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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 
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Doctor of Philosophy 

PASSIVE AND ACTIVE BRAGG GRATINGS FOR OPTICAL NETWORKS  

by Zhaowei Zhang 

 

This thesis investigates fibre Bragg grating (FBG) devices. Specifically, it consists of 

the developments and applications of two groups of devices: the optical phase 

en/decoders and the tunable fibre Bragg gratings based on an S-bending technique. 

 Three types of FBGs based optical phase en/decoders, including conventional discrete-

phase en/decoders, new reconfigurable-phase en/decoders, continuous-phase en/decoders, 

and their applications in optical code division multiple access (OCDMA) systems are 

studied in this thesis. A reconfigurable-phase en/decoder is composed of a uniform FBG 

and a series of equidistant tungsten wires in contact with it. The spatial phases along the 

FBG are configured by controlling the electrical currents through the tungsten wires. Its 

reconfiguration time is demonstrated to be less than two seconds. In order to obtain the 

full information about a reconfigurable-phase en/decoder, the pulse response method is 

introduced to accurately characterize the thermally induced dc refractive index variation 

in an FBG. In addition, a new continuous-phase en/decoder is developed. It has a spatial 

phase profile matching the reconfigurable-phase device accurately, and therefore, it has 

the inherent advantage to operate together with reconfigurable-phase devices in a 

reconfigurable OCDMA system.  

The advantage of an S-bending tuning FBG is that its central wavelength is invariant as 

the linear strain gradient along the FBG is altered. Two new devices are developed by 

embedding a pair of FBGs in a single uniform beam for S-bending. One is the tunable 

dispersion compensator with a wide tuning range, and the other is a tunable pure 

dispersion slope compensator. The application of an S-bending tuning FBG in controlling 

the output pulse width of a soliton fibre laser is also experimentally demonstrated. 
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Nomenclature 

A, B                       Amplitude of forward/backward propagating mode 

c                            Light speed in the vacuum 

E                           Young’s modulus 

F                            Force 

k                            Propagation constant in the vacuum 

M                           Moment 

neff                          Effective modal index  

q                             Complex coupling coefficient of the grating 

r                              Reflection coefficient of the grating  
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u, v                        Envelope of the forward/backward propagating mode 

α                           Coefficient of thermal expansion  

β                           Mode propagation constant 
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2β                          Group delay dispersion parameter 

3β                           Third order dispersion (TOD) parameter 

γ                            Effective propagation constant 

σ                           ‘DC’ coupling constant, or stress 

δ                            Frequency detuning parameter 

acn∆                       “AC” index perturbation 

dcn∆                       “DC” index perturbation 

t∆                          Chip duration    

T∆                         Temperature change 

Bλ∆                       Shift of the Bragg wavelength  

ε                            Strain 

θ                            Grating phase describing the grating chirp 

κ                            ‘AC’ coupling constant  

λ                           Wavelength 
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Bλ                          Bragg wavelength  

Λ                          Grating pitch 

ρ                          Discrete reflection coefficient of the grating  

eρ                          Photo-elastic constant  

τ                           Time delay 

φ                           Spatial phase of the grating 

ω                         Angular frequency 
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Acronyms 

AC                         Alternating current 

ASE                       Amplified spontaneous emission  

BER                       Bit error rate 

CDMA                  Code division multiple access 

CFBG                   Chirped fibre Bragg grating 

CPA                      Chirped pulse amplification  

CTE                      Coefficient of thermal expansion 

CME                     Coupled mode equations 

DC                        Direct current 

DCF                      Dispersion compensating fibre  

DFB                      Distributed feedback 

DS                         Dispersion slope or direct sequence 

DS-CDMA           Direct sequence code division multiple access 

EAM                    Electro-absorption modulator  

EOM                    Electro-optic modulator  

FBG                     Fibre Bragg grating  

FE-CDMA           Frequency encoding code division multiple access 

FH-CDMA           Frequency hopping code division multiple access 

FP                         Fabry-Pérot  

FROG                   Frequency-resolved optical-gating  

FSR                      Free spectral range 

FWHM                 Full width at half maximum 

GVD                    Group delay dispersion  

HOM-DCF          Higher-order-mode dispersion compensating fibres  

LCFBG                Linearly chirped fibre Bragg grating  

MZ                       Mach-Zehnder 

NA                       Numerical aperture  

NCFBG               Nonlinearly-chirped fibre Bragg grating  
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OCDMA             Optical code division multiple access 

OFDR                 Optical frequency-domain reflectometry  

OLCR                 Optical low coherence reflectometry 

OSA                   Optical spectrum analyzer 

PDL                    Polarization dependent loss 

PLC                    Planar lightwave circuit 

PMD                   Polarization mode dispersion  

PPG                    Pseudo-random pattern generator 

RDS                    Ratio of dispersion slope to second order dispersion 

RIN                     Relative intensity noise 

RPCA                 Ratio between the peak of cross and auto correlation 

SESAM               Semiconductor saturable-absorber mirror  

SHG                    Second-harmonic-generation 

SM-DCF             Single mode dispersion compensating fibre  

SNR                    Signal-to-noise-ratio 

SSFBG                Super-structured fibre Bragg grating  

SVEA                  Slowly varying envelope approximation 

TH-CDMA          Time hopping code division multiple access 

TMM                   Transfer matrix method  

TOD                    Third order dispersion  

UV                       Ultraviolet 

VIPA                   Virtually imaged phased array  

WDM                  Wavelength division multiplex  
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Chapter 1  

Thesis overview 

 

1.1 Background 

    Fibre technologies find great success in various applications, including laser, 

communication and sensor systems. Accompanying this evolution is the proliferation of 

new optical devices. Fibre Bragg gratings (FBGs), which are inherently compatible with 

optical fibres, are emerging as one of the key components in fibre systems due to their 

versatility and unique filtering capabilities [1-2]. The design and fabrication techniques 

for FBGs are still maturing.  

   Many powerful devices and valuable applications have been exploited using fibre 

Bragg gratings [3-5]. In laser systems, FBGs are used as wavelength-selective reflectors 

or wavelength-stabilization devices. In wavelength division multiplexed (WDM) optical 

networks, FBGs can be used as WDM de-multiplexers or add/drop multiplexers, and 

chirped FBGs (CFBGs) can compensate chromatic dispersion in transmission fibres. 

FBGs with complex structures have also been demonstrated to carry out advanced optical 

processing, such as pulse shaping, matched filtering, pulse compression and other signal 

manipulation functions. In sensor systems, FBGs are used for providing distributed 

sensing of strain and temperature.  

Super-structured fibre Bragg gratings (SSFBGs) have been developed to implement all-

optical code generation and recognition in optical code division multiple access 

(OCDMA) systems [6]. SSFBG en/decoders, with a spatial phase distribution following a 

particular address code, can be easily designed and fabricated to achieve temporal-phase-

encoding, which provides far better correlation performances than the amplitude-only 

encoding. In the encoding process, the optical pulses are reflected from the SSFBG 

encoder, and the spatial phase of the encoder is encrypted into the temporal phase of the 

encoded pulse. For successful decoding, the encoded pulses must be reflected from an 
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SSFBG decoder having a conjugate address code to the encoder. The spatial phase 

distributions in conventional SSFBG en/decoders are formed by inserting discrete phase-

shifts in the process of grating writing. 

Dynamic dispersion or dispersion slope compensation is one of the most important 

applications of FBGs. In a high-bit-rate systems, such as 40Gb/s or 160Gb/s transmission 

system, due to the large signal bandwidth, the dispersion tolerance becomes so small that 

even a tiny variation in dispersion can severely influence the network performance and, 

therefore, a dynamic dispersion compensation is required in these systems [7-8]. The 

function of dynamic dispersion tuning can be realized by using a tunable FBG. The 

Bragg wavelength of an FBG is sensitive to temperature or strain. By applying a variable 

temperature or strain distribution along an FBG, its dispersion or dispersion slope could 

be dynamically controlled. For a dynamic dispersion compensator, a wide dispersion 

tuning range is essential and it is also highly desirable that the central wavelength is 

invariant during the dispersion tuning. For a dynamic dispersion slope compensator based 

on an FBG, it is crucial that there is no additional dispersion while the dispersion slope is 

adjusted. 

 

1.2 Motivations and main achievements  

    To improve the functionality and flexibility of OCDMA based optical networks, it is 

desirable to have OCDMA en/decoders with the capacity of dynamic reconfiguration. 

Recently, a reconfigurable phase en/decoder has been demonstrated [9]. It is composed of 

a uniform fibre Bragg grating and a series of equidistant tungsten wires in contact with 

the FBG. However, in that work, the specific distribution of thermally induced phase-

shifts in the reconfigurable devices was not characterized.  

 In this thesis, we develop a pulse response method, by which the spatial phase 

distribution in a reconfigurable phase en/decoder could be directly obtained from 

measuring temporal phases of the reflected optical pulses from the FBG. Using the new 

characterization scheme, we measure the thermally induced phase distribution produced 

by tungsten wires with different diameters. Full characterization of the phase distribution 

also helps us to understand and analyze OCDMA systems using the reconfigurable phase 

en/decoders. New reconfigurable-phase devices are then constructed using the wire 

which produces the most confined phase-shifts. The devices’ capacity to conduct fast 

dynamic reconfiguration is also demonstrated. 
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In a reconfigurable OCDMA system, the reconfigurable-phase decoders are used to 

retrieve the signals from fixed-code SSFBG encoders. In conventional fix-code devices, 

the phase-shifts are discrete, while in a reconfigurable-phase decoder, the phase-shifts are 

inherently distributed. Therefore, under the same nominal code sequence, the spatial 

phase distribution in a reconfigurable-phase en/decoder only roughly follows that of a 

discrete-phase en/decoder. In this thesis, we propose and experimentally demonstrate a 

novel fixed-code en/decoder with a phase profile designed to accurately match a 

reconfigurable en/decoder. This new continuous-phase device has the inherent advantage 

to be able to operate together with reconfigurable-phase devices in a reconfigurable 

OCDMA system.  

    By embedding a linearly chirped FBG in a uniform beam and bending the beam in an 

S-shape, the dispersion of the FBG could be controlled while its central wavelength was 

invariant [10]. This unique advantage gives the S-bending technique great potential in 

tuning the dispersion or dispersion slope of an FBG. In this thesis, using the S-bending 

technique, we develop several novel device configurations and applications, including a 

tunable dispersion compensator with a wide tuning range, a tunable pure dispersion slope 

compensator, and also an application in tuning the output pulse width of a fibre laser. 

 

1.3 Organization of the thesis 

    The thesis is divided into three main subsections. Chapter 2 is an introduction to fibre 

Bragg gratings. The theoretical parts include how to analyze or synthesize FBGs. Then, 

the manufacturing and characterization techniques of fibre Bragg gratings are 

summarized. Also reviewed are the applications of FBGs, including fundamental 

applications, advanced applications and tunability of fibre Bragg gratings.  

    The first Subsection is Chapter 3, in which the pulse response method is developed to 

characterize the spatial phase of an FBG. A frequency-resolved-optical-gating (FROG) 

technique, based on an electro-absorption modulator (EAM), is used to measure the 

amplitude and phase of the reflection pulses from an FBG [11]. Under the weak grating 

approximation, the spatial phase of the grating is directly retrieved from the temporal 

phase of its pulse response. FBGs with discrete or distributed phase-shifts are 

characterized using this technique. The methods and results reported in this chapter forms 

the framework to analyse and design reconfigurable-phase OCDMA en/decoders. 
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The second Subsection is about the three types of FBG-based OCDMA en/decoders 

and their system performances. From the point of view of fibre Bragg gratings, Chapter 4 

introduces the principles and design of OCDMA systems based on conventional discrete-

phase en/decoders. The issues, such as the effects of grating strength, choice of input 

pulse width, tolerance of central wavelength offset between encoders and decoders, 

choice of chip length and chip number are discussed. Chapter 5 is related to the 

reconfigurable-phase OCDMA en/decoders. Based on the characterization of the phase 

distribution in a reconfigurable-phase en/decoder, the OCDMA system using the 

reconfigurable-phase devices are analyzed and tested. In Chapter 6, we propose and 

demonstrate a fixed-code and continuous-phase OCDMA en/decoder, which has the same 

spatial refractive index distribution as a reconfigurable optical phase encoder-decoder for 

the same nominal code sequences, and therefore is inherently suitable for the application 

in a reconfigurable OCDMA system. 

The third Subsection is on tuning the dispersion (or dispersion slope) in FBGs using an 

S-bending technique. Chapter 7 first reviews the dispersion in fibres, the dispersion 

compensation methods using chirped FBGs or other techniques, and dynamic dispersion 

compensation techniques using tunable FBGs.  Then, the S-bending technique and 

dispersion tuning devices based on it are described. Following this are two novel devices 

based on the S-bending technique. One is a tunable dispersion compensator with an 

enhanced dispersion tuning range, and the other is a tunable pure dispersion slope 

compensator. Applications of tunable dispersion in controlling the pulse width of a 

soliton fibre laser are then reported. 

The final chapter gives a summary and possible future directions related to the work 

reported in this thesis.  
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Chapter 2  

Introduction to fibre Bragg gratings 

 

2.1 Analysis of fibre Bragg gratings 

    A fibre grating is a fibre on which a periodic or quasi-periodic index modulation 

profile is formed in the core. A fibre Bragg grating is simply an optical diffraction grating 

[12], in which the incident optical field within the fibre is reflected by successive 

scattering from the index variations.  In a fibre Bragg grating, coupling mainly occurs 

between two identical modes travelling in opposite directions and, according to the 

grating equation, constructive interference only occurs as the Bragg reflection condition 

is fulfilled, i.e. 

                  Λ= effB n2λ                                                                                                       (2.1) 

where
Bλ  is the Bragg wavelength, effn is the effective modal index andΛ is the grating 

pitch. 

 

2.1.1 Coupled mode equations 

    The grating is treated as a perturbation to the refractive index of the fibre, described by, 

      ( ) ( ) ( ) ( )






 +
Λ

∆+∆=∆ zzznznzn acdc θπ2
cos .                                                                  (2.2) 

where, ( )znac∆ and ( )zndc∆  are respectively the “ac” and “dc” index perturbation, Λ is the 

nominal period and ( )zθ  is the grating phase once the Λzπ2 dependence is removed.  If 

the unperturbed fibre has a refractive index profile ( )yxn , , the overall refractive index 

profile of the perturbed fibre will be  

        ( ) ( ) ( )znyxnzyxn ∆+= ,,,                                                                                             (2.3) 
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Fibres are weakly guiding, so we assume cleff nnnn ≅≅≅ , where cln  is the refractive index 

in the cladding and effn  is the effective refractive index of the guided mode of the 

unperturbed fibre.  

  Near the Bragg wavelength, reflection of a mode into an identical counter-propagating 

mode is the dominant interaction in a Bragg grating. In the ideal mode approximation to 

coupled-mode theory [1][13-15], we assume that the total electric fields in a Bragg 

grating can be represented as a superposition of the modes in an ideal waveguide without 

grating perturbation, 

         ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )tiyxzizBzizAtzyxE ωββ −⋅Ψ⋅−+= exp,expexp,,,                                         (2.4) 

where ( ) ( )zizA βexp and ( ) ( )zizB β−exp are respectively the z-dependence of forward and 

backward modes, ( ) kneff=ωβ  is the scalar mode propagation constant, and λπ2=k is the 

propagation constant in vacuum. Function( )yx,Ψ  describes the transverse dependence of 

the electrical field. It satisfies the scalar wave equation for the unperturbed fibre,  

            ( ) ( ) 0,, 2
2

2

2

2

2

2

=Ψ⋅







−+

∂
∂+

∂
∂

yxyxnk
yx

β .                                                                (2.5) 

   The total electric fields ( )tzyxE ,,,  satisfy the scalar wave equation for the perturbed 

fibre,  

          ( ) ( ) 0,,,,,22

2

2

2

2

2

2

=⋅







+

∂
∂+

∂
∂+

∂
∂

tzyxEzyxnk
zyx

.                                                       (2.6) 

In weak coupling, further simplification is possible by applying the slowly varying 

envelope approximation (SVEA). This requires that the amplitude of the mode change 

slowly over a distance of the light wavelength as 

              
z

A

z

A

∂
∂<<

∂
∂ β

2

2

                                                                                                    (2.7) 

    Substituting Eq. (2.4) into (2.6), and using Eq. (2.3), (2.5) and (2.7) leads to     

( ) ( ) ( ) ( ) ( ) ( )[ ] ( )yxziBziAnn
k

iyxzi
dz

dB
zi

dz

dA
,expexp

2
,expexp

2
2

2

Ψ−+−=Ψ






 −− ββ
β

ββ                   (2.8) 

    Multiplying both sides by ( )yx,∗Ψ , integrating over the xy-plane, and using the relation 

nnnn ∆⋅≈− 2
2

2 , results in 

( ) ( )

( ) ( )[ ] ( ) ( )





































 +
Λ

−+














 +
Λ

∆+∆⋅−+=

−−

zizinnziBziAik

zi
dz

dB
zi

dz

dA

acdc θπθπββ

ββ

2
exp

2
exp

2

1
expexp

expexp

            (2.9)                                                                                                                               
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   Eq. (2.9) can be greatly simplified by considering the synchronous approximation [14], 

which neglects terms that contain a rapidly oscillating z dependence, since this 

contributes little to the growth and decay of the amplitudes. This is also an application of 

momentum conservation in the system 

               
Λ

+−= πββ 2                                                                                                     (2.10) 

This is valid if the interaction is close to the Bragg wavelength 

                Λ= effB n2λ                                                                                                      (2.11) 

The following coupled mode equations (CME) are then obtained from Eq. (2.9), 

( )( )[ ]zziBiAi
dz

dA θδκσ −−+= 2exp                                                                       (2.12a) 

( )( )[ ]zziAiBi
dz

dB θδκσ −−−= 2exp                                                                       (2.12b) 

where 

( ) ( )znz dc∆⋅=
λ
πσ 2                                                                                             (2.13) 

( ) ( )znz ac∆⋅=
λ
πκ                                                                                               (2.14) 

Λ
−= πβδ                                                                                                        (2.15) 

and ( )zσ  is the ‘dc’ coupling constant, ( )zκ is the ‘ac’ coupling constant, δ is the 

frequency detuning parameter. 

    To transform Eq. (2.12) into the simplest canonical form, new amplitudes ( )δ,zu and 

( )δ,zv are introduced, which are related to the forward and backward fields ( ) ( )zizA βexp  

and ( ) ( )zizB β−exp by 

                ( ) ( ) ( )













∆−









Λ
−= ∫

z

dc

B

dzznizizizAzu
0

''2
expexpexp)(,

λ
ππβδ                                  (2.16a) 

( ) ( ) ( ) ( )













∆+









Λ
+−= ∫

z

dc

B

dzznizizizBzv
0

''2
expexpexp,

λ
ππβδ                                (2.16b) 

Substituting (2.16) into (2.12) leads to the final coupled mode equations [16] 

                ( ) ( ) ( ) ( )δδδδ ,,, zvzqzuizu
dz

d ++=                                                                 (2.17a) 

                ( ) ( ) ( ) ( )δδδδ ,,, zuzqzvizv
dz

d ∗+−=                                                                 (2.17a) 
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Note that the scaling factors in (2.16) are independent of frequency. Hence, we can 

simply treat the new variables ( )δ,zu and ( )δ,zv as fields themselves once the reference 

planes have been fixed. The coupling coefficient ( )zq is related to the index profile as 

                 ( ) ( ) ( ) ( )

























+∆−

∆
= ∫

z

dc

BB

ac dzznzi
zn

zq
0

''

2

4
exp

π
λ
πθ

λ
π

                                        (2.18) 

or, 

                  ( ) ( ) ( ) ( )

























+−= ∫

z

dzzzizzq
0

''

2
2exp

πσθκ                                                      (2.19) 

The modulus of the coupling coefficient ( )zq determines the grating amplitude, and the 

phase corresponds to the grating phase envelope, which is composed of grating chirp, 

average refractive index profile ( )zndc∆ , and discrete phase-shifts. Note that the phase 

term due to the “dc” index perturbation ( )zndc∆  has the same effect as the geometrical 

phaseθ ; as a result the two types of phase contributions cannot be separately identified 

from the grating response. 

 

2.1.2 Solving the coupled mode equations 

Uniform gratings 

    The coupled mode equations can be solved analytically when the grating is uniform, 

that is, when ( )zκ and ( )zσ are constant and ( ) dzzdθ =0. In this condition, Eqs.(2.17) are 

coupled first-order ordinary differential equations with constant coefficients. The 

reflectivity of a uniform fibre grating of length L can be found by assuming( ) 1,0 =δu , 

which means that the forward-going wave is constant at the incident, and( ) 0, =δLv , which 

means that no backward-going wave exists at the end of the grating. Then the resultant 

amplitude reflection coefficient can be shown to be 

                ( ) ( )
( )

( )
( ) ( )LiL

Lq

u

v
r

γδγγ
γ

δ
δδ

sinhcosh

sinh

,0

,0

−
−==

∗

                                                               (2.20) 

where, 22 δγ −= q  is the propagation constant inside the scattering region. The value of 

γ  defines the band-gap of gratings. Inside the band-gap, γ is real and the propagation is 

evanescent, while outside the band-gap, γ  is imaginary and normal propagation occurs 

[17]. 

Transfer matrix method 
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For non-uniform gratings, the reflection and transmission spectra can only be solved 

numerically. One approach is the direct numerical integration using the Runge-Kutta 

method [18], which is straightforward but usually very slow. The often preferred and 

more efficient approach is the transfer matrix method (TMM) [19]. 

The transfer matrix method is a piecewise-uniform approach. The grating is divided 

into N uniform sections, each section with a length( )Njz j ,,2,1 L=∆ . Each sub-grating 

should be long enough so that the synchronous approximation still holds, but sufficiently 

short so that it can be treated as a uniform grating. Solving the coupled mode equations of 

each sub-grating, seen as a uniform grating, yields the following transfer matrix relation  

             
( )
( )

( )
( )






⋅=









∆+
∆+

j

j

j

jj

jj

zv

zu
T

zzv

zzu
                                                                                     (2.21) 

             

( ) ( ) ( )

( ) ( ) ( )




















∆⋅−∆⋅∆⋅

∆⋅∆⋅+∆⋅
= ∗

jj

j

j

jjjj

j

j

jj

j

j

jj

j

j

jj

j

zizz
q

z
q

ziz

T

γ
γ
δ

γγ
γ

γ
γ

γ
γ
δ

γ

sinhcoshsinh

sinhsinhcosh

        (2.22) 

    The matrix jT  connects the fields between jz and jj zz ∆+ . Hence, the fields at the two 

ends of the grating could be connected through 

                 
( )
( )

( )
( )

( )
( )






=








⋅⋅=








− 0

0

0

0
11 v

u
T

v

u
TTT

Lv

Lu
NN L                                                       (2.23) 

where 11 TTTT NN L⋅⋅= −  is the overall transfer matrix of the complex grating. The overall 

matrix T is a 22× matrix 

                  







=

2221

1211

TT

TT
T                                                                                                (2.24) 

Once T is found, by using the boundary conditions (( ) 10 =u , and ( ) 0=Lv ), the reflection 

coefficient and transmission coefficient of the grating is obtained as 

             ( )
22

21

T

T
r −=δ                                                                                                        (2.25) 

              ( )
22

1

T
t =δ                                                                                                          (2.26) 

   The transfer matrix method is stable and efficient since relatively few sections are 

required for accurately analyzing most common gratings. 
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2.1.3 Weak gratings 

As the grating is very weak, that is, in the limit 0→q , solutions of the coupled-code 

equations (2.17) are ( )ziuu δexp0=  and ( )zivv δ−= exp0 . Using the boundary condition, they 

are reduced to ( )ziu δexp=  and 0=v . In this case, the first order Born approximation means 

that the forward propagating wave is unaffected by the grating, and so ( )ziu δexp= . By 

substituting this into Eq. (2.17) and using the boundary condition, we obtain the grating 

reflection coefficient [20]  

          ( ) ( ) ( )dzzizqr
L

δδ 2exp
0
∫

∗−=                                                                                   (2.27) 

where L is the length of the grating. A Fourier transform relationship is established 

between the grating coupling coefficient ( )zq∗  and its reflection spectrum( )δr , 

               ( ) ( ) ( ) δδδ dzirzq 2exp* −−= ∫
+∞

∞−

                                                                             (2.28) 

 Although this Fourier transform relation does not hold when the grating is strong, the 

information from this Fourier transform is still valuable in the analysis and design for 

fibre Bragg gratings. 

    In the following, we will show that, in the weak grating approximation, there is a linear 

relationship between the complex coupling coefficient q(z) and reflection impulse 

response h(t) of FBGs. The time delay t of light reflected from an FBG at the spatial point 

z is, 

                                          z
c

n
t eff2

=                                                                          (2.29) 

where, c is light speed in the vacuum, and neff  is the dc effective index in an FBG. 

Substituting Eq.(2.29) into (2.27) leads to  

                                       ( ) ( )dttit
n

c
q

n

c
r

eff

L
c

n

eff

eff

ωω exp
22

2

0













−= ∫

∗                                         (2.30) 

The impulse response of an FBG is the inverse Fourier transform of its frequency 

response, 

                                        ( ) ( ) ( )dttithr ω
π

ω exp
2

1
∫
+∞

∞−

=                                                        (2.31) 

Comparing Eq.(2.30) and (2.31), the impulse response of an FBG can be expressed by its 

complex coupling coefficient, 
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                                        ( ) 












−= t

n

c
qth

eff2
*α                                                            (2.32) 

whereα is a positive constant. Note that from Eq. (2.19), we have, 

                                      ( ) ( ) ( ) ( )

























+−=− ∫∗

z

zdzzizzq
0

''

2
2exp

πθσκ                                (2.33) 

Therefore, using the space-to-time conversion relationship in Eq. (2.29), the phase of the 

impulse response of an FBG could be directly obtained from its spatial phase 
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2.2 Synthesis of fibre Bragg gratings 

The synthesis of fibre Bragg gratings involves finding the grating structure, which can 

be expressed by the complex coupling coefficient( )zq , from a specified reflection 

spectrum( )δr . One approximate method, which is based on the Fourier transform 

relationship (as shown in Eq. (2.28)) between the complex coupling coefficient and the 

complex reflection spectrum of a grating, is useful but can only be used to design weak 

gratings.  

