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Abstract 
This paper presents analytical and numerical studies on the active 
assignment of poles to a planetary gear system for vibration control in 
order to avoid resonance. This involves feeding back the displacement 
and velocity to add active stiffness and damping respectively. A rotating 
frame of reference has been adopted in order to describe the dynamics 
over a broad range of rotational speed. As an illustration, the closed loop 
poles were assigned to the translational directions of the sun gear first 
and thereafter the carrier. This can be achieved by placing the actuators 
on the outer race of their bearings mounted onto their shafts. The 
controller was designed such that the closed loop poles can be assigned 
considering the rotational speed. In this way, it is possible to apply a 
robust pole-placement that is insensitive to the rotational speed. 
Numerical examples, where sensors and actuators were collocated, are 
presented to demonstrate the feasibility of the method when applied to a 
physical system. The results shows that the active control force and 
power required for the system, when rotating, can be determined using 
a rotating frame of reference and transformed for practical 
implementation. In addition, the same conjugate poles were assigned to 
the carrier and sun gear and the optimal place to apply control forces 
was discovered. This depends upon the control power required to shift 
the poles from one location to another. The results show that more 
control power will be required to shift the poles of the system when poles 
were assigned to the sun gear, where higher active bearing stiffness was 
required. Therefore, the optimal place to assign poles in this case is the 
carrier due to lower control power required to shift the system poles. 
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Simulation study of active vibration control of planetary gear: Theoretical 
and numerical analysis using Pole Placement

Abstract
This paper presents analytical and numerical studies on the active assignment of poles to a planetary gear 
system for vibration control in order to avoid resonance. This involves feeding back the displacement and 
velocity to add active stiffness and damping respectively. A rotating frame of reference has been adopted 
in order to describe the dynamics over a broad range of rotational speed. As an illustration, the closed 
loop poles were assigned to the translational directions of the sun gear first and thereafter the carrier. This 
can be achieved by placing the actuators on the outer race of their bearings mounted onto their shafts. The 
controller was designed such that the closed loop poles can be assigned considering the rotational speed. 
In this way, it is possible to apply a robust pole-placement that is insensitive to the rotational speed. 
Numerical examples, where sensors and actuators were collocated, are presented to demonstrate the 
feasibility of the method when applied to a physical system. The results shows that the active control 
force and power required for the system, when rotating, can be determined using a rotating frame of 
reference and transformed for practical implementation. In addition, the same conjugate poles were 
assigned to the carrier and sun gear and the optimal place to apply control forces was discovered. This 
depends upon the control power required to shift the poles from one location to another. The results show 
that more control power will be required to shift the poles of the system when poles were assigned to the 
sun gear, where higher active bearing stiffness was required. Therefore, the optimal place to assign poles 
in this case is the carrier due to lower control power required to shift the system poles.

Keywords: pole placement, active control, control power, mesh excitation, rotating system

1.  Introduction 

It is necessary to develop techniques that can control the dynamics of rotating systems after their design 
and construction. The two major approaches to do this are either by passive modification or active control 
of the system. Passive modification involves changing the physical properties of the system by 
modification of the passive elements namely: mass (including rotational inertias), stiffness and dissipation 
(typically viscous damping). Passive control can also be achieved by using high contact ratio (HCR) 
gears. It has been shown that the use of HCR leads to reduction in noise level by 10 dB (1). Active 
vibration control involves changing the dynamics of a vibrating system by typically applying equal but 
opposite active forces to counter the effect of an excitation force. According to Wonham, the dynamic 
behaviour of a system can be adjusted by using multiple control forces (2). Also, to ensure stability, all 
the poles (natural frequencies) of a system must lie on the left-hand side of the s-plane. 

Planetary gears are widely used in many applications, such as mechanical power transmission in aircraft, 
turbines automotive systems etc. It comprises a carrier, ring, sun and multiple planet gears. It has a better 
load carrying ability than the parallel axis gears and a coaxial arrangement of the transmission shafts. This 
leads to its compact layout. Different speed ratios can be obtained by typically keeping one of the central 
members (i.e. either carrier, ring or sun gears) stationary. Therefore, they are versatile in their 
applications. However, with all the advantages aforementioned, planetary gears can vibrate during 
operation due to transmission error and variation in the mesh stiffness. Transmission error is the distance 
between the actual position of the output gear and the position it would occupy if the gear drive were 
perfect (3). This means for no transmission error, the speed ratio of the meshing gears remain constant 
throughout the mesh cycle. Transmission error may be caused by tooth deformation, misalignment of 
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shaft, geometrical error in tooth profile etc. Lin and Parker developed a linear time-invariant model where 
the excitation force is due to static transmission error (4). Inapolat and Kharaman determined the dynamic 
response of a compound planetary gear used typically in automatic transmission using a static 
transmission error (5). Also, during operation the teeth of the mating gears continuously enter and exit the 
mesh. This phenomenon results in fluctuation of mesh stiffness between the teeth. However, there are 
some cases were the mesh stiffness is assumed to be constant over a mesh cycle. For instance Lin and 
Parker developed a linear time invariant (LTI) model where they assumed that the mesh stiffness is 
constant when determining the natural frequencies and mode shapes of a planetary gear system (4). 

Vibration control of planetary gear is necessary to avoid any form of failure associated with vibration. 
These failures can cause breakdown of machines where planetary gears are used for torque transmission. 
In particular, for planetary gear systems it is very important to ensure that the mesh frequency does not 
coincide with any of the natural frequencies of the system and their harmonics to prevent resonance. 
Resonance is a phenomenon, which can ultimately cause structural failure of the system. Hence, if one 
can shift the poles of a planetary gear system then one can avoid resonance. 

