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There exist several methods developed for the canonical change point problem of detecting 
multiple mean shifts, which search for changes over sections of the data at multiple scales. 
In such methods, estimation of the noise level is often required in order to distinguish 
genuine changes from random fluctuations due to the noise. When serial dependence 
is present, using a single estimator of the noise level may not be appropriate. Instead, 
it is proposed to adopt a scale-dependent time-average variance constant that depends 
on the length of the data section in consideration, to gauge the level of the noise 
therein. Accordingly, an estimator that is robust to the presence of multiple mean shifts is 
developed. The consistency of the proposed estimator is shown under general assumptions 
permitting heavy-tailedness, and its use with two widely adopted data segmentation 
algorithms, the moving sum and the wild binary segmentation procedures, is discussed. 
The performance of the proposed estimator is illustrated through extensive simulation 
studies and on applications to the house price index and air quality data sets.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Dating back to the 1950s (Page, 1954), change point analysis has a long tradition in statistics. The area continues to be an 
active field of research due to its importance in many applications where data is routinely collected in highly nonstationary 
environments. Data segmentation, a.k.a. multiple change point detection, enables partitioning of a time series into stationary 
regions and thus provides a simple framework for modelling nonstationary time series.

We consider the problem of detecting multiple change points in the piecewise constant mean of an otherwise stationary 
time series. We briefly review the existing literature on multiple change point detection in the presence of serial depen-
dence, and refer to Aue and Horváth (2013) and Truong et al. (2020) for a comprehensive overview. One line of research 
takes a parametric approach and simultaneously estimates the serial dependence and change points. For example, Chakar et 
al. (2017), Fang and Siegmund (2020) and Romano et al. (2021) assume an autoregressive (AR) model of order one, while 
Lu et al. (2010), Cho and Fryzlewicz (2021) and Gallagher et al. (2022) permit an AR model of arbitrary order.

Another line of research focuses on extending the use of the methodologies developed for independent data to time 
series settings. Lavielle and Moulines (2000) and Cho and Kirch (2021) adopt information criteria originally developed for 
a sequence of independent, Gaussian random variables (Yao, 1988), to data exhibiting serial correlations and heavy tails, 
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Fig. 1. TAVC σ 2
L for increasing L (black line) computed on the MA(1) process ε(1)

t = Wt − 0.9Wt−1 (left) and the AR(1) process ε(2)
t = 0.9ε

(2)
t−1 + Wt (right). 

The respective LRV is given by the horizontal red line. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this 
article.)

which requires the choice of an appropriate penalty that depends on the tail behaviour of noise. Tecuapetla-Gómez and 
Munk (2017), Eichinger and Kirch (2018), Dette et al. (2020) and Chan (2022) propose estimators of the long-run variance 
(LRV) for quantifying the level of noise that are robust to the presence of multiple mean shifts. We also note that Wu and 
Zhou (2020) and Zhao et al. (2021) extend self-normalisation-based change point tests to the data segmentation problem.

In this paper, we propose a robust estimator of the scale-dependent time-average variance constant (TAVC, Wu, 2009). It 
is closely related to the literature on estimation of the LRV, namely σ 2 = limN→∞ Var(N−1/2 ∑N

t=1 εt) for a stationary time 
series {εt}t∈Z , but distinct in that our interest lies in estimating

σ 2
L = Var

(
1√

L

L∑
t=1

εt

)
, (1)

for a given scale L. We argue that such a scale-dependent TAVC estimator is well-suited to be combined with a class of 
multiscale change point detection methodologies, examples of which include the moving sum (MOSUM) procedure (Eichinger 
and Kirch, 2018) and the wild binary segmentation (WBS, Fryzlewicz, 2014) algorithm. Such approaches locally apply change 
point tests for single change point detection, to data sections of varying lengths and achieve good adaptivity in multiple 
change point detection (Cho and Kirch, 2021). We motivate the use of scale-dependent TAVC in (1) in combination with 
such multiscale methods in the following examples.

Example 1. Consider an MA(1) process ε(1)
t = Wt − 0.9Wt−1 and an AR(1) process ε(2)

t = 0.9ε
(2)
t−1 + Wt , where {Wt}t∈Z is 

a white noise process with Var(Wt) = 1. Fig. 1 shows the TAVC of {ε(1)
t }t∈Z and {ε(2)

t }t∈Z for increasing L, along with the 
true LRV, which highlights the large gap between σ 2

L and σ 2 particularly at a small scale L. This discrepancy has an impact 
on the performance of change point detection methods.

Fig. 2 further illustrates this point by plotting the MOSUM detector statistics generated with a moving window of length 
30 (see Equation (11) for its definition), on the data generated by adding {ε(1)

t }n
t=1 and {ε(2)

t }n
t=1 to a piecewise signal 

with two change points at times τ1 = 200 and τ2 = 260, respectively (n = 1000). Then, the detector statistics are scaled by 
the proposed estimator of TAVC (solid) and the true LRV (dashed). For accurate detection of the change points, we expect 
that a sequence of appropriately scaled detector statistics forms two prominent peaks at the change points that exceed a 
theoretically motivated threshold, while away from the change points, detector statistics remain below the threshold, see 
Section 3.1 for further details. In combination with the TAVC estimator, the detector statistics exhibit the desired behaviour 
such that both change points are detectable from the scaled MOSUM statistics. However, due to the lack of adaptivity of 
the LRV to the scale-dependent variability of the detector statistics, its use leads to either a large number of false positives 
(spurious peaks above threshold, see the top panel of Fig. 2), or false negatives (MOSUM detector statistics scaled by the 
LRV do not exceed the threshold near τi, i = 1, 2, see the bottom panel of Fig. 2).

Example 1 demonstrates that adopting the global LRV may fail to reflect the degree of variability in the local data 
sections that are used in computing change point detector statistics adopted by multiscale data segmentation algorithms, 
which in turn may result in false negatives or positives. Moreover, when the LRV is close to zero as in the case of {ε(1)

t }t∈Z
in Example 1, some estimators of the LRV have been observed to take negative values (Hušková and Kirch, 2010), which 
further makes their use in change point problems undesirable.

To ensure that the scale-dependent TAVC estimator is robust to the mean shifts, we adopt the robust M-estimation 
framework of Catoni (2012), which was first proposed in the independent setting for mean and variance estimation and fur-
2
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Fig. 2. Scaled MOSUM detector statistics computed on the data generated by adding {ε(1)
t }n

t=1 (top) and {ε(2)
t }n

t=1 (bottom), to a piecewise constant signal 
with two change points (n = 1000, green vertical lines denote the true change locations). The detector statistics scaled by the proposed TAVC estimator 
(black solid line) and true LRV (red dashed line) are plotted. Dashed blue horizontal line denotes a theoretically motivated threshold at 5% significance 
level.

ther extended to the serially dependent setting for LRV estimation in Chen et al. (2021). We establish the consistency of the 
proposed robust estimator of scale-dependent TAVC under general conditions permitting heavy tails and serial dependence 
decaying at a polynomial rate. Then, we discuss its application with multiscale change point detection methods such as the 
MOSUM procedure and the WBS algorithm, and provide a heuristic approach to accommodate local stationarity in the data.

The remainder of the article is organised as follows. Section 2 introduces the scale-dependent TAVC and its robust 
estimator and establishes its consistency. Section 3 discusses its application with multiscale data segmentation algorithms 
and an extension to local stationarity. In Section 4, we examine the performance of the proposed methodology on simulated 
data sets and two real data examples on house price index and air quality. Section 5 concludes the paper. All proofs, 
algorithmic descriptions of multiscale change point methods and additional numerical results are given in the appendix. 
Accompanying R software implementing the methodology is available from https://github .com /EuanMcGonigle /TAVC .seg.

2. Scale-dependent TAVC and its robust estimation

2.1. Multiscale change point detection in the mean

We consider the problem of multiple change point detection under the following model:

Xt = ft + εt = f0 +
q∑

i=1

μi · I(t ≥ τi + 1) + εt, t = 1, . . . ,n. (2)

Under the model (2), the piecewise constant signal ft contains q change points at locations τi , i = 1, . . . , q, with the nota-
tional convention that τ0 = 0 and τq+1 = n. The errors {εt}n

t=1 are assumed to be a (weakly) stationary time series satisfying 
E(εt) = 0 with finite LRV σ 2 = limN→∞ Var(N−1/2 ∑N

t=1 εt) ∈ (0, ∞), and are permitted to be serially correlated and heavy-
tailed (see Assumption 1 below). Our aim is to consistently estimate the total number and the locations of the change 
points. While our primary focus is on detecting changes in the mean, it does not exclude the possibility of applying the 
proposed method to detecting changes in stochastic properties other than the mean via suitable data transformation as 
outlined in Cho and Kirch (2021).

A common approach to this problem is closely related to the change point testing literature, which scans the data for 
the detection and estimation of multiple change points by locally applying a test well-suited for detecting a single change. 
Such a procedure typically involves comparing a test statistic of the form σ̂−1

s,e |Ts,k,e| to a threshold, say D . Here,

Ts,k,e =
√

(k − s)(e − k)

e − s

⎛⎝ 1

k − s

k∑
t=s+1

Xt − 1

e − k

e∑
t=k+1

Xt

⎞⎠ (3)

denotes a change point detector evaluated at some locations 0 ≤ s < k < e ≤ n, which are determined in a method-specific 
way (see Section 3 below), σ 2

s,e denotes a measure of variability in the data section {Xt}e , and σ̂ 2
s,e its estimator. Under 
t=s+1

3
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the stationarity assumption on {εt}n
t=1, a natural choice is σ 2

s,e = σ 2
e−s , the scale-dependent TAVC defined in (1) with L = e − s

as the scale. Then, if {Xt}e
t=s+1 does not contain any change point well within the interval, we expect σ̂−1

s,e |Ts,k,e| ≤ D , while 
it signals the presence of such a change point when σ̂−1

s,e |Ts,k,e| > D . The key challenge lies in separating genuine mean 
shifts from the natural fluctuations due to serial correlations, which requires a careful selection of the estimator σ̂ 2

s,e that 
correctly captures the variability in the section of the data under consideration.

It is well-documented that multiscale application of such a test on data sections of varying lengths, improves the adap-
tivity of the change point methodology to detect both large, frequent changes and small changes over long stretches of 
stationarity (Cho and Kirch, 2021). For such a multiscale procedure, Example 1 demonstrates the potential pitfalls associated 
with using an estimator of the global LRV in place of σ̂ 2

s,e , regardless of the length of the interval on which the detector 
statistic in (3) is computed. In the next section, we propose an estimator of the scale-dependent TAVC σ 2

L in (1) that is 
robust to the presence of multiple mean shifts, for the standardisation of multiscale change point detectors.

2.2. Robust estimation of multiscale TAVC

For notational convenience, suppose that L is an even number, and let G = L/2 denote the block size. Then, for some 
starting point b ∈ {0, . . . , G − 1} with number of blocks N1(b) = 	(n − b − G)/G
, we define

X̄ j,b = 1

G

( j+1)G+b∑
t= jG+b+1

Xt, and ξ j,b = G( X̄ j,b − X̄ j−1,b)
2

2
for j = 1, . . . , N1(b).

Analogously, we define

ε̄ j,b = 1

G

( j+1)G+b∑
t= jG+b+1

εt and ξ̃ j,b = G(ε̄ j,b − ε̄ j−1,b)
2

2
.

Then, the following sum

̂̃σ 2
L = 1

N1(b)

N1(b)∑
j=1

ξ̃ j,b, (4)

takes into account the temporal dependence in the local data sections of length L = 2G . Further, we have E(̂̃σ 2
L) −σ 2

L = o(1)

for L → ∞ (see Theorem 1 below), such that ̂̃σ 2
L is indicative of the level of variability σ 2

L albeit being inaccessible (as it is 
defined with ε̄ j,b in place of X̄ j,b). Its accessible counterpart, N1(b)−1 ∑N1(b)

j=1 ξ j,b , on the other hand, is typically biased due 
to the mean shifts and thus is inappropriate as an estimator of the scale-dependent TAVC.

To obtain an estimator that is robust to multiple mean shifts, we adopt the robust M-estimation framework of Catoni 
(2012). Let φ denote a non-decreasing influence function as

φ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− log(2) for x ≤ −1,

log(1 + x + x2/2) for − 1 ≤ x ≤ 0,

− log(1 − x + x2/2) for 0 ≤ x ≤ 1,

log(2) for x ≥ 1.

