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Abstract

Background: We aimed to develop a machine learning algorithm to predict the

presence of a culprit lesion in patients with out‐of‐hospital cardiac arrest (OHCA).

Methods: We used the King's Out‐of‐Hospital Cardiac Arrest Registry, a retrospec-

tive cohort of 398 patients admitted to King's College Hospital between May 2012

and December 2017. The primary outcome was the presence of a culprit coronary

artery lesion, for which a gradient boosting model was optimized to predict. The

algorithm was then validated in two independent European cohorts comprising 568

patients.

Results: A culprit lesion was observed in 209/309 (67.4%) patients receiving early

coronary angiography in the development, and 199/293 (67.9%) in the Ljubljana and

102/132 (61.1%) in the Bristol validation cohorts, respectively. The algorithm, which

is presented as a web application, incorporates nine variables including age, a

localizing feature on electrocardiogram (ECG) (≥2mm of ST change in contiguous

leads), regional wall motion abnormality, history of vascular disease and initial

shockable rhythm. This model had an area under the curve (AUC) of 0.89 in the
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development and 0.83/0.81 in the validation cohorts with good calibration and

outperforms the current gold standard‐ECG alone (AUC: 0.69/0.67/0/67).

Conclusions: A novel simple machine learning‐derived algorithm can be applied to

patients with OHCA, to predict a culprit coronary artery disease lesion with high

accuracy.

K E YWORD S

coronary artery disease, early angiography, Out‐of‐Hospital Cardiac Arrest

1 | INTRODUCTION

Out‐of‐Hospital Cardiac Arrest (OHCA) occurs in over a quarter of a

million patients a year and is a leading cause of mortality in developed

countries.1 Between 50% and 90% of patients have a primary cardiac

etiology cardiac arrest with the presence of a culprit coronary

lesion.2,3 Current American Heart Association (AHA) and European

Society of Cardiology (ESC) guidelines recommend emergency

angiography and percutaneous coronary intervention (PCI) in patients

with ST segment elevation or in those without ST elevation with

hemodynamic instability and absence of a noncardiac cause.4–6 The

12 lead electrocardiogram (ECG) remains the current gold standard

for guiding pathways of care and decision to perform emergency

coronary angiography. However, it is well established that the post

return of spontaneous circulation (ROSC) ECG is a poor predictor of

the presence of significant coronary artery disease (CAD) and, in

particular, a culprit lesion.2,3,7 Three randomized clinical trials in

patients with OHCA without ST elevation recently found unexpect-

edly low rates of culprit lesions compared with prior observational

registries and subsequently no benefit from an early invasive

approach, highlighting the critical importance of improved detec-

tion.8–11 There are limited studies addressing identification of culprit

lesions in this patient group, which might enable selection of patients

for direct conveyance to cardiac arrest centers or for selection for an

early invasive approach. To date, the use of biomarkers has been

disappointing12 and a risk score derived from multivariable logistic

regression has important limitations and has not been externally

validated to date.13 Accordingly, the purpose of this study was to

utilize novel machine learning methods to improve detection of a

culprit lesion in patients presenting with OHCA for use before

conveyance or after arrival to a specialist heart attack center (HAC).

2 | METHODS

2.1 | Study setting and population

Patients across London, who experience OHCA in the community, are

served by the London Ambulance Service (LAS). A standardized

systematic protocol was established in 2012 in London, whereby

patients who have sustained OHCA with ROSC and an ECG showing ST

elevation are taken directly to a HAC. Patients without ST elevation

were brought directly to the HAC if there was high suspicion of a

cardiac etiology (the presence of chest pain before arrest or a history of

established CAD) or after exclusion of noncardiac causes in the

emergency department.5 King's College Hospital (KCH) is the main

HAC in South East London, treating a population in excess of one

million. On arrival, a decision to perform coronary angiography is made

by the admitting interventional cardiologist and after treatment, patients

are transferred to the Intensive Care Unit for ongoing supportive care.

