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A B S T R A C T   

Automated Vehicle (AV) systems are expected to reduce the frequency and severity of on-road collisions. Unless 
drivers have an appropriate mental model for the capabilities and limitations of the automation, they may not 
activate the automation safely or appropriately on the road, potentially leading to a collision. As such, a training 
package (L4DTP) was developed to improve drivers’ decisions and behaviour when activating an AV system and 
this was evaluated in a between-subjects simulator experiment. Drivers received no training (NT, control group), 
read an owner’s manual (OM, experimental group 1: current training provision) or underwent the L4DTP 
(experimental group 2: new training programme). All drivers then experienced five scenarios in a driving 
simulator where they encountered road conditions which were safe and unsafe for activation. Their activation 
decisions, behaviour, trust in automation, workload and mental models were measured. This experiment found 
that drivers who read the OM or underwent the L4DTP made better activation decisions and showed better 
activation behaviour compared to drivers who received NT. Additionally, drivers who underwent the L4DTP 
found it easier, less demanding and felt under less time pressure when making their decisions, had to expend less 
effort to reach the same activation performance and had more appropriate and comprehensive mental models for 
when the automation can be activated compared to drivers who read the OM. This L4DTP can make roads safer 
by reducing collisions linked to poor activation decisions and behaviour. Therefore, there is the potential for a 
real benefit for society if this training programme is adopted into mandatory AV driver training.   

1. Introduction 

Over recent years, governments and vehicle manufacturers have 
invested considerable resources into the research and development of 
Automated Vehicle (AV) systems. They have the potential to improve 
sustainability by reducing the pollution and greenhouse gas emissions 
that are produced by vehicles (Greenblatt and Shaheen, 2015; Bagloee 
et al., 2016), improve traffic flow (Choi and Ji, 2015), improve mobility 
and convenience for those who are currently unable to drive (e.g. 
elderly, disabled: Choi and Ji, 2015) and improve road safety by 
reducing the frequency and severity of on-road collisions (Schoettle and 
Sivak, 2014). 

The SAE (2018) define six levels of driving automation. These are 
summaried in Table 1. 

Levels 1 and 2 AV systems are available to purchase on the vehicle 

market (e.g. Tesla’s autopilot suite: National Transportation Safety 
Board, 2020), some vehicle manufactures are skipping the development 
of Level 3 AV systems because they are considered unsafe (e.g. Ford 
Motor Company, 2016; Volvo Cars, 2017), Level 5 AV systems are a long 
way off and some vehicle manufacturers planned to introduce Level 4 
AV systems for personal use to the vehicle market by the mid-2020s (e.g. 
2021 for Volvo and Ford (Ford Motor Company, 2016; Volvo Cars, 
2017), 2024 for Daimler (2019) and 2025 for Honda (2017)). There is a 
timely need by manufacturers to focus on AV systems which are 
designed for personal use and possess some Level 4 capabilities, there-
fore this article will focus on this type of AV system (i.e. not purely 
passenger AV systems such as autonomous taxis or shuttles). More 
specifically, this article will focus on an AV system which can perform all 
driving tasks in highly reliable road conditions and can reach minimal 
risk conditions (i.e. has some Level 4 capabilities, see Table 1). However, 
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in moderately reliable road conditions, the AV system is not designed to 
perform as well. The AV system has enhanced Level 2 capabilities, so 
some monitoring of the road environment and the vehicle will be 
required (Merriman et al., 2023). This type of AV system was chosen in 
this article because this approach is being taken by some vehicle man-
ufactuers (e.g. Audi, 2017). For clarity, the rest of this article will refer to 
this AV system as a Level 4 AV system. 

Considerable research has investigated the impact of AV systems on 
driver behaviour. This has revealed that despite all the potential benefits 
(mentioned above), there are also many challenges with AV systems. 
One such challenge is ensuring drivers have an appropriate mental 
model for the capabilities and limitations of the automation (Merriman 
et al., 2021a). A mental model is a person’s knowledge and under-
standing of the physical world, the behaviour of a system or the auto-
mation (Stanton and Young, 2005; Saffarian et al., 2012). Ensuring 
drivers have an appropriate mental model is important because research 
suggests that this can influence their trust in automation and behaviour 
when operating the automation. Although takeovers are not compulsory 
for the AV system that is being considered in this article (see above), 
most of the research has looked at the links between mental models and 
takeover behaviours. As such, research on takeovers is presented here. 
Research suggests that if drivers believe that the automation is more 
capable than it actually is, they may over-trust and over-rely on the 
automation, activate the automation in inappropriate road conditions 
(Lee and See, 2004; Korber et al., 2018) and not take over control of the 
vehicle when needed (Barg-Walkow and Rogers, 2016; Cahour and 
Forzy, 2009). However, if drivers believe that the automation is less 
capable than it actually is, they may distrust and under-rely on the 
automation and not use it when it is safe and appropriate to use (Lee and 
See, 2004; Koustanaï et al., 2012; Korber et al., 2018; Boelhouwer, et al., 
2019). Therefore, drivers need to have an appropriate mental model so 
that they develop more appropriate trust levels and show more appro-
priate behaviours when operating the automation (e.g. better takeover 
behaviours: Hergeth et al., 2017; Korber et al., 2018; Sportillo et al., 
2019). 

Training is one intervention that has been used to develop and 
improve trainees’ mental models (e.g. Hays et al., 1992; Marks et al., 
2000). In the automation domain, some training programmes have been 
developed to improve drivers’ mental models for AV systems (e.g. 
Beggiato and Krems, 2013; Boelhouwer et al., 2019; Ebnali et al., 2019; 
Manser et al., 2019; Sportillo et al., 2019; Krampell et al., 2020). 
However, these studies focussed on Levels 2 and 3 AV systems and only 
evaluated the effectiveness of the training programmes by measuring 
drivers’ takeover knowledge, decisions and/or behaviour. This article 
focusses on an AV system which possesses some Level 4 capabilities (see 
above) and the links between drivers’ mental models and their activa-
tion behaviour for the following reasons. Firstly, the AV system defined 
in this article is capable of reaching a minimal risk condition (see 
above), which means that drivers are not required to take over control of 
the vehicle. However, they are still in full control of activating the AV 
system, so ensuring drivers activate the automation safely on the road 
should have a greater focus in training programmes for this type of AV 
system compared to the takeover task. Secondly, although the SAE 
(2018) guidance suggests that systems with Level 4 capabilities will not 
operate unless all the required conditions are met (i.e. unless the road 
conditions are safe) and will reach minimal risk conditions when the 
limitations of the system are reached, the technology may not meet these 
minimal requirements, in a similar way to current Level 2 AV systems. 
For example, current Level 2 AV systems do not limit the use of the AV 
system to the conditions for which they were designed (National 
Transportation Safety Board, 2020). As the technology is new and road 
and weather conditions are highly variable and can change unpredict-
ably, it is very unlikely that all the scenarios where the vehicle could be 
used, and that are needed to meet these requirements, will be tested. 
Therefore there is a risk that Level 4 AV systems are not always going to 
be able to detect safe and unsafe road conditions, which means that they 
may not reach minimal risk conditions or stop drivers from activating 
the automation in all unsafe road conditions. Consequently, it is 
important for drivers to have an appropriate mental model for the ca-
pabilities and limitations of Level 4 AV systems, as a backup for the 
activation and takeover tasks in case the automation does not respond 
appropriately. Finally, this AV system has Level 4 capabilities in some 
road conditions and enhanced Level 2 capabilities in other road condi-
tions, therefore it is important for drivers to have an appropriate mental 
model for the capabilities and limitations of this AV system to help them 
decide whether the road conditions are safe or not and also whether 
monitoring is required or not. 

Merriman, et al. (Under Review) took an initial step towards this 
need by developing an online video-based training programme to 
improve drivers’ mental models for activating this type of AV system 
and evaluating its effectiveness against the current training method for 
AV systems (an owner’s manual: OM) in a matched-pairs experiment. 
Both training programmes provided the same content to drivers; they 
described the road conditions which were safe and unsafe for activation 
and explained how the reliability of the automation would affect their 
activation tasks (monitoring for moderately reliable road conditions). 
However the online video-based training programme combined 
video-clips, questions and feedback to deliver this training to drivers 
whereas the OM listed the same information in a document for drivers to 
read. The evaluation found that the online training programme in 
combination with an OM led to a greater improvement in drivers’ 
mental models for when the automation can be activated compared to 
an OM in isolation. However, the evaluation did not investigate whether 
drivers’ improved mental models translated to their actual activation 
decisions and behaviour. In both the online training programme and 
evaluation, drivers watched video-clips and had an unlimited time to 
determine the reliability of the automation and decide whether it was 
safe and appropriate to activate the automation. However in reality, 
drivers have to retrieve the relevant information and make these de-
cisions in quick time, in a dynamic road environment whilst manually 
controlling their vehicle on the road. On the road, there is a greater 

Table 1 
The SAE’s six levels of driving automation (SAE, 2018).  