Some researchers have conducted investigations into how to reduce vibration gear systems passively and 
actively. Seager (6) shows that it is possible to neutralize some difficult harmonic components by suitably 
choosing the number of teeth on the sun gear and the number of planet gears. Parker (7) studied the 
effectiveness of phasing the planet gear. Planet phasing involves choosing the number of teeth such that 
there will be self-equilibration of the mesh forces which lead to reduction in the net forces and torques 
acting on the system; this is analogous to synchrophasing for propeller driven aircraft excitations. Phasing 
reduces vibration at some harmonics of the mesh frequency. Kharaman (8) developed models which 
includes parameters like the planet position angle, number of planet gears, phasing relationship (defined 
by the position angle) and the number of teeth to investigate the mesh phasing for planetary gear sets. A 
passive method to reduce transmitted vibration generated by gear mesh was presented by Richard and 
Pines (9). They designed a periodic shaft comprising identical elements which are connected together to 
create stop and pass band regions in the frequency spectra. The vibration due to the gear mesh transmitted 
to the bearing support was reduced at different rotational speeds. Tharmakulasingam (10) showed that the 
transmission error, which can cause gear vibration, could be significantly reduced in spur gears with tooth 
profile modification (tip relief). Experimental investigation and validation of the benefits of planet 
phasing were carried out by Gawande and Shaikh (11). The results show that the dynamic planetary gear 
response can be minimized using such phasing.

Farshad et al. (12) presented a global optimization approach on minimization of vibration of planetary 
gear using tip relief. Bahk et al. (13) stated that reduction in vibration response is not guaranteed by tooth 
profile modification (TPM). For some mesh phase choices, the response may grow continuously using 
(TPM). Therefore, it is important to consider the mesh phase when using a TPM approach for planetary 
gear vibration reduction. For the vibration modes, TPM may reduce the dynamic response of some while 
increasing the dynamic response of others. Thus, they concluded that the operating speed and the active 
modes should be considered when designing the optimal tooth profile modification for gear vibration 
reduction.

 For active vibration control of gears, Montague et al. (14) presented a feedforward control method of 
controlling mesh vibration in parallel axis gear. Piezoelectric actuators were mounted 20o to the common 
tangent to the pitch circles, such that they are collinear with the line of contact. A vibration reduction of 
70% was achieved at 4500 Hz. Rebbeci et al. (15) used an adaptive feedforward controller to determine 
the required amplitude and phase of the control force. This control force was applied to the feet of the 
gearbox housing. The results from the active vibration control experiment show that the housing vibration 
was reduced at the first three harmonics of the gear mesh frequency. Dogruer et al. (16) designed a 
nonlinear controller with a feedforward loop to reduce the effect of time-varying mesh stiffness of a 
single-stage spur gearbox. This was achieved by modulating the input torque of the driving gear such that 
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it compensates for the periodic change in mesh stiffness. They also used a pole placement method (PI 
controller) to control linear dynamics of a single stage spur gearbox. However, the rotational speed of the 
system was not included in the control law. The pole placement method has not been previously applied 
to a planetary gear system, which has a much more complicated dynamic behaviour because of multiple 
teeth contacts at the sun-planet and planet-ring meshes.

This study presents mainly the theory for pole placement applied to planetary gears using an active 
vibration control method. Mottershead et al. (17) developed the theory of pole placement using output 
feedback, whilst Lin and Parker developed an analytical model for planetary gear (4). Lin and Parker have 
used a linear time invariant (LTI) model to characterize unique properties of planetary gears. The natural 
frequencies and mode shapes are determined for linear time invariant case. The translational, rotational 
and planetary mode types predicted using the lumped parameter model which is time–invariant was 
subsequently validated (18). Another LTI model was used to determine the free torsional vibration 
characteristics of compound planetary gear sets (19). Kharaman also developed a LTI model to simulate 
the dynamic behavior of a single stage planetary gear with helical gears (20). Similarly in this study, the 
natural frequencies are determined for a linear time invariant case. One of the main objectives is to shift 
these natural frequencies so that it will not coincide with the mesh frequency to avoid resonance. 

The effect of pole placement on the dynamic behaviour of planetary gears is investigated as well the 
influence of the rotational speeds on the closed loop poles. It is assumed that resonance can be avoided in 
planetary gears if one or more of the natural frequencies can be shifted to a desired location, such that it 
will not coincide with the mesh frequency or frequency of any external excitation. The control forces and 
powers required to shift the poles in a planetary gear system were also determined considering the 
rotational speed of the system. The pole placement method, applied to rotating machinery, has the 
advantage of allowing for a robust placement of the pole insensitive to rotational speed variations. Pole 
placement involves assigning the closed loop poles of a dynamic system at the desired locations in the 
complex s-plane. The placement can be done for stability or shifting the natural frequencies to avoid 
resonances which can cause fatigue or failure. This can be achieved, for example, by actively adding 
stiffness using displacement feedback in the control strategy. Likewise, damping can be actively added to 
the system using velocity feedback in the control strategy. It is also possible to combine the displacement 
and velocity feedback strategies (or output feedback) when controlling the vibration of a system. In this 
case, the natural frequencies can be shifted and the response at resonance frequencies can be damped 
simultaneously. According to Mottershead et al., collocated sensor-actuator arrangement is possible when 
using output feedback (17). This is achievable if the characteristic nonlinear equation containing the gain 
terms is formulated.  

However, the application of pole placement control strategy to planetary gearing and rotating machinery 
in general is not straightforward. The relative rotation of the parts of the planetary gear system, as well as 
the application of control actuator which are usually stationary, allow for multiple configurations of the 
control system which require a new derivation of the theory. Considering the current technology, 
actuators cannot easily rotate with planetary gears in order to control vibration. It is hereby demonstrated 
for the first time that the control force required using a rotating frame of reference can be determined. 
This can be transformed into the equivalent control force in a fixed frame of reference for 
implementation. Numerical examples will be demonstrated, using a rotating frame of reference to 
formulate the model and determine the feedback gains by pole assignment. Moreover, the controller 
design is such that the poles can be assigned considering the rotational speed of the reference frame. The 
pole placement method where the rotational speed of the reference frame is being considered in the 
control law is rare in the literature. The next stage is to determine a robust adaptive feedback gain, which 
allows fixing some poles irrespective of the rotational speed. 

