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a b s t r a c t 

This paper studies a variant of the lot sizing problem that arises in the context of disaster management. 

In this problem, a fixed budget has to be allocated efficiently over multiple time periods to procure large 

quantities of a staple food that will be stored and later delivered to people affected by disaster strikes 

whose numbers are unknown in advance. Starting from the deterministic model where perfect infor- 

mation is assumed, different formulations to address the uncertainties are constructed: classical robust 

optimisation, risk-minimisation stochastic programming, and adjustable robust optimisation. Experiments 

conducted using data from West Java, Indonesia allow us to discuss the advantages and drawbacks of 

each method. Our methods constitute a toolbox to support decision makers with making procurement 

decisions and answering managerial questions such as which annual budget is fair and safe, or when 

storage peaks are likely to occur. 

© 2023 The Authors. Published by Elsevier B.V. 
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. Introduction 

We consider a variant of the lot sizing problem that arises in 

he context of disaster management. In this problem, a fixed bud- 

et has to be allocated efficiently over multiple time periods to 

rocure a staple food that will be stored and later delivered to peo- 

le affected by disasters. Future demands, prices and availabilities 

re unknown at the start of the planning horizon but data of past 

isaster events exists that can be used to estimate probability dis- 

ributions or simulate scenarios via resampling. Demand variability 

an be particularly high due to the unpredictable nature of disas- 

ers. Our main objective is to minimise the shortage of food, while 

econdary objectives include minimising the waste resulting from 

ood items perishing, and the budget usage. 

To approach the problem, a deterministic model, which as- 

umes future information is available, is first introduced as a de- 

erministic linear program. We then explore three methods to drop 

he assumption of perfect future information to allow us to find 

obust solutions to the problem. We assume the information avail- 

ble to the decision maker to make a new procurement decision 
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s a set of historical scenarios, the information that has been re- 

ealed so far and the current state of the system. Our first method 

s risk-minimisation stochastic programming ( Birge & Louveaux, 

011; Rockafellar & Uryasev, 20 0 0 ) based on a two-stage formu- 

ation of our problem. The first-stage decision variables are the 

rocurement decisions over the remaining time periods, while the 

econd-stage variables are scenario-adapted measures that evalu- 

te the consequences of the first-stage decisions over the historical 

cenarios. The second method is classical robust optimisation ( Ben- 

al, El Ghaoui, & Nemirovski, 2009 ); here, we assume that the pa- 

ameters of the model can vary within specific ranges, defined by 

istorical data. It is straightforward to deduce the robust coun- 

erpart formulation from the two-stage formulation in the first 

ethod, and we examine ways to reduce the degree of conser- 

atism of the robust solutions. Our final method is adjustable ro- 

ust optimisation ( Ben-Tal et al., 2009; Yanikoglu, Gorissen, & den 

ertog, 2019 ) in which we look for an optimal decision rule to 

xtract from historical data so that it can be applied to make 

mmediate decisions during the planning time horizon of a new 

cenario. Decision rules can be formalised in various ways in ad- 

ustable robust optimisation; however for reasons of tractability we 

hoose to use an affine mapping from the information that has 

een revealed so far to the immediate here-and-now procurement 

ecision. Experiments conducted on generated data, which simu- 

ates real historical events, allow us to discuss the advantages and 
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rawbacks of each method. Our methods constitute a toolbox to 

upport or to produce automated decisions for annual planning for 

isaster preparedness. Some methods are tunable according to how 

uch risk the decision makers could take. All methods are able to 

rovide answers to high-level managerial questions such as how 

arge the annual budget should be, the amount of storage capacity 

hat is required, or when storage peaks are likely to occur. 

We demonstrate our methods on a case study from West Java 

rovince in Indonesia, which has the highest multi-disaster risk 

n Indonesia. Between 2016 and 2020, West Java province expe- 

ienced an average of 4 disasters per day, mostly small-to-medium 

cale disasters. Onggo et al. (2021) showed that during this period, 

he most common disasters were landslide, tornado, flood and fire 

 Onggo et al., 2021 ). West Java province covers 37,0 0 0 square kilo-

etre and has a population of over 46 million people, giving it 

he second highest population density in Indonesia. Hence, when 

oods strike, they often affect a significant number of people and 

esult in a high number of refugees. Between 2016 and 2020, a 

otal of more than 1.5 million victims were affected, with almost 

0 0,0 0 0 of them having to live in shelters and so becoming classi-

ed as refugees. We invite readers who are interested in the detail 

o read ( Onggo et al., 2021 ). 

By law, the Indonesian government is required to provide assis- 

ance, including food supplies, to those affected by a disaster for up 

o 14 days after a disaster strikes. This emergency period may be 

xtended when needed. In this case study, we choose rice because 

t is the main staple food in Indonesia. The Indonesian government 

ets aside a national budget known as CBP (Cadangan Beras Pemer- 

ntah or Government’s Rice Reserve) to stock rice to be distributed 

o refugees during disaster response operations. The rice procure- 

ent is carried out by the state logistics bureau (BULOG). Hence, 

t the beginning of the budget year, the West Java provincial gov- 

rnment will sign an availability contract with BULOG that guaran- 

ees that CBP rice is always available when needed. BULOG makes 

he decision on how much rice to buy each month. The challenge 

s that the demand is seasonal with high variability. Likewise, rice 

roduction is seasonal and the price varies. West Java province is 

ne of the main rice producers; hence, availability is not an is- 

ue but it is included in the model as this may not be the case

n other provinces. Our model is developed to help BULOG West 

ava division to make the optimal procurement decisions for the 

rovincial government and all municipality governments in West 

ava province. 

The supply for each refugee is delivered as soon as possible by 

he local disaster relief agency to each shelter from the nearest 

ULOG warehouse. This demonstrates the importance of optimis- 

ng rice procurement for disasters. If too little rice is bought then 

eople’s lives and their welfare will be affected and if too much is 

ought, it wastes money that could be used for other government 

ervices including those involved in the disaster response and dis- 

ster recovery phases. A further issue with over-stocking is that it 

ould lead to food waste. While rice has a long shelf-life, the lack 

f suitable storage facilities designed specifically for rice (e.g. tem- 

erature controlled silos) shortens the shelf-life. The wastage of a 

ignificant amount of CBP rice is a known issue in Indonesia (e.g. 

NBC Indonesia, 2018 1 ). BULOG thus faces what we term the rice 

rocurement problem in which they decide the amount of rice to 

urchase in each time period in order to minimise the shortage of 

upply to refugees, within a fixed annual budget. The price of rice 

aries stochastically during the year and the numbers of disasters 

nd associated refugees also vary randomly through the year fol- 

owing a clear seasonality. Rice is assumed to be perishable and 
1 https://www.cnbcindonesia.com/news/20180626183343- 4- 20609/ 

uwas- musnahkan- 20 0 0 0 0- ton- beras- bulog 

2

b

2 
ULOG’s policy is to use rice that is not older than six months 

ld. Any rice not used within its allowed lifetime is assumed to 

e wasted. 

This paper focuses on procurement pre-disaster by purchas- 

ng the right amount of rice at the right time in a budget year. 

rocurement affects the efficiency of disaster management op- 

rations such as the distribution of relief items. Hence, suitable 

odels are needed to support procurement decisions which, sub- 

equently, can improve the performance of disaster response oper- 

tions. Despite the importance of procurement in disaster opera- 

ions management, the current Operational Research/Management 

cience (ORMS) literature on disaster operations management has 

ocused primarily on problems of facility location, inventory man- 

gement and transportation ( Aghajani & Torabi, 2020 ). Only a few 

tudies focus on procurement decisions ( Balçik & Ak, 2014 ). Hence, 

ur work contributes to the ORMS literature on procurement in 

isaster management. In the early years, most ORMS models used 

ynthetic and often unrealistic data to test their models. However, 

ecently, researchers have recognised this as one of the main weak- 

esses and encouraged the use of real-world data to evaluate how 

RMS models perform under real-world cases and to test the ro- 

ustness of the solutions (e.g. Esposito Amideo, Scaparra, & Ko- 

iadis, 2019; Farahani, Lotfi, Baghaian, Ruiz, & Rezapour, 2020; Ko- 

acs & Moshtari, 2019; Sabbaghtorkan, Batta, & He, 2020 ). This is 

specially important for disaster management, where the variation 

f demand is high. In addition to promoting the use of real-world 

ata, studies that apply ORMS methods to procurement decisions 

n disaster management, especially for decision makers in regions 

hat experience disasters regularly (daily, weekly or monthly), is 

acking. These regions include many Asian countries. Furthermore, 

esearch into humanitarian food supply chains is still underde- 

eloped ( Perdana et al., 2022 ). Hence, this paper contributes to 

he literature on humanitarian food supply chains. Finally, we also 

ontribute to the literature on stochastic optimisation by provid- 

ng an empirical study to compare a number of approaches to 

evelop a robust solution for a practical problem, namely clas- 

ical robust optimisation, adjustable robust optimisation ( Ben-Tal 

t al., 2009; Yanikoglu et al., 2019 ) and risk-averse stochastic pro- 

ramming ( Rockafellar & Uryasev, 20 0 0 ). It is uncommon to see 

omparisons of these approaches on real-world problems such as 

isaster management, since the two fields of robust optimisation 

nd stochastic programming are founded on different assumptions 

bout the knowledge of the underlying distribution of uncertain- 

ies; an exception we could find is ( Ni, Shu, & Song, 2018 ). 

After reviewing the literature in the next section, we provide 

 mathematical formulation for the problem and describe each of 

he approaches used in Section 3 . Numerical experiments based on 

 real case study from West Java province, Indonesia, are presented 

n Section 4 and are followed by a conclusion and suggestions for 

uture work. 

. Literature review 

We divide the literature review into two subsections. First, we 

eview the literature on procurement in disaster management to 

rovide an overview of how ORMS have been used to help. As we 

ropose the use of robust optimisation and of stochastic program- 

ing with risk-minimisation, in the second subsection, we review 

he literature on different optimisation techniques to address un- 

ertainty and give examples on how they have been applied in dis- 

ster management and related areas. 