SAE 
Level 

Name Driver’s Role(s) Automation’s Role(s) 

0 No 
Automation 

Performs all driving tasks None 

1 Driver 
Assistance 

Performs all driving tasks Provides support for 
steering or braking and 
acceleration in certain road 
conditions 

2 Partial 
Automation 

Monitors the vehicle and 
road environment and 
takes over control of the 
vehicle when required (e. 
g. system limitations or 
failures) or desired 

Performs the steering, 
braking and acceleration of 
the vehicle in certain road 
conditions 

3 Conditional 
Automation 

No longer required to 
perform the monitoring 
task, but must take over 
control of the vehicle 
when required or desired 

Performs all driving tasks 
(including monitoring) in 
certain road conditions 

4 High 
Automation 

No longer required to 
perform takeovers but 
can if desired 

Performs all driving tasks 
(including monitoring) in 
certain road conditions and 
can transition to a minimal 
risk condition (e.g. safe 
stop, enter hard shoulder) 
during system failures or 
when limitations are 
reached 

5 Full 
Automation 

None Performs all driving tasks 
in all driver-manageable 
road and environmental 
conditions  
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consequence if mistakes/errors are made. Drivers are under a greater 
time pressure and workload from the additional task of manual driving, 
and as time pressure and a high workload can have a negative effect on 
decision-making (Hwang, 1994; Zakay and Wooler, 1984), the training 
programme may be less effective in improving drivers’ activation de-
cisions and behaviour on the road. As such, simulator and on-road 
evaluations are needed to see whether this online training programme 
improves drivers’ activation decisions and behaviour on the road. 

Additionally, the online training programme only targeted one of the 
four tasks that are required to activate this type of AV system safely on 
the road. A recent training needs analysis conducted by Merriman et al. 
(2023) shows that drivers need to follow a four-step procedure to acti-
vate this type of AV system safely on the road (Cruise, 2018; DVSA, 
2014; IAM RoadSmart, 2016; SAE, 2018; Stanton et al., 2021; Tesla, 
2019). They need to:  

1. Recognise the alerts,  
2. Decide whether to activate the automation,  
3. Position their vehicle appropriately and  
4. Activate the automation. 

The improved mental models will only help drivers decide whether 
to activate the automation or not (step 2). Therefore, the online training 
programme may need to be supplemented with further procedural 
training to teach drivers all tasks required to activate this AV system 
safely on the road. 

One method that has been successfully used in the wider training 
literature to help trainees learn, remember and perform sequential 
procedural tasks and tasks/information where order is important are 
acronyms (Ehrman et al., 2003; Evans, 2007; Gibson, 2009; Kovar and 
Van Pelt, 1991). For example, in the driving domain, IAM RoadSmart 
use the acronym IPSGA to help drivers remember the tasks that need to 
be performed when approaching and dealing with hazards on the road 
(IAM RoadSmart, 2016). Similarly in the aviation domain, acronyms 
such as DODAR and DECIDE have been used to help pilots with their 
decision-making. The use of acronyms for AV systems is not new; re-
searchers have used acronyms to help drivers remember handover and 
takeover procedures (e.g. HazLanFuSea: Stanton, et al., 2021; CHAT: 
Shaw et al., 2020). 

An acronym is a mnemonic technique which uses the first letter from 
a list of target words (the words/information that needs to be remem-
bered) to create a more memorable word (Evans, 2007; Gibson, 2009; 
McCabe et al., 2013; Putnam, 2015). This word can be real (e.g. FAST for 
the treatment of strokes) or made-up (e.g. IPSGA), however it must be 
pronounceable (Higbee, 2001; Radović and Manzey, 2019). Acronyms 
use guided principals to aid trainees’ learning, understanding and 
memory. They help to chunk (group) information together which re-
duces the number of items that need to be remembered. They enhance 
encoding, retention and retrieval because the target information is 
broken down (organised) into something more meaningful, familiar, 
memorable and easier to remember (Higbee, 2001; Lewis et al., 2018; 
McCabe et al., 2013; Putnam, 2015). The whole word and each letter 
acts as a retrieval cue for the target information, making the information 
easier and quicker to learn, understand, remember and retrieve from 
memory (Higbee, 2001; Putnam, 2015; Lewis et al., 2018). Acronyms 
are particularly effective in helping trainees learn, remember and 
perform sequential procedural tasks as each letter represents the 
different task steps/actions that need to be performed and the order of 
the letters helps trainees remember the correct order of those steps 
(Radović and Manzey, 2019). As such, acronyms help trainees recall the 
desired actions in a timely manner. 

The task of activating the AV system can be categorised as a 
sequential procedural task as drivers have to perform each sub-task in a 
set order (from 1 to 4, see above). As such, an acronym was created to 
help drivers learn and remember the four main tasks that are required to 
activate the AV system safely on the road. As the online video-based 

training programme from Merriman et al. (Under Review) helps 
drivers perform one of these tasks (decide), the online training pro-
gramme was then embedded into (framed by) the acronym to create a 
training package (L4DTP), designed to help drivers activate the AV 
system safely on the road. To overcome the limitations with the previous 
evaluation (Merriman et al., Under Review), this article evaluates the 
effectiveness of this L4DTP in a more realistic setting by measuring 
drivers’ activation decisions and behaviour in a driving simulator. This 
article will describe the development and evaluation of this new L4DTP. 

1.1. Aim and design 

The aim of this study was to evaluate the effectiveness of the new 
L4DTP when compared to no training (NT) and an OM. To achieve this, a 
between-subjects experiment was conducted. Drivers received NT, read 
an OM or underwent the L4DTP (online video-based training and 
acronym). All drivers then experienced five scenarios in a driving 
simulator where they encountered road conditions which were safe and 
unsafe for activation. Their activation decisions, behaviour, trust in 
automation, workload and mental models were measured. The 
following hypotheses were made: 

H1: The type of training that drivers receive will affect their decisions 
about whether it is safe and appropriate to activate the automation. 
H2: The type of training that drivers receive will affect their workload 
when making their decisions. 
H3: The type of training that drivers receive will affect the appro-
priateness of their trust in automation. 
H4: The type of training that drivers receive will affect the appro-
priateness and comprehensiveness of their mental models for when 
the automation can be activated. 
H10: The type of training that drivers receive will not affect their 
decisions about whether it is safe and appropriate to activate the 
automation. 
H20: The type of training that drivers receive will not affect their 
workload when making their decisions. 
H30: The type of training that drivers receive will not affect the 
appropriateness of their trust in automation. 
H40: The type of training that drivers receive will not affect the 
appropriateness and comprehensiveness of their mental models for 
when the automation can be activated. 

2. Method 

2.1. Participants 

Forty-five drivers between the ages of 18 and 66 who held a valid and 
full UK driving licence were randomly allocated to one of the three 
training conditions (each group consisted of 15 drivers). Key de-
mographics for each training group are displayed in Table 2. Chi-square 
tests showed that the number of males and females (p = .714) and total 
number of advanced drivers (p = .146) did not significantly differ be-
tween the three training groups. Independent t-tests showed that there 
were no significant differences between the three training groups in 
terms of mean age (p = .503), years of licence (p = .125), annual mileage 
(p = .877), internality score (p = .536), externality score (p = .122) and 
trust in automation (p = .573). Ethical approval was gained by the 
University’s Faculty Ethics Committee (Ergo: 70097). Drivers received 
£20 as compensation for taking part. 

2.2. Materials 

2.2.1. Level 4 Automated Vehicle Driver Training Package 
The L4DTP consisted of two components: online video-based training 

and an acronym. These are explained below. 
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2.2.1.1. Online video-based training. This was the online video-based 
training programme that was developed and evaluated in Merriman 
et al. (Under Review). In summary, drivers first read information about 
the SAE Levels of Driving Automation and the road conditions where the 
AV system can and cannot function reliably. This information was based 
upon the Operational Design Domain (ODD) that was defined for the AV 
system in Merriman et al. (2023), after reviewing the SAE’s (2018) 
report on the definitions and taxonomy of driving automation, ODDs for 
current AV systems (e.g. National Transportation Safety Board, 2020; 
Tesla, 2019; Toyota, 2019) and information from vehicle manufacturers 
about the development of their AV systems (e.g. Audi, 2017; Skoda, 
2018). The ODD is summarised in Fig. 1. Drivers were told that it was 
safe to activate the automation in the highly and moderately reliable 
road conditions, however it was not safe to activate the automation in 
the highly unreliable road conditions. Drivers were also told that some 
monitoring would be required if the automation was only moderately 
reliable. 

Then they were shown 20 video-clips of everyday driving scenes. 
Seventeen video-clips displayed road conditions where the AV system 
cannot function reliably (i.e. highly unreliable road conditions in Fig. 1), 
and three video-clips showed road conditions where the AV system can 
function reliably (i.e. highly and moderately reliable road conditions in 
Fig. 1). After viewing each video-clip drivers were asked three questions 
(left-hand side of Fig. 2). Once they had submitted their responses, they 
were given written feedback of the correct answer (e.g. right-hand side 
of Fig. 2). See Merriman et al. (Under Review) for more details. 

2.2.1.2. RUDPA. Once drivers had completed the online video-based 
training, they were introduced to the acronym and were told that they 
must follow this procedure/sequence of steps to activate the automation 
safely on the road. This section describes the development of the 
acronym and the materials given to drivers. 

2.2.1.2.1. Acronym development. The procedure detailed in Ullius 
(1997) and Lewis et al. (2018) was followed. The target information for 
the acronym was first identified. The training needs analysis conducted 
by Merriman et al. (2023) decomposed each automation-specific task 

(Activate the Automation, Human-Directed Control Transfer, 
Vehicle-Directed Control Transfer and Emergency Control Transfer) into 
four discrete sub-tasks/steps:  

1) Drivers need to understand the state of the automation (e.g. listen to 
and read the alerts and understand that the automation can be 
activated, look at the road environment and understand that the 
limitations of the automation have been reached).  