In this paper, the efficacy of the pole placement procedure for the design of a feedback controller is 
proven in the case of transmission error between the sun and planet gear. A mesh excitation whose 
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frequency (mesh frequency) is the product of the rotational speed of the carrier and the number of teeth on 
the stationary ring gear has been used. At the same time, two control forces were used to assign poles on 
the vertical and the horizontal directions of the sun gear only. The same was repeated on the carrier for a 
second case. The s-plane shows how the poles shift after closed loop poles have been assigned to the 
system.

2. Pole Placement application to a rotating machinery
This section deals with the theoretical analysis of pole placement using a rotating frame of reference. The 
dynamic model of a planetary gear for the pole assignment analysis is shown in Figure 1.The carrier, ring, 
sun and planet gears are assumed to be rigid bodies and the connections between the sun-planet and ring-
planet are represented by linear springs acting along the pressure line. For this study, the mesh stiffness is 
assumed to be constant over a mesh cycle. The bearing stiffnesses are represented by two perpendicular 
linear springs and they are assumed to be isotropic. The system is assumed to be well lubricated; 
therefore, the frictional forces at the contacts are ignored. The components are rotationally symmetric 
about their centreline, i.e. they remain the same after any angular rotation. The two planet gears are 
identical and the angle between them is 180 degrees. The translational coordinates of the carrier (c), ring 
(r), sun (s) are denoted by  and , with  and planet gears coordinates are denoted by . 𝑥ℎ 𝑦ℎ  ℎ = 𝑐, 𝑟, 𝑠 𝜁𝑛,𝜂𝑛
Index n refers to the n-th planet. The rotational coordinates are , where r is the radius and  is 𝑢ℎ = 𝑟ℎ𝜃ℎ 𝜃
the angular displacement. The bearing stiffnesses of the carrier, ring and sun in x and y directions are 
represented by  respectively. The bearing stiffnesses of the planet gears 1 and 2 𝑘𝑐𝑥, 𝑘𝑟𝑥, 𝑘𝑠𝑥, 𝑘𝑐𝑦, 𝑘𝑟𝑦, 𝑘𝑠𝑦
are denoted by . The sun-planet mesh stiffness is denoted by , and ring-planet mesh 𝑘𝑝1 and 𝑘𝑝2 𝑘𝑠𝑛
stiffness is denoted by . The torsional stiffness the carrier, ring, sun and planet are denoted by 𝑘𝑟𝑛 𝑘𝑐𝑢, 𝑘𝑟𝑢, 

 respectively and they are all set to zero except that of the ring gear which is 𝑘𝑠𝑢 and 𝑘𝑝𝑢 2.54 × 108 
. The bearing damping of the carrier, ring and sun in x and y directions are represented by Nm/rad 𝑐𝑐𝑥, 𝑐𝑟𝑥

 respectively. The bearing stiffnesses of the planet gears 1 and 2 are denoted by , 𝑐𝑠𝑥, 𝑐𝑐𝑦, 𝑐𝑟𝑦, 𝑐𝑠𝑦 𝑐𝑝1 and 
.𝑐𝑝2

The equations of motion of the rigid bodies were obtained using a rotating frame of reference fixed to the 
carrier centre with origin O. The coordinate basis (i, j and k) rotates around the k-axis with a constant 
angular speed of the carrier . In this frame of reference, the gyroscopic effect is not considered even Ω𝑐
though there is a Coriolis effect due to carrier speed. Hence, the poles are determined for a linear time 
invariant case. In practice, using a rotating frame of reference implies that the vibration measurements 
transducers, such as surface mounted accelerometers, are rotating with the rotating components.

Page 6 of 21

https://mc.manuscriptcentral.com/lfn

Journal of Low Frequency Noise, Vibration & Active Control

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

5

Figure 1. The dynamic model of a planetary gear system showing the rotating frame of reference 
attached to the carrier at the centre.

For pole placement, the second order equation of motion for the planetary gear system using a rotating 
frame of reference is written in the Laplace domain as according to Mottershead et al. (17) and Lin & 
Parker (4):

(1)[𝑠2𝐌 +𝑠(Ω𝑐𝐆𝑦 + 𝐂𝑏) + (𝐊𝑏 + 𝐊𝑚 + Ω𝑐𝐊𝑑 ― Ω2
𝑐𝐊Ω]𝐪(𝑠) = 𝐰(𝑠) + 𝐁𝐔(𝑠)

where matrices are the mass, damping, 𝐌, 𝐂𝑏, 𝐊𝑏, 𝐊𝑚 𝜖 ℜ𝑛 × 𝑛; 𝐌 = 𝐌𝑇, 𝐂𝑏 = 𝐂𝑇
𝑏, 𝐊𝑏 = 𝐊𝑇

𝑏, 𝐊𝑚 = 𝐊𝑇
𝑚 

bearing and mesh stiffnesses respectively.  is the control force distribution matrix, 𝐁 ∈  ℜ𝑚 × 𝑛 𝐔(𝑠) ∈  
 is the control force, while  is the disturbance due to transmission error in the sun-planet ℜ𝑚 × 1 𝐰 𝜖 ℜ𝑚 × 1

mesh. There are two opposing forces in the sun-planet mesh, unlike the forces being applied in most 
dynamic systems. Therefore, the excitation vector is written as

 , (2)𝐰 = 𝑘𝑠𝑛𝑒𝑠𝑛[0   0   0   0   0   0  sin 𝜓𝑠𝑛  cos 𝜓𝑠𝑛   1  ― sin 𝛼𝑠  ― cos 𝛼𝑠  ― 1   0   0   0]T

where  is the sun-planet mesh angle,  and  are the pressure angle, and planet position 𝜓𝑠𝑛 = 𝜓𝑛 ― 𝛼𝑠 𝛼𝑠 𝜓𝑠𝑛
respectively while  is the transmission error between sun and planet mesh. According to Cooley and 𝑒𝑠𝑛
Parker, the force excitation from varying mesh stiffness is often estimated using static transmission error 
(21). In this case, the excitation force is the product of sun-planet mesh stiffness and static transmission 
error between them.