.1. Procurement in disaster management 

The procurement of relief items in response to a disaster can 

e carried out during the mitigation phase (pre-disaster) or during 

https://www.cnbcindonesia.com/news/20180626183343-4-20609/buwas-musnahkan-200000-ton-beras-bulog
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he response phase (post-disaster). The pre-disaster procurement 

s typically planned so that relief items can be pre-positioned at 

trategic locations. The main advantage of this strategy is the quick 

esponse time in delivering relief items to victims post-disaster. 

he main drawbacks include the potentially low utilisation of re- 

ources, high waste (for perishable items), and high inventory cost. 

his is due to the uncertainty in the demand for and supply of 

elief items, which makes it challenging to match the supply and 

emand. Developing a pre-positioning strategy is typically more 

hallenging for non-climate induced disasters as they are not as 

redictable as those resulting from extreme weather. The post- 

isaster procurement strategy is advantageous in minimising the 

aste, minimising inventory costs, and maximising resource utili- 

ation; however, the response time to fulfil the demand from vic- 

ims is typically longer. One of the main challenges for a post- 

isaster strategy is that information about the demand may be 

ncomplete or inaccurate at the start of a disaster. The post- 

isaster strategy includes direct procurement and the implemen- 

ation of various contracts (e.g. option contract Liang, Wang, & 

ao, 2012 , quantity flexibility contract Balçik & Ak, 2014 , and auc- 

ions Aghajani & Torabi, 2020 ). Both pre-disaster and post-disaster 

trategies can be combined so that a smaller number of relief 

tems are pre-positioned and when the demand exceeds the cur- 

ent safety stock level, the post-disaster strategy is executed. We 

ocus here on pre-disaster procurement but discuss post-disaster 

trategies in future work. 

The characteristics of the procurement problem in disaster 

anagement lend itself to stochastic optimisation models in 

RMS. What follows is a review of ORMS methods that have been 

sed to support procurement strategies in the preparedness and 

esponse stages of disaster management. The strategies are pre- 

ositioning, direct procurement, contract and auction. 

Applications of ORMS methods to the development of a 

re-positioning strategy are reviewed in Sabbaghtorkan et al. 

2020) who consider publications between 20 0 0 and 2018. They 

roup the research into three categories: location, allocation and 

ocation-allocation. The objective of methods in the location cate- 

ory is to find the best locations to pre-position facilities while re- 

earch into allocation aims to determine the best inventory level 

f relief supplies in the facilities at known locations. Location- 

llocation research combines these two problems, determining the 

est combination of location of facilities and inventory level at 

ach facility. In the context of procurement, the latter two cate- 

ories are relevant. One of the research directions that they iden- 

ify is the need for more realistic modelling incorporating practical 

ssumptions such as budget limitations and basing work on real- 

stic case studies (or real data). This is the gap that our work is 

iming to fill. Another aspect that has not been addressed in the 

re-positioning strategy is that in practice, budget usage and mon- 

toring are important for government agencies due to strict budget 

egulations. Hence, the challenge is not only about where best to 

ocate the relief items but also how much budget needs to be spent 

ach month to procure them. This work specifically addresses this 

hallenge. 

The ORMS methods that have been used for allocation and 

ocation-allocation problems include two-stage stochastic program- 

ing (TSSP), game theory, and stochastic process. For example, 

SSP with recourse action was used to pre-position medical sup- 

lies for hurricane preparedness ( Paul & Zhang, 2019 ). In the first 

tage, they optimise the locations of distribution points, the in- 

entory levels of medical supply and the transportation capac- 

ty. In the second stage, after the realisation of hurricane landfall, 

hey determine additional shipping capacity to increase the levels 

f medical supplies at certain distribution points. An example of 

he use of game theory is shown in Nagurney, Salarpour, Dong, & 

agurney (2020) where the authors combined game theory and 
3

SSP. The TSSP was used to model the decisions made by each 

umanitarian organisation during the preparedness phase (stage 

) and response phase (stage 2), while game theory was used 

o capture the competition among humanitarian organisations (i.e. 

unding and access to transportation service). A stochastic process 

odel was used for a continuous review two substitutable per- 

shable product disaster inventory model in Yadavalli, Sundar, & 

dayabaskaran (2015) . They carried out steady state analysis and 

roduced the mean number of: satisfied demands; demands in 

hich the products were substituted; and lost demand. 

The direct post-disaster procurement strategy has been mod- 

lled using TSSP with recourse (e.g. Falasca & Zobel, 2011; Hu, 

an, & Meng, 2017; Torabi, Shokr, Tofighi, & Heydari, 2018 ). In this 

ethod, in the first stage, procurement decisions are made under 

ncertainty (e.g. demand and damages to infrastructure are not 

nown with certainty). In the second stage, the real information 

s revealed and a recourse action is applied to improve the de- 

isions made in the first stage. A two-period bi-objective mixed- 

nteger non-linear programming model was developed by Aghajani 

 Torabi (2020) to model the post-disaster procurement decision, 

hich accounts for the unavailability of information at the begin- 

ing of a disaster. Game theory has also been used for purchasing 

ecisions. For example, Nagurney, Salarpour, & Daniele (2019) used 

ame theory to model the purchasing decision of humanitarian or- 

anisations (i.e. local or non-local) and to capture the competition 

mong humanitarian organisations. These studies focus on a large 

cale disaster and none of them consider the regular procurement 

ecisions that need to be made throughout a year to ensure an 

dequate supply of relief items within a fixed budget. Regular pro- 

urement decisions are important in cases where disasters happen 

ore frequently such as in West Java where they happen on a daily 

asis. 

Various types of contract have been proposed to manage the 

ncertainties affecting procurement decisions. In ( Liang et al., 

012 ) Liang and co-authors considered an option contract and 

howed that it was possible to have a feasible range of prices in 

hich both the buyer and the supplier were profitable. A quan- 

ity flexible contract (QFC) is used in Balçik & Ak (2014) , which 

escribes a scenario-based stochastic programming model to de- 

ign a QFC in which the suppliers were required to supply relief 

tems post-disaster according to the contract’s requirements. A QFC 

s used to coordinate relief items procurement activities in a three- 

chelon relief chain in Nikkhoo, Bozorgi-Amiri, & Heydari (2018) , 

here the chain comprises a relief organisation (i.e. NGO), one re- 

ief item supplier, and affected areas. In their proposed QFC, the re- 

ief organisation places an order to the supplier to be stored at the 

upplier’s warehouse before a disaster happens. The relief organi- 

ation is committed to buy the relief items at an agreed minimum 

mount, while the supplier is committed to provide the agreed 

inimum amount and if required, an agreed extra amount. In our 

ase, the government sign a QFC contract with BULOG in which 

ULOG is required to supply rice whenever the local government 

eeds it, up to a certain amount annually. 

Auction is one of the most commonly used post-disaster pro- 

urement strategies. In ( Ertem, Buyurgan, & Rossetti, 2010 ), Ertem 

nd co-authors developed two mathematical models to determine 

he winner in an auction involving multiple bidders and multiple 

uctioneers to procure relief items post-disaster. In similar work, 

rtem & Buyurgan (2011) used two integer programming models 

or bid construction and bid evaluation in an auction involving 

ultiple bidders and one auctioneer. Following on, Ertem, Buyur- 

an, & Pohl (2012) used a genetic algorithm, simulated anneal- 

ng and integer programming model to analyse bid construction of 

n auction to procure relief items considering product substitution 

nd partial fulfilment. More recently, Shokr & Torabi (2017) de- 

cribes the development of an enhanced reverse auction frame- 
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ork to procure excess relief items post-disaster. Two novel possi- 

ilistic models are built to support the bidders and the auctioneer 

n the bid construction and bid evaluation, respectively. The mod- 

ls consider the unit prices, quantities, delivery times and trans- 

ortation modes of relief items. West Java is the main producer 

f rice; hence, post-disaster procurement of rice is rare and we do 

ot consider post-disaster procurement here; however, this may be 

mportant for regions that do not produce enough food for their 

eople as food will need to be procured elsewhere. 

Several studies combine pre- and post-disaster procurement 

trategies. The development of a two-stage scenario-based fuzzy 

tochastic programming model that combines pre-positioning and 

FC is described in Torabi et al. (2018) . Hu and Dong used a TSSP

hat integrates facility location, inventory policy, supplier selection, 

nd distribution of relief items in Hu & Dong (2019) , while Hu 

t al. (2017) uses a TSPP that integrates inventory and procurement 

olicy, and supplier selection. 

Overall, we have found the uses of ORMS methods that focus 

n procurement for disaster management do not cover the spe- 

ific problem encountered by disaster agencies in Indonesia and 

ther developing countries that are prone to frequent disasters. 

ur problem belongs to the category of inventory management 

roblems ( Ghiani, Laporte, & Musmanno, 2004 ), more specifically 

he lot sizing problem that focuses on the procurement and ware- 

ousing processes. This is an important problem faced by the de- 

ision makers at the disaster agencies with whom we are working 

ecause they have to make regular procurement decisions. The lit- 

rature rarely studies the lot sizing problem for disaster manage- 

ent. This is partly due to the dominance of studies that address a 

ne-off major disaster instead of the continuous frequent small-to- 

edium scale disasters ( Onggo et al., 2021 ). Furthermore, we focus 

n an application in humanitarian food supply that is still under- 

esearched ( Perdana et al., 2022 ). 

.2. Addressing uncertainties in disaster management 

The high level of uncertainty is one of the main characteristics 

f disaster management. Regarding our problem of procurement of 

mergency staple food for West Java, we examine three optimi- 

ation methods that can be used to support decision making un- 

er uncertainty: risk-averse stochastic programming, classical ro- 

ust optimisation and adjustable robust optimisation. 

We provide an overview of relevant research into these meth- 

ds, their extensions and how they have been applied in the con- 

ext of disaster management below. 

