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ABSTRACT
Cosmological analyses of samples of photometrically-identified Type Ia supernovae (SNe Ia) depend on understanding the
effects of ‘contamination’ from core-collapse and peculiar SN Ia events. We employ a rigorous analysis on state-of-the-art
simulations of photometrically identified SN Ia samples and determine cosmological biases due to such ‘non-Ia’ contamination
in the Dark Energy Survey (DES) 5-year SN sample. As part of the analysis, we test on our DES simulations the performance
of SuperNNova, a photometric SN classifier based on recurrent neural networks. Depending on the choice of non-Ia SN models
in both the simulated data sample and training sample, contamination ranges from 0.8–3.5 per cent, with the efficiency of the
classification from 97.7–99.5 per cent. Using the Bayesian Estimation Applied to Multiple Species (BEAMS) framework and its
extension BBC (‘BEAMSwith Bias Correction’), we produce a redshift-binnedHubble diagrammarginalised over contamination
and corrected for selection effects and we use it to constrain the dark energy equation-of-state, 𝑤. Assuming a flat universe with
Gaussian Ω𝑀 prior of 0.311 ± 0.010, we show that biases on 𝑤 are < 0.008 when using SuperNNova and accounting for a
wide range of non-Ia SN models in the simulations. Systematic uncertainties associated with contamination are estimated to be
at most 𝜎𝑤,syst = 0.004. This compares to an expected statistical uncertainty of 𝜎𝑤,stat = 0.039 for the DES-SN sample, thus
showing that contamination is not a limiting uncertainty in our analysis. We also measure biases due to contamination on 𝑤0
and 𝑤𝑎 (assuming a flat universe), and find these to be <0.009 in 𝑤0 and <0.108 in 𝑤𝑎, hence 5 to 10 times smaller than the
statistical uncertainties expected from the DES-SN sample.
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1 INTRODUCTION

Type Ia supernovae (SNe Ia) are widely used in cosmology to di-
rectly measure the accelerating expansion rate of the universe, and to
characterise the properties of the ‘dark energy’ thought to cause it.
Following the original detection of the accelerating cosmic expansion

using SNe Ia (Riess et al. 1998; Perlmutter et al. 1999), two decades
of time-domain surveys have discovered and followed up thousands
of cosmologically-useful SNe Ia, from the local universe to redshifts
beyond 𝑧 ∼ 1. As the statistical power of these samples has improved,
there has been a commensurate reduction in systematic uncertainties
that has broadly tracked the increase in SN Ia numbers (Astier et al.
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2006; Kessler et al. 2009b; Sullivan et al. 2011; Betoule et al. 2014a;
Rest et al. 2014; Scolnic et al. 2018; Riess et al. 2018; Abbott et al.
2019b). However, unlocking the full constraining power of current
and future samples of SNe Ia requires a new level of controlling
systematic uncertainties introduced by the use of photometric SN
classification. Modelling and assessing systematic biases introduced
by SN classification is the main focus of this paper.
Photometric SN classificationmethods are neededwhen candidate

SNe detected by a survey lack a spectroscopic confirmation of their
type. In these cases, most cosmological analyses to date have been
restricted to SN events with spectroscopic redshift from the likely
host galaxy, and SN classification is based on the characteristics of
the observed light curve. Early approaches were frequently used for
individual high-redshift SN events forming part of relatively small
samples (e.g., Perlmutter et al. 1999; Riess et al. 2007), albeit often
using other contextual information such as host galaxy type. More
general approaches include selecting candidate SNe Ia based on their
light-curve fit properties (Bazin et al. 2011) and classifying SNe
based on both template fitting (e.g., pSNID, Sako et al. 2011, 2018
or González-Gaitán et al. 2014) and machine-learning approaches
(Lochner et al. 2016; Möller et al. 2016; Möller & de Boissière
2020).
The outputs from SN photometric classifiers require a careful in-

terpretation, as instead of the simple binary classification associated
with spectroscopic classification (i.e., SN Ia or not a SN Ia), photo-
metric classifiers return the probability of each event being a SN Ia,
𝑃Ia. A framework is needed to marginalise over the contamination
from events that are not SNe Ia. The Bayesian Estimation Applied
to Multiple Species (BEAMS) method (Kunz et al. 2007), and its
extension ‘BEAMSwith Bias Corrections’ (BBC; Kessler & Scolnic
2017), are frequently used in this context, the latter also incorporat-
ing corrections due to selection effects based on high-quality survey
simulations.
The development of photometric classification has been motivated

by the recent and future large SN surveys like the Sloan Digital Sky
Survey (SDSS) SN Survey (Sako et al. 2018), the Pan-STARRS
Medium Deep Survey (Jones et al. 2017, 2018), the Dark Energy
Survey SN program (Bernstein et al. 2012; Smith et al. 2020b) and
the future Legacy Survey of Space and Time (Ivezić et al. 2019,
LSST). These SN imaging surveys motivated large spectroscopic
follow-up programs to measure host-galaxy redshifts for the majority
of discovered SNe, and use them for cosmological measurements.
The first measurement of the equation-of-state of dark energy, 𝑤,
with a photometric SN Ia sample was performed by Campbell et al.
(2013) using data from the SDSS SN Survey. They used pSNID,
together with a selection of events based on their SN Ia light-curve
fit properties, which together reduced contamination in the SN Ia
sample to an estimated 3.9 per cent. However, the systematic effects of
this contamination on the final measurement of 𝑤 was not estimated.
Hlozek et al. (2012) first demonstrated the application of BEAMS on
the SDSS SN sample (similar to the sample used by Campbell et al.
2013), but also lacked an assessment of systematic uncertainties in
the analysis.
The cosmological analysis of the Pan-STARRS (PS1) photomet-

ric SN sample (Jones et al. 2017, 2018) was the first to include an
evaluation of the cosmological biases and systematic uncertainties
introduced by contamination in the photometrically-classified SN Ia
sample. Using several simple classification approaches that don’t rely
on machine learning, including pSNID, the biases on measurements
of 𝑤 due to contamination were estimated to be small, and the asso-
ciated systematic uncertainty was estimated to be 𝜎𝑤,syst = 0.012.
This uncertainty is significantly smaller than the total systematic un-

certainty on 𝑤 of 0.043, illustrating that, under the assumptions of
this analysis, contamination resulted in a small contribution to the
total uncertainty budget.
Recently developed photometric classifiers (Lochner et al. 2016;

Möller & de Boissière 2020) have shown a good performance on
simulated samples of SNe developed for various classification chal-
lenges (Kessler et al. 2010b, 2019a; Hložek et al. 2020). However,
a critical issue remains: the training and validation of these clas-
sifiers are often performed on the same sample of simulated SN
events. These simulated samples are generated either applying the
same selection function of the test set, or assuming the training sam-
ple is biased towards brighter events due to spectroscopic selection
effects. These simulations may not reflect the true diversity of the
transient universe, and may require tuning in their input astrophysics
to reproduce the observed characteristics of the selected SN sample
(Jones et al. 2017, 2018). This procedure can potentially lead to an
over-estimation of the classifier performance and thus underestimate
systematic uncertainties in measured cosmological parameters. Ul-
timately, the development of accurate SN survey simulations for the
training and validation of these photometric classifiers is at least as
important as the development of the classifiers themselves.
This paper investigates biases in the measurement of cosmolog-

ical parameters that are introduced in the use of photometric SN
classification algorithms within the BBC framework. Our focus is
on the Dark Energy Survey1 (DES) SN program (DES-SN; Smith
et al. 2020b) dataset. DES-SN is a state-of-the-art sample for SN
Ia cosmology analysis, with approximately 2000 likely SNe Ia in
the final ‘5-year’ sample: ∼ 20 per cent of the SNe have follow-up
spectroscopy of the SN itself (e.g., Smith et al. 2020b), and most of
the remaining events have a host galaxy spectroscopic redshift (see
Lidman et al. 2020).
Vincenzi et al. (2021, hereafter V21) previously presented large

simulations of DES-SN that generate realistic samples of transients
that accurately describe DES-SN data. The simulation includes the
‘normal’ SNe Ia, improved core-collapse SN spectral templates (Vin-
cenzi et al. 2019, hereafter V19) and peculiar SNe Ia (SN1991bg-
like SNe and SN2002cx-like SNe; Kessler et al. 2019a), as well as
the DES survey characteristics, to make accurate predictions for the
expected populations of SNe in DES-SN. These simulations demon-
strated an excellent agreement between data and simulated SN prop-
erties across many parameter distributions, including Hubble residu-
als and Hubble residual distribution tails. Analysing these simulated
samples in detail, and fitting all the detected events with the SALT2
SN Ia light-curve model (Guy et al. 2007), V21 predicted 6–8 per
cent of the sample to be comprised of events that are not SNe Ia,
after an event selection based on the light-curve properties and fit-
ted SALT2 parameters. No photometric classification algorithm was
used.
Here we generate simulations as in V21 to assess the performance

of the SuperNNova (SNN) photometric SN classifier (Möller & de
Boissière 2020) when applied to DES-SN data. SNN is a deep learn-
ing classifier that identifies SNe Ia with high accuracy (see analyses
presented byMöller & de Boissière 2020, andMöller et al. in prep.).
We exploit the BEAMS implementation in the BBC framework to as-
sess the impact of contamination on the cosmological analysis of the
DES-SN photometric sample. The strength of our analysis lies in the
fact that we use realistic simulations of SNe Ia and non-Ia SN contam-
ination, that have been shown to reproduce the general photometric
properties of the DES-SN data to high accuracy (V21). We also test

1 https://www.darkenergysurvey.org/
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the effect of a range of astrophysically-plausible core-collapse SN
model variations on the final cosmological measurements.
The paper is outlined as follows. In Section 2, we review the DES-

SN data set and the simulation infrastructure used in our analysis.
Section 3 details our cosmological analysis framework, including
distance estimation, BEAMS, and bias corrections. Section 4 in-
troduces the SNN classifier and assesses its performance on our
simulated datasets, and in Section 5 we present an analysis of the
cosmological biases introduced by the photometric classification of
the DES-SN sample. We conclude in Section 6.

2 DES-SN DATA AND SIMULATIONS

DES is an optical imaging survey designed to constrain the properties
of dark energy and other cosmological parameters by combining four
different astrophysical probes: weak gravitational lensing, large scale
structure, galaxy clusters and SNe Ia (Abbott et al. 2019a). DES ran
for six years and used the Dark Energy Camera (DECam; Flaugher
et al. 2015), mounted on the Blanco 4-m telescope at the Cerro
Tololo Inter-American Observatory. For time-domain science, DES
monitored ten 3-deg2 fields with an average cadence of 7 days in
the 𝑔𝑟𝑖𝑧 filters. Eight of the ten fields were surveyed to a depth of
∼ 23.5mag per visit (‘shallow fields’), and the remaining two to a
deeper limit of𝑚 ∼ 24.5 mag per visit (‘deep fields’), thus extending
to 𝑧 ∼1.2 the redshift limit to detect SNe Ia.

2.1 The DES photometric SN sample

The primary goal of the DES-SN programme is to measure the light
curves of a sample of SNe Ia for use in cosmological analyses. In this
paper, we use the same DES photometric SN sample as described in
V21. This sample includes ∼3,600 events that have an identified host
galaxy and accurately measured host galaxy spectroscopic redshift,
and that pass light-curve quality selection: observations in two filters
with at least one epoch with a signal-to-noise ratio (SNR) > 5, at
least one observation before the estimated time of peak brightness,
and one observation after ten days (rest-frame) after peak brightness.
FollowingV21, SNhost information is derived from the deep coad-

ded images of (Wiseman et al. 2020), and SN light-curve photome-
try measured using the DES Difference Imaging pipeline (diffimg,
Kessler et al. 2015). The quality of the diffimg light curves is ade-
quate for the analysis presented in this paper, but we highlight that the
final DES SN light-curves with a more accurate and precise scene
modelling photometry (SMP) approach (Astier et al. 2013; Brout
et al. 2019a) is in the process of being applied to all DES-SN data.
We also note that approximately 200 new host galaxy spectroscopic
redshifts have been processed and incorporated into the sample while
this analysis was developed. However, in this work we use the V21
sample to maintain consistency with that analysis.