The displacement vector is denoted by . Some terms are introduced because of the choice of the frame 𝐪
of reference and Coriolis effect due to the carrier relative motion. These additional terms are Gy, Kd and 
KΩ; Gy and Kd matrices are skew-symmetric while . Matrix Gy arises due to Coriolis forces 𝐊Ω = 𝐊𝑇

Ω
which are velocity-dependent, that is why it appears in the damping matrix. However, it does not have 
dissipative effect like a damping coefficient matrix . Matrix  is due to the presence of damping in the 𝐂𝑏 𝐊𝑑
gear system but appearing in the stiffness matrix because it is displacement-dependent. The output 
equation in Laplace domain for the output feedback is written as:
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(3)𝐪𝒐𝒑(𝒔) = 𝐃𝐪(𝒔)

For collocated sensors and actuators,  , where D is the sensor distribution matrix and the 𝐁𝑇 = 𝐃 ∈  ℜ𝑚 × 𝑛

output is denoted by qop. . ∈  ℜ𝑚 × 1

The feedback control law using a rotating frame of reference is written as

(4)𝐔(𝑠) = (𝐆 + Ω𝑐𝐅𝐉 +𝑠𝐅)𝐃𝐪(𝑠)

where matrices  and  gives the feedback gains which are proportional to the active stiffness and 𝐆 𝐅
damping respectively.

(5)𝐉ℎ = [0 ―1
1 0 ];ℎ = 𝑐, 𝑠

The carrier and sun gear are denoted by subscripts c and s because the control forces were applied to one 
of them in each case. 

From Equation (4), the control force using a rotating frame of reference can be transformed into a fixed 
frame of reference using the transposed form of the transformation matrix T which is written as:

𝐓T = [ cos Ω𝑐𝑡 sin Ω𝑐𝑡
― sin Ω𝑐𝑡 cos Ω𝑐𝑡]

Substituting for  in Eq. (1), one obtains,𝐔

(6)2 2[ ( ) ( )] ( ) ( )b d cc y c cms s +


         M G + C + BFD K K K K BGD BFJD q s w s

(7)2 2 1( ) [ ( ) ( )] ( )b d cc y c cms s + 


         q s M G + C + BFD K K K K BGD BFJD w s

The closed loop inverse dynamic stiffness matrix is written as 

(8)2 2 1[ ( ) ( )]b d cc y c cms s + 


        M G + C + BFD K K K K BGD BFJD

The open loop inverse dynamic stiffness matrix is written as:

(9)2 2 1)(s) = [ ( ( ]b dc y c cms s + 


    H M + G + C) K K K K

Pre-multiplying Equation (9) by Equation (6), one obtains

(10)[ + ( + s ) ]
(s) = (s) (s)

det[ + ( + s ) ]
c
c

adj 


I H(s)B G FJ+ F D
q H w

I H(s)B G FJ+ F D

The corresponding eigenvalues  are equal to the closed loop poles, which are given as solutions to 𝜇𝑗

(11)det (𝐈 + 𝐇(𝜇𝑗)𝐁(𝐆 + Ω𝑐𝐅𝐉 + 𝜇𝑗𝐅)𝐃) = 𝟎

The corresponding eigenvalues  are equal to zeros given as solutions to𝜆𝑗

(12)adj (𝐈 + 𝐇(𝜆𝑗)𝐁(𝐆 + Ω𝑐𝐅𝐉 + 𝜆𝑗𝐅)𝐃)𝐇(𝜆𝑗) = 𝟎

The method of pole placement to a planetary gear will be demonstrated in the next section.

Page 8 of 21

https://mc.manuscriptcentral.com/lfn

Journal of Low Frequency Noise, Vibration & Active Control

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

7

3. Numerical examples of pole assignment 

The pole placement was applied to either the sun gear or the carrier in both the vertical and horizontal 
directions simultaneously using a rotating frame of reference. A transmission error of  was 1.05 × 10 ―3m
assumed. The mesh excitation in this study is the product of the sun-planet mesh stiffness and the 
transmission error between the sun and planet gear which is  The parameters of the 1.312 × 104N. 
planetary gear system are shown in Table 1.

Table 1. Parameters of the planetary gear systems.

Parameter description Carrier Ring Sun Planet
Mass (kg) 1.00 4.30 2.00 0.43
Mass moment of inertia/squared radius 
(kg) 2.41 6.22 1.00 0.23

Base circle diameter (m) 176.8 261.00 134.00 63.40
Bearing stiffness (N/m) 60.965 10 71.64 10 61.02 10 43.82 10
Bearing damping coefficient (Ns/m) using 
0.01 as the damping ratio 19.65 53.22 28.57 2.56

Mesh stiffness (N/m) 1.25 × 107

Torsional stiffness of the ring gear 
(Nm/rad) 2.54 × 108

Torsional damping coefficient of the ring 
(Ns/m)  using 0.01 as the damping ratio 661

Pressure angle (degree) 𝛼𝑠 = 𝛼𝑟 20
Speed ratio of the carrier to sun gear Ω𝑐

Ω𝑠
=

1
2.95

Speed ratio of the carrier to planet gear Ω𝑐

Ω𝑝
=

1
3.11

Gear contact  ratio 3.29

3.1 Pole assignment to the sun gear
Two pairs of complex conjugate poles were assigned to the sun gear using two actuators supplying 
feedback control forces  in the horizontal and vertical directions directly to the sun gear shaft 𝑢𝑠𝑥 and 𝑢𝑠𝑦
through a bearing as shown in blue arrows in Figure 2. The system has fifteen conjugate open loop poles. 
The closed loop poles were chosen considering the open loop poles of the system associated with the 
translational mode. This is the mode where the carrier, ring and sun gear are moving in both  and  𝑥 𝑦
directions or one of them such that there is no rotation in the rotational  direction.𝑢
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Figure 2. The control force being applied to the sun gear in the x and y directions. They are shown 
in blue arrows in both directions.

