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This paper studies a variant of the lot sizing problem that arises in the context of disaster management.
In this problem, a fixed budget has to be allocated efficiently over multiple time periods to procure large
quantities of a staple food that will be stored and later delivered to people affected by disaster strikes
whose numbers are unknown in advance. Starting from the deterministic model where perfect infor-
mation is assumed, different formulations to address the uncertainties are constructed: classical robust
optimisation, risk-minimisation stochastic programming, and adjustable robust optimisation. Experiments
conducted using data from West Java, Indonesia allow us to discuss the advantages and drawbacks of
each method. Our methods constitute a toolbox to support decision makers with making procurement
decisions and answering managerial questions such as which annual budget is fair and safe, or when
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1. Introduction

We consider a variant of the lot sizing problem that arises in
the context of disaster management. In this problem, a fixed bud-
get has to be allocated efficiently over multiple time periods to
procure a staple food that will be stored and later delivered to peo-
ple affected by disasters. Future demands, prices and availabilities
are unknown at the start of the planning horizon but data of past
disaster events exists that can be used to estimate probability dis-
tributions or simulate scenarios via resampling. Demand variability
can be particularly high due to the unpredictable nature of disas-
ters. Our main objective is to minimise the shortage of food, while
secondary objectives include minimising the waste resulting from
food items perishing, and the budget usage.

To approach the problem, a deterministic model, which as-
sumes future information is available, is first introduced as a de-
terministic linear program. We then explore three methods to drop
the assumption of perfect future information to allow us to find
robust solutions to the problem. We assume the information avail-
able to the decision maker to make a new procurement decision
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is a set of historical scenarios, the information that has been re-
vealed so far and the current state of the system. Our first method
is risk-minimisation stochastic programming (Birge & Louveaux,
2011; Rockafellar & Uryasev, 2000) based on a two-stage formu-
lation of our problem. The first-stage decision variables are the
procurement decisions over the remaining time periods, while the
second-stage variables are scenario-adapted measures that evalu-
ate the consequences of the first-stage decisions over the historical
scenarios. The second method is classical robust optimisation (Ben-
Tal, El Ghaoui, & Nemirovski, 2009); here, we assume that the pa-
rameters of the model can vary within specific ranges, defined by
historical data. It is straightforward to deduce the robust coun-
terpart formulation from the two-stage formulation in the first
method, and we examine ways to reduce the degree of conser-
vatism of the robust solutions. Our final method is adjustable ro-
bust optimisation (Ben-Tal et al., 2009; Yanikoglu, Gorissen, & den
Hertog, 2019) in which we look for an optimal decision rule to
extract from historical data so that it can be applied to make
immediate decisions during the planning time horizon of a new
scenario. Decision rules can be formalised in various ways in ad-
justable robust optimisation; however for reasons of tractability we
choose to use an affine mapping from the information that has
been revealed so far to the immediate here-and-now procurement
decision. Experiments conducted on generated data, which simu-
lates real historical events, allow us to discuss the advantages and
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drawbacks of each method. Our methods constitute a toolbox to
support or to produce automated decisions for annual planning for
disaster preparedness. Some methods are tunable according to how
much risk the decision makers could take. All methods are able to
provide answers to high-level managerial questions such as how
large the annual budget should be, the amount of storage capacity
that is required, or when storage peaks are likely to occur.

We demonstrate our methods on a case study from West Java
province in Indonesia, which has the highest multi-disaster risk
in Indonesia. Between 2016 and 2020, West Java province expe-
rienced an average of 4 disasters per day, mostly small-to-medium
scale disasters. Onggo et al. (2021) showed that during this period,
the most common disasters were landslide, tornado, flood and fire
(Onggo et al., 2021). West Java province covers 37,000 square kilo-
metre and has a population of over 46 million people, giving it
the second highest population density in Indonesia. Hence, when
floods strike, they often affect a significant number of people and
result in a high number of refugees. Between 2016 and 2020, a
total of more than 1.5 million victims were affected, with almost
100,000 of them having to live in shelters and so becoming classi-
fied as refugees. We invite readers who are interested in the detail
to read (Onggo et al., 2021).

By law, the Indonesian government is required to provide assis-
tance, including food supplies, to those affected by a disaster for up
to 14 days after a disaster strikes. This emergency period may be
extended when needed. In this case study, we choose rice because
it is the main staple food in Indonesia. The Indonesian government
sets aside a national budget known as CBP (Cadangan Beras Pemer-
intah or Government’s Rice Reserve) to stock rice to be distributed
to refugees during disaster response operations. The rice procure-
ment is carried out by the state logistics bureau (BULOG). Hence,
at the beginning of the budget year, the West Java provincial gov-
ernment will sign an availability contract with BULOG that guaran-
tees that CBP rice is always available when needed. BULOG makes
the decision on how much rice to buy each month. The challenge
is that the demand is seasonal with high variability. Likewise, rice
production is seasonal and the price varies. West Java province is
one of the main rice producers; hence, availability is not an is-
sue but it is included in the model as this may not be the case
in other provinces. Our model is developed to help BULOG West
Java division to make the optimal procurement decisions for the
provincial government and all municipality governments in West
Java province.

The supply for each refugee is delivered as soon as possible by
the local disaster relief agency to each shelter from the nearest
BULOG warehouse. This demonstrates the importance of optimis-
ing rice procurement for disasters. If too little rice is bought then
people’s lives and their welfare will be affected and if too much is
bought, it wastes money that could be used for other government
services including those involved in the disaster response and dis-
aster recovery phases. A further issue with over-stocking is that it
could lead to food waste. While rice has a long shelf-life, the lack
of suitable storage facilities designed specifically for rice (e.g. tem-
perature controlled silos) shortens the shelf-life. The wastage of a
significant amount of CBP rice is a known issue in Indonesia (e.g.
CNBC Indonesia, 2018"). BULOG thus faces what we term the rice
procurement problem in which they decide the amount of rice to
purchase in each time period in order to minimise the shortage of
supply to refugees, within a fixed annual budget. The price of rice
varies stochastically during the year and the numbers of disasters
and associated refugees also vary randomly through the year fol-
lowing a clear seasonality. Rice is assumed to be perishable and

1 https://www.cnbcindonesia.com/news/20180626183343-4-20609/
buwas-musnahkan-200000-ton-beras-bulog
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BULOG's policy is to use rice that is not older than six months
old. Any rice not used within its allowed lifetime is assumed to
be wasted.

This paper focuses on procurement pre-disaster by purchas-
ing the right amount of rice at the right time in a budget year.
Procurement affects the efficiency of disaster management op-
erations such as the distribution of relief items. Hence, suitable
models are needed to support procurement decisions which, sub-
sequently, can improve the performance of disaster response oper-
ations. Despite the importance of procurement in disaster opera-
tions management, the current Operational Research/Management
Science (ORMS) literature on disaster operations management has
focused primarily on problems of facility location, inventory man-
agement and transportation (Aghajani & Torabi, 2020). Only a few
studies focus on procurement decisions (Balcik & Ak, 2014). Hence,
our work contributes to the ORMS literature on procurement in
disaster management. In the early years, most ORMS models used
synthetic and often unrealistic data to test their models. However,
recently, researchers have recognised this as one of the main weak-
nesses and encouraged the use of real-world data to evaluate how
ORMS models perform under real-world cases and to test the ro-
bustness of the solutions (e.g. Esposito Amideo, Scaparra, & Ko-
tiadis, 2019; Farahani, Lotfi, Baghaian, Ruiz, & Rezapour, 2020; Ko-
vacs & Moshtari, 2019; Sabbaghtorkan, Batta, & He, 2020). This is
especially important for disaster management, where the variation
of demand is high. In addition to promoting the use of real-world
data, studies that apply ORMS methods to procurement decisions
in disaster management, especially for decision makers in regions
that experience disasters regularly (daily, weekly or monthly), is
lacking. These regions include many Asian countries. Furthermore,
research into humanitarian food supply chains is still underde-
veloped (Perdana et al., 2022). Hence, this paper contributes to
the literature on humanitarian food supply chains. Finally, we also
contribute to the literature on stochastic optimisation by provid-
ing an empirical study to compare a number of approaches to
develop a robust solution for a practical problem, namely clas-
sical robust optimisation, adjustable robust optimisation (Ben-Tal
et al.,, 2009; Yanikoglu et al., 2019) and risk-averse stochastic pro-
gramming (Rockafellar & Uryasev, 2000). It is uncommon to see
comparisons of these approaches on real-world problems such as
disaster management, since the two fields of robust optimisation
and stochastic programming are founded on different assumptions
about the knowledge of the underlying distribution of uncertain-
ties; an exception we could find is (Ni, Shu, & Song, 2018).