The grating synthesis problems can be solved by solving integral equations, but the 

simplest and most direct approach is the differential or direct method, which is also called 

the layer-peeling method [21-25]. The layer-peeling method was first developed by 

geophysicists like Goupillaud and Robinson and was first applied in the field of grating 

synthesis by Feced et al. [22]. Later, Skaar et al. reformulated and improved it in a 

simpler form. Our description of the layer-peeling method largely follows that of Skaar et 

al. [23-24]. 

The layer-peeling method is based on causality: the coupling coefficient of the first 

grating layer is determined only by the leading edge of the reflection impulse response, 

since at the very beginning of the impulse response, light does not have time to propagate 

more deeply into the grating, and hence, “sees” only the first layer. Thus one can identify 

the first layer from the desired response. After this, the fields are propagated to the next 

layer of the grating. Now one is in the same situation as at the beginning, since the effect 

of the first layer is “peeled off”. This process is continued to the back of the grating, so 

that the entire grating structure is reconstructed. The layer thickness must be chosen to be 
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sufficiently small so that the complex coupling coefficient can be approximated as a 

constant throughout the layer. 

    The grating synthesis can be facilitated by discretizing the grating into a stack of 

complex reflectors. The transfer matrix (2.22) can be approximated by a product of two 

transfer matrices ρTT z∆ , one ( ρT ) describing a discrete reflector, and the other (zT∆ ) 

describing the pure propagation of the fields [22], 

             ( ) 







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−
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∗
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where the discrete, complex reflection coefficient is given by  

            ( )
q

q
zq

∗

∆⋅−= tanhρ .                                                                                           (2.36) 

The reflector matrix ρT is obtained from T by letting ∞→q and holding the total coupling 

zq ∆ constant, and the propagation matrix zT∆ is obtained by letting 0→q . 

 

                     

Fig 2.1 A discrete grating model 
                                   

 

    Then, the grating can be represented as a stack of 1+N complex reflectors jρ  for 

Nj ,,1,0 K= , separated by N propagation sectionsz∆ , as shown in Fig. 2.1. Using (2.34) 

and (2.35), it can be shown that transferring the fields by the matrix ρTT z∆ can also be 

described as 

          ( ) ( ) ( )
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δδ
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jj
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r
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Under the discrete model of gratings, the reconstruction problem can be stated as 

finding the coupling coefficients jq  for Nj ,,1,0 K=  through the given reflection spectrum 

( )δr  in the interval 22 ωω δδδ <≤− .   

The reflection impulse response ( )kh of the discrete grating is also discrete. It can be 

determined by calculating the discrete-time inverse Fourier transform of the reflection 

spectrum ( )δr  

               ( ) ( ) ( )zmirmh ∆⋅⋅−= ∑
=

−=

2exp
2/

2/

δδ
ω

ω

δδ

δδ
                                                               (2.38) 

because the impulse response is discrete with the sample period z∆2 , which is equivalent 

to the round-trip propagation length of one layer. It follows that ( )δr is periodic with the 

spectral period 

                 z∆= πδω .                                                                                                    (2.39) 

 The layer-peeling algorithm is based on the simple fact that the first point of the impulse 

response must be independent of thejρ ’s for 1≥j  due to causality. Hence, 

                ( )00 h=ρ .                                                                                                      (2.40) 

Since 0ρ  is already known, we can propagate the fields using (2.37), yielding the fields at 

the next layer. The algorithm can be described as follows. 

        (1) Compute ( )00 h=ρ  from ( )δ0r  using (2.38). 

        (2) Calculate ( )δ1r from ( )δ0r  and 0ρ  using (2.37). 

        (3) Repeat step (1) and step (2) until the entire grating structure is determined. 

 

2.3 Formation of fibre Bragg gratings  

2.3.1 Photosensitivity in optical fibres 

    Photosensitivity refers to a permanent change in refractive index induced by exposure 

to light radiation. Ref [1-2] gives a general review on the photosensitivity of fibres and 

the routes to photosensitization. In silica (SiO2) fibres, it is recognized that the 

germanium (Ge) related defect centres are the major contributors to photosensitivity. 

Standard telecommunication fibres show weak photosensitivity because of their low Ge 

concentration. High-Ge-doped fibres can exhibit slightly higher photosensitivity due to 

the increase of Ge concentration. Doping with boron in the Ge-Si optical fibre can 

improve the photosensitivity further and another advantage of the presence of boron is 
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the large reduction in the background refractive index, consequently allowing more Ge to 

be added in the core for a given core-cladding refractive index difference. Higher 

photosensitivity can by achieved by soaking Ge-doped fibre in hydrogen [26]. 

   Typical values for the index change in FBGs are ranging between 10-6 and 10-3, 

depending on the UV-exposure and the type of the fibre. By using techniques such as 

hydrogen soaking, an index change as high as 10-2 could be obtained [27]. 

 

2.3.2 Fabrication of fibre Bragg gratings  

   The first fibre grating was formed using the internal writing technique [28], but this can 

only be used to fabricate the so called ‘Hill’ grating, which unfortunately only functions 

close to the wavelength of the writing light. The holographic technique, based on an 

interferometric structure, was first demonstrated by Meltz et al. [29]. The UV light is first 

divided into two beams at a beam splitter and then recombined at a certain mutual angle 

to produce a periodic interference pattern that writes a corresponding periodic index 

grating in the core of optical fibres. The Bragg wavelength of gratings fabricated by this 

technique depends on the irradiation wavelength and the mutual angle between the two 

beams. Therefore, gratings with different Bragg wavelengths can be written by changing 

the mutual angle. Its main disadvantage is its susceptibility to mechanical vibration. 

   The holographic technique has been largely superseded by the phase mask technique 

[30-31]. A phase mask is a uni-dimensional surface-relief grating of period PMΛ  etched in 

a UV-transmitting silica plate, with a carefully controlled mark-space ratio and etching 

depth. It is designed such that the maximum diffraction efficiency is obtained for 

the 1± orders and the zero order is minimized. UV light, which is incident normal to the 

phase mask, passes through the mask and a near-field pattern with periodicity 2PMΛ=Λ  

is produced by interference of the1± orders. The interference pattern is then imprinted on 

the fibre core by placing the optical fibre in contact with the phase mask. Through the 

introduction of a phase mask, sensitivity to mechanical vibrations is minimized. 

Furthermore, it is possible to scan the UV beam through the phase-mask so that the 

length of the written grating is not limited by the interference pattern size.   

The drawbacks of the phase mask technique are its inherent lack of flexibility and as a 

result the high-cost considering that fabricating each grating with a new structure requires 

a new phase mask to be fabricated. In the following section, a continuous grating writing 

technique will be discussed.  
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2.3.3 Continuous grating writing techniques 

  To improve the flexibility of the phase mask technique, a moving fibre-scanning beam 

approach [32-33] was demonstrated, in which the photosensitive fibre moves slowly 

relative to the phase mask while the UV beam scans over a phase mask. By controlling 

the movement of the fibre, various complex gratings could be fabricated using a simple 

uniform phase mask. Gratings detuned from the fundamental Bragg wavelength of the 

phase mask are obtained if a fixed moving velocity is applied to the fibre; chirped 

structures are achieved by applying acceleration; step phase is inserted by moving the 

fibre through an appropriate fraction of the grating pitch; apodization is accomplished by 

the application of a dither to the fibre during writing. 

 

         

Fig.2.2 Fabrication setup for the continuous grating writing [36]. 
 

   A more effective approach is the continuous grating writing technique [34-40]. A 

typical fabrication setup is shown in Fig.2.2. Instead of writing a grating element at a 

time, the idea is to write a sub-grating per irradiation step, and the whole grating is 

formed by writing a number of sub-gratings [41]. The UV beam does not scan the phase 

mask and the phase mask is also stationary. The fibre is translated with constant speed 

relative to the UV-fringes, with its position being accurately tracked by a Michelson 

interferometer with a sub-nanometre accuracy in displacement measurement. Each sub-

grating is formed by using the data of fibre positions and modulating the UV-laser power 
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to be on as the fibre reaches the desired position for irradiation. The length of the grating 

fabricated is therefore no longer limited by the length of the phase-mask.  

    A fibre grating with complex structures, such as apodization, chirp and discrete phase 

shifts can be written by controlling the relative phase (position) of consecutive sub-

gratings on a local basis. Apodization is obtained by considering the grating as formed by 

many consecutive pairs of sub-gratings. If two consecutive sub-gratings are in phase, the 

resulting grating will grow constructively. If they are shifted by half of the grating pitch 

with respect to each other, the resulting grating will vanish. Then any value between 

destructive interference and constructive interference can be obtained by controlling the 

relative phase between the two sub-gratings. A single phase jump between two sub-

gratings produces a discrete phase shift; a linear de-phasing of successive sub-gratings 

results in a Bragg wavelength change; a quadratic de-phasing of successive sub-gratings 

causes a linear chirp. Using the continuous grating writing technique enabled gratings 

with almost arbitrary complex features to be manufactured. 

 

2.4 Characterization of fibre Bragg gratings  

   A grating can be represented by its complex coupling coefficient (including amplitude 

and phase), as shown in Eq. (2.18). A grating can also be represented by its transfer 

characteristics, such as reflection spectral or impulse responses (including intensity and 

phase). The spectral and impulse responses of a grating are a Fourier transform pair. The 

spectral response of a grating can be deduced from its spatial profiles using the transfer 

matrix method (as shown in Section 2.1), while the spatial profile of a grating can be 

recovered from its frequency response through the inverse scattering method (as shown in 

Section 2.2) [42-43]. 

   In this section, we will discuss the modulation phase-shift [44-46], optical low 

coherence reflectometry (OLCR) [47-58] and side diffraction techniques [59-63], which 

directly measure the spectral response, impulse response and complex coupling 

coefficient of an FBG, respectively.  Other techniques developed for charactering an FBG 

include the heat scan [64], index perturbation [65] and optical frequency-domain 

reflectometry (OFDR) techniques [66-67]. 
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2.4.1 Modulation phase-shift method 

                    

Fig.2.3 Measurement setup for a modulation phase method. 
 

Measuring the intensity of the reflection spectrum of a grating is straightforward. By 

coupling a broadband source (usually the amplified spontaneous emission (ASE) from a 

fibre amplifier) via an optical circulator into the fibre grating, the reflected optical power 

spectrum can be measured by an optical spectrum analyzer (OSA). However, a full 

characterization also includes the measurement of its phase or time delay response, for 

which a modulation phase method is frequently used [44]. 

The setup for a modulation phase method is shown in Fig. 2.3. The light from a tunable 

laser is modulated by an optical intensity modulator and the driving signal, with a 

frequency of f, is from a network analyser. The modulated light is then launched into the 

grating to be measured. The reflected signal is detected by a photodiode and then 

introduced back into the network analyser. The analyzer compares the phase difference 

between the received signal and the driving electrical signal. As the wavelength of the 

tunable laser is tuned, the phase difference among different wavelengths ( )λφ∆ is scanned. 

The relative time delay at different wavelengths is 

              ( ) ( )
π
λφλτ

2

1 ∆⋅=
f

.                                                                                           (2.41) 

This method has been widely used in characterizing the reflection or transmission time 

delay spectra of gratings or other optical components. Its main disadvantage is the 

duration of measurement because temperature variations during the course of 

measurement may cause errors. Several improved techniques have been proposed to 

minimize this error, for example, by using the signal following the modulator as a 

reference or by incorporating a separate reference signal [45-46].  
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2.4.2 Optical low coherence reflectometry technique 

                   

                                               Fig.2.4 Setup for OLCR. 
            

    The optical low coherence reflectometry (OLCR) [47-49] is used to directly measure 

the impulse response of a fibre Bragg grating.  The setup is shown in Fig. 2.4, which is a 

fast scanning Michelson interferometer, with the FBG under test in one arm and a 

moveable mirror in the other arm. A spatially resolved reflectogram is obtained by 

varying the optical path length of the other arm. An intuitive explanation of its principle 

is that interferences only occur when the lengths of both arms are the same to within a 

coherence length of the light source. The intensity detected by the photodiode can be 

derived to be [50-52], 

                ( ) ( ) ( ) ( )
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




ℜ= ∫

+∞

∞−
ωωτωω

π
τ dirSI exp

2

1
                                                          (2.42) 

where ℜ denotes the real part, ( )ωS  is the spectrum of the low coherence source, ( )ωr is 

the complex reflectivity of the grating, 12 tt −=τ  is the time difference between the two 

interferometer arms. Therefore, the interferogram is the real part of the Fourier transform 

of the product of the spectrum of the low coherence source and the complex reflection 

coefficient of the Bragg grating. 

   In OLCR, the spectral bandwidth of the source is often much larger than the bandwidth 

of the FBG under test. In this case, ( )ωS may be treated as a constant, yielding 

          ( ) ( ) ( ) ( )τωωτω
π

τ chconstdirconstI ℜ⋅=






ℜ⋅= ∫

+∞

∞−
exp

2

1                                                (2.43) 

Hence, ignoring the background power, the data from the white light interferometer 

corresponds to the real part of the impulse response of the FBG under investigation. 

Generally, the amplitude and phase of the pulse response could be obtained by first 

calculating the imaginary part of the impulse response from the experimentally measured 

real part using the Hilbert transform, since the impulse response is a causal signal. 

 Detector 
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 Coupler 
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    Performing an inverse Fourier transform on the measured impulse response yields the 

reflection and group delay spectrum of the grating [53]. In the case of a weak FBG, the 

measured impulse response corresponds to the index modulation amplitude and phase (or 

the complex coupling coefficient). For a stronger FBG, an inverse scattering technique 

should be used to retrieve the complex coupling coefficient [42, 54-58]. 

    The OLCR measurement can be implemented in one second and therefore is immune 

to the ambient temperature variations and instrumental shifts. This is a key advantage of 

the OLCR technique over the modulation phase-shift method. 

 

2.4.3 Side diffraction technique 

Although the complex coupling coefficient of a grating could be retrieved from its 

spectral or impulse response, it requires a sophisticated inverse technique and may be 

corrupted by noise. Therefore, a direct characterization of the spatial index modulation 

profile is still necessary. The side scattering technique has been proposed by Krug et al. 

to measure the ac index modulation externally along the length of a fibre Bragg grating 

[59]. A short wavelength laser (usually ~633nm) is focused onto the core of the fibre at 

an angle where the first-order diffracted Bragg condition is satisfied for the probing 

wavelength. The diffracted light is collected by a lens and an optical detector. The 

diffracted intensity is directly proportional to the square of the ac index modulation. As 

the beam is scanned along the length of the grating, the diffracted intensity gives the 

refractive index modulation profile. A modified technique, the interferometric side 

scattering technique, can also directly measure the longitudinal changes in period of 

FBGs, such as chirp, stitching errors and phase-shifts [60-63]. 

  

2.5 Review of various fibre Bragg gratings and their applications 

2.5.1 Standard fibre Bragg gratings and applications 

   Advantages of fibre Bragg gratings include low insertion loss, compatibility with 

existing optical fibres, low cost, and relatively simple fabrication. Fibre Bragg gratings 

have become a critical part in optical fibre systems [1-5]. Operating in reflection mode, a 

uniform fibre Bragg grating functions as a narrow-bandwidth mirror or optical band-pass 

filter, only reflecting the light in a predetermined narrow wavelength range. While on the 
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transmission mode, it works as an optical band-rejection filter. In WDM optical networks, 

cascaded fibre Bragg gratings have been used as wavelength division multiplex (WDM) 

demultiplexers or add/drop multiplexers [68]. In lasers, fibre Bragg gratings are used as 

the laser cavity of fibre lasers, or used to stabilize the operational wavelength of laser 

diodes [4] [69-70].  

    A chirped Bragg grating is a grating with a varying Bragg wavelength along its length. 

Different wavelength components incident in the grating will be reflected at a different 

position, and therefore will experience a different time delay in the grating. Hence, 

chirped Bragg gratings are used as dispersion compensators in transmission systems [71]. 

Tailoring the chirp of FBGs allows the compensation of higher-order dispersion. Chirped 

FBGs can also be used to stretch optical pulses for reducing the peak power before 

amplification, and therefore mitigating nonlinear effects; this is called chirped pulse 

amplification (CPA) [72]. In ref [73], ~16000 times extreme pulse compression is 

demonstrated. 

    Another critical application area of fibre gratings is in sensor systems [5]. Any change 

in fibre properties, such as strain, or temperature which varies the modal index or grating 

pitch, will change the Bragg wavelength, and hence the spectrum of the incident optical 

signal. Therefore, a fibre grating is an intrinsic sensor to temperature or strain. 

 

2.5.2 Advanced fibre Bragg gratings and applications 

A distinguishing feature of fibre Bragg gratings is the flexibility they offer for 

achieving desired spectral characteristics. By controlling the refractive index modulation 

amplitude, chirp, or phase-shift, we may obtain gratings with flexible reflectivity, 

bandwidth, and time delay features. Based on this flexibility is the advanced grating 

fabrication technique: the continuous writing technique, by which a grating with a 

complex spatial index modulation profile can be fabricated using a uniform phase mask. 

Summarized in the following are advanced FBGs and their applications. 

 

Fibre DFB laser 

   In the fibre distributed feedback (DFB) laser, a phase-shifted Bragg grating is 

incorporated into the active fibre [74]. Its advantage includes: simple all-fibre structure, 

high stability, tunability, narrow line-width, a low relative intensity noise (RIN), and a 

precise lasing wavelength. 
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Dispersion-free filter and pure third order dispersion compensator 

   The dispersion-free filter [75] and pure third order dispersion compensator [76] are two 

typical examples to demonstrate the capacity of fibre Bragg gratings in accurate time-

delay control. Both of them have complex spatial index modulation profiles, which is 

composed of multiple pi-phase-shifts and complex apodization. Their design and 

fabrication also demonstrate the power of the inverse scattering grating design technique 

and the continuous grating writing technique.  

 

Optical processing using fibre Bragg gratings 

   As a filter with a versatile amplitude and phase characteristic, a fibre Bragg grating 

could provide complex optical processing functions to an incident optical signal. 

Superstructured fibre Bragg gratings (SSFBGs) with a series discrete phase-shifts are 

successfully utilized as OCDMA encoder/decoders to generate and recognize optical 

codes [6]. Soliton to rectangular pulse conversion is achieved using a superstructured 

fibre Bragg grating designed through the Fourier transform technique [77]. Pulse 

multiplication is demonstrated using a sampled fibre Bragg grating which is in fact a 

multi-pass-band filter [78].  

 

Optical buffer 

   The function of optical buffering has been experimentally demonstrated in Moiré or 

phase-shifted fibre Bragg gratings [79-82]. Optical pulses transmit through the Bragg 

gratings, and are slowed down due to the photonic resonances in fibre Bragg gratings. 

 

Broadband or multi-channel filters or dispersion compensators 

   In nature, fibre Bragg gratings are narrowband devices, but they can be made 

broadband by increasing the grating length, or by making it multichannel through 

superimposing, Fabry-Pérot (FP) or sampling techniques. 

   Increasing the length of a chirped FBG will increase its bandwidth, but at the same time, 

the fabrication error will increase and consequently deteriorate the grating performance 

seriously. Using a velocity-controlled approach, Brennan et al. reported the realization of 

10m-long chirped FBGs [40] [83-84 ]. 

   A multi-channel dispersion compensator or filter can be made by writing separate 

FBGs along the fibre, but this will be too large a device. A better approach is to 
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superimpose multiple FBGs in a common section of the fibre, with each grating being 

characterized by its central wavelength and dispersion characteristics. Individual gratings 

do not affect each other, but the number of superimposed gratings is limited by the 

maximum fibre photosensitivity. Using the superimposing technique, 16-channel 

100GHz-spacing dispersion compensators [85-86] and 4-channel 50GHz-spacing 

dispersion-free WDM filters [87] have been demonstrated.  

    By writing two chirped FBGs on one optical fibre as wide-band mirrors [88-91], 

Fabry-Pérot-like filters are formed. Moiré gratings [92] exhibit similar performances as 

the FP structures. In a fibre FP filter with a reasonable free spectral range (FSR), the two 

chirped FBGs can possibly be superimposed since its FSR is inversely proportional to the 

displacement between the two gratings. To obtain a flat amplitude response characteristic, 

the fibre FP filters have been developed with multiple coupled-cavities [93-94], or been 

combined with a Mach-Zehnder (MZ) [95] or Michelson interferometer [96-98]. A 

special fibre FP filter, Gires-Tournois etalon, has also been demonstrated using FBGs, in 

which the reflectivity of one mirror (FBG) approaches one [99-102]. The fibre FP 

structure can be used as interleaver or mux/demux filters [95] [97-98] in WDM systems, 

while operating in reflection mode, they function as multi-channel tunable dispersion or 

dispersion slope [99-102] compensators. 

Another approach is the sampled FBG [103-106], in which a periodic amplitude and/or 

phase sampling superstructure is imposed on the seed FBG so as to generate a number of 

equally spaced reflective channels. Simple binary sampling [105] will create channels of 

un-equal strength and bandwidth, while a sinc-shaped sampling function [107] can 

produce channels with identical characteristics. However, by amplitude sampling, the 

increase of channel number will result in the increase of required refractive index to 

maintain the reflectivity of the grating. Phase sampling [108-110] has been proposed to 

solve this difficulty. Minimum optimization methods, such as the simulated annealing 

method [111], simplex method [112], and conjugate gradient method [113] are used for 

choosing an appropriate phase sampling function. Multi-channel dispersion compensators, 

mux/demux filters or interleavers [112] [114] have been designed and fabricated using 

sampled gratings. Sampled gratings can also be made to compensate dispersion slope by 

chirping the sample period of the gratings [115-117]. 

 



Chapter 2 Introduction to fibre Bragg gratings 
        

 - 23 - 

2.5.3 Tunable fibre Bragg gratings 

   Fibre Bragg gratings are sensitive to the strain and temperature applied on them. The 

strain response arises due to both the physical elongation of the FBG (and the 

corresponding fractional change in grating pitch), and the change in fibre refractive index 

due to photo-elastic effects. The thermal response arises due to the inherent thermal 

expansion of the fibre material and the temperature dependence of the refractive index [5]. 

The shift of Bragg wavelength with strain and temperature can be expressed by 

                 ( ) 
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where, ε  is the applied strain,eρ  is the photo-elastic constant,α  is the coefficient of 

thermal expansion (CTE) of fibres, andT∆  is the temperature change. For silica fibres, 

22.0≈eρ . The thermal effect is dominated by thedTdn effect, which accounts for 95% 

of the observed shift. Typically, 5101~5.0 −×≈dTdn ºC-1. At a Bragg wavelength of 

1500 nm, the change in the Bragg wavelength with temperature is around 0.01~0.02 

nmºC-1. 

   For a grating with a Bragg wavelength of ~1550nm, the Bragg wavelength shift is 1~2 

nm with a temperature variation of 100 ºC. Bragg grating tuning by strain is limited by 

the fibre strength. For a tensile strain, a maximum strain of roughly 1% can be applied 

without degrading the fibre strength and breaking the fibre [118]. The limitations are 

relieved when a compressive stress is implemented, because silica is 23 times stronger 

under the compression than under the tension. Therefore, for a grating with a Bragg 

wavelength of ~1550nm, the maximum Bragg wavelength shift is ~10nm under a tensile 

strain and ~270nm under a compressive strain. Using the compression tuning technique, a 

Bragg wavelength tuning range of ~110 nm has been demonstrated experimentally [119]. 

 

2.6 An example: FBG design and fabrication 

   In this section, an FBG is designed and fabricated to reshape an optical pulse by using 

the inverse scattering technique. The target reflection and time delay spectrum of the 

grating is shown in Fig. 2.5. It is designed to perfectly compensate the nonlinear chirp of 

the optical pulse from a gain-switched laser diode [120].  
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                           Fig.2.5 The target reflection and time delay spectrum of the grating. 
 

   From this target spectrum, the grating is then synthesized by using a homemade 

program based on the layer-peeling method described in Section 2.2 [23-24]. The 

resultant effective ac index modulation and Bragg wavelength distributions of the grating 

are shown in Fig.2.6. Obviously, it is quite a complex grating, since the target spectrum is 

very complicated. 

 

             

Fig.2.6 The designed grating structure. 
 

    Based on the design shown in Fig.2.6, the grating is fabricated using a uniform phase 

mask and the continuous grating writing technique. As described in Section 2.3, the 

complex apodization and chirp structure is achieved by controlling the relative phase of 

consecutive sub-gratings. The reflection and time delay spectrum of the grating are then 

characterized using the modulation phase-shift method. As shown in Fig. 2.7, the 

measured spectrum has a good agreement with the target, although they are very complex. 
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Fig.2.7 Measured (solid lines) and target (dashed lines) spectra of the grating. 
 

   This example shows that a grating can be designed and fabricated with a flexible 

spectral filtering characteristic. It also demonstrates the effectiveness of the grating 

design and fabrication techniques we use.  
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Chapter 3  

Characterizing spatial phases in FBGs 

using a pulse response method 

 

3.1 Introduction 

   As shown in Section 2.1, a fibre Bragg grating (FBG) is described as a refractive index 

perturbation to the fibre, 

                ( ) ( ) ( ) ( )



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
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where, ( )znac∆  is the ac refractive index modulation, ( )zndc∆  is the dc (average) 

refractive index modulation, Λ is the nominal period, and ( )zθ  is the grating phase once 

the Λzπ2 dependence has been removed. In the coupled-wave formalism, the FBG is 

defined through the complex coupling coefficient,  
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The modulus of the complex coupling coefficient ( )zq determines the grating amplitude, 

and the phase of the complex coupling coefficient corresponds to the grating phase 

profile. 