(5)

The robust estimator of the TAVC at scale L and starting point b, denoted σ̂ 2
L,b , is defined as the solution of the M-estimation 

equation

hL,b(u) = 1

N1(b)

N1(b)∑
j=1

φv
(
ξ j,b − u

)= 0, (6)

where φv(x) = v−1φ(vx) for some v > 0; we specify the condition on v later. If there are multiple solutions to Equation (6), 
any of them may be chosen.

2.3. Theoretical properties

We establish the consistency of the scale-dependent TAVC estimator under the following assumption on the error process 
{εt}n .
t=1

4
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Assumption 1.

(i) We assume that εt = ∑∞
k=0 akηt−k , where {ηt}t∈Z is a sequence of i.i.d. random variables and |ak| ≤ �(k + 1)−β for 

some constants β > 2.5 and � > 0 for all k ≥ 0.
(ii) There exists a fixed constant cσ > 0 such that σ 2 = (

∑
k≥0 ak)

2 satisfies σ 2 ≥ cσ .
(iii) We operate under either of the following two conditions on the distribution of {ηt }t∈Z .

(a) There exists a fixed constant r > 4 such that ‖η1‖r = (E(|η1|r))1/r < ∞.
(b) There exist fixed constants Cη > 0 and κ ≥ 0 such that ‖η1‖r ≤ Cηrκ for all r ≥ 1.

The linearity of the process {εt}n
t=1 assumed in Assumption 1 (i) facilitates the controlling of the functional dependence 

in {ξ j,b}N1(b)
j=1 . The condition permits the temporal dependence to decay at an algebraic rate. Assumption 1 (ii) is made 

to ensure that the LRV is well-defined. Assumption 1 (iii) (a) allows heavy-tailed {εt}n
t=1, while (b) assumes a stronger 

condition that requires sub-Weibull (Wong et al., 2020) tail behaviour on {ηt }t∈Z which includes sub-Gaussian (κ = 1/2) 
and sub-exponential (κ = 1) distributions as special cases.

For sequences of positive numbers {an} and {bn}, write an � bn if there exists some positive constants C1 and C2 such 
that C1 ≤ an/bn ≤ C2 as n → ∞. The following theorem establishes the consistency of the estimator of the scale-dependent 
TAVC, see Appendix C for the proof.

Theorem 1. Suppose that Assumption 1 holds, and define

σ̃ 2
L = Var

(
1√

L

(
G∑

t=1

εt −
L∑

t=G+1

εt

))

for L = 2G. Then, provided that v � √
qG/n, the estimator ̂σ 2

L,b satisfies

∣∣∣σ̂ 2
L,b − σ̃ 2

L

∣∣∣= OP

(√
Lq

n
+ max

{(
L

n

) r−2
r+2

,

√
L log(n)

n

})
(7)

under Assumption 1 (iii) (a), and

∣∣∣σ̂ 2
L,b − σ̃ 2

L

∣∣∣= OP

⎛⎝√ Lq

n
+
√

L log4κ+3(n)

n

⎞⎠ (8)

under Assumption 1 (iii) (b), for any fixed b ∈ {0, . . . , G − 1}. In addition, ̃σ 2
L satisfies∣∣∣σ̃ 2

L − σ 2
L

∣∣∣= O(L−1). (9)

Theorem 1 shows that the proposed robust estimator consistently estimates the TAVC at scale L. The estimation error is 
decomposed into the error from approximating σ 2

L by σ̃ 2
L in (9), and that in estimating σ̃ 2

L by σ̂ 2
L,b . In deriving the second 

error, we make explicit the influence of multiple mean shifts on the estimator by the term (Lq/n)1/2 in (7)–(8), as well as 
the effect of the innovation distribution in the remaining terms. A careful examination of the proof of Theorem 1 shows 
that ∣∣∣σ̃ 2

L − σ 2
∣∣∣= O(L−1), (10)

therefore as L increases, the scale-L TAVC approximates the global LRV as expected.

Remark 1 (Maximum time-scale for TAVC estimation). The error due to approximating σ 2
L with σ̃ 2

L decreases with L as in (9). 
On the other hand, the error of estimating σ̃ 2

L with σ̂ 2
L,b increases with L as in (7)–(8); this is attributed to the effect of 

mean shifts that grows with L, and the decrease in the number of available blocks. To balance between the two, we suggest 
setting a maximum time-scale, say M , to be used in combination with a multiscale change point detection algorithm. That 
is, when the change point detector Ts,k,e involves e − s ≤ M , we scale the detector with the estimator of σ 2

s−e , the TAVC at 
the corresponding scale L = e − s. On the other hand, if e − s > M , we propose to scale the detector with the estimator of 
σ 2 , the TAVC at the maximum time-scale M , which satisfies |σ 2

e−s − σ 2 | =O(M−1).
M M

5
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3. Applications and extensions

We now describe explicitly how the robust estimator of the scale-dependent TAVC proposed in Section 2, is applied 
within the algorithms that scan moving sum (MOSUM) and cumulative sum (CUSUM) statistics of the form (3), for multiple 
change point detection.

3.1. MOSUM procedure

The MOSUM procedure (Chu et al., 1995; Eichinger and Kirch, 2018) evaluates the change point detector Ts,k,e over a 
moving window. For a given bandwidth G , the MOSUM detector for a change in mean at time point k is given by

TG(k) = Tk−G,k,k+G =
√

G

2

⎛⎝ 1

G

k+G∑
t=k+1

Xt − 1

G

k∑
t=k−G+1

Xt

⎞⎠ , G ≤ k ≤ n − G. (11)

Eichinger and Kirch (2018) propose to estimate the total number and the locations of multiple change points by identifying 
all significant local maximisers of TG (k), say ̂k, satisfying

|TG (̂k)| > σ̂ · Dn(G;α) and k̂ = arg maxk: |k−̂k|≤ηG |TG(k)| (12)

for some η ∈ (0, 1). Here, Dn(G; α) denotes a critical value at a significance level α ∈ (0, 1), which is drawn from the 
asymptotic null distribution of the MOSUM test statistic maxG≤k≤n−G σ−1|TG(k)| obtained under mild conditions permitting 
heavy-tailedness and serial dependence, and takes the form

Dn(G,α) = bG,n + cα

aG,n
with cα = − log log

(
1√

1 − α

)
,

where aG,n and bG,n are known constants depending on G and n only. The single-bandwidth MOSUM procedure achieves 
consistency in estimating the total number and the locations of multiple change points, provided that min1≤i≤q μ2

i G → ∞
as n → ∞ sufficiently fast while 2G ≤ min0≤i≤q(τi+1 − τi), see Theorem 3.2 of Eichinger and Kirch (2018) and Corollary 
D.2 of Cho and Kirch (2022) for explicit conditions. The requirement on G indicates that the single-scale MOSUM procedure 
performs best with the bandwidth chosen as large as possible while avoiding situations where there are more than one 
change point within the moving window at any time. Consequently, it lacks adaptivity when the data sequence contains 
both large changes over short intervals and small changes over long intervals.

Multiscale extensions of the single-bandwidth MOSUM procedure, i.e. applying the MOSUM procedure with a range of 
bandwidths and then combining the results, alleviate the difficulties involved in bandwidth selection and provide adaptivity. 
In this paper, we consider the multiscale MOSUM procedure combined with the ‘bottom-up’ merging as proposed by Messer 
et al. (2014) (see also Meier et al. (2021)). Denoting the range of bandwidths by G = {Gh, 1 ≤ h ≤ H : G1 < . . . < G H }, let 
C(G) denote the set of estimators detected with some bandwidth G ∈ G . Then, we accept all estimators in C(G1) returned 
with the finest bandwidth G1 to the set of final estimators C and, sequentially for h = 2, . . . , H , accept k̂ ∈ C(Gh) if and 
only if mink∈C |̂k − k| > ηGh (with η identical to that in (12)). That is, we only accept the estimators that do not detect the 
change points which have previously been detected at a finer scale.

We propose to apply the multiscale MOSUM procedure with bottom-up merging, in combination with the robust esti-
mator of multiscale TAVC as follows. For each Gh ∈ G , the TAVC at scale L = 2Gh is estimated by σ̂ 2

2Gh
solving (6), provided 

that 2Gh ≤ M . Here, M denotes the maximum scale which is set in relation to the sample size n, see Remark 1. Then, we 
use σ̂2Gh in place of the global estimator σ̂ in (12) to standardise the MOSUM detector TGh (k). When 2Gh > M , we use σ̂M

in place of σ̂2Gh for MOSUM detector standardisation. In doing so, we ensure that change point detectors at multiple scales 
are standardised by the scale-dependent TAVC that accurately reflects the degree of variability over the moving window 
(see Example 1), while taking into account the presence of possibly multiple mean shifts therein. We refer to Algorithm 1
in Appendix A for the pseudocode of the multiscale MOSUM procedure with the robust estimator of scale-dependent TAVC.

3.2. Wild binary segmentation

The binary segmentation algorithm (Scott and Knott, 1974; Vostrikova, 1981) and its extensions, such as wild binary 
segmentation (WBS, Fryzlewicz, 2014; 2020) and seeded binary segmentation (Kovács et al., 2020), recursively search for 
multiple change points using the CUSUM statistic of the form (3), with s and e that are identified iteratively. These methods 
have primarily been analysed for the data segmentation problem under (2) assuming i.i.d. Gaussianity on the {εt}n

t=1. Con-
sequently, some robust estimators of Var(ε1) have been considered for standardising the CUSUM statistic. Here, we discuss 
the application of the WBS2 algorithm (Fryzlewicz, 2020) in the time series setting with the proposed robust estimator of 
the scale-dependent TAVC.

Let As,e = {(�, r) ∈ Z2 : s ≤ � < r ≤ e, r − � > 1} denote the collection of all intervals within {s + 1, . . . , e} for some 
0 ≤ s < e ≤ n, and Rs,e denote its subset selected either randomly or deterministically (see Cho and Fryzlewicz (2021)
6
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for one approach to deterministic grid selection) with |Rs,e | = min(R, |As,e|) for some given R ≤ n(n − 1)/2. Starting with 
(s, e) = (0, n), we identify

(s◦,k◦, e◦) = arg max(�,k,r):�<k<r
(�,r)∈Rs,e

∣∣T�,k,r
∣∣

σ̂r−�

with
∣∣Ts◦,k◦,e◦

∣∣> σ̂e◦−s◦ · D (13)

for some threshold D and σ̂ 2
r−� denoting the proposed robust estimator of the TAVC at scale L = r − � (when r − � is odd, 

we use σ̂ 2
r−�−1 instead). As in Section 3.1, a maximum scale M is set so that the CUSUM statistic over any interval of length 

greater than M is standardised using σ̂M . Following the recommendation made in Fryzlewicz (2014), we adopt the threshold 
D = C

√
2 log(n) where C is a universal constant.

If (s◦, k◦, e◦) that fulfils (13) exists, it signals the presence of a change point so that the data is partitioned into {Xt }k◦
t=s+1

and {Xt}e
t=k◦+1, and the same step of detecting and identifying a single change point is repeated on each partition separately. 

If no such (s◦, k◦, e◦) exists, or when the user-specified minimum segment length is reached, then the search for change 
points is terminated on {Xt}e

t=s+1. We provide a pseudocode of the WBS2 algorithm with the robust estimator of scale-
dependent TAVC in Algorithm 2 of Appendix A.

3.3. Extension to local stationarity

We propose a heuristic extension of the robust estimator of scale-dependent TAVC to the setting where the second-order 
structure of {εt}n

t=1 varies smoothly over time. Suppose that there exists an appropriately chosen window size W such that 
{εt}k+	W /2


t=k−	W /2
+1 may be regarded as being approximately second-order stationary over all k. Then, we propose to perform 
the robust estimation described in Section 2.2 in a localised fashion.