Robust optimisation finds a strategy that gives the best worst- 

ase performance among all allowed realisations of the inputs, 

here the inputs can take any value within a defined uncer- 

ainty set ( Ben-Tal et al., 2009 ). The approach does not require 

ny assumption about the distribution of the underlying uncertain- 

ies, and can be conservative. In the context of our procurement 

roblem, this conservatism can be problematic for non-immediate 

ecisions such as those further in the planning horizon. Thus, 

ertsimas & Sim (2004) introduced the notion of �-robustness 

n which deviations are instead allowed within a given budget of 

ncertainty and showed that solving the robust counterpart, un- 

er the new robustness definition, is equivalent to finding the 

olution for the deterministic formulation with modified inputs. 

n disaster management, it has been applied to finding the opti- 

al locations of facilities and the allocation of resources (e.g. Sun, 

ang, & Xue, 2021; Zokaee, Bozorgi-Amiri, & Sadjadi, 2016 ). Most 

f the studies focus on single disaster event while our model is 

esigned for multi-disaster events that happen during a financial 

ear. This is applied to a supply chain example in Bertsimas & 

hiele (2006b) where some investigation is carried out into how 

should be selected. 
4 
An extension of robust optimisation is the two-stage setting 

here the decision maker adjusts their strategy based on informa- 

ion revealed over time. For example, in the context of the pro- 

urement problem, data on the amount of stock still available in 

he warehouse can be used to decide on procurement strategies 

or future months. The first-stage variables are here-and-now de- 

isions that are required to be valid across all realisations while 

he second-stage variables are wait-and-see decisions that can be 

dapted to each realisation. This extension has been applied to pre- 

osition disaster relief items ( Ni et al., 2018; Velasquez, Mayorga, & 

zaltın, 2020 ). For example in Velasquez et al. (2020) , in the first

tage, they optimise the facility locations and the amount of re- 

ief items to store at each facility. In the second stage, after a dis- 

ster struck, they optimise the number of additional relief items 

o procure. Unlike ours, their model is designed for one disaster 

nd both row and column generation techniques are used to solve 

he linear formulation. Another benefit of the two-stage formula- 

ion is that it allows the implementation of the so-called adjustable 

obust optimisation to apply to future realisations or unseen sce- 

arios ( Ben-Tal et al., 2009; Yanikoglu et al., 2019 ). An application 

f this technique for a problem similar to ours in the context of 

ower production can be found in Coniglio, Koster, & Spiekermann 

2018) . 

In stochastic programming, the general assumption is that the 

istribution of the uncertainties is known, then the objective func- 

ion is often formulated as the minimisation of an expected cost. 

n a risk-averse setting such as disaster preparedness, the ex- 

ected cost can be replaced by the quantile of a cost distribu- 

ion. This is equivalent to the concept of Value-at-Risk (VaR) op- 

imisation in finance ( Morgan, 1996 ). VaR or quantile optimisa- 

ion is computationally expensive and the metrics may have some 

ndesirable property such as non-convexity, thus in optimisation 

ontexts, Conditional Value-at-Risk (CVaR) offers a better alter- 

ative ( Rockafellar & Uryasev, 20 0 0 ). CVaR is the expected value

eyond the quantile, also known as the expected shortfall. VaR 

nd CVaR have been used in the context of procurement prob- 

ems (e.g. Alem, Oliveira, & Peinado, 2020; Charwand & Gitizadeh, 

020; Mahmuto ̆gulları, Çavu ̧s , & Aktürk, 2018 ). When the exact so- 

ution for the optimisation problem cannot be expressed analyti- 

ally, Monte Carlo simulation is used instead and the method is 

eferred to as Sample-Average Approximation (SAA) ( Birge & Lou- 

eaux, 2011 ). SAA is particularly useful in our application because 

t allows the implementation and comparison of robust optimisa- 

ion and stochastic programming. We generate the scenarios, ei- 

her for building the optimisation models, or for testing their per- 

ormance, by resampling real data describing historical disasters in 

est Java. As far as we know, our work is the first to apply both

tochastic programming and robust optimisation to an inventory 

roblem for disaster management and evaluate them using real 

ata. 

Distributionally robust optimisation, or data-driven robust op- 

imisation, is an emerging method ( Duque, Mehrotra, & Morton, 

022; Esfahani & Kuhn, 2018 ) and can be seen as a middle ground 

etween stochastic programming and robust optimisation. Similar 

o stochastic programming, the goal is to optimise the expected 

erformance, but under the worst possible distribution of uncer- 

ainties, where the uncertainty set is defined as the space of all 

robability distributions that validate a set of statistical properties 

bserved in the real data. The method is therefore particularly use- 

ul when only partial knowledge about the statistical properties 

f the uncertain parameters is available or it is difficult to simu- 

ate historical scenarios due to the scarcity of available data. This 

ethod is relatively new for disaster management. A recent exam- 

le is given in Zhang, Liu, Yang, & Zhang (2020) who optimised 

he location of local distribution centres and points of distribu- 

ion under uncertain travel times, formulating the problem as one 
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Table 1 

Notation used in the formulation of the problem. 

Term Description 

Symbols used in the basic/deterministic formulation 

i time index 

j age index 

x i j quantity of stock of age j remaining at the end of period i 

y i target buy quantity in period i 

c i j amount of stock of age j consumed in period i 

s i shortage of stock in period i 

n number of time periods 

τ age limit at expiration 

B procurement budget 

l( j) initial inventory of age j

r safety stock requirement 

t safety stock age limit 

d(i ) demand in period i 

p(i ) price in period i 

a (i ) availability in period i 

V storage limit 

Symbols used in stochastic programming 

π occurrence probability of a scenario 

α risk level in VaR/CVaR 

η Value-at-Risk variable 

u positive side in CVaR model 

Symbols used in the robust formulation 

U uncertainty set 

� set of scenarios 

ξ a particular scenario 

S the greatest shortage 

B the highest budget spent 

v 0 offset parameter of the affine mapping 

v d 
i 

parameter of the affine mapping for the demand in period i 

v p 
i 

parameter of the affine mapping for the price in period i 

v a 
i 

parameter of the affine mapping for the availability in period i 

Symbols used in the dynamic test procedure 

Optimiser optimiser 

Generator generator 

Simulator simulator 

H set of historical scenarios 

T set of test scenarios 

b current budget 

y(ξ , i ) amount bought in period i in scenario ξ

x(ξ , i, j) inventory of age j in period i in scenario ξ

s(ξ , i ) shortage in period i in scenario ξ

c amount consumed 

a

b

h

c

m

ξ  

t

t

s  

c

i  

c
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t
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i
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f location-allocation. As with the majority of studies, their model 

as designed for a single disaster event, unlike our model which 

s designed for multiple disaster events. 

Multi-stage stochastic programming also has the potential for 

ddressing a planning problem with uncertainties over multiple 

ime periods ( Birge & Louveaux, 2011 ). Under some general as- 

umptions, such as the ability to model future events as a scenario 

ree, thus implicitly ensuring the Markov property holds for the 

rocess and the transition probabilities are known, general tech- 

iques can be used to solve such a problem, e.g. stochastic dual 

ynamic programming ( Pereira & Pinto, 1991 ). A similar technique 

as been applied to disaster management in the context of dis- 

ributing relief items during a hurricane ( Siddig & Song, 2021 ). 

. Methodology 

We begin by providing a mathematical description of the pro- 

urement problem introduced in Section 1 before formulating sev- 

ral approaches to solving it. The first approach assumes that de- 

and and prices are deterministic and provides a naive approach 

o procurement that ignores uncertainties. We then go on to de- 

cribe how stochastic programming, robust optimisation and ad- 

ustable robust optimisation can be used as approaches that ac- 

ount for unknown demand and price in the rice procurement 

roblem. 

.1. Preliminaries 

The set of real numbers is denoted R and the integers Z , their

alf positive subsets including zeros are denoted with a + in su- 

erscript, e.g. Z 

+ . For an integer n , we use [ n ] to denote the set

 1 , 2 , . . . , n } , and for a fractional x , [ x ] denotes its nearest integer.

he indicator function of an event A is denoted 1 A , i.e. returns 1 
f A is true, and 0 otherwise. Our decision variables are indexed 

n subscript and/or superscript, e.g. x i , while our indexed problem- 

arameters are written with parentheses, e.g. d(i ) . Table 1 provides 

 reference list for the notation used in this paper. 

.2. Problem description 

We consider the following procurement problem under uncer- 

ainty. A fixed budget B is available to spend to procure quan- 

ities of a perishable item to satisfy demand over a time hori- 

on of n periods. At time period i , the purchase price p(i ) and

he available market supply or availability a (i ) are known, but 

he demand d(i ) , and future demands, prices and availabilities 

d( j) , p( j) , a ( j)) j>i are unknown. Data on demands, prices and 

vailability in previous time periods are recorded and accessible, 
i = { (d( j) , p( j) , a ( j)) 1 ≤ j<i } ∪ { (p(i ) , a (i )) } , along with a fixed set

f historical data H = { (d( j) , p( j) , a ( j)) j∈ [ n ] } from previously expe-

ienced horizons. Quantities of the item that have stayed in the in- 

entory for τ time periods or beyond are considered perished and 

hey are automatically removed. Some initial inventory, described 

y state x 0 , is made available at the beginning of the time horizon

nd some safety stock r may be required at the end of the planning 

orizon. There may be a requirement that this stock has a partic- 

lar level of freshness, such that by the end of the time horizon it 

as not stayed more than t < τ time periods in the inventory (for 

 = τ − 1 this requirement is the most relaxed as it only restricts 

he age of the safety stock to be within the expiry date). 

The goal is to construct a decision making routine, denoted by 

ptimiser , that takes the role of a decision maker. It takes H, ξ i 

nd the current state of the inventory, i.e. quantities in stock and 

till usable (not yet perished), at each period i ∈ [ n ] as input, then

utputs the buy quantity y i , i.e. a here-and-now decision, such that 

he key performance indicators at the end of the time horizon 
5

re optimised. These are the minimisation of shortage, waste and 

udget usage in that exact priority order. Algorithm 1 describes 

ow an Optimiser can be used to decide on the amount to pur- 

hase in each month based on historical data and observed de- 

and, price and availability. Here, a sequence of full information 

= (d( j) , p( j) , a ( j)) j∈ [ n ] is referred to as a scenario , and the par-

ial sequence ξ i as described above is called a partial scenario until 

ime i . 

In Algorithm 1 , the detailed state of the system including the 

hortage s(ξ , i ) , waste x(ξ , i, τ ) and remaining budget b(ξ , i ) are

ollected at the end of each time step. The Optimiser is queried 

n line 4 for the next decision y i of the quantity to procure in the

urrent time period i . This line captures the uncertain and dynamic 

ature of our problem, as only a set H of historical data, the par- 

ial scenario ξ i , plus the current state of the inventory system are 

evealed to the Optimiser . The procurement order is then checked 

ith the available budget b(ξ , i − 1) and the actual price p(ξ , i ) in

ine 5 and the actual quantity procured y(ξ , i ) is deduced. The re- 

aining budget is then updated in line 6. Finally, the inventory is 

pdated using a FIFO policy (lines 7–16). At the end of the time 

orizon (typically 1 year; line 17), s(ξ , n + 1) is computed to take 

nto account the unmet safety stock. We note that quantities of 

he item stored in the system are assumed to be integers; how- 
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Algorithm 1: Implementation of an Optimiser given histori- 

cal data H for a new scenario ξ . 

Input : Optimiser , T , ξ scenario for demand, price and 

availability made known to the algorithm month by 

month, initial inventory x 0 , parameters n , B , r, τ , t . 

