined by a number of hidden
odes which is at least equal to the input dimension, and the maximum
umber of hidden nodes allowed per hidden layer must guarantee that
he remaining hidden layers have a number of hidden units at least
qual to the input dimension.

Under these optimization constraints, a simple procedure to obtain
he solution to (9) for a given number of nodes 𝑧 is to evaluate the
bjective function for all possible combinations of integer numbers
hat satisfy the constraints 𝑍1 + 𝑍2 + ⋯ + 𝑍𝑁 = 𝑍 and 𝑍𝑗 ≥ 𝑑

for 𝑗 = 1,… , 𝑁 . This is the low-dimensional version of the nonlinear
integer programming method discussed above. This procedure yields
exact solutions to the optimization problem (9) for low values of 𝑁 and
𝑍. However, the problem becomes computationally intractable as 𝑁
and, in particular, 𝑍 increase. In this scenario quasi newton algorithms
designed to solve constrained optimization problems are more suitable.
In particular, the L-BFGS-B algorithm, which is the limited-memory
quasi newton algorithm designed to solve constrained optimization
problems, is used to return the parameters that optimize the objective
function (9). The obtained solutions are also compared against the
SLSQP – Sequential Least Squares Programming algorithm – optimizer
implemented on Pytorch. Both algorithms – in contrast to others, such
as the Stochastic Gradient Descent – allow for the floor operator to be
taken care of. The comparison between the L-BFGS-B and the SLSQP
algorithm is conducted solely with the intention to control for the
correct convergence of the former, as they both provide satisfactory
solutions.

The numerical optimization exercise is illustrated for a total number
of hidden nodes equal to 𝑍 = 60, and different number of input
variables with 𝑑 = 2, 3, 4, 5, 6. We report the optimal widths for different
depths; the optimized structure will be identified by the combination of
depth and width that maximizes the minimum number of linear regions

approximated by the ReLu DNN.
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Fig. 2. The Figure reports the lower bound to the maximal number of linear regions for the ReLu DNN considered in the above maximization problem.

Fig. 3. The Figure reports the number of linear regions as a function of the depth and the different combinations obtainable with the given number of hidden nodes. Sub-Figures
𝑎.1 and 𝑏.1 report the plane project of the number of linear regions as a function of the possible structures associated to 𝑑 = 2 and 𝑑 = 3 and three hidden layers. Sub-Figures 𝑎.2
and 𝑏.2 report the number of linear regions as a function of the depth of the neural network and the possible structures for a given number of hidden nodes.
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Table 1
Maximum and Minimum number of linear regions for ReLu DNN. In red are highlighted the cases where a shallow network outperforms a deep one. In blue are highlighted
the cases in which an increase in depth leads to a decrease in the number of linear regions approximated by the ReLu DNN. Optimal Structure 1 is obtained by maximizing the
objective function, Optimal Structure 2 by minimizing it.

Shallow Network
2 Hidden Layers 3 Hidden Layers 4 Hidden Layers 5 Hidden Layers 6 Hidden Layers 7 Hidden Layers N. Regions

Input Dimension: 2
Optimal Structure 1 (30, 30) (20, 20, 20) (16, 16, 14, 14) (12, 12, 12, 12, 12) (10, 10, 10, 10, 10, 10) (10, 10, 8, 8, 8, 8, 8)
Optimal Structure 2 (3, 57) (3, 3, 54) (3, 3, 3, 51) (3, 3, 3, 3, 48) (3, 3, 3, 3, 3, 45) (3, 3, 3, 3, 3, 3, 42) 1831
Minimum Regions 1654 1486 1327 1177 1036 904
Maximum Regions 104850 2110000 21274624 132689664 546875000 1515520000

Input Dimension: 3
Optimal Structure 1 (30, 30) (21, 21, 18) (15, 15, 15, 15) (12, 12, 12, 12, 12) (12, 12, 9, 9, 9, 9) (9, 9, 9, 9, 9, 9, 6)
Optimal Structure 2 (5, 55) (5, 5, 50) (5, 5, 5, 45) (5, 5, 5, 5, 40) (5, 5, 5, 5, 5, 35) (5, 5, 5, 5, 5, 5, 30) 36051
Minimum Regions 27776 20876 15226 10701 7176 4526
Maximum Regions 4526000 116237212 1125000000 5016387584 10480803840 16271660538