We created the King's Out‐of‐Hospital Cardiac Arrest Registry

(KOCAR) as previously described.14 This registry includes all patients

over the age of 18 years, who presented with suspected cardiac

etiology OHCA and had ROSC in the field between May 1, 2012 and

May 1, 2017. This initial timepoint was chosen to reflect the date that

a protocol was established to transfer OHCA patients with ST

elevation directly to HACs across London. Inclusion criteria for the

registry was all patients with ST elevation on ECG and for patients

without ST elevation, if there was no clear noncardiac etiology on

initial assessment. Exclusion criteria included an obvious noncardiac

cause of arrest (suicide, trauma, drowning, substance overdose),

patients with suspected or imaging confirmed intracerebral bleeding,

known moderate‐to‐severe neurological disability (Cerebral Perform-

ance Category 3 or 4) or any known survival limiting disease to

6 months preceding the cardiac arrest. Research ethics committee

approval was obtained and the study was conducted in accordance

with the Declaration of Helsinki.

2.2 | Data collection

Data were collected using a dedicated database based on the Utstein

style recommendations. We formed a data collaboration with LAS to

ensure high accuracy of prehospital data, including time of cardiac

arrest, initial rhythm, administration of bystander cardiopulmonary

resuscitation (CPR), and time of ROSC. Patients with a shockable

initial rhythm and a witnessed arrest (either by lay responder or

emergency medical services [EMS]) were defined as an “Utstein‐like”

comparator cohort. Medical records were analyzed for hospital data

including arterial blood gas results such as pH, lactate and

bicarbonate, and blood tests for hemoglobin, creatinine, liver function

tests, and C‐reactive protein. In total, 175 variables were collected.
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Twelve lead ECGs are performed in the prehospital setting

before conveyance but only those on admission to the center were

analyzed and classified as ST elevation, left bundle branch block

(LBBB), ST depression, right bundle branch block (RBBB), or normal. A

localizing territory was classified by ≥2mm ST changes or T wave

changes in two contiguous leads in a coronary artery distribution.

Localizing features in LBBB were defined according to the Sgarbossa

criteria (Concordant ST elevation > 1mm in leads with a positive QRS

complex, Concordant ST depression > 1mm in V1–V3, and in

proportion to the preceding S‐wave (or R‐wave) as determined by

(1) at least 1 mm of ST elevation (or depression) AND (2) an ST/S

ratio ≤ −0.25) in accordance with previous literature.15,16

Coronary angiography was performed at the interventional

cardiologist's discretion. The coronary angiogram was evaluated

retrospectively by a blinded clinician. The prespecified primary

endpoint was the presence of a culprit lesion, which classified as an

athero‐thrombotic occlusion with presence of thrombus and/or easy

passage of the coronary guidewire. Any lesion over 70% in a single

angiographic plane that the clinician treated as a culprit or with

evidence of less than TIMI III flow was classed as a culprit in the

analysis. These definitions are in accordance with previously

published articles in this area.13,17

2.3 | Development of machine learning algorithm

We incorporated the patients referred for in‐patient coronary

angiography in the analysis. Missing predictor variables incorporated

into the machine learning algorithm were investigated for associations

with other variables, with appropriate multiple imputation methods

used to handle missing values in accordance with the recommenda-

tions of theTRIPOD guidelines.18 To generate a statistically significant

training sample, we randomly selected 75% of the patient records,

with the other 25% available to test the accuracy of our algorithm.

We adopted a Gradient Boosting approach, using the open‐

source algorithm XGBoost, which is a scalable tree boosting software

library commonly used in machine learning and applied in several

fields of physics and medicine.19 This supervised machine learning

algorithm is an ensemble of decision trees that are constructed from

labeled training data, where each tree is trained individually. In detail,

to construct a single tree, a bootstrapped sample of the training

sample is selected and the algorithm recursively splits the data using

a feature set based on the ability of each node to optimally separate

the training data into their constituent classes. Nodes are generated

until a maximum depth, minimum number of samples, or user‐defined

purity is reached. XGBoost uses gradient tree boosting to grow a

forest of trees considering all features, where the bootstrapped

sample for each new tree is weighted by the accuracy of the previous

iteration. Hence, although an individual, optimized, decision tree may

return the highest accuracy score for the test data set, a Gradient

Boosting approach provides optimal accuracy when considering the

variance of the entire training data set. To maximize the predictive

power of our algorithm, we used a grid search approach to estimate

the maximum depth and number of estimators and optimized the

algorithm based on the area under the curve (AUC). The resultant

probabilities from the XGBoost are calibrated using a cross‐validation

technique to lie between 0 and 1.