    Although various techniques, such as side-scattering [59], heat-scan [64] and optical 

low coherence reflectometry (OLCR) [47], have been proposed to measure the amplitude 

of the complex coupling coefficient of FBGs, little attention has been paid to the 

characterization of phase of the complex coupling coefficient. This includes the discrete 

phase shift, dc refractive index variation (or distributed phase shift), and chirp of FBGs. 

Although in principle, the OLCR technique could be used to measure the phases of FBGs, 

the experimental results reported are very limited [51-52]. 
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In this Chapter, we will characterize the full spatial phase profiles of FBGs by directly 

measuring their pulse response. A short input pulse is incident on the FBG, and the 

amplitude and phase of the reflection pulses are measured by using a frequency-resolved-

optical-gating (FROG) technique, based on an electro-absorption modulator (EAM) as an 

optical gate.  Under the weak grating approximation, the spatial phase of an FBG is 

related to, and as a result can be directly retrieved from, the temporal phase of its pulse 

response.   

 

3.2 Characterization principles 

3.2.1 Characterizing the spatial phases of FBGs using a pulse response method     

The characterization is based on measuring the pulse response of an FBG under test (as 

shown in Fig. 3.1). A train of short optical pulses is reflected from the FBG. If the input 

pulse is far shorter compared to the length of the grating, the reflected pulse response is a 

good approximation to its impulse response. 

    As shown in Section 2.1.3, if the FBG under test is weak, the spatial phase of a grating 

will cause an equivalent temporal phase in its impulse response due to the space-time 

duality. Thus, the spatial phase shift distribution of the grating can be approximately 

obtained from the temporal phase distribution of its impulse response.  

   With this method, the discrete phase-shifts, dc refractive index variation and chirp in an 

FBG could be directly characterized. 

                 
Fig.3.1 Principle of the pulse response method. 

            

 

A. Discrete phase-shifts 

Fibre Bragg gratings with one or more phase-shifts along their length are typically 

referred to as phase-shifted gratings. Phase shifts are usually introduced by imposing a 

spatial gap between two sub-gratings during fabrication. If a discrete spatial phase-shift 
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sφ exists in the grating, there will be a discrete phase-shift tφ in the temporal phase of 

its pulse response, and the spatial phase is equivalent to the temporal phase, i.e., 

                              ts φφ = .                                                                                       (3.3) 

Therefore, the discrete spatial phase of an FBG could be determined by measuring the 

temporal phase of its pulse response.  

 

B. dc refractive index variation 

   A dc (average) refractive index variation along the grating will accumulate and form a 

distributed phase shift. Assuming that the distribution of the dc refractive index variation 

is ∆ndc(x) from x1 to x2, the resultant phase shift is 

      ( )∫ ∆=
2

1

4
x

x

dc

B

dxxn
λ

πφ                                                                                            (3.4) 

where, λB is the Bragg wavelength of the FBG. Furthermore, differentiation of Eq. (3.4) 

with respect to space x gives,  

        ( )
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d
xn B

dc

φ
π

λ
4

=∆                                                                                                    (3.5) 

If a distributed spatial phase-shift exists in a grating, there will be a corresponding 

distributed phase-shift in the temporal phase of its pulse response. From the space-to-time 

conversion relationship, 

       
c

xn
t eff ∆

=∆
2                                                                                                          (3.6) 

and the approximation that the temporal phase shift is equivalent to the spatial phase shift, 

a relationship between the dc refractive index distribution of the FBG and the temporal 

phase distribution of its impulse response can be obtained as: 
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Therefore, from Equation (3.7), the spatial dc refractive index profile of an FBG can be 

determined by measuring the temporal phase distribution of its impulse response. 

 

C. Chirp 

The grating chirp refers to the variation of the grating pitch along the fibre. Using the 

Bragg relation, Λ= effB n2λ , we have, 

    
eff

eff

BB n

n∆
=∆ λλ                                                                                                        (3.8) 

From Eq. (3.7), a relationship between the grating chirp and the temporal phase 
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distribution of its impulse response is obtained as, 
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.                                                                                                     (3.9) 

Therefore, the grating chirp is also determined from the temporal phase distribution of its 

impulse response. 

 

3.2.2 Characterizing optical pulses using the FROG technique based on an EAM 

Full characterization of a short optical pulse includes measuring its intensity and phase 

vs. time.  The difficulty lies in that if you want to measure a short event, you need an 

even shorter one. The intensity vs. time of optical pulses can possibly be measured using 

an optical sampling oscilloscope, but if the pulse is too short, the measurement will be 

constrained by the limited bandwidth of practical oscilloscopes. Furthermore, it has not 

been possible to measure the phase in the time domain directly.  

Auto-correlators are also used to measure the intensity vs. time of a short optical pulse 

[121]. It involves splitting the pulse into two, variably delaying one with respect to the 

other, spatially overlapping the two pulses by an optical gate, usually through some 

instantaneously responding nonlinear optical medium, and measuring the intensity of the 

overlapped signal using a detector. Since the autocorrelator measures the pulse to be 

measured using the pulse itself, it can measure ultrashort (femtosecond) optical pulses 

which the optical sampling oscilloscope can not measure. However, the information of an 

optical pulse cannot be completely retrieved from its autocorrelation intensity. For 

example, auto-correlators are not able to determine the specific shape or phase of optical 

pulses.  

A successful technique which can fully measure short and even ultra-short optical 

pulses is the frequency-resolved-optical-gating (FROG) technique [121], which is based 

on the autocorrelation-type measurement, but the autocorrelator signal is spectrally 

resolved. Instead of measuring the autocorrelator signal energy vs. delay, which yields an 

autocorrelation, FROG involves measuring the autocorrelator signal spectrum vs. delay, 

which yields a spectrogram. A spectrogram is the time-frequency representation of 

optical pulses, from which we can extract complete information (including intensity and 

phase) about the pulse and the gate. The extraction of both the pulse and the gate from the 

measured spectrogram is the well-known two-dimensional phase-retrieval problem, 

which can be solved with the principal component generalized projection algorithm [122-
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123]. The retrieval does not require any assumptions and can provide the complete 

description of the pulse and the gate, except for the meaningless absolute time delays and 

phase constants. 

While nonlinear processes are commonly used as the optical gate to measure ultra-

short optical pulses, it is also possible to use linear process, for example, a temporal 

modulator as a gate. Dorrer et al. recently demonstrated this technique using an electro-

absorption modulator (EAM) [11] [124]. The use of the temporal gating from a 

modulator gives the critical advantage of high sensitivity, since it does not rely on 

nonlinear optics.  

 

3.2.3 Experimental setup for EAM-FROG 

The setup for measuring the pulse responses of FBGs through the FROG technique, 

using an EAM as an optical gate [125-126], is shown in Fig.3.2. This is also the setup we 

use in our experiments reported in next sections. First, an input optical pulse train is split 

by a 3dB coupler. The central wavelength of the input pulse train is tuned to the Bragg 

wavelength of the FBG under test. In one arm, the pulses are reflected from the FBG, and 

then the reshaped optical pulses are incident into the EAM. In the other arm, the pulse 

train passes through an optical stage with a controllable time delay, and is detected by a 

fast (>33GHz) photodiode (PD), and then amplified to generate a sinusoidal electrical 

drive signal to the EAM as the switching window, which is synchronous with the optical 

pulse train incident to the EAM. The shaped optical pulses are thus optically sampled by 

the EAM. By varying the optical delay in a controlled fashion and measuring the optical 

spectra through an optical spectrum analyzer (OSA), (0.01nm resolution, and >70dB 

dynamic range), we obtain a spectrogram of the reflected optical pulses from the FBG.  

                         

                                        Fig.3.2 The EAM-FROG experimental setup. 
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    The expression for the EAM-FROG spectrogram is given by 

                    ( ) ( ) ( ) ( )
2

exp, ∫
+∞

∞−
−−= titGtEI spect ωττω                                                  (3.10) 

where ( )τ−tG is a variable-delay gate function, defined by the optically driven EAM 

switching window. Then, the intensity and phase of the electric field ( )tE of shaped 

optical pulses is extracted from the spectrogram via a numerical retrieval algorithm [122-

123], which is not limited by the duration of the gating signal.        

 

3.3 Characterizing discrete phase-shifts in Bragg gratings 

3.3.1 Grating parameters and reflection spectra 

                               Table 3.1 Parameters of FBGs to be measured 

 Phase  Length (mm) Strength Maximum Transmission(dB) 

1 0 5 51025.9 −×  3.4 

2 π5.0  5 5102.11 −×  4.1 

3 π  5 5100.13 −×  3.5 

4 π5.1  5 5102.9 −×  2.9 

                

Fig.3.3 Measured (solid lines) and simulated (dashed lines) power reflection spectra of gratings 
with a phase shift of (a) 0, (b) 0.5π, (c) π and (d) 1.5π respectively. 
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Four 5mm-long FBGs having a uniform index modulation are fabricated with a 

discrete phase-shift of 0, 0.5π, π or 1.5π at the center. The parameters of the FBGs are 

shown in Table. 3.1.  

Shown in Fig. 3.3 are the measured (solid lines) and simulated (dashed lines) reflection 

spectra of the four gratings. The simulation is based on the parameters in Table. 3.1. The 

agreement between the simulation and measured results demonstrates the good quality of 

gratings to be characterized. 

 

3.3.2 Experimental results  

The experimental setup is as shown in Fig.3.2. The FWHM and repetition rate of the 

input optical pulse train are, respectively, 2.2-ps and 5GHz. The central wavelength of 

the input pulse train is tuned to the Bragg wavelength of the FBG. The 5GHz sinusoidal 

electrical drive signal to the EAM has a pulse width of ~50ps.  

Shown in Fig. 3.4 are the measured (a) and retrieved (b) spectrograms of the reflected 

pulses from the 0.5π phase-shifted grating. An excellent agreement between the measured 

and retrieved spectrogram is obtained, confirming the quality of the measurement and 

retrieval process. 

                             

Fig.3.4 (a) Measured and (b) retrieved spectrograms of the reflected pulse from the 0.5π phase-
shifted FBG (the input pulse width is 2.2 ps). The RMS retrieval error is 0.0024 on a 128x128 
grid [125] [Retrieved spectrogram provided by M. A. F. Roelens]. 
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Fig.3.5 Measured (solid line) and simulated (dotted line) temporal intensity and phase of the 
reflected pulses from the gratings with a discrete phase-shift (a) 0, (b) 0.5π, (c) π and (d) 1.5π 
respectively. 
 

Shown in Fig. 3.5 are the simulated (dashed lines) and retrieved (solid lines) temporal 

intensities and phases of reflected pulses from the four gratings. In the numerical 

simulation, the reflected pulse is calculated through the inverse Fourier transform of the 

product of the input pulse spectrum and the reflection spectral response of FBG. The 

simulation is based on the FBG parameters shown in Table. 3.1. The features of the 

measured results agree well with the simulation. Reflected pulses of all the gratings 

consist of one or two main pulses and some very weak pulses. For the uniform grating, 

the main reflected pulse has a square-like shape with a gradual fall-off in intensity and its 

duration is equal to the round-trip propagation time through the grating 

( pscLnt eff 502 ≈=∆ ). For the gratings with a phase-shift at their center, the reflected 

pulses consist of two discrete square-like parts, whose durations are both the round-trip 

propagation of half the grating length (25 ps). For the uniform grating, the temporal phase 

of the reflected pulse is kept constant through the square-like pulse. For the phase-shifted 
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gratings, the temporal phases of the two discrete square-like pulses are constant in their 

own durations, but between them there is an obvious phase step. The amount of simulated 

temporal phase-shift is equivalent to the spatial phase-shift of the gratings. Note that the 

discrete phase in the grating is defined as a spatial gap between sub-gratings, and this 

spatial gap is transformed into the temporal phase in its pulse response. The measured 

temporal phases almost follow the simulation, not only in the amount of phase-shifts, but 

also in the distribution. The discrepancy between the measured and simulated temporal-

phase-distributions (especially in Fig.3.5 (c)) is mainly due to a lack of stablility in the 

input optical pulses. The spatial phase-shifts of the gratings, the simulated temporal 

phase-shifts and the measured temporal phase-shifts are summarized in Table. 3.2. The 

accuracy of the discrete-phase-shift measurement can be less than 0.1π.  

 

                    Table.3.2 The amount of measured phases for different FBGs 

 Designed spatial 

phase-shift (rad) 

Simulated temporal  

phase-shift (rad) 

Measured temporal  

phase-shift (rad) 

1 0 0 0 

2 0.5π 0.5π 0.5π 

3 π π 1.2π 

4 1.5π 1.5π 1.4π 

 

 As far as we know, this is the first direct characterization of pulse responses and 

discrete phase-shifts for fibre Bragg gratings, although pulse responses of FBGs have 

already been studied by numerical simulation [127]. Shown here are only the results for 

FBGs with a single phase-shift. Using the same techniques, we also measured the 

superstructured FBGs (SSFBG) with as much as 15 discrete phase-shifts [126]. 

The measurements experimentally demonstrate the function of temporal-phase-

encoding of phase-shifted FBGs, which is the basis for OCDMA systems based on 

SSFBGs (to be shown in Chapter 4).  

 

3.4 Characterizing dc refractive index variations in Bragg gratings  

3.4.1 FBGs with a tunable and distributed phase-shift 

   As shown in Fig.3.6, to obtain a tunable phase-shift in an FBG, a fine tungsten wire is 
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put in contact with a uniform FBG and an electric current passes through the wire [9]. 

The heat produced by the electrical current will affect the FBG due to the temperature 

increase. The effect can be described by the Bragg wavelength shift [5] 
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where, ∆T is the temperature variation. The first item describes the thermal expansion 

effect, and α is the coefficient of thermal expansion (CTE) of the fibre. The second item 

describes thermally induced dc effective index change ( dTdneff ). In silica fibres, the 

thermal effect is dominated by the dTdneff effect, which accounts for 95% of the observed 

shift. Typically, 15101~5.0 −−×≈ CdTdneff

o . In Eq. (3.11), the overall effect is described 

by a Bragg wavelength shift, and equivalently, it can be described by an effective index 

variation, 
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     According to Eq. (3.4), an effective index variation ( )xn eff∆ along an FBG will 

accumulate and form a distributed phase shift, 
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If the electrical current on the tungsten wire is tuned, different temperature distributions, 

and hence different current-induced phase-shifts, can be obtained.  

                      

                        Fig.3.6 The structure of an FBG with a wire-induced phase shift. 
 

     This principle forms the basis of the reconfigurable optical code division multiple 

access (OCDMA) encoder-decoder, with multiple tunable phase shifts, that we will show 

in Chapter 5. For their design and application, it is essential to know two features of the 

grating. One is the relationship between the applied electrical current on the wire and the 

resultant phase-shift, and the other is the spatial dc refractive index profile under the 

applied current. In the following sections, we will use the EAM-FROG technique to 

characterize the thermally induced phase-shift distribution in FBGs. 
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3.4.2 Experimental results using a 20-ps pulse train 

 To characterize the FBG with a tunable phase-shift, we fabricated a 17mm-long 

uniform grating in a standard single mode fibre, and a 18µm diameter tungsten wire was 

placed in direct contact with the grating, 8mm from one end, as shown in Fig.3.6. The 

Bragg wavelength, ac effective index modulation, peak reflectivity and FWHM of the 

FBG are respectively 1548nm, 3.3x10-5, 66% and 0.1nm. By experimentally observing 

the shift of the dip wavelength in the reflection spectrum of the grating, we measure the 

amount of thermally-induced phase-shifts under different electrical currents [153]. In this 

configuration, to achieve a phase-shift of 0.5π, 1.0π and 1.5π, the required electrical 

currents applied on the tungsten wire are respectively 52mA, 70mA and 84mA.  

Having known the amount of the phase-shifts induced by the electrical currents, we use 

the pulse response method, based on the EAM-FROG technique, to characterize the 

spatial dc refractive index profile corresponding to the phase-shifts. The setup is the same 

as Fig. 3.2 in Section 3.2.3. The input optical pulse train, composed of 20-ps pulses at a 

repetition rate of 2.5GHz, is produced by passing a tunable semiconductor laser through 

an electro-optic modulator (EOM).   

Using the EAM-FROG technique, the intensities and phases of reflected pulses from 

the FBGs are measured, when the applied electrical currents are respectively 0mA, 

52mA, 70mA and 84mA, and the results are shown in Fig.3.7. We can see that the 

measured temporal phase-shifts are respectively 0, ~0.5π, ~π and ~1.5π at these different 

electrical currents. This is consistent with the results obtained by observing the reflection 

spectrum of the grating. 

The corresponding dc refractive index profiles under these electrical currents are 

calculated, using Eq. (3.7), and the results are plotted in Fig.3.8. When the electrical 

current along the wire is 0mA, there is a small background refractive index profile on the 

uniform FBG. This might be from the non-uniformity in the fibre core [128]. When the 

electrical current is 70mA, the FWHM (full-width at half-maximum) of the dc spatial 

refractive index distribution is ~4.2mm. 

Shown in Fig. 3.9 are the measured and calculated reflection spectra of the grating 

when the electrical current along the tungsten wire is respectively 0mA and 70mA. The 

calculated results are based on the retrieved dc refractive index distribution shown in Fig. 

3.8.  
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Fig.3.7 Measured intensity (solid line) and phase (dashed line) of the reflected pulses from the 
FBG when the electrical currents along the tungsten wire are respectively (a) 0mA, (b) 52mA, (c) 
70mA, and (d) 84mA. 
 

         

Fig.3.8 Retrieved spatial refractive index distributions when the electrical current along the 
tungsten wire is (a) 0mA. (b) 52mA, (c) 70mA, or (d) 84mA. 
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Fig.3.9 Measured (solid lines) and calculated (dashed lines) reflection spectra of the FBG when 
the applied electrical current is respectively 0mA and 70mA 
 

A numerical simulation is shown in Fig.3.10 to assess the accuracy of the 

experimentally retrieved results, which are affected by our practical choice of the input 

pulse and grating strength. In this simulation, we utilize the grating and input pulse 

having the same parameters as in the experiments. A 17-mm long grating, with a uniform 

ac index modulation of 3.3x10-5 and peak reflectivity of 66%, has a spatial phase-shift of 

π, consisting of a dc refractive index profile, as shown in Fig.3.10(a), which is similar to 

the measured result of the 70mA-wire-current case in the experiment. Then, a 20-ps 

optical pulse is reflected from the FBG. The temporal intensity and phase of the reflected 

pulse are calculated and shown in Fig.3.10(c). The temporal phase is differentiated and 

then, using Eq. (3.7), the dc refractive index profile of the FBG is theoretically retrieved 

and is shown in the solid line of Fig. 3.10(d).  

The deviation between the assumed and theoretically recovered results of phase-shift 

and dc refractive index profile can be explained in the following argument. Firstly, there 

is a deviation between the assumed spatial phase shift of π and the retrieved temporal 

phase shift of 0.93π. This deviation is caused by the relatively high peak reflectivity, of 

66%, of the grating. Secondly, as shown in Fig. 3.10(d), the spatial refractive index 

distribution is slightly smeared near its maximum, which is due to the spatial resolution 

limitation imposed by the input pulse width of 20-ps. Thirdly, there is an obvious 

discrepancy of the refractive index profile at the rear part of the grating. This is caused by 

the high peak reflectivity of the grating, because less light can propagate to the rear part 

of the grating. This kind of simulation can give us a useful tool to analyze the accuracy of 

the practical experiments. 
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Fig.3.10 (a) Assumed dc and ac refractive index distribution of an FBG with a π phase shift, (b) 
its reflection spectrum, (c) intensity and phase of the reflected pulse from the grating (input pulse 
width =20ps), (d) Retrieved (solid line) and assumed (dotted line) dc refractive index variation. 
 

3.4.3 Experimental results using a 5-ps pulse train 

The spatial resolution of the dc refractive index profile is limited by the input pulse 

width used in the characterization. In the measurement in Section 3.4.2, the input pulse 

width is 20-ps, so the spatial resolution is ~2mm. Here, a 5-ps pulse train is used. 

A 40mm long uniform grating was fabricated on a standard single mode fibre, and a 

18µm diameter tungsten wire was placed in direct contact with the grating, 10mm from 

one end, as shown in Fig.3.6. The uniform grating, with a Bragg wavelength of 1550nm 

and an index modulation of 2.2×10-5, has a peak reflectivity of 90%. However, because 

the tungsten wire is put near the front of the grating, the grating strength will not have an 

obvious affect on the characterization.  
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We use a similar setup to Fig.3.2 to characterize the spatial dc refractive index profile 

induced by different electrical currents. The input optical pulse train is composed of 5-ps 

pulses at a repetition rate of 1.25GHz from a gain-switched laser diode.   

The intensities and phases of reflected pulses from the FBGs are measured, and shown 

in Fig.3.11, when the electrical currents applied on the tungsten wire are respectively 

0mA, 52mA, 70mA and 84mA (corresponding to a phase-shift of 0, 0.5π, π, or 1.5π 

respectively). The corresponding effective dc refractive index profiles under these 

electrical currents are calculated, using Equation (3.7), and the results are plotted in 

Fig.3.12. When the electric current is 70mA (corresponding to a phase-shift of π), the 

FWHM of the spatial refractive index distribution is ~2.7mm. 

       

Fig.3.11 The measured intensities (solid lines) and phases (dashed lines) of the reflected pulses 
from the FBG when the electrical currents along the tungsten wire are respectively (a) 0mA, (b) 
52mA, (c) 70mA, and (d) 84mA. 
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Fig.3.12 Retrieved spatial refractive index distributions when the electrical currents along the 
tungsten wire are (a) 0mA, (b) 52mA, (c) 70mA, and (d) 84mA. 
 

3.4.4 Discussions 

Spatial resolution of the above characterization is limited by the input pulse width. 

Therefore, a shorter input pulse is obviously a desirable choice. But obtaining very short 

optical pulses usually involves complicated techniques. In the experiments, we obtain the 

dc refractive index profile directly from the measured temporal phase of optical pulses 

without using its intensity. Theoretically, if we also know full information (intensity and 

phase) of the input pulses, it would be possible to obtain impulse responses of FBGs by 

the de-convolution techniques, and then the requirement for a short input pulse could 

surely be relaxed. But due to the noise in experimental data, this is quite difficult in 

practice. In the practical experiment, a reasonable tradeoff is to make sure that the 

bandwidth of input pulses is no narrower than the bandwidth of the gratings to be 

characterized. 

As shown in section 3.4.2, the strength of the grating will also largely affect the 

measurement accuracy. As the strength of the grating increases, the equivalence of the 

amplitude of spatial phase shift and temporal phase shift will break gradually, so does the 

proportional relationship between the spatial refractive index distribution of the grating 

and the temporal phase differentiation of its pulse response. In theory, the grating 

parameters of strong gratings can possibly be retrieved through the inverse scattering 

technique [42]. But this is also very complicated, because it involves complex 

calculations, and the noise in the experimental data can affect the retrieved grating 

parameters seriously and un-expectedly [42]. 
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3.5 Conclusions  

We propose a pulse response method to directly characterize the spatial phase of the 

complex coupling coefficient, including the dc refractive index distribution (distributed 

phase shift), discrete phase, and chirp of fibre Bragg gratings. This method is based on the 

observation that the spatial phase of an FBG is directly related to the temporal phase of its 

pulse response. Therefore, the phase of the spatial index modulation can be characterized 

directly by measuring temporal phase of the pulse response of FBGs. Its main advantage 

is that the dc refractive index distribution only depends locally on the temporal phase of 

its pulse response. 

Using this method, we have characterized the spatial phase profile of FBGs with a 

discrete phase-shift or a current-induced distributed phase-shift. In Chapter 5, using this 

technique, we will characterize a thermally induced dc refractive index distribution when 

tungsten wires with different diameters are used. These results are fundamental for our 

understanding of reconfigurable-phase OCDMA encoder-decoders. 
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Chapter 4  

OCDMA systems based on super-

structured fibre Bragg gratings 

 

4.1 Introduction 

    OCDMA is a broadband access network technique, which combines the advantages of 

optical fibre communication and access networks.  It also has the unique features of all 

optical processing in the encoding-decoding operation, full asynchronous access without 

complex protocols, low access delay, and potentially excellent system security [129-130]. 

    In the CDMA systems, the same time slot and the same wavelength bandwidth are 

shared by many users, and different users are designated by a specific address codes. 

CDMA techniques fall into four categories: direct sequence (DS), frequency encoding 

(FE), frequency hopping (FH), and time hopping (TH) [131]. In DS-CDMA, each data bit 

is broadened into a series of pulses defined by a code sequence in the time domain. By 

contrast, in FE-CDMA, the code sequence is directly imprinted in the frequency spectrum 

of the input signal. In FH-CDMA, the coding is done in two dimensions: time and 

frequency. Each bit interval is subdivided in time (into chip intervals) and a certain 

frequency is transmitted during each chip. In TH-CDMA, a time interval is subdivided 

into a number of time slots. The coded information symbols are transmitted in a pseudo-

randomly selected time slot as a block of one or more code words.  

   The former three CDMA techniques have already been demonstrated in the optical 

domain [132]-[140]. In optical DS-CDMA, a short light pulse is used as the input source, 

and various optical time delay lines, such as optical fibre delay lines [132] and planar 

lightwave circuit (PLC) delay lines [133], are the fundamental devices to achieve 

encoding and decoding in the time domain. In optical FE-CDMA, incoherent broadband 

sources such as LEDs, or coherent ultra-short pulses are used as the input source, and 
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usually a pair of bulk gratings plus an optical phase modulator array are used to achieve 

frequency encoding [134]-[136]. In optical FH-CDMA, broadband ASE sources or ultra-

short pulses are used as the input source, and usually a series of FBGs with different 

central wavelengths are used as encoder and decoder, achieving frequency hopping 

[137]-[140].  