2.1.1 Low-𝑧 SN sample

As this paper considers the cosmological impact of our modelling
choices and photometric classification methods, we include a ‘low-𝑧’
(i.e., 𝑧 < 0.1) external SN Ia sample to combine with our DES-SN
sample. We include five publicly available low-𝑧 samples from the
Harvard-Smithsonian Center for Astrophysics (CfA3S, CfA3K, and
CfA4; Hicken et al. 2009, 2012), the Carnegie Supernova Project
(CSP-1; Contreras et al. 2010) and the Foundation Supernova sam-
ple (DR1 Foley et al. 2017). These samples include spectroscopically

confirmed SNe Ia only, therefore they are not affected by contamina-
tion.

2.2 Simulations

Our SN simulations use SN time-series spectrophotometric tem-
plates, rates, luminosity functions and empirical relationships be-
tween SNe and their host galaxies, as well as the DES survey char-
acteristics, to simulate the transient populations detected in the five
years of DES-SN. The simulations are presented in detail in V21 and
are generated using the supernova analysis software package (snana;
Kessler et al. 2009a) as described in V21. The simulation and anal-
ysis code were orchestrated by the pippin (Hinton & Brout 2020)2
pipeline.
V21 presented nine DES-SN simulations testing different mod-

elling choices and assumptions. The analysis presented in this paper
has been tested for the full set of simulations presented in V21. How-
ever, for simplicity we focus on a reduced sample of five simulations,
that encapsulate a wide range of scenarios and provides the most
informative results. These simulations are:

• ‘Baseline’ a simulation built using the core-collapse SN tem-
plates of V19, and luminosity functions presented by Li et al. (2011)
and revised as described by V19;

• ‘LFs+Offset’ same as Baseline, but with the core-collapse SN
luminosity functions brightened by 0.5mag;

• ‘Dust(H98)’ uses the host-galaxy dust extinction-corrected
core-collapse SN templates of V19, using the revised Li et al. (2011)
luminosity functions and a dust distribution presented by Hatano,
Branch & Deaton (1998);

• ‘J17’ uses the core-collapse SN templates of Jones et al. (2017,
hereafter J17) together with their adjusted luminosity;

• ‘DES-CC’ simulations: uses a new set of core-collapse tem-
plates of Hounsel et al. in prep. (hereafter, DES-CC), built from a
magnitude-limited sample (𝑖 < 21.5) of spectroscopically and pho-
tometrically identified non type Ia SNe from DES-SN.

The main characteristics of each simulation are summarized in Ta-
ble 1.We also consider two simulation subsets, one that includes only
SNe Ia and one that includes only SNe Ia and peculiar SNe Ia (‘Only
pec Ia’). These subsets exclude exclude core-collapse SNe, and are
used to disentangle the effects of core-collapse SN contamination
from other sources of systematic biases in the analysis.
In all DES-SN simulations, host galaxies are associated with SNe

using published SN rates as a function of global galaxy properties
(stellar mass and star formation rate). We use separate rates for SNe
Ia, peculiar SNe Ia, stripped envelope SNe (type Ib, type Ic and
type IIb SNe) and hydrogen-rich SNe (type II and type IIn SNe; see
section 4.5 in V21). We also include the dependence of the SN Ia
light-curve shape on host galaxy properties.
We combine theDES-SN simulationswith simulations of the low-𝑧

SN Ia samples introduced in Sec. 2.1.1. These samples are simulated
following Kessler et al. (2019b, section 7.2) and Jones et al. (2019,
section 3.1) and simulate mocks of the CfA (CfA3S, CfA3K, CfA4),
CSP-1 and the Foundation Supernova samples.
For both the DES-SN and low-𝑧 simulations, we assume the SN Ia

intrinsic brightness in rest-frame 𝐵-band to be𝑀𝐵 = −19.365 andwe
set the nuisance parameters applied for stretch and colour corrections,
𝛼 and 𝛽, equal to 𝛼 = 0.167, 𝛽 = 3.1. Moreover, we use a flat ‘Λ cold
dark matter’ (ΛCDM) cosmological model as input, with a Hubble

2 https://github.com/Samreay/Pippin
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Table 1. Summary of core-collapse SN assumptions in the DES-SN simulations.

Label Template Luminosity Dust Avg number of SNe after Percentage of
library functions model light-curve selection † Ia, PecIa, II, Ibc

Baseline V19 revised Li et al. (2011), Gaussian parameterization N/A∗ 1650 93.4, 1.4, 4.5, 0.8
LFs+Offset V19 revised Li et al. (2011) + 0.5 mag brightening offset N/A 1722 90.5, 1.4, 6.8, 1.3
Dust(H98) dereddened V19 revised Li et al. (2011), Gaussian parameterization H98‡ 1687 93.2, 1.4, 4.2, 1.1
J17 J17 adjusted LFs from Li et al. (2011) N/A 1667 94.3, 1.4, 3.0, 1.4
DES-CC DES-CC DES-CC N/A 1687 91.6, 1.4, 0.5, 6.5

∗N/A: not applicable: core-collapse SN templates are not corrected for host galaxy extinction, and the simulation does not include extinction.
† Selection criteria from Section 2.3, without classification. Numbers are calculated as the mean over 50 realizations of the DES-SN survey. Each simulation
include SNe Ia, peculiar SNe Ia and core-collapse SNe. Normal SNe Ia alone account for 1522 events on average.
‡ Hatano et al. (1998).

constant 𝐻0 = 70 km s−1Mpc−1 and ΩM = 0.311 (e.g., Planck
Collaboration et al. 2020). We generate 50 realisations of the DES-
SN survey and pair these with 50 realisations of the low-𝑧 sample.
Throughout, the statistical properties of the simulated samples are
presented as the mean of the 50 realisations, and uncertainties are
measured as the standard deviation.

2.3 SN light-curve fitting and selection

We fit all simulated and observed SN light-curves with the SALT2
SN Ia light-curve model (Guy et al. 2007; Guy et al. 2010) using
the trained model parameters from Betoule et al. (2014b) and a
𝜒2-minimization program in snana. This fit determines several rest-
frame parameters under the assumption that the event is a SN Ia: the
time of SN peak brightness 𝑡0, a stretch-like (Perlmutter et al. 1997)
parameter 𝑥1, a colour parameter 𝑐 and the light-curve normalisation
parameter 𝑥0, as well as their uncertainties (i.e., 𝜎𝑡0 , etc.). We select
SN events in both simulations and data that are well described by
this SALT2 model. This selection is based on the fit parameters, their
uncertainties, and the goodness of the light-curve fit (‘FitProb’3).
This is the same selection as used in V21 and in the Joint Light-
Curve Analysis sample (JLA; Betoule et al. 2014b). In detail, the
selection requirements are:

• |𝑥1 | < 3 and |𝑐 | < 0.3,
• 𝜎𝑥1 < 1 and 𝜎𝑡0 < 2 days,
• FitProb > 0.001.

The outcome of applying this selection to our data and simulations
can be found in Table 2. The result is a data sample of 1676 SNe
from DES-SN and 312 low-𝑧 SNe (155 SNe from the CfA and CSP
samples and 157 from the Foundation sample). Averaging our 50
Baseline simulations, we have 1650 SNe from DES-SN and 400 at
low-𝑧 (161 SNe Ia from the CfA and CSP samples, and 238 SNe Ia
from Foundation).
We also explore a tighter selection on the SN colour 𝑐, removing

redder SNeusing a selection of−0.3 < 𝑐 < 0.15. This further reduces
contamination from core-collapse SNe, with a minimal and easy-to-
model loss of SNe Ia (see Table 2). This asymmetric colour selection
is also motivated by the fact that several analyses have shown that
redder SNe Ia exhibit larger scatter on the Hubble diagram (Brout &
Scolnic 2020; Kelsey et al. 2020).

3 FitProb ∈ [0,1] and is the computed probability from 𝜒2 and number of
degrees of freedom, and assuming Gaussian-distributed errors. It quantifies
how well each light curve is described by the SALT2 model.

3 COSMOLOGICAL ANALYSIS FRAMEWORK

Next, we briefly review the framework used to measure the SN Ia
redshift–distance relation (‘Hubble diagram’) and estimate cosmo-
logical parameters from our SN data and simulations. We begin by
describing the method used to estimate distances from the SN Ia
light curve parameters (Section 3.1). We then present the Hubble di-
agram fitting method called ‘BEAMS with Bias Corrections’ (BBC;
Kessler & Scolnic 2017). In the BBC method, we implement (i)
the method presented by Marriner et al. (2011) to determine SN
distances and nuisance parameters (Section 3.1), (ii) the BEAMS
formalism (Kunz et al. 2012) to marginalize over the contamination
from non-Ia SNe (Section 3.2), and (iii) simulated bias corrections
to account for survey selection effects (Section 3.4). The main out-
put of the BBC framework is a redshift-binned SN distance–redshift
relation corrected for selection effects and core-collapse SN contam-
ination, from which the cosmological parameters can be estimated
(Section 3.6). BBC also produces fitted nuisance parameters (Sec-
tion 2.3). The cosmological analyses framework discussed in this
section is illustrated in Fig. 1.

3.1 Distance estimation

The SN Ia distance modulus, 𝜇obs, is (e.g., Tripp 1998; Astier et al.
2006)

𝜇obs = 𝑚𝐵 + 𝛼𝑥1 − 𝛽𝑐 +M𝐵 + Δ𝜇bias, (1)

where 𝑚𝐵 = −2.5 log10 (𝑥0) andM𝐵 is the absolute magnitude of a
SN Ia with 𝑥1 = 0 and 𝑐 = 0. The global nuisance parameters 𝛼 and
𝛽 are determined following the approach presented byMarriner et al.
(2011), i.e., fixing the cosmological parameters to some reference
values (e.g., Ω𝑀 = 0.3, 𝑤 = −1) and fitting for distance modulus
offsets, Δ𝜇𝑏 , evaluated at different (log-spaced) redshift bins. A cor-
rection, Δ𝜇bias, is applied to each SN to correct for selection effects
from the survey and analysis (see Section 3.4).
We neglect the dependence between 𝜇obs and host galaxy proper-

ties in our simulations and fitting (e.g., Sullivan et al. 2010). These
correlations can shift the dark energy equation-of-state 𝑤 by approx-
imately one per cent (Smith et al. 2020a) but ignoring them has
negligible impact on studies of systematics related to contamination.

3.2 The BEAMS likelihood

BEAMS is a Bayesian framework for using photometric classifica-
tions of SNe Ia, and their probabilities, in cosmology. The BEAMS
likelihood requires for each SN an estimate of its probability of being
a SN Ia, 𝑃Ia. This set of probabilities are generally determined using
photometric classifiers.

MNRAS 000, 1–23 (2021)
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Table 2. Number of observed and simulated SNe following the application of various selection criteria.

Selection criteria Data Simulations (avg over 50 realizations 𝑐)
DES-SN Low-𝑧 Total DES-SN Low-𝑧 Total

SALT2 selection 1676 312 1995 1650 400 2050
SALT2 selection + valid bias correction𝑎 1603 288 1891 1588 380 1969
SALT2 selection + Chauvenet’s criterion𝑏 1561 309 1870 1572 400 1972
SALT2 + valid bias corr + Chauvenet 1533 286 1819 1545 380 1926

SALT2 + valid bias corr + Chauvenet + SALT2 𝑐 <0.15 1353 273 1626 1336 361 1697
𝑎 See Section 3.4 for the definition of valid bias corrections.
𝑏 See Section 3.5 for a discussion about Chauvenet’s criterion and outlier rejection methods.
𝑐 Number of SNe averaged over 50 realizations (𝑁SNe). The typical r.m.s. measured over the 50 realizations is

√
𝑁SNe.