Input Dimension: 4
Optimal Structure 1 (28, 32) (20, 20, 20) (16, 12, 16, 16) (12, 12, 12, 12, 12) (12, 12, 12, 8, 8, 8) (12, 8, 8, 8 , 8, 8, 8)
Optimal Structure 2 (7, 53) (7, 7, 46) (7, 7, 7, 39) (7, 7, 7, 7, 32) (7, 7, 7, 7, 25) (7, 7, 7, 7, 7,7, 18) 523686
Minimum Regions 317683 179447 92171 41449 15276 4048
Maximum Regions 99519049 2420312500 13361283072 34179096474 22175970048 13844348928

Input Dimension: 5
Optimal Structure 1 (30, 30) (20, 20, 20) (15, 15, 15, 15) (15, 10, 10, 10, 15) (10, 10, 10, 10, 10, 10) (10, 10, 10, 10, 10, 5, 5)
Optimal Structure 2 (9, 51) (9, 9, 42) (9, 9, 9, 33) (9, 9, 9, 9, 24) (9, 9, 9, 9 ,9, 15) (9, 9, 9, 9, 9, 9, 6) 5985198
Minimum Regions 2621112 974982 284274 55455 4944 63
Maximum Regions 1356422112 22754099200 70940996208 39367213056 21407727616 1073741824

Input Dimension: 6
Optimal Structure 1 (30, 30) (18, 18, 24) (18, 12, 12, 18) (12, 12, 12, 12, 12) (12, 12, 12, 12, 6, 6) (12, 12, 12, 6, 6, 6, 6)
Optimal Structure 2 (11, 49) (11, 11, 38) (11, 11, 11, 27) (11, 11, 11, 11, 16) (11, 11, 11, 11, 10, 6) (11, 11, 11, 9, 6, 6, 6) 56049058
Minimum Regions 16122226 3345616 397594 14893 64 64
Maximum Regions 12003312500 101000893491 93102981120 42110812160 1073741824 16777216
Fig. 3 investigates this eventuality. In particular, Figures 𝑎.1 and
.1 provide a three-dimensional representation of a two dimensional
roblem, that is of the optimization of the layer wise width of the
etwork, for a given depth and number of hidden nodes. The plots are
btained by fitting a generalized additive model between the number
f linear regions associated to each structure combination obtainable
hen 𝑑 = 2, 3 and 𝑁 = 3, and the possible combinations. The

itted curve is then replicated along the 𝑥-axis in order to generate
plane for a better visualization of the convex problem solved by

he optimization. The different figures confirm that the maximization
roblem has an interior solution and, thus, an optimal combination of
idths that, for a given depth, maximizes the number of linear regions
pproximated by the neural network. In contrast, Figures 𝑎.2 and 𝑏.2,
roject the complete optimization problem. The optimization problem
s considered not only in terms of the optimal width of the network,
ut also in terms of optimal depth. The 𝑦-axis represents the number
f possible combinations associated to each hidden layer, while the 𝑥-
xis identifies the different depths of the neural network considered,
nd the 𝑧-axis represents the number of linear regions associated to
ach combination for a given neural network depth.8 Fig. 3 shows that
he analyzed optimization problem (expression (9)) is convex if it is
onsidered either for a given depth, or if it is considered in terms
f optimal width and depth. Therefore, there exists a maximum for
he lower bound of the maximal number of linear regions in terms of
oth width and depth and, importantly, the strategy of decomposing
he optimization problem (9) in the two step procedure previously
uggested is able to capture the global optimum.

Table 1 reports the results from the optimization exercise (9) for dif-
erent input dimensions. For completeness, we report the maximization
xercise from the first stage that allows us to obtain an optimal width
or given depths, and then identifying the optimal combination of width

8 Once the plane is obtained, to smooth the 3D surface, a generalized
additive model is fitted. It is important to highlight that this procedure is
reported only for completeness on the methodology used to construct Fig. 3
and as such, does not change the outcome of the optimization problem.
8

and depth that maximizes the number of linear regions approximated
by a neural network.

We also consider the minimization of (6). It is important to specify
that the purpose of the numerical minimization is merely illustrative
and reported to provide a more complete understanding of the dual-
ity between deep and shallow networks. As mentioned above, if the
minimum number of linear regions approximated by a ReLu DNN is
always higher than the number of linear regions approximated by the
shallow network, it would be possible to conclude that – regardless the
structure adopted – a deep network always outperforms the shallow
network counterpart. Table 1 reports the results from the numerical
minimization of the number of linear regions approximated by a ReLu
DNN. The results reported in Table 1 show that the minimum number
of linear regions approximated by a deep neural network (for different
depths) is always lower than the number of regions approximated by
the shallow counterpart (with the same number of hidden nodes). This
exercise shows that not every DNN outperforms a shallow network and
motivates the need of an optimization procedure to maximize the lower
bound (6). Summing up, to be certain that the DNN provides a better
approximation than the shallow network one needs to maximize the
lower bound in expression (9) and show that the solution is larger than
the number of linear regions of the shallow network counterpart.