2) Drivers need to make a decision (e.g. decide whether to activate the 
automation or continue manual driving, decide whether to take over 
control of the vehicle or let the vehicle reach a minimal risk 
condition).  

3) Drivers need to prepare for the chosen action (e.g. move into the left- 
hand lane so they can activate the automation, build a situation 
awareness of the road environment before taking over control of the 
vehicle). 

4) Drivers need to perform the chosen action (e.g. activate the auto-
mation, deactivate the automation and take over control of the 
vehicle). 

As these four steps underlie all the automation-specific tasks, the four 
steps were deemed as essential information for drivers to learn and 
remember and therefore worthy of an acronym. Although this training 
programme is focussing on the task of activating the AV system, future 
training programmes will be able to use this acronym to help drivers 
learn and remember the four main steps that are required to perform 
Vehicle- and Human-Directed Control Transfers (takeovers). As such, 
drivers will only need to learn and remember one acronym to operate 
this AV system safely on the road. 

Next, key terms for each step were identified. Alternative terms and 
synonyms were identified to provide a larger choice of letters to use. 
Finally, the first letter(s) from each term were taken to create an 
acronym. Different letter and word combinations were tried until the 
chosen acronym was selected. 

The acronym that was chosen for this training programme was 
RUDPA (Recognise, Understand, Decide, Prepare and Act) as drivers 

Table 2 
Key demographics in each training condition.  

Demographic NT OM L4DTP  

N  N  N  

Gender Males 9  9  9  
Females 6  6  5  
Non-Binary 0  0  1  

Advanced Drivers Males 0  0  3  
Females 0  1  0  
Non-Binary 0  0  0  
Total 0  1  3   

M SD M SD M SD 

Age 29.80 12.89 35.87 16.01 31.80 13.93 
Years of Licence 8.00 9.29 18.50 16.77 14.32 14.04 
Annual Mileage 6114.29 4163.74 6750.00 3333.71 6750.00 3387.81 
Internality Score 34.60 10.90 30.50 9.23 33.20 9.56 
Externality Score 34.40 8.40 31.50 8.01 28.13 8.07 
Trust in Automation 113.07 9.77 117.57 16.56 116.73 9.40  

Fig. 1. The highly reliable, moderately reliable (safe) and unreliable (unsafe) road conditions for the AV system.  
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have to perform all five steps/tasks (letters) in sequence to successfully 
and safely activate the automation. As this acronym can also be used to 
perform Human- and Vehicle-Directed Control Transfers, drivers will 
have a clear and standardised operating procedure to follow to operate 
this AV system safely on the road (Casner and Hutchins, 2019). In the 
aviation domain, standard operating procedures are used to ensure pi-
lots use autopilot systems appropriately and perform appropriate be-
haviours at the right time (Degani and Wiener, 1997; Norman, 1988). 
Therefore, as drivers will be able to use this acronym to perform all tasks 
required to safely operate the AV system, frequent use will make this 
desired procedure (and associated tasks and behaviours) become 
automatic. 

Additionally, this acronym satisfies the requirements for a successful 
and effective acronym: high discriminability (each letter-word pair 
should have a unique meaning) and associability (there should be an 
association/direct link between the acronym and the target information) 
(Bellezza, 1981; Kovar and Van Pelt, 1991; Ullius, 1997; Higbee, 2001). 
Each letter-word pair relates to a different step/task that needs to be 
performed and each word directly relates to the stage that it is repre-
senting (e.g. recognise for the recognising stage). This makes the words 
and associated behaviours/tasks easy to understand and remember. 

2.2.1.2.2. Acronym materials. Once drivers had completed the on-
line video-based training, they were presented with the RUDPA 
acronym. The task of activating the AV system was framed by the 
RUDPA acronym to demonstrate how this acronym should be used to 
activate the automation safely on the road. To do this, the sub-tasks and 
operations for the task of activating the automation from the training 
needs analysis conducted by Merriman et al. (2023) were used to 
decompose each RUDPA stage into separate tasks and behaviours and 
the training programme explained the roles, responsibilities, tasks and 
behaviours that drivers needed to perform at each stage. For example, 
for the stages “R” and “U”, drivers were told to listen to and read the 
auditory and visual alerts as these will tell them that the automation can 
be activated (Fig. 3). 

2.2.2. Owner’s Manual 
The nine-page OM that was developed in Merriman et al. (Under 

Review) was used in this evaluation. The OM described the systems that 

were present, the sensors and cameras used, the capabilities and limi-
tations of each system, the road conditions which effect the reliability of 
the automation and when takeover requests may occur, the automation 
alerts and the activation controls (e.g. Fig. 4). 

2.2.3. Training programme comparison 
Both training programmes (L4DTP and OM) provided drivers with 

the same information (content), however the L4DTP positioned/framed 
this information in a step-by-step procedure (RUDPA) and used active 
(online video-based training) and passive (written information) methods 
to train drivers, whereas the OM did not use framing and only used 
passive training methods to train drivers. For example, for the task step 
“Recognise the automation is available alert”, the OM displayed images 
of the visual alerts, described the auditory alerts and explained in text 

Fig. 2. An example video-clip, questions (left) and written feedback (right) in the online video-based training component of the L4DTP (see Merriman et al. (Under 
Review) for more details). SAE (2018) suggests that Level 4 AV systems may be able to detect and/or predict some unsafe road conditions. However to ensure drivers 
developed an accurate mental model for the AV system, drivers were required to make all the decisions. 

Fig. 3. Each RUDPA stage was decomposed into the tasks and behaviours that 
drivers needed to perform at that stage. 
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when they will occur. The L4DTP provided drivers with the same in-
formation, but it was framed under R and U in RUDPA (see Fig. 3). For 
the task step “Determine whether it is safe and appropriate to activate 
the automation”, the OM displayed this information as a list of warnings 
(e.g. Fig. 4) whereas the L4DTP provided this information in online 
video-based training (e.g. Fig. 2) and framed it under D in RUDPA. 

2.2.4. Questionnaires 
Drivers completed seven questionnaires during this study. The first 

was a demographics questionnaire which asked about the driver’s age, 
gender, annual mileage, years of licence, advanced driving qualifica-
tions, familiarity with Advanced Driver Assistance Systems and current 
training for AVs. The second was Montag and Comrey’s (1987) 30-item 
Driving Internality and Driving Externality questionnaire. Drivers rated 
the extent to which they agreed with the 30 statements on a six-point 
Likert scale, ranging from 0-Disagree very much to 5-Agree very 
much. This questionnaire measured drivers’ locus of control and pro-
vided one score for internality and one score for externality. The third 
questionnaire was the Total Trust in Automation questionnaire (Gold 
et al., 2015). This is a 35-item questionnaire which measured drivers’ 
trust according to six subscales: Discharge of the driver due to the 
automation, Safety gains, Safety hazards, Trust in automation, Perceived 
control of conduct and Intention to use. Drivers rated the extent to which 
they agreed with the statements on a five-point Likert scale (from 
1-Strongly disagree to 5-Strongly agree). These three questionnaires 
were completed online at the start of the study. The fourth questionnaire 
comprised the “Yes/No” and “Why” questions from the online training 
component of the L4DTP (see left-hand side of Fig. 2). All drivers 
completed these questions five times after they experienced each 
simulator scenario, to confirm their decision about whether they 
thought it was safe and appropriate to activate the automation (or not) 
and to gain an understanding of their reasoning for their decision. The 
drivers’ reasoning was subsequently used to measure their mental 
models (see section 2.4). At the end of the study, drivers completed three 
questionnaires. The first was the Total Trust in Automation question-
naire (Gold et al., 2015). The second was Hart and Staveland’s (1988) 
NASA-TLX which measured drivers’ workload according to six sub-
scales: Mental Demand, Physical Demand, Temporal Demand, Perfor-
mance, Effort and Frustration. Drivers were required to complete ratings 
on these dimensions from very high to very low (or from perfect to 
failure for performance) on 21-point scales. The final questionnaire 
asked drivers about their experiences in the simulator task and the 
training that they would find helpful to understand and remember the 
different tasks involved in activating the automation (open response). 

2.2.5. Simulator tasks 
To evaluate the effectiveness of the L4DTP, one terrain and five 

scenarios were created in a driving simulator. These are explained 

below. 

2.2.5.1. Simulator description. The fixed-based driving simulator at the 
University of Southampton was used (Fig. 5). The simulator comprised a 
static Land Rover Discovery Sport’s vehicle and three over-head forward 
projectors which provided a 135◦ field of view. An additional over-head 
rear projector provided a rear-view image of the driving scene, which 
could be viewed through the rear-view mirror. The door mirrors and 
dashboard were simulated using mini-LCD monitors. All primary 
(steering, throttle, brake) and secondary vehicle controls (buttons and 
switches) were fully functional. Sound was sent from the simulator 
software to the vehicle’s audio system. All scenarios were created using 
AVSimulation’s SCANeR software (version 1.8). 