After reviewing the literature in the next section, we provide
a mathematical formulation for the problem and describe each of
the approaches used in Section 3. Numerical experiments based on
a real case study from West Java province, Indonesia, are presented
in Section 4 and are followed by a conclusion and suggestions for
future work.

2. Literature review

We divide the literature review into two subsections. First, we
review the literature on procurement in disaster management to
provide an overview of how ORMS have been used to help. As we
propose the use of robust optimisation and of stochastic program-
ming with risk-minimisation, in the second subsection, we review
the literature on different optimisation techniques to address un-
certainty and give examples on how they have been applied in dis-
aster management and related areas.

2.1. Procurement in disaster management

The procurement of relief items in response to a disaster can
be carried out during the mitigation phase (pre-disaster) or during
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the response phase (post-disaster). The pre-disaster procurement
is typically planned so that relief items can be pre-positioned at
strategic locations. The main advantage of this strategy is the quick
response time in delivering relief items to victims post-disaster.
The main drawbacks include the potentially low utilisation of re-
sources, high waste (for perishable items), and high inventory cost.
This is due to the uncertainty in the demand for and supply of
relief items, which makes it challenging to match the supply and
demand. Developing a pre-positioning strategy is typically more
challenging for non-climate induced disasters as they are not as
predictable as those resulting from extreme weather. The post-
disaster procurement strategy is advantageous in minimising the
waste, minimising inventory costs, and maximising resource utili-
sation; however, the response time to fulfil the demand from vic-
tims is typically longer. One of the main challenges for a post-
disaster strategy is that information about the demand may be
incomplete or inaccurate at the start of a disaster. The post-
disaster strategy includes direct procurement and the implemen-
tation of various contracts (e.g. option contract Liang, Wang, &
Gao, 2012, quantity flexibility contract Balgik & Ak, 2014, and auc-
tions Aghajani & Torabi, 2020). Both pre-disaster and post-disaster
strategies can be combined so that a smaller number of relief
items are pre-positioned and when the demand exceeds the cur-
rent safety stock level, the post-disaster strategy is executed. We
focus here on pre-disaster procurement but discuss post-disaster
strategies in future work.

The characteristics of the procurement problem in disaster
management lend itself to stochastic optimisation models in
ORMS. What follows is a review of ORMS methods that have been
used to support procurement strategies in the preparedness and
response stages of disaster management. The strategies are pre-
positioning, direct procurement, contract and auction.

Applications of ORMS methods to the development of a
pre-positioning strategy are reviewed in Sabbaghtorkan et al.
(2020) who consider publications between 2000 and 2018. They
group the research into three categories: location, allocation and
location-allocation. The objective of methods in the location cate-
gory is to find the best locations to pre-position facilities while re-
search into allocation aims to determine the best inventory level
of relief supplies in the facilities at known locations. Location-
allocation research combines these two problems, determining the
best combination of location of facilities and inventory level at
each facility. In the context of procurement, the latter two cate-
gories are relevant. One of the research directions that they iden-
tify is the need for more realistic modelling incorporating practical
assumptions such as budget limitations and basing work on real-
istic case studies (or real data). This is the gap that our work is
aiming to fill. Another aspect that has not been addressed in the
pre-positioning strategy is that in practice, budget usage and mon-
itoring are important for government agencies due to strict budget
regulations. Hence, the challenge is not only about where best to
locate the relief items but also how much budget needs to be spent
each month to procure them. This work specifically addresses this
challenge.

The ORMS methods that have been used for allocation and
location-allocation problems include two-stage stochastic program-
ming (TSSP), game theory, and stochastic process. For example,
TSSP with recourse action was used to pre-position medical sup-
plies for hurricane preparedness (Paul & Zhang, 2019). In the first
stage, they optimise the locations of distribution points, the in-
ventory levels of medical supply and the transportation capac-
ity. In the second stage, after the realisation of hurricane landfall,
they determine additional shipping capacity to increase the levels
of medical supplies at certain distribution points. An example of
the use of game theory is shown in Nagurney, Salarpour, Dong, &
Nagurney (2020) where the authors combined game theory and
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TSSP. The TSSP was used to model the decisions made by each
humanitarian organisation during the preparedness phase (stage
1) and response phase (stage 2), while game theory was used
to capture the competition among humanitarian organisations (i.e.
funding and access to transportation service). A stochastic process
model was used for a continuous review two substitutable per-
ishable product disaster inventory model in Yadavalli, Sundar, &
Udayabaskaran (2015). They carried out steady state analysis and
produced the mean number of: satisfied demands; demands in
which the products were substituted; and lost demand.

The direct post-disaster procurement strategy has been mod-
elled using TSSP with recourse (e.g. Falasca & Zobel, 2011; Hu,
Han, & Meng, 2017; Torabi, Shokr, Tofighi, & Heydari, 2018). In this
method, in the first stage, procurement decisions are made under
uncertainty (e.g. demand and damages to infrastructure are not
known with certainty). In the second stage, the real information
is revealed and a recourse action is applied to improve the de-
cisions made in the first stage. A two-period bi-objective mixed-
integer non-linear programming model was developed by Aghajani
& Torabi (2020) to model the post-disaster procurement decision,
which accounts for the unavailability of information at the begin-
ning of a disaster. Game theory has also been used for purchasing
decisions. For example, Nagurney, Salarpour, & Daniele (2019) used
game theory to model the purchasing decision of humanitarian or-
ganisations (i.e. local or non-local) and to capture the competition
among humanitarian organisations. These studies focus on a large
scale disaster and none of them consider the regular procurement
decisions that need to be made throughout a year to ensure an
adequate supply of relief items within a fixed budget. Regular pro-
curement decisions are important in cases where disasters happen
more frequently such as in West Java where they happen on a daily
basis.

Various types of contract have been proposed to manage the
uncertainties affecting procurement decisions. In (Liang et al.,
2012) Liang and co-authors considered an option contract and
showed that it was possible to have a feasible range of prices in
which both the buyer and the supplier were profitable. A quan-
tity flexible contract (QFC) is used in Balcik & Ak (2014), which
describes a scenario-based stochastic programming model to de-
sign a QFC in which the suppliers were required to supply relief
items post-disaster according to the contract’s requirements. A QFC
is used to coordinate relief items procurement activities in a three-
echelon relief chain in Nikkhoo, Bozorgi-Amiri, & Heydari (2018),
where the chain comprises a relief organisation (i.e. NGO), one re-
lief item supplier, and affected areas. In their proposed QFC, the re-
lief organisation places an order to the supplier to be stored at the
supplier’s warehouse before a disaster happens. The relief organi-
sation is committed to buy the relief items at an agreed minimum
amount, while the supplier is committed to provide the agreed
minimum amount and if required, an agreed extra amount. In our
case, the government sign a QFC contract with BULOG in which
BULOG is required to supply rice whenever the local government
needs it, up to a certain amount annually.

Auction is one of the most commonly used post-disaster pro-
curement strategies. In (Ertem, Buyurgan, & Rossetti, 2010), Ertem
and co-authors developed two mathematical models to determine
the winner in an auction involving multiple bidders and multiple
auctioneers to procure relief items post-disaster. In similar work,
Ertem & Buyurgan (2011) used two integer programming models
for bid construction and bid evaluation in an auction involving
multiple bidders and one auctioneer. Following on, Ertem, Buyur-
gan, & Pohl (2012) used a genetic algorithm, simulated anneal-
ing and integer programming model to analyse bid construction of
an auction to procure relief items considering product substitution
and partial fulfilment. More recently, Shokr & Torabi (2017) de-
scribes the development of an enhanced reverse auction frame-
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work to procure excess relief items post-disaster. Two novel possi-
bilistic models are built to support the bidders and the auctioneer
on the bid construction and bid evaluation, respectively. The mod-
els consider the unit prices, quantities, delivery times and trans-
portation modes of relief items. West Java is the main producer
of rice; hence, post-disaster procurement of rice is rare and we do
not consider post-disaster procurement here; however, this may be
important for regions that do not produce enough food for their
people as food will need to be procured elsewhere.

Several studies combine pre- and post-disaster procurement
strategies. The development of a two-stage scenario-based fuzzy
stochastic programming model that combines pre-positioning and
QFC is described in Torabi et al. (2018). Hu and Dong used a TSSP
that integrates facility location, inventory policy, supplier selection,
and distribution of relief items in Hu & Dong (2019), while Hu
et al. (2017) uses a TSPP that integrates inventory and procurement
policy, and supplier selection.