Output : Target buy quantity y i , and actual purchase 

quantity y(ξ , i ) , shortage s(ξ , i ) , waste x(ξ , i, τ ) 

and remaining budget b(ξ , i ) for each i ∈ [ n ] . 

1 b(ξ , 0) ← B ; 

2 x(ξ , 0 , ·) ← x 0 ; 

3 foreach i ∈ [ n ] do 

// query Optimiser for the next decision 
4 y i ← Optimiser (T , ξ i , b(ξ , i − 1) , x(ξ , i − 1 , ·)) ; 
5 y(ξ , i ) ← min 

(
[ y i ] , � b(ξ ,i −1) 

p(ξ ,i ) 
� , a (ξ , i ) 

)
; 

6 b(ξ , i ) ← b(ξ , i − 1) − y(ξ , i ) × p(ξ , i ) ; 

// update the inventory using FIFO policy 
7 s(ξ , i ) ← d(ξ , i ) ; 

8 x(ξ , i, 1) ← y(ξ , i ) ; 

9 foreach j ∈ [ τ ] \ { 1 } do 

10 x(ξ , i, j) ← x(ξ , i − 1 , j − 1) ; 

11 for j ← τ downto 1 do 

12 if s(ξ , i ) = 0 then 

13 break ; 

14 c ← min (s(ξ , i ) , x(ξ , i, j)) ; 

15 x(ξ , i, j) ← x(ξ , i, j) − c ; 

16 s(ξ , i ) ← s(ξ , i ) − c ; 

17 s(ξ , n + 1) ← max 
(
r − ∑ t 

j=1 x(ξ , n, j) , 0 
)
; 
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ver to give more flexibility to the Optimiser , we allow it to pro-

uce fractional decisions, and this explains the use of the rounding 

nd floor functions in line 5. The output of the algorithm provides 

 recommendation of the purchase quantities in each time period 

nd allows the computation of the key performance indicators. We 

ish to minimise three indicators that are listed in a priority or- 

er as follows: the first and most important is the total shortage 
 n +1 
i =1 s(ξ , i ) ; then it is followed by the total waste 

∑ n 
i =1 x(ξ , i, τ ) ;

nd finally the budget spent B − b(ξ , n ) . 

In practice, a small set H is often given, typically data recorded 

r computed from disaster events and market information from 

reviously operated years, and ξ records what has happened dur- 

ng the planning year. We assume that the scenarios of H and ξ
ome from the same distribution. 

In order to assert the robustness of an Optimiser , multiple fu- 

ure scenarios ξ similar to the historical data need to be generated 

nd we refer to these as the set T of test scenarios. This generation

ses an operator called the Generator . Our Generator and hence 

ts generated scenarios are based on real data and are designed to 

ncorporate the observed seasonality in the demands and prices. 

etails are given in Section 4.2 . 

In the following sections we describe Optimiser s that could be 

sed to solve the procurement problem, beginning with those that 

se a deterministic formulation. 

.3. Deterministic formulation 

In the deterministic model, we assume that full information 

= (d(i ) , p(i ) , a (i )) i ∈ [ n ] is available when making the procurement 

ecision y i for each time period. The results obtained by this for- 

ulation therefore represent a lower bound on the performance 

or any realistic Optimiser which only has access to the past and 
6 
he present. In Section 3.5 , we also show that the classical robust 

ormulation is equivalent to a deterministic formulation, in which 

he parameters are deduced from the uncertainty set. 

In addition to the decision variables y i , we use variables x i j to 

tore the quantity of item at age j remaining at the end of pe- 

iod i ; variables s i to record the shortages (unmet demands) at 

ime period i ; and variables c i j for the quantities of item of age

j consumed at period i ∈ [ n ] . The procurement problem can then 

e formulated as the following linear program, which we discuss 

elow. 

 BudgetAlloc-Det ) min 

( ∑ 

i ∈ [ n +1] 

s i , 
∑ 

i ∈ [ n ] 
x iτ , 

∑ 

i ∈ [ n ] 
y i p(i ) 

) 

(1) 

.t. 

 { j> 1 } x (i −1)( j−1) + 1 { j=1 } y i = c i ( j−1) + x i j ∀ i ∈ [ n ] , ∀ j ∈ [ τ ] (2)

 i + 

τ−1 ∑ 

j=0 

c i j = d(i ) ∀ i ∈ [ n ] (3) 

 n +1 + 

t ∑ 

j=1 

x n j ≥ r (4) 

∑ 

 ∈ [ n ] 
y i p(i ) ≤ B (5) 

 i ∈ R 

+ , y i ≤ a (i ) ∀ i ∈ [ n ] (6)

 i j ∈ R 

+ , x 0 j = l( j) , x 0 τ = 0 ∀ i ∈ { 0 } ∪ [ n ] , ∀ j ∈ [ τ ] (7)

 i ∈ R 

+ ∀ i ∈ [ n + 1] (8) 

 i j ∈ R 

+ ∀ i ∈ [ n ] , ∀ j ∈ { 0 } ∪ [ τ − 1] 

(9) 

The objectives (1) are lexicographically ordered: we first min- 

mise the shortage 
∑ 

i ∈ [ n +1] s i , then the waste 
∑ 

i ∈ [ n ] x iτ , and finally 

he budget usage 
∑ 

i ∈ [ n ] y i p(i ) . The balance constraints (2) ensure 

hat the consumable quantity, which is either freshly bought or 

he leftover from the previous period, equals the actual consump- 

ion plus any leftover in the current period. Constraints (3) connect 

onsumed quantities to the demand; here the shortage s i works 

ike a slack variable. Constraints (4) ensure there is sufficient safety 

tock with age no more than t at the end of the planning horizon 

nd we note that t < τ . The budget limitation is set in constraint

5) . The availability of stock to procure, which may be due to the 

roduction level in the region, provides a limit on the amount that 

an be purchased in constraints (6) . The initial inventory levels 

re set in constraints (7) . Note that we do not require input l(τ ) ,

hich corresponds to initial stock of age τ , which is due to ex- 

ire, and instead we set x 0 τ = 0 . This is done because if the model

as run for the previous year, then l(τ ) would have already been 

ounted as a waste for that year as the stock is no longer usable. 

inally, the variables are defined in (6) –(9) . 

To solve a multi-objective optimisation problem via the lexico- 

raphical method, we first solve the problem with the highest pri- 

rity objective (the shortage in our case), then fix the obtained op- 

imal value as a constraint before moving to the next highest prior- 

ty objective and continuing until all objectives have been consid- 

red. Some modern Linear Programming solvers have features to 
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upport this approach with a minimal effort, e.g. CPLEX since ver- 

ion 12.9. A reduction of the formulation based on the redundancy 

n the objectives is discussed in Appendix A , which shows that the 

aste minimisation is redundant when both of the other objec- 

ives are included. Some extensions of the model to incorporate 

ther complexities often seen in similar situations are discussed in 

ppendix B . 

.4. Stochastic programming 

In stochastic programming, we look for a solution, in this case 

he procurement quantities y i , that works well on average over a 

et � of scenarios (e.g. a set of generated or observed scenarios 

= H) and we assume the occurrence probability of each scenario 

∈ �, denoted by π(ξ ) , is known. These probabilities are often as- 

erted by experts. In our case, the scenarios either come from real 

istorical data, or are sampled with a Generator described later 

n Section 4.2 and this is in essence the Sample Average Approx- 

mation method ( Birge & Louveaux, 2011 ), thus we will assume 

he scenarios are equiprobable. This yields the following two-stage 

tochastic programming formulation of the problem. The first-stage 

ecisions are y i , the procurement quantities at time period i ; while 

ll of the other variables are second-stage as they are scenario- 

dapted measures. These are indexed with ξ (e.g. s iξ , x iτξ , etc) and 

valuate the impacts of the first-stage decisions over scenario ξ . 

( BudgetAlloc-Stoch ) min 

( ∑ 

ξ∈ �
π(ξ ) 

∑ 

i ∈ [ n +1] 

s iξ , 

∑ 

ξ∈ �
π(ξ ) 

∑ 

i ∈ [ n ] 
x iτξ , 

∑ 

ξ∈ �
π(ξ ) 

∑ 

i ∈ [ n ] 
y i p(i, ξ ) 

) 

(10) 

s.t. 

1 { j> 1 } x (i −1)( j−1) ξ + 1 { j=1 } y i 
= c i ( j−1) ξ + x i jξ ∀ i ∈ [ n ] , ∀ j ∈ [ τ ] , ∀ ξ ∈ � (11) 

 iξ + 

τ−1 ∑ 

j=0 

c i jξ = d(i, ξ ) ∀ i ∈ [ n ] , ∀ ξ ∈ � (12)

 (n +1) ξ + 

t ∑ 

j=1 

x n jξ ≥ r ∀ ξ ∈ � (13) 

∑ 

 ∈ [ n ] 
y i p(i, ξ ) ≤ B ∀ ξ ∈ � (14) 

 i ∈ R 

+ , y i ≤ a (i, ξ ) ∀ i ∈ [ n ] , ∀ ξ ∈ � (15)

 i jξ ∈ R 

+ , x 0 jξ= l( j) , x 0 τξ= 0 ∀ i ∈ { 0 } ∪ [ n ] , ∀ j ∈ [ τ ] , ∀ ξ ∈ �

(16) 

 iξ ∈ R 

+ ∀ i ∈ [ n + 1] , ∀ ξ ∈ � (17)

 i jξ ∈ R 

+ ∀ i ∈ [ n ] , ∀ j ∈ { 0 } ∪ [ τ − 1] , ∀ ξ ∈ �

(18) 

Relative to the deterministic formulation, here we have ex- 

ended all of the constraints to the scenario dimension, and we 
7 
ave done the same for all of the variables, with the exception of 

he y i , which are our first-stage decisions. The objectives (10) min- 

mise the shortage, then waste and budget spent in expectation. 

The robustness of the solution in terms of shortage can be im- 

roved as follows. Instead of optimising the normal expectation, 

e optimise the conditional expectation beyond some α-quantile, 

nd this is known as Conditional Value-at-Risk (CVaR) ( Rockafellar 

 Uryasev, 20 0 0 ), where the value of the α-quantile is the Value-

t-Risk, VaR. For example, when this is applied to the first objec- 

ive of shortage, we have the following linear formulation: 

( BudgetAlloc-CVaR ) min 

( 

ηs + 

1 

1 − α

∑ 

ξ∈ �
π(ξ ) u s ξ , 

∑ 

ξ∈ �
π(ξ ) 

∑ 

i ∈ [ n ] 
x iτξ , 

∑ 

ξ∈ �
π(ξ ) 

∑ 

i ∈ [ n ] 
y i p(i, ξ ) 

) 

(19) 

s.t. 