DES-SN5YR simulation or real data

Hubble diagram fitting with BBC

BBC 
configurations 
tested (Table 8)

No classifier, but outlier rejection methods applied

SuperNNova classifier + full BEAMS likelihood

Light-curve SALT2 fitting
and SALT2 based selection

(Sec.2.3)

SuperNNova 
classification (Sec.4)

Dnon-Ia modellings 
(Sec.3.3)

Bias 
correction

(Sec 3.4)
from large 

simulations

Outlier rejection (Sec.3.5) 
and additional selection 
tested

No classifier 
All SNe PIa=1 

ℒIa + ℒnon-Ia = DIa (eq.7)

ℒIa + ℒnon-Ia   
 (eq. 3 - 5)

= PIaDIa +(1-PIa) Dnon-Ia   

BBC configurations 
from (1) to (9)

BBC configurations 
from (10) to (12)

Binned 
Hubble

Diagram
( ΔμIa

b  )

&

Photometric classification PIa 
(Sec.4 and Table 3)

Cosmological parameter fitting

Estimate  cosmological parameters (Sec.3.6)

Figure 1. Flow chart of the cosmological analysis framework BBC (Kessler & Scolnic 2017), exploited in this work. BBC is specifically designed to estimate
cosmological parameters from samples of photometrically identified SNe Ia. Photometric classifiers are introduced in Section 4, while the different BBC
configurations tested in this work are listed in Table 9 and discussed in Section 5.

The BEAMS formalism is implemented in BBC, and used to fit
for a binned Hubble diagram. We define the binned Hubble diagram
as a set of binned distance modulii, 𝜇𝑏Ia, evaluated for each of the
𝑁bins redshift bins.4 The binned distance modulii 𝜇𝑏Ia are estimated
by maximazing the BEAMS likelihood. This is defined as the sum of
two terms, one that models the SN Ia population, LIa, and the other
that models a population of contaminants,

𝑁SNe∑︁
𝑖=1

(L𝑖
Ia + L𝑖

non-Ia). (2)

4 We note that this binned Hubble diagram 𝜇𝑏
Ia is distinct from the distance

modulus for individual events in equation 1.

The two terms of the likelihood, L𝑖
Ia and L

𝑖
non-Ia, are defined as

L𝑖
Ia = 𝑃̃𝑖

Ia × exp
(
−
(𝜇obs,𝑖 + Δ𝜇𝑏 − 𝜇ref (𝑧𝑖))2

𝜎2
𝜇,𝑖

)
L𝑖
non-Ia = (1 − 𝑃̃𝑖

Ia) × 𝐷non-Ia (𝑧𝑖 , 𝜇obs,𝑖 , 𝜇ref,𝑖).

(3)

where 𝜇ref(𝑧𝑖) is the distance modulus of the 𝑖-th SN as predicted
assuming a fixed reference cosmology (Ω𝑀 = 0.3, 𝑤 = −1), and
Δ𝜇𝑏 are the offsets quantifying by how much observations deviate
from the reference cosmology in each redshift bin. By construction,
the binned Hubble diagram, 𝜇𝑏Ia is equal to 𝜇ref( 〈𝑧 〉𝑏) − Δ𝜇𝑏 . The
distance modulus uncertainties 𝜎𝜇,𝑖 include the uncertainties prop-
agated from the SALT2 light-curve fit (𝜎𝑚𝐵

, 𝜎𝑥1 , 𝜎𝑐 and relative
covariances), the intrinsic SN Ia scatter (𝜎Ia, int) and peculiar ve-
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Figure 2.Modelling of core-collapse SN Hubble residuals versus redshift us-
ing the different approaches discussed in Section 3.3. Panel (a): the modelling
of Hubble residuals for the H12 approach. The black curve and grey shaded
region show the best fitting polynomial Ψ(𝑧) and intrinsic scatter, 𝜎non-Ia.
For comparison, we also show the Hubble residual distribution for a sample
of simulated SNe Ia (dashed contours). Panels (b): as Panel (a), but when
applying the approach by Kessler & Scolnic (2017) and using simulations.

locity corrections uncertainties. The SN Ia intrinsic scatter term is
determined as discussed by Kessler & Scolnic (2017, section 5.5).
In equation 3, the terms 𝑃̃𝑖

Ia and (1-𝑃̃
𝑖
Ia) are weighting factors

applied to the two likelihoods, and represent the ‘scaled’ probabilities
of the 𝑖-th SN being a SN Ia and a core-collapse SN or peculiar SN
Ia respectively. The scaled probabilities are defined as:

𝑃̃𝑖
Ia =

𝑃𝑖
Ia

𝑃𝑖
tot

and 𝑃̃𝑖
non-Ia =

𝑆non-Ia (1 − 𝑃𝑖
Ia)

𝑃𝑖
tot

𝑃𝑖
tot = (𝑃𝑖

Ia + 𝑆non-Ia (1 − 𝑃𝑖
Ia))

(4)

where 𝑃𝑖
Ia is the probability of the 𝑖-th SN being a SN Ia as predicted

by a classifier, and 𝑆non-Ia is a scaling factor and an additional free
parameter in theminimization of the likelihood. This additional factor
enables correcting for inaccurate probabilities5 and it is equal to one
for perfectly calibrated probabilities (seeKunz et al. 2012; Jones et al.
2018, for a discussion on the necessity of scaling probabilities). As
a result, the free parameters in the BEAMS likelihood minimization
are the 𝑁bins offset terms Δ𝑏

𝜇 , the nuisance parameters 𝛼 and 𝛽, the
SN Ia intrinsic scatter term 𝜎Ia,int and the scaling factor 𝑆non-Ia. In
this analysis, we use twenty logarithmically equally spaced redshift
bins.
Modelling the contamination likelihood term 𝐷non-Ia (equation 3)

is more difficult because core-collapse SNe are not standardized by
the SALT2 framework. Qualitatively, we expect the distribution of
non-Ia SN distance moduli to have a larger scatter and to be shifted
from 𝜇ref by a positive offset because non-Ia SNe are generally fainter
than SNe Ia.
As BEAMS is designed to handle both SNe Ia and non SNe Ia, we

do not apply a 𝑃Ia cut prior to the BBC fit. However, in Appendix A,
we discuss the effects (and disadvantages) of combining BEAMS
with (for example) a 𝑃Ia > 0.5 selection and motivate the absence of
this cut.

3.3 Modelling the contamination likelihood

We test two different approaches to describe 𝐷non-Ia analytically.
The first follows Hlozek et al. (2012), who tested an approximation

5 Photometric classifiers often do not provide calibrated probabilities.

in which core-collapse SN distance moduli and intrinsic scatter are
parametrized similarly to SNe Ia

𝐷non-Ia = exp
(
−
(𝜇obs,𝑖 − 𝜇ref, non-Ia (𝑧𝑖))2

𝜎2
𝜇,𝑖

)
(5)

where

𝜇ref, non-Ia = 𝜇ref +Ψ(𝑧) and 𝜎Ia, int → 𝜎non-Ia, int (𝑧), (6)

and Ψ(𝑧) describes the brightness offset of the population of con-
taminants, and 𝜎non-Ia, int is the redshift dependent intrinsic scatter
of contaminants that is included in 𝜎𝜇,𝑖 in eq. 5. Both terms are
modelled as second order polynomials, the coefficients of which are
fitted during the BBC fit. This parametrization introduces six addi-
tional free parameters in the likelihood in equation 2. Fig. 2𝑎 shows
an example of the best fit Ψ(𝑧) (and relative 𝜎non-Ia,int (𝑧)) measured
from the Baseline simulations (Section 2.2).
Kessler & Scolnic (2017) introduced an alternative approach, and

determine the term 𝜇ref, non-Ia in equation 6 from simulation of core-
collapse SNe. The mean and dispersion of the core-collapse SN
distancemoduli aremeasured from the simulation at different redshift
bins. In this approach, there are no extra free parameters in the BBC
fit.
Following this approach, we use our Baseline simulation to derive

the core-collapse distribution on the Hubble diagram and we show
the simulated 𝜇ref, non-Ia vs. redshift in Fig. 2b.

3.4 Bias corrections

All SN surveys are affected by selection effects introduced by their
flux-limited nature. These effects introduce systematic biases in cos-
mological analyses of SN Ia samples, and thus SN Ia distances are
corrected for such biases (equation 1). The corrections are generally
estimated using large SN Ia Monte Carlo simulations that accurately
model the survey detection efficiency and other potential selection
effects (Hamuy & Pinto 1999; Kessler et al. 2009b; Perrett et al.
2010; Betoule et al. 2014b; Kessler et al. 2019c). Early use of sim-
ulations modelled distance bias corrections as a function of redshift
only (Kessler et al. 2009b; Jones et al. 2018; Betoule et al. 2014b), but
Scolnic & Kessler (2016) showed that this approach is not adequate
because distance biases also depend on colour and stretch.
We estimate bias corrections, Δ𝜇bias, using the BBC framework

and the simulations following Section 2.2, but including only normal
SNe Ia. BBC determines an average Δ𝜇bias in a five dimensional
grid {𝑧, 𝑥1, 𝑐, 𝛼, 𝛽}. For each event, the bias is interpolated between
neighboring bins in the subspace of {𝑧, 𝑥1, 𝑐}, and also interpolated
in a 2×2 grid of 𝛼 and 𝛽 (𝛼 in [0.12, 0.20] and 𝛽 in [2.3, 3.6]). The
simulations are used to bias correct both the real DES-SN sample
and the simulated DES-SN samples. We note that bias corrections
are applied prior to the BEAMS likelihood minimization presented
in Section 3.2 and they have been shown to have a weak dependence
over 𝛼 and 𝛽.
The simulations used to model bias corrections include 770,000

DES-SN events and 145,000 low-𝑧 SN events (this corresponds to
500 realisations of the DES-SN sample and 500 realisations of the
low-𝑧 sample). The underlying assumption of BBC is that the bias
correction simulation accurately describes the intrinsic properties of
the SNe Ia and survey selection effects. Incomplete modelling of one
of these aspects may result in inaccurate bias corrections (see Smith
et al. 2020a; Popovic et al. 2021, for example). The degree to which
core-collapse SN contamination can affect themodelling of the SN Ia
intrinsic population (and therefore bias corrections and cosmology)
will be explored in future analyses.
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Figure 3. Simulated Hubble diagram (upper panel) and Hubble residuals
(lower panel) for a single realisation of the DES-SN sample (Baseline sim-
ulation, grey symbols) and the low-𝑧 sample (teal symbols). We apply the
SALT2 selection criteria described in Section 2.3, but no other selection.
SNe without a valid bias correction (Section 3.4) and/or failing Chauvenet’s
criterion (Section 3.5) are indicated with different colours.

In the BBC approach, some cells in the five-dimensional parameter
space have too few events (or no events) to reliably estimate bias
corrections. SNe in these cells cannot be bias corrected and are
rejected from the sample and the cosmological fit. This implicit cut
further reduces the sample size, and affects SNe Ia and core-collapse
SNe differently. The requirement of a valid bias correction is therefore
an implicit photometric classifier for our sample. In Table 2, we
report the numbers of SNe for which a valid bias correction cannot
be estimated. In the low-𝑧 sample, 24 observed SNe Ia do not have
valid bias corrections (approximately 8 per cent of the low redshift
sample), and the simulated prediction is 18 SNe Ia on average, in
good agreement with the data. In the DES-SN samples, there are
73 SNe without valid bias corrections in the observed sample (< 4
per cent) and the simulated prediction is 61 SNe on average. In our
simulations, we find that almost 65 per cent of the SNe without valid
bias corrections are core-collapse SNe or peculiar SNe Ia, illustrating
the implicit classifier in BBC. We discuss this further in Section 4.4.

3.5 Outlier rejection: Chauvenet’s criterion

Following Conley et al. (2011) many cosmological analyses use
Chauvenet’s criterion (Taylor 1997) to reject outliers on the Hubble
diagram (Foley et al. 2017; Scolnic et al. 2018; Brout et al. 2019b),
i.e., outliers in Δ𝜇. Given the number of SNe in the Hubble diagram
and assuming their Hubble residuals are normally distributed around
zero, Chauvenet’s criterion can be used to identify the probability
threshold (or 𝜎 cut) above which the expected number of data points
is below unity (i.e. less the one event is expected to have such a large
deviation from zero).
This approach has been used for samples of spectroscopically

confirmed SNe Ia. In analyses of pure SNe Ia samples, Chauvenet’s
criterion selects normal SNe Ia and rejects atypical events or those
that have poorly modelled peculiar velocities (for low redshift SNe
especially).