To develop an algorithm that can be incorporated into clinically

relevant, real‐time, medical practice, we iteratively selected variables

for entry into the decision tree based on clinical relevance and early

availability. Based on feature importance and the absence of significant

effect on model performance, variables were then iteratively pruned

from the algorithm. Final variables incorporated into the machine

learning algorithm were age, Utstein‐like cohort, normal ECG, ST

elevation, RBBB, localizing territory on ECG, regional wall motion

abnormality (RWMA) on admission, transthoracic echocardiography

(TTE), vascular history (defined as previous stroke, PCI, or coronary

artery bypass grafting [CABG]), and initial shockable rhythm.

Calibration slopes were used to plot the mean risk score relative

to the observed outcome rate for a given decile of predicted risk and

hence measure the calibration of the scores rather than the

Hosmer–Lemeshow goodness‐of‐fit test in accordance with current

expert consensus.20 The accuracy of the best performing model was

assessed using the Brier score, which is defined as the mean squared

difference between the observed and predicted outcome. Brier

scores range from 0 to 1.00, with 0 representing the best possible

calibration. An internal validation was performed using 1000

bootstrap iterations, generating bias‐corrected and accelerated

confidence intervals (CIs). The risk scores were then calculated for

patients in the validation cohorts, with the discrimination and

calibration measured by the AUC and calibration slope, respectively.

2.4 | Validation cohort study populations

External validation was performed in retrospective cohorts from the

University Medical Center, Ljubljana, Slovenia, and Bristol Heart

Institute, UK. Both centers are HACs providing primary PCI with an

on‐site emergency department and serve a population of ~1 million.

Similar to the development cohort, both centers followed relevant

European Association for Percutaneous Cardiovascular Interventions

(EAPCI) and ESC guidelines with regard to pathways of care for OHCA

patients, and all patients met inclusion and exclusion criteria. Patients

from Ljubljana were recruited from January 2013 to December 2017,

and in Bristol from January 2019 to July 2020. The primary endpoint

was the presence of a culprit lesion as per study definition.

2.5 | Statistical testing

Statistical analyzes were performed using T tests or analysis of

variance for parametric variables and Mann–Whitney or

Kruskal–Wallis tests for nonparametric variables. Normally distrib-

uted variables are expressed as mean with SD and non‐normally

distributed variables are expressed as median with interquartile

range. The χ2 test was used for categorical variables. A p < 0.05 was
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considered statistically significant. All analyzes were undertaken

using Python version 2.7 (Python service foundation) and SPSS

version 25 (IBM).

3 | RESULTS

3.1 | Patient population

Between May 1, 2012 and December 31, 2017, 1055 patients

suffered a suspected cardiac etiology OHCA in our catchment area

and had attempted resuscitation, of whom 291 failed to regain ROSC

with EMS. Of this cohort of survivors, 129 died before reaching KCH.

Six hundred and thirty‐five patients reached KCH with ROSC, of

whom 232 patients were deemed to not have a primary cardiac

etiology cause of the cardiac arrest. After excluding patients with

prior neurological disability (4 patients) and those lost to follow‐up

(1 patient), 398 patients were included in the registry (Figure 1).

Patient demographics for the development cohort are summa-

rized in Table 1. The median age was 64.3 years (53.3–75.4) and the

majority of patients were male (74.6%). Over half of patients had

cardiac arrest at residence (n = 228, 57.3%), 287 patients (72.1%) had

shockable rhythms and bystander CPR was performed in 291

(73.1%). Of the admitted 398 patients, 346 (86.9%) had admission

TTE and 309 (77.6%) were referred for in‐patient coronary

angiography within the first 2 h of admission. Patients undergoing

coronary angiography were younger and were more likely to have a

witnessed arrest, an initial shockable rhythm, a lower creatinine and

pH (Table 1).