(11), (12), (13), (14), (15), (16), (17) , and (18) 

 

s 
ξ ≥

∑ 

i ∈ [ n +1] 

s iξ − ηs ∀ ξ ∈ � (20) 

s ∈ R , u 

s 
ξ ∈ R 

+ ∀ ξ ∈ � (21) 

Here α is the confidence (or inversely risk) level parameter set 

y the user, e.g. if 5% of the worst objective values are considered 

n computing VaR/CVaR then α is set to 0.95. If α is set to 0 then 

udgetAlloc-CVaR is equivalent to BudgetAlloc-Stoch . 

When there is sufficient budget to cover absolutely no shortage 

ver � in BudgetAlloc-Stoch , i.e. there exists a solution that al- 

ows zero in the first objective, then the two models are also equiv- 

lent, since the distribution of the first objective with the given 

olution is collapsed into a single point. In that case, it is possible 

o keep the first objective of BudgetAlloc-Stoch and apply CVaR 

ormulation to the second objective in a similar fashion, by intro- 

ucing variables ηx and u x 
ξ

and updating the second objective. We 

efer to this model as BudgetAlloc-CVaRW . 

.5. Robust optimisation 

In robust optimisation, we want to make the best decision in 

he worst case scenario. The robust formulation can be derived di- 

ectly from the deterministic one by adding the assumption that 

he solution should hold for any (uncertain) parameters taken from 

ome uncertainty set U . The uncertainty set is designed to ac- 

ount for seasonality in the price and demand as we discuss fur- 

her in Section 4.2 . In our model, this is equivalent to optimising 

udgetAlloc-Det where (d(i ) , p(i ) , a (i )) i ∈ [ n ] ∈ U . 

The need for modelling slack variables such as s i with equal- 

ty constraints is unavoidable for our problem since these vari- 

bles appear in the objectives, therefore it is not possible to pro- 

uce an equivalent formulation where uncertain inputs only ap- 

ear in inequality constraints like in Bertsimas & Thiele (2006b) . 

his leads to too strong a degree of conservatism and infeasibility 

f the model contains only first-stage variables, i.e. equality con- 

traint (3) cannot be satisfied simultaneously for two different val- 

es of d(i ) . A similar issue can be found in Coniglio et al. (2018) ,

nd some discussion on this can be found in Chapter 1 of ( Ben-Tal

t al., 2009 ). We therefore move directly to the two-stage robust 

ormulation, which shares some similarities with BudgetAlloc- 

toch . For conciseness, here we make use of the result described 

n Section 3.3 that the waste minimisation objective is redundant 
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nd consequently we can optimise over just shortage and budget. 

he formulation is as follows: 

( BudgetAlloc-Robust ) min ( S, B ) (22) 

s.t. 

(11), (12), (13), (14), (15), (16), (17) , and (18) ∑ 

 ∈ [ n +1] 

s iξ ≤ S ∀ ξ ∈ � (23) 

∑ 

 ∈ [ n ] 
y i p(i, ξ ) ≤ B ∀ ξ ∈ � (24) 

, B ∈ R 

+ (25) 

Here � = { ξ | (d(i, ξ ) , p(i, ξ ) , a (i, ξ )) i ∈ [ n ] ∈ U} . Several types of

ncertainty set can be considered for U , such as box, polyhedral or 

llipsoidal ( Ben-Tal et al., 2009 ). We have the following observation 

elated to the deterministic formulation. BudgetAlloc-Robust can 

ave an infinite number of constraints, and a formal derivation of a 

ompact counterpart would involve considering the dual formula- 

ion; however, it is intuitive to see that the worst case corresponds 

o the smallest availability, and the largest demands and prices as 

tated more formally in Proposition 1 . 

roposition 1. BUDGETALLOC-ROBUST with the uncertainty set U
s equivalent to the optimisation problem of (2) –(35) where 

d(i ) , p(i ) , a (i )) is replaced with ( max ξ∈ �{ d(i ) } , max ξ∈ �{ p(i ) } ,
in ξ∈ �{ a (i ) } ) for each i ∈ [ n ] . 

roof. It follows from (12) that 

 i 0 ξ = d(i, ξ ) − s iξ −
τ−1 ∑ 

j=1 

c i jξ ∀ i ∈ [ n ] , ∀ ξ ∈ � (26)

nd combining this with (11) for the case j = 1 gives 

 i = c i 0 ξ + x i 1 ξ = d(i, ξ ) − s iξ + x i 1 ξ −
τ−1 ∑ 

j=1 

c i jξ ∀ i ∈ [ n ] , ∀ ξ ∈ �

(27) 

herefore, (14) and (15) are equivalent to 

∑ 

 ∈ [ n ] 

( 

d(i, ξ ) − s iξ + x i 1 ξ −
τ−1 ∑ 

j=1 

c i jξ

) 

p(i, ξ ) ≤ B ∀ ξ ∈ � (28) 

 i ∈ R 

+ , d(i, ξ ) − s iξ + x i 1 ξ −
τ−1 ∑ 

j=1 

c i jξ ≤ a (i, ξ ) ∀ i ∈ [ n ] , ∀ ξ ∈ �

(29) 

ote that d(i, ξ ) appears in the LHS of both (28) and (29) with co-

fficients p(i, ξ ) > 0 and 1 respectively, thus the larger the value 

t has, the more dominant the formulation is over other possible 

alues. This also holds true for p(i, ξ ) as it appears in the LHS of

29) with coefficient d(i, ξ ) > 0 . Input a (i, ξ ) appears on the RHS

f (29) with coefficient 1, thus the dominant formulation is ob- 

ained with its smallest value. �

Taking these inputs to the maximal (or minimal) values can 

roduce highly conservative solutions, thus in practice when �

s large, we consider smaller statistics, for example 0.95 or 0.90- 

uantiles, or even lower if the variation is small. These details are 

iscussed in Section 4 . 
8 
.6. Scenario-based adjustable decisions 

In adjustable robust optimisation ( Ben-Tal et al., 2009; 

anikoglu et al., 2019 ), we look for an optimal decision rule ex- 

racted from historical scenarios so that it can be applied at suc- 

essive time points during the planning time horizon of a new sce- 

ario. In general, a decision rule is a mapping from the recent past 

ata including recently revealed information and possibly the cur- 

ent state of the system to a new decision or recommendation. This 

llows the recommendations to be adaptive with respect to recent 

vents of a scenario. 

There are various ways to formalise a decision rule and 

ach yields a specific approach to adjustable robust optimisation 

 Yanikoglu et al., 2019 ). We choose ours to be an affine mapping

rom the input space of the information that has been revealed so 

ar, to the decision space of the immediate buy quantity. Some ad- 

antages of this mapping are that it is natural and requires fewer 

ssumptions about the modelling of the uncertainties, and that if 

he original problem is a linear program, the resulting formulation 

ill also be a linear program, and hence tractable. An application 

f the same approach for another variant of the lot sizing problem 

an be found in Coniglio et al. (2018) . 

We introduce the parameters, v 0 , v d 
i 
, v p 

i 
and v a 

i 
of the affine

apping as the new first-stage decisions. We then push the 

ld first-stage decisions y i to the second stage, i.e. make them 

cenario-dependent y iξ , and set them equal to the outputs of ap- 

lying the mapping to the data of each scenario used 

 iξ = v 0 + 

i −1 ∑ 

i ′ =1 

d(i ′ , ξ ) v d i ′ 

+ 

i ∑ 

i ′ =1 

(
p(i ′ , ξ ) v p 

i ′ + a (i ′ , ξ ) v a i ′ 
)
. ∀ i ∈ [ n ] , ∀ ξ ∈ � (30) 

This gives the following adjustable robust formulation: 

( BudgetAlloc-ARO ) min ( S, B ) 

s.t. (31) 

(12) , (13) , (16) , (17) , (18) , (23) , (25) , and (30) 

1 { j> 1 } x (i −1)( j−1) ξ + 1 { j=1 } y iξ
= c i ( j−1) ξ + x i jξ ∀ i ∈ [ n ] , ∀ j ∈ [ τ ] , ∀ ξ ∈ � (32) 

∑ 

 ∈ [ n ] 
y iξ p(i, ξ ) ≤ B ∀ ξ ∈ � (33) 

∑ 

 ∈ [ n ] 
y iξ p(i, ξ ) ≤ B ∀ ξ ∈ � (34) 

Once the model is solved on a set of historical scenarios, the 

arameters of the affine mapping are stored, and can be applied af- 

erwards, using the same Eq. (30) , which is essentially a dot prod- 

ct on a new scenario (either real or simulated) to produce suc- 

essive decisions as additional information is revealed. 

. Numerical experiments 

We evaluate our methods using the rice procurement problem 

aced by BULOG in West Java, which has an obligation to ensure 

ice is always available for refugees, as described in Section 1 . Us- 

ng historical refugee data ( Onggo et al., 2021 ) and price data from 

ULOG, we construct a Generator , described in Section 4.2 , that is 

sed to generate sets of scenarios for prices and demand. The opti- 

isation methods described in the previous section are tested us- 

ng the Simulator to evaluate their robustness and computational 

erformance. 
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.1. Case study 

West Java province is the centre of rice production and conse- 

uently we ignore constraints on availability in our experiments. 

he province allocated budget equivalent to 100 tonnes of emer- 

ency rice for each municipality and there were 27 municipalities 

n the province. BULOG has 30 warehouses of large capacities in 

est Java, which are used to store rice for disaster relief as well as 

or market intervention and poverty reduction. Emergency rice has 

riority and uses only a small portion of storage compared to rice 

sed for other purposes. As a result, we are able to ignore con- 

traints on storage capacity. We focus on provision of emergency 

ice for disasters. 

Rice is typically bought throughout the year and we use our 

ethods to determine a target buy quantity per month, using a 

lanning horizon of one year, thus n = 12 . Ideally, rice should be

sed within 6 months of purchase, thus we set τ = 7 and use 

 = 6 . At the beginning of the year, a quantity of 10 tonnes of fresh

ice per municipality is assumed available to use, and the same 

uantity of usable rice is required at the end of the year as safety 

tock. In the following section we discuss how to construct sets 

f historical data H and testing data T for the different scenarios 

sed in our experiments. 