In a photometric SN sample like the DES-SN sample, applying
Chauvenet’s criterion primarily rejects core-collapse SN contami-
nants that, in this case, are the main source of outliers in the Hubble
diagram. Since we mainly focus on exploiting photometric classi-
fiers to describe contamination (see Section 4), rather than outlier
rejection or other sigma-clipping methods, we do not apply Chau-
venet’s criterion by default. However, we examine the difference in
cosmological parameters between using photometric classifiers and
applying Chauvenet’s criteria with 𝑃Ia = 1 for all events (see Fig. 1).
This second approach is effectively the same approach applied to
analyses of spectroscopic SN sample, and it enables us to quan-
tify cosmological biases from naively analysing a contaminated SN
sample as a pure sample of spectroscopically confirmed SNe Ia.
For simplicity, we apply Chauvenet’s criterion before the BBC fit,

using approximate Hubble residuals computed from initial values
of the nuisance parameters (𝛼 = 0.14, 𝛽 = 3.1) and our reference
cosmology.
For our sample of 1995 SNe following SALT2 selection (Sec-

tion 2.3), Chauvenet’s criterion corresponds to a 4𝜎 cut. This cut
may affect the low-𝑧 and DES-SN samples in different ways. For the
low-𝑧 sample, Chauvenet’s criterion selects normal SNe Ia and rejects
atypical events or those that have poorly modelled peculiar velocities.
In the DES-SN sample, the criterion primarily affects core-collapse
SN contaminants. To avoid conflating the different effects of Chau-
venet’s criterion, we always apply Chauvenet’s criterion to the low-𝑧
sample, effectively freezing these samples across our tests.
Applying Chauvenet’s criterion to our observed samples removes

no SNe Ia from the Foundation sample,6 3 SNe Ia from the CfA+CSP
samples and 122 SNe from the DES-SN sample (approximately 7 per
cent of the sample). From our simulated low-𝑧 samples, we predict
no loss of low-𝑧 SNe after applying the criterion because our low-𝑧
simulation consists of normal SNe Ia without contamination. For the
DES-SN sample we predict a reduction from an average of 1650
SNe to 1572 SNe (a loss of 78 SNe, approximately 5 per cent of the
sample) using the ‘Baseline’ simulation, in slight tension with the
data. Table 2 summarizes these numbers.

3.6 Cosmological parameter estimation

The output of the BBC fit is a redshift-binned Hubble diagram cor-
rected for selection effects and contamination, and the associated
diagonal covariance matrix, 𝐶stat, that includes statistical uncertain-
ties only. As a result of the binning, the dimension of the covariance
matrix is reduced from 𝑁SNe to 𝑁bins.
We note that binning the Hubble diagram may inflate systematic

uncertainties that are not primarily redshift dependent (Brout, Hinton
& Scolnic 2020).Wewill illustrate this uncertainty inflation for some
systematics associated with SN photometric classification (Sec. 4.3),
which may be self-calibrated in an unbinned approach.
Finally, we estimate cosmological parameters. We test two cosmo-

logical models: a flat 𝑤CDM model and a flat 𝑤0𝑤𝑎CDM model.
In both models, the dark energy equation-of-state is parametrized as
𝜌 ∝ 𝑎−3(1+𝑤) , where 𝜌 is the dark energy density and 𝑎 is the scale
factor and it is 𝑎 = (1+𝑧)−1; however, while a𝑤CDMmodel assumes
constant 𝑤, a 𝑤0𝑤𝑎CDM model assumes 𝑤 = 𝑤0 + 𝑤𝑎 (1 − 𝑎). Un-
less otherwise stated, we measure cosmological parameters assum-
ing a prior on Ω𝑀 of 0.311±0.010, following the cosmic microwave

6 Chauvenet’s criterion has already been applied to the Foundation DR1
sample and removes 9 SNe Ia (5 per cent of the sample). See table 7 by Foley
et al. (2017).
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background measurements published by Planck Collaboration et al.
(2020). In future cosmological analyses of the DES photometric SN
sample, SN constraints will be combined with the full CMB likelih-
pood from Planck Collaboration et al. (2020). In Section 5.1.3 and
Fig. 9, we will show that CMB constraints constitute a more stringent
prior compared to a Gaussian Ω𝑀 prior, and thus contribute to re-
duce both 𝑤-biases due to contamination and statistical uncertainty
on 𝑤.
When testing a flat 𝑤CDM model, we measure cosmological pa-

rameters using a simple 𝜒2-minimization program that has evolved
from the analysis of Conley et al. (2011). This program evaluates the
𝜒2 between 𝜇𝑏Ia produced by BBC and 𝜇ref over a grid of Ω𝑀 , 𝑤
andM𝐵 values (assuming a flat universe) and estimate Ω𝑀 and 𝑤
marginalised overM𝐵 (see Goliath et al. 2001, for a description of
the 𝜒2 definition and marginalization). This program does not pro-
vide the full posterior distribution of the cosmological parameters
we are interested to constrain. However, it is faster than most cosmo-
logical fitting programs and it is adequate for measuring biases on
𝑤.
To measure cosmological contours and to test a flat 𝑤0𝑤𝑎CDM

model, we use the Cosmological Monte Carlo software CosmoMC
(Lewis & Bridle 2002). For the DES-SN data, absolute estimates of
the cosmological parameters are blinded and only relative differences
between cosmological fits are examined.

4 PHOTOMETRIC CLASSIFICATION

We use the SuperNNova (SNN; Möller & de Boissière 2020) frame-
work to perform photometric classification of our observed and sim-
ulated SN datasets, and measure for each SN event its probability of
being a SN Ia, 𝑃Ia. We choose SNN as the code is publicly avail-
able, and SNN has demonstrated good classification performance in
the literature. For comparison with SNN, we also use two simple
algorithms to assign 𝑃Ia:

• Perfect: an ideal classifier, that assigns 𝑃Ia = 1 to SNe Ia and
𝑃Ia = 0 to peculiar SNe Ia or core-collapse SNe. This approach can
only be used in simulations, where the true types are known;

• AllSNIa: a classifier that assigns 𝑃Ia = 1 to every SN.

4.1 SuperNNova

SNN is an open-source7machine learning algorithm that implements
Recurrent Neural Networks for photometric classification of SNe. It
is trained to classify different types of transients using photometric
data only (i.e., fluxes and flux uncertainties in different filters) and,
optionally, redshift information. It does not rely on feature extraction
or light-curve fitting.
Several metrics can be used to assess the performance of SNN. In

the binary classification method, these are based on the number of
true positives (TPs; SNe Ia correctly classified as such), true negatives
(TNs; core-collapse SNe correctly classified as such), false positives
(FPs; core-collapse SNe incorrectly identified as SNe Ia) and false
negatives (FNs; SNe Ia identified as core-collapse). FollowingMöller
& de Boissière (2020), the contamination (by core-collapse SNe, or
peculiar SNe Ia) of the classified photometric SN Ia sample and the
classification efficiency are defined as

Contamination =
FP

FP + TP (7)

7 https://github.com/supernnova/SuperNNova

and

Efficiency =
TP

TP + FN . (8)

We implement SNN using the same hyper-parameters as Möller &
de Boissière (2020), and include spectroscopic redshift information.
For our analysis, we normalise the input fluxes using the ‘cosmo’

method (Moller et al. in prep.). In this method, each SN multi-band
light curve is normalised independently and the normalization factor
is the SN maximum flux (in any filter). This method makes SNN
agnostic to the relative differences in apparent brightness between
SNe, while preserving colour and signal-to-noise information (flux
uncertainties are normalised using the same factor as for fluxes).
With this normalisation, rescaled fluxes close to zero correspond to
early/late data points and rescaled fluxes close to one correspond to
data points around peak brightness.
We also test an alternative normalization method labelled as

‘global’. In this method, the normalisation factors are estimated from
the full sample of light curves and the same normalisation is applied
to all light curves. This method preserves the relative brightnesses
between different SNe and the full range of magnitudes. As a result,
the brightest (lower redshift) SNe have rescaled fluxes closer to one,
while faintest SNe have rescaled fluxes closer to zero.

4.2 Training of SNN

SNN requires training on very large samples of SNe (>100,000
events). Combining all SN surveys from the last 15 years, the sam-
ple of spectroscopically-confirmed SNe available is around 10,000
events8; it is an inhomogeneous sample with an uncertain selection
function and biased towards bright, lower-redshift events. To obtain
a training sample with sufficient statistics, SNN relies on large sim-
ulations where the SN Ia and SN non-Ia rest-frame SED models are
derived from spectroscopically confirmed events.
To generate the training samples we combine 100 realisations of

our Baseline simulation, apply a simple selection to the simulated
events (at least two detections, applying the detection efficiency pre-
sented byKessler et al. 2015), and apply the host galaxy spectroscopic
efficiency of V21. We do not apply any additional spectroscopic
classification efficiency like the one applied to the training samples
generated for the SN classification challenges presented by Kessler
et al. (2010a); The PLAsTiCC team et al. (2018). Moreover, we do
not perform SALT2 fits for SNN. We also generate three additional
training samples, using the J17 simulation (SNN(J17)), the DES-CC
simulation (SNN(DES-CC)), and the Baseline simulation with host
galaxies assigned randomly (SNN(randomHost)).
To compare the two different normalizations in SNN, we also train

a model using the Baseline simulation and the global normalisation
method instead of the cosmo normalisation (SNN(global)). This
tests the effects of a classifier that has knowledge of the relative
brightnesses between SNe Ia and core-collapse SNe. A summary of
the five SNNmodels and the assumptions in their training simulations
is in Table 3.

4.3 Contamination and Efficiency

We test SNN on the simulations summarised in Section 2.2, mea-
suring the average contamination and efficiency after our standard
selection (Section 2.3) and after requiring 𝑃Ia > 0.5 cut. As already

8 Source: Transient Name Server, https://wis-tns.weizmann.ac.il/
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Table 3. Details of the different SNN training samples.

SNN Simulation used Core-collapse SN Normalisation Number of SNe in Percentage of Ia, pec Ia and core-collapse
model name for SNN training template library training sample in the training sample
SNN(Base) Baseline V19 cosmo 287,000 50, 6, 44
SNN(J17) J17 J17 cosmo 287,000 50, 3, 47

SNN(DES-CC) DES-CC DES-CC cosmo 240,000 50, 5, 45
SNN(global) Baseline V19 global 287,000 50, 6, 44

SNN(randomHost) Baseline, random V19 cosmo 155,700 50, 5, 45
host association

Table 4. Contamination and efficiency measured for the AllSNIa classifier (rows) on different simulations (columns) after applying a 𝑃Ia > 0.5 cut.

Selection criteria Contamination Efficiency
Only pec Ia Baseline LFs+Offset Dust(H98) J17 DES-CC (Baseline)

AllSNIa, no SALT2 selection † 2.6 22.5 31.7 22.0 28.5 25.8 -
AllSNIa 2.1 8.2 11.6 8.5 8.7 9.8 100.0
AllSNIa+Chauvenet 1.0 3.1 5.3 3.4 3.7 3.2 98.7
AllSNIa+Chauvenet, 𝑐 <0.15 0.7 2.2 4.0 2.3 1.6 2.5 89.4

† Fraction of contaminants after SALT2 fit loose cuts of 𝑥1 ∈ [−4.9, 4.9] and 𝑐 ∈ [−0.49, 0.49] (i.e., without applying the SALT2-based selection discussed
in Section 2.3). (see V21).

Table 5. Contamination and efficiency measured for different SNN models (rows) tested on different simulations (columns).

SNN model𝑎 Contamination after testing SNN on different simulations Efficiency
Only pec Ia Baseline LFs+Offset Dust(H98) J17 DES-CC (Baseline)

SNN(Base) 0.4 0.8 𝑏 1.1 0.9 1.0 1.4 99.5
SNN(J17) 0.7 1.7 2.8 1.9 1.0 𝑏 2.1 99.2
SNN(DES-CC) 0.9 2.0 3.2 2.3 1.9 1.6 𝑏 99.0
SNN(global) 0.8 2.1 3.5 2.1 1.4 2.3 97.7
SNN(randomHost) 0.7 1.3 1.9 1.5 1.3 1.6 98.1

𝑎 See Table 3 for a description of the training approach utilised for each SNN model.
𝑏 We highlight in bold the contamination measured using the same simulation both for training and testing.
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Figure 4. Contamination (panel (a)) and efficiency (panel (b)) using three SNN models SNN(Base), SNN(J17) and SNN(DES-CC) measured on our Baseline
simulation. All contamination and efficiency percentages are measured relative to the bin, not relative to the total sample. In panel (a), we present contamination
as a function of SALT2 𝑥1 (upper left), 𝑐 (upper right), redshift (lower left) and Hubble residual (lower right). Panel (b) is the same as panel (a), but showing
efficiency. Contamination and efficiency are defined in Section 4.1.
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Table 6. Fraction of different sub-types of contaminants for different selection
cuts. Contamination ismeasured on theBaseline simulation, after applying the
SALT2-based selection described in Section 2.3 and Chauvenet’s criterion.
All contamination percentages are measured relative to the bin, not relative
to the total sample.