3.1.1 | ECG analysis

The ECG changes on admission are summarized in Supporting

Information: Table 1. Coronary angiography was preferentially

performed in patients with ST elevation compared with those

without and least likely to be performed in patients with a normal

ECG and RBBB. The rates of CAD were highest in those with ST

elevation (n = 168/179; 93.9%) but there was also a substantial rate

in patients with LBBB (n = 26/40; 65.0%), ST depression (n = 21/31;

67.7%), and in those with a normal ECG (n = 21/45; 46.7%). A similar

trend was observed for culprit lesions, with the highest rate in those

with ST elevation (159/179; 88.8%). Culprit lesions were detected in

61.3% of patients with ST depression, 37.5% with LBBB, 37.5% with

RBBB, and 24.4% of patients with a normal ECG.

3.1.2 | Coronary angiography analysis and rates
of CAD

Among the patients who had coronary angiography performed,

209 (70.1%) had evidence of a culprit lesion in a major epicardial

vessel by study definitions and the majority of lesions were in the

LAD (50.7%). Patient demographics were similar between those

with and without a culprit lesion but patients with a culprit lesion

were more likely to have a history of smoking and an initial

shockable rhythm. Rates of significant CAD (100.0 vs. 34.00%;

p < 0.0001) and multivessel CAD (50.2 vs. 29.0%; p < 0.0001) were

higher in patients with a culprit lesion while prior CABG was lower

(5.7 vs. 11%, p = 0.03). There was no difference in rates of prior

F IGURE 1 Flow chart of patient flow from the King's Out‐of‐Hospital Cardiac Arrest Registry (KOCAR) registry cohort in the study. Between
May 1, 2012 and December 31, 2017, 1055 patients suffered out‐of‐hospital cardiac arrest (OOHCA), of whom 398 survived to our institution
and met inclusion criteria for the study. ROSC, return of spontaneous circulation.

4 | PAREEK ET AL.

 1522726x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ccd.30677 by U

niversity O
f Southam

pton, W
iley O

nline L
ibrary on [08/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



PCI or presence of a chronic total occlusion (Supporting Informa-

tion: Table 2).

3.2 | Model development in the development
cohort

The final and complete decision tree model combines nine variables,

which are readily available on arrival to a HAC, and includes ~512

potential permutations. The most discriminant variable across the

entire decision tree was the presence of a localizing ECG change on

the 12 lead ECGs. The following variables in conjunction predicted

the presence or absence of a culprit lesion with high accuracy—age, a

localizing feature on the ECG, presence of ST elevation, RBBB,

normal ECG, presence of an initial shockable rhythm, Utstein‐like

cohort, prior vascular history, and an RWMA on TTE. Supporting

Information: Figure 1 shows one example of a single decision tree

within the random forest ensemble determined by XGBoost for

illustrative purposes and frequencies of predictions as probabilities

are shown in Supporting Information: Figure 2.

TABLE 1 Comparison of baseline characteristics between development and validation cohorts.

Total (n = 966) King's College (n = 398) Ljubljana (n = 346) Bristol (n = 222) p

Age (years) – Median (IQR) 63.8 (54.0–74.0) 64.3 (53.3–75.4) 63.0 (55.0–73.0) 63.0 (52.0–74.0) 0.926

Male – no/total no. (%) 750/966 (77.6) 297/398 (74.6) 282/346 (81.5) 171/222 (77.0) 0.078

Hypertension 475/962 (49.4) 189/398 (47.5) 203/342 (59.4) 83/222 (37.4) <0.0001

Type 2 DM 172/962 (17.9) 72/398 (18.1) 66/342 (19.3) 34/222 (15.3) 0.478

Smoker 388/816 (47.5) 237/398 (59.5) 118/196 (60.2) 33/222 (14.9) <0.0001

Prior PCI 70/962 (7.3) 32/298 (8.0) 20/342 (5.8) 18/222 (8.1) 0.448

Prior CABG 94/963 (9.8) 31/398 (7.8) 44/343 (12.8) 19/222 (8.6) 0.055

Arrest circumstances – no/total no. (%)