.2. Scenario generation 

The disaster data from 2016 to 2020 was made available to 

s by the West Java provincial government and comprises 8111 

ecords, each recording disaster event, date, location (municipal- 

ty and local district), disaster type (e.g. flood, landslide, wildfire), 

umber of refugees and affected infrastructure, etc. for West Java, 

ndonesia. BULOG provided us with the price of rice data aggre- 

ated by month for 2018–2020 inclusive for West Java, Indonesia 

s well as the minimum allowed purchasing price for rice between 

018 and 2020. 

As we do not have the price data for 2016 and 2017, we use 

rices generated from a log-normal distribution fitted to the price 

ata from 2018 to 2020 as estimates for 2016 and 2017, adjusted to 

nsure they are above the government’s minimum buy price. This 

ives us our set of (quasi-) real historical data H 1 , consisting of 5

cenarios of monthly demands and prices. 

Additional sets of scenarios are created using a Generator . 

hese are needed to fully test the robustness of our Optimiser s. In 

ach scenario, we independently sample the price and the number 

f refugees in each month. Prices are sampled from a set of log- 

ormal distributions for each month of the year fitted to historical 

rice data (2018 to 2020). 

The generation of events for a one-year scenario, described be- 

ow, is designed to reproduce the seasonality observed in demand 

or rice. 

• For each disaster type, the number of events is sampled 

from a Poisson distribution with mean equal to the annual 

average number of events of that type. The set of corre- 

sponding events are then created. 
• The municipalities that are affected by each disaster are then 

sampled using the empirical distribution. Based on the mu- 

nicipality and disaster type, the number of refugees is gen- 

erated by resampling from the numbers of refugees of past 

events of the same type that have occurred in the same mu- 

nicipality. 
• Finally, the dates of disasters are sampled for each of the 

generated events. We match the distribution of events over 

the years to detailed historical data of real events cate- 
gorised by disaster type and month. g

9 
Aggregating the events for each month gives the total number 

f refugees for the month. As per regulation, each refugee will re- 

eive 400 g of rice per day during the emergency period (fourteen 

ays post-disaster), hence, we can calculate the monthly demand 

or rice. 

We use the Generator to generate two sets H 2 and T 2 of 

ynthetic historical scenarios, each containing 100 scenarios. The 

ormer is used as the historical set for modelling while the lat- 

er is used to evaluate the solutions. These complement the set 

f historical data from BULOG in H 1 . The sets of scenarios H 1 ,

 2 and T 2 along with our experimental results are available at 

ttps://github.com/stephanong/relief-ops/ . 

.3. Experimental set up 

The evaluation process Simulator and the optimisation models 

re implemented in Python using CPLEX 12.10 as the linear solver. 

o avoid numerical instabilities we set CPLEX to use the dual sim- 

lex method, and we multiply the RHS and the coefficients of the 

udget constraint by 10 −3 . The experiments were conducted on a 

inux cluster of CPU with 2.6 GHz Intel Sandybridge processors and 

4 GB of memory where a CPU was allocated to evaluate each Op- 

imiser . 

.4. Optimisation routines 

We test the following Optimiser s, built from the models de- 

cribed in Section 3 . 

• Pct100 : based on BudgetAlloc-Robust , which is essentially 

BudgetAlloc-Det where the demands and prices for each 

month are taken from the 100-percentile of the historical 

data � = H. 
• Pct90 : similar to Pct100 but the 90-percentile of demands 

and prices of the historical data are used as a way to reduce 

the degree of conservatism of the solution. 
• Stoch : based on BudgetAlloc-Stoch . 
• CVaR90 and CVaR95 : based on BudgetAlloc-CVaR with α

set to 0.90 and 0.95 respectively. 
• CVaRW90 and CVaRW95 : similar to the above but using 

BudgetAlloc-CVaRW . 
• ARO : based on BudgetAlloc-ARO . 

As discussed in Section 3 , with the exception of BudgetAlloc- 

RO whose decisions are adapted as new data are revealed, all 

f the other models make fixed decisions. More specifically, the 

odels can be fully constructed based on the set of historical data 

= H and the decisions can then be fixed for the whole year, and 

n this case line 4 of Algorithm 1 essentially only returns a pre- 

omputed value. Setting purchasing decisions for each month at 

he start of the year and not allowing updates based on observed 

emand is likely to make these methods less effective compared 

ith BudgetAlloc-ARO . To provide a fair test we instead allow 

ach of these Optimiser s to update their purchasing recommenda- 

ions each month. This remodelling approach, which is clearly de- 

cribed in Bertsimas & Thiele (2006a) , proceeds as follows. In the 

uery on line 4 of Algorithm 1 , the model is reconstructed for the 

emaining time periods n − i as the new planning horizon (so the 

nput � = H is only considered for these periods); the new budget 

s b(ξ , i − 1) ; and the initial inventory is x(ξ , i − 1 , ·) . 
When presenting the results for an Optimiser over multiple 

cenarios, since we are interested in robust solutions for a min- 

misation problem, our main focus will be on the quantiles above 

he median, e.g. 0.9 (denoted q90) or 1.0 (the maximum). We 

ill also show a classical performance metric for stochastic pro- 

ramming, the so-called expected value of perfect information (EVPI) 

https://github.com/stephanong/relief-ops/
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Table 2 

Summary of the results for methods modelled on H 1 \ { ξ} then tested on { ξ} . Median values are presented alongside the minimum, maximum values, and EVPIs for each 

objective. 

Method Shortage ( 10 3 kilograms) Waste ( 10 3 kilograms) Budget spent ( 10 6 Rupiahs) 

med min max EVPI med min max EVPI med min max EVPI 

Pct100 0.0 0.0 0.96 0.19 249.72 116.96 359.30 45.78 3860.74 3216.56 3902.38 776.37 

Stoch 0.0 0.0 0.00 0.00 245.29 13.66 251.58 2.32 3651.19 3216.56 3680.49 544.79 

ARO 0.0 0.0 133.85 26.77 245.32 2.07 251.58 0.01 3405.90 2342.30 4130.29 475.78 

Fig. 1. Procurement quantities in kilograms when modelled and tested on H 1 . 
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 Birge & Louveaux, 2011 ). EVPI measures the gap between the av- 

rage performance of the Optimiser and that of an ideal method, 

ften called the clairvoyant , that has access to future information. 

ince the clairvoyant solution requires the decisions to be adapted 

o each scenario, it represents a lower bound for their expected 

erformance for all Optimiser s. Therefore, lower numbers of EVPI 

uggest better expected performance. Recall that our problem has 

ultiple objectives which are lexicographically ordered, hence the 

lairvoyant solution is computed once for each scenario but EVPIs 

ill be shown separately for each objective. 

.5. Robustness over real scenarios 

We examine how the proposed approaches behave with a small 

ata set H 1 ; more specifically, the approaches are tested on T = 

 ξ} for each ξ ∈ H 1 while being modelled with H = H 1 \ { ξ} as the

istorical data. The set H here is sparse (contains only 4 scenarios), 

hus the only relevant Optimiser s are Pct100 , Stoch and ARO . 

A summary of results is given in Table 2 . Regarding the primary 

bjective of shortage, Pct100 and Stoch can achieve zero shortage 

n the majority of scenarios, with a small exception that Pct100 

ometimes has a minor issue with the safety stock. On the other 

and, while the median shortages produced by ARO are zero, the 

elative average shortage indicated by EVPI is non-negligible and 

he maximum shortage is very high. While this is partially due 

o the large variance in the sparse data set, particularly the large 

hain of disasters during 2016, these results also hint that Pct100 , 

toch can make quite conservative decisions, while ARO has not 

een enough data to construct a robust model. Considering the to- 

al budget spent, Table 2 shows that in terms of median values 

ct100 is the most expensive approach, followed by Stoch and 

hen ARO . However, ARO can have high variability in the budget 

pent, and this is likely due to its adaptation to the unseen large 

isasters while modelled on a sparse set of data. 

The procurement activities differ between the models as shown 

n Fig. 1 . The majority of procurement using Pct100 takes place in 

pril to August, while Stoch and ARO both carry out purchasing 

n July and August when the original stock starts to expire and the 
10 
rices are low. All three methods also buy more rice in December 

o meet the safety stock requirement. 

.6. Robustness over simulated future scenarios 

In this section, we analyse how the proposed models perform 

hen tested on T = H 2 while using either the limited real sce- 

arios in H = H 1 or the 100 simulated scenarios in H = H 2 as the

istorical data to train the models. 

.6.1. Modelling with limited historical data 

We first consider the case H = H 1 where only limited informa- 

ion is used in modelling. Again, because of the sparsity of this set 

he only relevant Optimiser s are Pct100 , Stoch and ARO . Results 

how that shortages do occur but typically only in a few scenar- 

os. A summary of results is given in Table 3 . Among the meth- 

ds, Stoch produces the least shortage while ARO produces the 

ost. Regardless of the methods, the largest shortage is due to the 

nmet safety stock requirement at the end of the planning hori- 

on. Due to the increased variability in demand compared with the 

mall number of historical scenarios considered in Section 4.5 , the 

otal spend is greater, even though this change to the median and 

verage cases (columns med and EVPI) are relatively small. On the 

ther hand, the maximum shortage is significantly increased but 

aste is reduced. 

.6.2. Modelling with simulated historical data 

We consider H = H 2 for modelling and T = T 2 for testing, and

ecall that both sets have 100 scenarios. All Optimiser s are rel- 

vant in this case, allowing us to fully evaluate the difference in 

heir performance and to consider different values for their param- 

ters. Table 4 includes a summary of the results. 

We first consider Pct100 and Pct90 , and notice that in terms 

f the first objective of shortage, in most of the 100 scenarios the 

hortage can be maintained at zero, except for 4 scenarios where 

 shortage of up to 30 tonnes can occur for Pct90 . On the other

and, by reducing the degree of conservatism, the method allows a 

ignificant improvement in terms of waste and budget spent com- 

ared to Pct100 . For example, in the average cases the EVPI of 
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Table 3 

Summary of the results for methods modelled on H 1 then tested on T 2 . Median values are presented alongside the 90th quantiles, maximum values, and EVPIs for each 

objective. 

Method Shortage ( 10 3 kilograms) Waste ( 10 3 kilograms) Budget spent ( 10 6 Rupiahs) 

med q90 max EVPI med q90 max EVPI med q90 max EVPI 

Pct100 0.0 14.41 106.25 5.54 234.58 327.78 357.15 37.97 3779.08 3956.63 4579.29 580.17 

Stoch 0.0 0.00 72.73 1.41 215.54 246.05 261.44 0.00 3654.92 3672.04 4256.14 589.59 

ARO 0.0 68.73 269.73 26.60 215.54 246.05 261.44 0.01 3386.78 3685.13 5008.68 171.40 

Table 4 

Summary of the results for methods modelled on H 2 then tested on T 2 . Median values are presented alongside the 90th quantiles, maximum values, and EVPIs for each 

objective. 