   A group in Southampton University proposed and demonstrated the use of SSFBGs as 

OCDMA encoder-decoders [6] [141]. An SSFBG is defined as a standard fibre grating, 

i.e., with a rapidly varying refractive index modulation of uniform amplitude and pitch, 

onto which an additional, slowly varying refractive index profile are imposed along its 

length. Due to the space-to-time conversion relation, an SSFBG with low overall 

reflectivity has an impulse response following its spatial superstructure. Therefore, when 

a short optical pulse (or a signal bit) is reflected from an SSFBG, with a superstructure 

profile designed according to a particular code sequence, the reflected pulse will be 

spread out in the time domain, following the superstructure profile of the SSFBG. This 

process is called encoding in OCDMA, and the SSFBG functions as an OCDMA 

encoder. If the encoding pulse is then reflected from a physically reversed grating, the 

information bit can be recovered or decoded due to the matched filtering. This process is 

called the decoding, and the decoding grating is called the OCDMA decoder.    

    Compared with OCDMA techniques, which utilize optical fibre delay lines, planar 

lightwave circuit (PLC) delay lines, FBG series, or bulk gratings as the encoding and 

decoding elements, OCDMA based on the SSFBG technique has the advantage of 

simplicity (one grating is enough for encoding or decoding), small size, tunability, 

polarization insensitivity, and the potential for easy fabrication. The most important 

advantage of SSFBGs is that the optical phase of light reflected from the SSFBG can be 

exploited, allowing the use of optical phase as a coding parameter. Phase coding is 

important since it exhibits far better crosscorrelation characteristics than amplitude only 

coding [6] [133], which in turn allows lower inter-channel interference, and thus more 

simultaneous users for a given code length than amplitude only coding.  

   SSFBG OCDMA systems with different grating strength, input pulse width, code 

number and chip length have been successfully demonstrated in a number of experiments 

[6] [142-150]. Despite this, there are no detailed discussions on how the various grating 

parameters affect the system performances. In this chapter, a detailed analysis on the 

system principle is given, from the viewpoint of FBG, and based on this we will analyze 

how the SSFBG parameters separately, or working together, affect the OCDMA system 
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performances. 

This Chapter is organized as follows. In Section 4.2, the impulse responses of the 

SSFBGs are directly given from the space-to-time conversion, and their frequency 

responses by the Fourier transform. Then, we derive the autocorrelation condition: phase 

matching condition, and the crosscorrelation condition of the SSFBG OCDMA system. 

The conclusion is that, in the weak grating approximation, the phase matching condition 

between the SSFBG encoder and its matching decoder is satisfied automatically, while 

the crosscorrelation characteristics, as expected, are largely dependent on the choice of 

the code sequences. 

   In Section 4.3, we use the transfer matrix theory and Fourier transform technique to 

numerically calculate the frequency and pulse responses of the SSFBG encoders and 

decoders. We clearly show that the code sequences are encoded into the temporal phases 

of their pulse responses, which have recently been directly measured by us in 

experiments [126]. Then the autocorrelation and crosscorrelation pulses, their 

corresponding spectral intensities, and especially spectral phases are presented, 

emphasizing the autocorrelation and crosscorrelation conditions.  

In Section 4.4, the effects of various parameters of SSFBG encoders and decoders on 

the OCDMA system performances are analyzed. First of all, we show the system 

performance deterioration with the increase of the grating strength, and explain this by 

showing that the increase of the grating strength breaks the phase matching condition 

gradually. Secondly, by means of an example, we analyze how the input pulse width 

affects the autocorrelation pulse width and system performances, emphasizing that the 

relative bandwidth of the input pulse and the encoding-decoding gratings are critical to 

the final performance. Thirdly, the tolerance of the central wavelength offset between the 

encoding and decoding SSFBGs is evaluated. Fourthly, we analyze the effect of different 

chip duration, and conclude that the chip duration will have no obvious effects on the 

final system performance under particular conditions, but it is still an important 

parameter because it will affect the choice of the input pulse width, the highest chip bit 

rate, device size, time slot allocation and wavelength spacing. Finally, we analyze the 

effects of the chip number on the system performance, and conclude that a larger chip 

number can accommodate more users and improve the system performance significantly 

because of the improved spectral phase characteristics provided by the longer phase 

series. 

     The conclusions for this chapter are summarized in Section 4.5. 
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4.2 Principles: a general description 

4.2.1 Structure, impulse and frequency responses of SSFBG en/decoders 

                                           

              Fig.4.1 Structures of (a) an SSFBG encoder and (b) the matching decoder. 
 

   The structures of an SSFBG OCDMA encoder, and its matching decoder, are shown in 

Fig.4.1. A series of 1−M  discrete phase shifts,1φ , 2φ ,…, 1−Mφ , are imposed uniformly on a 

uniform grating with a length of L , and divides the grating intoM chips. The spatial 

phases of the resultant SSFBG are consecutively Mϕϕϕ L,, 21 . The spatial superstructure 

profile of the SSFBG encoder, shown in Fig.4.1 (a), is, 
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where,  rect[] is the rectangular function. 

     The matching decoder to an encoder is its spatially reversed grating.  Its spatial 

superstructure profile is, 
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    In the weak SSFBG limit, i.e., where the peak reflectivity of the grating is low, so that 

the light penetrates the full grating length, and the individual elements of the grating 

contribute equally to the reflected response, the impulse response of the SSFBG can be 

directly obtained from the refractive index superstructure profile. The impulse response 

of the SSFBG encoder described by Eq. (4.1) is, 
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is called the chip duration, n  is the background refractive index of FBGs, and c is the 

light speed in vacuum. Its frequency response is the Fourier transform of the impulse 

response,        
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The central frequency of its frequency response is dependent on the Bragg wavelength of 

the SSFBG. 

    Similarly, the impulse and frequency responses of the decoder, described by Eq. (4.2), 

are respectively,  
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4.2.2 Encoding, decoding, autocorrelation and crosscorrelation 

    In the SSFBG OCDMA system, the encoding process can be described as the response 

of the encoder to the input signal. An input signal is reflected from the encoder, and the 

spectrum of the reflected pulse, i.e., the encoding pulse, ( )ωY , is given by the product of 

the spectrum of the input pulse( )ωX  and the frequency response of the encoding grating 

( )ωH , 

        ( ) ( ) ( )ωωω HXY =                                                                                                      (4.8) 

In the temporal domain, the reflected pulse( )ty  is given by the convolution between the 

input pulse ( )tx  and the impulse response of the grating( )th ,                  

        ( ) ( ) ( )thtxty ⊗=                                                                                                          (4.9) 

where, ⊗ denotes convolution, and ( )ty , ( )tx  and ( )th  are respectively the inverse 

Fourier transform of ( )ωY , ( )ωX  and ( )ωH  in  Eq.(4.8).  

Similarly, the decoding process can be described as the response of the decoder. The 

pulse reflected from the encoder is reflected from the decoder, and the resultant decoding 
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pulse ( )ωZ  is given by the product of the spectrum of the pulse reflected from the 

encoder ( )ωY  , and the frequency response of the decoding grating ( )ωG : 

       ( ) ( ) ( ) ( ) ( ) ( )ωωωωωω GHXGYZ ==                                                                          (4.10) 

This process can also be described in the time domain by convolution.                                                                                          

In an OCDMA system, many users share one transmission channel. A 2x2 OCDMA 

network is shown in Fig.4.2 as an example. It is composed of two SSFBG OCDMA 

encoders, A and B, with the frequency response of ( )ωAH  and ( )ωBH  respectively, the 

corresponding OCDMA decoders, A and B, with the frequency response of ( )ωAG  

and ( )ωBG , and two 2x1 optical couplers. The encoder A and decoder A are the matched 

OCDMA encoder-decoder pair, and so are the encoder B and decoder B. 

                          

                                               Fig.4.2 A 2x2 OCDMA network. 
 

    As shown in Fig.4.2, two input optical signals, ( )ωAX  and ( )ωBX , are encoded by the 

OCDMA encoder A and B respectively, resulting in the encoded signals ( ) ( )ωω AA HX  and 

( ) ( )ωω BB HX . The two encoded signals are combined by the 1x2 optical coupler, producing 

     ( ) ( ) ( ) ( ) ( )ωωωωω BBAA HXHXY +=                                                                                  (4.11) 

After transmitting along the fibre, the signal ( )ωY  is then split by the 2x1 optical coupler, 

and decoded by the OCDMA decoders A and B respectively. Neglecting the transmission 

effects of the fibre, the signal following the decoder A is 

( ) ( ) ( ) ( ) ( )ωωωωω ABAAAA ZZGYZ +==                                                                              (4.12) 

where             

    ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]ωωωαωωωω AAAAAAAAAA iXGHXZ Φ== exp                                                      (4.13)  

     ( ) ( ) ( )ωωωα AAAA GH ⋅=                                                                                               (4.14) 

    ( ) ( )[ ] ( )[ ]ωωω AAAA GH argarg +=Φ                                                                                         (4.15) 

     ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]ωωωαωωωω ABBABABBAB iXGHXZ Φ== exp                                                    (4.16) 

     ( ) ( ) ( )ωωωα ABAB GH ⋅=                                                                                               (4.17) 

    ( ) ( )[ ] ( )[ ]ωωω ABAB GH argarg +=Φ                                                                                       (4.18) 
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( )ωAAZ  is the autocorrelation spectrum. ( ) ( )ωω AA GH  is the autocorrelation factor, and 

( )ωα AA  and ( )ωAAΦ  are respectively its amplitude and phase. Conversely, ( )ωABZ is the 

crosscorrelation spectrum. ( ) ( )ωω AB GH  is the crosscorrelation factor, and( )ωα AB and ( )ωABΦ  

are respectively its amplitude and phase.  

     Suppose the phase series of two SSFBG encoders, A and B, are respectively 

( A
1ϕ , A

2ϕ ,…, A
Mϕ ) and ( B

1ϕ , B

2ϕ ,…, B

Mϕ ). The frequency responses of the encoders and decoders 

can be obtained using Eqs. (4.5) and (4.7).  

     The autocorrelation factor of encoder A and decoder A is:  

      ( ) ( ) ( ) ( )[ ]ωωαωω AAAAAA iGH Φ= exp                                                                                 (4.19) 
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   On the other hand, the cross-correlation factor of encoder B and decoder A is:  

     ( ) ( ) ( ) ( )[ ]ωωαωω ABABAB iGH Φ= exp                                                                             (4.22) 
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In an OCDMA system, the signal following each decoder is the combination of an 

autocorrelation and many crosscorrelation signals. From the viewpoint of communication, 

the autocorrelation signal is the desired signal, whereas the crosscorrelation is the 

interference, or noise to the autocorrelation. The objective of communication is to obtain 

a large signal-to-noise-ratio (SNR), i.e. to obtain autocorrelation with a high peak 

intensity and crosscorrelation with a low peak intensity. 

    Eq. (4.21) is called the phase matching condition, which shows that the phase of the 

autocorrelation factor is a linear function of frequency, implying that all the frequency 

components of the input signal experience the same time delay after the decoding process, 

and constitute a short pulse with high peak intensity. It is noteworthy that all physically 

reversed FBG pairs satisfy the phase matching condition if the weak grating 

approximation is satisfied. While for practical SSFBGs, this condition is only nearly 

satisfied due to the breaking of the weak grating approximation. Eq. (4.19) shows that the 

autocorrelation pulse spectrum is an amplitude-modulation of the input pulse spectrum. 

The amplitude modulation might narrow the bandwidth of the autocorrelation spectrum 
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and reshape the input pulse. This will therefore slightly decrease the peak intensity of the 

autocorrelation pulse. However, its effect is not very serious.  

    According to Eq.(4-24), ( )ωABΦ  is a nonlinear function to frequencyω , which means 

that different spectral components of ( )ωABZ  will experience different time delays, and 

the cross-correlation signal is distributed over a long time duration so that its peak 

intensity is far lower than the autocorrelation signal. The extent of the nonlinearity in the 

phase ( )ωABΦ  is not easy to measure, but it is crucial to suppress the peak intensity of the 

cross-correlation pulse. ( )ωABΦ  is directly related to the phase series of the encoder-

decoder. So, it is very important to choose a phase series which produces a good cross-

correlation performance, so as to obtain high-contrast code recognition.  

The code sequences suitable for the radio frequency CDMA to achieve good 

autocorrelation and cross-correlation performance are also applicable to OCDMA 

systems. The well-known M-sequences [151], and the quaternary coding sequence, such 

as the family A sequences [152], have been broadly utilized in the OCDMA system. In 

the following sections, our numerical examples are based on family A sequences. 

 

4.3 Principles: a numerical example 

    The numerical simulation is based on the calculation of the reflection spectral 

responses of the SSFBG encoder-decoders. Firstly, two SSFBG encoder-decoder pairs 

are chosen, and their reflection spectral responses are obtained through the transfer 

matrix model. Secondly, a short optical pulse is reflected from the encoder, and the 

reflected pulse, i.e. the encoded pulse, is calculated through the inverse Fourier transform 

of the product of the input pulse spectrum, and the spectral response of the encoder. 

Finally, the decoding pulses, i.e., the autocorrelation and crosscorrelation pulses, are 

similarly obtained through the inverse Fourier transform of the product of the input pulse 

spectrum, the spectral response of the encoder, and that of the decoder. 

 

4.3.1 SSFBG encoder-decoders 

   Two 15-chip, four-phase-level sequences Q1 = [π5.1 π0.0  π0.0 π5.0 π0.1 π0.0 π0.0  

π5.1 π5.0 π5.1 π5.0 π0.0 π5.0 π0.1 π5.1 ], and Q2 =[ π5.1 π5.0 π0.1 π5.1 π0.0 π5.0 π5.1  
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π0.1 π0.0 π5.1 π0.0 π0.0 π0.0 π5.0 π5.0 ], from the family A-sequences [21], are chosen as 

address codes of the OCDMA encoders. Phase distributions of Q1, Q2, Q1* and Q2* are 

shown in Fig. 4.3.  

                          

                       Fig.4.3 Phase distributions of the SSFBGs Q1, Q1*,Q2 and Q2*. 
                  

                          

Fig.4.4 Solid lines: reflection spectra of the SSFBGs Q1 and Q2, dashed lines: reflection 
spectrum of the single-chip grating. 
    

    Parameters of the SSFBG en/decoders are as follows. The total length is 37.5mm, 

composed of 15 chips, each with a chip-length of 2.5mm. The Bragg wavelength of all 

the SSFBGs is 1551nm, and the refractive index modulation is 5103.1 −× , resulting in a 

peak reflectivity of ~20%. The effective index of the host fibre of the SSFBGs is assumed 

to be 1.452.  

   Theoretical power reflection spectra of the SSFBGs Q1 and Q2 are plotted in the solid 

lines of Fig. 4.4. The reflection spectra of their matching decoders are not shown here, 

because they have similar profiles to their corresponding encoders. Also shown in the 

dashed lines of Fig. 4.4, are the theoretical power reflection spectra of the single-chip 
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grating, i.e., the 2.5mm uniform grating with the same strength and Bragg wavelength as 

the SSFBGs. The reflection spectrum of the single-chip grating constitutes the envelope 

to that of an SSFBG that is composed of a series of chips. This implies that the overall 

bandwidth of an SSFBG is dependent on its single chip length. 

   Through the Fourier transform technique, the reflection spectra of the SSFBGs have 

been analytically derived in Eq. (4.5). The square of (4.5) is, 
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Assuming Mϕϕϕ === L21 , (4.25) becomes, 
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   From Eq. (4.25), the envelope period of the reflection spectra is ( )tc∆2λ . Similarly, 

from Eq. (4.26), the period of minute structures in the reflection spectra is ( )tcM∆22λ . 

   In the above example, the chip duration pst 2.24≈∆ , so the envelope period of the 

reflection spectra is ( ) nmtc 32.02 ≈∆λ , and the period of the minute structures in the 

reflection spectra is ( ) nmtcM 04.02 2 ≈∆λ . 

    

4.3.2 Encoding pulses 

   A transform-limited Gaussian pulse, with a 2ps FWHM (full-width at half-maximum), 

is reflected respectively from SSFBGs Q1, Q2, Q1* and Q2*, and the temporal intensities 

and phases, of the reflected pulses are shown in Fig.4.5. The total duration is ~363ps, 

equivalent to the roundtrip time of the 15-chip gratings. The temporal phases strictly 

follow spatial phases of the SSFBGs, that is, the address code sequences are encoded into 

the temporal phases of the reflected pulses, both in period and amplitude. 

   In this simulation, the peak reflectivity of the SSFBGs is ~20%, which means that all 

the elements of the grating contribute roughly equally to the reflected response. The input 

pulse width is 2ps, far shorter than the chip duration of 24.2ps, which makes the reflected 

pulse a good approximation to the impulse responses of the gratings.  

   In the following simulation, the 2ps transform-limited Gaussian pulse will be used as 

the input optical pulse of the OCDMA system, so the reflected pulses from the encoders, 

Q1 and Q2, are called the encoding pulses. 
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Fig.4.5 Intensities (solid line) and phases (dashed line) of reflected pulses from (a) Q1, (b) Q2, (c) 
Q1* and (d) Q2*. 

 

4.3.3 Decoding pulses--autocorrelation and crosscorrelation  

The autocorrelation Q1:Q1*, Q2:Q2*, and crosscorrelation Q1:Q2*, Q2:Q1* are shown 

in Fig.4.6. Note that the autocorrelation pulse is composed of a single dominant peak, and 

some low-level sidelobes, while the crosscorrelation pulse is composed of only low-level 

peaks. The features of the autocorrelation and crosscorrelation pulses can be explained in 

the frequency domain. Shown in Fig.4.7 are spectral intensities and phases of the 

autocorrelation and crosscorrelation pulses. The spectral phases corresponding to 

autocorrelation pulses, as shown in Fig.4.7 (a) and (d), are nearly linear, which suggests 

that the phases between the encoder and decoder are roughly conjugate and, consequently, 

most of the spectral components appear at roughly the same time, constituting the 

autocorrelation peak, as shown in Fig. 4.6 (a) and (d). On the other hand, the spectral 

phases corresponding to crosscorrelation pulses, as shown in Fig.4.7 (b) and (c), are 

nonlinear, which causes the optical power to distribute across a large time scale, as shown 

in Fig.4.6 (b) and (c). 
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Fig.4.6 (a) Autocorrelation Q1:Q1*, (b)crosscorrelation Q1:Q2* (c) cross-correlation Q2:Q1* (d) 
autocorrelation Q2:Q2* (The input pulse width is 2ps). 
                  

                         

Fig.4.7 Spectral intensities (solid line) and phases (dotted line) corresponding to (a) 
autocorrelation Q1: Q1*, (b) cross-correlation Q1: Q2*, (c) crosscorrelation Q2: Q1*, (d) 
autocorrelation Q2: Q2*. Differentiation of the spectral phase with respect to frequency for 
autocorrelation (e) Q1: Q1* and (f) Q2: Q2*. (The input pulse width is 2ps). 
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    To present the details of spectral phase characteristics, we differentiate spectral phases 

of the autocorrelation pulses, with respect to frequency, and obtain the spectral phase 

slope, which is in fact the time delay, ωτ ddΦ= , and the results are shown in Fig.4.7(e) 

and (f). We can see that the spectral phase slope is ~363ps, which is the time shift of 

autocorrelation pulses. The minor oscillation of time delay indicates that the spectral 

phases are not perfectly linear, which is due to the breaking of the weak grating 

approximation.                          

  

4.4 Discussions about the SSFBG OCDMA design 

     In this section, the effects of several parameters, such as the SSFBG strength, chip 

length, chip number, and the input pulse width, on the system performances, are analyzed. 

This analysis is essential for the design and evaluation of SSFBG OCDMA systems. 

    The objective of an OCDMA system is to obtain a high signal-to-noise-ratio (SNR), i.e. 

to obtain an autocorrelation pulse with high peak intensity and crosscorrelation pulses 

with low peak intensity. Here, for simplicity, the ratio between the peak of cross and auto 

correlation (RPCA) pulses is defined as the parameter to evaluate the OCDMA system 

performance. For an OCDMA system, a lower RPCA implies a higher SNR, and 

consequently a better system performance, and more possible simultaneous users. 

 

4.4.1 SSFBG strength 

   As shown in section 4.2, Eq. (4.21) is automatically satisfied under the weak grating 

approximation. However, if the gratings are too weak, their insertion loss will be very 

high. Reducing the power loss of the SSFBG encoder-decoder is another key design 

objective. Therefore, to design a system with an acceptable final performance and less 

power loss, it is necessary to analyze how, and to what extent, the SSFBG strength affects 

the performance of OCDMA systems. 

   We still use the 15-chip, four-phase-level SSFBGs with a chip-length of 2.5mm as the 

encoder-decoder and 2ps transform-limited Gaussian pulses as the input pulses. The code 

sequence is chosen to be Q1, and Q2. But we change the effective index modulation of 

the SSFBGs so that peak reflectivity of the grating Q1 varies from 0.1% to 99.9%, while 

gratings Q1*, Q2 and Q2* always have the same refractive index modulation as Q1. The 
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resultant RPCA value between Q2: Q1* and Q1: Q1* with respect to the peak reflectivity 

of grating Q1 are plotted in Fig.4.8. It shows that RPCA increases gradually with the 

increase of peak reflectivity of the encoder-decoder. But it is noteworthy that the change 

of RPCA value is not obvious as the peak reflectivity of gratings increases from 0.1% to 

50%. 

    In Fig.4.9, the autocorrelation Q1: Q1* (indicated by the solid lines) and 

crosscorrelation Q2: Q1* (indicated by the dashed lines) pulses are plotted as the peak 

reflectivity of Q1 varies. With the increase of the SSFBG strength, the sidelobe of 

autocorrelation gradually becomes prominent, decreasing the peak intensity of the 

autocorrelation pulse and, simultaneously, the peak intensity of the crosscorrelation pulse 

increases. Both of these situations will consequently cause a decrease of the RPCA value. 

   Differentiation of the spectral phase, corresponding to the autocorrelation pulses 

produced by SSFBGs with different peak reflectivity, is shown in Fig.4.10. As shown, the 

time delay oscillations increase with the increase of the grating strength, implying that the 

phase matching condition is gradually broken. 

   To decrease the insertion loss of SSFBG encoder-decoders, while maintaining the 

system performances, a suitable apodization or chirp can be applied to the SSFBGs. In 

Ref [146-147], an apodization technique was demonstrated experimentally. 

 

                              

Fig.4.8 Relationship between peak reflectivity of SSFBG and RPCA of Q2: Q1*/Q1: Q1*. 
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                   Fig.4.9 Correlation pulses when the peak reflectivity of the SSFBG varies. 
 

                                

Fig.4.10 Time delay spectra of the autocorrelation pulse, when the peak reflectivity of the 
SSFBGs varies. 
 

4.4.2 Input pulse widths 

   The choice of a suitable light source, especially the input pulse width, is critical for the 

OCDMA system design. Ideally, the input pulse width should be much shorter than the 

single chip duration of the encoder-decoder to meet the requirements of impulse response. 

In Ref [6] [9] [142-144], 2.5ps or 20ps short pulses were utilized in different system 

configurations. Ref. [145] provides systematic experimental results on the effects of 

different input pulse widths. Here, by numerical simulations, we analyze how the input 

pulse width affects the OCDMA systems. 
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    We still use the 15-chip, four-phase-level SSFBGs, with a chip-length of 2.5mm, as 

examples. To satisfy the weak grating approximation, we select the refractive index 

modulation of the SSFBG so that their peak reflectivity is ~12%.  

    Then, transform-limited Gaussian pulses, with an FWHM of 2ps, 5ps, …, 100ps, are 

used as the input pulses, and by simulation, the FWHM of the autocorrelation pulse Q1: 

Q1* and RPCA of Q2: Q1* over Q1: Q1*, are obtained and shown in Fig.4.11. As the 

input pulse width increases, both the autocorrelation pulse width and the RPCA value 

increase nearly linearly. In Fig.4.12, we show autocorrelation pulses Q1: Q1*, and 

crosscorrelation pulses Q2: Q1*, under the input pulse width of 2ps, 25ps, and 100ps. 

With the increase of input pulse width, the resultant autocorrelation pulse is broadened, 

decreasing its peak intensity and, simultaneously, crosscorrelation pulses exhibit much 

higher peak intensity.   

    To illustrate this, the spectra of grating Q1, and input pulse with an FWHM of 

respectively 2ps, 25ps and 100ps are plotted in Fig.4.13. When the input pulse width is 

very short (for example, 2ps), its bandwidth is far broader than that of the SSFBG, so the 

spectral width of the autocorrelation pulse depends only on the bandwidth of the SSFBG 

and, as a result, the autocorrelation pulse width is kept constant to a particular value, 

which is decided by the bandwidth of SSFBGs. On the other hand, when the input pulse 

width is large (for example, 100ps), its spectral width is narrower than that of SSFBG. As 

a result, the spectral width of autocorrelation pulses will follow the bandwidth of the 

input pulse. Consequently, in the time domain, the autocorrelation pulse width will be 

nearly equivalent to the input pulse width. 

     In Fig. 4.14, we plot the spectral intensities and phases of the autocorrelation Q1: Q1* 

and crosscorrelation Q2: Q1*, when the input pulse width is 2ps and 100ps respectively. 

Note that, at different input pulse widths, the phase matching relation between Q1 and 

Q1* (comparing the spectral phases in Fig. 4.14 (a) and (b)) is invariant, and the phase 

mismatch between Q1 and Q2* (comparing the spectral phases in Fig.4.14(c) and (d)) 

does not change either. 

 Despite this, their spectral width will change under different input pulse widths. When 

the bandwidth of the input pulse is narrow (~0.05nm for the input pulse width of 100ps), 

the spectral width of the autocorrelation/crosscorrelation pulses is narrow. This narrow 

bandwidth results in a long autocorrelation pulse width. At the same time, this narrow 

bandwidth reduces the extent of phase mismatch and, as a result, the crosscorrelation 

pulse will have a relatively higher peak power. 
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Fig.4.11 (a) The relation between the input pulse width and the output autocorrelation (Q1: Q1*) 
pulse width, (b) the relation between the input pulse width and the RPCA of Q2: Q1*/Q1: Q1*. 
 