To this end, define the time-varying TAVC at scale L and time k by

σ 2
L (k) = Var

⎛⎝ 1√
L

k+G∑
t=k−G+1

εt

⎞⎠ . (14)

For notational convenience, we set W = N2L for some integer N2, and let N3 = 	(W − G)/G
 be the number of blocks 
for window size W . For k ∈ {W /2, . . . , n − W /2}, we estimate σ 2

L (k) by σ̂ 2
L (k), the solution of the following M-estimation 

equation

hL(u,k) = 1

N3

N3∑
j=1

φv
(
ξ j,k−W /2 − u

)= 0 (15)

with v � (G/W )1/2. We apply a boundary extension so that σ̂ 2
L (1) = . . . = σ̂ 2

L (W /2) and σ̂ 2
L (n − W /2) = . . . = σ̂ 2

L (n). The 
estimator of the local TAVC at time k and scale L is obtained analogously as that of the global TAVC at scale L described 
in Section 2.2, except that we only use the windowed data region starting at time k − W /2 and ending at k + W /2 for 
the estimation of the former. Then, the MOSUM detector TG(k) and the CUSUM statistic Ts,k,e described in Sections 3.1–3.2
are standardised in a time-dependent way using σ̂2G (k) and σ̂ 2

(e−s)(k), respectively. In practice, we observe that taking the 
running median of {σ̂ 2

L (k + b − 	G/2
)}G−1
b=0 as an estimator of σ 2

L (k) further improves the performance, as it ‘smoothes’ out 
the local estimators and enhances the robustness to mean changes.

We illustrate the benefit of adopting the time-varying adaptation of the proposed robust estimator using the following 
example. Consider a time series of length n = 1000, where the errors {εt}t∈Z follow a time-varying AR(1) model: εt =
a1(t)εt−1 + Wt , with a1(t) = 0 for t ≤ 500, a1(t) = 0.7 for t ≥ 501, and Wt ∼i.i.d. N (0, 1). There are two changes in the mean 
at τ1 = 300 and τ2 = 700, with change sizes 1 and 2, respectively. In Fig. 3, we show the MOSUM detector statistic in (11)
calculated using bandwidth G = 100. We also plot the threshold Dn(G, α) at the significance level α = 0.05, multiplied 
by the square root of the global TAVC estimator at scale L = 2G (i.e. σ̂ 2

2G ) in dashed blue line, and that multiplied by the 
square root of the local estimators of the scale-L TAVC (i.e. σ̂ 2

2G(k)) in solid red line. We see that using the global approach 
misses the change at time τ1 = 300 due to the global scale-L TAVC estimator being too large, whilst the localised approach 
successfully detects both changes.

Lastly, we mention that the robust estimation of time-varying and scale-dependent TAVC is of independent interest 
beyond the context of change point analysis, with possible extensions including the estimation of other second-order prop-
erties. For example, the procedure can be used to obtain a robust estimator of the spectrum of a locally stationary wavelet 
process (Nason et al., 2000) while the time series undergoes shifts in the mean.
7
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Fig. 3. MOSUM detector statistic (black solid line) computed from the time series generated as described in the text with two changes in the mean (denoted 
by vertical lines). Also shown are the thresholds computed using global (blue dashed line) and local (red solid line) estimators of the scale-dependent TAVC.

4. Numerical results

4.1. Practical considerations

We provide guidance on the selection of tuning parameters required for the proposed robust TAVC estimator and its 
application with multiscale change point detection methods.

Parameter v in (6) We select v = vb = ξ̄−1
b

√
G/n where ξ̄b is a fixed constant for a given b ∈ {0, . . . , G − 1}. For the problem 

of robust mean estimation, Catoni (2012) recommends the standard deviation in the place of ξ̄b and in a similar vein, Chen 
et al. (2021) propose to use a trimmed mean

ξ̄[1],b = 1

	3N1(b)/4
 − �N1(b)/4� + 1

	3N1(b)/4
∑
j=�N1(b)/4�

ξ( j),b, (16)

where ξ(1),b ≤ . . . ≤ ξ(N1(b)),b are the ordered {ξ j,b}N1(b)
j=1 . Another approach is to use an appropriately scaled median of 

{ξ j,b}N1(b)
j=1 , in a similar fashion to McGonigle et al. (2021). In this case, the necessary scaling constant to ensure unbiasedness 

can be chosen by noting that X̄ j,b is asymptotically Gaussian as L → ∞, and thus ξ j,b is asymptotically scaled χ2
1 . This leads 

to the choice

ξ̄[2],b = K · Median
{
ξ1,b, . . . , ξN1(b),b

}
, (17)

where K = 2.125. In simulation studies, we report the results obtained with ξ̄[�],b , � = 1, 2, in setting the parameter vb
where we observe that both choices return similarly good results.

Parameters b and bmax in (6) As a further step to ensure greater robustness of the estimator, we obtain the estimator σ̂ 2
L,b

for a range of b ∈ {0, . . . , bmax} and take their median as the final estimator σ̂ 2
L . Informally, we may get unlucky with some 

starting value b that leads to many of the ξ j,b contaminated by the mean changes, and taking the median over a range of 
values of b helps in alleviating this. We take bmax = G − 1 in practice which yields good performance.

Maximum time-scale M We recommend M = 	2.5
√

n
 as the coarsest scale at which the scale-dependent TAVC is estimated. 
This choice is made to balance between mitigating the effect of change points, and ensuring that the TAVC at coarser scales 
is well-approximated by σ 2

M .

Tuning parameters for the multiscale MOSUM procedure We follow Cho and Kirch (2022) and generate G as a sequence of 
Fibonacci numbers. For the simulation studies reported in Section 4.2 and Appendix B, we consider G = {Gm, 1 ≤ m ≤ 4 :
G1 < . . . < G4} where Gm = Gm−1 + Gm−2 for m ≥ 2 with G0 = G1 = 20 + 10	n/1000
. For other tuning parameters, we 
adopt the recommended default values of the R package mosum (Meier et al., 2021), and set α = 0.05 and η = 0.4.

Tuning parameters for the WBS2 algorithm For the threshold, we set the constant C = 1.3 and draw R = 100 deterministic 
intervals at each iteration, which are suggested choices in Fryzlewicz (2014) and Cho and Fryzlewicz (2021) respectively. As 
8



we permit the presence of serial correlations, it is reasonable to impose a minimum length requirement on the intervals 
considered in the WBS2 algorithm. We set this minimum length to be 2G1, with G1 the finest scale considered by the 
MOSUM procedure.

Window size W for time-varying TAVC estimation We utilise a scale-dependent window size W L . Setting W L = N2L gives 
N3 = 2N2 − 1 data points used in the solving of the M-estimation equations. We advise setting N2 = 5, which ensures 
that the influence of change points is negated and that the window size is large enough to include enough data points for 
reliable estimation of the TAVC.

4.2. Simulation study

In this section, we evaluate the performance of the proposed robust estimator of scale-dependent TAVC applied with 
the two multiscale change point detection procedures discussed in Sections 3.1–3.2. We compare with other methods that 
account for serial dependence under (2) and whose implementations are readily available in R, with a variety of scenarios 
for generating serially correlated {εt}t∈Z .

4.2.1. Settings
We assess the performance of different methods both in the case of no changes (q = 0) and multiple changes (q ≥ 1), 

under a variety of error structures. Unless stated otherwise, we generate Wt ∼i.i.d. N (0, σ 2
w) with σw = 1.

(M1) εt = Wt .
(M2) εt = Wt , where Wt are i.i.d. t5-distributed random variables.

(M3) AR(1) model: εt = a1εt−1 + Wt , with a1 = 0.9 and σw =
√

1 − a2
1.

(M4) AR(2) model: εt = a1εt−1 + a2εt−2 + Wt , with a1 = 0.5 and a2 = 0.3, with σw = 0.6676184.
(M5) MA(1) model: εt = Wt + b1Wt−1, with b1 = −0.9.
(M6) ARCH(1) model: εt = σt Wt with σ 2

t = c0 + c1ε
2
t−1, where c0 = 0.5, c1 = 0.4.

(M7) Time-varying AR(1) model: εt = a1(t)εt−1 + Wt , with a1(t) = 0.8 − 0.6t/n.
(M8) Time-varying AR(1) model: εt = a1(t)εt−1 + σ(t)Wt , with a1(t) = 0.5 cos(2πt/n) and σ(t) =√

1 − a1(t)2.
(M9) Time-varying MA(1) model: εt = Wt + b1(t)Wt−1, with b1(t) = 12(t/n)3 − 18(t/n)2 + 6t/n.

Models (M1)–(M6) represent stationary error scenarios. Model (M1) is the setting commonly adopted in the literature 
while (M2), taken from Cho and Kirch (2021), is adopted to examine whether a method works well in the presence of 
non-Gaussian errors. Models (M3) and (M4) allow strong autocorrelations in {εt}n

t=1. Under Model (M5), the LRV is close to 
zero, which makes its accurate estimation difficult. Model (M6) is a non-linear process. Models (M7)–(M9) consider time-
varying dependence structure; variants of (M7) and (M8) were studied in McGonigle et al. (2021) and Cho and Fryzlewicz 
(2021), respectively. For Models (M1)–(M6), we use the global scale-dependent TAVC estimator described in Section 2.2
while for (M7)–(M9), we use the window-based estimator of the local scale-dependent TAVC described in Section 3.3.

We assess the performance of the methods both when q = 0 and q ≥ 1. In the latter case, the time series contains the 
q change points at τi = 	n/(q + 1) · i
, i = 1, . . . , q, with the (signed) change size μi = μ(τi) · (−1)i+1. In (M1)–(M4) and 
(M6), we set μ(τi) = σ and in the case of (M5), we set μ = 1. In (M7)–(M9), we set μ(τi) = σ(τi) where σ 2(t) denotes the 
time-varying LRV.

We implement the robust TAVC estimation within both the multiscale MOSUM and WBS2 procedures as described in 
Sections 3.1 and 3.2, which are referred to as MOSUM.TAVC[�] and WBS2.TAVC[�] , respectively. Here, the subscript with 
� = 1, 2, refers to the choice of the tuning parameter ξ̄[�],b involved in the parameter v , see (16)–(17). For the choice of the 
tuning parameters, we refer to Section 4.1. For illustrative purposes, we also report the results of the ‘oracle’ versions of the 
MOSUM and WBS2 procedures referred to as MOSUM.oracle and WBS2.oracle, respectively. These methods are implemented 
with the true LRV σ 2 (σ 2(t) in the case of Models (M7)–(M9)) for standardising the detector statistics, while all other 
tuning parameters are kept the same.

Additionally, we consider DepSMUCE (Dette et al., 2020), DeCAFS (Romano et al., 2021) and WCM.gSa (Cho and Fry-
zlewicz, 2021) for comparison. DepSMUCE extends SMUCE (Frick et al., 2014) to dependent data using a difference-type 
estimator of the LRV. Although not its primary objective, DeCAFS detects multiple change points in the mean assuming that 
the noise is a stationary AR(1) process. The WCM.gSa method performs model selection on the sequence of models gen-
erated by the WBS2 algorithm, using an information criterion-based model selection strategy which assumes that {εt }t∈Z
follows an AR model of an arbitrary order. For DepSMUCE, we consider significance levels α ∈ {0.05, 0.2}. Other tuning 
parameters not mentioned here are chosen as recommended by the authors.

4.2.2. Results
Table 1 summarises the results of the comparative simulation study from 1000 replications of time series of length 

n = 1000 generated as in (M1)–(M9) with q ∈ {0, 4}. Results for other values of n ∈ {500, 2000} are given in Appendix B, 
where we make similar observations as below.
E.T. McGonigle and H. Cho Computational Statistics and Data Analysis 179 (2023) 107648
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Table 1
Performance comparisons for n = 1000. We report the size, the proportion of realisations where change points are falsely detected when q = 0, and the 
distribution of the estimated number of change points, covering metric (CM) and relative MSE (RMSE) over 1000 realisations when q = 4. The modal value 
of the distribution of the number of estimated change points for each method is shown in bold. The best performing method according to each metric 
when q = 4 is underlined.