Table 1 also shows that when the structure that minimizes the
number of linear regions is considered, an increase in depth leads to
a decrease in the number of linear regions approximated. Fig. 4 shows
that the number of linear regions decreases linearly when 𝐱 ∈ R2.
As the dimension of the input layer increases – or the ratio between
input dimension and number of hidden nodes per layer decreases –
the observed decrease in the number of linear regions approximated
by the ReLu DNN becomes gradually exponential. This behavior can
be justified by the fact that a higher input dimension will require a
higher number of maximum nodes for the minimum representation.
The increase of hidden nodes per layer will lead to a decrease in the
number of linear regions which is exponential in the ratio between
input dimension and width of the hidden layers.

To summarize, the minimization exercise shows that a ReLu DNN

with sub-optimal structure underperforms a shallow network with the
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same number of hidden nodes for low input dimension. This result
provides an explanation of the reasons behind the controversial empiri-
cal evidence regarding performance of deep and shallow architectures,
and it further justifies the proposed methodology: the maximization
algorithm ensures not only to obtain – for a given number of hidden
nodes – the optimal width and depth of a neural network, but also to
obtain a neural network structure that outperforms the shallow coun-
terpart, ensuring better generalization (Bengio, 2009; Ciresan et al.,
2012; Goodfellow et al., 2013) and lower computational power needed.

For input dimensions equal to 2 and 3, an increase in the depth of
the ReLu DNN (see Fig. 4) results in an exponential increase in the
number of linear regions approximated. However, when 𝑥 ∈ R4,R5,R6,
an increase in depth leads to an exponential increase in the number
of linear regions up to a certain value beyond which the increase in
depth leads to a decrease in the number of linear regions (Lemma 2 is
violated). The maximum value in Fig. 4 can be interpreted as the depth
of the DNN beyond which Lemma 2 is violated. When the minimum
ratio is ⌊𝑍𝑗∕𝑑⌋ = 2, deeper structures underperform shallower ones.

ltimately, the observed decrease in the number of linear regions leads
in the case of 𝑥 ∈ R6 and 𝑁 = 7 – to the underperformance of the

ReLu DNN when compared to the shallow counterpart. These examples
show that when Lemma 2 is satisfied depth is always better than width.

The results in Table 1 illustrate the existence – for different input
dimensions – of an optimal architecture in terms of both depth and
width of the network. The optimization exercises for different number
of layers show that increasing the depth, for a given number of hidden
nodes, not always leads to an increase in the number of affine regions
approximated by the neural network. This aspect ensures the existence
of an optimal neural network depth, with a given optimal layer width.
The maximum depth considered in this numerical exercise allows iden-
tifying the optimal depth – with corresponding optimal layer widths –
for 𝑥 ∈ R4,R5,R6.

The next step involves comparing the out-of-sample performance of
ur proposed optimal architecture against a benchmark neural network
btained from a 𝑘-fold cross-validation procedure.

. Monte Carlo simulation

This section assesses statistically differences in out-of-sample perfor-
ance between competing neural network architectures. In order to do

o, different data generating processes are simulated, and the relevant
est statistic for the comparison of the out-of-sample performance is
onstructed.

The present algorithm optimizes the width and depth of a neural
etwork of a given size 𝑍 = 𝑧. To ensure the robustness of our results,
e repeat the optimization over different candidates 𝑧 = 40, 60, 90.

We also vary the input dimensions and consider five different DGPs,
one linear and four nonlinear. When the linear DGP is considered, the
out-of-sample performance of the optimal neural network is compared
against the OLS estimator. The rationale for this exercise is to assess the
predictive power of deep neural networks in an unfavorable context
in which OLS methods are proved to be optimal. When nonlinear
generating processes are considered, the out-of-sample performance of
the structure selected with the above optimal methodology is compared
with the out-of-sample performance of a structure selected with 𝑘 -fold
cross-validation.

4.1. Data generating process

We consider the following linear and nonlinear DGPs.
Model 1 (Linear Process):

𝑦 = 𝑎 + 𝐚𝐱 + 𝜖, (15)

with different input dimensions: 𝐱 ∈ R4, 𝐱 ∈ R5, and 𝐱 ∈ R6 ∼ N(𝜇, 1).
The parameters chosen for the vector of coefficients 𝐚 are generated
9