Method Shortage ( 10 3 kilograms) Waste ( 10 3 kilograms) Budget spent ( 10 6 Rupiahs) 

med q90 max EVPI med q90 max EVPI med q90 max EVPI 

Pct90 0.0 0.0 30.25 0.80 231.76 279.78 306.56 17.89 3629.72 3766.92 4805.54 684.26 

Pct100 0.0 0.0 0.00 0.00 513.15 837.21 1080.14 288.16 8154.50 10933.46 12192.22 5577.01 

Stoch 0.0 0.0 0.00 0.00 215.54 246.05 261.44 3.25 4180.42 4504.38 5422.03 1278.14 

CVaR90 0.0 0.0 0.00 0.00 215.54 246.05 261.44 3.25 4180.42 4504.38 5422.03 1278.14 

CVaR95 0.0 0.0 0.00 0.00 215.54 246.05 261.44 3.25 4180.42 4504.38 5422.03 1278.14 

CVaRW90 0.0 0.0 0.00 0.00 215.54 246.05 261.44 3.28 4180.36 4504.38 5422.03 1278.24 

CVaRW95 0.0 0.0 0.00 0.00 215.54 246.05 261.44 3.30 4180.28 4504.38 5422.03 1278.26 

ARO 0.0 0.0 21.21 0.44 215.56 246.05 261.44 0.04 4060.99 4214.73 4521.35 1055.38 

Fig. 2. Procurement activities of Stoch , CVaR95 and CVaRW95 when modelled and tested with H 2 , T 2 respectively. 
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aste for Pct90 is fifteen times less than that for Pct100 , and this 

actor is still two and three times less in the median and worst 

ases respectively. 

Regarding the stochastic programming methods, we observe 

hat Stoch and CVaR95 make very similar procurement decisions 

hich differ to those produced by CVaRW95 . This can be seen in 

ig. 2 . We note that all these methods can maintain a net zero 

hortage, and this confirms our theory that when the budget is suf- 

cient, it is not necessary to model the first objective with CVaR. 

In the remainder of the paper, we will mainly compare the 

hree methods Pct90 , CVaRW95 and ARO . Table 4 and Figs. 3 and

 show the performance of these methods. We observe that the 

ethods are able to produce near zero shortage even though they 

ere modelled and tested on different sets of scenarios, with very 

ew exceptions. The waste peak is still around 260 tonnes for 

he month of July, and because the approaches are modelled and 

ested with more scenarios, larger budget spending is expected 

n the worst case, e.g. up to 5.5 billion Rupiahs for the case of 

VaRW95 . The storage peak of usable rice differs between these 

ethods, e.g. CVaRW95 may requires to store up to 500 tonnes in 

he month of July while this requirement is lower for the other 

ethods and can occur in a different month. 

.6.3. The role of safety stock 

From the previous experiments, we can see that there is a large 

aste in the month of July when the initial stock expires, thus we 
11
lso experimented with a zero initial stock and safety stock re- 

uirement but with a planning horizon of 13 months. A summary 

f the results is shown in Table 5 . 

In this setting, positive shortages remain outliers with Pct90 

uffering the most. Both methods CVaRW95 and Pct90 maintain 

ery similar levels of waste and budget usage despite the initial 

tock no longer being available. ARO on the other hand, manages 

o reduce the peak of waste down to 100 tonnes, but at the ex- 

ense of having a large budget usage, up to 8 billion Rupiahs with 

he third quartile of the distribution or 12 billion Rupiahs in the 

orst case, and also a high variability. 

.6.4. Computational performance 

Recall that all models are tractable as we only use linear pro- 

ramming, however due to working with large numbers we in- 

tructed the LP-solver to use the dual simplex method, which in 

heory can be slower than point interior methods such as barrier 

or large linear models. Table 6 shows the average computational 

imes for Pct , Stoch , CVaR , CVaRW and ARO methods when mod- 

lled and tested on H 2 , T 2 . ARO is a fast method because only a

ingle linear model is required to be solved at the beginning; and 

he stochastic programming methods are found to be the slowest. 
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Fig. 3. Waste of Pct90 , CVaRW95 and ARO when modelled and tested with H 2 , T 2 respectively. 

Fig. 4. Useable quantities in store of Pct90 , CVaRW95 and ARO when modelled and tested with H 2 , T 2 respectively. 

Table 5 

Summary of the results for methods modelled on H 2 then tested on T 2 , and under the setting that the safety stock is set to zero but there is an extra month in the planning 

horizon. Median values are presented alongside the 90th quantiles, maximum values, and EVPIs for each objective. 

Method Shortage ( 10 3 kilograms) Waste ( 10 3 kilograms) Budget spent ( 10 6 Rupiahs) 

med q90 max EVPI med q90 max EVPI med q90 max EVPI 

Pct90 0.0 9.85 145.57 5.78 128.82 222.37 270.59 128.57 3012.65 3415.44 3791.28 1750.99 

Pct100 0.0 0.00 1.25 0.01 627.91 944.82 1183.40 598.13 9379.94 11937.53 13174.75 8344.79 

Stoch 0.0 0.00 7.14 0.08 155.43 170.13 174.79 144.81 3808.39 4574.29 5403.12 2742.45 

CVaR90 0.0 0.00 7.14 0.08 155.43 170.13 174.79 144.81 3808.39 4574.29 5403.12 2742.45 

CVaR95 0.0 0.00 7.14 0.08 155.43 170.13 174.79 144.81 3808.39 4574.29 5403.12 2742.45 

CVaRW90 0.0 0.00 2.81 0.03 162.06 205.05 215.50 160.11 3985.19 4639.29 5394.45 2891.72 

CVaRW95 0.0 0.00 2.81 0.03 162.37 205.53 215.50 160.13 3985.12 4639.29 5394.42 2891.69 

ARO 0.0 0.00 13.76 0.14 180.64 200.38 220.15 171.00 4579.07 7086.56 12774.98 3913.76 

Table 6 

Computational time in seconds for modelling/testing with 100 scenarios and 12 

month planning horizon. 

Method CPU time (seconds) 

ARO 3.753 

Pct 35.538 

Stoch 1604.733 

CVaR 1580.924 

CVaRW 1493.099 
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.7. Discussion 

The results show that using a wider range of scenarios for 

etting model parameters results in more robust solutions and 

onsequently our first recommendation to someone solving a 

imilar problem would be to supplement sparse historical data 

n demands and prices by generating a set of pseudo-scenarios 
12 
ith similar characteristics to those seen in practice. Sparse data 

lso limits the methods available as Pct90 and CVaR90 /95 and 

VaRW90 /95 methods are only feasible with a substantial set of 

cenarios. 

The correct provision of safety stock has a significant influence 

n the waste produced by the procurement system, particularly for 

he ARO approach. It also appears to push the waste later in the 

ear and spread it out over a few months rather than seeing all of 

he waste occur in July. In terms of managing the waste rice, which 

s typically sold at a low price on the open market, spreading out 

he waste over several months is beneficial. Insisting on stock be- 

ng available at the end of each year also places constraints on the 

rocurement strategies and to fit in with annual budgeting, using 

 13 month time window seems more appropriate than insisting 

n a fixed safety stock at the end of the year. 

In terms of the methods used, we can see the following general 

haracteristics. The rather crude approach of optimising the 90th 
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ercentile of demand seen in Pct90 appears to result in signifi- 

ant reductions in the budget used but poor performance on both 

hortage and waste, despite the remodelling approach we use to 

ccount for observed demand during the year. The ARO approach 

erforms poorly when only sparse historical data are available but 

etter when a more substantial dataset can be used for fitting, 

hile the stochastic programming methods using conditional value 

t risk (CVaR) perform well in both cases. Nonetheless, the ARO 

pproach has a significantly shorter computational time than the 

omputationally expensive Stoch approaches. These methods are 

ost likely to be applied on a monthly basis and in this case, 

omputational times for all methods are reasonable. If the opti- 

isation needs to be run more regularly, then it may be better to 

se a method such as ARO which returns results close to instanta- 

eously. 

. Conclusion 

We have presented a study that is based on real procurement 

ecisions faced by agencies involved in disaster preparedness and 

esponse in West Java Indonesia. The structure of the relief food 

rocurement problem faced by West Java matches those seen in 

ther regions that suffer from frequent disasters. The problem has 

he following characteristics: (i) it operates based on an annual 

udget cycle; (ii) the timing of the procurement decision is impor- 

ant and the decision needs to be updated regularly; (iii) some re- 

ief food items are perishable; (iv) the availability and the price of 

ood items are seasonal and stochastic; and (v) demand is seasonal 

nd highly variable. These characteristics match those of other re- 

ief items such as medicines and blood. Consequently the need 

or determining optimal purchasing decisions for perishable relief 

tems is widespread and the innovative stochastic optimisation ap- 

roach presented here could be used in a wide range of different 

ituations. 

When modelling natural disasters it is vital to take into ac- 

ount the inherent variability of future information such as de- 

ands, prices, and availabilities. But this is also true in areas 

utside disaster relief. Therefore, the comparisons of different 

ethods for generating robust solutions for a stochastic optimisa- 

ion problem in which decisions must be made periodically over a 

nite time window should also be valuable outside of this applica- 

ion. Using a real case with the aforementioned characteristics, the 

omparisons of robust optimisation, stochastic programming and 

djustable robust optimisation show that the adjustable decision 

pproaches have similar results to those of stochastic programming 

n which the conditional value at risk is optimised, but signifi- 

antly shorter computation times. From the experimental results, 

e observe that despite each approach making different procure- 

ent decisions, shortages are observed only rarely for the majority 

f approaches, suggesting the solutions produced are robust with 

espect to this prioritised objective. The consequence of prioritis- 

ng the minimisation of shortage is that waste is unavoidable, but 

his can be further optimised as a second objective using the lexi- 

ographical approach adopted here. 

Further analysis of the results provides managerial insights into 

he procurement process when a specific method/formulation is 

sed. These include the possibility of predicting when and how 

igh the peaks of waste, budget spending, and inventory storage 

ill be. We also discussed the role of the safety stock in annual 

lanning with our results suggesting that better outcomes can be 

btained by optimising over 13 months with no safety stock than 

y insisting on a final safety stock. 