Model Method Size q̂ − q CM RMSE

≤ −2 −1 0 1 ≥ 2

(M1) MOSUM.TAVC[1] 0.135 0.000 0.006 0.980 0.014 0.000 0.967 6.098
MOSUM.TAVC[2] 0.091 0.000 0.015 0.978 0.007 0.000 0.965 6.234
WBS2.TAVC[1] 0.049 0.000 0.004 0.996 0.000 0.000 0.976 4.605
WBS2.TAVC[2] 0.028 0.001 0.017 0.982 0.000 0.000 0.973 4.787

DepSMUCE(0.05) 0.010 0.000 0.014 0.986 0.000 0.000 0.972 4.859
DepSMUCE(0.2) 0.066 0.000 0.001 0.998 0.001 0.000 0.976 4.566
DeCAFS 0.015 0.000 0.000 0.970 0.029 0.001 0.976 4.798
WCM.gSa 0.007 0.000 0.000 0.978 0.020 0.002 0.975 4.733
MOSUM.oracle 0.040 0.000 0.000 0.861 0.132 0.007 0.965 5.782
WBS2.oracle 0.004 0.000 0.000 1.000 0.000 0.000 0.977 4.567

(M2) MOSUM.TAVC[1] 0.149 0.001 0.004 0.979 0.015 0.001 0.967 6.512
MOSUM.TAVC[2] 0.086 0.003 0.008 0.981 0.008 0.000 0.965 6.595
WBS2.TAVC[1] 0.040 0.001 0.006 0.993 0.000 0.000 0.976 4.702
WBS2.TAVC[2] 0.014 0.004 0.011 0.985 0.000 0.000 0.974 4.899

DepSMUCE(0.05) 0.586 0.000 0.004 0.611 0.161 0.224 0.946 13.784
DepSMUCE(0.2) 0.747 0.000 0.000 0.420 0.180 0.400 0.934 15.828
DeCAFS 0.898 0.000 0.000 0.105 0.040 0.855 0.886 29.258
WCM.gSa 0.009 0.000 0.000 0.978 0.020 0.002 0.975 4.789
MOSUM.oracle 0.037 0.000 0.000 0.843 0.143 0.014 0.964 6.300
WBS2.oracle 0.012 0.000 0.000 0.996 0.004 0.000 0.978 4.650

(M3) MOSUM.TAVC[1] 0.147 0.000 0.000 0.998 0.002 0.000 0.995 1.810
MOSUM.TAVC[2] 0.082 0.000 0.001 0.999 0.000 0.000 0.994 1.789
WBS2.TAVC[1] 0.062 0.000 0.000 1.000 0.000 0.000 0.998 1.258
WBS2.TAVC[2] 0.034 0.000 0.001 0.999 0.000 0.000 0.998 1.264

DepSMUCE(0.05) 0.968 0.000 0.000 0.920 0.078 0.002 0.992 1.494
DepSMUCE(0.2) 0.996 0.000 0.000 0.739 0.232 0.029 0.978 1.888
DeCAFS 0.597 0.000 0.000 0.590 0.342 0.068 0.982 1.236
WCM.gSa 0.053 0.000 0.000 0.731 0.135 0.134 0.959 2.086
MOSUM.oracle 0.001 0.000 0.000 0.891 0.097 0.012 0.988 2.012
WBS2.oracle 0.000 0.000 0.000 0.979 0.021 0.000 0.997 1.321

(M4) MOSUM.TAVC[1] 0.123 0.000 0.003 0.992 0.005 0.000 0.987 3.133
MOSUM.TAVC[2] 0.073 0.001 0.004 0.992 0.003 0.000 0.986 3.232
WBS2.TAVC[1] 0.053 0.001 0.000 0.999 0.000 0.000 0.994 1.715
WBS2.TAVC[2] 0.035 0.003 0.002 0.995 0.000 0.000 0.993 1.755

DepSMUCE(0.05) 0.678 0.000 0.000 0.979 0.021 0.000 0.993 1.827
DepSMUCE(0.2) 0.907 0.000 0.000 0.891 0.105 0.004 0.986 2.089
DeCAFS 0.734 0.000 0.000 0.241 0.224 0.535 0.935 2.258
WCM.gSa 0.022 0.000 0.000 0.778 0.111 0.111 0.966 2.684
MOSUM.oracle 0.008 0.000 0.000 0.972 0.028 0.000 0.986 3.087
WBS2.oracle 0.001 0.000 0.000 1.000 0.000 0.000 0.995 1.705

(M5) MOSUM.TAVC[1] 0.120 0.000 0.000 1.000 0.000 0.000 0.990 89.580
MOSUM.TAVC[2] 0.069 0.000 0.000 1.000 0.000 0.000 0.990 89.580
WBS2.TAVC[1] 0.103 0.000 0.000 1.000 0.000 0.000 0.992 76.922
WBS2.TAVC[2] 0.052 0.000 0.000 1.000 0.000 0.000 0.992 76.922

DepSMUCE(0.05) 0.998 0.000 0.000 0.036 0.048 0.916 0.773 2535.266
DepSMUCE(0.2) 1.000 0.000 0.000 0.003 0.004 0.993 0.634 1038.395
DeCAFS 0.001 0.000 0.000 0.997 0.003 0.000 0.992 77.886
WCM.gSa 0.000 0.000 0.000 1.000 0.000 0.000 0.992 76.814
MOSUM.oracle 1.000 0.000 0.000 0.000 0.000 1.000 0.276 247.634
WBS2.oracle 1.000 0.000 0.000 0.000 0.000 1.000 0.278 207.555

(M6) MOSUM.TAVC[1] 0.168 0.000 0.000 0.978 0.021 0.001 0.973 6.246
MOSUM.TAVC[2] 0.112 0.000 0.001 0.993 0.006 0.000 0.973 6.246
WBS2.TAVC[1] 0.064 0.000 0.000 1.000 0.000 0.000 0.981 4.833
WBS2.TAVC[2] 0.030 0.000 0.001 0.999 0.000 0.000 0.981 4.844

DepSMUCE(0.05) 0.507 0.000 0.000 0.740 0.176 0.084 0.963 8.026
DepSMUCE(0.2) 0.716 0.000 0.000 0.564 0.252 0.184 0.949 9.934
DeCAFS 0.755 0.000 0.000 0.191 0.066 0.743 0.911 25.250
WCM.gSa 0.021 0.000 0.000 0.971 0.018 0.011 0.978 5.406
MOSUM.oracle 0.021 0.000 0.000 0.881 0.109 0.010 0.969 6.300
WBS2.oracle 0.005 0.000 0.000 0.995 0.005 0.000 0.981 4.863
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Table 1 (continued)

Model Method Size q̂ − q CM RMSE

≤ −2 −1 0 1 ≥ 2

(M7) MOSUM.TAVC[1] 0.247 0.000 0.002 0.970 0.025 0.003 0.973 5.232
MOSUM.TAVC[2] 0.171 0.000 0.004 0.972 0.023 0.001 0.972 5.310
WBS2.TAVC[1] 0.184 0.000 0.004 0.988 0.008 0.000 0.971 5.004
WBS2.TAVC[2] 0.125 0.000 0.010 0.987 0.003 0.000 0.970 5.114

DepSMUCE(0.05) 0.747 0.000 0.175 0.718 0.107 0.000 0.928 7.807
DepSMUCE(0.2) 0.921 0.000 0.019 0.716 0.258 0.007 0.960 5.416
DeCAFS 0.830 0.000 0.000 0.652 0.171 0.177 0.958 6.217
WCM.gSa 0.471 0.059 0.041 0.830 0.044 0.026 0.941 6.975
MOSUM.oracle 0.015 0.000 0.000 0.903 0.094 0.003 0.969 5.312
WBS2.oracle 0.005 0.000 0.000 1.000 0.000 0.000 0.975 4.884

(M8) MOSUM.TAVC[1] 0.244 0.000 0.001 0.947 0.052 0.000 0.969 6.884
MOSUM.TAVC[2] 0.154 0.000 0.001 0.961 0.038 0.000 0.969 6.918
WBS2.TAVC[1] 0.160 0.000 0.002 0.995 0.003 0.000 0.967 6.565
WBS2.TAVC[2] 0.107 0.000 0.003 0.994 0.003 0.000 0.967 6.658

DepSMUCE(0.05) 0.219 0.032 0.641 0.306 0.019 0.002 0.817 17.602
DepSMUCE(0.2) 0.483 0.000 0.252 0.633 0.105 0.010 0.904 10.411
DeCAFS 0.341 0.001 0.002 0.652 0.153 0.192 0.953 9.188
WCM.gSa 0.173 0.076 0.159 0.748 0.011 0.006 0.913 8.976
MOSUM.oracle 0.045 0.000 0.000 0.841 0.142 0.017 0.962 7.206
WBS2.oracle 0.013 0.000 0.000 0.996 0.004 0.000 0.971 5.960

(M9) MOSUM.TAVC[1] 0.311 0.000 0.008 0.915 0.076 0.001 0.963 7.027
MOSUM.TAVC[2] 0.204 0.000 0.020 0.931 0.049 0.000 0.962 7.026
WBS2.TAVC[1] 0.234 0.000 0.020 0.972 0.008 0.000 0.958 8.451
WBS2.TAVC[2] 0.167 0.000 0.029 0.968 0.003 0.000 0.958 8.143

DepSMUCE(0.05) 0.130 0.181 0.806 0.013 0.000 0.000 0.743 13.448
DepSMUCE(0.2) 0.380 0.022 0.874 0.094 0.010 0.000 0.774 11.770
DeCAFS 0.075 0.034 0.414 0.431 0.078 0.043 0.858 10.028
WCM.gSa 0.054 0.057 0.695 0.236 0.009 0.003 0.814 10.822
MOSUM.oracle 0.101 0.000 0.000 0.760 0.211 0.029 0.957 7.436
WBS2.oracle 0.080 0.000 0.000 0.827 0.171 0.002 0.950 7.927

When q = 0, we report the proportion of falsely detecting any change point out of the 1000 realisations (see the column 
‘Size’ in Table 1). When q ≥ 1, we report the relative mean squared error (RMSE)

n∑
t=1

( f̂t − ft)
2/

n∑
t=1

( f̂ ∗
t − ft)

2,

where f̂t is the piecewise constant signal constructed with the estimated change points, and f̂ ∗
t is the oracle estimator 

constructed with the true change points. For illustration, Fig. 4 plots f̂t obtained from different methods in consideration 
and the oracle estimator f̂ ∗

t , on a realisation from Model (M6). We also report the distribution of the estimated number 
of change points, as well as the covering metric (CM). The covering metric (Arbelaez et al., 2010) measures the quality of 
the resulting segmentation as defined by the location of the detected changes, and is recommended in van den Burg and 
Williams (2020) as an evaluation metric for comparing change point detection algorithms. The CM take values between 0
and 1, with a value of 1 corresponding to a perfect segmentation. Its explicit definition can be found in Appendix B. For 
each measure, we report its average over the 1000 realisations.

Overall, WBS2.TAVC displays better size control than MOSUM.TAVC. The multiscale MOSUM procedure with bottom-up 
merging has been noted to return false positives as it accepts all estimators from the finest bandwidth; see the simulation 
results reported in Cho and Kirch (2022). Despite this known issue, MOSUM.TAVC shows better size control than some of the 
competitors such as DepSMUCE and DeCAFS. Between the two choices of the parameter v used in (6), the one involving (17)
(corresponding to the subscript 2) yields the estimator of TAVC that returns better size control, e.g. closer to the nominal 
level α = 0.05 for the multiscale MOSUM procedure. On the other hand, using the trimmed mean (corresponding to the 
subscript 1) as in (16) sees improved power at the cost of larger size. This suggests that an approach combining the two 
choices of v may yield a more balanced performance.

WBS2.TAVC performs the best across all metrics and scenarios among non-oracle methods when q ≥ 1. Also, we observe 
that using the proposed robust estimator of scale-dependent TAVC, compares favourably to the multiscale methods applied 
with the true LRV (i.e. MOSUM.oracle and WBS2.oracle) and in some scenarios, the former outperforms the respective oracle 
counterpart. In particular, in Scenario (M5) where the LRV is close to 0, plugging in its true value leads to detecting many 
false positives. This shows that adopting the scale-dependent TAVC in place of the LRV for test statistic standardisation 
improves the finite sample performance when the change point detection procedure involves localised testing, as is the 
case for both the MOSUM and the WBS2 procedures. We make a similar observation about the performance of DepSMUCE 
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Fig. 4. Comparisons of the estimator ̂ ft (red solid line) obtained from various methods in consideration and the oracle estimator ̂ f ∗
t (black dashed line) for 

a realisation (grey solid line) from Model (M6). True change point locations are given by blue dashed vertical lines.

which also sets out to estimate the LRV. DeCAFS exhibits good detection power but tends to over-estimate the number of 
change points as well as failing to control the size adequately even when it is applied to the correctly specified scenario 
(Model (M3)). WCM.gSa performs well in correctly estimating the number of change points regardless of whether q = 0 or 
q ≥ 1. However, its performance deteriorates in the presence of nonstationarities, see (M7)–(M9).