Two pairs of complex conjugate poles at  and  were 𝜆1,2 = ―6.9108 ± 264.18𝑖 𝜆3,4 = ―15.659 ± 800.2𝑖
assigned using two actuators supplying feedback control forces to the sun gear.

The actuator distribution matrix  and the sensor distribution matrix  are then𝐁 𝜖 ℜ15 × 2 𝐃 𝜖 ℜ2 × 15

𝐃 = 𝐁T = [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

The open-loop inverse dynamic stiffness matrices are written as

, 𝐇(𝜆𝑗) = [𝐌𝜆2
𝑗 + (Ω𝑐𝐆𝑦 + 𝐂𝑏)𝜆𝑗 + (𝐊𝑏 + 𝐊𝑚 + Ω𝑐𝐊𝑑 ― Ω2

𝑐𝐊Ω)] ―1 𝑗 = 1,….,4

while the four characteristic equations are written as

det (𝐈 + 𝐇(𝜆𝑗)𝐁(𝐆 + Ω𝑐𝐅𝐉 + 𝜆𝑗𝐅)𝐁T) = 0, 𝑗 = 1 ,…., 4

The characteristic equation was solved using the “fsolve” routine in MATLAB to determine feedback 
gains  and . This method was also used subsequently in the remaining numerical example. The results 𝐆 𝐅
of the feedback control gains are:

 60.28161 0 34.9977 0
10 N / m; Ns / m

0 0.87076 0 9.4808
 


   
      

G F

The result was validated using a state space representation written as: 𝐀 =

(13)[ 𝟎 𝐈
― 𝐌 ―1(𝐊𝑏 + 𝐊𝑚 + Ω𝑐𝐊𝑑 ― Ω2

𝑐𝐊Ω + 𝐁(𝐆 + Ω𝑐𝐅𝐉)𝐃 ― 𝐌 ―1(Ω𝑐𝐆𝑦 + 𝐂𝑏 + 𝐁𝐅𝐃]

which yield the following closed loop poles obtained for a carrier speed of 100 rpm 
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 and  𝜆1,2 = ―6.9112 ± 264.18𝑖 𝜆3,4 = ―15.659 ± 800.2𝑖

The poles are the same as the closed loop poles assigned. The displacement per unit mesh excitation for 
both the horizontal and vertical directions are shown in Figure 3. 

 

(a) (b)

Figure 3. Displacement per mesh excitation force of the sun gear in the (a) x and (b) y directions 
with and without control due to mesh excitation using a rotating frame of reference at a carrier 
speed of 100 rpm. The initial and the modified displacement per mesh excitation are plotted in red 
and blue respectively.

The result in Figure 3(a) which is the displacement of the sun gear in the horizontal direction, shows that 
a pole was shifted from  to  . Another pole was shifted from ―2.8336 ± 276.5𝑖 ―6.9112 ± 264.18𝑖

  to  with significant damping added. This is a mode where only ―7.1425 ± 714.11𝑖 ―15.659 ± 800.2𝑖
the sun gear is translating in both directions. Hence, only the frequencies of translational modes were 
altered. The poles of the translational mode have shifted, whilst the poles of the rotational mode remain 
unaltered. In Figure 3(b), the pole at  shifted to  in the first ―2.8336 ± 276.5𝑖 ―6.9112 ± 264.18𝑖
excited mode while the second excited mode was shifted from  to . 7.1425 714.11i  ―15.659 ± 800.2𝑖
The poles corresponding to higher modes remain unchanged and no damping was added. The stiffness has 
been reduced in the y direction, which is why at low frequency the modified displacement per mesh 
excitation (i.e. the blue line) increased in magnitude (Figure 3(b)).  
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Figure 4. The s-plane showing the locations of the initial and the modified poles when the control 
forces were applied to the sun gear using a rotating frame of reference at 100 rpm.

Figure 4 shows the three pairs of conjugate poles which were shifted. They are poles of the translational 
modes because the poles were assigned to the sun gear in the translational  and  directions. Five 𝑥 𝑦
translational and 7 rotational modes remain unchanged. The magenta line shows the pole that shifted from 

 to , the blue line shows the one from   to ―2.8336 ± 276.5𝑖 ―6.9112 ± 264.18𝑖 ―7.1425 ± 714.11𝑖
 while the green line shows how a pole shifted from  to ―15.659 ± 800.2𝑖 6.3894 664.34i 

.4.3504 280.5i 

The control force per mesh excitation force (normalised) and absolute control force are shown in Figure 5 
by blue and orange lines respectively.
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Figure 5. Control forces applied on the sun gear in both the (a) x and (b) y directions using a 
rotating frame of reference at a carrier speed of 100 rpm.
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The control forces required depend on the control gains  and  as shown in Equation (4). The control 𝐆 𝐅
forces required in the  direction are lower in magnitude compared to those required in the  direction. In 𝑥 𝑦
Figure 5(a), the absolute control forces are 0.2 N at 265 rad/s and 2.3 N at 800 rad/s. The absolute control 
forces required in  direction is 115.2 N at 265 rad/s (Figure 5(b)). Generally, the control forces in both 𝑦
directions are relatively low, so actuators with low control force would be suitable for practical 
implementation. 