(

from a 𝑈 (−10, 10) and then rounded to the closest digit.9 Similarly, the
parameter for the vector of means 𝜇 are generated from 𝑈 (−5, 5) and
hen rounded to the closest digit. When 𝐱 ∈ R4, 𝐚 = [−8, 2, 2, 2]⊤ and
= [−4, 1, 1, 1]; When 𝐱 ∈ R5, 𝐚 = [−8, 2, 2, 2, 7]⊤ and 𝜇 = [−4, 1, 1, 1, 5],
hen 𝐱 ∈ R6, 𝐚 = [−8, 2, 2, 2, 7, 3]⊤ and 𝜇 = [−4, 1, 1, 1, 5, 1]. The error

erm is 𝜖 ∼ N(0, 1) that is uncorrelated to the input variables.
In the nonlinear case we consider four different DGPs.
Model 2:

= 𝑎1𝑥1 + (5𝑒−6)(1 − 𝑒𝑎2𝑥2+𝑎3𝑥3 ) + 𝑎4𝑥
2
4 + 𝜖. (16)

Model 3:

= 𝑎1𝑥
2
1 + 𝑒−6

𝑎2𝑥2
𝑎3𝑥3

+ 𝑒−6(𝑎4𝑥4)(𝑎5𝑥5) + 𝜖. (17)

Model 4:

𝑦 = 𝑎1𝑥
2
1 + 𝑒−6

𝑎2𝑥2
𝑎3𝑥3

+ 𝑎34𝑥4 + 𝑒−6(𝑎5𝑥5)(𝑎6𝑥6) + 𝜖. (18)

Model 5:

𝑦 = 𝑎 + 𝐚𝐱(4𝑥1 − 0.5𝑥2) + 𝜖. (19)

The nonlinear DGPs introduced by expressions (16), (17) and (18)
incorporate the nonlinearity of the process predominantly in terms of
extreme variations. Models 2 to 4 are multiplied by scaling factors
of the order 𝑒−6 to reduce the contribution of the input variables;
therefore, by re-scaling the marginal effects, the process 𝑦 is comprised
only by those observations that are ‘‘extreme’’ whereas those marginal
effects of lower magnitude are re-scaled such that 𝑦 is approximately
zero in those cases. Model 5 is the nonlinear counterpart of Model 1,
that considers interactions between the different input variables.

4.2. Accuracy test

The main objective of this subsection is to compare the out-of-
sample performance of the proposed novel methodology against a struc-
ture selected via 𝑘-fold cross-validation. By performing this methodol-
ogy, the structure that returns the lowest out-of-sample mean square
error (MSE) will be selected. The procedure is as follows. We simulate
1500 observations from the different DGPs; 1200 observations are used
for training the model and 300 observations are used as validation set
for the final comparison. A 3 -fold cross-validation over a randomized
grid search10 is performed over the 1200 observations to select the
structure that returns the lowest out-of-sample MSE. Thus, being both
neural networks fitted using the same number of training observations
and on the same dataset, the comparison carried out for the nonlinear
DGP processes analyses two comparable neural networks.

Table 1 shows that, for a given input dimension, it is possible
to identify the optimal structure in terms of width and depth of the
network. In particular, we identify the optimal structure when 𝑥 ∈
R4,R5,R6. Prior to performing 𝑘 -fold cross-validation, we consider
two neural networks with the same depth, obtained from the results in
Table 1, such that the comparison is done in terms of optimal number
of nodes per layer (optimal width) for a given depth of the network.
As a result, for a given input dimension and for a given optimal depth,
the two structures – one obtained from the maximization proposed in
the paper, and the other obtained from 𝑘-fold cross-validation – will be
compared in terms of MSE on the validation set (300 observations).11

The objective of the current simulation settings is to compare two
different models using a pre-specified loss function, and see if the

9 Before the generation of the simulated parameter the seed was set to 1234.
10 A grid search with all the possible combinations of the structure would
e infeasible.
11 Empirical Evidence shows that hyper-parameters selected via cross-
alidation not always return a good out-of-sample accuracy with unseen data

Kohn et al., 1991; Rao et al., 2008).
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Fig. 4. The Figure reports the relation between the number of linear regions and the depth of the neural network for different input dimensions. The color red indicated an
approximated number of linear regions lower than the shallow counterpart.
H
differences are statistically significant. In our case, we want to test
if the novel methodology returns an accuracy (B) higher than the
one returned by a model selected via 𝑘-fold cross-validation (A). The
hypothesis can be written as:
10