Further inspection of the results under (M9) demonstrates one advantage of the time-varying approach. Fig. 5 plots the 
histogram of the estimated change point locations across the 1000 replications for each of the methods. We see that the 
competing approaches struggle to detect the final change point due to the decreased variability towards the end of the 
data sequence, whereas the proposed estimator of time-varying scale-dependent TAVC successfully extends to the locally 
stationary scenarios.

4.3. Data applications

We apply MOSUM.TAVC and WBS2.TAVC, the multiscale procedures combined with the robust estimator of scale-
dependent TAVC, to two data examples. We select the parameter v in (6) using (16) and select other tuning parameters 
as described in Section 4.1 unless specified otherwise.

4.3.1. House price index data
We analyse the monthly percentage changes in UK house price index (HPI), which provides insight into the estimated 

overall changes in house prices across the UK. The data are available from https://www.gov.uk /government /statistical -data -
sets/, and a detailed description of the calculation of the HPI can be found from UK Land Registry (2021). The HPI series 
for various regions of the UK have previously been analysed in Baranowski et al. (2019) and McGonigle et al. (2021). We 
12
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Fig. 5. Histograms plotting the change point estimators returned by different methods under Model (M9).

Fig. 6. Monthly percentage change in HPI for detached properties in Somerset West and Taunton. Change point estimators returned by WBS2.TAVC (top) 
and MOSUM.TAVC (bottom) are denoted by dashed vertical lines, and the estimated means are given by solid line.

Table 2
Change points detected from the monthly HPI series for Somerset West and 
Taunton from April 1995 to February 2022.

Method Detected change points

WBS2.TAVC 2004-11, 2020-06
MOSUM.TAVC 2004-05, 2020-05

DepSMUCE(0.05) 2004-11
DepSMUCE(0.2) 2008-09
DeCAFS 1999-05, 2003-01, 2008-08, 2009-01
WCM.gSa 1999-05, 2003-01, 2007-09, 2009-01, 2021-08

analyse the HPI for detached properties in the area of Somerset West and Taunton between April 1995 and February 2022 
(n = 323).

We set the tuning parameters as described in Section 4.1 except for the window size W = 4L, C = 1.15 (for WBS2.TAVC) 
and α = 0.1 (for MOSUM.TAVC) due to the short length of the time series. We combine the multiscale change point de-
tection procedures with the robust estimator of the time-varying, scale-dependent TAVC described in Section 3.3, with the 
bandwidths G = {20, 40, 60} for the MOSUM procedure and the minimum interval length set at 40 for WBS2. The data are 
shown in Fig. 6, with the change points detected by WBS2.TAVC and MOSUM.TAVC as well as the resulting estimated mean 
signal given in the top and bottom panels, respectively. For comparison, we also apply DepSMUCE, DeCAFS and WCM.gSa to 
the data, see Table 2.

Both WBS2.TAVC and MOSUM.TAVC detect two changes. The first change, detected in May and November 2004 for the 
two methods, corresponds to a decrease in the mean of the HPI series. The second change, detected in May/June 2020, may 
be associated with the changing consumer demand for housing in the wake of the COVID-19 pandemic. The Taunton area 
saw the biggest increase in overall house prices in 2021, as the “race for space” saw buyers opt for “more space to work 
from home as well as more outdoor space” (The Guardian, 2021).

We observe that no changes are detected by either WBS2.TAVC or MOSUM.TAVC during the 2008–2009 period associated 
with the financial crisis. In contrast, DepSMUCE (with α = 0.2), DeCAFS and WCM.gSa detect changes during this time
13
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Fig. 7. Estimated variance of the mean change-adjusted Somerset West and Taunton HPI series.

period, possibly influenced by the increased variability during the financial crisis. Changes detected in the crisis period 
can be attributed to changes in variance (and autocorrelation), rather than those in mean, as noted in McGonigle et al. 
(2021). We further support this interpretation by estimating the time-varying variance after adjusting for the shifts in 
mean using the change point estimators returned by WBS2.TAVC, using the wavelet-based framework of Nason et al. (2000)
implemented for non-dyadic data as described in McGonigle et al. (2022), see Fig. 7. There is a clear period of increased 
variance between 2007–2010, likely due to the financial crisis. By utilising a time-varying TAVC estimator, our proposed 
methodology is able to capture the increased variability during this period, which ensures that potential false positives are 
not detected. Furthermore, by accounting for the decrease in variability towards the end of the series, our time-varying 
estimator of the scale-dependent TAVC allows for the detection of a change in 2020 that is missed by other methods.

4.3.2. Nitrogen dioxide concentration in London
We analyse the daily average concentrations of nitrogen dioxide (NO2), measured in μg/m3, recorded at Marylebone 

Road in London, UK. The measurements were taken from January 1st, 2000 until October 31st, 2021 (n = 7734). The data 
set is available from https://www.londonair.org .uk and a similar dataset was analysed for shifts in the mean in Cho and 
Fryzlewicz (2021) using the WCM.gSa method. The data take positive values and display both seasonality and effects due to 
bank holidays, as the main source of NO2 emissions at the site is likely to be road traffic. To mitigate these effects, we take 
the square root transform of the data and remove seasonality as described in Cho and Fryzlewicz (2021).

We apply WBS2.TAVC and MOSUM.TAVC using the global TAVC estimator in (6), with the minimum interval length 
set at 80 for WBS2.TAVC and the bandwidths set as G = {40, 80, 120, 200, 320, 520, 840} for the MOSUM.TAVC. All other 
tuning parameters are selected as in Section 4.1. The transformed data are shown in Fig. 8, with change points detected by 
WBS2.TAVC and MOSUM.TAVC and the resulting estimated mean signals given in the top and bottom panels, respectively. 
For comparison, we also apply DepSMUCE, DeCAFS and WCM.gSa to the data. Except for DeCAFS, which detects 17 change 
points, all methods return similar estimators. For brevity, the DeCAFS method is omitted from the results reported in Table 3.

Both WBS2.TAVC and MOSUM.TAVC detect four change points, some of which can be linked to policy changes likely 
affecting the levels of air pollutants. In February 2003, traffic management measures were introduced in central London 
which included modification of the pollutant filters of London buses and other heavy duty diesel vehicles, leading to an 
increase in their NO2 emissions (Air Quality Expert Group, 2004). This corresponds to the change on January 31st, 2003 
detected by all methods. Also, Marylebone Road lies within the ultra low emission zone (ULEZ) that was introduced in 
April 2019. The ULEZ places restrictions on the levels of pollutants of vehicles travelling in the zone, and can be linked to 
the change on March 10th, 2019 detected by WBS2.TAVC or earlier in 2018 by other methods considering the bias in the 
change point estimators. This corresponds to a decrease in the concentration of NO2. The final change point, detected by all 
methods on March 18th, 2020, aligns with the nationwide lockdown due to the COVID-19 pandemic on March 23rd, 2020, 
which resulted in drastically reduced levels of NO2 throughout the UK (Higham et al., 2021).

5. Conclusions

We propose an estimator of scale-dependent TAVC that is robust to the presence of (possibly) multiple mean shifts. 
It is readily combined with multiscale change point detection methodologies which, by scanning for change points over 
data sections of varying lengths, provide good adaptivity to the problem of multiple change point detection. We show the 
consistency of the proposed estimator under general assumptions permitting heavy tails and serial dependence decaying 
at a polynomial rate, and investigate its use with the multiscale MOSUM procedure and the WBS2 algorithm. Through 
extensive numerical studies, we demonstrate the benefit of adopting the proposed estimator of scale-dependent TAVC for 
improved finite sample performance, as it better reflects the level of variability in the local data sections involved in the 
14
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Fig. 8. Transformed daily NO2 measurements taken at Marylebone Road, London, UK. Change point estimators returned by WBS2.TAVC (top) and MO-
SUM.TAVC (bottom) are denoted by dashed vertical lines, and the estimated means are given by solid lines.

Table 3
Change points detected from the daily average concentrations of NO2 at Marylebone Road 
in London from January 1st, 2000 to October 31st, 2021.

Method Detected change points

WBS2.TAVC 2003-01-31, 2010-07-25, 2019-03-10, 2020-03-18
MOSUM.TAVC 2003-01-11, 2010-03-06, 2018-12-30, 2020-03-18

DepSMUCE(0.05) 2003-01-31, 2010-07-25, 2018-10-14, 2020-03-18
DepSMUCE(0.2) 2003-01-31, 2008-08-31, 2012-10-04, 2018-10-14, 2020-03-18
WCM.gSa 2003-01-31, 2009-12-09, 2018-10-14, 2020-03-18

multiscale methods. In particular, the heuristic extension to local stationarity shows promising performance which provides 
a natural avenue for future research. An implementation of the methodology in the R programming language can be found 
at https://github .com /EuanMcGonigle /TAVC .seg.

Appendix A. Algorithms and further description

A.1. Multiscale MOSUM procedure with bottom-up merging

Algorithm 1 provides a pseudocode for the multiscale MOSUM procedure with bottom-up merging combined with the 
robust estimation of TAVC.

Algorithm 1: Multiscale MOSUM procedure with bottom-up merging.
Input: Data {Xt }n

t=1, set G of bandwidths, α, η ∈ (0, 1), maximum scale M for TAVC estimation
Initialise P ← C ← ∅
for G ∈ G do

if 2G ≤ M then
Set ̂σ 2

2G as the solution to (6) with L = 2G
else

Set ̂σ 2
2G ← σ̂ 2

M with ̂σ 2
M solving (6) with L = M

end

C(G) ← Set of change point estimators obtained with bandwidth G and critical value Dn(G, α) according to (12)

for k̂ ∈ C(G) do Add (̂k, G) to P
end

for k̂◦ ∈ P in increasing order with respect to G do
if min̂k∈C |̂k◦ − k̂| ≥ ηG then Add ̂k◦ to C

end

Output: C
15
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A.2. Wild binary segmentation 2 algorithm

Algorithm 2 provides a pseudocode for the WBS2 algorithm combined with the robust TAVC estimation.

Algorithm 2: Wild binary segmentation 2.
Input: Data {Xt }n

t=1, number of intervals R , minimum interval length Imin, threshold D , maximum scale M for TAVC estimation

Function wbs2({Xt }n
t=1, s, e, R, D, M, Imin, C):

if e − s ≤ Imin then Quit

As,e ← {(�, r) ∈Z2 : s ≤ � < r ≤ e and r − � > 1}
if |As,e | ≤ R then

R̃ ← |As,e | and set Rs,e ← As,e

else
R̃ ← R and draw ̃R elements from As,e deterministically over an equispaced grid, to form Rs,e = {(sm, em) : 1 ≤ m ≤ R̃}

end

for m ∈ {1, . . . , ̃R} do
if em − sm ≤ M then

Set ̂σ 2
sm ,em

as the solution to (6) with L = 2	(em − sm)/2

else

Set ̂σ 2
sm ,em

← σ̂ 2
M with ̂σ 2

M solving (6) with L = M

end

Identify (s◦, k◦, e◦) = arg max(sm ,k,em):1≤m≤R̃, sm<k<em
|Tsm ,k,em |/σ̂sm ,em

if |Ts◦,k◦,e◦ |/σ̂sm ,em > D then Add k◦ to C
Perform wbs2({Xt }n

t=1, s, k◦, R, D, M, Imin, C) ∪ wbs2({Xt }n
t=1, k◦, e, R, D, M, Imin, C)

end

Initialise C ← ∅
wbs2({Xt }n

t=1, 0, n, R, D, M, Imin, C)

Output: C

Appendix B. Additional numerical results

In this section, we provide further information on the simulation study carried out in Section 4.2 and report additional 
numerical results to demonstrate the performance of the proposed robust estimator of the scale-dependent TAVC.

The covering metric (CM) used to assess the quality of the segmentation produced by the detected change point is 
defined as follows. The true change locations {τi}q

i=1 define a partition P of the interval {1, 2, . . . , n} into disjoint sets 
Ai such that Ai is the segment {τi−1 + 1, . . . , τi}. Similarly, the estimated change locations {τ̂i }̂q

i=1 yield a partition P̂ of 
segments Âi . Then, CM is defined by

C(P̂,P) = 1

n

∑
A∈P

|A| max
Â∈P̂

{ |A∩ Â|
|A∪ Â|

}
.