Bobrovnitski (22) gives the expressions for both the real and imaginary parts of the complex power flow. 
The control power using a rotating frame of reference is determined by multiplying the control force by 
the Hermitian conjugate of velocity in a Laplace domain as written in Equation (14). 

(14)𝐏𝑒 =
1
2[ ―(𝐁(𝐆 + Ω𝑐𝐅𝐉 + 𝑠𝐅)𝐃𝐪(𝑠))(𝑠𝐃𝐪(𝑠))𝐻]

The active control power is the real part of equation ( ), while the apparent (or reactive) (𝐏𝑎 =
1
2𝑅𝑒(𝐏𝑒)

control power is the imaginary part .𝐏𝑟 =
1
2𝐼𝑚(𝐏𝑒)

In addition, the mean square control force using a rotating coordinate is also considered. This is given by

      (15)𝐅𝑐 =
1
2|[ ― 𝐁(𝐆 + Ω𝑐𝐅𝐉 + 𝑠𝐅)𝐃𝐪(𝑠)]|2

Figure 6. (a) Mean square control force (b) Active control power (c) Reactive control power 
required by the sun gear in both the x (to the left) and y directions (to the right) using a rotating 
frame of reference when the rotational speed is 100 rpm.

Although the mean squared force, active and reactive powers are shown in Figure 6, it is the active power 
that is the main interest in this study. This is because it gives the real active control power required to 
shift the poles from one location to another. Figure 6 (b) shows the active control power required by the 
sun gear in both the x and y directions. Very small magnitudes of the active control power are required to 
shift the poles in both directions. 
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3.2 Pole assignment to the carrier 
The method of pole placement was consequently applied to the carrier only in the  and  directions. The 𝑥 𝑦
pole placement on the carrier will be compared to that of the sun gear in order to determine the best 
location to apply the actuator to the system. For this reason, two conjugate poles 𝜆1,2

 and  (which are approximately the same as those = ―7.0025 ± 264.78𝑖 𝜆3,4 = ―16.271 ± 800.3𝑖
assigned to the sun gear) were assigned to the carrier. It yields the following gains:

 ,  60.49335 0
10 N / m

0 0.40455


 


 
  

G
303.41 0

Ns / m
0 12.0221


 
  

F

The results were validated by using the state-space equation written in equation (13), and this yields 
and . The closed-loop poles obtained are identical to the assigned 7.0024 264.78i  16.275 800.3i 

ones. 

(a) (b)

Figure 7. Displacement per mesh excitation of the carrier in the (a) x and (b) y directions with and 
without control due to mesh excitation using a rotating frame of reference. The initial and the 
modified displacement per mesh excitation are plotted in red and blue respectively.

Figure 7(a) shows the displacement per mesh excitation of the carrier in x direction where the pole of the 
first excited t ranslational mode is shifted from  to . Damping is added ―2.8336 ± 276.75𝑖 ―7 ± 264.78𝑖
at 264.78 rad/s because the peak is not as sharp as the peak at 276.75 rad/s. Another pole corresponding to 
a translational mode moves slightly from   to . A pole was also ―6.3894 ± 664.34𝑖 ―6.6242 ± 662.51𝑖
shifted from  to , but the peak has vanished in the modified ―9.7772 ± 1023.7𝑖 ―16.275 ± 800𝑖
displacement per mesh excitation. In Figure 7(b), the frequency of the first excited mode was shifted from 
275 rad/s to 265 rad/s. The second mode was shifted from 664.34 to 662.51 rad/s while the third mode 
was shifted from 1023.7 to 800 rad/s. The peak of the assigned pole at 800 rad/s can be seen in  𝑦
direction. The translational mode at 1876.6 rad/s was slightly damped, while the last translational mode 
excited at 7773.2 rad/s remains unaltered. 
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Figure 8. The s-plane showing the locations of the initial and modified poles when the control forces 
were applied to the carrier using a rotating frame of reference.

The conjugate poles, which were shifted after pole placement, are shown in Figure 8. The two assigned 
poles and other poles can be seen before and after modification. The magenta line shows the pole shifted 
from  to  while the blue line shows the pole shifted from ―2.8336 ± 276.75𝑖 ―7 ± 264.78𝑖

 to . The real and imaginary parts of the poles of the rotational ―9.7772 ± 1023.7𝑖 ―16.275 ± 800𝑖
modes remain unchanged. The frequency of a closed-loop pole shown by a green line was shifted from 
1020.9 to 730.55 rad/s with a significant level of damping added.

(a) (b)

Figure 9. Control forces applied on the carrier in both the (a) x and (b) y directions using a rotating 
frame of reference.

The normalised (blue line) and absolute (orange line) control forces are shown in Figures 9(a) and (b). A 
force of 15.6 N is required in the x direction to shift the pole from 276.75 to 265 rad/s, while a force of 1.04 
N is required to shift the pole from 1023.7 to 800 rad/s in the  direction. The control forces vary and 𝑦
depend on the stiffness and damping added as well as the pole assigned. 
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Figure 10. (a) Mean square control force (b) Active control power (c) Reactive control power 
required by the carrier in both the x (left hand side) and y (right hand side) directions using a 
rotating frame of reference at a carrier speed of 100 rpm.

The active control power required by the carrier is relatively higher than that required by the sun gear in 
both the  and  directions (comparing Figures 6(b) and 10(b)). It can be seen from both the figures 𝑥 𝑦
aforementioned, that the active control power required by the carrier to shift a pole of 

 to  in the x direction is higher than that required by the sun gear in ―2.8336 ± 276.75𝑖 ―7 ± 264.78𝑖
the  direction. The control effort required by the carrier to shift a pole from  to 𝑦 ―7.1425 ± 714.11𝑖 

 in the  direction is less than that required by the sun gear in the  direction. There is ―16.275 ± 800𝑖 𝑦 𝑥
no significant difference in the active control effort required by the carrier using either frame of reference.