Selection %non-Ia SNe % Pec Ia % II % Ibc

𝑐 > 0.2 16.6 5.3 0.6 10.7
𝑐 < −0.2 24.1 0.1 22.2 1.8
𝑥1 > 2 12.0 2.3 2.8 6.9
𝑥1 < −2 6.9 0.7 1.6 4.6
log10𝑀★/𝑀� < 10 2.8 0.8 0.8 1.1
log10𝑀★/𝑀� > 10 3.6 1.5 1.0 1.1

mentioned in Section 3.2, BBC is designed to handle both SNe Ia
and non SNe Ia, therefore we do not require a 𝑃Ia > 0.5 cut in the
cosmological sample (see Appendix A).
Wefirst examine the case of no classifier (i.e., AllSNIa) in Table 4)

and SALT2-based selection. Applying only SALT2-based selection
reduces contamination to less than 12 per cent, a factor of two smaller
compared to SN samples before SALT2-based selection. When com-
bined with outlier rejection (AllSNIa+Chauvenet, see Section 3.5),
the contamination reduces to 4.0–6.6 per cent. A tighter SALT2
colour selection (Section 2.3) combined with Chauvenet’s criterion
( AllSNIa+Chauvenet,𝑐 < 0.15), reduces the contamination fur-
ther to 1.6–4.0 per cent. These results set a level of comparison for
assessing the performance of SNN.
The performance of the SNN models is shown in Table 5. For the

SNN models SNN(Base), SNN(J17) and SNN(DES-CC), the per-
formance is improved compared to outlier rejection methods only,
with contamination of 0.8–3.2 per cent and an efficiency equal or
above 99 per cent. SNN(Base), trained on our Baseline simulation,
performs well not only when tested on Baseline simulations (0.8 per
cent contamination), but also when tested on the simulations J17 and
DES-CC, with contamination of 1.0 and 1.4 per cent respectively. In
these two cases, the SNN(Base) classifier is trained on core-collapse
SN templates that are independent from the ones used to generate the
simulations, suggesting that the SNN(Base) model generalizes well.
By contrast, the SNN(J17) and SNN(DES-CC) classifiers perform

well when tested on simulations generated using the same core-
collapse SN models (in bold in Table 5), but when tested on Baseline
simulations they predict levels of contamination that are two and three
times larger compared to using the SNN(Base) model. This differ-
ence reflects the increased diversity of contaminants in the Baseline
simulation compared to the J17 and DES-CC simulations.
We make two further observations. The first is that, following the

application of SNN, peculiar SNe Ia account for around a third to
a half of the contamination (Table 5), suggesting that this class of
transients plays an important role in our analysis, and that they are
as difficult to identify as core-collapse SNe with the current training
set and configuration.9 The second is that, comparing the Base-
line and Dust(H98) simulations, we do not observe large differences
in the contamination even though none of the SNN models have
been trained using the full range of dust extinction included in the
Dust(H98) simulation. This result suggests that including dust ex-
tinction in the simulations that is unmodelled in the training samples
does not significantly affect classification performance.

9 To improve classification of peculiar SNe Ia, the fraction of this sub-type
of SNe could be augmented in the training set.
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Figure 5.Contamination (left panel) and efficiency (right panel) as a function
of SN host-galaxy stellar mass. We measure contamination and efficiency
for different SNN models (see Section 4.2) and before/after applying the
Chauvenet’s criterion (see Section 3.5).

4.3.1 Performance as a function of SN Ia properties

Fig. 4 shows the contamination and efficiency for the Baseline sim-
ulation as a function of redshift, fitted 𝑥1 and 𝑐, and Δ𝜇. These plots
identify regions of parameter space where non-Ia SN contamination
is higher (or efficiency is lower). The poorest performance in terms
of contamination per-bin is observed at the extremes of the SALT2
parameter distributions.
Focusing on SALT2 𝑐, contamination increases significantly for

very blue events (> 20 per cent for 𝑐 < −0.2), mainly due to fast-
declining type II and type IIn SNe that are generally bluer than SNe Ia
at peak. Similarly, classification ismore difficult for redder SNe (> 10
per cent contamination and < 95 per cent efficiency for 𝑐 > 0.2),
where intrinsically redder and lower signal-to-noise stripped enve-
lope SNe aremore easilymisclassified as red (and therefore also faint)
SNe Ia, and vice versa (see Table 6). Contamination is less than 2 per
cent for −0.1 < 𝑐 < 0.1, even when only applying the AllSNIa clas-
sifier and Chauvenet’s criterion. For stretch, contamination at higher
𝑥1 values is mainly due to slower declining stripped-envelope SNe,
while contamination at the low 𝑥1 is dominated by faster declining
SNe Ic (see Table 6).

4.3.2 Performance of Global versus Cosmo normalisations

Contamination after using SNN models trained with the global SNN
normalisation (SNN(global)) is similar to the other SNN models
trained using the cosmo normalisation. However, SNN(global) has
a significantly lower efficiency – less than 98.5 per cent – and it
decreases significantly for positive Hubble residuals.
In the SNN(global) model, the relative brightness between SNe

Ia and core-collapse SNe is preserved both in the training and test-
ing phase. Our results show that encoding SN relative brightnesses
in the classification does not result in a significant decrease in con-
tamination, and mainly affects the classification of faint SNe Ia.
Approximately 10 to 15 per cent of SNe Ia in the faint tail of the
Hubble residual distribution (Δ𝜇 > 0.25mag) are misclassified as
non-SNe Ia.
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Table 7. As Table 4, but following the application of BBC bias corrections.

Selection criteria Contamination after BBC Efficiency
Only pec Ia Baseline LFs+Offset Dust(H98) J17 DES-CC (Baseline)

AllSNIa 1.9 5.7 8.0 6.4 6.4 7.2 100.0
AllSNIa+Chauvenet 1.1 3.1 5.0 3.6 3.5 3.2 100.0
AllSNIa+Chauvenet, 𝑐 < 0.15 0.8 2.2 3.8 2.6 1.8 2.6 91.5

Table 8. As Table 5, but following the application of BBC bias corrections.

SNN model𝑎 Contamination after testing SNN on different simulations Efficiency
Only pec Ia Baseline LFs+Offset Dust(H98) J17 DES-CC (Baseline)

SNN(Base) 0.4 0.7 𝑏 1.0 0.9 0.9 1.3 99.5
SNN(J17) 0.6 1.5 2.4 1.7 1.0 𝑏 2.0 99.2
SNN(DES-CC) 0.9 1.8 2.9 2.1 1.7 1.5 𝑏 99.0
SNN(global) 0.8 1.7 2.8 1.9 1.3 2.0 97.8
SNN(randomHost) 0.7 1.2 1.8 1.4 1.2 1.6 98.1

𝑎 See Table 3 for a description of the training approach utilised for each SNN model.
𝑏 We highlight in bold the contamination measured using the same simulation both for training and testing.

4.3.3 Performance as a function of host galaxy properties

Our simulations are designed to account for the differing properties
and rates of SNe in different host galaxies. This allows us to predict
contamination in our photometric SN Ia samples as a function of
host galaxy properties. As a reference, the SNN(randomHost) does
not use these intrinsic rates and assigns host galaxies randomly.
In Fig. 5, we present contamination and efficiency as a function

of host galaxy stellar mass before applying any classification algo-
rithm (i.e., applying only the AllSNIa classifier and Chauvenet’s
criterion) and after applying SNN. Contamination is not equally dis-
tributed across host galaxies of different mass, but is always larger in
lower mass galaxies. This variation is expected as most of the hosts
in the highest mass bin consists of more passive galaxies, with a
preference towards SNe Ia and only small numbers of core-collapse
SNe. Therefore, the fraction of contamination in these environments
is low (less than 2 per cent) even with no photometric classification.
The efficiency of classification is mostly insensitive to host

galaxy stellar mass, with two exceptions: efficiencies of the models
SNN(global) and SNN(randomHost) drop significantly in higher
mass galaxies. For the SNN(global) model using the ‘global’ nor-
malisation (Section 4.2), the training retains information about the
relative brightnesses between SNe Ia and SN contaminants. This
model is likely to heavily ‘fit’ on the information that core-collapse
SNe are generally fainter than SNe Ia. This means that faint SNe
Ia (i.e., SNe Ia with positive Hubble residuals, see Fig. 4b) in mas-
sive hosts (with lower signal-to-noise due to a brighter host galaxy
background) are more easily misclassified as core-collapse SNe.
The SNN(randomHost) model is trained on a set of SN Ia light

curves that have been assigned randomly to host galaxies. V21
demonstrated that the random association of host galaxies to sim-
ulated SNe produces a distribution of host brightnesses and masses
in disagreement with the data (fig. 9 in V21). Therefore, host galax-
ies in the training sample of SNN(randomHost) are on average
fainter than those in the DES-SN sample or simulations. When the
SNN(randomHost)model is tested on realistic SN samples, a signif-
icant fraction of SNe Ia in bright and high mass galaxies is misclas-
sified as core-collapse SNe. This test demonstrates the importance of
training machine learning algorithms like SNN on simulations that
include a realistic SN-host association. Sub-populations of SNe Ia
(e.g., SNe in bright galaxies) can be reduced or removed by classifi-
cation simply because they are not modelled in the training sample,

with a potential impact on studies of SN Ia populations and on SN
Ia cosmology in general.
Similarly to Fig. 3, we show the Hubble diagram for a simulated

sample of SNe in Fig. 6 and we highlight SN probabilities, 𝑃Ia,
estimated applying SNN(Base).

4.4 Effects of BBC bias corrections on contamination

In the BBC framework, there are cells of the three-dimensional sub-
space {𝑧, 𝑥1, 𝑐} that have no SN Ia (or too few events). Real events
in those cells are rejected prior to the BBC fit and this systematically
disfavours SNe that lie in regions that are atypical for SNe Ia. As
a result, the BBC bias corrections naturally reduce contamination
from peculiar SNe Ia and core-collapse SNe. Tables 7 and 8 presents
contamination and efficiency after BBC bias corrections are applied
(cf. Tables 4 and 5, the contamination and efficiency before BBC).
As expected, the number of SNe Ia is reduced by less than 1 per cent,
while the number of core-collapse SNe is reduced by 20–30 per cent.
When analysing contamination after a 𝑃Ia > 0.5 cut fromSNN, the

effect of bias corrections on the contamination is almost negligible
because SNN is very efficient at removing contamination. However,
when using no classifier (i.e., AllSNIa; Table 7) the bias corrections
have a larger impact on reducing contamination. In Appendix B, we
consider the sub-sample of events that are rejected from the sample
only due to the lack of a valid bias correction, and investigate the
impact of including these events in the analysis by fixing their bias
correction to zero.

4.5 Comparison with the data

We apply bias corrections, Chauvenet’s criterion and the SNN clas-
sifier to the DES photometric SN sample. In Fig. 7, we compare the
results obtained from data and from simulations for different sets of
selection cuts.10
First, we consider Hubble residuals measured after applying

SALT2-based selection (Section 2.3), the Chauvenet’s criterion (Sec-
tion 3.5) and requiring a valid bias correction (Section 3.4). Simu-
lations and data are in very good agreement (Fig. 7a); the asymme-
try in the Hubble residual distribution due to the small fraction of

10 A version of the same comparison before classification-based cuts is avail-
able in V21, figure 13
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core-collapse contamination (< 3.8 per cent, see Table 7) is well
reproduced by simulations and the reduced 𝜒2 between data and the
Baseline simulation is approximately 1.1.
Second, we repeat the test above and additionally require 𝑃Ia >

0.5, where 𝑃Ia is estimated from the SNNclassifier trained on the
Baseline simulation (SNN(Base)). The agreement between data and
simulations is also good (reduced 𝜒2 of 0.7) and the tail of SNe with
faint Hubble residuals is significantly reduced both in the data and in
the simulations (Fig. 7b).
We note the presence of a few outliers (Hubble residuals larger

than 1mag) in the observedHubble residuals distribution, that are not
reproduced in the simulations. This could be due to a small fraction
of SNe in the DES-SN sample (less than 1.1 per cent according to
Wiseman et al. 2020) that is mismatched to a closer and brighter
galaxy, and thus appear as faint outliers on the Hubble diagram.
We remind the reader that host mismatch is not included in our
simulations.