The CM takes values between 0 and 1, with a value of 1 corresponding to a perfect segmentation, i.e. P = P̂ .
We repeat the simulations carried out in Section 4.2 with different values of n ∈ {500, 2000}. When n = 500, we introduce 

q = 3 change points to the time series at times τi = 	(n/4)i
, i = 1, . . . , 3. For n = 2000, we have q = 6 change points at 
times τi = 	(n/7)i
, i = 1, . . . , 6. Lastly, μi is set analogously as in the main text. See Tables B.1-B.2 for the results.

Appendix C. Proof of Theorem 1

For sequences of positive numbers {an} and {bn}, we write an � bn , or an = O(bn), if there exists some constant C > 0
such that an/bn ≤ C as n → ∞. We write an � bn if there exists some positive constants C1 and C2 such that C1 ≤ an/bn ≤ C2
as n → ∞. Without loss of generality, we set b = 0 and drop the dependence on b for notational simplicity; analogous 
arguments are applicable when other fixed values of b ∈ {0, . . . , G − 1} are used.

We denote by B j = {t ∈ {1, . . . , n} : jG + 1 ≤ t ≤ ( j + 1)G} the set of indices of the j-th block of data for some j =
0, . . . , 	n/G
 − 1. We adapt the proof of Theorem 5 in Chen et al. (2021) with modifications to our case with the TAVC 
estimator. We denote by

S = {0 ≤ j ≤ 	n/G
 − 1 : B j or B j−1 contains change points}.
Then, |S| ≤ 2q. First, we consider the influence function constructed using the blocks which do not contain any change 
points:
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Table B.1
Performance comparisons when n = 500. We report the size, the proportion of realisations where change points are falsely detected when q = 0, and the 
distribution of the estimated number of change points, covering metric (CM) and relative MSE (RMSE) over 1000 realisations when q = 3. The modal value 
of the distribution of the number of estimated change points for each method is shown in bold. The best performing method according to each metric 
when q = 3 is underlined.

q̂ − q

Model Method Size ≤ −2 −1 0 1 ≥ 2 CM RMSE

(M1) MOSUM.TAVC[1] 0.116 0.006 0.033 0.944 0.017 0.000 0.944 7.188
MOSUM.TAVC[2] 0.061 0.010 0.086 0.897 0.007 0.000 0.930 8.261
WBS2.TAVC[1] 0.068 0.008 0.041 0.951 0.000 0.000 0.949 6.411
WBS2.TAVC[2] 0.037 0.036 0.092 0.872 0.000 0.000 0.922 9.082

DepSMUCE(0.05) 0.015 0.006 0.220 0.774 0.000 0.000 0.890 12.896
DepSMUCE(0.2) 0.067 0.000 0.033 0.965 0.002 0.000 0.953 6.334
DeCAFS 0.023 0.000 0.000 0.964 0.035 0.001 0.961 6.062
WCM.gSa 0.011 0.000 0.000 0.963 0.026 0.011 0.958 6.227
MOSUM.oracle 0.025 0.000 0.000 0.879 0.115 0.006 0.948 6.863
WBS2.oracle 0.008 0.000 0.000 0.997 0.003 0.000 0.963 5.749

(M2) MOSUM.TAVC[1] 0.131 0.003 0.033 0.944 0.020 0.000 0.946 7.020
MOSUM.TAVC[2] 0.079 0.016 0.067 0.906 0.011 0.000 0.931 8.195
WBS2.TAVC[1] 0.077 0.017 0.033 0.950 0.000 0.000 0.948 6.183
WBS2.TAVC[2] 0.040 0.042 0.081 0.877 0.000 0.000 0.924 7.635

DepSMUCE(0.05) 0.371 0.003 0.153 0.643 0.125 0.076 0.883 20.031
DepSMUCE(0.2) 0.572 0.000 0.022 0.609 0.200 0.169 0.917 15.960
DeCAFS 0.746 0.000 0.000 0.232 0.096 0.672 0.894 26.581
WCM.gSa 0.013 0.000 0.000 0.977 0.022 0.001 0.959 6.521
MOSUM.oracle 0.040 0.000 0.000 0.862 0.129 0.009 0.948 6.813
WBS2.oracle 0.015 0.000 0.000 0.995 0.004 0.001 0.964 5.335

(M3) MOSUM.TAVC[1] 0.168 0.000 0.003 0.992 0.005 0.000 0.991 2.038
MOSUM.TAVC[2] 0.113 0.000 0.016 0.981 0.003 0.000 0.989 2.153
WBS2.TAVC[1] 0.144 0.000 0.002 0.998 0.000 0.000 0.997 1.484
WBS2.TAVC[2] 0.096 0.001 0.017 0.982 0.000 0.000 0.992 1.698

DepSMUCE(0.05) 0.963 0.000 0.000 0.893 0.106 0.001 0.987 1.841
DepSMUCE(0.2) 0.993 0.000 0.000 0.750 0.218 0.032 0.972 2.196
DeCAFS 0.574 0.000 0.002 0.646 0.276 0.078 0.976 1.302
WCM.gSa 0.160 0.000 0.000 0.498 0.185 0.317 0.887 3.262
MOSUM.oracle 0.001 0.000 0.001 0.991 0.008 0.000 0.991 2.037
WBS2.oracle 0.000 0.000 0.000 1.000 0.000 0.000 0.997 1.454

(M4) MOSUM.TAVC[1] 0.130 0.001 0.016 0.977 0.006 0.000 0.979 3.419
MOSUM.TAVC[2] 0.071 0.005 0.051 0.943 0.001 0.000 0.968 4.715
WBS2.TAVC[1] 0.102 0.004 0.017 0.979 0.000 0.000 0.986 2.091
WBS2.TAVC[2] 0.066 0.012 0.060 0.928 0.000 0.000 0.971 2.905

DepSMUCE(0.05) 0.762 0.000 0.000 0.959 0.039 0.002 0.988 2.116
DepSMUCE(0.2) 0.919 0.000 0.000 0.859 0.125 0.016 0.978 2.502
DeCAFS 0.722 0.000 0.000 0.248 0.189 0.563 0.903 2.642
WCM.gSa 0.113 0.000 0.000 0.623 0.156 0.221 0.921 3.682
MOSUM.oracle 0.003 0.000 0.001 0.984 0.014 0.001 0.983 2.861
WBS2.oracle 0.001 0.000 0.000 1.000 0.000 0.000 0.992 1.776

(M5) MOSUM.TAVC[1] 0.095 0.000 0.000 0.965 0.035 0.000 0.985 78.044
MOSUM.TAVC[2] 0.045 0.000 0.000 0.970 0.030 0.000 0.985 78.070
WBS2.TAVC[1] 0.191 0.000 0.000 1.000 0.000 0.000 0.988 66.844
WBS2.TAVC[2] 0.098 0.000 0.000 1.000 0.000 0.000 0.988 66.844

DepSMUCE(0.05) 0.968 0.000 0.000 0.237 0.125 0.638 0.856 751.323
DepSMUCE(0.2) 0.993 0.000 0.000 0.057 0.054 0.889 0.754 1319.156
DeCAFS 0.004 0.000 0.000 0.983 0.014 0.003 0.988 84.649
WCM.gSa 0.000 0.000 0.000 1.000 0.000 0.000 0.988 67.557
MOSUM.oracle 1.000 0.000 0.000 0.000 0.000 1.000 0.284 250.212
WBS2.oracle 1.000 0.000 0.000 0.000 0.000 1.000 0.289 201.271

(M6) MOSUM.TAVC[1] 0.174 0.001 0.013 0.969 0.016 0.001 0.958 7.016
MOSUM.TAVC[2] 0.079 0.005 0.030 0.955 0.010 0.000 0.953 7.527
WBS2.TAVC[1] 0.105 0.007 0.017 0.975 0.001 0.000 0.963 6.226
WBS2.TAVC[2] 0.058 0.015 0.048 0.937 0.000 0.000 0.951 7.041

DepSMUCE(0.05) 0.389 0.000 0.075 0.802 0.097 0.026 0.930 12.034
DepSMUCE(0.2) 0.579 0.000 0.014 0.727 0.178 0.081 0.939 11.923
DeCAFS 0.647 0.000 0.000 0.304 0.120 0.576 0.906 24.573
WCM.gSa 0.020 0.000 0.000 0.972 0.023 0.005 0.964 6.510
MOSUM.oracle 0.025 0.000 0.000 0.922 0.073 0.005 0.958 7.303
WBS2.oracle 0.006 0.000 0.000 0.993 0.006 0.001 0.969 5.939

(continued on next page)
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Table B.1 (continued)

q̂ − q

Model Method Size ≤ −2 −1 0 1 ≥ 2 CM RMSE

(M7) MOSUM.TAVC[1] 0.230 0.009 0.058 0.912 0.021 0.000 0.940 6.810
MOSUM.TAVC[2] 0.160 0.015 0.102 0.866 0.017 0.000 0.928 7.928
WBS2.TAVC[1] 0.205 0.017 0.087 0.871 0.024 0.001 0.918 8.715
WBS2.TAVC[2] 0.141 0.038 0.124 0.823 0.015 0.000 0.904 10.482

DepSMUCE(0.05) 0.335 0.002 0.325 0.620 0.050 0.003 0.868 11.388
DepSMUCE(0.2) 0.577 0.000 0.095 0.717 0.183 0.005 0.924 7.381
DeCAFS 0.399 0.002 0.002 0.713 0.184 0.099 0.940 6.843
WCM.gSa 0.284 0.054 0.095 0.741 0.074 0.036 0.908 8.554
MOSUM.oracle 0.016 0.000 0.000 0.924 0.073 0.003 0.954 5.573
WBS2.oracle 0.006 0.000 0.000 0.997 0.003 0.000 0.957 5.822

(M8) MOSUM.TAVC[1] 0.247 0.007 0.058 0.897 0.037 0.001 0.938 8.065
MOSUM.TAVC[2] 0.164 0.013 0.087 0.877 0.021 0.002 0.929 8.329
WBS2.TAVC[1] 0.195 0.016 0.058 0.898 0.028 0.000 0.922 9.555
WBS2.TAVC[2] 0.142 0.027 0.114 0.848 0.011 0.000 0.906 10.293

DepSMUCE(0.05) 0.180 0.063 0.712 0.213 0.012 0.000 0.748 16.963
DepSMUCE(0.2) 0.397 0.009 0.434 0.482 0.072 0.003 0.832 12.487
DeCAFS 0.301 0.006 0.023 0.662 0.199 0.110 0.930 9.065
WCM.gSa 0.236 0.040 0.232 0.692 0.022 0.014 0.885 9.182
MOSUM.oracle 0.034 0.000 0.001 0.863 0.131 0.005 0.947 6.526
WBS2.oracle 0.014 0.000 0.000 0.989 0.011 0.000 0.949 6.549

(M9) MOSUM.TAVC[1] 0.261 0.005 0.251 0.703 0.040 0.001 0.886 8.747
MOSUM.TAVC[2] 0.163 0.014 0.348 0.615 0.023 0.000 0.861 9.839
WBS2.TAVC[1] 0.178 0.010 0.329 0.633 0.028 0.000 0.855 10.803
WBS2.TAVC[2] 0.117 0.025 0.440 0.520 0.015 0.000 0.825 11.536

DepSMUCE(0.05) 0.121 0.058 0.924 0.017 0.001 0.000 0.709 11.780
DepSMUCE(0.2) 0.309 0.008 0.897 0.084 0.011 0.000 0.725 11.289
DeCAFS 0.084 0.004 0.660 0.224 0.081 0.031 0.774 11.858
WCM.gSa 0.071 0.002 0.749 0.219 0.019 0.011 0.775 9.747
MOSUM.oracle 0.137 0.000 0.000 0.754 0.216 0.030 0.941 7.328
WBS2.oracle 0.150 0.000 0.000 0.768 0.228 0.004 0.917 8.366

h̄L(u) = 1

N0

∑
j /∈S

φv(ξ j − u) = 0, where N0 = N1 − |S|.

Letting

ξ̃ = 1

N0

∑
j /∈S

E(ξ j) = σ̃ 2
L , and γ 2 = 1

N0

∑
j /∈S

E(ξ2
j ) − ξ̃2,

define the functions

B+(u, x) = ξ̃ − u + v

2

[(
ξ̃ − u

)2 + γ 2
]

+ x,

B−(u, x) = ξ̃ − u − v

2

[(
ξ̃ − u

)2 + γ 2
]

− x.