For a high margin between the open and closed loop poles, the control effort required to be applied to the 
sun gear is higher because it has higher support stiffness. This is not the case for the low margin between 
the open and closed loop poles, where the control effort required by the carrier is higher. Therefore, the 
optimal place to apply control in the planetary gear system considering the control effort required depends 
on the initial location of the poles and the desired final shifted pole location in the -plane. Another factor 𝑠
to be considered is the bearing stiffness of the carrier and the sun gear. For higher bearing stiffness, more 
control effort will be required to shift the pole from a particular location to another especially for the case 
where the margin between the open and closed loop is high.

It has been shown by numerical examples that the poles can be assigned and the control forces and 
powers can be obtained. This means a pole can be assigned using a rotating frame of reference where the 
accelerometers are rotating with the system at a particular carrier speed. However, since the actuators 
cannot rotate with the system in practice, so the control force and power required to shift the pole using a 
rotating frame of reference can be transformed using a fixed frame of reference for a more practical 
implementation. This is due to the fact that the accelerometers and actuators are typically stationary when 
using a fixed frame of reference. 
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3.3 Effect of the carrier speeds on the closed loop poles at constant gains

The conjugate closed-loop poles assigned to both the sun gear and carrier at higher speeds of 500 and 
1000 rpm are determined. For this case, the gains at 100 rpm were fixed the effect of the rotational speed 
on the closed loop poles at 500 and 1000 rpm was determined. The results for rotational speeds at 100, 
500 and 10000 rpm are shown in Table 2 for comparison.

Table 2. The conjugate closed loop poles and their corresponding control gains at different 
rotational speeds.

Sun gear Carrier

Poles obtained at 
the carrier speed of 
100 rpm

―6.9108 ± 264.18𝑖

―15.659 ± 800.2𝑖

―7.0025 ± 264.78𝑖

―16.271 ± 800.3𝑖

Control gains at the 
carrier speed of 100 
rpm

𝐆 = diag(0.2816, ― 0.8707) MN/m

𝐅 = diag(34.9977, 9.4808) Ns/m

𝐆 = diag( ―0.4933, ― 0.4045) MN/m

𝐅 = diag(303.41, 12.0221) Ns/m

Poles obtained at 
the carrier speed of 
500 rpm

―6.3618 ± 249.18𝑖

―15.579 ± 804.89𝑖

―7.0617 ± 259.58𝑖

―30.819 ± 809.75𝑖

Control gains at the 
carrier speed of 500 
rpm

𝐆 = diag(0.2816, ― 0.8707) MN/m

𝐅 = diag(35.0022, 9.4758) Ns/m

𝐆 = diag( ―0.4932, ― 0.4047) MN/m

𝐅 = diag(303.51, 12.0025) Ns/m

Poles obtained at 
the carrier speed of 
1000 rpm

―6.2341 ± 219𝑖

―15.35 ± 819𝑖

―7.2383 ± 242.82𝑖

―58.474 ± 853.38𝑖

Control gains at the 
carrier speed of 
1000 rpm

𝐆 = diag(0.2816, ― 0.8707) MN/m

𝐅 = diag(34.9992, 9.4797) Ns/m

𝐆 = diag( ―0.4933, ― 0.4046) MN/m

𝐅 = diag(303.46, 12.0327) Ns/m

The closed loop poles obtained, which produce approximately the same feedback gains, are not the same 
at the three different speeds. For instance, the two conjugate closed loop poles for sun gear at 100, 500 
and 1000 rpm are different for approximately the same gains (Table 2, column 2). It shows that the 
imaginary part of the first pole changed from 264.18 to 249.18 when the speed was increased from 100 to 
500 rpm. This later changed from 249.18 to 219 rad/s when the speed was further increased from 500 to 
1000 rpm. This is the same for the second pole which changed from 800 to 804.89 and subsequently to 
819 rad/s. However, it shows that the increase in speed does not have a significant effect on the real side 
of the poles which determines the level of damping in the system. The same thing is applicable to the 
carrier except that the increased speed leads to significant change in the real side of the second closed 
loop pole. 
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   (a) Real part of the poles  (b) Imaginary part of the poles

Figure 11. Effect of the carrier speed on the poles for constant feedback gains at 1000 rpm when the 
poles were assigned to the carrier. The blue solid line indicates the first pole while the orange 
dashed line indicates the second pole.

The influence of the rotational speed on the closed loop poles assigned to the carrier is studied 
considering constant gain at 1000 rpm. Figure 11 shows clearly the results from 0 to 1000 rpm. Figure 11 
(a) shows that for the first pole at , the there is no significant change in the real part ―7.0025 ± 264.78𝑖
while for the second pole at , the reverse is the case especially at speeds above 100 ―16.271 ± 800.3𝑖
rpm. The influence of the rotational speed on the imaginary part of the poles is significant at frequencies 
above 500 rad/s for both poles (Figure 11 (b)). The results in Figure 12 confirm the results shown in 
Table 2 where the gains were fixed at 1000 rpm. This implies that the effects of the rotational speed on 
the assigned poles are the same whether the gain is fixed at 100 or 1000 rpm.
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3.4 Effect of the rotational speed on control gains for constant specified closed loop poles

This section focuses on the effect of the rotational speed on the control gains. In this case the closed loop 
poles at 1000 rpm were fixed at their locations. Figure 12 show that the gains are not changing when 
varying the rotational speed above or below 1000 rpm. This implies that the performance of the controller 
can still be guaranteed when varying the rotational speed with the closed loop poles remaining invariant. 
Therefore, one can predict that pole placement method is a robust method considering the insensitivity of 
the gains to the rotational speed.
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Figure 12. The effect of the rotational speed on the control gains at constant poles assigned 
to the sun gear. (a) gains  in x and y directions are proportional to active stiffness (b) gains 𝐆

 in x and y directions are proportional to active damping. The red line is for x direction 𝐅
while the blue line is for y direction. The poles at this rotational speed are  and―𝟔.𝟐𝟑𝟒𝟏 ± 𝟐𝟏𝟗𝒊