5 BIASES ON COSMOLOGICAL PARAMETERS

The BBC framework requires several modelling choices, each caus-
ing a potential bias on the binned SN Ia distance moduli, 𝜇𝑏Ia, and
on the resulting fitted cosmological parameters. We explore these
choices in this section. The BBC configurations we test are listed in
Table 9 and illustrated in Fig. 1. Each is a different combination of
classifier and Lnon-Ia. Specifically, we test:

• 𝑃Ia measured from the five different SNN classifiers (Table 3),
as well as the Perfect and AllSNIa approaches;

• Two approaches for the modelling of Lnon-Ia (Section 3.3): the
polynomial fitting method of H12 (Dnon−Ia(H12)), and the Kessler &
Scolnic (2017) method implemented using the Baseline simulation
(Dnon−Ia(Base)).

We test combining Chauvenet’s criterion (Section 3.5) with the All-
SNIa approach.
We consider as our reference the configuration that uses the

classifier SNN(Base), and for which the core collapse SN likeli-
hood is modelled from the Baseline simulation. This has the label

‘SNN(Base) Dnon−Ia(Base)’, and is used as the benchmark to eval-
uate other BBC configurations.
All our tests are run on the simulations presented in Section 2.2,

reproducing the realistic scenario of testing classifiers on samples of
light curves that are not in the samples used to train the classifier.
This allows a verification that our modelling of LCC is sufficiently
generalised to be applied to any population of core-collapse SN
contaminants. Both are critical to robustly validate our results.
For each simulation, we estimate different cosmology-related pa-

rameters averaged over 50 realizations: 𝜇𝑏Ia, nuisance parameters (𝛼,
𝛽, 𝜎Ia,int, 𝑆non−Ia), 𝑤, and the time-varying dark energy equation-
of-state parameters 𝑤0 and 𝑤𝑎 . We then calculate biases due to
contamination as:

Δ𝑋 = 〈𝑋Ia+CC − 𝑋Ia only, perfect classification〉(50 realizations) (9)

where 𝑋 represents either 𝜇𝑏Ia or the nuisance parameters or cosmo-
logical parameters 𝑤, 𝑤0, 𝑤𝑎 depending on the context. Essentially,
we define a bias Δ𝑋 on a cosmological parameter 𝑋 due to contam-
ination as the average difference between the value of the parameter
fitted including contamination, and the value of the parameter fitted
with no contamination and assuming a perfect classification. Uncer-
tainties on Δ𝑋 are estimated as standard errors on the mean.

5.1 Biases for a flat 𝑤CDM model

We first consider fits in a 𝑤CDMmodel. Our key results are in Fig. 8,
showing Δ𝑤 estimated using different BBC options and simulations.
The cosmological results presented from the data are preliminary
and are blinded (i.e., the best-fitting cosmology is not known) and are
therefore also shown as shifts Δ𝑤 with respect to the (arbitrary) BBC
reference configuration (SNN(Base) DCC(Base)). Uncertainties on
the data are the 1𝜎 statistical uncertainties, while for simulations we
average the results of 50 realizations.

5.1.1 Cosmological biases using the SNN classifier

Testing the different simulations presented in Section 2.2 with SNN,
we find that the biases on 𝑤 are < 1 per cent (from a minimum of
Δ𝑤 = 0.002 for Baseline simulation to a maximum Δ𝑤 = 0.008 for
J17 simulation) for ourBBC reference configuration, and< 2 per cent
for the other configurations in Table 9 (a maximumΔ𝑤 = 0.015 is es-
timated for LFs+Offset simulation analyzed with SNN(J17)model).
Across all the BBC configurations and simulations tested, the biases
on the fitted nuisance parameters𝛼 and 𝛽 are < 1.5 and < 1.8 per cent
respectively (see Fig. 12). Biases on SN Ia intrinsic scatter 𝜎Ia,int are
also consistent with zero and the recovered scaling parameter 𝑆non−Ia
is consistent with one.
In Fig. 9, we present the full Ω𝑀 − 𝑤 cosmological contours11

from a single realization of the DES-like sample (i.e., the same statis-
tical constraining power as expected from the DES-SN photometric
sample).We compare cosmological contours for the ideal scenario of
a perfectly classified sample of SNe Ia and for the realistic scenario
of a contaminated sample of SNe Ia analysed using the SNN clas-
sifier. The biases on cosmological constraints due to contamination
are significantly smaller than the statistical uncertainties.
Fig. 10 shows the biases on the binned Hubble diagram (Δ𝜇) us-

ing different SNNmodels. Generally, the |Δ𝜇 | are less than 10mmag

11 As described in Sec. 3.6, we estimate contours using the cosmological
fitter CosmoMC.
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Table 9. Summary of BBC configurations (see also Fig. 1). The second line (highlighted) lists the reference configuration.

BBC Classifier Modelling Δ𝑤 using Δ𝑤 using
configuration(a) of 𝐷non−Ia Baseline simulation(b) DES-SN Data(c)

1) Perfect Dnon−Ia(Base) Perfect Baseline 0.0001±0.0002 -
2)∗ SNN(Base)Dnon−Ia(Base) SNN(Base) Baseline 0.0045±0.0008 0.0000 (0.0338)
3) SNN(J17) Dnon−Ia(Base) SNN(J17) Baseline 0.0109±0.0009 0.0059 (0.0342)
4) SNN(DES-CC) Dnon−Ia(Base) SNN(DES-CC) Baseline 0.0045±0.0008 0.0101 (0.0324)
5) SNN(Base) Dnon−Ia(H12) SNN(Base) Fit (H12) 0.0048±0.0008 -0.0015 (0.0338)
6) SNN(J17) Dnon−Ia(H12) SNN(J17) Fit (H12) 0.0135±0.0012 0.0025 (0.0331)
7) SNN(DES-CC) Dnon−Ia(H12) SNN(DES-CC) Fit (H12) 0.0048±0.0008 0.0070 (0.0329)
8) SNN(global) Dnon−Ia(Base) SNN(global) Baseline 0.0128±0.0010 0.0253(0.0319)
9) SNN(randHost) Dnon−Ia(Base) SNN(randHost) Baseline 0.0043±0.0007 0.0095 (0.0328)
10) AllSNIa PIa=1 ∀ SN ‡ -0.0252±0.0046 0.0407 (0.0517)
11) AllSNIa+Chauvenet PIa=1 ∀ SN ‡ -0.0152±0.0014 -0.0018 (0.0346)
12) AllSNIa+Chauvenet, 𝑐<0.15 PIa=1 ∀ SN ‡ -0.0139±0.0020 -0.0005 (0.0345)

(a) The numbers of selected SNe are in Table 2. The SALT2 selection and the requirement of a valid bias correction is always applied. Any additional
selection criteria are indicated in the name of the BBC configuration.
(b) Calculated using equation 9.
(c) Biases measured from the DES-SN sample. Shifts are with respect to the value estimated using our BBC reference SNN(Base) Dnon−Ia(Base). Errors
reported in parenthesis are the statistical uncertainties on 𝑤 only.
‡ Assuming all SNe have 𝑃Ia = 1 means that the core collapse SN term in the BEAMS likelihood is always zero (equation 3).
∗ Reference BBC configuration. For this BBC configuration, we obtain Δ𝑤 of 0.0045±0.0008 for Baseline simulation, 0.0082±0.0008 for LFs+Offset
simulation, 0.0046±0.0009 for Dust(H98) simulation, 0.0019±0.0007 for J17 and 0.0076±0.0009 for DES-CC.

across all tests and simulations (consistent with the small biases mea-
sured on 𝑤). We observe consistently across all simulations that SN
Ia distances estimated fromBBC aremostly unbiased (Δ𝜇 <4mmag)
at lower redshifts (𝑧 < 0.5), and the largest biases are observed at
𝑧 ∼ 0.7, towards negative values (i.e., brighter values). At these red-
shifts, the number of true SNe Ia decreases and thus the modelling of
the core collapse SN population is both more critical andmore uncer-
tain. This makes the marginalisation of core collapse SN contamina-
tion from BBC less accurate. The choice of the modelling approach
adopted for the contamination likelihood can have a significant im-
pact on 𝜇𝑏Ia. For the same SNN model, 𝜇

𝑏
Ia can differ by > 5mmag

when varying the modelling of the contamination likelihood. This
is particularly evident in the simulation where contaminants are ar-

tificially brightened (LFs+Offset). This suggests that the choice of
training sample for SNN is not the only driver of systematics.

Finally, we note that for all our tests with SNN we find that the
binned Hubble diagram 𝜇𝑏Ia is mainly biased towards negative values,
and this in turn corresponds to positive biases on 𝑤. This suggests
that combining SNN with the BEAMS formalism tends to slightly
‘over-correct’ for contamination and, therefore, preferentially biases
the Hubble diagram towards brighter values. In the next section, we
discuss cosmological biases when applying Chauvenet’s criterion
and no classification and we observe the opposite trend.
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5.1.2 Cosmological biases using Chauvenet’s criterion without a
classifier

We next test the case of not using a classifier and assuming all SNe in
the samples that pass the SALT2 selection are SNe Ia (AllSNIa), set-
ting 𝑃Ia = 1 for every SN and the contamination term in the BEAMS
likelihood to zero. We also test outlier rejection in combination with
the AllSNIa approach, with the results in Fig. 11.
With no outlier rejection, the binned 𝜇𝑏Ia are biased towards fainter

values pulled by faint core collapse SN contaminants, especially at

𝑧 < 0.5. At higher-𝑧 the biases are smaller (< 10mmag) as con-
tamination is naturally reduced by Malmquist bias, and can either
be brighter (e.g., for LFs+Offset) or fainter (e.g., J17) depending on
the properties of the simulated core collapse SNe. As expected, this
approach results in significant biases with Δ𝑤 = −0.025 ± 0.009
for Baseline up to Δ𝑤 = −0.082 ± 0.008 for J17 (see also Fig. 9).
The biases from this no-classifier approach have the opposite sign
compared to the biases found when combining SNN and the BEAMS
approach. In the no-classifier approach, the fainter population of con-
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different BBC configurations: each SNN model corresponds to a different line-style, and each 𝐷non−Ia modelling approach corresponds to a different colour (see
legend). Differences in distance modulus between Δ𝑤 = −0.03 and Δ𝑤 = 0.03 are presented as dashed and dotted-dashed lines respectively.
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Figure 11. As Fig. 10, but comparing the AllSNIa approach with perfect classification. We combine the AllSNIa approach with different SN selection
criteria: SALT2 selection only (AllSNIa), SALT2 selection and Chauvenet’s criterion (AllSNIa+Chauvenet), and finally including stricter SALT2 𝑐 cuts
(AllSNIa+Chauvenet,𝑐 < 0.15).

tamination is ‘under-corrected’ (or effectively not corrected at all as
core collapse SNe are assume to have 𝑃Ia = 1), therefore the biases
on 𝜇𝑏Ia are mainly positive and 𝑤-bias is negative.

When we combine Chauvenet’s criterion with AllSNIa, the bi-
ases in 𝜇𝑏Ia are reduced, generally to < 10mmag, and are broadly
consistent with the SNN results (Fig. 11). The 𝑤-biases range from
−0.010±0.002 for Baseline to−0.019±0.001 for Dust(H98) (Fig. 8).
However, in the J17 simulations, while the fraction of contaminants
(mostly red type Ib SNe) is similar to the other simulations (Table 7),
their distribution on the Hubble diagram is such that, even after ap-
plying Chauvenet’s criterion, a significant trend in 𝜇𝑏Ia is introduced
biasing 𝑤 by −0.030 ± 0.004. This is reduced by 50 per cent with
a stricter SALT2 𝑐 selection (to −0.015 ± 0.02), suggesting that the
bulk population of red and bright contaminants is the main driver of
this cosmological bias. For the other simulations, applying stricter
SALT2 𝑐 cuts does not reduce biases on 𝑤 significantly, while it
reduces the number of SNe Ia by 8 per cent.