2.2.5.2. Chosen scenarios. The ODD presented in Fig. 1 defines 
numerous road conditions where it is unsafe to activate the AV system (i. 
e. the highly unreliable road conditions in Fig. 1). As such, many 
different scenarios could be created to evaluate the effectiveness of the 
L4DTP. To reduce the number of potential scenarios, attention was 
directed to the scenarios which drivers found particularly difficult in the 
previous evaluation (Merriman et al., Under Review). This was defined 
as the scenarios where the majority of drivers made mistakes before 
undergoing training (at test one), and/or the scenarios which showed 
mixed results after drivers underwent training (test two, i.e. the sce-
narios where some drivers still believed that it was safe to activate the 
automation after undergoing training). This resulted in five scenarios: 
poor lane markings, sharp bends, potholes, glare and debris/obstacles 
on the roadway. Between 72.9% and 96.9% of drivers incorrectly 
believed that it was safe to activate the automation in these scenarios 
before training, and between 35.4% and 46.9% continued to make these 
mistakes after training. However, issues with the simulator software 
meant that the poor lane markings and sharp bends scenarios could not 
be created. The remaining three scenarios were developed. Additionally 
two scenarios were added to represent road conditions which were safe 
and appropriate for activation (i.e. the highly and moderately reliable 
road conditions in Fig. 1). The development of these five scenarios is 
explained below. 

2.2.5.3. Terrain design. A motorway terrain was created. The road had 
three lanes in the same direction, a hard shoulder and a central reser-
vation. The speed limit was adjusted to 70 mph (112.65 km/h) and the 
vehicle type was restricted to highway vehicles (no pedestrians or cy-
clists). Fields, woodland, warehouses, buildings and cattle were added 
to the surrounding landscape. 

2.2.5.4. Scenarios. The five scenarios were then developed on this 
terrain. The creation of these scenarios is described below. 

2.2.5.4.1. Scenario 1: Appropriate Conditions 1. The target vehicle 
(the vehicle that drivers would be driving) was placed in the left-hand 

Fig. 4. An excerpt from the OM presented to the OM group during the evalu-
ation of the L4DTP. 

Fig. 5. The driving simulator that was used in the evaluation of the L4DTP.  
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lane of the motorway. Cars, vans, lorries and motorbikes were added in 
front and behind the vehicle, across all three lanes. The traffic in the left- 
hand lane was given a maximum speed restriction of 70 mph (112.65 
km/h). To simulate natural overtaking traffic, the traffic in the centre 
lane was given a maximum speed restriction of 72 mph (96.56 km/h) 
and the traffic in the right-hand lane was given a maximum speed re-
striction of 75 mph (120.70 km/h). 

To simulate safe/appropriate road conditions, this scenario was 
based upon the highly reliable road conditions described in Fig. 1. The 
scenario was in a motorway setting (see terrain above), lane markings 
were present and clear throughout, the road surface was dry, the road 
was mainly straight (no sharp or multiple bends), the weather was dry, 
cloudy and dull and the target vehicle was allowed to travel at a speed of 
up to 70 mph (no traffic, hazards or road conditions prevented drivers 
from reaching a speed of 70 mph, see Fig. 6). 

2.2.5.4.2. Scenario 2: Appropriate Conditions 2. This scenario repli-
cated the characteristics of the “Appropriate Conditions 1” scenario, 
however the landscape and traffic volume were modified. The first 
scenario represented a motorway in the countryside, as there were 
limited buildings but plenty of trees and animals surrounding the 
roadway. The second appropriate scenario represented a motorway in a 
built-up area, as there were less trees and animals but more buildings in 
the surrounding landscape (Fig. 7). Additionally, more traffic was added 
to the “Appropriate Conditions 2” scenario. The landscape and traffic 
volume were manipulated because in the previous evaluation (Merri-
man et al., Under Review), these variables influenced drivers’ decisions 
about whether it was safe and appropriate to activate the automation. 
Before undergoing training, two common reasons why drivers believed 
that it was unsafe to activate the automation were “busy roads” or “lots 
of traffic” (vs “clear road”, “lack of traffic”) and “urban” (vs “rural 
roads”). This suggests that drivers were more uncertain about activating 
the automation in high traffic volumes (even if the traffic is steady) and 
in built-up areas, even though these variables are not highlighted as 
inappropriate road conditions (see Fig. 1). Therefore, these variables 
were manipulated in these scenarios. 

These two scenarios formed the basis of the remaining three 
scenarios. 

2.2.5.4.3. Scenario 3: Potholes. The “Appropriate Conditions 1” 
scenario was modified to add potholes, cracks and road deformations on 
the road surface at random locations during the two-minute decision 
phase. Road deformations were added 5, 15, 30, 45, 60, 73, 80, 90, 100 
and 110 seconds after the automation became available. Additionally, to 
maintain consistency with the glare scenario where the torch was on 
throughout the whole scenario (see below) and to prevent drivers from 
making a good assessment about the road before the automation became 
available, small cracks were also added 10 and 20 seconds before the 
automation became available. Fig. 8 displays some of the road de-
formations that were used. In some locations, small cracks were added 
(e.g. top-left image) and in other locations big deformations were added 
(e.g. bottom-left image). The steering-wheel vibrated and turned when 

drivers drove over the road deformations. 
2.2.5.4.4. Scenario 4: Debris/Obstacles. The “Appropriate Condi-

tions 2” scenario was modified to add obstacles and debris in the left- 
hand lane at random locations during the two-minute decision phase. 
Tyres, traffic cones, barrels and gravel piles were placed on the road 
surface 9, 30, 56, 75, 85 and 103 seconds after the automation became 
available (Fig. 9). Some obstacles (tyres, traffic cones and barrels) 
required drivers to change lanes to avoid them. As such, some traffic was 
removed from the centre lane to ensure drivers had enough space to 
safely change lanes when required. Additionally, triggers were added to 
direct the traffic in the left-hand lane to change lanes to avoid the ob-
stacles on the road. In each case, triggers were added six seconds before 
each vehicle hit the obstacle. 

2.2.5.4.5. Scenario 5: Glare. The “Appropriate Conditions 1” sce-
nario was used, however a torch was placed on the roof of the Land 
Rover and directed towards the front screen to reduce visibility and 
create glare (Fig. 10). 

2.3. Procedure 

Drivers were randomly allocated to one of the three training condi-
tions. All drivers first completed the demographics questionnaire, locus 
of control questionnaire and trust in automation questionnaire online 
using Microsoft Forms. The NT group then went straight to the driving 
simulator (top level in Fig. 11). The only information this group were 
given about the AV system was a verbal description of the automation’s 
capabilities (see introduction). In contrast, the other two groups 
completed their allocated training programme. The L4DTP group 
completed the online video-based training from Merriman et al. (Under 
Review) and read about the acronym (RUDPA) that they should use to 
activate the automation safely on the road (see section 2.2.1, bottom 
level in Fig. 11). The OM group read the OM (middle level in Fig. 11). To 
ensure all drivers received the same amount of time for training, the OM 
group were given 45 minutes to read the OM. This time was based upon 
the average amount of time that it took drivers to complete the L4DTP in 
pilot testing. Most drivers read the OM in approximately 15 minutes. 
When drivers finished early, they were reminded of the time that they 
had left and were told to revisit the materials. However if they were 
ready to move on, they were taken to the next task. Once they had 
completed their allocated training programme, they were offered a 
five-minute comfort and screen break. 

Then all drivers underwent a practice drive in the driving simulator 
to get used to the vehicle and controls. They were shown the visual and 
auditory alerts on the central vehicular interface (see Fig. 12), practiced 
activating the automation, were informed that in all scenarios the 
automation will always become available and were told their goal and 
tasks (to activate the automation whenever it is safe and appropriate to 
do so and to always be in the left-hand lane when making their 
decisions). 

They then experienced the five scenarios in the driving simulator. All 

Fig. 6. The first appropriate road conditions scenario used in the evaluation of the L4DTP. The road was straight, line markings were clear and the weather was 
cloudy and dry. 
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scenarios followed the same format (Fig. 12). Drivers began the scenario 
driving the vehicle manually. After 30 seconds, they received an alert 
that the automation is available. They were then given two minutes to 
decide whether it was safe and appropriate to activate the automation, 
although they could make their decision at any point during this time. 
The two minutes were counted down on the central vehicular interface 
(Fig. 13). During this time, they were either exposed to road conditions 
which were safe and appropriate for activation (two appropriate sce-
narios) or road conditions which were unsafe and inappropriate for 
activation (debris/obstacles, potholes and glare scenarios). Present day 
technology means that the AV system may be able to detect and/or 
predict some of these unsafe road conditions (in which case the auto-
mation would not become available, and the alerts would not sound/ 

appear). However for the purpose of this study and to ensure drivers 
developed an accurate mental model for when the automation can be 
activated, the automation always became available, and drivers were 
required to make all the decisions. 

If they decided that it was safe and appropriate to activate the 
automation, they were told to activate the automation (i.e. go through 
the whole of RUDPA) and to press the hazard lights. If however they 
decided that it was unsafe and inappropriate to activate the automation, 
they were told to continue manual driving (i.e. stop at D in RUDPA) and 
to press the hazard lights. The hazards lights were a cue to the researcher 
that the driver had made a decision and so the scenario could be 
terminated. The scenario was terminated as soon as the hazard lights 
were pressed. If drivers had not made a decision after the two minutes, 

Fig. 7. The second appropriate road conditions scenario used in the evaluation of the L4DTP. More traffic and buildings were added to this scenario to simulate an 
urban road environment and a busier road. 

Fig. 8. The potholes scenario used in the evaluation of the L4DTP. Example potholes have been circled.  