In summary, we have considered the procurement of emer- 

ency food items for disaster management as being isolated from 

he process of delivering the items to the refugees, explicitly as- 

uming that all deliveries can be fulfilled successfully. We have 
13 
emonstrated that there are several optimisation techniques that 

re able to generate robust solutions for the procurement of emer- 

ency food for natural disasters. The solutions they produce have 

ifferent characteristics but whichever approach is used, it is still 

mportant to conduct simulation experiments in order to under- 

tand the likely impacts of the approach on the logistics of the 

ood distribution system, as well as budget spending, storage ca- 

acities and potential waste. 

Future work should consider the impacts of integrating the pro- 

urement and delivery processes in order to better understand the 

mportance of making the right decisions both temporally and spa- 

ially, i.e. when to procure the items and where and how to dis- 

ribute the items into the warehouses so as to fulfil the demands 

fficiently. The data used our case study are sufficiently detailed 

o allow for that extension. Regarding the context of disaster man- 

gement in Indonesia, we have also isolated the procurement pro- 

ess for emergency rice from rice bought for market intervention 

nd poverty reduction. It could be interesting in future to consider 

hese three demands together in order to produce better informed 

ecisions on the procurement. The consequence of the shortage 

inimisation for perishable items is waste. One alternative to re- 

uce the amount of waste is by combining pre- and post-disaster 

trategies. Hence, future work is needed to investigate the right 

alance between pre-disaster and post-disaster strategies. 

In terms of methodology, we have noticed that some of the ap- 

roaches applied here may not perform well when the number of 

istorical scenarios is too small. This is not an issue for our case 

tudy, because disaster events occur often in West Java thus we 

ave sufficient data to simulate additional scenarios. Nevertheless, 

or the sake of making the methods more widely applicable, future 

ork should look into improving the robustness of the approach 

hen the available data are too scarce for simulation; for example 

y using distributionally robust optimisation ( Duque et al., 2022; 

sfahani & Kuhn, 2018 ). It could also be interesting to address our 

roblem from the perspective of multi-stage stochastic program- 

ing because the procurement decisions are made over multiple 

ime periods. The challenges with such an approach include how to 

ddress the continuous state space, and additionally how to justify 

he Markov property, which is often assumed in such formulations 

 Pereira & Pinto, 1991; Siddig & Song, 2021; 2022 ). 
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ppendix A. Redundancy in the objectives of the deterministic 

odel 

We have the following remark regarding the objectives. There 

s some redundancy in the objectives (1) . Specifically it suffices to 

https://github.com/stephanong/relief-ops/
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onsider: 

in 

( ∑ 

i ∈ [ n +1] 

s i , 
∑ 

i ∈ [ n ] 
y i p(i ) 

) 

(35) 

hich is covered in Proposition 2 . However, we still keep the ob- 

ectives (1) in our experiments because the computational time to 

olve the linear programs are fast enough to not notice any signif- 

cant difference. Furthermore, in practice, there is a political pres- 

ure to reduce food waste. Hence, we need to have a model that 

xplicitly considers waste minimisation. Last but not least, the ex- 

ired rice can still be used for other purposes that have some mon- 

tary values such processing as rice flour or selling it on the open 

arket at a lower price. 

roposition 2. A solution of (2) –(9) which is optimal for objectives 

35) is also optimal for objectives (1) . 

roof. By contradiction, assume after optimising (35) , we can still 

inimise the waste in (1) by some additional quantity δ. This im- 

lies that at some point in time we have spent the budget on δ
hat was subsequently wasted. This would mean that the budget 

as not optimal and this contradicts our assumption. �

ppendix B. Extensions of the deterministic model 

The following extensions of BudgetAlloc-Det are possible. 

irstly, we do not model the warehouse capacity because this was 

ot considered a constraint in our problem situation, as we discuss 

n Section 4.1 . Nevertheless, adding a limit V on the storage quan- 

ity would be relatively straightforward using the following con- 

traint: 

−1 
 

j=1 

x i j ≤ V. ∀ i ∈ n (36) 

econdly, we assume that the lead time for delivery of rice is zero, 

ecause only locally produced rice is considered. Java Island is the 

enter of rice production in Indonesia and consequently this is a 

easonable assumption for the use case we discuss later. A more 

eneral model can be constructed where rice of a different pro- 

le is also stored, where the other rice has a non-zero lead time 

, a different age limit τ ′ and different prices p ′ (i ) . In this case it

uffices to add a new set of variables (y ′ 
i 
, x ′ 

i j 
, c ′ 

i j 
) , additional con-

traints similar to (2) and to adapt (3) and (5) as follows: 

 { j> 1 } x ′ (i −1)( j−1) + 1 { j=1 } y ′ i −δ = c ′ i ( j−1) + x i j ∀ i ∈ [ n ] , ∀ j ∈ [ τ ] 

(37) 

 i + 

τ−1 ∑ 

j=0 

c i j + 

τ ′ −1 ∑ 

j=0 

c ′ i j = d(i ) ∀ i ∈ [ n ] (38)

∑ 

 ∈ [ n ] 
y i p(i ) + 

∑ 

i ∈ [ n ] 
y ′ i p ′ (i ) ≤ B (39) 

his could be useful where rice is frequently imported for disaster 

elief. 

eferences 

ghajani, M., & Torabi, S. A. (2020). A mixed procurement model for humanitar- 
ian relief chains. Journal of Humanitarian Logistics and Supply Chain Management, 

10 (1), 45–74. https://doi.org/10.1108/JHLSCM-10-2018-0067 . 
lem, D., Oliveira, F., & Peinado, M. C. R. (2020). A practical assessment of risk-

averse approaches in production lot-sizing problems. International Journal of 

Production Research, 58 (9), 2581–2603. https://doi.org/10.1080/00207543.2019. 
1620364 . 

alçik, B., & Ak, D. (2014). Supplier selection for framework agreements in human- 
itarian relief. Production and Operations Management, 23 (6), 1028–1041. https: 

//doi.org/10.1111/poms.12098 . 
14 
en-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization . Princeton 
University Press . 

ertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52 (1), 
35–53. https://doi.org/10.1287/opre.1030.0065 . 

ertsimas, D., & Thiele, A. (2006a). Robust and data-driven optimization: Modern 
decision making under uncertainty. Tutorials in Operations Research , 95–122. 

https://doi.org/10.1287/educ.1063.0022 . 
ertsimas, D., & Thiele, A. (2006b). A robust optimization approach to inventory 

theory. Operations Research, 54 (1), 150–168. https://doi.org/10.1287/opre.1050. 

0238 . 
irge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming . Springer . 

harwand, M., & Gitizadeh, M. (2020). Risk-based procurement strategy for electric- 
ity retailers: Different scenario-based methods. IEEE Transactions on Engineering 

Management, 67 (1), 141–151. https://doi.org/10.1109/TEM.2018.2864132 . 
oniglio, S., Koster, A. M. C. A., & Spiekermann, N. (2018). Lot sizing with storage

losses under demand uncertainty. Journal of Combinatorial Optimization, 36 (3), 

763–788. https://doi.org/10.1007/s10878- 017- 0147- 8 . 
uque, D., Mehrotra, S., & Morton, D. P. (2022). Distributionally robust two-stage 

stochastic programming. SIAM Journal of Optimization, 32 (3), 1499–1522. https: 
//doi.org/10.1137/20m1370227 . 

rtem, M., & Buyurgan, N. (2011). An auction-based framework for resource alloca- 
tion in disaster relief. Journal of Humanitarian Logistics and Supply Chain Man- 

agement, 1 , 170–188. https://doi.org/10.1108/20426741111158412 . 

rtem, M. A., Buyurgan, N., & Pohl, E. A. (2012). Using announcement options in 
the bid construction phase for disaster relief procurement. Socio-Economic Plan- 

ning Sciences, 46 (4), 306–314. https://doi.org/10.1016/j.seps.2012.03.004 . Special 
Issue: Disaster Planning and Logistics: Part 2 

rtem, M. A., Buyurgan, N., & Rossetti, M. D. (2010). Multiple-buyer procurement 
auctions framework for humanitarian supply chain management. International 

Journal of Physical Distribution & Logistics Management, 40 (3), 202–227. https: 

//doi.org/10.1108/0960 0 031011035092 . 
sfahani, P. M., & Kuhn, D. (2018). Data-driven distributionally robust optimization 

using the wasserstein metric: Performance guarantees and tractable reformu- 
lations. Mathematical Programming, 171 (1–2), 115–166. https://doi.org/10.1007/ 

s10107- 017- 1172- 1 . 
sposito Amideo, A., Scaparra, M., & Kotiadis, K. (2019). Optimising shelter location 

and evacuation routing operations: The critical issues. European Journal of Oper- 

ational Research, 279 (2), 279–295. https://doi.org/10.1016/j.ejor.2018.12.009 . 
alasca, M., & Zobel, C. (2011). A two-stage procurement model for humanitarian 

relief supply chains. Journal of Humanitarian Logistics and Supply Chain Manage- 
ment, 1 , 151–169. https://doi.org/10.1108/20426741111188329 . 

arahani, R. Z., Lotfi, M., Baghaian, A., Ruiz, R., & Rezapour, S. (2020). Mass casu-
alty management in disaster scene: A systematic review of or&ms research in 

humanitarian operations. European Journal of Operational Research, 287 (3), 787–

819. https://doi.org/10.1016/j.ejor.2020.03.005 . 
hiani, G., Laporte, G., & Musmanno, R. (2004). Introduction to logistics systems plan- 

ning and control . Wiley . 
u, S., & Dong, Z. S. (2019). Supplier selection and pre-positioning strategy in hu- 

manitarian relief. Omega, 83 , 287–298 . 
u, S.-L., Han, C.-F., & Meng, L.-P. (2017). Stochastic optimization for joint decision 

making of inventory and procurement in humanitarian relief. Computers & In- 
dustrial Engineering, 111 , 39–49. https://doi.org/10.1016/j.cie.2017.06.029 . 

ovacs, G., & Moshtari, M. (2019). A roadmap for higher research quality in humani- 

tarian operations: A methodological perspective. European Journal of Operational 
Research, 276 (2), 395–408. https://doi.org/10.1016/j.ejor.2018.07.052 . 

iang, L., Wang, X., & Gao, J. (2012). An option contract pricing model of relief ma-
terial supply chain. Omega, 40 (5), 594–600. https://doi.org/10.1016/j.omega.2011. 

11.004 . 
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