Overall, we have found the uses of ORMS methods that focus
on procurement for disaster management do not cover the spe-
cific problem encountered by disaster agencies in Indonesia and
other developing countries that are prone to frequent disasters.
Our problem belongs to the category of inventory management
problems (Ghiani, Laporte, & Musmanno, 2004), more specifically
the lot sizing problem that focuses on the procurement and ware-
housing processes. This is an important problem faced by the de-
cision makers at the disaster agencies with whom we are working
because they have to make regular procurement decisions. The lit-
erature rarely studies the lot sizing problem for disaster manage-
ment. This is partly due to the dominance of studies that address a
one-off major disaster instead of the continuous frequent small-to-
medium scale disasters (Onggo et al., 2021). Furthermore, we focus
on an application in humanitarian food supply that is still under-
researched (Perdana et al., 2022).

2.2. Addressing uncertainties in disaster management

The high level of uncertainty is one of the main characteristics
of disaster management. Regarding our problem of procurement of
emergency staple food for West Java, we examine three optimi-
sation methods that can be used to support decision making un-
der uncertainty: risk-averse stochastic programming, classical ro-
bust optimisation and adjustable robust optimisation.

We provide an overview of relevant research into these meth-
ods, their extensions and how they have been applied in the con-
text of disaster management below.

Robust optimisation finds a strategy that gives the best worst-
case performance among all allowed realisations of the inputs,
where the inputs can take any value within a defined uncer-
tainty set (Ben-Tal et al., 2009). The approach does not require
any assumption about the distribution of the underlying uncertain-
ties, and can be conservative. In the context of our procurement
problem, this conservatism can be problematic for non-immediate
decisions such as those further in the planning horizon. Thus,
Bertsimas & Sim (2004) introduced the notion of I'-robustness
in which deviations are instead allowed within a given budget of
uncertainty and showed that solving the robust counterpart, un-
der the new robustness definition, is equivalent to finding the
solution for the deterministic formulation with modified inputs.
In disaster management, it has been applied to finding the opti-
mal locations of facilities and the allocation of resources (e.g. Sun,
Wang, & Xue, 2021; Zokaee, Bozorgi-Amiri, & Sadjadi, 2016). Most
of the studies focus on single disaster event while our model is
designed for multi-disaster events that happen during a financial
year. This is applied to a supply chain example in Bertsimas &
Thiele (2006b) where some investigation is carried out into how
I" should be selected.
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An extension of robust optimisation is the two-stage setting
where the decision maker adjusts their strategy based on informa-
tion revealed over time. For example, in the context of the pro-
curement problem, data on the amount of stock still available in
the warehouse can be used to decide on procurement strategies
for future months. The first-stage variables are here-and-now de-
cisions that are required to be valid across all realisations while
the second-stage variables are wait-and-see decisions that can be
adapted to each realisation. This extension has been applied to pre-
position disaster relief items (Ni et al., 2018; Velasquez, Mayorga, &
Ozaltin, 2020). For example in Velasquez et al. (2020), in the first
stage, they optimise the facility locations and the amount of re-
lief items to store at each facility. In the second stage, after a dis-
aster struck, they optimise the number of additional relief items
to procure. Unlike ours, their model is designed for one disaster
and both row and column generation techniques are used to solve
the linear formulation. Another benefit of the two-stage formula-
tion is that it allows the implementation of the so-called adjustable
robust optimisation to apply to future realisations or unseen sce-
narios (Ben-Tal et al., 2009; Yanikoglu et al., 2019). An application
of this technique for a problem similar to ours in the context of
power production can be found in Coniglio, Koster, & Spiekermann
(2018).

In stochastic programming, the general assumption is that the
distribution of the uncertainties is known, then the objective func-
tion is often formulated as the minimisation of an expected cost.
In a risk-averse setting such as disaster preparedness, the ex-
pected cost can be replaced by the quantile of a cost distribu-
tion. This is equivalent to the concept of Value-at-Risk (VaR) op-
timisation in finance (Morgan, 1996). VaR or quantile optimisa-
tion is computationally expensive and the metrics may have some
undesirable property such as non-convexity, thus in optimisation
contexts, Conditional Value-at-Risk (CVaR) offers a better alter-
native (Rockafellar & Uryasev, 2000). CVaR is the expected value
beyond the quantile, also known as the expected shortfall. VaR
and CVaR have been used in the context of procurement prob-
lems (e.g. Alem, Oliveira, & Peinado, 2020; Charwand & Gitizadeh,
2020; Mahmutogullari, Cavus, & Aktiirk, 2018). When the exact so-
lution for the optimisation problem cannot be expressed analyti-
cally, Monte Carlo simulation is used instead and the method is
referred to as Sample-Average Approximation (SAA) (Birge & Lou-
veaux, 2011). SAA is particularly useful in our application because
it allows the implementation and comparison of robust optimisa-
tion and stochastic programming. We generate the scenarios, ei-
ther for building the optimisation models, or for testing their per-
formance, by resampling real data describing historical disasters in
West Java. As far as we know, our work is the first to apply both
stochastic programming and robust optimisation to an inventory
problem for disaster management and evaluate them using real
data.

Distributionally robust optimisation, or data-driven robust op-
timisation, is an emerging method (Duque, Mehrotra, & Morton,
2022; Esfahani & Kuhn, 2018) and can be seen as a middle ground
between stochastic programming and robust optimisation. Similar
to stochastic programming, the goal is to optimise the expected
performance, but under the worst possible distribution of uncer-
tainties, where the uncertainty set is defined as the space of all
probability distributions that validate a set of statistical properties
observed in the real data. The method is therefore particularly use-
ful when only partial knowledge about the statistical properties
of the uncertain parameters is available or it is difficult to simu-
late historical scenarios due to the scarcity of available data. This
method is relatively new for disaster management. A recent exam-
ple is given in Zhang, Liu, Yang, & Zhang (2020) who optimised
the location of local distribution centres and points of distribu-
tion under uncertain travel times, formulating the problem as one
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of location-allocation. As with the majority of studies, their model
was designed for a single disaster event, unlike our model which
is designed for multiple disaster events.

Multi-stage stochastic programming also has the potential for
addressing a planning problem with uncertainties over multiple
time periods (Birge & Louveaux, 2011). Under some general as-
sumptions, such as the ability to model future events as a scenario
tree, thus implicitly ensuring the Markov property holds for the
process and the transition probabilities are known, general tech-
niques can be used to solve such a problem, e.g. stochastic dual
dynamic programming (Pereira & Pinto, 1991). A similar technique
has been applied to disaster management in the context of dis-
tributing relief items during a hurricane (Siddig & Song, 2021).

3. Methodology

We begin by providing a mathematical description of the pro-
curement problem introduced in Section 1 before formulating sev-
eral approaches to solving it. The first approach assumes that de-
mand and prices are deterministic and provides a naive approach
to procurement that ignores uncertainties. We then go on to de-
scribe how stochastic programming, robust optimisation and ad-
justable robust optimisation can be used as approaches that ac-
count for unknown demand and price in the rice procurement
problem.

3.1. Preliminaries

The set of real numbers is denoted R and the integers Z, their
half positive subsets including zeros are denoted with a + in su-
perscript, e.g. Z*. For an integer n, we use [n] to denote the set
{1,2,...,n}, and for a fractional x, [x] denotes its nearest integer.
The indicator function of an event A is denoted 1, i.e. returns 1
if A is true, and 0 otherwise. Our decision variables are indexed
in subscript and/or superscript, e.g. x;, while our indexed problem-
parameters are written with parentheses, e.g. d(i). Table 1 provides
a reference list for the notation used in this paper.

3.2. Problem description

We consider the following procurement problem under uncer-
tainty. A fixed budget B is available to spend to procure quan-
tities of a perishable item to satisfy demand over a time hori-
zon of n periods. At time period i, the purchase price p(i) and
the available market supply or availability a(i) are known, but
the demand d(i), and future demands, prices and availabilities
(d(j), p(j).a(j))j-;i are unknown. Data on demands, prices and
availability in previous time periods are recorded and accessible,
&' ={(d()), p(i), a(j))1<j<i} U {(p(), a(i))}, along with a fixed set
of historical data # = {(d(j), p(j), a(j)) je[nj} from previously expe-
rienced horizons. Quantities of the item that have stayed in the in-
ventory for t time periods or beyond are considered perished and
they are automatically removed. Some initial inventory, described
by state Xg, is made available at the beginning of the time horizon
and some safety stock r may be required at the end of the planning
horizon. There may be a requirement that this stock has a partic-
ular level of freshness, such that by the end of the time horizon it
has not stayed more than t < T time periods in the inventory (for
t = 7 — 1 this requirement is the most relaxed as it only restricts
the age of the safety stock to be within the expiry date).

The goal is to construct a decision making routine, denoted by
OPTIMISER, that takes the role of a decision maker. It takes #, &!
and the current state of the inventory, i.e. quantities in stock and
still usable (not yet perished), at each period i € [n] as input, then
outputs the buy quantity y;, i.e. a here-and-now decision, such that
the key performance indicators at the end of the time horizon

[m5G;May 27, 2023;16:9]

European Journal of Operational Research xxx (XxXxx) Xxx

Table 1
Notation used in the formulation of the problem.