Fig. 12 shows that the fitted nuisance parameters are also biased

when using Chauvenet’s criterion only. When applying Chauvenet’s
criterion, the residual population of red and faint core-collapse con-
taminants lead to an overestimate of the fitted values of 𝛽 by approx-
imately 3 per cent. These biases are reduced to < 1 per cent when
applying stricter SALT2 𝑐 cuts. Biases on 𝛼 are < 1 per cent. The
SN Ia intrinsic scatter is also overestimated by 7 to 10 per cent.

The cosmological constraints presented in Fig. 9 highlight the
power of outlier rejection methods like Chauvenet’s criterion.
For a DES-like simulated sample, when we assume all SNe
passing SALT2 selection and Chauvenet’s criterion are SNe Ia
(AllSNIa+Chauvenet), the biases on the cosmological contours
are small. These findings and the results presented Fig. 8 and Fig. 11
suggest that cosmological biases due to contamination can be small
even without applying photometric classification algorithms and us-
ing only outlier rejection methods.
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Figure 12. Relative differences in the fitted nuisance parameters 𝛼 (panel (a)), 𝛽 (panel (b)) and 𝜎Ia,int (panel (c)) and the deviation from one of the scaling
parameter 𝑆non−Ia (panel (d)). Each pair of panels presents the results for Baseline (left) and DES-SN5YR data (right). We compare different BBC configurations
(see Table 9). The BBC fitting procedure does not return uncertainty on 𝜎Ia,int. Therefore, for both data and simulations the uncertainties on 𝜎Ia,int are estimated
as the rms spread in 𝜎Ia,int measured from the 50 realizations of the Baseline simulation.

5.1.3 The role of priors

Besides SNN and Chauvenet’s criterion, the Ω𝑀 prior discussed in
Section 3.6 is another element that indirectly contributes to reduce
biases on 𝑤 due to contamination. In SN cosmology, SNe Ia mea-
surements and CMB measurements are typically combined in order
to break the respective degeneracies on the Ω𝑀 and 𝑤 parameter
space, and thus reduce the overall statistical uncertainty on 𝑤. As
shown in Fig. 9 (left panel), core collapse contamination shifts the
SN-only cosmological contours along the ‘banana-shaped’ SN con-
tours and perpendicularly to the CMB constraints and to a Gaussian
Ω𝑀 prior. Therefore, combining SNe with CMBmeasurements (left
panels in Fig. 9) or applying an Ω𝑀 prior (right panels in Fig. 9)
not only reduces statistical uncertainties on 𝑤, but also significantly
mitigates systematic biases on 𝑤 due to contamination.
We highlight that, for𝑤 estimates, CMB constraints aremore strin-

gent (i.e., almost perfectly orthogonal to SN-only constraints) than a
Gaussian Ω𝑀 prior. For this reason, we anticipate that updating our
prior with the latest CMB measurements from Planck Collaboration
et al. (2020) will further reduce statistical uncertainties on 𝑤 and
systematic biases on 𝑤 due to contamination.

5.1.4 Biases when applied to data

We perform the same tests on the DES-SN data as applied to the sim-
ulations. Clearly, the true classification of each SN and the unbiased
𝜇𝑏Ia is not known, so we estimate relative biases between different
BBC configurations.
Table 9 (last column on the right) and Fig. 8 (last column on the

right) present Δ𝑤 shifts measured from the data and estimated with
respect to the value of 𝑤 fitted from our reference BBC configura-
tion. Using Chauvenet’s criterion and assuming all events are SNe
Ia, we obtain Δ𝑤 = −0.0018 (r.m.s. on Δ𝑤 estimated from 50 real-
izations of the Baseline simulation is 0.0076). This result suggests
that our reference BBC configuration and the Chuavenet’s criterion
approach are consistent within the uncertainties. When comparing
our reference BBC configurations with the BBC configurations that
use SNN models SNN(J17) and SNN(DES-CC) (i.e., BBC configu-
rations 3 and 4 in Table 9), we observe shifts on 𝑤 of 0.0059 (r.m.s.
from simulations is 0.0036) and 0.0101 (r.m.s. from simulations is

0.0036). The BBC configuration that implements the SNN(global)
classifier results in the largest Δ𝑤, but given the caveats discussed
in Section 4.3.2) we do not consider SNN(global) a robust classi-
fication method. The statistical uncertainty on 𝑤 for our reference
BBC configuration is 0.034, which is approximately three times the
maximum Δ𝜇 observed in the data. These results confirm that for the
cosmological analysis of the DES photometric SN sample, contami-
nation is a subdominant systematic when compared to the statistical
uncertainty.

In Fig. 12, we compare fitted nuisance parameters when using the
reference BBC configuration and other BBC configurations. The
parameters 𝛼 and 𝛽 fitted from the data are consistent between
the different configurations tested. Large discrepancies are seen in
the fitted values of the scaling factor 𝑆non−Ia. 𝑆non−Ia for the data
is 0.26±0.13, 4.11±1.44 and 1.18±0.70 when using SNN(Base),
SNN(J17) and SNN(DES-CC) respectively and the non-Ia likelihood
approach 𝐷non−Ia(Base). Predicting 𝐷non−Ia and constraining the
factor 𝑆non−Ia is difficult when the percentage of contaminants in the
sample is already very low and this explains these large differences
in the fitted values.

For comparison and a sanity check, we also test the performances
of the SNN classifier SNN(Base) and Chauvenet’s criterion on the
DES-SN sample of spectroscopically-confirmed SNe. After apply-
ing all the selection criteria discussed in Section 2.3, we have 401
spectroscopically-classified SNe observed by DES. We find that 354
events are certain SNe Ia, 44 likely SNe Ia and 3 are classified as non-
Ia (two stripped envelope SNe and one hydrogen-rich SN). Only one
out of the three non-Ia SNe satisfy Chauvenet’s criterion. All three
events have 𝑃Ia < 0.2. The spectroscopic sample is significantly
biased towards bright, high signal to noise ratio events, therefore it
is not surprising that the contamination is extremely low (less than
1 per cent after SALT2-based cuts only and zero after probability
cuts). However, it shows how efficiently a SALT2-based selection
and Chauvenet’s criterion can reduce contamination, as generally
applied in the cosmological analysis of spectroscopic samples of
SNe Ia (Scolnic et al. 2018; Brout et al. 2019b; Foley et al. 2017).
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Figure 13. Same as Fig. 9 but in the 𝑤0 − 𝑤𝑎 plane and assuming a flat
𝑤0𝑤𝑎CDM model with an Ω𝑀 prior of 0.311 ± 0.010.

5.2 Systematic uncertainties associated with contamination

In this section, we estimate the contribution of contamination to the
𝑤 systematic error budget from a DES-like cosmological analysis. In
order to do this, we follow the approach presented by Conley et al.
(2011) and Brout et al. (2019b, section 3.8.2) and define a systematic
covariancematrix,𝐶syst, that can be included in the fit for cosmologi-
cal parameters. The 𝜒2-minimization cosmological fitter introduced
in Sec. 3.6 does not currently handle a systematic covariance ma-
trix; for this reason, we use CosmoMC when estimating systematic
uncertainties on 𝑤.
Given 𝜕𝜇𝑏Ia,sk the differences in the binned Hubble diagram after

changing the systematic parameter 𝑠𝑘 , the systematic covariance
matrix, 𝐶𝑖 𝑗

syst, is defined as

𝐶
𝑖 𝑗
syst =

𝑁syst∑︁
𝑘=1

(
𝜕𝜇𝑖Ia,sk
𝜕𝑠𝑘

) ©­«
𝜕𝜇

𝑗

Ia,sk
𝜕𝑠𝑘

ª®¬𝜎2𝑠𝑘 , (10)

where 𝜎𝑠𝑘 is the uncertainty of the systematic 𝑠𝑘 and the indexes 𝑖
and 𝑗 are iterated over the 𝑁bins redshift bins (𝑖, 𝑗 = 1, ..., 𝑁bins).
We build two different covariance matrices: one that includes

variations over the three SNN models (SNN(Base), SNN(J17)
and SNN(DES-CC)) but fixes the contamination likelihood to
𝐷non−Ia(Base) (configurations 2, 3 and 4 in Table 9), and one
that includes variations over the three SNN models (SNN(Base),
SNN(J17) and SNN(DES-CC)) but fixes the contamination likeli-
hood to 𝐷non−Ia(H12) (configurations 5, 6 and 7 in Table 9). For
each systematic, we estimate the contribution to the total error bud-
get on 𝑤 by applying the definition presented by Brout et al. (2019b,
equation 22)

𝜎′
𝑤 =

√︃
(𝜎2stat+syst − 𝜎2stat), (11)

where 𝜎stat+syst is the uncertainty estimated when considering only

Table 10. Uncertainty contributions to 𝑤 for a 𝑤CDM model (SNe are
combined with a Ω𝑀 prior of 0.311±0.010). See Table 9 for a detailed
description of the BBC configurations listed in the first column.

𝜎′
𝑤 𝜎′

𝑤/𝜎stat 𝜎stat+syst
Total 𝜎stat - - 0.039
2) SNN(Base) Dnon−Ia(Base)
3) SNN(J17) Dnon−Ia(Base) 0.004 0.106 0.040
4) SNN(DES-CC) Dnon−Ia(Base)
5) SNN(Base) Dnon−Ia(H12)
6) SNN(J17) Dnon−Ia(H12) 0.007 0.171 0.040
7) SNN(DES-CC) Dnon−Ia(H12)

one (or a sub-group of) systematics and 𝜎stat is the statistical un-
certainty. The results are estimated for our Baseline simulation and
presented in Table 10 (and obtain similar results when performing the
same test on the other simulations). Systematic uncertainties asso-
ciated with contamination are 0.004 for the 𝐷non−Ia(Base) method
and 0.007 for the polynomial fitting method by H12. In general, sys-
tematics associated with contamination are at most a third of the
statistical error, which corresponds to an increase of the overall 𝑤
error budget by less than 5 per cent.
In Appendix A, we highlight some potential limitations related to

the 𝐷non−Ia(H12) approach and to the choice of modelling the core-
collapse likelihood term as a second order polynomial. Therefore, we
consider the 𝐷non−Ia(Base) method as the most reliable one in our
analysis and quote 𝜎′

𝑤 = 0.004 to be our best estimate of systematic
uncertainties associated with contamination.