                            

Fig.4.12 (a) Autocorrelation (Q1: Q1*) and (b) crosscorrelation (Q2:Q1*) pulses when the input 
pulse width is respectively 2ps, 25ps and 100ps. 
 

                              

Fig.4.13 Power spectrum of SSFBG Q1, and the spectrum of the input pulse with an FWHM of 
2ps, 25ps, and 100ps. 
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Fig.4.14 Spectral intensities (solid line) and phases (dashed line) corresponding to:              
(a)autocorrelation Q1: Q1* when the input pulse width is 2ps, (b)autocorrelation Q1:Q1*when 
the input pulse width is 100ps, (c)crosscorrelation Q2: Q1* when the input pulse width is 2ps, (d) 
crosscorrelation Q2: Q1* when the input pulse width is 100ps. 
 

4.4.3 Tolerance of central wavelength offset between encoders and decoders 

   In above discussions, we assume that the central wavelength of the decoder is 

calibrated to that of the encoder. Here, by simulation, we evaluate the effect of the offset 

between the central wavelength of encoders and decoders. We use systems with three 

different configurations: (1) 15-chip codes with a chip length of 1.25mm, (2)15-chip 

codes with a chip length of 2.5mm, and (3) 31-chip codes with a chip length of 2.5mm. 

The total lengths of corresponding SSFBGs are respectively 18.75mm, 37.5mm, and 

77.5mm. As above, the codes are 4-phase-level from family A sequences. In all these 

systems, the refractive index modulation of the SSFBG is chosen so that their peak 

reflectivity is ~10%, and the input pulse width is ~2ps. 

   For each configuration, we choose two code sequences to obtain the autocorrelation and 

crosscorrelation, and the central wavelengths of the two encoding SSFBGs are always 

equivalent and kept without change.  The central wavelength of decoding SSFBGs is 

varied to produce different offsets with respect to that of encoding gratings. The resultant 

variations of values of autocorrelation peak and RPCA are shown in Fig.4.15. As 

anticipated, the system performance deteriorates gradually with the increase of 

wavelength offset. The values of autocorrelation peak and RPCA are sensitive even to a 
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wavelength shift of ~0.001nm (~125MHz). Therefore, the temperature of both the 

encoding and decoding SSFBGs must be accurately controlled to avoid the central 

wavelength shift. If a system operates at a wavelength of ~1550nm and dTdn is chosen 

as 1×10-5 ºC-1, a temperature variation of 0.1 ºC will lead to a central wavelength shift of 

0.001nm. In addition, the birefringence of a grating written in a communication fibre is 

typically 10-7~10-5, which will cause a central wavelength difference of 0.01~0.0001nm. 

Therefore, the polarization effect must be considered.  

                         

Fig.4.15 (a) The autocorrelation peak and (b) RPCA under the different central wavelength offset 
between the encoding and decoding SSFBGs. The auto-correlation peaks are normalized to the 
system with a wavelength offset of 0. Cross (+): 15-chip system with a chip length of 1.25mm. 
Square (■): 15-chip system with a chip length of 2.5mm. Circle (○): 31-chip system with a chip 
length of 2.5mm. 
 

     The performance deterioration caused by the central wavelength offset of encoding 

and decoding SSFBGs is due to the fact that this offset breaks the phase matching 

condition. As shown in Fig.4.15, the tolerance to this central wavelength offset is 

different for different systems and, roughly, it is inversely proportional to the total length 

(the product of chip length and chip number) of encoder-decoder gratings. The reflection 

spectra of encoding-decoding SSFBGs contain many minute structures (see Fig. 4. 4), 

whose period is inversely proportional to its total length. The breaking of the phase 

matching condition caused by the central wavelength offset is related to this period. With 

the increase of the total length of the SSFBGs, the period of the minute structures will 

become shorter and, consequently, the tolerance of the central wavelength offset will be 

more stringent. Therefore, for practical systems, the calibration of central wavelength 

between encoding and decoding gratings is crucial, especially for the SSFBG with a long 

physical length. 

 



Chapter 4 OCDMA systems based on super-structured fibre Bragg gratings 
        

 - 62 - 

4.4.4 Chip duration 

OCDMA systems based on SSFBGs, with different chip durations, have already been 

demonstrated in experiments [142-150]. The effects of chip duration on the OCDMA 

system performance are as follows. 

(1) Shorter chip duration implies a smaller size of the encoder-decoder because the 

chip duration is proportional to the chip length of SSFBGs,.  

(2) If an SSFBG encoder-decoder is composed ofN chips, each with a chip duration of 

T , a single autocorrelation or crosscorrelation pulse will occupy a time slot ofNT2 . To 

avoid the interference between neighboring bits in one data sequence, the bit rate of each 

OCDMA user should be no more than NT21 . Therefore, a shorter chip duration will 

make a higher data bit rate possible for each user.  

(3) SSFBG encoder-decoders with shorter chip duration will occupy a wider frequency 

slot, which means that for WDM applications of OCDMA, the wavelength channel 

spacing will have to be wider. 

(4) To keep the system performance, an OCDMA system with shorter chip duration 

requires shorter optical pulses as the input.  

(5) The performance of OCDMA systems, with the same chip number and code 

sequences, is invariant under different chip durations, if a suitable input pulse width is 

chosen.  

We still use the 15-chip, four-phase-level SSFBG encoder-decoder as an example. The 

chip length is varied from 0.2mm to 10mm, and for each chip length, the input pulse 

width is accordingly chosen to be the same as the chip duration. The grating strength is 

chosen so that all the gratings have the same peak reflectivity of ~10%. Numerically, we 

show the autocorrelation pulse width, and the RPCA between the crosscorrelation 

Q2:Q1* and autocorrelation Q1:Q1*, under different chip durations in Table 4.1. We can 

see that, under these particular conditions, the chip duration has no obvious affect on the 

RPCA value of the system. 

 
                          Table 4.1 Effects of different chip lengths (chip number = 15) 
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4.4.5 Chip number 

    SSFBG OCDMA systems with increasing chip numbers have been demonstrated [142-

150]. A larger chip number corresponds to a longer code sequence and a system with a 

larger chip number can accommodate more simultaneous users. The reason is that the 

correlation performance of longer sequences is better than that of shorter sequences. For 

both bipolar Gold sequences and the quaternary family A sequences with a length of N, 

the relative crosstalk level (the ratio between the variance of crosscorrelation and peak of 

autocorrelation) is ~ N21 .  

 

                       Table 4.2 Effects of different chip numbers (chip duration = 5ps) 

                               

 

                            

Fig.4.16 Autocorrelation/crosscorrelation traces as chip number is: (a)7, (b)15, (c)31, (d)63, 
where, chip length = 0.5mm, input pulse width = 2ps. Note that an offset of 0.2 is added to the 
crosscorrelation traces in the axis of intensity. 

 

 We use code sequences from sequence A [152], with the chip number of 7, 15, 31, and 

63 respectively as an example. The chip length is kept constant to be 0.5mm, and the 
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input pulse width is 2ps. The autocorrelation pulse width and the RPCA value, under the 

different chip numbers, are shown in Table 4.2. With an increase of chip number, the 

RPCA values decrease. The autocorrelation and crosscorrelation pulses, under the 

different chip numbers, are shown in Fig.4.16.  

      Nevertheless, for an OCDMA system, with a particular chip duration and a larger 

chip number, its decoding pulse will occupy a longer time slot and, consequently, the 

maximum data bit rate each OCDMA user can achieve will be lower. Therefore, to obtain 

a system with many users, each with a high data bit rate, the SSFBG encoder-decoder 

should have a large chip number and, at the same time, short chip duration. 

 

4.5 Conclusions  

     In this chapter, the SSFBG OCDMA systems are studied from the viewpoint of the 

FBGs. The analytical expressions are derived under the weak grating approximation, and 

the numerical simulations are performed using the transfer matrix method. They together 

give us insight into how the encoding and decoding functions are achieved in the SSFBG 

OCDMA systems, and how and when the autocorrelation and crosscorrelation conditions 

are satisfied by the SSFBG encoders and decoders.  

The effects of input pulse width and various SSFBG parameters are analyzed. The 

input pulse width has a significant effect on the system performance, and its choice is 

related to the chip duration of the SSFBG encoder-decoder. With the increase of the 

SSFBG strength, the reflectivity of the SSFBG increases, while the phase matching 

condition is gradually broken. In the design of the practical OCDMA system, the choice 

of the SSFBG strength involves the tradeoff between the power loss of the encoder-

decoders, and system performances. The central wavelength of the encoding and 

decoding SSFBGs must be calibrated with a high accuracy. The chip duration and chip 

number are also critical parameters, because they are directly related to the maximum 

data bit rate of each user, and the possible user number of the OCDMA system. Note that 

in the analysis, although the system performances, such as the encoded pulses, 

autocorrelation and crosscorrelation pulses, are usually evaluated in the time domain, it is 

often easier to explain them in the frequency domain.  
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Chapter 5  

Reconfigurable-phase OCDMA 

en/decoders  

 

5.1 Introduction  

Optical code division multiple access (OCDMA) systems based on super-structured 

fibre Bragg gratings (SSFBGs) have been demonstrated as a promising technique for 

future optical networks. An SSFBG en/decoder, with a spatial phase distribution 

following a specific address code sequence, can achieve the function of temporal-phase-

encoding, which provides far better correlation performances than the amplitude-only 

encoding. The conventional SSFBG en/decoders are discrete-phase en/decoders because 

spatial phase distributions in them are formed by inserting discrete phase-shifts, which 

are shorter than a grating pitch. 

In a discrete-phase OCDMA en/decoder, the address code sequence is fixed since it is 

permanently inscribed during the FBG writing process. It is highly desirable if the code 

sequence in an FBG en/decoder could be reconfigured dynamically, since this would 

largely improve the functionality and flexibility of OCDMA networks. Recently, 

Mokhtar et al. proposed and demonstrated a reconfigurable-phase en/decoder, which is 

composed of a uniform fibre Bragg grating and a series of equidistant tungsten wires in 

contact with the FBG [9] [153]. Electrical currents pass through the tungsten wires, heat 

the wires and FBG, and produce a background refractive index variation. This constitutes 

a phase-shift in the FBG, which can be tuned by varying the electrical currents through 

the tungsten wires. Because the thermally induced dc (background) refractive index 

distribution usually covers a length of several millimetres, phase shifts in a 

reconfigurable-phase en/decoder are inherently distributed. 
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However, in previous work, the distribution of thermally induced phase-shifts in the 

reconfigurable-phase en/decoders was not characterized and its effect on overall system 

performances has not been addressed. In this work, based on characterization of the 

phase-shift distribution of reconfigurable en/decoders, we will analyze the effects of 

phase-shift distribution on OCDMA system performances. Moreover, the reconfigurable 

phase en/decoders are improved to possess the capacity of fast reconfiguration.  

In conventional discrete-phase en/decoders, phase shifts are induced by spatial gaps 

between uniform grating sections forming the individual chips. While in the 

reconfigurable-phase en/decoders, the phase-shifts are produced by thermally induced 

background refractive index variations along the FBG (as described in Section 3.4.1). A 

temperature variation of ( )xT∆ , applied on the fibre core, will induce a background (dc) 

effective index variation ( )xndc∆  along the FBG, and result in a phase shift of  

                     ( )dxxndc

B
∫∆=

λ
πφ 4                                                                                      (5.1) 

The effective dc refractive index and spatial phase distribution, for a discrete phase-

shift and a distributed phase-shift, are compared in Fig. 5.1. The effective dc refractive 

index for a discrete phase-shift is usually a constant along the FBG, while it is the 

variation of effective dc refractive index that accumulates and produces a distributed 

phase-shift. The physical length for a discrete phase-shift is less than a grating pitch, 

while a distributed phase-shift usually covers a length of several millimeters, containing a 

number of grating pitches. 

                 

Fig.5.1 The effective dc refractive index and spatial phase distribution for a discrete phase-shift 
and a distributed phase-shift. 
.  

This chapter is organized as follows. In Section 5.2, we report our characterization 

ndc ndc 
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result of a thermally induced phase-shift. The reconfigurable-phase en/decoders are 

introduced in Section 5.3 and their system performance is simulated and discussed in 

Section 5.4. Section 5.5 contains the experimental results, including device fabrication, 

characterization, performance and demonstration of the capacity for fast reconfiguration.  

5.2 Characterizing phase-shifts in reconfigurable-phase en/decoders 

5.2.1 Characterization method 

   A series of tungsten wires are used in a reconfigurable-phase en/decoder to achieve 

multiple phase-shifts. For simplicity, we assume that the phase-shift or dc refractive 

index distribution induced by a tungsten wire is not affected by the addition of other 

tungsten wires. Therefore, the overall dc (background) refractive index distribution in a 

reconfigurable en/decoder is simply the sum of the dc refractive index distributions 

corresponding to all the spatially displaced phase-shifts. Later, we will demonstrate this 

assumption by comparing the measured reflection spectrum of a reconfigurable-phase 

encoder and the simulated one based on this assumption. This assumption is a good 

approximation to practice because, although interference among neighboring wires does 

exist, it is not serious.  

    Based on this assumption, if the phase-shift and dc refractive index distribution 

induced by a single tungsten wire are characterized, full information of a reconfigurable 

en/decoder can be obtained. Two features of the fibre grating with a thermally induced 

phase-shift have to be characterized. One is the relationship between the applied electric 

current and the amount of induced phase shift, from which we can determine the electric 

current required for a particular phase shift. The other is the dc refractive index 

distribution corresponding to a phase-shift, which is useful for predicting the performance 

of OCDMA systems based on reconfigurable-phase en/decoders. 

   Mokhtar et al. have already developed a method to address the first problem [153]. The 

electrical current is applied only to a tungsten wire in contact with the center of a uniform 

grating, and the amount of phase-shift is determined by experimentally observing the 

shift of the dip wavelength in the reflection spectrum of the grating. In the following 

section, we will use this method to measure the amount of phase-shift induced by 

different applied electrical currents. 

    In Chapter 3, we have developed a pulse response method to directly characterize dc 

refractive index distribution in an FBG with a single thermally-induced phase-shift. A 
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train of short optical pulses is reflected from the gratings, and the dc refractive index 

distribution along the grating can be determined by measuring the temporal phase 

distribution of the reflection pulses. We will use this method to characterize the 

distribution of thermally induced phase-shifts. 

5.2.2 Characterization results 

    By experimentally observing the shift of the dip wavelength in the reflection spectrum 

of FBGs, we measure the thermally-induced phase-shifts under different electrical 

currents as the diameter of the tungsten wires is respectively 18µm, 50µm, or 100µm. The 

fibre, on which the grating is written, is a standard telecom compatible fibre with a 

diameter of 125µm (numerical aperture is ~0.12). The results are shown in Fig.5.2. The 

measurement accuracy for the phase-shifts is ±0.04 π, and the measurement error for the 

electrical currents is less than 2%. The electrical currents corresponding to a phase shift 

of 0.5π, π, and 1.5π, which is fundamental for a four-phase-level OCDMA system, are 

summarized in Table 5.1.  

                      

Fig.5.2 The relationship between the amount of phase-shifts and the electrical currents passing 
through the tungsten wire with a diameter of (a) 18µm, (b) 50µm, or (c) 100µm. 
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       Table 5.1 Electrical currents required for producing a phase shift of 0.5π, π, and 1.5π 
Electrical current (mA) 

Phase-shift 

(rad) 
18µm wire 

diameter 

50µm wire 

diameter 

100µm wire 

diameter 

0.5π 52 174 380 

1.0π 70 235 480 

1.5π 84 285 550 

 

                     

Fig.5.3 Measured distribution of the dc refractive index variation corresponding to a phase-shift 
of 0.5π, π, and 1.5π as the wire-diameter is (a) 18µm, (b) 50µm, or (c) 100µm. 
 

Using the pulse response method, we characterize the dc refractive index distribution 
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corresponding to a phase shift of 0.5π, π, and 1.5π as the diameter of the tungsten wires is 

respectively 18µm, 50µm, or 100µm. The input pulse width used in the measurement is 

5ps, and the grating parameters and experimental setup are same as those in Section 

3.4.3. The results are shown in Fig.5.3. The measurement error may arise from the non-

stability of the input optical pulses, ambient temperature variations or the pulse retrieval 

algorithm. The maximum dc refractive index variations and FWHM’s of their 

distributions are respectively summarized in Table 5.2 and Table 5.3. From Fig.5.3, the 

characterization error for the FWHM is estimated to be ±0.2mm. 

 

                        Table 5.2 Maximum dc refractive index variation for different phase-shifts 
max(δndc)  Phase-shift 

(rad) 18µm wire diameter 50µm wire diameter 100µm wire diameter 

0.5π 0.9×10-4 0.5×10-4 0.6×10-4 

1.0π 1.7×10-4 1.3×10-4 1.1×10-4 

1.5π 2.2×10-4 2.2×10-4 1.8×10-4 

 

                         Table 5.3 FWHM of dc refractive index variation for different phase-shifts 
FWHM (mm) Phase-shift 

(rad) 18µm wire diameter 50µm wire diameter 100µm wire diameter 

0.5π 4 4.1 3.5 

1.0π 2.7 2.5 3.5 

1.5π 2.9 2.2 3.0 

 

    As we will show later, the FWHM of the dc refractive index distribution corresponding 

to a thermally induced phase-shift should be as short as possible to achieve OCDMA 

en/decoders with short chip-duration. From intuition, the thinnest wires should give the 

most localized dc refractive index distribution. However, the information we obtained 

from above experimental results is mixed. According to Table.5.3, it seems that the 

50µm-diameter-wires will produce dc refractive index distributions with the lowest 

FWHM, but this is not entirely consistent with the results in Table.5.2, as the 18µm-

diameter-wires give the highest maximum-dc-refractive-index-variation at each phase-

shift. From a practical point of view, however, the 50µm-diameter wire is the easiest to 

handle, and we select the 50µm-diameter wires for our reconfigurable-phase en/decoders. 
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5.2.3 Modelling the phase-shift in a reconfigurable-phase en/decoder 

     To model the reconfigurable-phase en/decoders using tungsten wires with a diameter 

of 50µm, we assume that the dc refractive index variation induced by a single wire 

follows a hyperbolic secant square distribution, as shown in the solid line of Fig.5.4, 

which is a good approximation to the measured one (also shown in dashed lines in 

Fig.5.4). The overall distribution of dc refractive index variation in a reconfigurable-

phase en/decoder is obtained by adding the dc refractive index distribution corresponding 

to all the displaced phase-shifts. 

               

Fig.5.4 Assumed (solid lines) and measured (dashed lines) distributions of dc refractive index 
variations corresponding to a phase-shift 0.5π, π, and 1.5 π (as the wire-diameter is 50µm).  
 

5.3 Reconfigurable-phase en/decoders  

Shown in Fig.5.5 is the structure of a 16-chip reconfigurable-phase en/decoder with a 

chip-length of 2.5 mm (corresponding to a chip duration of ~25ps). It is constructed by 

positioning 15 parallel wires 2.5mm apart along the FBG, with the first wire being placed 

2.5mm into the grating. The diameter of tungsten wires is 50µm. The uniform FBG is 40 

mm long and is written in a standard telecom compatible fibre with a numerical aperture 

(NA) of ~0.12. As mentioned above, the phase-shifts are introduced by the localized heat 

from tungsten wires and can be controlled by varying the electrical currents passing 

through the wires. This causes the temperature and dc refractive index variation on the 

FBG and, consequently, results in a reconfigurable-phase en/decoder. 



Chapter 5 Reconfigurable-phase OCDMA en/decoders 
        

 - 72 - 

 

                                         

                    Fig.5.5 Device layout of a 16-chip reconfigurable-phase en/decoder. 
    

   Two 15-bit quaternary codes, Q1 = [π5.1 π0.0 π0.0 π5.0 π0.1 π0.0 π0.0 π5.1 π5.0 π5.1  

π5.0  π0.0 π5.0 π0.1 π5.1 ], and Q2 = [ π5.1 π5.0 π0.1 π5.1 π0.0 π5.0 π5.1 π0.1 π0.0 π5.1 π0.0  

π0.0 π0.0 π5.0 π5.0 ], are chosen from the family A sequences [152]. By applying 

appropriate electrical currents along the 15 wires, a reconfigurable-phase en/decoder with 

a code sequence of Q1 or Q2 can be achieved. Q1R and Q2R are used to designate 

reconfigurable-phase encoders with code sequences of Q1 and Q2, while Q1R* and 

Q2R* are corresponding reconfigurable-phase decoders.  

By adding the dc refractive index variation distribution, corresponding to all the 

spatially displaced phase-shifts, the overall dc refractive index distributions in Q1R and 

Q2R are obtained and shown in Fig. 5.6. They are based on the single-phase distribution 

shown in the solid lines in Fig. 5.4.  

     In the following simulation and experiments, we will also use discrete-phase 

en/decoders. Q1D and Q2D are respectively used to designate 16-chip discrete-phase 

encoders with code sequences of Q1 and Q2, while Q1D* and Q2D* are the 

corresponding decoders. The chip lengths of Q1D, Q2D, Q1D*, and Q2D* are also 

2.5mm. Shown in Fig. 5.7 are the spatial phases of discrete-phase encoders Q1D and 

Q2D. 

 I1    I2    I3   I4    I5   I6    I7    I8    I9   I10  I11  I12  I13  I14  I15 

FBG 

Electrical  
current 

Tungsten wires 
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Fig.5.6 dc refractive index distributions of the reconfigurable-phase encoders (a) Q1R and (b) 
Q2R. 
 

                  

                 Fig.5.7 Spatial phases of the discrete-phase encoders (a) Q1D and (b) Q2D. 
 

5.4 OCDMA systems based on reconfigurable-phase decoders   

5.4.1 En/decoders with distributed or discrete phase-shifts 

     In this section, we will first compare the spatial phase distribution, reflection spectra, 

and encoding pulses of discrete-phase en/decoders and reconfigurable-phase en/decoders. 

Then, OCDMA systems using discrete-phase encoders and reconfigurable-phase 

decoders are simulated. The Bragg wavelength, and effective index modulation of all the 
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encoding and decoding gratings (Q1D, Q2D, Q1D*, Q2D*, Q1R, Q2R, Q1R* and Q2R*) 

are respectively 1550nm, and 1.0×10-5. The peak reflectivity of all the FBG en/decoders 

used for the simulation is less than 20%. 

    The spatial phase distribution in the reconfigurable-phase encoder Q1R is obtained 

from Fig.5.6 (a) by using ( )dxxndc

B
∫∆=

λ
πφ 4  and is shown in Fig. 5.8. Spatial phase 

distribution in the discrete-phase encoder Q1D is also shown in Fig. 5.8, in a dashed line 

for comparison. We can find that the spatial phase distribution in the reconfigurable-

phase encoder Q1R is an approximation to that in the discrete-phase device Q1D.  

             

                                           Fig.5.8 Spatial phase distributions in Q1D and Q1R. 
           

                 

                                  Fig.5.9 Simulated reflection spectra of (a) Q1R and (b) Q1D. 
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The simulated reflection spectra of the reconfigurable-phase FBG Q1R and discrete-

phase FBG Q1D are respectively shown in Fig.5.9 (a) and (b). For the same nominal 

address codes, the reflection spectrum of the reconfigurable-phase-encoder is narrower 

than that of the discrete-phase-encoder and it also has much lower spectral features away 

from the main band.  

The simulated pulse responses (when the input pulse width is 2ps) of the 

reconfigurable-phase grating Q1R and discrete-phase grating Q1D are shown in Fig.5.10 

(a) and (b). The central wavelength of input optical pulses is tuned to the central 

wavelength of the gratings. The response of Q1R is a pulse with distinct edges and a 

smooth top-section, while that of Q1D is composed of a series of short pulses divided by 

dips at each phase transition. For both Q1R and Q1D, temporal phases of the reflected 

pulses strictly follow the spatial phases of corresponding gratings. This is called temporal 

phase encoding. 

             

  Fig.5.10 Simulated pulse responses of (a) Q1R and (b) Q1D (the input pulse width is 2ps). 
 

5.4.2 Correlation between distributed and discrete phases  

    In a reconfigurable OCDMA system, the fixed-code devices with discrete phase-shifts 

are used as encoders, while the reconfigurable-phase devices with distributed phase-shifts 

are used as decoders. In this section, we will show how the distributed phases in 
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reconfigurable-phase decoders correlate with discrete phases in the discrete-phase 

encoders.  

 Shown in Fig. 5.11 (a) is the simulated decoding pulse as the encoders are Q1D plus 

Q2D, and the decoder is Q1R*, while in Fig. 5.11 (b) the decoder is Q1D* (when the 

input pulse width is 2ps). The central wavelength of the input optical pulses is tuned to 

the central wavelength of en/decoding FBGs. Firstly, the autocorrelation pulse width of 

Q1D: Q1R* is broader than that of Q1D: Q1D*. Secondly, the side-lobes of 

autocorrelation Q1D: Q1R* are higher than that of Q1D: Q1D*.  Thirdly, the ratio 

between the peak of cross and auto correlation (RPCA) of (Q1D+Q2D): Q1R* is larger 

than that of (Q1D+Q2D): Q1D*. All these differences are due to the fact that phases of 

encoder Q1D and decoder Q1D* are completely conjugate, while the phases of encoder 

Q1D and decoder Q1R* are only approximately conjugate. Therefore, the decoding 

performance is largely dependent on the specific distribution length of the distributed 

phases. It is apparent that the more confined the distributed phase-shifts are, the better 

they will match the discrete phase-shifts. Nevertheless, as shown in Fig.5.11 (a), even 

when the lengths of the phase-shift distribution are comparable to the chip length, the 

autocorrelation pulse, and hence the recognition signature, is still clear.   

             

Fig.5.11 Simulated decoding pulse as the encoders are Q1D plus Q2D, and the decoder is (a) 
Q1R*, or (b) Q1D* (when the input pulse width is 2ps). 
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5.4.3 Choice of chip length 

As shown in Fig. 5.4, if the tungsten wires used in reconfigurable-phase decoders have 

a diameter of 50µm, the FWHM of a single-phase-shift distribution is ~2.5mm. In this 

section, by a numerical simulation, we will show how to choose the chip length of the 

reconfigurable OCDMA en/decoders. 