Term Description

Symbols used in the basic/deterministic formulation

i time index

j age index

Xij quantity of stock of age j remaining at the end of period i
Vi target buy quantity in period i

Gij amount of stock of age j consumed in period i
S; shortage of stock in period i

n number of time periods

T age limit at expiration

B procurement budget

1(j) initial inventory of age j

r safety stock requirement

t safety stock age limit

d(i) demand in period i

p(i) price in period i

a(i) availability in period i

v storage limit

Symbols used in stochastic programming

T occurrence probability of a scenario
o risk level in VaR/CVaR

n Value-at-Risk variable

u positive side in CVaR model

Symbols used in the robust formulation

u uncertainty set

Q set of scenarios

& a particular scenario

S the greatest shortage

B the highest budget spent

v offset parameter of the affine mapping

vl parameter of the affine mapping for the demand in period i
P parameter of the affine mapping for the price in period i

v parameter of the affine mapping for the availability in period i

Symbols used in the dynamic test procedure

OPTIMISER optimiser

GENERATOR  generator

SIMULATOR simulator

H set of historical scenarios

T set of test scenarios

b current budget

y(&,1) amount bought in period i in scenario &
x(&.1, ) inventory of age j in period i in scenario &
s(&, i) shortage in period i in scenario &

c amount consumed

are optimised. These are the minimisation of shortage, waste and
budget usage in that exact priority order. Algorithm 1 describes
how an OPTIMISER can be used to decide on the amount to pur-
chase in each month based on historical data and observed de-
mand, price and availability. Here, a sequence of full information
& =(d(j), p(j), a(j)) jein) is referred to as a scenario, and the par-
tial sequence & as described above is called a partial scenario until
time i.

In Algorithm 1, the detailed state of the system including the
shortage s(&,1i), waste x(&,1i, 7) and remaining budget b(&,i) are
collected at the end of each time step. The OPTIMISER is queried
in line 4 for the next decision y; of the quantity to procure in the
current time period i. This line captures the uncertain and dynamic
nature of our problem, as only a set # of historical data, the par-
tial scenario &, plus the current state of the inventory system are
revealed to the OPTIMISER. The procurement order is then checked
with the available budget b(£,i — 1) and the actual price p(&,1i) in
line 5 and the actual quantity procured y(&,i) is deduced. The re-
maining budget is then updated in line 6. Finally, the inventory is
updated using a FIFO policy (lines 7-16). At the end of the time
horizon (typically 1 year; line 17), s(§,n + 1) is computed to take
into account the unmet safety stock. We note that quantities of
the item stored in the system are assumed to be integers; how-
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Algorithm 1: Implementation of an OPTIMISER given histori-
cal data # for a new scenario £.

Input: OPTIMISER, 7, £ scenario for demand, price and
availability made known to the algorithm month by
month, initial inventory Xq, parameters n, B, r, 7, t.
Output: Target buy quantity y;, and actual purchase
quantity y(&, i), shortage s(&,1i), waste x(£,1, T)
and remaining budget b(&, i) for each i € [n].
1 b(§,0) < B;
2 x(£,0,-) < Xo;
3 foreach i € [n] do

// query OPTIMISER for the next decision

a | y; < OpmiMISER(T, €/, b(§,i—1),x(§,i—1,.));
s | v < min (1) (2550 e D):

6 b(§.1) < b(E.i—1)—y(§.1) x p(§.1);

// update the inventory using FIFO policy
7 s(§,1) < d(§,1);

8 X(§,1,1) < y(§.1);

9 foreach j e [7]\ {1} do

10 | x@E. 1)) «<x@Ei-1,j-1);

n for j < 7 downto 1 do

12 if s(&,i) =0 then

13 L break;

14 ¢ < min(s(&,1),x(&,1, j));
15 X(E, 0, j) < x(&, 0, ))-¢
16 s(&,i) < s(&,i)—c;

7 s(;;‘,n-i-l) < max (r— Yj_, x(&,n, j),0);

-

ever to give more flexibility to the OPTIMISER, we allow it to pro-
duce fractional decisions, and this explains the use of the rounding
and floor functions in line 5. The output of the algorithm provides
a recommendation of the purchase quantities in each time period
and allows the computation of the key performance indicators. We
wish to minimise three indicators that are listed in a priority or-
der as follows: the first and most important is the total shortage
Y 1s(&,i); then it is followed by the total waste I | x(&,1, 7);
and finally the budget spent B—b(&, n).

In practice, a small set # is often given, typically data recorded
or computed from disaster events and market information from
previously operated years, and & records what has happened dur-
ing the planning year. We assume that the scenarios of % and &
come from the same distribution.

In order to assert the robustness of an OPTIMISER, multiple fu-
ture scenarios £ similar to the historical data need to be generated
and we refer to these as the set 7 of test scenarios. This generation
uses an operator called the GENERATOR. Our GENERATOR and hence
its generated scenarios are based on real data and are designed to
incorporate the observed seasonality in the demands and prices.
Details are given in Section 4.2.

In the following sections we describe OPTIMISER s that could be
used to solve the procurement problem, beginning with those that
use a deterministic formulation.

3.3. Deterministic formulation

In the deterministic model, we assume that full information
§ = (d(), p(i), a(i))ic[n is available when making the procurement
decision y; for each time period. The results obtained by this for-
mulation therefore represent a lower bound on the performance
for any realistic OPTIMISER which only has access to the past and

[m5G;May 27, 2023;16:9]

European Journal of Operational Research xxx (XxXxx) Xxx

the present. In Section 3.5, we also show that the classical robust
formulation is equivalent to a deterministic formulation, in which
the parameters are deduced from the uncertainty set.

In addition to the decision variables y;, we use variables x;; to
store the quantity of item at age j remaining at the end of pe-
riod i; variables s; to record the shortages (unmet demands) at
time period i; and variables ¢;; for the quantities of item of age
j consumed at period i € [n]. The procurement problem can then
be formulated as the following linear program, which we discuss
below.

(BUDGETALLOC-DET) min Z s, Zx,-f, Zy,-p(i) (1)

ic[n+1]  ieln]  ieln]

s.t.

LonXa-nG-n + Lj=nyVi = G-y + %5 Vie[n],Vje[r] (2)

-1
si+ZcU:d(i) Vi e [n] (3)
j=0
t
Sn+1 + anj >r (4)
j=1
> yip(i) <B (5)
ie[n]
yi €R", yi < a(i) Vie[n] (6)

xij € RY, x0; =1(j), Xor =0 Vie{O0}u[n],Vjelt] (7)

s; e Rt Vie[n+1] (8)

Vie[n],Vje{0}u[t —1]
9)

The objectives (1) are lexicographically ordered: we first min-
imise the shortage ;. 1S, then the waste 37, X;;, and finally
the budget usage > ., Yip(i). The balance constraints (2) ensure
that the consumable quantity, which is either freshly bought or
the leftover from the previous period, equals the actual consump-
tion plus any leftover in the current period. Constraints (3) connect
consumed quantities to the demand; here the shortage s; works
like a slack variable. Constraints (4) ensure there is sufficient safety
stock with age no more than t at the end of the planning horizon
and we note that t < 7. The budget limitation is set in constraint
(5). The availability of stock to procure, which may be due to the
production level in the region, provides a limit on the amount that
can be purchased in constraints (6). The initial inventory levels
are set in constraints (7). Note that we do not require input I(7),
which corresponds to initial stock of age 7, which is due to ex-
pire, and instead we set Xy, = 0. This is done because if the model
was run for the previous year, then [(t) would have already been
counted as a waste for that year as the stock is no longer usable.
Finally, the variables are defined in (6)-(9).

To solve a multi-objective optimisation problem via the lexico-
graphical method, we first solve the problem with the highest pri-
ority objective (the shortage in our case), then fix the obtained op-
timal value as a constraint before moving to the next highest prior-
ity objective and continuing until all objectives have been consid-
ered. Some modern Linear Programming solvers have features to

Gij € R*
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support this approach with a minimal effort, e.g. CPLEX since ver-
sion 12.9. A reduction of the formulation based on the redundancy
in the objectives is discussed in Appendix A, which shows that the
waste minimisation is redundant when both of the other objec-
tives are included. Some extensions of the model to incorporate
other complexities often seen in similar situations are discussed in
Appendix B.

3.4. Stochastic programming

In stochastic programming, we look for a solution, in this case
the procurement quantities y;, that works well on average over a
set Q of scenarios (e.g. a set of generated or observed scenarios
Q = H) and we assume the occurrence probability of each scenario
& € @, denoted by 7 (£), is known. These probabilities are often as-
serted by experts. In our case, the scenarios either come from real
historical data, or are sampled with a GENERATOR described later
in Section 4.2 and this is in essence the Sample Average Approx-
imation method (Birge & Louveaux, 2011), thus we will assume
the scenarios are equiprobable. This yields the following two-stage
stochastic programming formulation of the problem. The first-stage
decisions are y;, the procurement quantities at time period i; while
all of the other variables are second-stage as they are scenario-
adapted measures. These are indexed with & (e.g. si, X;;¢, etc) and
evaluate the impacts of the first-stage decisions over scenario &.