Witnessed 825/966 (85.6) 319/398 (80.2) 318/346 (91.9) 188/222 (84.7) <0.0001

Bystander CPR 676/913 (69.6) 291/398 (73.1) 190/293 (64.8) 195/222 (87.8) <0.0001

Initial shockable rhythm 744/963 (77.3) 287/398 (72.1) 284/344 (82.6) 173/221 (78.8) 0.003

Utstein‐like cohort 653/963 (67.8) 241/398 (60.6) 259/344 (75.3) 153/221 (69.2) <0.0001

Investigations

RWMA 386/846 (45.6) 198/346 (57.2) 100/298 (33.6) 88/202 (43.6) <0.0001

Serum creatinine (µmol/L) 105 (85–162) 107 (86–134) 104 (84–124) 94 (80–118) 0.24

Blood lactate (mmol/L) 4.3 (2.1–7.8) 4.8 (2.4–8.7) 3.5 (1.8–7.3) 4.7 (2.1–6.9) <0.0001

pH 7.24 (7.12–7.32) 7.22 (7.09–7.31) 7.27 (7.18–7.35) 7.2 (7.1–7.3) <0.0001

12 lead ECG ‐ no/total no. (%) <0.0001

STEMI 405/963 (42.1) 182/398 (45.7) 154/346 (45.7) 69/219 (31.5)

LBBB 114/963 (11.8) 52/398 (13.1) 37/346 (10.9) 25/219 (11.4)

ST depression 133/963 (13.8) 41/398 (10.3) 60/346 (17.8) 32/219 (14.6)

RBBB 107/963 (11.1) 45/398 (11.3) 37/346 (11.0) 25/219 (11.4)

Normal 196/963 (20.4) 78/398 (19.6) 50/346 (14.8) 68/219 (31.1)

Localizing territory 552/957 (57.7) 242/396 (61.1) 160/342 (46.8) 150/219 (68.5) <0.0001

Admission – no/total no. (%)

Cardiogenic shock 387/958 (40.4) 192/398 (48.9) 117/343 (34.1) 78/222 (35.1) <0.0001

Coronary angiography 734/963 (76.2) 309/398 (77.6) 293/343 (85.4) 132/222 (59.5) <0.0001

Culprit 510/734 (69.4) 209/309 (67.4) 199/293 (67.9) 102/132 (61.1) 0.269

Note: Bold values are statistically significant.

Abbreviations: CABG, coronary artery bypass grafting; CPR, cardiopulmonary resuscitation; DM, diabetes mellitus; ECG, electrocardiogram; IQR,
interquartile range; LBBB, left bundle branch block; PCI, percutaneous coronary intervention; RBBB, right bundle branch block; RWMA, regional wall
motion abnormality.
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The KOCAR Culprit predictor had a discrimination of 0.89 AUC

(CI 0.858–0.918) (Figure 2). The model showed good calibration with

a Brier score of 0.13 and a Cohen's κ of 0.558 (Figure 3). The

performance of the model was significantly superior to the use of the

presence of ST elevation on ECG alone (AUC 0.69).

3.3 | Validation cohorts

Three hundred and forty‐six patients were recruited in the Ljubljana

and 222 were recruited in the Bristol cohort (Table 1). The external

validation cohorts had differing rates of baseline characteristics and

frequency of predictor variables used in the final algorithm described

above than the development cohort. The KOCAR algorithm had an

AUC of 0.825 in the Ljubljana validation cohort with a Brier Score of

0.173, whereas in the Bristol cohort, the AUC was 0.811 and the

Brier score was 0.196. In both cohorts, the KOCAR culprit predictor

algorithm had superior discrimination than ECG alone, where this had

an AUC of 0.669 and 0.665 in the Ljubljana and Bristol cohorts,

respectively (Figure 2).

3.4 | Discrimination performance of the KOCAR
culprit predictor algorithm

The discrimination performance of the KOCAR culprit predictor

algorithm was evaluated at two predictive thresholds: >70% and >90%.