. ―𝟏𝟓.𝟑𝟓 ± 𝟖𝟏𝟗𝒊

4. Discussion

In this study, the theory of pole placement has been extended to the vibration control of planetary gear 
such that the required active control force and power can be predicted considering the rotational speed of 
the system and the feedback gains (Figures 5, 6, 9 and 10). The equivalent active control force and power 
required for instance at 500 and 1000 rpm can then be determined by transforming to a fixed frame of 
reference for a practical implementation. This is achievable because the control system was designed such 
that the control force and power required can be obtained at any rotational speed.

This investigation has numerically demonstrated how a pole placement method can be used to actively 
control the vibration of a planetary gear system. The controller was designed such that the closed-loop 
poles can be assigned using either fixed or rotating frames of reference. Therefore, for a rotating planetary 
gear system, the feedback gains can be determined at a particular rotational speed using a rotating frame 
of reference and then transformed to equivalent gains in a fixed frame of reference for implementation. 

The control force and power required (which depend mainly on the active stiffness and damping) can then 
be determined at each frequency, therefore the kind of actuator required for the control experiment can be 
known. The numerical predictions show that the assigned poles of lower frequencies corresponding to 
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translational modes are shifted to avoid resonance with the addition of damping to reduce the response in 
both x and y directions. The predicted control forces required for the method are small; therefore, 
actuators with low control force will be suitable for practical implementation.

In addition, for the same poles assigned to the sun gear and carrier, it shows that sun gear requires more 
control force and power. The active bearing stiffnesses added in each case are responsible for this 
phenomenon. Although the control force and power depend on the active stiffness and damping added, 
but for a system like planetary gears whose bearing stiffness is significantly high compared to the support 
damping, active stiffness mainly dictates the values of the control forces required. For instance, the active 
stiffness added to the sun gear in x direction is 0.2816 MN/m while 0.5 MN/m was removed from the 
carrier in the same direction when the same poles were assigned. The active damping added to sun gear in 
the same direction is 35 Ns/m while that of the carrier is 303.46 Ns/m. With more damping added to the 
carrier in this direction, the control force required is lower than that required to be applied to the sun gear.

Also, this study unlike previous studies shows how the control force and power required to control the 
vibration of the system can be obtained in a rotating frame of reference. This force can be subsequently 
transformed to equivalent forces in fixed frame of reference for a practical implementation. Considering 
the current technology, sensors and actuators cannot easily rotate with the planetary gear components in 
practice.  Montague et al. (14) show that the control force can be transmitted to the gear shaft through the 
bearings which are fitted in adaptors (stators). Similarly for this study, the actuators can be mounted on 
the sun gear bearing adaptor in x and y directions in order to apply the control force (Fig. 13). This can 
also be applied to the carrier through its bearing adaptor.

Figure 13. Planetary gear system showing locations where sensors and actuators can be attached on 
sun and carrier shafts.

For the case of active control method by velocity feedback, it is different from pole placement.  This is 
because the feedback gains are not assigned to shift the poles of the system to particular locations in the s-
plane, unlike the pole placement method. Instead, velocity feedback primarily is applied to increase the 
dissipation. The poles in this case may not be shifted to desired locations and still be an issue.

The main source of vibration in gear train with low contact ratio is the variation in mesh stiffness which 
occurs when the number of pairs of teeth in mesh is changing. This parametrically excited vibration can 
be effectively reduced using a high contact ratio gears. Although, some papers have also addressed 
passive control method like tooth profile modification and mesh phasing (1, 6, 7, 8, 10, 12). In many 
cases, these methods of passive modifications may be difficult to achieve because it may require design 
modifications and further manufacturing work. This may also take more time to achieve and may not be 
cost-effective. Therefore, another method that can be used is active vibration control as proposed in this 
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work, where some modern devices (actuators, sensors, controller etc.) are used to mitigate the planetary 
gear system vibration. 

5. Conclusions

The theory of pole placement in active vibration control has been extended to control the vibration of 
planetary gear in this study. This pole placement method considers output feedback and this was 
presented and numerically implemented. The controller was designed such that the closed-loop poles can 
be assigned using a rotating frame of reference to control vibration of a planetary gear system. The 
feedback gains, active control forces and powers can be obtained at any rotational speed using a rotating 
coordinate. These control parameters can then be transformed into a fixed frame of reference to obtain 
their equivalents for practical implementation. The insensitivity of the control gains to the rotational 
speed was demonstrated showing the robustness of the method. First and foremost, the same poles were 
assigned to the sun gear only and subsequently the carrier in the x and y (translational) directions. Three 
open-loop poles corresponding to translational modes out of eight were shifted with two control forces 
applied either on the carrier or sun gear. This shows that the method is suitable to actively control the 
mesh vibration of a planetary gear system.

The study shows that for this vibration control method, the control forces required by the actuators are not 
high; hence actuators with low control forces and displacement will be suitable for practical 
implementation. 

The optimal places to mount the actuators in order to apply control force on either the carrier or the sun 
gear was determined considering the control power required after assigning same conjugate poles on 
them. For comparison, the control power required by the sun gear to shift the poles is higher because the 
active stiffness required to be added is higher. Therefore, the optimal place to apply control force depends 
on the control force and power required to shift the poles from one location to another. For the same 
conjugate poles assigned to the sun gear and carrier in this study, the optimal place to apply control force 
is the carrier. This is because the control force required to shift the pole of the system in order to avoid 
resonance is relatively lower when poles are assigned to the carrier.
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