(BUDGETALLOC-STOCH) min [ > "7 (§) Y sg.

£cQ ic[n+1]
Z (&) Z Xirg»
EeQ ie[n]

D o w() )Y yip(i,§) (10)

£eQ ie[n]
s.t.

Lijo X1 i-ng + Lj=1)i

= Ci(j—1)& T Xij& Vie [n],V] IS [T],VS e Q (11)

-1
Sig + Y Cijg =d(i, &) Vie [n], V& e Q (12)
j=0
t
s(n+1)g+2xm~§ >T VE e Q (13)
j=1
> yip(i.&) <B VE e Q (14)
ie[n]
yieRY, yi<a(i§) Vie[n], V& e Q (15)

Xije € RT, Xje=1(j), X0rz=0 Vie{0}U[n].Vje[r], V& cQ

(16)
Sie € RY Vie[n+1],VE € Q (17)
C,‘jé:GIR+ Vie[nije{O}U[T_l]’VEeQ

(18)

Relative to the deterministic formulation, here we have ex-
tended all of the constraints to the scenario dimension, and we

[m5G;May 27, 2023;16:9]

European Journal of Operational Research xxx (XxXxx) Xxx

have done the same for all of the variables, with the exception of
the y;, which are our first-stage decisions. The objectives (10) min-
imise the shortage, then waste and budget spent in expectation.

The robustness of the solution in terms of shortage can be im-
proved as follows. Instead of optimising the normal expectation,
we optimise the conditional expectation beyond some «-quantile,
and this is known as Conditional Value-at-Risk (CVaR) (Rockafellar
& Uryasev, 2000), where the value of the «-quantile is the Value-
at-Risk, VaR. For example, when this is applied to the first objec-
tive of shortage, we have the following linear formulation:

. 1
(BUDGETALLOC-CVAR) min (ns +t 1o gén(f)ug,

DorE) Y ik,

EeQ ie[n]

Y w®&) ) yinl, S)) (19)

£eQ i[n]
s.t.

(11), (12), (13), (14), (15), (16), (17), and (18)

= Y sg-n VEeQ (20)
ie[n+1]
7' eRui eRT VEeQ (21)

Here « is the confidence (or inversely risk) level parameter set
by the user, e.g. if 5% of the worst objective values are considered
in computing VaR/CVaR then « is set to 0.95. If « is set to 0 then
BUDGETALLOC-CVAR is equivalent to BUDGETALLOC-STOCH.

When there is sufficient budget to cover absolutely no shortage
over 2 in BUDGETALLOC-STOCH, i.e. there exists a solution that al-
lows zero in the first objective, then the two models are also equiv-
alent, since the distribution of the first objective with the given
solution is collapsed into a single point. In that case, it is possible
to keep the first objective of BUDGETALLOC-STOCH and apply CVaR
formulation to the second objective in a similar fashion, by intro-
ducing variables n* and u’g and updating the second objective. We

refer to this model as BUDGETALLOC-CVARW.

3.5. Robust optimisation

In robust optimisation, we want to make the best decision in
the worst case scenario. The robust formulation can be derived di-
rectly from the deterministic one by adding the assumption that
the solution should hold for any (uncertain) parameters taken from
some uncertainty set /. The uncertainty set is designed to ac-
count for seasonality in the price and demand as we discuss fur-
ther in Section 4.2. In our model, this is equivalent to optimising
BUDGETALLOC-DET where (d(i), p(i), a(i))ie[n) € U.

The need for modelling slack variables such as s; with equal-
ity constraints is unavoidable for our problem since these vari-
ables appear in the objectives, therefore it is not possible to pro-
duce an equivalent formulation where uncertain inputs only ap-
pear in inequality constraints like in Bertsimas & Thiele (2006b).
This leads to too strong a degree of conservatism and infeasibility
if the model contains only first-stage variables, i.e. equality con-
straint (3) cannot be satisfied simultaneously for two different val-
ues of d(i). A similar issue can be found in Coniglio et al. (2018),
and some discussion on this can be found in Chapter 1 of (Ben-Tal
et al.,, 2009). We therefore move directly to the two-stage robust
formulation, which shares some similarities with BUDGETALLOC-
StocH. For conciseness, here we make use of the result described
in Section 3.3 that the waste minimisation objective is redundant
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and consequently we can optimise over just shortage and budget.
The formulation is as follows:

(BUDGETALLOC-ROBUST) min (S, B) (22)
s.t.

(11), (12), (13), (14), (15), (16), (17), and (18)

Y se<S VE e Q (23)
ie[n+1]
Y vip(i.§) <B VEeQ (24)
ie[n]
S, B eR" (25)

Here Q ={& | (d(i.§), p(i,§),a(i,§))icn) € U}. Several types of
uncertainty set can be considered for ¢, such as box, polyhedral or
ellipsoidal (Ben-Tal et al., 2009). We have the following observation
related to the deterministic formulation. BUDGETALLOC-ROBUST can
have an infinite number of constraints, and a formal derivation of a
compact counterpart would involve considering the dual formula-
tion; however, it is intuitive to see that the worst case corresponds
to the smallest availability, and the largest demands and prices as
stated more formally in Proposition 1.

Proposition 1. BUDGETALLOC-ROBUST with the uncertainty set U
is equivalent to the optimisation problem of (2)-(35) where
(d@@), p(i),a(@) is replaced with (maxg.o{d(i)}, maxe.o{p@)},
ming q{a(i)}) for each i e [n].

Proof. It follows from (12) that

-1
CiOE Zd(i,é)—sig _ZCUE Vie [n],VE cQ (26)
j=1

and combining this with (11) for the case j =1 gives

-1
Vi = Ciog + Xitg = d (i, §) — Sig + Xi1g — »_Cije  Vie [n],VE € Q
=1
(27)

Therefore, (14) and (15) are equivalent to

-1
> (d(isS)_5i§+xi1§_zcij§)p(i’§)<B VEeQ  (28)

ie[n] j=1

-1
yieRY, d(i.&) —si +Xqe — Y Cje <a(i§) Vie[n].VEeQ
=1
(29)

Note that d(i, £) appears in the LHS of both (28) and (29) with co-
efficients p(i,&) > 0 and 1 respectively, thus the larger the value
it has, the more dominant the formulation is over other possible
values. This also holds true for p(i, &) as it appears in the LHS of
(29) with coefficient d(i, &) > 0. Input a(i, £) appears on the RHS
of (29) with coefficient 1, thus the dominant formulation is ob-
tained with its smallest value. O

Taking these inputs to the maximal (or minimal) values can
produce highly conservative solutions, thus in practice when £2
is large, we consider smaller statistics, for example 0.95 or 0.90-
quantiles, or even lower if the variation is small. These details are
discussed in Section 4.
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3.6. Scenario-based adjustable decisions

In adjustable robust optimisation (Ben-Tal et al, 20009;
Yanikoglu et al., 2019), we look for an optimal decision rule ex-
tracted from historical scenarios so that it can be applied at suc-
cessive time points during the planning time horizon of a new sce-
nario. In general, a decision rule is a mapping from the recent past
data including recently revealed information and possibly the cur-
rent state of the system to a new decision or recommendation. This
allows the recommendations to be adaptive with respect to recent
events of a scenario.

There are various ways to formalise a decision rule and
each yields a specific approach to adjustable robust optimisation
(Yanikoglu et al., 2019). We choose ours to be an affine mapping
from the input space of the information that has been revealed so
far, to the decision space of the immediate buy quantity. Some ad-
vantages of this mapping are that it is natural and requires fewer
assumptions about the modelling of the uncertainties, and that if
the original problem is a linear program, the resulting formulation
will also be a linear program, and hence tractable. An application
of the same approach for another variant of the lot sizing problem
can be found in Coniglio et al. (2018).

We introduce the parameters, vy, vf, Uf and v{ of the affine
mapping as the new first-stage decisions. We then push the
old first-stage decisions y; to the second stage, i.e. make them
scenario-dependent yje, and set them equal to the outputs of ap-
plying the mapping to the data of each scenario used

i—1
Yie = vo+ Y d(i . E)vf
=1

+ 3 (P VP +ali' . £)18). Vie[n,VeeQ (30)
=1

This gives the following adjustable robust formulation:
(BUDGETALLOC-ARO) min (S, B)
s.t. (31)

(12), (13), (16), (17), (18), (23), (25), and (30)

Loy X -1y (-ng + Lij=1)Vie

= Ci(j*])§ +X,'j§: Vie [n],V_] € [‘[],Vé e (32)

> yiep(i,£) <B VEeQ (33)
ieln]
> yiep(i.§) <B VEeQ (34)
ieln]

Once the model is solved on a set of historical scenarios, the
parameters of the affine mapping are stored, and can be applied af-
terwards, using the same Eq. (30), which is essentially a dot prod-
uct on a new scenario (either real or simulated) to produce suc-
cessive decisions as additional information is revealed.