H0 ∶ 𝐸[𝐿𝐴(𝑦̂, 𝑦) − 𝐿𝐵(𝑦̂, 𝑦)] ≤ 0 (20)
1 ∶ 𝐸[𝐿𝐴(𝑦̂, 𝑦) − 𝐿𝐵(𝑦̂, 𝑦)] > 0, (21)

with 𝐿(𝑦̂, 𝑦) denoting the loss function associated with each of our two
2
models, 𝐴 and 𝐵. For the case of the MSE, we have 𝐿(𝑦̂, 𝑦) = (𝑦̂ − 𝑦) ,
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and A and B denote two different models12 for predicting the response
variable 𝑦. Under the alternative hypothesis, Model B exhibits a lower
MSE than Model A. The empirical counterpart of the above expectation
is 𝑀𝑆𝐸𝑚 ≡ 𝐸̂[𝐿(𝑦̂𝑚, 𝑦𝑚)] =

1
𝐹
∑𝐹

𝑓=1(𝑦̂𝑚𝑓 − 𝑦𝑚𝑓 )2, with 𝑚 = 𝐴,𝐵 and 𝐹
he out-of-sample evaluation period. A feasible test statistic is of the
orm

𝐹 =
√

𝐹
𝑀𝑆𝐸𝐴 −𝑀𝑆𝐸𝐵

√

𝑉 (𝑀𝑆𝐸𝐴 −𝑀𝑆𝐸𝐵)
. (22)

Under the null hypothesis, this statistic converges to a standard normal
distribution such that rejection of the null hypothesis can be assessed
from a one-sided test with critical value 𝑧1−𝛼 , with 𝛼 the significance
level of the test. Furthermore, if the residuals, defined as 𝑒𝑚𝑓 = 𝑦𝑓−𝑦𝑚𝑓 ,
with 𝑚 = 𝐴,𝐵 and 𝑓 = 1,… , 𝐹 are serially uncorrelated, the relevant
variance of the statistic is

𝑉
(
√

𝐹 (𝑀𝑆𝐸𝐴 −𝑀𝑆𝐸𝐵)
)

= 𝑉 (𝑒2𝐴𝑓 ) + 𝑉 (𝑒2𝐵𝑓 ) − 2𝐶𝑜𝑣(𝑒2𝐴𝑓 , 𝑒
2
𝐵𝑓 ), (23)

with 𝑒𝐴𝑓 and 𝑒𝐵𝑓 the residuals of each model. Then, a suitable estimator
of the asymptotic variance is

𝑉 (𝑀𝑆𝐸𝐴 −𝑀𝑆𝐸𝐵) =
1
𝐹

𝐹
∑

𝑓=1
(𝑒2𝐴𝑓 − 𝑒2𝐴)

2 + 1
𝐹

𝐹
∑

𝑓=1
(𝑒2𝐵𝑓 − 𝑒2𝐵)

2

− 2 1
𝐹

𝐹
∑

𝑓=1
(𝑒2𝐴𝑓 − 𝑒2𝐴)(𝑒

2
𝐵𝑓 − 𝑒2𝐵), (24)

with 𝑒2𝑚 = 1
𝐹
∑𝐹

𝑓=1 𝑒
2
𝑚𝑓 , with 𝑚 = 𝐴,𝐵.

If there is serial dependence then the variance of the test statistic
s more complex and we need to incorporate the presence of serial
orrelation. Robust estimators are HAC estimators developed by Newey
nd West (1987). Note that the difference between the in-sample and
ut-of-sample exercise is how we construct the residuals 𝑒𝑚𝑓 .13

.3. Simulation results

Table 2 reports the results from the Monte Carlo simulation. When
he linear data generating process is considered the out-of-sample
ccuracy of the neural network with structure obtained via the pro-
osed maximization (to which we will refer as optimal ReLu DNN) is
ompared against a linear regression and thus, a model that correctly
dentifies the DGP. In this case when considering the null hypothesis
20), the out-of-sample MSE of the linear model will estimate the loss
unction 𝐿𝐵 ; failing to reject the null hypothesis indicates that there is
o statistically significant difference between the out-of-sample MSE of
he optimal ReLu DNN and the corresponding MSE of the OLS estima-
or. Both models are indistinguishable in terms of predictive accuracy
n mean. From Table 2, one could notice that the null hypothesis is
ejected at 0.1 significance level for 𝐱 ∈ R4 and 𝑧 = 90 and for
∈ R5 and 𝑧 = 40. In all other cases, the difference in accuracy is

ot significant.
Overall, these results suggest that the optimal neural network ar-

hitecture proposed in this paper is comparable in terms of predictive
ccuracy to the OLS estimator for the linear DGP. When nonlinear
GPs are considered, the null hypothesis (20) is used to compare the
ut-of-sample performance of the optimal neural network against a
ross-validated structure. Table 3 reports the structures returned from
he proposed methodology and from the 3-fold cross-validation. The
ut-of-sample MSE of the linear model is still reported for completeness,
ut as the comparison with the performance of neural networks is
o longer meaningful, the test of the null hypothesis (20) is only