3.4.1 | Greater than 70%

A total of 75.8%, 71.3%, and 61.8% patients had a predicted

threshold above 70% in the KOCAR, Ljubljana, and Bristol cohorts. At

this threshold, there was a high rate of culprit lesions, with a positive

F IGURE 2 Receiver operating curve for the development and external validation cohorts. (A) The area under the curve (AUC) in the
development cohort was 0.83 and (B) was 0.81 in the Ljubljana cohort (green) and 0.91 in Bristol (red). [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 3 Calibration plots for the decision tree. (A) The performance of the decision tree in the King's Out‐of‐Hospital Cardiac Arrest
Registry (KOCAR) development cohort, (B) in the Ljubljana cohort, and (C) in the Bristol cohort.

6 | PAREEK ET AL.
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predictive value of 85.0% in the KOCAR development cohort and

82.8%/82.9% in the external validation cohorts.

3.4.2 | Greater than 90%

A total of 40.4%, 37.7%, and 30.6% patients had a threshold above

90% in the KOCAR, Ljubljana, and Bristol cohorts, respectively. In

KOCAR, this threshold had a positive predictive value of 96.0% and a

specificity of 0.950. In the Ljubljana cohort, this had a positive

predictive value of 93.7% and a specificity of 0.931. In the Bristol

cohort, a threshold of >90% had a positive predictive value of 93.8%

and a specificity of 0.952 (Tables 2 and 3).

3.5 | Implementation of algorithm into
a web‐based application

For ease of use for physicians in clinical practice, we constructed a

web‐based application that provides a probability of the presence of

a culprit coronary artery lesion in patients admitted to HAC after

OHCA given the nine input parameters described above (beta version

available at http://tinyurl.com/miracle2score/kocar) (Figure 4).

4 | DISCUSSION

In this study, we derived and validated a novel machine learning

algorithm to predict the presence of a culprit coronary artery lesion

after OHCA on admission to a HAC, which has an AUC of 0.89 in the

development cohort and 0.83/0.81 in the external validation cohorts.

Importantly, this algorithm outperforms the 12‐lead ECG, which is

the current gold‐standard for guiding pathways of care.21 The

algorithm, which is implemented in a practical web‐based application,

has the potential to be integrated into research studies and clinical

practice to support early decision‐making either before conveyance

or after admission to a HAC.