4. Numerical experiments

We evaluate our methods using the rice procurement problem
faced by BULOG in West Java, which has an obligation to ensure
rice is always available for refugees, as described in Section 1. Us-
ing historical refugee data (Onggo et al., 2021) and price data from
BULOG, we construct a GENERATOR, described in Section 4.2, that is
used to generate sets of scenarios for prices and demand. The opti-
misation methods described in the previous section are tested us-
ing the SIMULATOR to evaluate their robustness and computational
performance.
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4.1. Case study

West Java province is the centre of rice production and conse-
quently we ignore constraints on availability in our experiments.
The province allocated budget equivalent to 100 tonnes of emer-
gency rice for each municipality and there were 27 municipalities
in the province. BULOG has 30 warehouses of large capacities in
West Java, which are used to store rice for disaster relief as well as
for market intervention and poverty reduction. Emergency rice has
priority and uses only a small portion of storage compared to rice
used for other purposes. As a result, we are able to ignore con-
straints on storage capacity. We focus on provision of emergency
rice for disasters.

Rice is typically bought throughout the year and we use our
methods to determine a target buy quantity per month, using a
planning horizon of one year, thus n = 12. Ideally, rice should be
used within 6 months of purchase, thus we set T =7 and use
t = 6. At the beginning of the year, a quantity of 10 tonnes of fresh
rice per municipality is assumed available to use, and the same
quantity of usable rice is required at the end of the year as safety
stock. In the following section we discuss how to construct sets
of historical data H and testing data 7 for the different scenarios
used in our experiments.

4.2. Scenario generation

The disaster data from 2016 to 2020 was made available to
us by the West Java provincial government and comprises 8111
records, each recording disaster event, date, location (municipal-
ity and local district), disaster type (e.g. flood, landslide, wildfire),
number of refugees and affected infrastructure, etc. for West Java,
Indonesia. BULOG provided us with the price of rice data aggre-
gated by month for 2018-2020 inclusive for West Java, Indonesia
as well as the minimum allowed purchasing price for rice between
2018 and 2020.

As we do not have the price data for 2016 and 2017, we use
prices generated from a log-normal distribution fitted to the price
data from 2018 to 2020 as estimates for 2016 and 2017, adjusted to
ensure they are above the government’s minimum buy price. This
gives us our set of (quasi-) real historical data #, consisting of 5
scenarios of monthly demands and prices.

Additional sets of scenarios are created using a GENERATOR.
These are needed to fully test the robustness of our OPTIMISER s. In
each scenario, we independently sample the price and the number
of refugees in each month. Prices are sampled from a set of log-
normal distributions for each month of the year fitted to historical
price data (2018 to 2020).

The generation of events for a one-year scenario, described be-
low, is designed to reproduce the seasonality observed in demand
for rice.

e For each disaster type, the number of events is sampled
from a Poisson distribution with mean equal to the annual
average number of events of that type. The set of corre-
sponding events are then created.

o The municipalities that are affected by each disaster are then
sampled using the empirical distribution. Based on the mu-
nicipality and disaster type, the number of refugees is gen-
erated by resampling from the numbers of refugees of past
events of the same type that have occurred in the same mu-
nicipality.

Finally, the dates of disasters are sampled for each of the

generated events. We match the distribution of events over

the years to detailed historical data of real events cate-
gorised by disaster type and month.
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Aggregating the events for each month gives the total number
of refugees for the month. As per regulation, each refugee will re-
ceive 400 g of rice per day during the emergency period (fourteen
days post-disaster), hence, we can calculate the monthly demand
for rice.

We use the GENERATOR to generate two sets #, and 7, of
synthetic historical scenarios, each containing 100 scenarios. The
former is used as the historical set for modelling while the lat-
ter is used to evaluate the solutions. These complement the set
of historical data from BULOG in #;. The sets of scenarios #j,
H, and 7, along with our experimental results are available at
https://github.com/stephanong/relief-ops/.

4.3. Experimental set up

The evaluation process SIMULATOR and the optimisation models
are implemented in Python using CPLEX 12.10 as the linear solver.
To avoid numerical instabilities we set CPLEX to use the dual sim-
plex method, and we multiply the RHS and the coefficients of the
budget constraint by 103, The experiments were conducted on a
Linux cluster of CPU with 2.6 GHz Intel Sandybridge processors and
64 GB of memory where a CPU was allocated to evaluate each Op-
TIMISER.

4.4. Optimisation routines

We test the following OPTIMISER s, built from the models de-
scribed in Section 3.

e PcT100: based on BUDGETALLOC-ROBUST, which is essentially
BUDGETALLOC-DET where the demands and prices for each
month are taken from the 100-percentile of the historical
data Q =H.

e PcT90: similar to PcT100 but the 90-percentile of demands
and prices of the historical data are used as a way to reduce
the degree of conservatism of the solution.

e STOCH: based on BUDGETALLOC-STOCH.

e CVAR90 and CVAR95: based on BUDGETALLOC-CVAR with «
set to 0.90 and 0.95 respectively.

e CVARW90 and CVARW95: similar to the above but using
BUDGETALLOC-CVARW.

» ARO: based on BUDGETALLOC-ARO.

As discussed in Section 3, with the exception of BUDGETALLOC-
ARO whose decisions are adapted as new data are revealed, all
of the other models make fixed decisions. More specifically, the
models can be fully constructed based on the set of historical data
2 = and the decisions can then be fixed for the whole year, and
in this case line 4 of Algorithm 1 essentially only returns a pre-
computed value. Setting purchasing decisions for each month at
the start of the year and not allowing updates based on observed
demand is likely to make these methods less effective compared
with BUDGETALLOC-ARO. To provide a fair test we instead allow
each of these OPTIMISER s to update their purchasing recommenda-
tions each month. This remodelling approach, which is clearly de-
scribed in Bertsimas & Thiele (2006a), proceeds as follows. In the
query on line 4 of Algorithm 1, the model is reconstructed for the
remaining time periods n —i as the new planning horizon (so the
input = H is only considered for these periods); the new budget
is b(£,i—1); and the initial inventory is x(£,i—1,-).

When presenting the results for an OPTIMISER over multiple
scenarios, since we are interested in robust solutions for a min-
imisation problem, our main focus will be on the quantiles above
the median, e.g. 0.9 (denoted q90) or 1.0 (the maximum). We
will also show a classical performance metric for stochastic pro-
gramming, the so-called expected value of perfect information (EVPI)
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Table 2
Summary of the results for methods modelled on #; \ {§} then tested on {£}. Median values are presented alongside the minimum, maximum values, and EVPIs for each
objective.
Method Shortage (103 kilograms) Waste (10% kilograms) Budget spent (106 Rupiahs)
med min max EVPI med min max EVPI med min max EVPI
Pct100 0.0 0.0 0.96 0.19 249.72 116.96 359.30 45.78 3860.74 3216.56 3902.38 776.37
STOCH 0.0 0.0 0.00 0.00 245.29 13.66 251.58 2.32 3651.19 3216.56 3680.49 544.79
ARO 0.0 0.0 133.85 26.77 245.32 2.07 251.58 0.01 3405.90 2342.30 4130.29 475.78
PCT100 STOCH ARO
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Fig. 1. Procurement quantities in kilograms when modelled and tested on #;.

(Birge & Louveaux, 2011). EVPI measures the gap between the av-
erage performance of the OPTIMISER and that of an ideal method,
often called the clairvoyant, that has access to future information.
Since the clairvoyant solution requires the decisions to be adapted
to each scenario, it represents a lower bound for their expected
performance for all OpTIMISER s. Therefore, lower numbers of EVPI
suggest better expected performance. Recall that our problem has
multiple objectives which are lexicographically ordered, hence the
clairvoyant solution is computed once for each scenario but EVPIs
will be shown separately for each objective.

4.5. Robustness over real scenarios

We examine how the proposed approaches behave with a small
data set #;; more specifically, the approaches are tested on 7 =
{£€} for each & € #H, while being modelled with # = #; \ {£} as the
historical data. The set H here is sparse (contains only 4 scenarios),
thus the only relevant OPTIMISER s are PcT100, STocH and ARO.