12 𝑘-fold cross-validation and optimization methodology.
13 In the in-sample exercise these residuals are obtained from the fitted
odel, and in the out-of-sample exercise the residuals are computed from the

ut-of-sample observations, that is, the model is given.
11

e

reported for the comparison between the optimal DNN model and the
3-fold cross-validated model. The out-of-sample MSE of the optimal
model is denoted as 𝐿𝐵 ; thus, rejecting the null hypothesis (20) will
provide evidence of the outperformance of the optimal neural network
over a cross-validated one. With the exception of three cases, the null
hypothesis is rejected in all cases at 0.1 significance level. When 𝐱 ∈ R6

and 𝑧 = 40 both models are not able to approximate adequately the
fourth nonlinear data generating process; conversely, when 𝑧 = 60, 90
he out-of-sample error of the two models decreases drastically and
he null hypothesis is rejected at 0.01 significance level, suggesting the
utperformance of our DNN architecture.

To summarize, the results reported in Table 2 show that the op-
imal neural network has an out-of-sample performance statistically
quivalent to the MSE of the OLS BLUE estimator when the true data
enerating process is linear. These results are robust to the different
umber of hidden nodes considered, showing that the outperformance
oes not depend on the specific number of hidden nodes chosen. For
onlinear processes, the DNN model with the structure selected via the
roposed maximization outperforms a neural network whose structure
s obtained via a 3-fold cross-validation with a randomized grid search.
his result is true for all the different input dimensions and nonlinear
GPs considered. Our findings also show that – given a specific DGP
there exists an optimal number of hidden nodes that minimizes the
SE. For example, when a linear DGP is considered 𝑧 = 40 returns the

owest MSE, while when the nonlinear DGPs are considered, the MSE
s minimized for 𝑧 = 60 or 𝑧 = 90 (when the true DGP is linear, a high
umber of hidden nodes may result in overparametrization).

. Empirical application

The above DNN prediction techniques are applied to a toy example
ith real data on house prices. For comparability purposes, we choose
popular dataset widely used in the literature on linear and nonlinear
rediction, see for example, Al Bataineh and Kaur (2018). The Boston
ousing dataset initially studied in Harrison and Rubinfeld (1978)
onsists of 506 datapoints split between 404 training and 102 test obser-
ations. This dataset is concerned with housing values in the suburbs of
oston. The dependent variable is the median value of the Boston house
rices in thousands of dollars, that is explained by thirteen independent
ariables, which for sake of space are not reported, and described in
etails by Harrison and Rubinfeld (1978).

In order to guarantee a proper training of the ReLu DNN, a feature-
ise normalization consisting on transforming the observations into

ero-mean and unit standard deviation random variables is performed.
he mean and the standard deviation used for the feature-wise normal-

zation are computed considering only the train dataset.
The first step of the neural network prediction exercise is to set the

ptimal neural network architecture. Different optimization algorithms,
eights initializers, learning rates, number of epochs, drop-out rates,
nd total number of hidden nodes are considered. In particular, the
earning rates 0.0001, 0.001, 0.01, and 0.1 for the Adam optimizer
𝛽1 = 0.9, 𝛽2 = 0.999), for the Stochastic Gradient descent (SGD)
ith Nesterov momentum of 0.9, and the RMSProp optimizer with
= 0.9 are tuned. When the Adam optimizer is considered, we use

he He normal initializer that draws samples from a truncated normal
istribution with 𝜇 = 0 and 𝜎 =

√

2∕Indim, where ’’Indim’’ is the
umber of input units in the weight tensor; conversely, when the SGD
s tuned, a truncated normal distribution with 𝜇 = [0.5, 0.1] and 𝜎 =
0.02, 0.01] is considered. The number of epochs analyzed are: 500, 1000,
000 and 5000. Hinton et al. (2012) show that dropout can be used
o effectively reduce the generalization error of large neural networks
itted on a limited amount of data. Therefore, given the low number of
bservations in the training set, in order to improve the out-of-sample
erformance, the dropout training is adopted. Following Srivastava

t al. (2014) and given the relatively low dimension of the fitted
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Table 2
The Table reports, for each input dimension and each data generating process considered, the out-of-sample MSE of the models
considered, the test statistic and p value for the difference in accuracy.