There is an increasing appreciation of an underlying cardiac and,

in particular, CAD etiology of OHCA. The post‐ROSC ECG is a poor

predictor of a culprit lesion with several studies, indicating a relatively

high rate of culprit lesions in patients without ST‐elevation

myocardial infarction (STEMI) and a proportion of patients with

STEMI not having a culprit lesion, possibly due to acidemia and post‐

ROSC changes.10 Nonetheless, the AHA, ESC, and EAPCI societies

currently recommend the use of the 12‐lead ECG as the key

determinant in this decision‐making process.4,5,21 Owing to the poor

discrimination of the 12‐lead ECG, these guidelines currently

recommend that patients without STEMI particularly, receive an

assessment to exclude obvious noncardiac causes, which might lead

to substantial delays in treatment. The recently reported COACT,

PEARL, and TOMAHAWK trials showed no benefit from early

coronary angiography in this patient group but found a lower rate of

culprit lesions (13.3%–45%) than previously reported registries,

which may have attenuated the benefits of an invasive approach.8,10

These studies highlight the importance for objective methods to

predict culprit lesions in patients with OHCA and particularly in those

without ST elevation.9 Although the interpretation of lesion signifi-

cance in this population remains unclear, our study definition of a

culprit lesion was similar to these trials and prior reports with

inclusion of patients with a lesion of >70%.8,9,11

Although there is evidence that rates of CAD vary between 50%

and 90% in all‐comers with OHCA,2,3 there remains limited data for

the predictors of a culprit lesion. Cardiac biomarkers and the 12‐lead

ECG, which are the gold standard in acute coronary syndromes, are

poor predictors of a culprit lesion in the OHCA cohort.3,12,22 A study

by Waldo et al.13 found that 4 variables in 247 patients with OHCA,

including angina, congestive cardiac failure, initial shockable rhythm,

and the presence of ST elevation, could predict a culprit lesion with an

AUC of 0.86 but performed less well in patients without ST elevation

(AUC 0.76) and has important limitations. For example, this study

included in‐hospital cardiac arrests, had a relatively lower rate of

shockable rhythms, uses subjective variables (some of which may not

be apparent at the time of admission such as chest discomfort and

presence of heart failure) and was not externally validated, so may

TABLE 2 Diagnostic performance of the decision tree in the development cohort.

Performance
KOCAR Culprit > 0.70 KOCAR Culprit > 0.90 ECG alone
Value (95% CI) Value (95% CI) Value (95% CI)

AUC 0.888 (0.858–0.918) 0.888 (0.858–0.918) 0.691 (0.647–0.738)

Sensitivity 0.871 (0.834–0.914) 0.574 (0.524–0.631) 0.833 (0.792–0.875)

Specificity 0.680 (0.600–0.763) 0.950 (0.912–0.981) 0.550 (0.469–0.632)

Accuracy 0.809 (0.777–0.851) 0.696 (0.657–0.741) 0.741 (0.702–0.783)

Positive likelihood ratio 2.721 (2.171–3.674) 11.483 (6.437–30.055) 1.850 (1.554–2.279)

Negative likelihood ratio 0.190 (0.125–0.248) 0.448 (0.386–0.508) 0.304 (0.219–0.400)

Positive predictive value 0.850 (0.809–0.889) 0.960 (0.929–0.985) 0.795 (0.749–0.840)

Negative predictive value 0.716 (0.644–0.802) 0.516 (0.458–0.582) 0.611 (0.529–0.703)

Abbreviations: AUC, area under the curve; CI, confidence interval; ECG, electrocardiogram; KOCAR, King's Out‐of‐Hospital Cardiac Arrest Registry.
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have been at risk of over‐fitting. Pertinently, validation of this model

was not possible in the development and validation cohorts owing to

an absence of robust recording of these variables. By contrast, our

cohort consists of a real‐world cohort of patients with OHCA and a

primary cardiac etiology incorporating only objective variables into the

decision tree model and, in addition, with robust external validation.

We applied a random forest classifier to provide a practical and

individualized decision algorithm to a complex, heterogeneous, and

nonlinear population. The variables in our decision tree identified by the

machine learning algorithm are corroborated by previous studies

evaluating features associated with the presence of CAD. Although

several of these parameters are traditionally believed to be associated

with culprit CAD, there is limited data to support this and the algorithm

also provides a simple tool which incorporates the relevant variables.

From the 12 lead ECG, a localizing ECG was the most important

predictor of a culprit lesion, suggesting that this algorithm might be

equally applied to patients with or without ST elevation. Although rates

of ST elevation were high in both the development and validation

cohorts, this parameter had relatively lower feature importance,

providing validity of use in those without STEMI. Importantly, a RWMA

on admission trans‐thoracic echocardiography in patients with or

without a localizing ECG change was an important predictor of a culprit

lesion. Postarrest myocardial dysfunction, which is usually global in

nature, is a well‐established process after OHCA and has recently been

associated with poor outcome.23 However, this study suggests that

presence of a RWMA may be an important factor in guiding decision‐

making to perform coronary angiography and is corroborated by recent

data.24 This lends support to the notion that all patients with OHCA

should have a bedside/admission assessment of LV function by rapid

TTE as part of the diagnostic process for a decision to perform

immediate cardiac intervention, either prehospital or after admission.