Then, it can be shown that E(h̄L(u)) satisfies the envelope property

B−(u,0) ≤E
(

h̄L(u)
)

≤ B+(u,0). (C.1)

To see this, note that since φ(x) ≤ x + x2/2 by Equation (5), we have

E
(

h̄L(u)
)

≤ 1

vN0

∑
j /∈S

[
E(v(ξ j − u)) + 1

2
E(v2(ξ j − u)2)

]

= 1

N0

∑
j /∈S

E(ξ j) − u + v

2N0

∑
j /∈S

E((ξ j − u)2)

= ξ̃ − u + v

2

[
(ξ̃ − u)2 + γ 2

]
= B+(u,0).

Similarly, from the fact that φ(x) ≥ x − x2/2, the lower bound follows.
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Table B.2
Performance comparisons when n = 2000. We report the size, the proportion of realisations where change points are falsely detected when q = 0, and the 
distribution of the estimated number of change points, covering metric (CM) and relative MSE (RMSE) over 1000 realisations when q = 6. The modal value 
of the distribution of the number of estimated change points for each method is shown in bold. The best performing method according to each metric 
when q = 6 is underlined.

q̂ − q

Model Method Size ≤ −2 −1 0 1 ≥ 2 CM RMSE

(M1) MOSUM.TAVC[1] 0.126 0.000 0.000 0.983 0.017 0.000 0.975 5.979
MOSUM.TAVC[2] 0.068 0.000 0.005 0.991 0.004 0.000 0.974 6.185
WBS2.TAVC[1] 0.018 0.000 0.001 0.999 0.000 0.000 0.981 4.781
WBS2.TAVC[2] 0.006 0.000 0.007 0.993 0.000 0.000 0.981 4.851

DepSMUCE(0.05) 0.007 0.000 0.000 1.000 0.000 0.000 0.982 4.764
DepSMUCE(0.2) 0.067 0.000 0.000 0.998 0.001 0.001 0.981 4.769
DeCAFS 0.006 0.000 0.000 0.985 0.014 0.001 0.981 4.844
WCM.gSa 0.005 0.000 0.000 0.964 0.014 0.022 0.979 6.087
MOSUM.oracle 0.040 0.000 0.000 0.821 0.171 0.008 0.972 6.023
WBS2.oracle 0.000 0.000 0.000 1.000 0.000 0.000 0.982 4.776

(M2) MOSUM.TAVC[1] 0.143 0.000 0.000 0.996 0.004 0.000 0.975 5.940
MOSUM.TAVC[2] 0.079 0.000 0.003 0.997 0.000 0.000 0.974 6.051
WBS2.TAVC[1] 0.025 0.000 0.002 0.998 0.000 0.000 0.983 4.432
WBS2.TAVC[2] 0.016 0.002 0.003 0.995 0.000 0.000 0.982 4.459

DepSMUCE(0.05) 0.828 0.000 0.000 0.389 0.171 0.440 0.941 16.822
DepSMUCE(0.2) 0.924 0.000 0.000 0.209 0.142 0.649 0.923 20.094
DeCAFS 0.957 0.000 0.000 0.040 0.016 0.944 0.879 31.810
WCM.gSa 0.005 0.000 0.000 0.961 0.014 0.025 0.980 4.686
MOSUM.oracle 0.051 0.000 0.000 0.846 0.138 0.016 0.973 5.934
WBS2.oracle 0.002 0.000 0.000 0.999 0.001 0.000 0.983 4.413

(M3) MOSUM.TAVC[1] 0.122 0.000 0.000 0.996 0.004 0.000 0.995 2.050
MOSUM.TAVC[2] 0.081 0.000 0.000 0.999 0.001 0.000 0.995 2.063
WBS2.TAVC[1] 0.034 0.000 0.000 1.000 0.000 0.000 0.998 1.356
WBS2.TAVC[2] 0.017 0.000 0.003 0.997 0.000 0.000 0.998 1.394

DepSMUCE(0.05) 0.925 0.000 0.000 0.975 0.025 0.000 0.997 1.410
DepSMUCE(0.2) 0.991 0.000 0.000 0.887 0.109 0.004 0.992 1.575
DeCAFS 0.591 0.000 0.000 0.605 0.345 0.050 0.988 1.176
WCM.gSa 0.007 0.000 0.000 0.643 0.150 0.207 0.959 2.336
MOSUM.oracle 0.005 0.000 0.000 0.974 0.026 0.000 0.994 1.980
WBS2.oracle 0.000 0.000 0.000 1.000 0.000 0.000 0.998 1.356

(M4) MOSUM.TAVC[1] 0.092 0.000 0.000 0.992 0.008 0.000 0.990 3.017
MOSUM.TAVC[2] 0.060 0.000 0.003 0.995 0.002 0.000 0.990 3.024
WBS2.TAVC[1] 0.020 0.000 0.001 0.999 0.000 0.000 0.996 1.808
WBS2.TAVC[2] 0.009 0.000 0.002 0.998 0.000 0.000 0.996 1.821

DepSMUCE(0.05) 0.559 0.000 0.000 0.999 0.001 0.000 0.996 1.789
DepSMUCE(0.2) 0.850 0.000 0.000 0.964 0.035 0.001 0.994 1.878
DeCAFS 0.696 0.000 0.000 0.267 0.220 0.513 0.961 1.944
WCM.gSa 0.013 0.000 0.000 0.723 0.113 0.164 0.967 2.803
MOSUM.oracle 0.004 0.000 0.000 0.951 0.046 0.003 0.989 2.908
WBS2.oracle 0.000 0.000 0.000 1.000 0.000 0.000 0.996 1.800

(M5) MOSUM.TAVC[1] 0.133 0.00 0.000 1.000 0.000 0.000 0.993 87.796
MOSUM.TAVC[2] 0.071 0.000 0.000 1.000 0.000 0.000 0.993 87.796
WBS2.TAVC[1] 0.066 0.000 0.000 1.000 0.000 0.000 0.994 74.530
WBS2.TAVC[2] 0.029 0.000 0.000 1.000 0.000 0.000 0.994 74.530

DepSMUCE(0.05) 1.000 0.000 0.0000 0.000 0.000 1.000 0.613 2496.320
DepSMUCE(0.2) 1.000 0.000 0.000 0.000 0.000 1.000 0.464 4116.486
DeCAFS 0.000 0.000 0.000 0.993 0.007 0.000 0.994 77.484
WCM.gSa 0.000 0.000 0.000 1.000 0.000 0.000 0.994 74.648
MOSUM.oracle 1.000 0.000 0.000 0.000 0.000 1.000 0.265 222.751
WBS2.oracle 0.978 0.000 0.000 0.000 0.000 1.000 0.265 188.806

(M6) MOSUM.TAVC[1] 0.192 0.000 0.002 0.988 0.010 0.000 0.979 6.112
MOSUM.TAVC[2] 0.117 0.000 0.002 0.995 0.003 0.000 0.979 6.259
WBS2.TAVC[1] 0.054 0.000 0.001 0.999 0.000 0.000 0.985 4.641
WBS2.TAVC[2] 0.029 0.001 0.001 0.998 0.000 0.000 0.985 4.662

DepSMUCE(0.05) 0.767 0.000 0.000 0.549 0.232 0.219 0.960 9.668
DepSMUCE(0.2) 0.931 0.000 0.000 0.336 0.257 0.407 0.944 11.982
DeCAFS 0.903 0.000 0.000 0.090 0.040 0.870 0.911 28.388
WCM.gSa 0.024 0.000 0.000 0.958 0.017 0.025 0.983 4.860
MOSUM.oracle 0.029 0.000 0.000 0.892 0.101 0.007 0.978 6.151
WBS2.oracle 0.006 0.000 0.000 0.997 0.002 0.001 0.985 4.631

(continued on next page)
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Table B.2 (continued)

q̂ − q

Model Method Size ≤ −2 −1 0 1 ≥ 2 CM RMSE

(M7) MOSUM.TAVC[1] 0.297 0.000 0.000 0.957 0.043 0.000 0.979 4.854
MOSUM.TAVC[2] 0.214 0.000 0.001 0.971 0.027 0.001 0.979 4.840
WBS2.TAVC[1] 0.178 0.000 0.000 0.992 0.008 0.000 0.979 4.959
WBS2.TAVC[2] 0.120 0.000 0.001 0.997 0.002 0.000 0.979 4.984

DepSMUCE(0.05) 0.445 0.004 0.292 0.616 0.088 0.000 0.917 9.351
DepSMUCE(0.2) 0.726 0.000 0.035 0.670 0.284 0.011 0.963 5.326
DeCAFS 0.557 0.000 0.000 0.492 0.216 0.292 0.961 6.242
WCM.gSa 0.316 0.031 0.027 0.895 0.026 0.021 0.968 4.840
MOSUM.oracle 0.036 0.000 0.000 0.878 0.111 0.011 0.975 4.933
WBS2.oracle 0.005 0.000 0.000 0.997 0.003 0.000 0.983 4.154

(M8) MOSUM.TAVC[1] 0.304 0.000 0.000 0.939 0.058 0.003 0.976 5.985
MOSUM.TAVC[2] 0.195 0.000 0.000 0.960 0.039 0.001 0.976 5.934
WBS2.TAVC[1] 0.142 0.000 0.000 0.994 0.006 0.000 0.976 5.958
WBS2.TAVC[2] 0.081 0.000 0.001 0.998 0.001 0.000 0.977 5.796

DepSMUCE(0.05) 0.277 0.077 0.704 0.210 0.009 0.000 0.833 15.628
DepSMUCE(0.2) 0.595 0.004 0.361 0.514 0.113 0.008 0.901 10.853
DeCAFS 0.368 0.000 0.000 0.594 0.199 0.207 0.965 7.261
WCM.gSa 0.136 0.040 0.051 0.894 0.010 0.005 0.962 5.811
MOSUM.oracle 0.060 0.000 0.000 0.805 0.174 0.021 0.971 6.190
WBS2.oracle 0.004 0.000 0.000 0.997 0.003 0.000 0.980 5.162

(M9) MOSUM.TAVC[1] 0.382 0.000 0.003 0.922 0.072 0.003 0.974 6.551
MOSUM.TAVC[2] 0.259 0.000 0.004 0.953 0.042 0.001 0.974 6.549
WBS2.TAVC[1] 0.231 0.000 0.005 0.985 0.010 0.000 0.973 7.309
WBS2.TAVC[2] 0.181 0.000 0.003 0.993 0.004 0.000 0.974 7.153

DepSMUCE(0.05) 0.231 0.741 0.251 0.008 0.000 0.000 0.731 13.329
DepSMUCE(0.2) 0.540 0.269 0.616 0.106 0.008 0.001 0.784 13.165
DeCAFS 0.081 0.262 0.022 0.574 0.092 0.050 0.890 8.834
WCM.gSa 0.061 0.281 0.076 0.624 0.014 0.005 0.890 8.122
MOSUM.oracle 0.097 0.000 0.000 0.754 0.215 0.031 0.968 6.883
WBS2.oracle 0.067 0.000 0.000 0.957 0.042 0.001 0.967 6.774

Next, we show that h̄L(u) is concentrated about its mean. We deal with the different cases, Assumptions 1 (iii) (a) 
and (b), separately, in order to prove Equations (7) and (8) respectively. Applying Step 2 of the proof of Theorem 5 in Chen 
et al. (2021), we have that, for C0 > 0 and x > 0,

P

⎛⎝ sup
u: |u−σ̃ 2

L |≤C0

∣∣∣h̄L(u) −E(h̄L(u))

∣∣∣≥ x/N0

⎞⎠≤ P

(
max
u∈An

∣∣∣h̄L(u) −E(h̄L(u))

∣∣∣≥ x/(2N0)

)
, (C.2)

where An is the δ-net for {u : |u − σ̃ 2
L | ≤ C0} with δ = σ̃ 2

L x/(2N0) and |An| =O(N0/x). For any random variable X , denote by 
E0(X) = X −E(X) the centring operator, and let � X̄ j = X̄ j − X̄ j−1. Let Fk = {ηt , t ∈ ∪l≤kBl}, and Fk,{m} , m ≤ k, be Fk with 
ηt therein replaced with its independent and identically distributed copy η′

t for all t ∈ Bm . Then for any random variable 
X = h(Fk) with measurable h(·), let X{m} = h(Fk,{m}).