Linear NNoptim NNcv Test Stat P-value

Linear Process - Model 1
𝐱 ∈ R4

z = 40 1.0207 1.0240 – 0.0896 0.4644
z = 60 1.0207 1.0816 – 1.2180 0.1116
z = 90 1.0207 1.0818 – 1.5138* 0.0650

𝐱 ∈ R5

z = 40 1.0600 1.1517 – 1.4927* 0.0677
z = 60 1.0600 1.0911 – 1.0955 0.1366
z = 90 1.0600 1.0852 – 0.7071 0.2397

𝐱 ∈ R6

z = 40 1.0739 1.0426 – −1.2314 0.8909
z = 60 1.0739 1.0890 – 0.3827 0.3510
z = 90 1.0739 1.0744 – 0.0103 0.4959

Nonlinear Process - Model 2
𝐱 ∈ R4

z = 40 90.3837 1.1749 1.2883 1.4923* 0.0678
z = 60 90.3837 1.1502 1.2981 1.4918* 0.0679
z = 90 90.3837 1.1337 1.2685 1.4154* 0.0785

Nonlinear Process - Model 3
𝐱 ∈ R5

z = 40 5513.2835 1.5221 1.7633 1.3613* 0.0867
z = 60 5513.2835 1.4396 1.7002 1.9154** 0.0277
z = 90 5513.2835 1.2374 1.5599 2.0329** 0.0210

Nonlinear Process - Model 4
𝐱 ∈ R6

z = 40 4101.4600 1.7025 2.0295 1.7821** 0.0374
z = 60 4101.4600 1.6699 2.3017 0.8602 0.1948
z = 90 4101.4600 1.5777 1.9049 1.3362* 0.0907

Nonlinear Process - Model 5
𝐱 ∈ R4

z = 40 9517.0577 5.5102 6.3055 1.9203** 0.0274
z = 60 9517.0577 4.2384 9.3619 1.5554* 0.0599
z = 90 9517.0577 2.6755 9.1836 1.3791* 0.0839

𝐱 ∈ R5

z = 40 24985.8370 10.0566 15.2530 1.5874* 0.0562
z = 60 24985.8370 5.9994 9.2081 1.0345 0.1504
z = 90 24985.8370 7.2509 13.8439 1.6874** 0.0457

𝐱 ∈ R6

z = 40 54202.9318 53.0290 89.1285 1.1435 0.1264
z = 60 54202.9318 7.9023 13.5481 2.5353*** 0.0056
z = 90 54202.9318 14.3952 55.7897 3.9699*** <0.0001

*Indicated 0.1 significance level.
**Indicated 0.05 significance level.
***Indicates 0.01 significance level.
Table 3
The Table reports, for each input dimension and each data generating process considered, the neural network
structures selected using the proposed methodology and the 3-folds cross-validation with a randomized grid
search approach.

Optimized neural network Cross validated - nonlinear 1 Cross validated - nonlinear 2

z = 40
𝐱 ∈ R4 [12, 12, 8, 8] [24, 5, 4, 7] [22, 4, 4, 10]
𝐱 ∈ R5 [15, 10, 15] [24, 8 , 8] [27, 7, 6]
𝐱 ∈ R6 [22, 18] [16, 10, 14] [24, 9, 7]

z = 60
𝐱 ∈ R4 [12, 12, 12, 12, 12] [32, 5, 4, 4, 15] [43, 4, 5, 4, 4]
𝐱 ∈ R5 [15, 15, 15, 15] [22, 7, 5, 26] [35, 5, 5, 15]
𝐱 ∈ R6 [18, 18, 24] [40, 6, 14] [46, 7, 7]

z = 90
𝐱 ∈ R4 [18, 12, 12, 12, 12, 12, 12] [50, 15, 9, 4, 4, 4, 4] [62, 6, 6, 4, 4, 4, 4]
𝐱 ∈ R5 [15, 15, 15, 15, 15, 15] [56, 10, 9, 5, 5, 5] [60, 9, 6, 5, 5, 5]
𝐱 ∈ R6 [18, 18, 18, 18, 18] [38, 7, 6, 6, 33] [43, 6, 6, 6, 29]
feedforward neural network, different dropout rates 𝑝 = 0.1, 0.2, 0.3 are
tuned for all hidden layers, and 𝑝 = 0.1 for the input layer.
12
The proposed optimization procedure lets the total number of hid-
den nodes as a free parameter. In this application, we consider 𝑍 = 𝑧 =
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Fig. 5. The Figure reports the observed average prices (in black) against the fitted values (in red) for the validation set.
50, 100, 130, 150, and 200. The number of input variables is 𝑑 = 13, and
we allow for a maximum depth of 10. The results of our optimization
exercise in (9) are as follows. For 𝑧 = 50, the optimal structure of the
DNN is [37, 13]; for 𝑧 = 100 is [48, 26, 26]; for 𝑧 = 130 is [52, 39, 39]; for
𝑧 = 150 is [33, 39, 39, 39] and, finally, for 𝑧 = 200 is [44, 39, 39, 39, 39]. To
check the convergence of the optimization algorithm – for each 𝑧 – the
maximization is conducted using 𝑧 + ∕ − 1.