Fig. 9. Example obstacles used in the debris scenario to evaluate the L4DTP: a gravel pile (left), barrel (middle) and traffic cone (right).  
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the researcher instructed them to make an immediate decision. Once a 
decision had been made and they performed the appropriate behaviour, 
the scenario was terminated. No driver failed to make a decision after 
this prompt. At the end of each scenario, drivers completed the “Yes/No” 
and “Why” questions whilst seated in the simulator. Then the next sce-
nario was played. To reduce order effects, the order of the scenarios was 
randomised for each driver using a random number generator. Once all 
five scenarios had been completed, drivers answered the final three 
questionnaires (trust in automation, NASA-TLX and experience ques-
tionnaires) and were instructed to base their answers on the simulator 
task that they had just completed. 

2.4. Study design and analysis 

To analyse the effectiveness of the L4DTP, a between-subjects 
experimental design was employed. The independent variable was the 
type of training programme. This was a between-subjects variable which 
had three levels: NT (control group), OM (experimental group 1: current 
training provision) and L4DTP (experimental group 2: new training 
programme). 

Fig. 10. The glare scenario used in the evaluation of the L4DTP, showing the light source (left), outside view (middle) and driver view (right).  

Fig. 11. Procedure for the three training conditions. The training time varied for each group. It was approximately 5 minutes for the no training group, 15 minutes 
for the OM group and 45 minutes for the L4DTP group. 

Fig. 12. Sequence for all five scenarios with associated timings and visual and 
auditory alerts. 

Fig. 13. Countdown timer on the central vehicular interface to tell drivers how 
much time they had before a decision was required. 
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There were five dependent variables, four quantitative and one 
qualitative:  

1) Drivers’ decisions about whether it was safe and appropriate to 
activate the automation in the five simulator scenarios. For each 
scenario, one point was awarded for the correct decision (i.e. drivers 
activate the automation in the safe/appropriate scenarios and do not 
activate the automation in the unsafe/inappropriate scenarios), 
creating a maximum score of five points.  

2) Frequency and type of successes and errors on the simulator task, 
using the principles of signal detection theory (Green and Swets, 
1966). In this approach, a signal detection grid is used to capture the 
frequency of hits, misses, false alarms and correct rejections when 
drivers’ decisions are compared to the correct decisions on the 
simulator task. In this evaluation, the categories were defined as 
follows:  
• Hit: It was safe and appropriate to activate the automation and 

drivers decided to activate it.  
• Miss: It was safe and appropriate to activate the automation, but 

drivers decided to not activate it. 
• False Alarm: It was not safe and appropriate to activate the auto-

mation, but drivers decided to activate it.  
• Correct Rejection: It was not safe and appropriate to activate the 

automation and drivers decided to not activate it. 

Therefore, there were two successes (hits and correct rejections) and 
two errors (misses and false alarms). Across the five simulator scenarios, 
drivers could score a maximum of two hits or two misses (on the two 
appropriate scenarios) and a maximum of three false alarms or three 
correct rejections (on the potholes, debris and glare scenarios). The 
number of hits, misses, false alarms and correct rejections for each 
participant were counted, following the guidance from Stanton et al. 
(2022).  

3) Change in drivers’ trust in automation from before training to after 
training. This was calculated by measuring the difference between 
drivers’ before and after training trust scores (after training trust 
score minus before training trust score).  

4) Drivers’ workload on the simulator task. Drivers’ scores on the six 
workload subscales and their total workload (summation of all six 
scores) was calculated. 

These four dependent variables were analysed quantitatively. Where 
variables met the assumptions for parametric testing, a one-way inde-
pendent measures ANOVA was used, and significant effects were broken 
down using the Bonferroni post-hoc test. If however a variable did not 
meet the assumptions for parametric testing, a Kruskal-Wallis Test was 
performed, and significant effects were broken down using Mann- 
Whitney U Tests, with the Bonferroni corrected alpha level of p = .017. 

The fifth dependent variable was the appropriateness and compre-
hensiveness of drivers’ mental models for when the automation can be 
activated. A variety of methods have been used to measure mental 
models (Rowe and Cooke, 1995). Traditionally researchers have 
measured mental models by looking at the manifestation of them in 
participants’ performance, behaviour or decision-making on a related 
task (Gentner and Stevens, 1983). This is based upon the assumption 
that if participants have been taught the correct mental model, they will 
use that correct mental model in the task and this will be demonstrated 
in their behaviour (i.e. correct behaviour means correct mental model). 
However, these studies did not get participants to confirm whether they 
used the correct mental model or not (e.g. through a questionnaire, 
verbal protocol), leading to questions about whether the training had 
actually changed/improved participants’ mental models and whether 
these improved mental models or a different mechanism had improved 
their performance. In the AV driver training literature, questionnaires 
have been used to measure drivers’ mental models. For example, 

Blömacher et al. (2020), Beggiato et al. (2015) and Forster et al. (2019) 
provided statements on the AV system’s functionality and asked drivers 
to provide ratings of agreement or correctness using scales. Boelhouwer 
et al. (2019) measured drivers’ mental models by recording their de-
cisions and their reasoning for their decisions in takeover scenarios. 
Therefore, to overcome the limitation with traditional mental model 
research, this same approach was used in this study to measure the 
appropriateness and comprehensiveness of drivers’ mental models for 
when the automation can be activated. 

A deductive thematic analysis was performed on the reasoning that 
drivers gave for their decisions on the simulator task (“why” questions in 
the simulator questionnaire, see section 2.2.4), using the guidelines from 
Braun and Clarke (2006). The drivers’ reasoning for their decisions in 
the five simulator scenarios were read and road conditions relating to 
the five environmental categories defined in Fig. 1 (speed, road type, 
weather, roadway conditions, road geometry) were highlighted. For 
example, words and phrases related to the weather such as rain, wet, 
clear day, fog, glare, dry were coded under the weather category. 
Similarly, words and phrases related to bends, curves, hills or the 
straightness of the road were coded under the road geometry category. 
Road conditions which did not fit into one of the five categories were 
coded under a sixth “other” category. Then, the coded words for each 
category were reviewed to ensure they fit with the overall category. 

3. Results 

3.1. Decisions 

There was a significant difference in the total number of correct 
decisions that drivers made on the simulator task between the three 
training conditions (H(2) = 14.41, p = .001). Drivers who read the OM 
(U = 43.00, z = − 3.042, p = .002) or underwent the L4DTP (U = 33.00, 
z = − 3.520, p < .001) made more correct decisions about whether it was 
safe and appropriate to activate the automation on the simulator task, 
compared to drivers who received NT. However, there was no significant 
difference in the total number of correct decisions made between those 
who read the OM and those who underwent the L4DTP (U = 109.50, z =

Fig. 14. The effect of type of training on the total number of correct decisions 
made in the simulator task (error bars represent standard deviations). 
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− 0.133, p = .894; Fig. 14). 

3.2. Signal Detection Theory 

There was no significant difference in the number of hits (H(2) =
0.89, p = .643) and misses (H(2) = 0.89, p = .643) that drivers 
committed on the simulator task between the three training conditions. 
However, there was a significant difference in the number of false alarms 
(H(2) = 15.91, p < .001) and correct rejections (H(2) = 15.91, p < .001) 
that drivers committed on the simulator task between the three training 
conditions. Drivers who read the OM committed fewer false alarms (U =
35.00, z = − 3.360, p = .001) and more correct rejections (U = 35.00, z 
= − 3.360, p = .001) on the simulator task compared to drivers who 
received NT. Similarly, drivers who underwent the L4DTP committed 
fewer false alarms (U = 33.00, z = − 3.487, p < .001) and more correct 
rejections (U = 33.00, z = − 3.487, p < .001) on the simulator task 
compared to drivers who received NT. However, there was no significant 
difference in the number of false alarms (U = 106.50, z = − 0.271, p =
.787) and correct rejections (U = 106.50, z = − 0.271, p = .787) that 
drivers committed on the simulator task between those who read the OM 
and those who underwent the L4DTP (Fig. 15). 

3.3. Trust in Automation 

Generally, drivers who received NT showed an increased trust in 
automation after completing the simulator task (M = 3.60, SD = 6.37). 
In contrast, drivers who read the OM (M = − 1.50, SD = 12.61) or un-
derwent the L4DTP (M = − 0.33, SD = 10.29) showed reduced trust in 
automation after undergoing training and completing the simulator 
task. However, there was no significant difference in the change in 
drivers’ trust in automation between the three training conditions (H(2) 
= 1.11, p = .575). 

3.4. Workload 

There was no significant difference in the total workload experienced 
by drivers on the simulator task between the three training conditions (F 
(2, 42) = 1.82, p = .174). Similarly, there was no significant difference 
in the physical demand (H(2) = 0.84, p = .657), temporal demand (F(2, 
42) = 0.76, p = .475), performance (F(2, 42) = 1.11, p = .340), effort (H 
(2) = 3.22, p = .200) or frustration (H(2) = 0.62, p = .735) experienced 

by drivers on the simulator task between the three training conditions. 
However, there was a significant difference in the mental demand 

experienced by drivers on the simulator task between the three training 
conditions (H(2) = 7.58, p = .023). Drivers who read the OM experi-
enced a greater mental demand when performing the simulator task 
compared to drivers who underwent the L4DTP (U = 48.00, z = − 2.685, 
p = .007; Fig. 16). However, there was no significant difference in the 
mental demand experienced by drivers on simulator task between 
drivers who received NT and drivers who read the OM (U = 73.50, z = −

1.625, p = .104) or between drivers who received NT and drivers who 
underwent the L4DTP (U = 84.00, z = − 1.19, p = .235). 