A summary of results is given in Table 2. Regarding the primary
objective of shortage, Pct100 and STocH can achieve zero shortage
in the majority of scenarios, with a small exception that Pct100
sometimes has a minor issue with the safety stock. On the other
hand, while the median shortages produced by ARO are zero, the
relative average shortage indicated by EVPI is non-negligible and
the maximum shortage is very high. While this is partially due
to the large variance in the sparse data set, particularly the large
chain of disasters during 2016, these results also hint that Pct100,
STocH can make quite conservative decisions, while ARO has not
seen enough data to construct a robust model. Considering the to-
tal budget spent, Table 2 shows that in terms of median values
PcT100 is the most expensive approach, followed by StocH and
then ARO. However, ARO can have high variability in the budget
spent, and this is likely due to its adaptation to the unseen large
disasters while modelled on a sparse set of data.

The procurement activities differ between the models as shown
in Fig. 1. The majority of procurement using Pct100 takes place in
April to August, while StocH and ARO both carry out purchasing
in July and August when the original stock starts to expire and the
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prices are low. All three methods also buy more rice in December

to meet the safety stock requirement.

4.6. Robustness over simulated future scenarios

In this section, we analyse how the proposed models perform
when tested on 7 = #, while using either the limited real sce-
narios in H = #4 or the 100 simulated scenarios in % = H, as the
historical data to train the models.

4.6.1. Modelling with limited historical data

We first consider the case # = #H; where only limited informa-
tion is used in modelling. Again, because of the sparsity of this set
the only relevant OPTIMISER s are PcTt100, StocH and ARO. Results
show that shortages do occur but typically only in a few scenar-
ios. A summary of results is given in Table 3. Among the meth-
ods, StocH produces the least shortage while ARO produces the
most. Regardless of the methods, the largest shortage is due to the
unmet safety stock requirement at the end of the planning hori-
zon. Due to the increased variability in demand compared with the
small number of historical scenarios considered in Section 4.5, the
total spend is greater, even though this change to the median and
average cases (columns med and EVPI) are relatively small. On the
other hand, the maximum shortage is significantly increased but
waste is reduced.

4.6.2. Modelling with simulated historical data

We consider H = H, for modelling and 7 = 7, for testing, and
recall that both sets have 100 scenarios. All OPTIMISER s are rel-
evant in this case, allowing us to fully evaluate the difference in
their performance and to consider different values for their param-
eters. Table 4 includes a summary of the results.

We first consider PcT100 and Pct90, and notice that in terms
of the first objective of shortage, in most of the 100 scenarios the
shortage can be maintained at zero, except for 4 scenarios where
a shortage of up to 30 tonnes can occur for Pct90. On the other
hand, by reducing the degree of conservatism, the method allows a
significant improvement in terms of waste and budget spent com-
pared to Pct100. For example, in the average cases the EVPI of
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Table 3
Summary of the results for methods modelled on #; then tested on 7;. Median values are presented alongside the 90th quantiles, maximum values, and EVPIs for each
objective.
Method Shortage (103 kilograms) Waste (103 kilograms) Budget spent (106 Rupiahs)
med q90 max EVPI med q90 max EVPI med q90 max EVPI
PcT100 0.0 14.41 106.25 5.54 234.58 327.78 357.15 37.97 3779.08 3956.63 4579.29 580.17
STOCH 0.0 0.00 72.73 1.41 215.54 246.05 261.44 0.00 3654.92 3672.04 4256.14 589.59
ARO 0.0 68.73 269.73 26.60 215.54 246.05 261.44 0.01 3386.78 3685.13 5008.68 171.40
Table 4
Summary of the results for methods modelled on 7, then tested on 7;. Median values are presented alongside the 90th quantiles, maximum values, and EVPIs for each
objective.
Method Shortage (103 kilograms) Waste (10% kilograms) Budget spent (10 Rupiahs)
med q90 max EVPI med q90 max EVPI med q90 max EVPI
PcT90 0.0 0.0 30.25 0.80 231.76 279.78 306.56 17.89 3629.72 3766.92 4805.54 684.26
PcT100 0.0 0.0 0.00 0.00 513.15 837.21 1080.14 288.16 8154.50 10933.46 12192.22 5577.01
STOCH 0.0 0.0 0.00 0.00 215.54 246.05 261.44 3.25 4180.42 4504.38 5422.03 1278.14
CVAR90 0.0 0.0 0.00 0.00 215.54 246.05 261.44 3.25 4180.42 4504.38 5422.03 1278.14
CVAR95 0.0 0.0 0.00 0.00 215.54 246.05 261.44 3.25 4180.42 4504.38 5422.03 1278.14
CVARW90 0.0 0.0 0.00 0.00 215.54 246.05 261.44 3.28 4180.36 4504.38 5422.03 1278.24
CVARW95 0.0 0.0 0.00 0.00 215.54 246.05 261.44 3.30 4180.28 4504.38 5422.03 1278.26
ARO 0.0 0.0 21.21 0.44 215.56 246.05 261.44 0.04 4060.99 4214.73 4521.35 1055.38
STOCH STOCHCVAR95 STOCHCVARW95
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Fig. 2. Procurement activities of STocH, CVAR95 and CVARW95 when modelled and tested with H,, 7; respectively.

waste for PcT90 is fifteen times less than that for Pct100, and this
factor is still two and three times less in the median and worst
cases respectively.

Regarding the stochastic programming methods, we observe
that StocH and CVAR95 make very similar procurement decisions
which differ to those produced by CVARW95. This can be seen in
Fig. 2. We note that all these methods can maintain a net zero
shortage, and this confirms our theory that when the budget is suf-
ficient, it is not necessary to model the first objective with CVaR.

In the remainder of the paper, we will mainly compare the
three methods Pct90, CVARW95 and ARO. Table 4 and Figs. 3 and
4 show the performance of these methods. We observe that the
methods are able to produce near zero shortage even though they
were modelled and tested on different sets of scenarios, with very
few exceptions. The waste peak is still around 260 tonnes for
the month of July, and because the approaches are modelled and
tested with more scenarios, larger budget spending is expected
in the worst case, e.g. up to 5.5 billion Rupiahs for the case of
CVARW95. The storage peak of usable rice differs between these
methods, e.g. CVARW95 may requires to store up to 500 tonnes in
the month of July while this requirement is lower for the other
methods and can occur in a different month.

4.6.3. The role of safety stock
From the previous experiments, we can see that there is a large
waste in the month of July when the initial stock expires, thus we

1

also experimented with a zero initial stock and safety stock re-
quirement but with a planning horizon of 13 months. A summary
of the results is shown in Table 5.

In this setting, positive shortages remain outliers with PcT90
suffering the most. Both methods CVARW95 and Pct90 maintain
very similar levels of waste and budget usage despite the initial
stock no longer being available. ARO on the other hand, manages
to reduce the peak of waste down to 100 tonnes, but at the ex-
pense of having a large budget usage, up to 8 billion Rupiahs with
the third quartile of the distribution or 12 billion Rupiahs in the
worst case, and also a high variability.

4.6.4. Computational performance

Recall that all models are tractable as we only use linear pro-
gramming, however due to working with large numbers we in-
structed the LP-solver to use the dual simplex method, which in
theory can be slower than point interior methods such as barrier
for large linear models. Table 6 shows the average computational
times for Pct, STocH, CVAR, CVARW and ARO methods when mod-
elled and tested on H,,7;. ARO is a fast method because only a
single linear model is required to be solved at the beginning; and
the stochastic programming methods are found to be the slowest.
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Fig. 3. Waste of Pct90, CVARW95 and ARO when modelled and tested with #,, 7, respectively.
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Fig. 4. Useable quantities in store of Pct90, CVARW95 and ARO when modelled and tested with #,, 7, respectively.

Table 5

Summary of the results for methods modelled on #; then tested on 73, and under the setting that the safety stock is set to zero but there is an extra month in the planning
horizon. Median values are presented alongside the 90th quantiles, maximum values, and EVPIs for each objective.

Method Shortage (103 kilograms) Waste (10 kilograms) Budget spent (105 Rupiahs)
med q90 max EVPI med q90 max EVPI med q90 max EVPI
Pct90 0.0 9.85 145.57 5.78 128.82 222.37 270.59 128.57 3012.65 3415.44 3791.28 1750.99
PcT100 0.0 0.00 1.25 0.01 62791 944.82 1183.40 598.13 9379.94 11937.53 13174.75 8344.79
SToCH 0.0 0.00 7.14 0.08 155.43 170.13 174.79 144.81 3808.39 4574.29 5403.12 2742.45
CVAR90 0.0 0.00 7.14 0.08 155.43 170.13 174.79 144.81 3808.39 4574.29 5403.12 2742.45
CVAR95 0.0 0.00 7.14 0.08 155.43 170.13 174.79 144.81 3808.39 4574.29 5403.12 2742.45
CVARW90 0.0 0.00 2.81 0.03 162.06 205.05 215.50 160.11 3985.19 4639.29 5394.45 2891.72
CVARW95 0.0 0.00 2.81 0.03 162.37 205.53 215.50 160.13 3985.12 4639.29 5394.42 2891.69
ARO 0.0 0.00 13.76 0.14 180.64 200.38 220.15 171.00 4579.07 7086.56 12774.98 3913.76
Table 6

Computational time in seconds for modelling/testing with 100 scenarios and 12
month planning horizon.