Proof of (7). Under Assumption 1 (iii) (a), we show that ζ j(u) = φv(ξ j − u) satisfies appropriate functional dependence 
properties. Denote

δ�,r/2 = max
j /∈S

∥∥∥∥sup
u

|ζ j(u) − ζ j,{ j−�}(u)|
∥∥∥∥

r/2
.

Since |φ′|∞ ≤ 1, we have for any � ∈N and u ∈R,∥∥∥∥ sup
u

∣∣ζ j(u) − ζ j,{ j−�}(u)
∣∣∥∥∥∥

r/2
≤ ∥∥ξ j − ξ j,{ j−�}

∥∥
r/2 = G

2
‖� X̄2

j − � X̄2
j,{ j−�}‖r/2

≤ G

2

(∥∥E0
[
� X̄ j(� X̄ j − � X̄ j,{ j−�})

]∥∥
r/2 + ∥∥E0

[
� X̄ j,{ j−�}(� X̄ j − � X̄ j,{ j−�})

]∥∥
r/2

)
= G

2
(I1 + I2) . (C.3)

Further, let E j,k =∑( j+1)G at−k and U j = G−1 ∑( j+1)G
εt . Then,
t= jG+1 t= jG+1
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U j = 1

G

( j+1)G∑
t= jG+1

∞∑
k=0

akηt−k = 1

G

( j+1)G∑
t= jG+1

t∑
k=−∞

at−kηk = 1

G

∑
k≤( j+1)G

E j,kηk,

and we define

�U j = 1

G

∑
k≤( j+1)G

E j,kηk − 1

G

∑
k≤ jG

E j−1,kηk.

Noting that

G�U j,{ j−�} =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
k≤( j+1)G,

k/∈B j−�

E j,kηk +
∑

k∈B j−�

E j,kη
′
k −

∑
k≤ jG,

k/∈B j−�

E j−1,kηk −
∑

k∈B j−�

E j−1,kη
′
k for � ≥ 1,

∑
k≤ jG

E j,kηk +
∑
k∈B j

E j,kη
′
k −

∑
k≤ jG

E j−1,kηk for � = 0,

it follows that

G
(
�U j − �U j,{ j−�}

)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

k∈B j−�

(E j,k − E j−1,k)(ηk − η′
k) for � ≥ 1,∑

k∈B j

E j,k(ηk − η′
k) for � = 0.

Next, by Assumption 1 (i), we have∣∣∣∣∣∣
∑
k≥�

ak

∣∣∣∣∣∣≤
∑
k≥�

|ak| ≤ �
∑
k≥�

(1 + k)−β � (1 + �)−β+1+ε (C.4)

for any arbitrarily small ε > 0. Then, using (C.4),

∑
k∈B j−�

E2
j−1,k =

( j−�+1)G∑
k=( j−�)G+1

⎛⎝ jG∑
t=( j−1)G+1

at−k

⎞⎠2

�
( j−�+1)G∑

k=( j−�)G+1

(( j − 1)G + 1 − k)−2(β−1−ε) � G(G(� − 1) ∨ 1)−2(β−1−ε), (C.5)

∑
k≤( j+1)G

E2
j,k =

∑
k≤( j+1)G

⎛⎝ ( j+1)G∑
t= jG+1

at−k

⎞⎠2

�
∑

k≤( j+1)G

(1 ∨ ( jG + 1 − k))−2(β−1−ε) � G, (C.6)

where the constants involved in � depend on ε , β and �. Since we only consider j /∈ S , we bound I1 in (C.3) for � ≥ 1 as

I1 = ∥∥E0
[
�U j(�U j − �U j,{ j−�})

]∥∥
r/2

= G−2

∥∥∥∥∥∥E0

⎡⎣⎛⎝ ∑
k≤( j+1)G

E j,kηk −
∑

k≤ jG

E j−1,kηk

⎞⎠⎛⎝ ∑
k∈B j−�

(E j,k − E j−1,k)(ηk − η′
k)

⎞⎠⎤⎦∥∥∥∥∥∥
r/2

� G−2

∥∥∥∥∥∥
∑

k≤( j+1)G

E j,kηk −
∑

k≤ jG

E j−1,kηk

∥∥∥∥∥∥
r

∥∥∥∥∥∥
∑

k∈B j−�

(E j,k − E j−1,k)(ηk − η′
k)

∥∥∥∥∥∥
r

� G−2C2
r

⎛⎝ ∑
k≤( j+1)G

E2
j,kμ

2
r +

∑
k≤ jG

E2
j−1,kμ

2
r

⎞⎠1/2 ⎛⎝ ∑
k∈B j−�

(E j,k − E j−1,k)
2μ2

r

⎞⎠1/2

� G−1C2
r (G(� − 1) ∨ 1)−(β−1−ε) μ2

r ,

where the first inequality follows from Hölder’s inequality, the second from Burkholder’s inequality (see e.g. Lemma 2 of 
Chen et al. (2021)) with Cr = max(

√
r − 1, 1/(r − 1)), the last from (C.5)–(C.6) and μr = ‖η1‖r . Similarly, when � = 0, we 

have that I1 � G−1C2
r μ

2
r . We can bound the term I2 in (C.3) in a similar fashion, to obtain
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δ�,r/2 �
(
(G�)−(β−1−ε)I(� > 1) + I(� ≤ 1)

)
C2

r μ
2
r . (C.7)

Therefore, the dependence-adjusted norm

wr/2,α = sup
k≥0

(k + 1)α
∞∑

�=k

δ�,r/2 � sup
k≥2

(k + 1)α
∞∑

�=k

(G�)−(β−1−ε)C2
r μ

2
r � C2

r μ
2
r ,

for α = β − 2 − 2ε > 1/2 − 2/r with β > 2.5. Under Assumption 1 (iii) (a), having shown the bound on wr/2,α , we apply 
Lemma C.2 of Zhang and Wu (2017) and yield, for any u ∈ An ,

P

(∣∣∣h̄L(u) −E(h̄L(u))

∣∣∣≥ x

2N0

)
� N0x−r/2 + exp

(
− x2

cN0

)
,

where c and the constant appearing in the � depend on r, μr , �, β and ε . Applying a Bonferroni bound with |An| =
O(N0/x) then yields

P

(
max
u∈An

∣∣∣h̄L(u) −E(h̄L(u))

∣∣∣≥ x

2N0

)
� N0

x

(
N0x−r/2 + exp

(
− x2

cN0

))
. (C.8)

Taking x � N
4

r+2
0 ∨ (N0 log(N0))

1/2, using Equations (C.2) and (C.8) we obtain

sup
|u−σ̃ 2

L |≤C0

∣∣∣h̄L(u) −E(h̄L(u))

∣∣∣= OP

⎛⎝N
− r−2

r+2
0 ∨

√
log(N0)

N0

⎞⎠ . (C.9)

Recalling that |S| ≤ 2q and |φ(x)| ≤ log(2), we have that∣∣∣∣N1hL(u)

N0
− h̄L(u)

∣∣∣∣≤ 2q log(2)

vN0
. (C.10)

Combining Equations (C.1), (C.9) and (C.10), we have that with probability tending to one,

B−(u,�) ≤ N1hL(u)

N0
≤ B+(u,�) (C.11)

uniformly for all |u − σ̃ 2
L | ≤ C0, where

� = x

N0
+ 2q log(2)

vN0
,

with x � N
4

r+2
0 ∨ (N0 log(N0))

1/2. If

v2γ 2 + 2v� ≤ 1, (C.12)

then B+(u, �) possesses real roots. Denote the smallest root by u+ , which satisfies

u+ ≤ ξ̃ + γ 2 + 2�/v√
1/v2

≤ ξ̃ + vγ 2 + 2�. (C.13)

Under Assumption 1, we have for some j /∈ S ,

γ 2 ≤E(ξ2
j ) = G2

4
E(� X̄4

j ) = G2

4
E(�U 4

j ) �
1

G2

⎛⎜⎝
∥∥∥∥∥∥

∑
k≤( j+1)G

E j,kηk

∥∥∥∥∥∥
4

4

+
∥∥∥∥∥∥
∑

k≤ jG

E j−1,kηk

∥∥∥∥∥∥
4

4

⎞⎟⎠
� 1

G2

⎛⎝ ∑
k≤( j+1)G

E2
j,k +

∑
k≤ jG

E2
j−1,k

⎞⎠2

μ4
4 = O(1)

by (C.6) and Burkholder’s inequality. Therefore, from (C.13) and that u+ ≥ ξ̃ = σ̃ 2
L ,

u+ − σ̃ 2
L = O

(
v + x

N0
+ q

vN0

)
= O

(
v + Gx

n
+ Gq

vn

)
.
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A similar bound can be obtained for u− , the largest root of B−1(u, �) and under Equation (C.11), we have that u− ≤ σ̂ 2
L ≤

u+ . Then, setting v � (Gq/n)1/2, we have (C.12) holds, and∣∣∣σ̂ 2
L − σ̃ 2

L

∣∣∣= OP

(√
Gq

n
+ max

{(
G

n

) r−2
r+2

,

√
G log(n)

n

})
. �

Proof of (8). We proceed analogously as in the proof of (7), except that we control for the dependence-adjusted sub-
exponential norm of ζ j(u), as

w̃ f = sup
r≥2

r− f
∞∑

�=0

δ�,r � sup
r≥2

r− f
∞∑

�=0

(
(G�)−(β−1−ε)I(� > 1) + I(� ≤ 1)

)
C2

2rμ
2
2r � sup

r≥2
r− f +2κ+1,

where the first inequality follows from (C.7) and the second from Assumption 1 (i). Therefore, we have w̃ f < ∞ with 
f = 2κ + 1. Then applying Lemma C.4 of Zhang and Wu (2017) with (C.2), we obtain

P

⎛⎝ sup
|u−σ̃ 2

L |≤C0

∣∣∣h̄L(u) −E(h̄L(u))

∣∣∣≥ x

N0

⎞⎠� N0

x
exp

(
− (x/

√
N0)

2
4κ+3

c

)
,

where c depends on κ and β through w̃ f . Taking x � log2κ+3/2(n)N1/2
0 , we have that

sup
|u−σ̃ 2

L |≤C0

∣∣∣h̄L(u) −E(h̄L(u))

∣∣∣= OP

(
log2κ+3/2(n)√

N0

)
. (C.14)

Then, by the analogous arguments as those adopted in the proof of (7) with (C.14) replacing (C.9), we derive (8). �
Proof of (9). Recalling that U j = G−1 ∑( j+1)G

t= jG+1 εt , we have

σ̃ 2
L = G

2
E
(
(U j − U j−1)

2
)

= G

2
E(U 2

j + U 2
j−1 − 2U j U j−1) = σ 2

G − GE(U j U j−1),

while

σ 2
L = E

⎛⎝( 1√
L

L∑
t=1

εt

)2⎞⎠= E

⎛⎝( 1√
L

G∑
t=1

εt + 1√
L

L∑
t=G+1

εt

)2⎞⎠
= 1

2
(σ 2

G + σ 2
G ) + 2

L
E

⎛⎝ G∑
t=1

εt

L∑
t′=G+1

εt′

⎞⎠= σ 2
G + GE(U j U j−1).

By Assumption 1 (i), ρk =E(ε0εk), k ≥ 0, satisfy

|ρk| =
∣∣∣∣∣∣
∑
j=0

a ja j+k

∣∣∣∣∣∣≤
∞∑
j=0

|a ja j+k| �
∞∑
j=0

( j + 1)−β( j + k + 1)−β ≤ k−β
∞∑
j=0

( j + 1)−β = O(k−β).

Therefore,

|σ̃ 2
L − σ 2

L | = L|E(U j U j−1)| = 4

L

G∑
t=1

L∑
t′=G+1

E(εtεt′) = 4

L

(
G∑

k=1

kρk +
G−1∑
k=1

(G − k)ρk+G

)

� L−1

(
G∑

k=1

k1−β +
G−1∑
k=1

(G − k)(k + G)−β

)
� L−1

(
1 + L2−β

)
= O

(
L−1) .

Lastly, to prove the second statement in Equation (10), we show that

|σ 2
L − σ 2| ≤

∣∣∣∣∣∣
∑

k: |k|≥L

ρk

∣∣∣∣∣∣+ L−1

∣∣∣∣∣∣
L−1∑

k=−L+1

|k|ρk

∣∣∣∣∣∣= O(L−β+1 + L−1) = O(L−1),

which completes the proof. �
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