The decision tree was developed in a cohort with broad clinical

inclusion of patients with presumed cardiac etiology OHCA based on

current consensus pathways of care and so is likely to be

generalizable to a wide cohort of patients. Patients with a clear

noncardiac cause were excluded but as coronary angiography is

unlikely to be considered in this cohort, the model remains relevant

to current clinical practice. The higher AUC of the algorithm in the

development and validation cohorts compared with ECG alone (i.e.,

those with STEMI on 12‐lead ECG) confirms a potential role in future

clinical practice. Importantly, validation of this algorithm immediately

after ROSC might facilitate direct transfer to a HAC, thereby

minimizing delays in revascularization and ensuring appropriate

patients receive optimal care. It is known that increased time from

ROSC to ECG acquisition reduces the false positive rate of ECGs for

the presence of significant CAD.25 In our study, the 12 lead ECG was

performed on arrival to a HAC, which will improve the accuracy of

ECG findings. In future model development, particularly in a

prehospital setting before conveyance, timing of ECG acquisition

will need to taken into account. The intention of the algorithm is to

guide clinicians to perform immediate invasive CAG and might be

combined with the presence of hemodynamic instability and risk of

neurological futility.T
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With further prospective validation in large studies, this

algorithm might be incorporated into research trials evaluating

optimal pathways of care for patients with OHCA, particularly in

those without ST elevation, with the potential for integration into

clinical guidelines.

5 | LIMITATIONS

The risk score was derived and validated in retrospective cohorts,

albeit with a thorough methodology and with internal and external

validation. Although this enabled collection of a high‐fidelity data

set with a protocolized protocol of care, it introduces the

possibility of a selection bias. In particular, the retrospective

nonconsecutive nature of this study does not enable the rates of

CAD and culprit lesions to be ascertained in patients that were not

selected for coronary angiography based on clinical discretion who

may be at particularly low risk. This also includes some patients

with STEMI/LBBB, who might have been deemed not suitable for

angiography for other clinical reasons such as futility or severe

hemodynamic instability. However, only those undergoing coro-

nary angiography were included which minimized adverse effects

on algorithm development. Prediction of a culprit lesion might be

most beneficial in those without STEMI on 12‐lead ECG but this

study was not powered to reflect this group due to lower numbers

of non‐STEMI patients and culprit lesions. Furthermore, the

F IGURE 4 King's Out‐of‐Hospital Cardiac Arrest Registry (KOCAR) culprit lesion prediction tool web application. The figure provides an
illustrative representation of the decision tree algorithm in the web application format. (A) A patient with a final diagnosis of a pulmonary
embolism with a low risk of a culprit lesion (8%), (B) a patient without ST elevation but at high risk of a culprit lesion (95%). [Color figure can be
viewed at wileyonlinelibrary.com]

PAREEK ET AL. | 9

 1522726x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ccd.30677 by U

niversity O
f Southam

pton, W
iley O

nline L
ibrary on [08/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com


definition of a culprit lesion in this patient cohort is challenging and

based to some extent on clinical discretion but we used established

definitions in accordance with previous studies.13,17 We did not

perform a core lab analysis and without evidence of thrombus or

other angiographic features suggestive of a culprit lesion might

simply represent stable bystander CAD. Ultimately, intra‐coronary

imaging might be able to clarify the pathophysiological significance

of these plaques but in the meantime, flow‐limiting lesions can

reasonably be considered to be culprit lesions. We excluded

patients with a clear noncardiac diagnosis, such as trauma, cerebral

bleed or overdose, as by current treatment algorithms, a decision

to perform emergency coronary angiography is made only in their

absence. As a result, a significant proportion of patients had STEMI

and there was a high rate of shockable rhythms and culprit lesions,

which might affect the performance of the algorithm in

undifferentiated OHCA populations. There were differing rates

of baseline characteristics and predictive variables in the validation

cohorts which might also have negatively affected the perform-

ance of the algorithm, although the discrimination performance

remained accurate. Finally, the predictive accuracy of this algo-

rithm may not be transferrable to other systems of care, such as in

non‐HAC without access to 24 h cardiac imaging and coronary

angiography on arrival. Our findings and algorithm require further

prospective validation in larger cohorts across multiple centers, in

different systems of care and potentially before conveyance

before routine clinical use.

6 | CONCLUSIONS

A novel simple machine learning‐derived algorithm can be

applied to patients with OHCA to predict a culprit CAD lesion

with high accuracy. The algorithm requires further validation but

may play a role in research studies or in supporting clinical

pathways of care.
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