Method CPU time (seconds)
ARO 3.753

Pct 35.538

STOCH 1604.733

CVAR 1580.924

CVARW 1493.099

4.7. Discussion

The results show that using a wider range of scenarios for
setting model parameters results in more robust solutions and
consequently our first recommendation to someone solving a
similar problem would be to supplement sparse historical data
on demands and prices by generating a set of pseudo-scenarios
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with similar characteristics to those seen in practice. Sparse data
also limits the methods available as Pct90 and CVAR90/95 and
CVARW90/95 methods are only feasible with a substantial set of
scenarios.

The correct provision of safety stock has a significant influence
on the waste produced by the procurement system, particularly for
the ARO approach. It also appears to push the waste later in the
year and spread it out over a few months rather than seeing all of
the waste occur in July. In terms of managing the waste rice, which
is typically sold at a low price on the open market, spreading out
the waste over several months is beneficial. Insisting on stock be-
ing available at the end of each year also places constraints on the
procurement strategies and to fit in with annual budgeting, using
a 13 month time window seems more appropriate than insisting
on a fixed safety stock at the end of the year.

In terms of the methods used, we can see the following general
characteristics. The rather crude approach of optimising the 90th
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percentile of demand seen in PcT90 appears to result in signifi-
cant reductions in the budget used but poor performance on both
shortage and waste, despite the remodelling approach we use to
account for observed demand during the year. The ARO approach
performs poorly when only sparse historical data are available but
better when a more substantial dataset can be used for fitting,
while the stochastic programming methods using conditional value
at risk (CVaR) perform well in both cases. Nonetheless, the ARO
approach has a significantly shorter computational time than the
computationally expensive STocH approaches. These methods are
most likely to be applied on a monthly basis and in this case,
computational times for all methods are reasonable. If the opti-
misation needs to be run more regularly, then it may be better to
use a method such as ARO which returns results close to instanta-
neously.

5. Conclusion

We have presented a study that is based on real procurement
decisions faced by agencies involved in disaster preparedness and
response in West Java Indonesia. The structure of the relief food
procurement problem faced by West Java matches those seen in
other regions that suffer from frequent disasters. The problem has
the following characteristics: (i) it operates based on an annual
budget cycle; (ii) the timing of the procurement decision is impor-
tant and the decision needs to be updated regularly; (iii) some re-
lief food items are perishable; (iv) the availability and the price of
food items are seasonal and stochastic; and (v) demand is seasonal
and highly variable. These characteristics match those of other re-
lief items such as medicines and blood. Consequently the need
for determining optimal purchasing decisions for perishable relief
items is widespread and the innovative stochastic optimisation ap-
proach presented here could be used in a wide range of different
situations.

When modelling natural disasters it is vital to take into ac-
count the inherent variability of future information such as de-
mands, prices, and availabilities. But this is also true in areas
outside disaster relief. Therefore, the comparisons of different
methods for generating robust solutions for a stochastic optimisa-
tion problem in which decisions must be made periodically over a
finite time window should also be valuable outside of this applica-
tion. Using a real case with the aforementioned characteristics, the
comparisons of robust optimisation, stochastic programming and
adjustable robust optimisation show that the adjustable decision
approaches have similar results to those of stochastic programming
in which the conditional value at risk is optimised, but signifi-
cantly shorter computation times. From the experimental results,
we observe that despite each approach making different procure-
ment decisions, shortages are observed only rarely for the majority
of approaches, suggesting the solutions produced are robust with
respect to this prioritised objective. The consequence of prioritis-
ing the minimisation of shortage is that waste is unavoidable, but
this can be further optimised as a second objective using the lexi-
cographical approach adopted here.

Further analysis of the results provides managerial insights into
the procurement process when a specific method/formulation is
used. These include the possibility of predicting when and how
high the peaks of waste, budget spending, and inventory storage
will be. We also discussed the role of the safety stock in annual
planning with our results suggesting that better outcomes can be
obtained by optimising over 13 months with no safety stock than
by insisting on a final safety stock.

In summary, we have considered the procurement of emer-
gency food items for disaster management as being isolated from
the process of delivering the items to the refugees, explicitly as-
suming that all deliveries can be fulfilled successfully. We have
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demonstrated that there are several optimisation techniques that
are able to generate robust solutions for the procurement of emer-
gency food for natural disasters. The solutions they produce have
different characteristics but whichever approach is used, it is still
important to conduct simulation experiments in order to under-
stand the likely impacts of the approach on the logistics of the
food distribution system, as well as budget spending, storage ca-
pacities and potential waste.

Future work should consider the impacts of integrating the pro-
curement and delivery processes in order to better understand the
importance of making the right decisions both temporally and spa-
tially, i.e. when to procure the items and where and how to dis-
tribute the items into the warehouses so as to fulfil the demands
efficiently. The data used our case study are sufficiently detailed
to allow for that extension. Regarding the context of disaster man-
agement in Indonesia, we have also isolated the procurement pro-
cess for emergency rice from rice bought for market intervention
and poverty reduction. It could be interesting in future to consider
these three demands together in order to produce better informed
decisions on the procurement. The consequence of the shortage
minimisation for perishable items is waste. One alternative to re-
duce the amount of waste is by combining pre- and post-disaster
strategies. Hence, future work is needed to investigate the right
balance between pre-disaster and post-disaster strategies.

In terms of methodology, we have noticed that some of the ap-
proaches applied here may not perform well when the number of
historical scenarios is too small. This is not an issue for our case
study, because disaster events occur often in West Java thus we
have sufficient data to simulate additional scenarios. Nevertheless,
for the sake of making the methods more widely applicable, future
work should look into improving the robustness of the approach
when the available data are too scarce for simulation; for example
by using distributionally robust optimisation (Duque et al., 2022;
Esfahani & Kuhn, 2018). It could also be interesting to address our
problem from the perspective of multi-stage stochastic program-
ming because the procurement decisions are made over multiple
time periods. The challenges with such an approach include how to
address the continuous state space, and additionally how to justify
the Markov property, which is often assumed in such formulations
(Pereira & Pinto, 1991; Siddig & Song, 2021; 2022).
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Appendix A. Redundancy in the objectives of the deterministic
model

We have the following remark regarding the objectives. There
is some redundancy in the objectives (1). Specifically it suffices to
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consider:
min > s, > yip(i) (35)
ie[n+1]  ie[n]

which is covered in Proposition 2. However, we still keep the ob-
jectives (1) in our experiments because the computational time to
solve the linear programs are fast enough to not notice any signif-
icant difference. Furthermore, in practice, there is a political pres-
sure to reduce food waste. Hence, we need to have a model that
explicitly considers waste minimisation. Last but not least, the ex-
pired rice can still be used for other purposes that have some mon-
etary values such processing as rice flour or selling it on the open
market at a lower price.

Proposition 2. A solution of (2)-(9) which is optimal for objectives
(35) is also optimal for objectives (1).

Proof. By contradiction, assume after optimising (35), we can still
minimise the waste in (1) by some additional quantity §. This im-
plies that at some point in time we have spent the budget on §
that was subsequently wasted. This would mean that the budget
was not optimal and this contradicts our assumption. O

Appendix B. Extensions of the deterministic model

The following extensions of BUDGETALLOC-DET are possible.
Firstly, we do not model the warehouse capacity because this was
not considered a constraint in our problem situation, as we discuss
in Section 4.1. Nevertheless, adding a limit V on the storage quan-
tity would be relatively straightforward using the following con-
straint:

-1
ZX,‘]‘ <V.
=1

Secondly, we assume that the lead time for delivery of rice is zero,
because only locally produced rice is considered. Java Island is the
center of rice production in Indonesia and consequently this is a
reasonable assumption for the use case we discuss later. A more
general model can be constructed where rice of a different pro-
file is also stored, where the other rice has a non-zero lead time
8, a different age limit 7/ and different prices p’(i). In this case it
suffices to add a new set of variables (ylf,xl(j,c,fj), additional con-
straints similar to (2) and to adapt (3) and (5) as follows:

Vie[n].Vje[r]

Vien (36)

/ / J
LijnyX1yjiony + Lj=1)Yies = Cigj1y +Xij

(37)
-1 -1
sit Y i+ cj=d() Vie[n] (38)
j=0 =0
> yip()+ ) yip'(i) <B (39)

ie[n] ie[n]

This could be useful where rice is frequently imported for disaster
relief.
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