3.5. Mental Models 

3.5.1. Appropriate 1 
Two drivers in the NT condition, four drivers in the OM condition 

and two drivers in the L4DTP condition incorrectly decided that it was 
unsafe to activate the automation in this scenario (Fig. 17). The NT and 
OM drivers cited the behaviour of other vehicles (e.g. “under-cutting 
cars”, “learner driver”, “erratic/unpredictable vehicles”) and heavy 
traffic levels in their reasoning for their decision. However, these vari-
ables are not classed as unsafe road conditions (see Fig. 1). In contrast, 
the L4DTP drivers cited road conditions which were unsafe for activa-
tion (“unclear road markings”, “thunder”, Fig. 18a). These two road 
conditions were not actually present in the scenario, so although the two 
drivers in the L4DTP condition made the wrong decision, as these road 
conditions were unsafe, their reasoning (mental model) for why they 
made the wrong decision was correct. 

Thirteen drivers in the NT condition, 11 drivers in the OM condition 
and 13 drivers in the L4DTP condition correctly decided that it was safe 
to activate the automation in this scenario. All drivers mentioned 
appropriate/safe road conditions in their reasoning for their decision (e. 
g. “motorway”, “speed between 50 and 70 mph”, “good weather”, “clear 
lane markings”, “good road surface”, “straight road”), however the 
L4DTP group mentioned more appropriate road conditions compared to 
the OM group and the OM group mentioned more appropriate road 
conditions compared to the NT group (Fig. 18a). For example, four 
drivers in the L4DTP group and four drivers in the OM group mentioned 

Fig. 15. The effect of type of training on the number of false alarms and correct 
rejections that were committed on the simulator task (error bars represent 
standard deviations). 

Fig. 16. The mental demand experienced by drivers when performing the 
simulator task in the three training conditions (error bars represent stan-
dard deviations). 
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that the road type was appropriate for activation (“motorway”, “non- 
residential”), however no drivers mentioned this environmental cate-
gory in the NT group. Similarly, only two drivers in the NT group 
mentioned appropriate weather conditions and road geometry (e.g. “no 
rain”, “straight”). In comparison, six and four drivers respectively in the 
OM condition and ten and six drivers respectively in the L4DTP condi-
tion cited these environmental categories in their answers (e.g. “good 
weather/visibility/lighting”, “no rain”, “clear”, “straight road”, “slight 
bend”, “no twists/bends”). Additionally, two drivers in the NT group did 
not offer any reasoning for why it was safe to activate the automation 

(they answered “it was safe”). 

3.5.2. Appropriate 2 
One driver in the NT condition, two drivers in the OM condition and 

one driver in the L4DTP condition incorrectly decided that it was unsafe 
to activate the automation in this scenario (Fig. 17). All drivers cited 
heavy traffic levels in their reasoning for their decision, even though this 
is not an inappropriate/unsafe road condition (see Fig. 1). However, the 
driver in the L4DTP condition also acknowledged that the speed limit 
(70 mph) was appropriate for activation. 

Fourteen drivers in the NT condition, 13 drivers in the OM condition 
and 14 drivers in the L4DTP condition correctly decided that it was safe 
to activate the automation in this scenario. All drivers cited appropriate 
road conditions in their reasoning for their decision (e.g. “motorway”, 
“good speed”, “steady/moving traffic”, “no obstacles”, “good visibility/ 
weather”, “no sharp bends”, “clear/simple lane markings”, “straight 
road”), however the L4DTP group mentioned more appropriate road 
conditions compared to the OM group and the OM group mentioned 
more appropriate road conditions compared to the NT group (Fig. 18b). 
For example, with the weather conditions category, only two drivers in 
the NT condition mentioned that the weather conditions were appro-
priate for activation (“no rain”, “good weather”). This rose to four 
drivers in the OM condition (“good visuals”, “no rain or bad weather/ 
sun glare”, “good weather”) and 13 drivers in the L4DTP condition (e.g. 
“good visibility/weather”, “no rain”, “clear day”). Additionally, the OM 
group tended to focus on the speed category when making their decision 
(e.g. 10 of the 13 drivers referred to this category compared to three for 
road geometry and four for road type). The NT group tended to focus on 

Fig. 17. The number of drivers in each training condition who made correct 
(green) and incorrect (red) decisions in the five scenarios. The biggest effect 
could be seen in the glare scenario (circled). (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 18. The frequency and range of the environmental categories that were mentioned in the drivers’ reasoning for their correct or incorrect decisions in the 
Appropriate Conditions 1 (a), Appropriate Conditions 2 (b), Potholes (c), Debris (d) and Glare (e) scenarios. In the two appropriate scenarios, the L4DTP group 
showed a greater frequency and spread of appropriate road conditions in their reasoning, compared to drivers who received NT or read the OM. 
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the traffic levels and behaviour of other vehicles (e.g. “busy but moving 
well”, “no overtaking cars”, “good distance between cars”, n = 10). In 
comparison, the L4DTP group mentioned a broader range of appropriate 
road conditions across the five environmental categories (e.g. 13 drivers 
referred to the weather and speed categories and nine drivers referred to 
roadway conditions). 

3.5.3. Potholes 
Eleven drivers in the NT condition, eight drivers in the OM condition 

and 10 drivers in the L4DTP condition incorrectly decided that it was 
safe to activate the automation in this scenario (Fig. 17). The 10 drivers 
in the L4DTP condition did not mention the poor road surface in their 
reasoning for their decision. In comparison, one driver in the OM con-
dition and seven drivers in the NT condition mentioned the poor road 
surface (e.g. “small cracks”, “unevenness”, “skid marks”, “damaged road 
surface”), but decided that it was safe to activate the automation because 
they thought that the automation would perform better than them (n =
1) or that the poor road surface would not affect the automation. As a 
poor road surface is an inappropriate road condition (see section 2.2.5.2, 
Fig. 1), these drivers did not have an appropriate mental model for when 
the automation can be activated. 

The remaining drivers who made the wrong decision (n = 21) did not 
mention the poor road surface in their reasoning for their decision. This 
suggests that they either did not see the potholes/cracks on the road or 
they saw them but did not think it was an issue for the automation. 
Instead, these drivers mentioned road conditions which were safe for 
activation (e.g. “motorway”, “speed between 50 and 70 mph”, “smooth”, 
“dry road”, “good/appropriate weather”, “clear/good markings”, 
“straight road”, Fig. 18c). If the drivers did not see the potholes/cracks, 
their reasoning suggests that they did have an appropriate mental model 
for when the automation can be activated, as they made the wrong 
decision but used the correct reasoning. If however, they saw the cracks/ 
potholes but did not think it was an issue for the automation, their 
reasoning suggests that they did not have an appropriate mental model. 
Based on the evidence presented here, it cannot be said which expla-
nation is correct, demonstrating the need for eye-tracking to be used in 
future experiments to provide more clarity on whether drivers noticed 
the poor road surface or not and subsequently whether this is suggestive 
of an appropriate or inappropriate mental model. 

Four drivers in the NT condition, seven drivers in the OM condition 
and five drivers in the L4DTP condition correctly decided that it was 
unsafe to activate the automation in this scenario. All drivers in the 
L4DTP condition correctly identified the poor road surface as the reason 
for why it was unsafe to activate the automation (e.g. “potholes”, “road 
bumps”, “cracked road surface”). In comparison, only five drivers in the 
OM condition and two drivers in the NT condition correctly identified 
the poor road surface as the reason for their decision (e.g. “oil spillage”, 
“uneven/poor/cracked road surface”). The remaining four drivers did 
not mention the poor road surface in their reasoning; they focussed on 
the traffic levels and the behaviour of other vehicles (e.g. “wanting to 
stay in fast lane”, “too many cars”, “learner driver on road”). As such, 
these four drivers did not have an appropriate mental model for when 
the automation can be activated. 

3.5.4. Debris 
Six drivers in the NT condition, five drivers in the OM condition and 

three drivers in the L4DTP condition incorrectly decided that it was safe 
to activate the automation in this scenario (Fig. 17). All drivers (apart 
from one in the OM condition) identified the first debris/obstacle as an 
unsafe road condition (e.g. “obstruction”, “hazard”, “tyre”, “debris”), 
however all but two of the drivers decided that it was safe to activate the 
automation once they had passed the obstacle (e.g. “once passed 
obstruction”). Therefore, these drivers made the wrong decision because 
they did not anticipate the presence of future obstacles nor wait to see if 
there were further obstacles in the road ahead. The remaining two 
drivers (both in the NT condition) decided that it was safe to activate the 

automation because they thought the automation would be able to deal 
with the hazard just like a human driver (e.g. “if I can do it so can the 
automation”). As debris/obstructions are inappropriate road conditions 
(see section 2.2.5.2, Fig. 1), these two NT drivers did not have an 
appropriate mental model for when the automation can be activated. 