   We assume that the total length of en/decoders is 40mm and compare three 

configurations of reconfigurable en/decoders: (a) chip number = 8, and chip length = 

5mm; (b) chip number = 16, and chip length = 2.5mm; (c) chip number = 32, and chip 

length = 1.25mm. Note that for all the three configurations, the FWHM of a single-phase-

shift distribution is 2.5mm. The codes for (a) are chosen from the Gold sequences [151], 

while the codes for (b) and (c) are chosen from the Family A sequences [152].  

 

              

Fig.5.12 dc refractive index distributions in reconfigurable-phase encoders with a configuration 
of (a) chip number = 8, and chip length = 5mm; (b) chip number = 16, and chip length = 2.5mm; 
(c) chip number = 32, and chip length = 1.25mm. 

 

Shown in Fig.5.12 are the dc refractive index distributions in reconfigurable-phase 

encoders with a configuration of (a), (b) or (c). The dc refractive index distribution 

corresponding to a code is obtained by adding the dc refractive index distribution 

corresponding to all the displaced phase-shifts, and the dc refractive index distribution of 

a single phase-shift follows the solid lines in Fig.5.4. For a chip length of 5 mm, the 

adjacent phase-shifts are nearly separate; for a chip length of 2.5 mm, equivalent to the 
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FWHM of a single-phase-shift distribution, the adjacent phase-shifts begins to have an 

obvious interference; for a chip length of 1.25 mm, all the adjacent phase-shifts are 

interleaved together. 

To calculate the auto and cross correlation performances, two codes are chosen for 

each configuration. For all the three configurations, the fixed-code devices with discrete 

phase-shifts are used as encoders, while the reconfigurable devices with distributed 

phase-shifts are used as decoders. The decoding (auto and cross correlation) pulses under 

the three configurations are shown in Fig.5.13. In the simulation, the input pulse width is 

2ps and the index modulation of the gratings is chosen so that their peak reflectivity is 

less than 10%. Based on comparing RPCA’s under the three configurations, we find that 

configuration (b) has the best performance. The better performance of (b) over (a) is due 

to the fact that the code sequences in configuration (b) are longer than in (a). Although 

the code sequences in configuration (c) are longer than in (b), the performance of (c) is 

still no better than in (b) because in configuration (c), the single-phase-shifts are seriously 

smeared by the short chip-length.  

     However, if only considering the autocorrelation pulse, we find that configuration (c) 

has the best performance. The autocorrelation of configuration (c) has the shortest pulse-

width and lowest side-lobes.    

     In practical OCDMA systems, both the autocorrelation and cross-correlation are 

important. Therefore, in the following experiments, the chip length of reconfigurable-

phase en/decoders will be chosen as 2.5 mm. 
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Fig.5.13. Simulated decoding (auto and cross correlation) pulses under the configurations (a) 8-
chip, (b) 16-chip, and (c) 32-chip. 
     

5.5 Experiments and results 

5.5.1 Device parameters and characterization 

To test the performances of reconfigurable OCDMA systems, we fabricate discrete-

phase en/decoders Q1D, Q2D, Q1D*, Q2D*, and reconfigurable-phase en/decoders Q1R, 

Q2R, Q1R*, Q2R*. The encoding and decoding gratings used in following experiments 

have the same code sequences and designations as in Section 5.4. Their Bragg 

wavelength, effective index modulation, chip length, and total length are respectively 

1550nm, 2.2×10-5, 2.5mm and 40mm. The peak reflectivity of all the FBG en/decoders 

for the experiments is less than 50%. 

The discrete-phase en/decoders are fabricated using the continuous grating writing 

technique (as described in section 2.3.3). The spatial phase distributions of Q1D and Q2D 

have been shown in Fig.5.7. Note that Q1D* and Q2D* are respectively the physically 

reversed gratings of Q1D and Q2D. To obtain reconfigurable-phase en/decoders, uniform 

gratings are written in a standard telecom compatible fibre. The reflection spectrum of the 
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uniform grating is shown in Fig. 5.14. The 16-chip reconfigurable-phase en/decoders 

Q1R, Q2R, Q1R*, Q2R* with a chip length of 2.5mm are constructed using the technique 

described in Section 5.3. The diameter of tungsten wires used for constructing the 

reconfigurable devices is 50µm. Therefore, the dc refractive index distribution in the 

reconfigurable-phase en/decoders could be obtained based on the single-phase-

distribution shown in the solid lines in Fig.5.4. The dc refractive index distributions in 

Q1R and Q2R have been shown in Fig.5.6. Note that Q1R* and Q2R* are respectively 

the physically reversed gratings of Q1R and Q2R. 

        

                            Fig.5.14 Reflection spectrum of the uniform grating. 
 

Shown in Fig. 5.15 (a) and (b) are the simulated (dashed lines) and measured (solid 

lines) reflection spectra of reconfigurable-phase encoders Q1R and Q2R. In the 

simulation, the dc refractive index distributions of Q1R and Q2R follow those shown in 

Fig.5.6. The measurements roughly agree with the simulation results. This agreement 

also demonstrates our previous assumption: the overall dc (background) refractive index 

distribution in a reconfigurable-phase en/decoder could be approximated by directly 

adding dc refractive index distributions corresponding to all the spatially displaced phase-

shifts. 

Shown in Fig. 5.15(c) and (d) are the reflection spectra of discrete-phase encoders 

Q1D and Q2D. The excellent agreement between the experiment and simulation results 

demonstrates the high-quality of grating writing technique. For the same nominal address 

codes, the reflection spectra of the reconfigurable-phase-encoders are narrower than those 

of the discrete-phase-encoders and they also have much lower spectral features away 

from the main band. Their spectral inequality occurs because the phase-shifts are 

distributed for the reconfigurable device, while they are discrete for the fixed one. 
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Fig.5.15 Simulated (dashed lines) and measured (solid lines) reflection spectra of reconfigurable-
phase encoders (a) Q1R, (b) Q2R, and discrete-phase encoders (c) Q1D (d) Q2D. 
 

5.5.2 Systems using discrete-phase encoders and reconfigurable-phase decoders 

We first test the OCDMA system using discrete-phase encoders (Q1D and Q2D) and 

reconfigurable-phase decoders (Q1R* or Q2R*). The experimental setup is shown in 

Fig.5.16. A tunable laser, operated at ~1550 nm, is carved through an electro-absorption 

modulator (EAM) which is driven by a 10GHz sinusoidal clock signal, producing a 

10GHz pulse train with an FWHM of ~20 ps. The pulse train is then modulated by a 

LiNbO3 electro-optic intensity modulator (EOM) in response to the data signal from a 

pseudo-random pattern generator (PPG). This pulse train is split by a 3dB coupler into 

two parts, each reflected from the fixed and discrete-phase encoders Q1D and Q2D, 

respectively, and then combined by another 3dB coupler. A fibre time-delay-line is 

utilized to divide the signals from the two encoding gratings in the time domain. Then the 

combined signal is reflected from the reconfigurable-phase decoding grating Q1R* or 
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Q2R*.  

            

                                                Fig.5.16 Experimental setup. 
 

   By applying a 300MHz clock signal through the PPG, a 300MHz pulse train with an 

FWHM of ~20 ps is produced from the EOM. The decoded pulses are detected with a 

20GHz photodiode and then fed into a fast sampling oscilloscope. The measured and 

calculated auto- and cross correlation pulses, when the reconfigurable-phase devices 

(Q1R* and Q2R*) are used for decoding, are shown in Fig.5.17 (a) and (b). The 

measured ratios between the peak of cross and auto correlation (RPCA) are ~34%. The 

autocorrelation pulse widths are measured by an autocorrelator, which is based on the 

second-harmonic-generation (SHG) technique. When the decoder is a reconfigurable 

FBG, the output pulse width is ~39ps. 

   For comparison, we also measure the system using fixed-code devices (Q1D* and 

Q2D*) as decoders.  The measured and calculated auto- and cross correlation pulses are 

shown in Fig.5.17 (c) and (d). The measured ratios between the peak of cross and auto 

correlation are ~30%. The autocorrelation pulse widths are measured to be ~23ps. Note 

that the input pulse width is ~20ps, while the chip duration is ~25ps.  

If we compare the experimental results (the input pulse with is 20ps) shown here and 

the simulation results shown in Fig.5.11 (the input pulse width is 2ps), we find that using 

a shorter input pulse can improve the performance of the fixed-code system, while it has 

no obvious effect on the reconfigurable-code system. This we believe can be explained 

from Fig.5.15, which shows that the reflection spectrum of a reconfigurable-phase device 

is narrower than that of a fixed-code device, therefore implying that the reconfigurable 

device is more tolerant to a longer input pulse width. 

 

Laser EAM EOM 
Oscilloscope or   
BER tester  

PPCloc

Q1D 

Q2D 
Q1R*, Q2R*,  
(Q1D* or Q2D*). 
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Fig.5.17 Measured (solid lines) and calculated (dashed lines) decoded pulses for decoder (a) 
Q1R*, (b) Q2R*, (c) Q1D*, and (d) Q2D*.  

 

              

Fig.5.18 The power of decoded pulses (a) when the reconfigurable decoder is switched ON-OFF-
ON, (b) when the phase code sequence is switched from Q1R* to Q2R*, and then back to Q1R*.   
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The tuning speed of the reconfigurable-phase decoders is measured by feeding the 

decoded pulses into an oscilloscope having an effective detection bandwidth of 100MHz. 

The experimental setup is the same as Fig.5.16. The reconfigurable decoder is switched 

from ON to OFF by controlling wire-currents, and then back to ON, i.e., from code to no 

code (uniform grating) and back to code. The power of the reflected signal (in the ON 

state, it is the peak of autocorrelation pulse; in the OFF state, it is measured at the 

background noise level) from the reconfigurable decoder is shown in Fig.5.18 (a). 

Furthermore, the phase code sequence is switched from Q1R* to Q2R*, and then back to 

Q1R*. The power of the reflected signal (including autocorrelation and crosscorrelation 

pulses) from the reconfigurable decoder is shown in Fig.5.18 (b). The response time of all 

the switching process is observed to be less than 2s. This is due to the fact that the 

tungsten wire has a fast heat response to electrical currents, and the silica fibre used as 

the host for the gratings also has a fast thermo-optic response. 

                        

Fig.5.19 BER test results for the system which uses fixed or tunable decoders (the data bit rate is 
1.25 Gb/s). 

 

The bit error rate (BER) of the autocorrelation is then measured when the data bit rate 

is 1.25 Gb/s (with a 27-1 pseudo-random-bit-sequence data pattern). In this BER test, 

only one encoder and its corresponding fixed or reconfigurable decoder exist in the 

experimental setup, therefore, no cross-correlation interferes with the autocorrelation 

signal. The results are summarised in Fig.5.19. Due to the appearance of autocorrelation 

side-lobes, a power penalty is measured in the autocorrelation signal compared with the 

back-to back case. The power penalty is ~0.6dB when the decoder is a fixed-code FBG. 

An additional ~2.6dB penalty is measured when the decoder is a reconfigurable FBG. 
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This additional penalty is found mainly to be due to the increased power in the shoulders 

of autocorrelation pulses when a distributed-phase grating is used. 

5.5.3 Systems using reconfigurable-phase encoders and decoders 

     We also test the OCDMA system using reconfigurable-phase encoders (Q1R or Q2R) 

and decoders (Q1R* or Q2R*). The experimental setup is similar to Fig.5.16. The input 

pulse train, with a pulse-width of ~5ps, is from a gain-switched semiconductor laser. 

          

Fig.5.20 Measured pulse responses of (a) encoder Q1R and (b) decoder Q1R* (the input pulse 
width is ~5ps). 
 

               

Fig.5.21 Measured autocorrelation pulses when the encoders and decoders are respectively (a) 
Q1R: Q1R* and (b) Q2R: Q2R* (the input pulse width is ~5ps). 
 

First, the pulse responses (the input pulse width is ~5ps) of encoder Q1R and decoder 

Q1R* are detected with a 20GHz photodiode and a fast sampling oscilloscope. The 
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results are shown in Fig.5.20. Then, Q1R (or Q2R) is used as encoder and Q1R* (or 

Q2R*) is used as decoder. The resultant autocorrelation pulses are measured and shown 

in Fig.5.21. Note that in this configuration, the phases of reconfigurable-phase encoders 

and decoders are completely conjugate. In next chapter, we will develop a new fixed-

code en/decoder, whose phase profile is designed to match a reconfigurable en/decoder 

accurately.  

 

5.6 Conclusions 

We have made a detailed study on the reconfigurable-phase OCDMA en/decoder 

based on fibre Bragg gratings and a thermal tuning technique. The distribution of 

thermally induced phase-shift is characterized using the pulse response method reported 

in Chapter 3. This characterization provides us the fundamental information to model, 

analyze and design reconfigurable-phase OCDMA en/decoders.  

Based on the characterization result, the diameter of tungsten wires is chosen so that 

the distribution of the thermally induced phase-shifts is most confined, and the chip 

length for configurable-phase en/decoders is also determined. New reconfigurable-phase 

en/decoders are fabricated and tested. The fast-reconfiguration capacity of 

reconfigurable-phase decoders is experimentally demonstrated. The tuning time between 

two different phase codes is measured to be less than 2s. 

By experiments as well as simulation, an OCDMA system using discrete-phase 

encoders and reconfigurable-phase decoders is compared with a system using fixed-code 

discrete-phase encoder and decoders and, although the system using discrete-phase 

decoders exhibits a shorter output autocorrelation pulse width and lower side-lobes, the 

system using reconfigurable-phase decoders has advantages of flexibility and a more 

relaxed requirement on the input pulse width. In the next Chapter, new fixed-code 

continuous-phase OCDMA en/decoders will be developed.  

The reconfigurable-phase en/decoders described in this Chapter have already been used 

to recognize the optical header in an all-optical packet switching system. The relevant 

experimental results are reported in Ref [154-155].  
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Chapter 6  

Continuous-phase OCDMA en/decoders  

 

6.1 Introduction 

In the reconfigurable OCDMA systems, described in Chapter 5, reconfigurable-phase 

decoders, which inherently have distributed phase-shifts, are used to retrieve the signals 

from discrete-phase encoders with fixed-codes. In this configuration, although the 

encoders and decoders are not completely conjugate, the final autocorrelation and cross-

correlation performances are still acceptable. However, under equal nominal code 

sequence, the spatial phase distribution in a reconfigurable-phase en/decoder does not 

completely match that of a discrete-phase en/decoder.  

In this chapter, we propose and experimentally demonstrate a novel fixed-code and 

continuous-phase en/decoder with a phase profile designed to match a reconfigurable 

en/decoder accurately. Thus, this new continuous-phase device has the inherent 

advantage to operate together with reconfigurable-phase devices in reconfigurable 

OCDMA systems.  

This chapter is organized as follows. The structure of a continuous-phase en/decoder is 

introduced in Section 6.2. The device and system performances of continuous-phase 

en/decoders are simulated and compared with those of discrete-phase devices in Section 

6.3. In Section 6.4, 16-chip continuous-phase, discrete-phase, and reconfigurable-phase 

OCDMA en/decoders are fabricated and OCDMA systems with several different 

configurations are tested. In Section 6.5, 31-chip devices are built and, by exploiting the 

narrow-bandwidth characteristics of continuous-phase devices, a 16-channel 

OCDMA/DWDM system is demonstrated with a WDM channel spacing of only 0.4nm.  
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6.2 Continuous-phase en/decoders 

    In a discrete-phase en/decoder, a spatial gap L∆  in the grating structure constitutes a 

phase-shift Lneff

B

∆=
λ
πφ 4 . On the contrary, in a reconfigurable-phase en/decoder, a phase-

shift is given by ( )dxxndc

B
∫= δ

λ
πφ 4 , where ( )xndcδ  is the additional dc effective refractive 

index change. With the same code sequence, the novel fixed-code continuous-phase 

en/decoder will have the same dc refractive index distribution as a reconfigurable-phase 

encoder-decoder.  

In Chapter 5, we have, using the pulse response method, characterized the distribution 

profile of a thermally induced single phase-shift 0.5π, 1.0π or 1.5π. The dc refractive 

index distribution corresponding to a single phase-shift in a continuous-phase en/decoder 

will follow that in a reconfigurable-phase en/decoder, which is shown in Fig.6.1. 

           

              Fig.6.1 dc refractive index distribution corresponding to a single phase-shift. 
 

We choose the same 16-bit quaternary codes Q1 and Q2 from the family A sequences 

as in Chapter 5. Q1C and Q2C are used to designate the continuous-phase encoders with 

code sequences of Q1 and Q2. As in a reconfigurable-phase encoder, the dc refractive 

index distribution in a continuous-phase encoder is also obtained by adding the dc 

refractive index distributions of all the spatially displaced phase-shifts. Based on the 

single-phase distribution in Fig.6.1, the dc refractive index distributions in Q1C and Q2C 

are calculated and shown in Fig.6.2.  

Reconfigurable-phase encoders Q1R and Q2R have already been described in Chapter 

5. Their dc refractive index distributions are shown in Fig.5.6. It can be seen that, with 

the same code sequences, the continuous-phase en/decoders have the same dc refractive 
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index distributions as the reconfigurable-phase en/decoders.  

In this Chapter, we still use Q1D and Q2D to designate the discrete-phase encoders 

with code sequences of Q1 and Q2, whose spatial phase distributions have been given in 

Fig.5.7.  

              

Fig.6.2 dc refractive index distributions of continuous-phase encoders (a) Q1C and (b) Q2C. 
 

6.3 OCDMA systems based on continuous-phase en/decoders 

6.3.1 Encoding and decoding of continuous-phase en/decoders 

In this section, we will show the reflection spectra, encoding pulses and decoding 

pulses of continuous-phase en/decoders Q1C, Q2C, Q1C*, and Q2C* by simulation. 

Chip number, chip length, and effective index modulation of all these en/decoders are 

respectively 16, 2.5mm, and 1.0×10-5. The peak reflectivity of all the FBGs for 

simulation is less than 20%. 

   The simulated reflection spectra of continuous-phase encoder Q1C and discrete-phase 

encoder Q1D are shown in Fig.6.3 (a) and (b) respectively. For the same nominal address 

code, a continuous-phase en/decoder has the same simulated reflected spectrum as a 

reconfigurable-phase en/decoder since they have the same spatial phase distribution, 

while a continuous-phase en/decoder has a narrower reflection spectrum than a discrete-

phase en/decoder.  

The simulated pulse responses (intensities and phases) of continuous-phase encoder 

Q1C and decoder Q1C* are shown in Fig.6.4 (a) and (b) when the input pulse width is 

5ps. The central wavelength of input optical pulses is tuned to the central wavelength of 
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en/decoders. For both Q1C and Q1C*, temporal phases of the reflected pulses follow the 

spatial phases of corresponding gratings. The spatial phases of Q1C* and Q1C are 

conjugate, therefore, the pulse responses of Q1C* and Q1C are also conjugate as the 

FBGs are weak.  

          

Fig.6.3 Simulated reflection spectra of (a) continuous-phase encoders Q1C and (b) discrete-phase 
encoder Q1D. 
 

               

Fig.6.4 Simulated intensities (solid lines) and phases (dashed lines) of pulse responses of 
continuous-phase (a) encoder Q1C and (b) decoder Q1C* (the input pulse width is 5ps). 
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Shown in Fig.6.5 are the simulated decoding pulses as the encoder is Q1C or Q2C, and 

the decoder is Q1C* or Q2C*, when the input pulse width is 5ps. The central wavelength 

of input optical pulses is tuned to the central wavelength of en/decoding FBGs in the 

simulation.  

            

Fig.6.5 Simulated autocorrelation (a) Q1C: Q1C*, (b) Q2C: Q2C*, and crosscorrelation (c) Q2C: 
Q1C*, (d) Q1C: Q2C* (the input pulse width is 5ps). 
 

6.3.2 Comparing three system configurations  

   To evaluate the performances of continuous-phase en/decoders, we compare the 

following three OCDMA systems: (a) discrete-phase encoders and decoders, (b) discrete-

phase encoders and continuous-phase decoders, or (c) continuous-phase encoders and 

decoders. In these systems, Q1C, Q2C, Q1C* and Q2C* are used as continuous-phase 

en/decoders, and Q1D, Q2D, Q1D* and Q2D* are used as discrete-phase en/decoders. 

Chip number, chip length, and effective index modulation of all these en/decoders are 

respectively 16, 2.5mm, and 1.0×10-5. The input pulse width is 5-ps. 

The auto and cross correlation pulses were simulated, and are shown in Fig. 6.6. Based 

on comparing the ratio between the peak of cross and auto correlation (RPCA), we find 

that configuration (a) has the best performance, although only marginally better when 

compared with (c). The better performance of configuration (c) over (b) is due to the fact 
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that the spatial phases of encoders and decoders in (c) are both continuous and can 

therefore match completely. A special advantage of configuration (c) over (a) is that the 

continuous-phase devices can be achieved with the capacity of dynamic reconfiguration 

considering that the reconfigurable-phase devices have the same spatial phase distribution 

as continuous-phase device. 

          

Fig.6.6 Simulated auto and cross correlation pulses for configuration (a) discrete-phase encoders 
and decoders, (b) discrete-phase encoders and continuous-phase decoders, and (c) continuous-
phase encoders and decoders. 

 

The relatively low RPCA value for all these systems, while not acceptable in a real 

system, is because of the small chip number we choose in the simulation. As shown in 

Chapter 4, it can be improved significantly by using a larger chip number. 

 

6.3.3 Tolerance to the input pulse width 

For further comparisons, the system performances of configurations (a) and (c) are 

simulated under different input pulse-widths. The resultant RPCA’s are summarized in 

Fig.6.7. We can see that the systems using the continuous-phase encoders and decoders 
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are more tolerant to longer pulse-widths. This can be explained by the fact that the 

reflection spectrum of the continuous-phase device is narrower than that of the discrete-

phase device, which has been shown in Fig. 6.3. This also suggests the potential of 

bandwidth saving, and this could facilitate the combination of an OCDMA system with 

WDM techniques. 

                  

Fig.6.7 Simulated RPCA’s for systems using continuous or discrete-phase en/decoders for 
different input pulse widths. 
 

6.4 Experiments and results 

6.4.1 Device fabrication and characterization  

In the following experiments, we will use discrete-phase en/decoders (Q1D, Q2D, 

Q1D* and Q2D*), reconfigurable-phase en/decoders (Q1R, Q2R, Q1R* and Q2R*), and 

continuous-phase en/decoders (Q1C, Q2C, Q1C* and Q2C*). The designations and 

parameters of discrete-phase en/decoders and reconfigurable-phase en/decoders are the 

same as those described in Section 5.5.  

The Bragg wavelength, index modulation, chip length, and total length of continuous-

phase en/decoders (Q1C, Q2C, Q1C* and Q2C*)  are respectively 1550.5nm, 2.2×10-5, 

2.5mm and 40mm, which are the same as the parameters of discrete-phase en/decoders 

and reconfigurable-phase en/decoders shown in Section 5.5. 

The continuous-phase en/decoders are also fabricated using the continuous grating 

writing technique [36], which uses a phase mask with a uniform pitch and relies on 

precise control of the position of the fibre relative to the phase mask to achieve gratings 

with complex profiles. The effective dc refractive index variation,
dcnδ , in the continuous-
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phase en/decoders  is achieved by chirping the Bragg wavelength, 
Bλ , (according to the 

equation
dc

B

B
dc nn

λ
δλδ = ). From the dc refractive index distribution in continuous-phase 

encoders Q1C and Q2C (shown in Fig.6.2), the Bragg wavelength variations along them 

are calculated and shown in Fig. 6.8. 

                

                          Fig.6.8 Bragg wavelength variations of (a) Q1C and (b) Q2C. 
 

                  

Fig.6.9 Measured (solid lines) and simulated (dashed lines) reflection spectra of continuous-phase 
encoders (a) Q1C and (b) Q2C. 

 

Shown in Fig. 6.9 are the measured (solid lines) and simulated (dashed lines) reflection 

spectra of continuous-phase-encoders Q1C and Q2C. There is clearly good agreement 
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between the measurement and simulation results although the grating structures are very 

complex. Note that the reflection spectra of continuous-phase-encoders Q1C and Q2C are 

almost the same as those of reconfigurable-phase-encoders Q1R and Q2R (shown in 

Fig.5.15). This is due to the fact that they are designed to have the same spatial phase 

distributions. If we compare the reflection spectrum of Q1C (or Q2C) and Q1D (or Q2D), 

it is evident that, for the same nominal address code, the reflection spectrum of a 

continuous-phase-encoder (or reconfigurable-phase-encoder) has narrower bandwidth 

than that of a discrete-phase-encoder and that it has much lower spectral features away 

from the main band, which could assist its use in a WDM configuration. 

    

6.4.2 Systems using continuous-phase encoders and decoders 

 In the first system test, we use continuous-phase devices as both encoders (Q1C and 

Q2C) and decoders (Q1C* and Q2C*). The experimental setup is similar to that shown in 

Fig.5.16. A gain-switched semiconductor laser diode, operating at 1550.5 nm, generates 

~5 ps pulse sequences with a repetition rate of 311 MHz. This pulse train is split by a 

3dB coupler into two parts, each reflected from the continuous-phase encoders Q1C and 

Q2C respectively, and then combined by another 3dB coupler. A fibre delay line controls 

the timing of the signals from the two encoding gratings. Then the combined signal is 

reflected from the continuous-phase decoders Q1C* or Q2C*. The decoded pulses are 

detected using a 20GHz photodiode and fed into a fast sampling oscilloscope.  

The measured encoding pulses by Q1C and Q2C are shown in Fig.6.10. The measured 

decoding pulses (auto- and cross correlation), for the decoders Q1C* or Q2C*, are shown 

in Fig. 6.11. The measured RPCA is ~20%.  