5.3 Biases for a time-varying 𝑤0/𝑤𝑎 model

We analyze the effects of contamination when fitting our simulated
SN samples assuming a flat 𝑤0𝑤𝑎CDMmodel. In Fig 13, we present
the 𝑤0 − 𝑤𝑎 cosmological contours obtained from one realization
of the Baseline simulation and assuming a Gaussian Ω𝑀 prior of
0.311 ± 0.010.
In Fig. 14, we present the average biases on 𝑤0 and 𝑤𝑎 measured

for the Baseline simulation. For different BBC configurations (Ta-
ble 9) and SNN, we find a −0.011 to 0.001 bias on 𝑤0 and 0.008
to 0.166 bias on 𝑤𝑎 . Using Chauvenet’s criterion and AllSNIa, we
find biases of −0.031 and 0.097 on 𝑤0 and 𝑤𝑎 respectively. If we
assume our reference BBC configuration is the most robust one, we
measure biases across the different core collapse SN simulations of
−0.009 < Δ𝑤0 < 0.000 and 0.047 < Δ𝑤𝑎 < 0.108. This is shown
in Fig. 14.
By comparison, the average statistical uncertainties on 𝑤0 and 𝑤𝑎

expected for a DES-like sample are 0.097 and 0.620, i.e., 5 to 10
times larger than the biases Δ𝑤0 and Δ𝑤𝑎 due to contamination.
Looking further to the future, these results can inform the planning

of future time-domain experiments such as the optical Legacy Survey
of Space and Time (LSST; Ivezić et al. 2019) that will be conducted
using the Vera Rubin Observatory. Although the exact observational
strategy is being developed, LSST is expected to discover more than
1000 new SNe Ia per night. Spectroscopic follow-up programmes
such as the Time-Domain Extragalactic Survey (TiDES; Swann et al.
2019) and others, will provide host galaxy spectroscopic redshifts as
well as spectroscopic classifications for a subset of these events. The
photometric SN Ia sample is expected to include at least 25 times
more cosmologically-useful SNe Ia than the DES-SN photometric
SN Ia sample, with similar redshift distributions (Frohmaier et al.
in prep.). In parallel, low redshift SN samples are also expected to
increase (approximately ×10 more SNe Ia than available in current
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Figure 14. Biases on the dark energy equation-of-state parameters 𝑤0 and 𝑤𝑎 measured using (a) the Baseline simulation and varying the BBC configuration,
and (b) the reference BBC configuration (Table 9) but varying the core collapse SN simulation (panel (b)). In panel (a), different SNN models correspond
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The biases Δ𝑤0 and Δ𝑤𝑎 and the relative uncertainties are measured as described in equation 9. As a comparison, we show the zero-centred 68% 𝑤0 − 𝑤𝑎

contours from DES-SN sample combined with an Ω𝑀 prior of 0.311 ± 0.010 and from a sample of 25 times the size of DES-SN sample.

low-𝑧 samples; see DESC Science Requirements Document; The
LSST Dark Energy Science Collaboration et al. 2018).
Following these forecasts, we estimate the statistical uncertainties

on 𝑤0 and 𝑤𝑎 expected when combining 25× the DES-SN5YR pho-
tometric SN sample, 10× the current low-𝑧 samples, and anΩ𝑀 prior
of 0.311±0.010. These are found to be 0.03 and 0.19 for 𝑤0 and 𝑤𝑎

respectively, i.e., approximately 3 and 2 times larger than the biases
Δ𝑤0 andΔ𝑤𝑎 foundwhen applying our reference BBC configuration
on the full range of simulations. The contours are presented in Fig.
14. We conclude that contamination is not expected to degrade the
figure of merit of the LSST SN Ia sample significantly, especially
when implementing classification techniques like SNN.

6 CONCLUSIONS

In this paper, we have exploited state-of-the-art simulations of SN
candidates detected by the Dark Energy Survey (DES) to quantify
systematic effects in cosmological analyses introduced by the use of
photometric SN classification methods. We focused on the testing of
SuperNNova (SNN), a SN photometric classification tool based on
machine learning techniques. In order to provide a robust assessment
of the algorithm’s performance and avoiding potential over-fitting,
we have trained and tested SNN not only on our ‘Baseline’ simulation
of DES (Table 1), but on a wider suite of DES simulations designed
to explore different astrophysical assumptions in the core collapse SN
population and different compilations of core collapse SN templates.
We then perform a state-of-the-art analysis using SALT2 light curve
fitting, BEAMS and its extension BBC to estimate bias corrections
and correct for contamination, and cosmology fitting. In this way, we
can propagate the effects of contamination to cosmological parameter
estimation. Our main findings are:

• Across our DES simulations, contamination ranges from 0.8–
3.2 per cent when using SNN, with the efficiency of the classification
ranging from 99.0–99.5 per cent (Table 4). Therefore, on a sample
of approximately 1680 SNe (Table 2), we expect SNN to misclassify
as SN Ia approximately 14 to 55 core collapse SNe and to exclude
from the cosmological fit 9 to 17 true SNe Ia.

• SNN trained on our Baseline simulation performs well across
all simulated data samples, including those based on independent
libraries of core collapse SN templates, with a contamination of≤ 1.4
per cent. SNN classifiers trained on simulations using templates

from J17 or DES-CC perform well when tested on simulations built
using the same set of templates (< 1 per cent contamination), but
when tested on simulations built using independent core-collapse SN
templates, contamination increases to 1.7 − 3.2 per cent.

• Outlier rejection methods like Chauvenet’s criterion can also
significantly reduce contamination (to < 3.1 per cent in the Baseline
simulation, and < 5.3 per cent for the other simulations, see Table 5).
This can be further reduced with a tighter selection based on the SN
Ia colour (< 4.0 per cent).

• We combine the BBC formalism with SNN trained on the Base-
line simulation, and set this as our reference approach. Assuming a
flat 𝑤CDM model, we find that biases on 𝑤 are below 1 per cent
(|Δ𝑤 | < 0.0082). When exploring additional BBC configurations
and SNN training methods, we find that biases on 𝑤 are at most
0.018. These biases are respectively 4 and 2 times smaller than the
expected statistical uncertainty on 𝑤 from DES-SN. The predicted
systematic uncertainties related to contamination are < 0.007 and
this suggests that contamination increases by less than 5 per cent
the total uncertainty on 𝑤 and it is not a limiting systematic for the
cosmological analysis of the DES-SN sample.

• When we implement Chauvenet’s criterion and assume that all
SNe that are not identified as outliers in the Hubble diagram are type
Ia, this simplistic approach also provides relatively small biases on 𝑤
(|Δ𝑤 | < 0.018 and |Δ𝑤 | < 0.033 with and without stricter SALT2𝑐-
based selection). Thus, cosmological biases from contamination are
small even without applying a photometric classification algorithm.

• Core-collapse contamination shifts the SN-only cosmological
contours perpendicularly to CMB constraints (see Fig. 9). Therefore,
combining SNe with CMBmeasurements (and not only with a Gaus-
sian Ω𝑀 prior) will not only reduce the statistical uncertainty on 𝑤,
but also furthermitigate systematic biases on𝑤 due to contamination.
In future cosmological analyses of the DES photometric SN sample,
SN constraints will be combined with CMB constraints from Planck
Collaboration et al. (2020), therefore we anticipate our estimates of
𝑤-biases due to contamination and 𝜎stat on 𝑤 to decrease compared
to using the Gaussian Ω𝑀 prior in this paper. From a preliminary
analysis, we forecast the contribution of contamination to the statis-
tical error budget on 𝑤 (i.e., 𝜎′

𝑤/𝜎stat, see Table 10) to change by
less than 20 per cent.

• We estimate biases due to contamination on 𝑤0 and 𝑤𝑎 . Comb-
ing the DES-SN sample with a GaussianΩ𝑀 prior of 0.311±0.010,
we show the biases on 𝑤0 to be less than 0.009, and the bias on 𝑤𝑎 to
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be less than 0.108. These are 5 to 10 times smaller than the statistical
uncertainties on 𝑤0 and 𝑤𝑎 expected from the DES-SN sample.

In general, the results in this paper are encouraging for the ongoing
DES-SN cosmological analysis, and demonstrate the tools to fully
exploit the photometric DES-SN sample to constrain the dark energy
equation-of-state. Our work lays the foundation for the cosmological
analysis of the DES photometric SN sample and our results will
be essential to assess the systematic error budget on cosmological
parameters estimated from the DES-SN sample.
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Figure A1. Same as Fig. 2 but when applying 𝑃Ia-based cuts.
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APPENDIX A: EFFECTS OF PROBABILITY CUTS

In Section 4.3, we showed that a probability cut of 𝑃Ia > 0.5
can reduce contamination in the DES-SN sample by a factor of
4–5, depending on the SNN classifier considered. However, the
BEAMS/BBC framework is specifically designed to handle sam-
ples that include both SNe Ia and contaminants, with the BEAMS
likelihood calculated using 𝑃Ia. Here we test the impact of combining
BEAMS/BBC with probability-based cuts on cosmology.

A1 Core collapse SN likelihood and BBC configurations

We combine the 𝑃Ia > 0.5 selection and several different configura-
tions of BBC, summarised in Table A1. Applying a probability cut
removes all SNe with 𝑃Ia < 0.5 from the main sample and from the
simulations used to estimate bias corrections (which only include
SNe Ia) and in the core-collapse SN simulation used to map the
core-collapse SN likelihood (LCC). Probability cuts therefore have
a complex impact on the analysis.
Fig. A1 shows the effect of a probability selection on the two

core-collapse SN likelihood models tested. Comparing Fig. A1a and
Fig. 2a, the best fit Ψ(𝑧) (and relative 𝜎CC, int (𝑧)) measured when
a 𝑃Ia > 0.5 selection is applied is significantly different from the
best-fitting Ψ(𝑧) estimate without such a selection. This is expected
because the 𝑃Ia cut only selects the brightest contaminants and sig-
nificantly reshapes the distribution of contamination on the Hubble
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Figure A3. Same as Fig. 8 but for BBC configurations in Table A1.

diagram. This is particularly evident at high redshift, where contam-
ination sharply drops and Ψ(𝑧) is an extrapolation.
Similar differences are seen when comparing the core-collapse SN

maps derived from the Baseline simulation before applying the 𝑃Ia
cut (Fig. 2b) and after (Fig. A1b). After 𝑃Ia cuts, the distribution of
core-collapse SN contamination is shifted to slightly higher redshifts
(0.3 > 𝑧 > 0.7), skewed towards the SN Ia likelihood (centred on
𝜇model) and sharply reduced at high redshift.

A2 Conclusions

Introducing a probability-based selection makes the modelling of
𝐷CC more complex. This can lead to significant biases when using
the H12 approach, where the core-collapse SN likelihood is fitted
from the data and it is assumed to be fully described by a second-order
polynomial. After probability cuts, this assumption is not adequate
because the contamination likelihood at high redshift is essentially
an extrapolation of the fitted polynomial and it does not reflect the
drop in contamination seen in simulations.
In Fig. A2, we show that biases on fitted 𝜇𝑏Ia when implementing

SNN 𝐷non−Ia(Base) and 𝑃Ia>0.5 cut are still < 10mag. However,
when applying the H12 approach, the contamination likelihood is not
robustly modelled and many high-redshift, faint SNe Ia are assigned
a higher likelihood of being contaminants and excluded from the
cosmological fit. This biases 𝜇𝑏Ia towards negative values and prop-

agates to the estimate of cosmological parameters. In Fig. A3, we
show the 𝑤-biases for the different BBC configurations tested and
we find biases larger than 0.04 for the majority of the configurations
where the H12 approach is used. We note that the main driver of the
bias in this case is not the presence of contaminants in the sample
but the loss of SNe Ia in the cosmological fit.
Finally, when the contaminants likelihood is modelled from the

Baseline simulation, the recovered biases are equal to or lower than
2–3 per cent and generally consistent with the biases found when a
𝑃Ia cut is not applied.
In summary, our tests show that applying a probability-based se-

lection perhaps counter-intuitively provides equal or higher biases
on cosmological parameters. The more accurate the classifier, the
lower the residual contamination in the sample and the more uncer-
tain the modelling of contamination in BEAMS. For these reasons,
a probability-based selection is not recommended and we do not
implement it in our main analysis.

APPENDIX B: REJECTING SNE WITHOUT A VALID BIAS
CORRECTION

With BBC it is not always possible to estimate valid bias corrections
for every SN, particularly those in regions of parameter space where
few SNe are simulated (see Section 3.4). These SNe are excluded
from a cosmological analysis and this reduces contamination in the
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sample. Here we test how our results change if the requirement of
a valid bias correction is relaxed, and if SNe without a valid bias
correction are retained in the sample but with 𝜇bias set to zero. Since
setting Δ𝜇bias = 0 is clearly an incorrect approach in a cosmology
analysis, we do not present updated results; rather, we compare the
impact for data vs. simulation to ensure that this effect is properly
modelled.
The requirement of a valid bias correction significantly affects both

the low-𝑧 and DES-SN samples (Table 2), but here we focus on the
DES-SN sample and effects at higher redshifts. In Fig. B1, we present
the redshift distribution of observed and simulatedDESSNe that pass
the SALT2 selection, but do not have a valid bias correction. These
distributions are generally consistent, but potential discrepancies are
observed in the two lowest redshift bins. This suggests that the data
include more atypical SNe than are modelled in the simulations.
Fig. B2 shows the observed and simulated binnedHubble residuals

estimated when considering only SNe without valid bias corrections.
The average Hubble residuals of this sub-population of uncorrected
events is low (less the 2 mmag) and consistent between observations
and simulations. This test confirms that we can model the selec-
tion effects introduced by BBC, and it further validates the results
obtained using our simulations.
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