Nine drivers in the NT condition, 10 drivers in the OM condition and 
12 drivers in the L4DTP condition correctly decided that it was unsafe to 
activate the automation in this scenario. All drivers correctly identified 
the debris/obstacles in their reasoning for their decision (e.g. “multiple/ 
numerous hazards”, “obstacles”, “debris”, “road hazards”, “tyre”, “road 
work debris”, Fig. 18d). Unlike the drivers who made the wrong deci-
sion, these drivers anticipated the potential for future hazards (e.g. 
“possible future hazards”, “more debris could be around”, n = 2) or 
mentioned more than one hazard in their reasoning (e.g. “multiple/ 
numerous/too many hazards”, “hazards/obstacles/debris”), suggesting 
that they waited to see whether there were more obstacles on the road 
before making their decision. Additionally, some drivers explained why 
the debris/obstacles were unsafe road conditions (e.g. “slow down fast”, 
“change lanes regularly”, “required human input”, “required focus/ 
alertness/attention”, “may not be detected by sensors”, “life or death 
situation”). 

3.5.5. Glare 
Twelve drivers in the NT condition, one driver in the OM condition 

and two drivers in the L4DTP condition incorrectly decided that it was 
safe to activate the automation in this scenario (Fig. 17). All but five of 
the drivers identified the poor weather conditions in their reasoning for 
their decision (e.g. “glare”, “reduced visibility”, “fog”, “bright condi-
tions”, Fig. 18e). However, the two L4DTP drivers and four of the seven 
NT drivers incorrectly decided that it was safe to activate the automa-
tion, because they thought that the glare was not too bright and their 
visibility was ok, so the automation should be fine (e.g. “if I can see, so 
can the automation”). In comparison, the OM driver and three drivers in 
the NT condition incorrectly decided to activate the automation, 
because they believed that the glare would not affect the automation (n 
= 2) or the automation would perform better than them (e.g. “auto-
mation sensors would be able to see better”, “automation would be safer 
than my impaired view”, “would trust automation over myself”). As 
glare and fog are inappropriate road conditions (see section 2.2.5.2, 
Fig. 1), these drivers did not have an appropriate mental model for when 
the automation can be activated. 

The remaining five drivers (all in the NT group) did not cite the poor 
weather conditions in their reasoning for their decision, suggesting that 
they did not see the glare or think that it was a hazard for the AV system. 
Although some of these drivers referred to appropriate road conditions 
in their reasoning for why it was safe to activate the automation (e.g. 
“motorway”, “constant speed”, “no obstacles”, see Fig. 18e), most 
drivers based their decision on the traffic levels and the behaviour of 
other vehicles (e.g. “not too busy”, “no changing lanes”, “large gap/ 
space between vehicles”). 

Three drivers in the NT condition, 14 drivers in the OM condition and 
13 drivers in the L4DTP condition correctly decided that it was unsafe to 
activate the automation in this scenario. All drivers (apart from one in 
the OM condition) correctly identified the poor weather conditions in 
their reasoning for why it was unsafe to activate the automation (e.g. 
“fog”, “glare”, “poor lighting”, “reduced/poor visibility”, “low sun-
shine”, “bright light”). The driver in the OM condition decided that it 
was unsafe to activate the automation because it was “too busy” on the 
road. 

4. Discussion 

AV systems are expected to improve road safety by reducing the 
frequency and severity of on-road collisions (Schoettle and Sivak, 2014). 
However, if drivers have an inappropriate mental model for the capa-
bilities and limitations of the automation, they may over-trust and 
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activate the automation in inappropriate road conditions (Lee and See, 
2004; Korber et al., 2018), which could cause a collision (Merriman 
et al., 2021b). As such, this article describes the development of a 
training package for the safe activation of an AV system (L4DTP) and 
evaluates its effectiveness in a between-subjects simulator experiment. 
Drivers received NT (control group), read an OM (experimental group 1: 
current training provision) or underwent the L4DTP (experimental 
group 2: new training programme). All drivers then experienced five 
scenarios in a driving simulator where they encountered road conditions 
which were safe and unsafe for activation. Their activation decisions, 
behaviour, trust in automation, workload and mental models were 
measured. 

This evaluation found that drivers who read the OM or underwent 
the L4DTP made more correct decisions about whether it was safe and 
appropriate to activate the automation and committed fewer false 
alarms and more correct rejections on the simulator task compared to 
drivers who received NT. However there were no differences between 
drivers who read the OM and drivers who underwent the L4DTP or for 
the number of hits and misses on the simulator task. These results 
demonstrate the benefits of undergoing any training for AV systems; if 
drivers do not receive training, they are more likely to activate the 
automation in unsafe road conditions (false alarms), which could cause a 
collision (e.g. Merriman et al., 2021b). For example in the glare sce-
nario, only three drivers in the NT condition correctly decided that it 
was unsafe to activate the automation, therefore 12 drivers activated the 
automation in unsafe road conditions. In comparison, only one driver in 
the OM condition and two drivers in the L4DTP condition activated the 
automation in the glare scenario (see Fig. 17). Therefore, the OM and 
L4DTP helped drivers make more appropriate decisions (that it was 
unsafe to activate the automation) in the unsafe scenarios. In reality, 
most drivers do not read their OM in a dedicated 45-minute time period 
and if they do, they do not read all of it (Mehlenbacher et al., 2002). For 
example, in this evaluation, 68% of drivers reported reading their OM. 
However the majority of these drivers (57%) had read less than half and 
only 10% had read the whole manual. Therefore, it could be argued that 
the comparison between NT and the L4DTP (rather than between the 
OM and the L4DTP) is the more realistic comparison, and this compar-
ison shows why additional mandatory training for AV systems is needed. 
If drivers do not read their full OM (i.e. receive NT), they are more likely 
to activate the automation in unsafe road conditions, which could cause 
a collision (Merriman et al., 2021b). Therefore these results support 
previous training studies in showing that some training for AV systems is 
better than having no training at all (e.g. Ebnali et al., 2019) and extends 
these studies by showing that AV driver training programmes can also 
improve drivers’ activation decisions and behaviour (previous studies 
have mostly evaluated drivers’ takeover decisions and behaviour e.g. 
Boelhouwer et al., 2019; Sportillo et al., 2019; Krampell et al., 2020). 

Additionally, even if drivers read the OM, the workload and mental 
model results suggest that it is more beneficial for drivers to undergo the 
L4DTP. This evaluation found that drivers who underwent the L4DTP 
experienced a lower mental demand when performing the simulator task 
compared to drivers who read the OM. Therefore, drivers in the L4DTP 
condition found it easier, simpler and less demanding (Hart and Stave-
land, 1988) to decide whether it was safe and appropriate to activate the 
automation (and act accordingly) compared to drivers in the OM con-
dition. Although not significant, this evaluation also found that drivers 
in the L4DTP condition experienced a lower total workload, physical 
demand, temporal demand and effort when performing the simulator 
task compared to drivers in the other two training conditions. Therefore, 
drivers in the L4DTP condition found the simulator task less demanding 
and strenuous and felt under less time pressure when making their de-
cisions compared to drivers who received NT and drivers who read the 
OM (Hart and Staveland, 1988) and they had to work less hard and put 
less effort into the simulator task to achieve the same performance as 
those who read the OM. This suggests that it was easier to learn, 
remember and apply the knowledge learnt in the L4DTP compared to the 

OM. These findings support previous training studies in showing that an 
OM may not be the most effective training method for AV systems and 
alternative methods such as behavioural training (e.g. Shaw et al., 
2020), video-based training (Cahour and Forzy, 2009), a combination of 
OM and simulator training (e.g. Hergeth et al., 2017; Koustanaï et al., 
2012; Krampell et al., 2020) or a combination of written descriptions 
and video-based training (this study) are needed. 

Finally, a qualitative analysis was performed on the drivers’ 
reasoning for their decisions. In the safe scenarios (Appropriate 1 and 
Appropriate 2), this analysis revealed that most drivers in the L4DTP 
condition made the wrong decisions because they thought they noticed 
unsafe road conditions in the scenarios (thunder, unclear lane mark-
ings). Therefore, although their decisions were wrong, their reasoning 
for why they made the wrong decision was correct. This demonstrates 
that they were incorporating the training into their decision-making 
processes. In comparison, the OM and NT drivers focussed on the 
traffic levels and the behaviour of other vehicles, both of which are not 
unsafe road conditions (see Fig. 1). This suggests that the L4DTP drivers 
had more appropriate mental models for when the automation can be 
activated compared to the drivers in the other two training conditions. 
With regards to the correct decisions, the analysis revealed that more 
drivers in the L4DTP condition cited appropriate road conditions in their 
reasoning for their decisions and they mentioned more appropriate road 
conditions across the five environmental categories compared to drivers 
in the other two training conditions. In comparison, the OM drivers 
tended to focus on the speed category in their reasoning for their de-
cisions and the NT drivers tended to focus on the traffic levels and the 
behaviour of other vehicles. Therefore in the safe scenarios, these 
findings suggest that drivers in the L4DTP condition had more appro-
priate, complete and comprehensive mental models for when the auto-
mation can be activated compared to drivers in the other two training 
conditions. 

In the unsafe scenarios (Potholes, Debris, Glare), the analysis 
revealed that most drivers in the OM and L4DTP conditions made the 
wrong decisions because they did not see the hazard or anticipate the 
presence of future hazards. In comparison, most drivers in the NT con-
dition made the wrong decisions because they thought that the hazards 
would not affect the automation, or the automation would perform 
better than them. With regards to making the correct decisions, this 
analysis found that all drivers in the L4DTP condition and most drivers 
in the OM and NT conditions made the correct decisions because they 
identified the hazard and used this as reasoning for why it was unsafe to 
activate the automation. Therefore in the unsafe scenarios, drivers who 
read the OM or underwent the L4DTP had more appropriate mental 
models for when the automation can be activated compared to drivers 
who received NT. 