We also measure the system using the discrete-phase encoders (Q1D, Q2D) and 

decoders (Q1D*, Q2D*) and the results are shown in Fig.6.12. In this case, the measured 

RPCA is also ~20%. By comparing the RPCA, we can see that the systems using the 

continuous-phase encoders and decoders exhibit a similar performance as that using the 

discrete-phase encoders and decoders. The advantages of continuous-phase devices are 

that they have a more relaxed requirement in the encoding input pulse width and 

therefore will occupy a narrower bandwidth. This has already been analysed in Section 

6.3.3. 
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                             Fig.6.10 Measured encoding pulses by Q1C and Q2C.    
                

                

Fig.6.11 Measured decoding pulses (auto- and cross correlation) when the encoders are Q1C and 
Q2C, the decoder is Q1C* or Q2C*. 
 

            

Fig.6.12 Measured decoding pulses (auto- and cross correlation) when the encoders are Q1D and 
Q2D, the decoder is Q1D* or Q2D*. 
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6.4.3 Systems using continuous-phase encoders and reconfigurable-phase decoders 

The continuous-phase devices are designed to match the phase profiles of 

reconfigurable-phase devices. Here, we measure the system using the continuous-phase 

devices as encoders (Q1C, Q2C) and reconfigurable-phase devices as decoders (Q1R*, 

Q2R*), (Fig.6.13). The input pulse width is also ~5ps. The measured RPCA is ~23%. In 

Section 6.3.2, we have demonstrated by simulation that continuous-phase encoders can 

match better with reconfigurable decoders compared with the discrete-phase encoders.    

            

Fig.6.13 Measured decoding pulses (auto- and cross correlation) when the continuous-phase 
encoders (Q1D and Q2D) and reconfigurable-phase decoder (Q1D* or Q2D*) are used. 
 

6.5 31-chip, continuous-phase OCDMA en/decoders 

6.5.1 Device parameters and characterization  

From the family A sequences, four 31-bit quaternary codes P1, P2, P3 and P4 are 

chosen, as shown in Fig.6.14. With these code sequences, four continuous-phase 

encoders are designed based on the single-phase distribution shown in Fig.6.1. The chip 

length is still 2.5mm, and therefore, the total length of FBG en/decoders is 77.5mm. The 

resultant dc refractive index variations of 31-chip continuous-phase encoders P1, P2, P3 

and P4 are shown in Fig.6.15.  
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                   Fig.6.14 Quaternary code sequences (a) P1, (b) P2, (c) P3 and (d) P4. 
 

                

Fig.6.15 dc refractive index variations of continuous-phase encoders (a) P1, (b) P2, (c) P3 and (d) 
P4. 
 

The continuous-phase en/decoders P1, P2, P3, P4, P1*, P2*, P3*, and P4* are 

fabricated using continuous grating writing techniques. The effective dc refractive index 
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variation,
dcnδ , is also achieved by chirping the Bragg wavelength. By annealing the FBGs 

after fabrication, the index modulation of all these FBGs are controlled to be ~1.0×10-5, 

and their peak reflectivity is less than 50%. 

Shown in Fig. 6.16 are the measured (solid lines) and simulated (dashed lines) 

reflection spectra of continuous-phase-encoders P1, P2, P3 and P4. The measurement 

roughly agrees with the simulation result, although the grating structures are very 

complex. As shown before, the reflection spectra of the continuous-phase encoders (or 

reconfigurable-phase-encoders) are narrower than those of the discrete-phase encoders 

with same nominal code sequences. The 20dB bandwidth of the reflection spectra of the 

31-chip en/decoders is less than 0.4nm. 

               

Fig.6.16 Measured (solid lines) and simulated (dashed lines) reflection spectra of continuous-
phase-encoders (a) P1, (b) P2, (c) P3 and (d) P4. 
 

We also fabricate 31-chip reconfigurable-phase decoders by putting 30 tungsten wires 

2.5mm apart along a uniform FBG with a length of 77.5mm. The diameter of tungsten 

wires is 50µm. By varying the electrical currents passing through the tungsten wires, the 
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phase codes on the FBG could be controlled. The phase distribution in a reconfigurable-

phase en/decoder is the same as that in a continuous-phase en/decoder for the same 

nominal code sequence. P1R, P2R, P3R and P4R are used to designate the 

reconfigurable-phase encoders with code sequences of P1, P2, P3, and P4 respectively. 

 

6.5.2 Device performances  

   Correlation performances of the 31-chip continuous-phase OCDMA en/decoders are 

measured using a 50ps optical pulse train as the input. In the measurement, the central 

wavelength of input optical pulses is tuned to the central wavelength of the en/decoders. 

Shown in Fig. 6.17 are the measured autocorrelation (P2: P2*, P3: P3*) and cross-

correlation pulses (P2: P3*, P4: P3*) when both the encoders and decoders are fixed-code 

continuous-phase devices. Shown in Fig. 6.18 are the measured autocorrelation (P2: 

P2R*, P3:P3R*) eye diagrams when the fixed-code continuous-phase encoders and 

reconfigurable-phase decoders are used. 

 

          

                           (a) P2:P2*                                                        (b) P3:P3* 

          

                     (c) P2: P3*                                           (d) P4:P3* 

Fig.6.17 Measured autocorrelation pulses (a) P2: P2*, (b) P3:P3* and cross-correlation pulses (c) 
P2: P3*, (d) P4: P3*. 
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                           (a) P2: P2R*                                         (b) P3:P3R* 

              Fig.6.18 Measured eye diagrams for (a) P2: P2R*, and (b) P3:P3R*. 
 

6.5.3 A 16-channel OCDMA/DWDM system 

Based on the 31-chip continuous-phase and reconfigurable-phase OCDMA 

en/decoders described above, a 16-channel OCDMA/DWDM system has been 

demonstrated. The setup is shown in Fig.6.19. Four cw lasers with a channel spacing of 

0.4nm are combined and fed into an electro-absorption modulator driven at 5GHz, 

generating four 5GHz, 50ps WDM pulse trains. The pulse trains are modulated using a 

LiNbO3 intensity modulator to obtain a data with a bit rate of 625Mbit/s. The modulated 

pulses are then reflected from an array of 16 continuous-phase encoders to generate 

encoding data from an effective 16 users. The encoders array is composed of four 

different codes (P1-P4), each code being repeated on each of four different central 

wavelengths (λ1 to λ4). All 16 coded channels are combined together prior to 

transmission, amplification and detection. At the receiver end, a fixed-code continuous-

phase or a reconfigurable-phase decoder is used.  

For each single OCDMA decoder, twelve out-of-band channels are filtered out due to 

the inherent wavelength selectivity of the decoding grating. Of the remaining four in-

band channels, only the code matched to the decoding grating generates a distinct 

autocorrelation peak, while the other three unmatched channels produce cross correlation 

signals. Error-free performance is achieved for all these channels using the 31-chip 

continuous-phase or reconfigurable-phase OCDMA decoders. The details of the system 

performance are reported in [156]. 

This system exploits the narrow-bandwidth characteristics of continuous-phase 

en/decoders.  For the same nominal address codes, the reflection spectra of continuous-

phase en/decoders (or reconfigurable-phase en/decoders) are narrower than those of 

discrete-phase en/decoders. If discrete-phase en/decoders are used [157], WDM with 0.4 
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nm wavelength spacing is impossible because the bandwidth for the discrete-phase 

en/decoders with the same code sequences is much more than 0.4nm. 

 

             Fig.6.19 Experimental setup for the 16-channel OCDMA/DWDM system [156]. 
 

6.6 Conclusions 

   We have proposed and demonstrated a novel OCDMA en/decoder with a continuous 

phase-distribution based on FBGs. The phase profile of this device is designed to match 

that of a reconfigurable-phase en/decoder accurately, so it inherently suits the application 

in reconfigurable OCDMA systems.  

   We compare OCDMA systems with three different configurations: (a) discrete-phase 

encoders and decoders, (b) discrete-phase encoders and continuous-phase decoders, or (c) 

continuous-phase encoders and decoders. Configuration (a) has the best performance, 

although only marginally when compared with (c), while configuration (c) has a far better 

performance over (b) due to the complete phase-matching. Configuration (c) can also be 

achieved with the capacity of dynamic reconfiguration since the reconfigurable-phase 

devices have the same phase distribution as continuous-phase devices. Furthermore, the 

continuous-phase en/decoders have a narrower bandwidth compared with conventional 

discrete-phase devices with the same nominal code sequences. Therefore, they are more 

tolerant to input pulse-width and have the advantage of bandwidth saving. 

   Continuous-phase, reconfigurable-phase, and discrete-phase en/decoders are fabricated 

and their performances are tested and compared in a 16-chip OCDMA system. In 

addition, we built 31-chip continuous-phase and reconfigurable-phase OCDMA 

en/decoders, through which a 16-channel OCDMA/DWDM system with a WDM channel 

spacing of only 0.4nm was demonstrated. This system exploits the narrow-bandwidth 

characteristics of the new continuous-phase en/decoders. 
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Chapter 7  

Dispersion tuning of fibre Bragg gratings 

using the S-bending technique 

 

7.1 Introduction 

    Compensating chromatic dispersion in fibre systems using chirped fibre Bragg gratings 

(CFBG) is one of the most important applications of FBGs [71]. Compared with 

dispersion compensating fibre (DCF), a short CFBG could provide a large amount of 

dispersion. Another advantage of CFBGs is their tunability, because the Bragg 

wavelengths of FBGs are sensitive to, and can be controlled by temperature or strain. 

If a variable linear temperature or strain field is applied along a linearly chirped FBG, 

the FBG will still have a linear chirp in its pitch, but its bandwidth and therefore 

dispersion can be controlled by the applied temperature or strain gradient. A variable 

linear temperature field along a grating can be achieved by controlling the temperature at 

both ends of the grating [158], and a variable linear strain field can be produced by using 

the S-bending technique [159], which is the topic of this Chapter. By embedding a 

chirped FBG in a uniform beam and bending the beam in an S-shape, a variable linear 

strain gradient is produced and applied along the FBG, and the grating dispersion can 

then be controlled. 

This Chapter is organized as follows. In Section 7.2, dispersion in fibres, dispersion 

compensation and dynamic dispersion compensation techniques based on chirped FBGs 

are reviewed. In Section 7.3, the S-bending technique is analyzed and dispersion tuning 

devices based on S-bending are described. Based on S-bending techniques, two novel 

devices, including a tunable dispersion compensator with an enhanced dispersion tuning 

range and a tunable pure dispersion slope compensator, are reported in Section 7.4 and 
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7.5 respectively. Applications of tunable dispersion in controlling the pulse width of a 

soliton fibre laser are demonstrated in Section 7.6. 

 

7.2 Dispersion, dispersion compensation and dynamic dispersion 

compensation 

7.2.1 Dispersion in optical fibres 

    The variation of refractive index with frequency constitutes the phenomenon of 

dispersion [160]. For a single mode fibre waveguide, the propagation characteristics are 

determined by the mode propagation constant, so the dispersion of the fibre can be 

defined to be the variation of propagation constant with frequency.  

    The total dispersion of single mode fibres arises from two mechanisms [161]: material 

dispersion and waveguide dispersion. Material dispersion occurs because the mode 

propagation constant is related to the refractive indices of the core and cladding materials, 

which are dependent on frequency. Waveguide dispersion is due to the fact that the mode 

confinement in a waveguide causes its mode propagation constant to depend on 

frequency.       

    In mathematics, the mode propagation constant )(ωβ  can be expanded into a Taylor 

series at the central frequency0ω  [162], 

              ⋅⋅⋅+−+−+−+== 3
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The first three parameters1β , 2β  and 3β  are respectively group delay parameter, group 

delay dispersion (GVD) parameter, and third order dispersion (TOD) parameter. Their 

units are ps·km-1, ps2·km-1, and ps3·km-1 respectively. 

The group delay gτ  for a light pulse propagating along a unit length of fibre is the 

inverse of the group velocitygv . Hence [161], 
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The unit of group delay gτ  is ps·km-1. 
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The group delay dispersion or second order dispersion,D , is given by the derivative of 

the group delay with respect to the vacuum wavelength λ  as: 

                     222
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In the second equality, Eq. (7.3) and the relation ω
π
λλ d

c
d

2

2

−=  are used.   The unit of 

second order dispersionD  is ps·nm-1·km-1. 

    The third order dispersion or dispersion slope,S , is used to characterize the variation 

of the second order dispersion with wavelength and may be written as, 
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In the second equality, Eq. (7.4) and the relation ω
π
λλ d

c
d

2

2

−=  are used. The unit of third 

order dispersionS  is ps·nm-2·km-1. 

   Usually, if the group velocity of the propagating light is an increasing function of the 

wavelength, the dispersion is said to be normal [160]. Conversely, if the group velocity is 

a decreasing function of the wavelength, the dispersion is said to be anomalous dispersion. 

So, if 0<D ( 02 >β ), we say that the fibre operates in the normal dispersion region, and if 

0>D ( 02 <β ), we say that the fibre operates in the anomalous dispersion region. 

    In fibres, RDS is defined as the ratio of dispersion slope to second order dispersion at 

any given wavelength. The dispersion-related parameters of some commercial 

transmission fibres are shown in Table 7.1 [163]. 

                             

                     Table 7.1 Dispersion parameters of common transmission fibres 

 Dispersion 

(ps·nm-1·km-1) 

 @ 1550nm 

Dispersion slope  

(ps·nm-2·km-1) 

@ 1550nm 

RDS 

Standard SMF 17 0.058 0.0034 

LEAF 4.2 0.085 0.0202 

True Wave-RS 4.5 0.045 0.0100 
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7.2.2 Dispersion effects and compensation techniques 

    When an optical pulse transmits in fibres, due to dispersion, different spectral 

components of the pulse will transmit at a different velocity and, as a result, the final 

pulse shape will be different from the original one. 

Neglecting the fibre loss and nonlinear effects, and considering the second and third 

order dispersion, the transmission equation of the optical pulse in a single mode fibre can 

be derived to be [162], 
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where, ( )TzU ,  is the normalized amplitude of the optical pulse. By the Fourier theory, this 

equation can be transformed into the frequency domain, 
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where, ( )ω,
~
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U  are the Fourier transform of ( )TzU ,  and ( )TU ,0  respectively. 
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transfer function of second order and third order dispersion of single mode fibres.            

    In a high-bit-rate transmission system, the broadening of optical pulses due to second 

and third order dispersion is a limiting factor. This is due to the fact that the broadening 

of the optical pulses makes reconstruction of the ‘ones’ and ‘zeros’ in the data sequence 

less certain, leading to errors. From Eq. (7-7), we can see that the dispersion tolerance is 

roughly proportional to the inverse of the square of the bit-rate. Usually, the amount of 

residual dispersion one can accommodate is of the order of 1000ps/nm for 10 Gbit/s 

systems, and only of the order of 60ps/nm and 4ps/nm for 40Gbit/s and 160Gbit/s 

systems respectively [164]. Practical transmission fibres have a small, but nonzero, 

dispersion slope. In high-bit-rate, multiple-channel, or long-haul transmission systems, 

the third-order-dispersion must also be considered and compensated.  

 

Single mode dispersion compensating fibres (SM-DCF) are widely used to compensate 

the dispersion in fibres. Transmission fibres usually have a positive dispersion )0( >D , so, 

SM-DCFs, which exhibit a negative dispersion through their special waveguide structure, 

are widely used to cancel the positive dispersion. As an all-fibre device, SM-DCF is 

inherently broadband, and has low loss and low non-uniformity. The RDS value can also 
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be designed to cancel the dispersion slope of the transmission fibre simultaneously. 

However, SM-DCF has some disadvantages. Firstly, SM-DCF with a length of 1km can 

only compensate the dispersion of 8~10 km standard SMF. Secondly, the loss of SM-

DCF is relatively high ( kmdB /5.0≈α ). Thirdly, the SM-DCFs, especially those with a 

high RDS value, have very small effective areas, which will decrease the input power 

threshold for nonlinear effects.  

Various other techniques have been developed to achieve dispersion and dispersion 

slope compensation. They include higher-order-mode dispersion compensation fibres 

(HOM-DCF) [165-166], virtually imaged phased arrays (VIPA) [167-168], planar 

waveguide Mach-Zehnder lattice filters [169-171], planar waveguide ring resonator all-

pass filters [172-174], and Gires-Tournois etalon all-pass filters [175-176].  

 

7.2.3 Chirped fibre Bragg gratings as dispersion compensators 

                       

                                             Fig.7.1 Schematic of a chirped FBG. 
 

 

Chirped FBGs, with an increasing or decreasing Bragg wavelength along the length, 

are also very useful for dispersion compensation. Fig.7.1 shows a schematic of a chirped 

FBG with a length ofL , and the shortest and longest grating periodSΛ and LΛ correspond 

to the Bragg wavelength Sλ and Lλ  respectively. The chirp bandwidth is SL λλλ −=∆ .  

The reflection time delay from a chirped grating is a function of wavelength. Light 

entering into a linearly chirped FBG (LCFBG) suffers a time delay 

         ( ) ( )
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where c is the light speed in the vacuum. The dispersion of the linearly chirped grating is 
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    For a second-order nonlinearly chirped grating, the time delay is, 
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and the resultant dispersion is, 
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    The time-delay characteristic of a linearly or second-order nonlinearly chirped FBG is 

shown in Fig 7.2. Chirped FBGs have the following characteristics as dispersion 

compensators. Firstly, the time delay, and dispersion of a chirped FBG scale with the 

grating length. Therefore, a long grating is needed to compensate a large dispersion. 

Secondly, a chirped FBG can compensate positive or negative dispersion, depending on 

which end the light is incident from. Thirdly, a chirped FBG with a higher-order chirp 

can compensate higher-order dispersion, but it will also exhibit lower-order dispersion. 

For example, the FBG with a second-order nonlinear chirp will exhibit third order and 

second order dispersion simultaneously. This is because the time delay of any chirped 

gratings can only change monotonically with respect to the wavelength [177]. However, 

it is still possible to obtain pure higher order dispersion by cascading several FBGs or by 

using an SSFBG [76]. 

                                       

 Fig.7.2 Time delay characteristics of FBG with a linear or second-order nonlinear chirp. 
 

7.2.4 Dynamic dispersion or dispersion slope compensation using fibre Bragg 

gratings 

In a high-bit-rate transmission system, the dispersion tolerance becomes so small that 

even a tiny variation in dispersion can severely influence the network performance. In 

such a system, the amount of dispersion may vary in time because of several potential 

impairments [178]. Firstly, small variations in optical power can result in an additional 

phase-shift, which can modify the optimal dispersion map of the system. Secondly, a 

dynamic reconfiguration of the network can change the total accumulated dispersion. 

Thirdly, transmission conditions may change simply because of environmental variations, 

Linear chirp 

Second-order  
nonlinear chirp 

Wavelength 
Sλ  Lλ  

Time delay 
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such as changes in ambient temperature [179]. Therefore, systems operating at a high bit-

rate, such as 40Gbit/s or 160Gbit/s, will require dynamic dispersion compensation. 

FBGs have the unique capacity for dynamic dispersion management in contrast to 

conventional dispersion compensation fibres. The tunability of dispersion arises from the 

grating response to temperature or strain, which has been reviewed in Section 2.5.3.  

In principle, there are two ways to implement a tunable dispersion compensator using a 

fibre Bragg grating: (a) a second-order nonlinearly-chirped FBG (NCFBG) plus a 

variable uniform strain or temperature field [180], or (b) a linearly-chirped FBG (LCFBG) 

or a uniform FBG plus a variable linear strain or temperature field [159] [178][181-185]. 

The conceptual diagrams for these two configurations are shown in Fig.7.3.  

 Similarly, there are three ways to implement a tunable dispersion slope compensator 

using a fibre Bragg grating: (a) a third-order nonlinearly-chirped FBG plus a variable 

uniform strain or temperature field [186-187], (b) a second-order nonlinearly-chirped 

FBG plus a variable linear strain or temperature field, or (c) a linearly-chirped FBG or a 

uniform FBG plus a variable high-order nonlinear gradient strain or temperature field 

[188-193].  The conceptual diagrams for configurations (a) and (b) are shown in Fig.7.4, 

and the conceptual diagram for configuration (c) is similar to configuration (b).  

        

                Fig.7.3 Conceptual diagram of a dynamic dispersion compensator.  

            
                     Fig.7.4 Conceptual diagram of a dynamic TOD compensator. 
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    A variable uniform strain or temperature field could be easily achieved, usually by 

means of a uniform stretch/compression or a temperature controller. But devices based on 

a uniform field are always accompanied by a central wavelength shift during tuning (as 

shown in Fig.7.3 (a) and Fig.7.4 (a)), which is undesirable for practical applications.  

   A variable linear strain or temperature field is relatively easy to implement and its 

advantage is that the central wavelength of FBGs does not shift while tuning, as shown in 

Fig.7.3 (b) and Fig.7.4 (b). A variable linear temperature field can be achieved by using 

two separate temperature controllers, each on one side of the grating. A variable strain 

field can be achieved using an S-bending tuning technique, the details of which will be 

described in next section.  

    A high-order nonlinear strain gradient can be obtained by bending a linearly tapered 

beam and, a high-order temperature gradient can be achieved through a series of divided 

heaters. Both of these solutions are rather complicated.  

 

7.3 Dispersion tuning of fibre Bragg gratings by the S-bending 

technique 

7.3.1 Basics of bending techniques  

     To introduce the S-bending technique, basics of bending [194] are described in this 

sub-section. 

A. Stress-strain relationship 

    The internal force acted per unit area is called the stress and is given by: 

                                     
dA

dF=σ                                                                                   (7.12)    

where σ  is the stress, A is the cross-sectional area and F is the longitudinal force acting 

on the cross section. 

    Strain is defined as the change in length of a stressed structural element divided by the 

original length of the unstressed element. If the material behaves elastically, there is a 

linear relationship between strain and stress, 

                                     
E

σε =                                                                                      (7.13)    

whereε is the strain and E is called the material modulus of elasticity (or Young’s 

modulus). 
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B. Deformation in pure bending  

    Consideration of the beam subjected to pure bending, shown in Fig.7.5, indicates that 

the lower surface stretches and is therefore in tension and the upper surface shortens and 

thus is in compression. There is also a line or plane of zero stress, called the neutral axis 

or neutral plane. In Fig.7.5, the dot-dashed line represents the neutral axis. R is the radius 

of the bending beam, which is defined as the distance between the neutral axis and its 

centre. The longitudinal strain in the beam is [194] 

                        
( )

R

y

dR

dRdyR =
⋅

⋅−⋅+=
θ

θθε                                                              (7.14)    

where y is the distance between a segmental plane and the neutral plane. When y is zero, 

the strainε  will be zero because it refers to the neutral plane; when y is positive,ε is 

positive, which represents tension (tensile strain) ; when y is negative, ε is negative, 

which represents compression (compressive strain). 

                               

                                           Fig.7.5 A beam subjected to pure bending. 
 

C. Internal resisting moment 

                           

                                           Fig.7.6 Internal resisting moment. 
 

     As shown in Fig.7.6, the total internal moment is [194] 
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                         ( ) ( )dAzyyzydFyM
AA
∫∫ == ,, σ                                                            (7.15)    

Using Eq. (7.13) and (7.14), we can obtain 

                        ( ) ( )zR

EI
dAy

zR

E
M

A

== ∫
2

                                                                       (7.16)    

where dAyI
A
∫= 2

 is the second moment of area of the cross-section about the neutral axis. 

 

D. The curvature-bending-moment relationship 

                                     

                                                    Fig.7.7 A deflected curve. 
 

    As shown in Fig.7.7, the instantaneous radius R(z) of a curvature is defined as 

                                 ( )
θd

ds
zR −=                                                                                     (7.17)    

where ds is the differential length of a circular arc s and θd  is the differential circular 

angle. The differential length of a circular arc is  

                                 dzdz
dz

dy
ds ≈







+=
2

1                                                                     (7.18)    

The approximation holds when dzdy << , which means that the shift in y direction is far 

shorter than the beam length Lz. Furthermore, as the shift in y direction is short, the 

differential angle is 

                                
dz

dy
d =≈ θθ tan                                                                                (7.19)    

     Eq. (7.17) can the be rewritten as [194], 

                                ( ) 2

21

dz

yd

zR
−=                                                                                   (7.20)    

or 

                                
EI

M

dz

yd −=
2

2

                                                                                    (7.21)    

θ  

θd  

sd  
y 

z 
R 

 
O 



Chapter 7 Dispersion tuning of fibre Bragg gratings using the S-bending technique 
         

- 113 - 

This is the differential equation of the deflection curve. If the variation of M with z is 

known, then this equation can be integrated twice to give the deflection z. 

 

7.3.2 Stress distribution on an S-bending beam  

                         

                                            Fig.7.8 The diagram of S-bending. 
      

    Shown in Fig.7.8 is the diagram of S-bending, in which two fixed ends could be 

displaced vertically. The bending moment at point D is given by: 

                        ( ) ( )zLFzFzLFM zz 2−⋅−=⋅+−⋅−=                                              (7.22)    

where Lz is the beam length along the z-direction. Using momentum equilibrium and Eq. 

(7.21), the following second-order differential equation is obtained, 

                                        






 −⋅= z
L

EI

F

dz

yd z

2

2
2

2

                                                            (7.23)    

 

    The slope of the beam curvature at the supported end must be zero and this point is 

taken as reference for the vertical displacement. Mathematically, they are 0=
dz

dy
and 

0=y  at 0=z . Applying this boundary condition to Eq.(7.23) yields: 

                                    ( ) 






 −⋅= 32

6

1

4

2
zz

L

EI

F
zy z                                                        (7.24)    

    The vertical displacement between two ends of the beam, ymax, can be obtained by 

applying z=Lz in the above equation, which gives, 

                                          
12

2 3

max
zL

EI

F
y ⋅=                                                                    (7.25)    

Subsequently, the curvature equation of the deflected structure is expressed as follows, 

                                    ( ) ( )32

3

max 23 zzL
L

y
zy z

z

−⋅=                                                         (7.26)    

Using Eq. (7.14) and (7.20), the stress along the beam is obtained as: 
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                                   ( ) 






 −⋅⋅= z
L

L

y
hz z

z 2

12
3

maxε                                                         (7.27)    

where h is the distance between a segmental plane and the neutral plane. It clearly shows 

that the stress is linear along the beam and, at the centre of the beam, the stress is zero. 