Each combination is evaluated using 4-fold cross-validation on the
training set, and finally evaluated on the validation set.14 Thus, the
predictive performance of our method is measured by averaging the
four MAEs and MSEs obtained from the training samples under the
4-fold cross-validation, and the validation MSE and MAE obtained
from fitting the tuned model on the validation set. It is important to
remember that our proposed DNN architecture focuses on optimizing
the structure of the network but is silent about the specific choice
of the aforementioned hyperparameters. Therefore, the 4-folds cross-
validation is used to choose the optimal combination of learning rate,
optimizer, weight initializer, number of epoch, and dropout rate. The
optimal combination of nodes and hyperparameters is evaluated on the
validation set.15

Based on the out-of-sample accuracy, the best combination is de-
fined by the RMSProp optimizer with learning rate 0.001, 2000 epochs,
𝑧 = 130, a dropout rate of 0.1 across all hidden layers, and no dropout
in the input layer. The cross-validated MSE and MAE are 7.67 and 2.02
respectively, and the validation MSE and MAE are 8.76 and 2.17. Fig. 5
reports the fitted values out-of-sample of the trained ReLu DNN against
the observed values. An out-of-sample MAE of 2.17 implies that the
model will predict house prices with an error – on average – of 2170$.

The empirical results show that the proposed methodology can
be used to improve the predictive performance of neural networks.
For example, Al Bataineh and Kaur (2018) – considering three algo-
rithms for neural network training – find a test MSE of 13.96 for the
Levenberg–Marquardt, of 12.77 for the Bayesian Regularization, and
of 16.63 for the Scaled Conjugate Gradient; Granitto et al. (2001)
after proposing an algorithm for the construction of ensemble neural
networks, that ensures a good balance between diversity and accuracy,

14 The 4-fold cross-validation is implemented to replicate the procedure
dopted by the majority of the referenced literature.
15 This cross-validation exercise to optimize the tuning parameters is differ-
nt from the 3-fold cross-validation method used in the Monte Carlo section

as benchmark model to obtain the out-of-sample MSE.
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find a test MSE of 14.46 ± 6.89; Myshkov and Julier (2016) explore
the posterior distribution obtained from Bayesian inference methods
for neural networks and find a test RMSE for the Stochastic Gradient
Langevin Dynamics (Welling and Teh, 2011) of 3.99 (MSE of 15.92);
Papadopoulos and Haralambous (2011) propose a new methodology
to extend regression neural networks by producing not only point
predictions but also prediction intervals, and the test RMSE associated
with the point prediction is 4.06 (MSE of 16.48); finally, Bakker and
Heskes (2003) propose an algorithm for neural network ensemble
(GASEN) that uses genetic algorithm to select an optimal subset of
neural network for the construction of the ensemble learner, with MSE
of 12.26. The differences between the MSE obtained using the novel
methodology and the ones observed in the literature are statistically
significant.

By taking the relative differences with the lowest and highest MSEs
reported by the aforementioned literature, our optimized NN architec-
ture represents an improvement over the average prediction in extant
studies between 28.55 % and 47.32%, respectively.

6. Conclusions

It is standard practice in the machine learning community of re-
searchers and practitioners to engage into time and computational
power consuming ’’fine tuning’’ of the neural network architecture
while training. The width and depth of the architecture is a subset of the
hyperparameters to be fine tuned. This paper proposes an optimization
method to obtain suitable values of these quantities. We do this by max-
imizing the lower bound on the maximum number of linear regions that
a deep neural network can approximate. To do this, we consider the
characterization of the lower bound derived in Montufar et al. (2014)
but the method allows for other characterizations. The optimization is
done numerically using state-of-the-art methods such as L-BFGS-B and
SLSQP algorithms.

The performance of the proposed optimal architecture for deep
neural networks is assessed in an exhaustive Monte-Carlo exercise and
also empirically. This novel procedure is shown to outperform k-fold
cross-validation procedures for prediction in nonlinear models. In linear
settings, in which standard OLS methods are optimal, our approach is
competitive and provides comparable mean square error values. We
illustrate the ability of our optimal deep neural network architecture
to predict median house prices from the Boston Housing dataset. This
dataset is extensively used by the machine learning literature to vali-

date new learning techniques. Our neural network architecture reduces
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the out-of-sample mean square prediction error between 28.55% and
47.32% compared to recent studies fitting neural networks to this
dataset. By optimizing width and depth prior to training for a given
choice of nodes, our proposed method substantially saves upon the
necessary time and computing power involved in fine tuning while
training.
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