4.1. Evaluation and future work 

There are limitations with this training evaluation. Firstly, the se-
lection of the simulator scenarios was based upon the video-clip sce-
narios which drivers found most difficult in the previous online 
evaluation (Merriman et al., Under Review). Although five scenarios 
were identified, simulator issues meant that the poor lane markings and 
sharp bend scenarios could not be created or tested in this evaluation. As 
numerous drivers made errors on these scenarios in the previous online 
evaluation, future research should investigate whether the L4DTP im-
proves drivers’ activation decisions and behaviour in these scenarios. 
Additionally, all drivers were given 45 minutes to complete their allo-
cated training programme (OM or L4DTP). However, the training pro-
grammes involved different methods of delivery (reading vs interacting 
with the L4DTP). Most OM drivers did not spend the full 45 minutes 
reading the OM, therefore there may have been differences between 
groups in their cognitive fatigue which in-turn may have affected their 
performance on the simulator task. This could be investigated in future 
research. 
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Secondly, the L4DTP combined an acronym with an online video- 
based training module. Although this training evaluation demon-
strated benefits of the training package over NT and an OM, it is unclear 
whether the acronym, the online training module or both components 
were important and responsible for improving drivers’ decisions, mental 
demand, mental models and behaviour. Therefore, future work should 
investigate each component in isolation and together to investigate 
which combination is most effective in improving drivers’ behaviour. 
Additionally, this training evaluation did not measure the differences 
between groups in their pre- and post-training scores (apart from the 
variable Trust in Automation), instead looking only at the differences 
between groups in their post-training scores. This means that all groups 
could not be shown to be equivalent in their decisions, workload, mental 
models and behaviour before training, which makes it hard to conclude 
that any group differences that were found after training was due to the 
training that drivers received (it could be due to pre-existing group 
differences). The difference between pre- and post-training scores were 
not measured for all variables because of the time and resource con-
straints that were present due to the study taking place at a time when 
in-person participant testing was harder with covid restrictions. As such, 
a trade-off had to be made. Trust in Automation was considered to be an 
important variable in this study, hence why the difference between pre- 
and post-training trust scores was calculated. However, future research 
should measure pre- and post-training scores for all variables to inves-
tigate whether there are any group differences in drivers’ decisions, 
workload, mental models and behaviour before training. This means 
that if no differences are found, researchers can more confidently 
conclude that any group differences that are found after training are due 
to the training that drivers received. 

Thirdly, the evaluation took place in a driving simulator. Although 
simulators have the advantage of allowing researchers to standardise, 
control and reproduce the same scenarios for each driver (e.g. traffic, 
weather, road layout), the consequences of making mistakes are less 
severe than in real life as drivers are not placed into situations where 
they may suffer physical harm (De Winter et al., 2012; Harvey and 
Burnett, 2019). In this evaluation, if drivers incorrectly decided that it 
was safe to activate the automation in the unsafe scenarios, the only 
consequence was the lack of marks that they received. However, if 
drivers make the same poor decisions on real life roads, they could cause 
a collision resulting in fatal consequences (e.g. Merriman et al., 2021b). 
This lower perception of risk may have caused drivers to become riskier 
and activate the automation in more scenarios than they would actually 
activate the automation in real life. This limits the generalisability of the 
findings to the real world as drivers’ simulated driving behaviour may 
not reflect their actual driving behaviour. Therefore, future on-road 
evaluations are needed to investigate whether the L4DTP improves 
drivers’ activation decisions and behaviour on the road. 

The effectiveness of the L4DTP was only evaluated in the short-term 
(immediately after training). The workload results suggest that drivers 
in the OM condition found it harder to remember and apply their newly 
learnt knowledge when making their decisions. Over time these drivers 
may forget the information in the OM, therefore there could be differ-
ences in the appropriateness and comprehensiveness of drivers’ mental 
models, their activation decisions and behaviour if evaluated in the 
long-term (e.g. after a few months, a year). The OM is a passive learning 
method as drivers just read the information in the manual (Bell and 
Kozlowski, 2008). In contrast, the L4DTP blends passive and active 
training methods as drivers are actively involved in the learning process 
by reading information, watching video-clips, answering questions and 
receiving feedback. A recent study suggests that active learning methods 
may have a greater retention rate compared to passive learning methods 
after a month’s delay (Minnick et al., 2022) and as drivers are unlikely to 
read their OM more than once, this study suggests that even if drivers 
remember the content in the OM immediately after training, it may 
degrade one month later. Therefore, there could be long-term retention 
benefits of the L4DTP over the OM which should be investigated in 

future longitudinal evaluations. 
Finally, for the purpose of assigning drivers’ decisions into “correct” 

or “incorrect” categories, road and environmental conditions were cat-
egorised as “safe” or “unsafe”, based upon the ODD defined in Fig. 1. 
These environmental conditions then formed the content of the training 
programmes in order to gain insights into training comprehension and 
retention. However, the mental model results show that there were some 
influences on drivers’ decisions, that were not part of the ODD, which 
caused drivers to make a different decision than what was originally 
planned. For example, heavy traffic and the erratic behaviour of other 
drivers were not defined as “unsafe” road conditions, so they were not 
included as unsafe road conditions in the training programmes. How-
ever, quite a few drivers did not activate the automation in the safe/ 
appropriate scenarios for these reasons (see sections 3.5.1 and 3.5.2). 
Due to the categorisation of the “safe” and “unsafe” road conditions, 
these decisions were marked as incorrect and drivers’ reasoning (mental 
models) was deemed inappropriate. However, these are unsafe road 
conditions, and it is safer for drivers to act more cautiously on the road 
and not activate the automation whenever they consider the road con-
ditions to be unsafe, regardless of whether those road conditions are 
actually defined as unsafe according to the AV system’s ODD. This 
suggests that in future AV driver training programmes, drivers should 
not just be taught which road conditions are safe and unsafe, but also to 
be cautious and to not activate the automation whenever they consider 
the road environment to be unsafe. Similarly in training evaluations, 
rather than marking drivers down and assigning decisions like these as 
incorrect decisions, there should be a middle category where the de-
cisions are correct because the driver considered the road conditions to 
be unsafe, even though the road conditions were not actually defined as 
unsafe according to the AV system’s ODD. This also highlights the need 
for future AV system design to always allow drivers to make the final 
decision on whether to activate the automation. 

This study is one of the first studies to develop a training programme 
for the safe activation of an AV system and evaluate its effectiveness 
through quantitative and qualitative methodologies. In the AV driver 
training literature, the bulk of research has used quantitative methods to 
evaluate the effectiveness of driver training programmes (e.g. number of 
collisions, takeover time, standard deviation of lateral position, accel-
erator pressure, brake pressure, takeover behaviours: see Merriman 
et al., 2021a). However in this evaluation, quantitative and qualitative 
analyses were performed. Although the quantitative results revealed 
some benefits of the L4DTP over NT (correct decisions, correct re-
jections, false alarms) and OMs (workload), the qualitative results 
revealed more reasons for why the L4DTP was more effective than the 
two other training conditions (more appropriate and comprehensive 
mental models). Therefore, this evaluation adds further evidence for 
why a mixed methods approach to data collection should be used. 

Although this article focussed on one automation task (activation), 
one AV system and made various assumptions about the road conditions 
which the AV system can safely operate in (e.g. glare, see section 
2.2.5.2), this evaluation showed that a blended learning methodology, 
combining video-based online training and an acronym, is effective and 
can be used to improve drivers’ mental models, activation decisions, 
behaviour and workload, regardless of the tasks, systems and assump-
tions that are made. Therefore when other levels of automation, other 
AV systems or other tasks (e.g. takeovers) are investigated or the tech-
nology improves and the assumptions need to change (e.g. the auto-
mation can now cope with glare but cannot deal with a particular road 
sign), the same methodology can be used to train drivers; it is only the 
training content that will need to be changed (e.g. video-clips of those 
road signs could be added to the online video-based component of the 
L4DTP). 

5. Conclusion 

AV systems are expected to improve road safety. Unless drivers have 
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an appropriate mental model for the capabilities and limitations of the 
automation, they may over-trust and activate the automation in inap-
propriate road conditions, potentially leading to a collision. Therefore, 
training in the appropriate activation of AV systems is essential. A 
L4DTP was developed to improve drivers’ decisions and behaviour when 
activating an AV system. A between-subjects simulator experiment 
showed that drivers who read the OM or underwent the L4DTP made 
better activation decisions and showed better activation behaviour 
(fewer false alarms and more correct rejections) compared to drivers 
who received NT. Although all drivers are given an OM to read, in reality 
most drivers do not read their full OM, therefore the NT results reflect 
what may occur if drivers are only given an OM to read and demon-
strates the need for additional mandatory training for AV systems. 
Additionally, drivers who underwent the L4DTP found it easier, less 
demanding and felt under less time pressure when making their de-
cisions, had to expend less effort to reach the same activation perfor-
mance and had more appropriate and comprehensive mental models for 
when the automation can be activated compared to drivers who read the 
OM. This L4DTP can make roads safer by reducing collisions linked to 
poor activation decisions and behaviour. Therefore if this training pro-
gramme is adopted into mandatory AV driver training, the safety ben-
efits of AV systems can be realised. 
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