 

7.3.3 Description of dispersion tuning devices 

            

                       Fig.7.9 Schematic diagram of the S-bending dispersion-tuning device. 
 

Fig.7.9 shows the schematic diagram for the dispersion-tuning FBG based on S-

bending [153]. The S-bending structure is composed of a composite beam, a pair of 

clamps and a translation stage. The composite beam is made of two types of materials 

with a massive difference in their Young’s modulus (~50:1), and the two materials are 

bonded together using a strong adhesive solution. Thus, the material with a larger 

Young’s modulus essentially defines the neutral axis, while that with a lower Young’s 

modulus embeds the fibre Bragg grating and roughly specifies h. The two materials we 

use here are, respectively, a hardened steel and plastic. The plastic should be flexible but 

it needs to show sufficient hardness to resist indentation caused by a moderate load. The 

beam is firmly supported by a pair of clamps in a perfectly straight position and at equal 

levels. Both of the clamps must be frictionless to ensure that no axial forces will act on 

the beam. One clamp is mounted on a linear translation stage that is oriented in a 

perpendicular direction. The stage is driven mechanically by a high resolution screw and 

can be moved in either a forward or backward direction. 

By embedding a fibre Bragg grating into the beam for S-bending, with a distance of h 

from the neutral axis of the beam, the linear stress can be used to control the chirp and 

therefore the dispersion of the FBG. A linearly chirped FBG, whose maximum and 
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minimum Bragg wavelengths are respectivelyLλ and Sλ , with a length of L, is embedded 

into the beam. At the idle state, the Bragg wavelength distribution along the FBG is, 

          ( )
L

z
SLSidleB ⋅−+= λλλλ ,                       Lz <<0                                           (7.28)    

Its central wavelength and bandwidth are 
2

SL λλ +
 and SL λλ − , respectively. 

As the beam is bent in an S-shape, according to the stress distribution described by Eq. 

(7.27), the Bragg wavelength distribution along the FBG will be, 
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                    ( ) ( ) ( )
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SLSLSLS λλααλαλλλλα  Lz <<0   (7.29)    

where,  

              ( )
3

max6
1

z

e L

yLh ⋅⋅⋅
−= ρα                                                                             (7.30)    

eρ  is the photo-elastic constant, and Lz is the beam length.  

    If 1<<α and SSL λλλ <<− , the item concerning z2 can be neglected. Hence, 

             ( ) ( ) ( )
L

z
z SLSLSB αλαλλλλαλ 31 +−−+−=                                                 (7.31)                        

Therefore, the FBG is still a linearly chirped FBG after the S-bending, and the minimum 

and maximum Bragg wavelengths of the FBG are respectively,    

              ( ) SSBB αλλλλ −== 0min,                                                                              (7.32)    

                  ( ) SLBB L αλλλλ +==max,                                                                             (7.33)    

Consequently, its central wavelength, bandwidth and dispersion are respectively, 

              
22

min,max, SLBB

Center

λλλλ
λ +

=
+

=                                                                  (7.34)    

              SSLBBBW αλλλλλ 2min,max, +−=−=                                                          (7.35)    

              
BWc

Ln
D eff

⋅
=

2
                                                                                                (7.36)    

    In conclusion, by changingmaxy  in the S-bending structure, the FBG is still a linearly 

chirped grating (as shown in Eq. (7.31)), with a constant central wavelength (as shown in 

Eq. (7.34)), while the bandwidth and dispersion could be altered (as shown in Eq. (7.35) 

and (7.36)). 
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7.4 Tunable dispersion compensators with a wide tuning range 

7.4.1 Device principle 

    Tunable dispersion compensators with a fixed central wavelength are highly desirable 

for optical communication systems. For temperature tuning, by applying a linear 

temperature gradient along a linearly chirped FBG with a fixed temperature value in the 

centre of the grating, the reflection bandwidth varies linearly with the temperature 

difference between both ends, while keeping the central wavelength fixed [158]. To 

achieve dispersion-tuning using strain, while keep a fixed central wavelength, the S-

bending tuning structure [159] is a good choice compared with other complicated 

techniques [181-185]. 

    As described in Section 7.3, using the S-bending technique, the dispersion of a linearly 

chirped FBG can be tuned while its central wavelength is fixed. At the idle state, the 

dispersion sign is dependent on the light input directions. Although it is possible to invert 

the dispersion sign or approach zero dispersion by the S-bending tuning, it is not practical 

because this requires a huge variation in the Bragg wavelength of the FBG [159].  

                                     

      

                   Fig.7.10 Schematic diagram of a tunable dispersion compensator. 
 

To obtain a dispersion compensator with a tuning range covering positive, negative 

and zero dispersion altogether, we propose a new configuration based on the S-bending 

technique. As shown in Fig.7.10, it consists of cascading two identical linearly chirped 

FBGs using a four-port circulator. At the idle state, it produces zero dispersion because 
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the dispersion sign of a chirped FBG changes with respect to the input direction. Both 

gratings are embedded parallel in one beam, with opposite chirp directions in relation to 

the stress gradient for a simultaneous S-bending tuning, and thus a stress gradient induces 

opposite bandwidth variations for each grating (as shown in Fig.7.10). The sign of the 

combined dispersion is dependent on the displacement direction (i.e., the sign of ymax) of 

the S-bending. 

A similar design has already been demonstrated using a thermal tuning technique [195]. 

The advantages of using strain tuning include that it consumes no power and it has the 

potential to achieve a larger bandwidth tuning range.  

 

7.4.2 Simulation of device performance 

           

                      Fig.7.11 Parameters of the linearly chirped FBG for simulation. 
 

In this section, a tunable dispersion compensator with a wide tuning range is simulated 

based on the structure shown in Fig.7.10. Parameters of the FBG for simulation are 

shown in Fig.7.11. To alleviate the ripple in its reflection time delay spectrum, the 60-

mm-long linearly chirped FBG is apodized by a hyperbolic tangent function [1]. Two 

identical FBGs are embedded with opposite chirp directions in one uniform beam for S-

bending tuning, as the configuration shown in Fig.7.10.  

The overall reflection and time delay spectrum of the dual-FBGs configuration are 

calculated and are shown in Fig.7.12. At the idle state, zero dispersion is obtained with a 

3dB bandwidth of ~0.8nm. As the dispersion is +400 ps/nm or -400 ps/nm, the 3dB 

bandwidth is ~0.6nm. Over the whole tuning range (from +400 ps/nm to -400 ps/nm), its 
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3dB bandwidth is more than 0.6nm, which is needed for its application in a 40Gbit/s 

system.  

           

       Fig.7.12 Simulated reflection and time delay spectra of the dual-FBGs configuration. 
 

            

                  Fig.7.13 Bragg wavelength distribution along the FBGs under tuning. 
 

Bragg wavelength distributions along the two FBGs under tuning (solid lines) are 

calculated (as shown in Fig.7.13) and compared with those at the idle state (dashed lines). 

As the S-bending is applied, each grating experiences a linear stress gradient and 

therefore a bandwidth variation, while the Bragg wavelength at the centre is fixed. In 

addition, both FBGs have identical Bragg wavelength variations along the beam because 

the same stress field is applied along the two gratings.  

Shown in Fig.7.14 are the variations of dispersion and 3-dB bandwidth of the device 

with a dual-FBG configuration during tuning. The amount of tuning is denoted by the 
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Bragg wavelength shift at one end of the FBG. Over the whole tuning range, the 3dB 

bandwidth is more than 0.6nm. The dispersion of the device with a dual-FBG 

configuration is tuned from -400 to +400ps/nm, and the corresponding 3-dB bandwidth 

varies between 0.6nm and 0.8nm.  

          

Fig.7.14 Variations of the dispersion and 3-dB bandwidth of the device with a dual-FBG 
configuration. 
             

         

          Fig.7.15 Simulated reflection and time delay spectra of the single-FBG configuration. 
 

For comparison, the reflection and time delay spectra of the single-FBG configuration 

are calculated and are shown in Fig.7.15. At the idle state, the dispersion value is 

420ps/nm with a 3dB bandwidth of ~1.2nm. The dispersion is tuned from 300ps/nm to 

700ps/nm. For this single-FBG configuration, although it is possible to achieve an even 

lower value of dispersion, a very large bandwidth variation is required. Moreover, the 
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insertion loss of the tunable dispersion compensator will increase with the decrease of 

dispersion, which is undesirable for practical applications. 

Shown in Fig.7.16 are the variations of the dispersion and 3dB bandwidth of the device 

with a single-FBG configuration during tuning. Over the whole tuning range, the 3dB 

bandwidth is more than 0.6nm. The dispersion tuning range is from 700ps/nm to 

300ps/nm, while the corresponding 3-dB bandwidth varies from 0.6nm to 1.3nm. 

Comparing Fig.7.14 and Fig.7.16, we can find that the dispersion tuning range of the 

dual-FBG configuration is twice as wide as that of the single-FBG configuration. Another 

advantage for a dual-FBG configuration is that its tuning range covers positive, negative 

and zero dispersion.    

           

Fig.7.16 Variations of dispersion and 3-dB bandwidth of the device with a single-FBG 
configuration. 
       

         

Fig.7.17 Variations of insertion loss for the single-FBG (□) and dual-FBG (○) configuration. 
 

Shown in Fig.7.17 are the variations of insertion loss of the two configurations of 

dispersion compensators. Over the whole tuning range, for the single-FBG configuration, 

the insertion loss varies linearly with respect to the maximum Bragg wavelength shift, 

while for the dual-FBG configuration, it is almost constant. 
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 In summary, based on the S-bending tuning technique, we propose a new 

configuration of a dispersion compensator. Its advantages include a wider tuning range 

around zero dispersion and a reduced insertion loss variation in the whole tuning range. 

 

7.5 Tunable pure dispersion slope compensators 

7.5.1 Device principle 

Transmission fibres have a small but nonzero dispersion slope (DS) (as shown in Table 

7.1). In the next-generation ultra-high-speed optical transmission systems, for example at 

a data bit rate of 160 Gbit/s, the dispersion slope will pose limitations to transmission, 

and therefore must be accurately compensated [196]. Although most of the dispersion 

slope can be compensated by using dispersion compensating fibres with a carefully 

designed dispersion slope, dynamic compensation is still necessary to compensate the 

residual dispersion slope because the tolerance is so tight. 

    Tunable dispersion slope compensators could be achieved by using a third-order 

nonlinearly-chirped FBG plus a variable uniform strain or temperature field [186-187], 

but for devices with this configuration, tuning the dispersion slope is always 

accompanied by an apparent central wavelength shift, and therefore it is difficult for them 

to dynamically compensate dispersion-slope in a broadband transmission system.  

Tunable dispersion slope compensators could also be achieved by using a linearly 

chirped FBG plus a variable quadratic nonlinear strain or temperature field [188-193]. 

For devices with this configuration, because the dispersion (second-order) will also be 

changed as the dispersion slope is altered, an additional separate control of dispersion is 

required to obtain a pure dispersion slope compensation. In [190-193], the dispersion 

slope is tuned by controlling a quadratic temperature distribution along a linearly chirped 

FBG. An additional linear temperature distribution is also applied and controlled to keep 

the dispersion constant as the dispersion slope is changed. Moreover, to obtain pure 

dispersion slope compensation, a fixed and linearly chirped FBG or a DCF is cascaded 

compensating the residual constant dispersion in the tuned FBG. In [189], the quadratic 

strain field applied to a linearly chirped FBG is produced and controlled by bending a 

linearly tapered beam in an S-shape. Because the dispersion is also changed as dispersion 

slope is tuned, another FBG with a tunable dispersion is cascaded to obtain pure 

dispersion slope compensation.  
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                  Fig.7.18 Schematic diagram of a tunable dispersion slope compensator. 

 

In this section, we will propose and demonstrate a new tunable pure dispersion slope 

compensator. It consists of two cascaded nonlinearly-chirped FBGs of different types. As 

shown in Fig.7.18, the two FBGs are embedded parallel, with identical chirp directions, 

in a uniform beam for S-bending.  The light is first reflected from the short Bragg 

wavelength end of FBG A, and then reflected from the long Bragg wavelength end of 

FBG B. Finally, as the effects of FBG A and B are combined, a pure DS is produced, 

since the second-order dispersion for the two FBGs is completely cancelled. As FBG A 

and B are tuned together, both DS and dispersion (second-order) are altered on each 

single grating, but for the combined effects of the two FBGs, only the DS is varied, since 

the second-order dispersion from the two FBGs will always be completely cancelled. 

Therefore, one tuning structure is enough for a tunable pure DS compensation. Another 

advantage is that, as the dispersion slope is tuned, the central wavelength is invariant, 

which is due to the use of the S-bending technique. 

Pure dispersion slope compensators, operating based on this principle, have been 

reported before [197-198], but their tuning capacity has not been demonstrated.    

     At the idle state, the Bragg wavelength distributions of the nonlinearly chirped FBG A 

and B are respectively, 
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                        ( ) ( )
L

z
z SLLidleB λλλλ −−=,                                                                  (7.38) 

where, λL and λS are, respectively, the maximum and minimum Bragg wavelengths along 

the FBGs, and L is the grating length. As shown in Fig.7.18, in the cascading 

configuration, the light is reflected from the short Bragg wavelength end of FBG A and 

the long Bragg wavelength end of FBG B.  At the idle state, the dispersion (D) and 

dispersion slope (DS) of FBG A and B are respectively, 
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and the dispersion (D) and dispersion slope (DS) of the dual-FBG configuration are 

respectively, 
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Eq. (7.38) and (7.39) show that at the central wavelength
2

SL λλ +
, FBG A and B have 

dispersion with an identical absolute value, but an opposite sign. Therefore, the overall 

dispersion of the dual-FBG configuration cancels completely at the central wavelength 

(Eq.(7.42)). Eq. (7.40) and (7.41) show that the dispersion slope of FBG A and B is 

identical and their overall effect is a larger dispersion slope (Eq.(7.43)). 

    The FBG A and B are then embedded parallel with identical chirp directions in one 

uniform beam. According to Eq. (7.27), as the FBGs are bent in an S-shape, Bragg 

wavelength distributions along FBG A and B are respectively, 
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where, α is given by Eq. (7.30).          

 

7.5.2 Simulation of device performance 

            

                       Fig.7.19 Parameters of FBG A and B for the tunable DS compensator. 
 

        In this section, a tunable pure DS compensator is simulated based on the schematic 

shown in Fig.7.18. It is designed for dynamically compensating the DS in a 160Gbit/s 

transmission system, so an operation bandwidth of more than 3 nm is required through 

the tuning process. Parameters of FBG A and B used for simulation are shown in Fig.7.19. 

To alleviate the ripple in its reflection and time delay spectra, both FBG A and B are 

apodized by a hyperbolic tangent function [1]. The FBG A and B are embedded parallel 

with identical chirp directions in a uniform beam for S-bending.   
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Fig.7.20 Simulated reflection and time delay spectra of FBG A, FBG B and the combination of 
FBG A and B. (The solid lines are for the idle state, and the dashed lines are for a tuning state). 

  

The reflection and time delay spectra of FBG A, FBG B, and the combination of FBG 

A and B are calculated and are shown in Fig.7.20. The solid lines are for the idle state, 

and the dashed lines are results at a tuning state, in which the Bragg wavelength shift at 

the ends of both gratings are ~1nm (as shown in Fig. 7.20 (a), (c) and (e)). As shown in 

Fig. 7.20 (b), the light is reflected from the short Bragg wavelength end of FBG A, 

experiencing positive second-order dispersion and an additional DS. Similarly, as shown 

in Fig. 7.20 (d), the light is reflected from the long Bragg wavelength end of FBG B, 

while experiencing negative second-order dispersion and another additional DS. Finally, 
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as shown in Fig. 7.20 (f), when the effects of FBG A and B are combined, the second-

order dispersion is completely cancelled at the central wavelength, and a pure DS is 

produced. As FBG A and B are tuned together, both the second-order dispersion and DS 

are altered on each single grating. But for the combined effects of two FBGs, only the DS 

is varied since the second-order dispersion from the two FBGs can always completely 

cancel each other. At the idle state, the DS is 11ps/nm2 with a 3dB bandwidth of ~3.4nm. 

As the DS is tuned to 4.4ps/nm2, the 3dB bandwidth is ~4.7nm.         

      

             

             Fig.7.21 (a) Bragg wavelength and (b) chirp rate distributions along the FBGs. 
 

Bragg wavelength and chirp rate distributions along the FBG A and B are shown in 

Fig.7.21 (a) and (b). The solid lines are for the idle state, and the dashed lines correspond 

to the same tuning state as in Fig.7.20. As the S-bending is applied, each FBG 

experiences a linear stress gradient, while the Bragg wavelength at the centre of the FBGs 

is fixed. In addition, both FBGs have identical Bragg wavelength variations (Fig.7.21 (a)) 

along the beam because the same stress gradient is applied. As shown in Fig.7.21 (b), at 

both the idle and tuning state, the chirp rate of FBG A is symmetrical to that of FBG B 

with respect to the centre of the FBGs.  

Shown in Fig.7.22 (a) and (b) are the values of DS, 3-dB bandwidth and insertion loss 

of the tunable DS compensator. The amount of tuning is denoted by the maximum Bragg 
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wavelength shift of the FBG. Over the whole tuning range, the 3dB bandwidth is more 

than 3nm. The DS of the device is tuned from 11ps/nm2 to 3ps/nm2. The corresponding 

3-dB bandwidth varies between 3.4nm and 5.6nm, and the insertion loss variation is less 

than 1.5 dB.           

 

                

Fig.7.22 Calculated values of (a) DS, (b) 3-dB bandwidth and insertion loss of the tunable DS 
compensator. 

 

7.5.3 Device fabrication and characterization 

     FBG A and B are fabricated using the continuous grating writing technique, and their 

apodization profile and chirp distribution are as shown in Fig.7.19. At the idle state, their 

reflection spectra are measured and are shown in Fig.7.23. For FBG A, the measurements 

are taken from the short Bragg wavelength end, and for FBG B, the measurements are 

taken from the long Bragg wavelength end. This is consistent with the cascading 

configuration of the tunable TOD compensator (as shown in Fig.7.18). 
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                                        Fig.7.23 Measured reflection spectra of FBG A and B.     
             

                 

Fig.7.24 Measured reflection and time delay spectra of the tunable DS compensator as the DS is 
(i) 12ps/nm2, (ii) 4ps/nm2, or (iii) 3ps/nm2. 

 

The FBG A and B are then embedded parallel in a uniform beam for S-bending, as 

shown in Fig. 7.18. To obtain a tunable pure DS compensator with a fixed central 

wavelength, it is crucial to ensure that both FBGs are put in the centre of the beam. The 

reflection and time delay spectra of the tunable DS compensator are measured using the 
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modulation phase-shift method. The results are shown in Fig.7.24. At the idle state, the 

DS is measured to be ~12ps/nm2. Then, it is tuned until a DS of 3ps/nm2 is achieved. 

Over the whole tuning range, the central wavelength variation is less than 0.1nm. The 

peak-to-peak value of the group delay ripple in the operating bandwidth is ~12ps. 

Shown in Fig.7.25 are the measured DS and 3-dB bandwidth of the tunable DS 

compensator. As ymax>0, the 3 dB bandwidth is more than 3nm. The amount of tuning is 

denoted by the displacement (ymax) perpendicular to the beam for S-bending. The beam 

length used in the experiment is 90mm.  

                              

Fig.7.25 Measured values of (a) DS, (b) 3-dB bandwidth of the tunable DS compensator. 
 

   To apply this device in a practical high bit-rate transmission system, the polarization 

related effects need to be further investigated. In Ref [153], the additional polarization 

mode dispersion (PMD) and polarization dependent loss (PDL) induced by the tuning has 

been demonstrated to be very small in a wavelength-tuning FBG filter based on the same 

beam and a similar bending technique.   

In summary, based on the S-bending technique and a dual-FBG configuration, a 

tunable dispersion slope compensator is proposed and demonstrated. Its main advantage 

is that a tunable pure dispersion slope is achieved with a very simple tuning structure. 
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7.6 Controlling the output pulse width in a fibre laser using a tunable 

FBG  

7.6.1 Device description and characterization 

   In this section, a linearly chirped FBG is used in a laser cavity. By tuning the dispersion 

of the FBG using the S-bending technique, the output pulse width of the fibre laser is 

controlled. 

    A linearly chirped FBG, with a length of 20mm, is embedded in a uniform beam for 

the S-bending tuning. At the idle state, the FBG has a bandwidth of ~6 nm, centred at 

1064nm, and the dispersion is ~33ps/nm. To achieve a large dispersion tuning range, the 

beam length for S-bending is ~65mm. As shown before, when the beam is bent in an S-

shape, the FBG still has a linear chirp, but its bandwidth and dispersion will be altered. 

Shown in Fig.7.26 is the evolution of the transmission spectrum of the FBG as it is 

tuned by using the S-bending technique. For a linearly chirped FBG with a particular 

length and effective index modulation, the absolute value of its dispersion is proportional 

to its transmission loss in decibels [207]. Therefore, at each state, the value of dispersion 

could be estimated from the corresponding transmission spectrum. As shown in Fig.7.26, 

dispersion of the linearly chirped FBG is tuned from ~20ps/nm to ~55ps/nm. 

 

         

                    Fig.7.26 Evolution of transmission spectrum of the FBG under tuning. 
 



Chapter 7 Dispersion tuning of fibre Bragg gratings using the S-bending technique 
         

- 131 - 

7.6.2 Controlling the output pulse width of fibre lasers 

    The configuration of fibre laser is shown in Fig.7.27. Its principle is similar to the laser 

in Ref [200-202]. A ytterbium-doped fibre is spliced into a standard fibre connecting the 

chirped FBG with a tunable dispersion. A 980 nm semiconductor laser diode is used as 

the pump source and a semiconductor saturable-absorber mirror (SESAM) is used to 

obtain pulsed operation [199]. The fibre laser operates in the soliton-supporting 

dispersion regime, and is mode-locked by a saturable absorber, resembling a true soliton 

laser. The length of the laser cavity is ~ 2 metres and therefore the repetition rate of the 

output pulses is measured to be ~52MHz. The dispersion of the cavity is completely 

regulated and can be controlled by the dispersion of the chirped FBG because the length 

of fibre in the cavity is very short. 

                       
                                          Fig.7.27. Configuration of the fibre laser.   
   

The output pulses are measured using an auto-correlator based on the second harmonic 

generation (SHG) technique. As the dispersion of the chirped FBG is tuned, the 

autocorrelation traces of laser output are measured and are shown in Fig.7.28, and the 

corresponding spectra are also measured and are shown in Fig.7.29. We can see that the 

central wavelength of the laser shifts only very slightly during tuning. The two obvious 

shifts in the central wavelength (at 21ps/nm and 14ps/nm) are due to the fact that we 

changed the beam length during the experiments.   

Shown in Fig.7.30 is a fit of the measured autocorrelation curve to the theoretical 

autocorrelation trace of a hyperbolic secant pulse. It confirms that the generated pulse 

from the laser is indeed a soliton.  

 

Yb fibre 
Laser output 

 SESAM  Tunable FBG WDM 

980-nm pump (LD) input 
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          Fig.7.28. Measured SHG autocorrelation trace as the dispersion of the FBG varies. 
 

                            

          Fig.7.29. Measured spectrum of the laser output as the dispersion of the FBG varies. 
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Fig.7.30 Measured (solid line) autocorrelation trace as the FBG dispersion is 14ps/nm. A sech fit 
(dashed line) to the trace gives a FWHM pulse width of 4.5ps.  
 

 From the autocorrelation traces, the output pulse widths of the laser are calculated and 

summarized in Fig.7.31. It is apparent that the output pulse width of the laser is 

controlled by tuning the dispersion of the FBG. It is worth noting that, in theory, the 

pulse width scales withD  for this soliton laser [203-204]. 

          

               Fig.7.31 Output pulse width of the laser as the dispersion of the FBG varies.    
 

7.7 Conclusions 

In this Chapter, we first review the dynamic dispersion and dispersion slope 

compensation techniques based on a combination of different tuning mechanisms and 

different FBGs. The topic of this chapter is the S-bending tuning technique, which can 

effectively provide a variable linear strain field along an FBG. It special advantage is that 

the central wavelength of the FBG is invariant when the linear strain gradient along the 

FBG is altered.  
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The S-bending tuning technique is then used to develop two new devices: a tunable 

dispersion compensator with a wide tuning range and a pure dispersion slope 

compensator. Both of them are based on tuning a pair of FBGs embedded in a single 

uniform beam. The advantage of using a dual-FBG configuration in a tunable dispersion 

compensator is that it can provide a dispersion tuning around zero dispersion. The 

advantage of using a dual-FBG configuration, in a tunable dispersion slope compensator, 

is that it can easily achieve a tuning of pure dispersion slope. 

Based on the S-bending technique, we also demonstrate the application of a tunable 

fibre Bragg grating in controlling the output pulse width of a soliton fibre laser. 
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Chapter 8  

Conclusions and future work 

 

8.1 Summary 

This thesis is devoted to the development and applications of new tunable fibre Bragg 

grating devices. One part concerns the optical phase en/decoders for reconfigurable 

OCDMA systems, and the other part describes the tunable fibre Bragg gratings based on 

an S-bending technique. 

 

8.1.1 Optical phase en/decoders for OCDMA systems 

Spatial phase-shifts in a fibre Bragg grating include discrete phase-shifts and (or) 

distributed phase-shifts. If a short optical pulse is reflected from a weak FBG, the spatial 

phase of the FBG will be inscribed into the temporal phase of the reflection pulse. This is 

called temporal phase encoding.  Therefore, FBGs with a spatial phase distribution 

following a particular address code could be used as optical phase en/decoders in a 

temporal-phase-encoding OCDMA system.     

In this thesis, we discuss three types of FBGs based OCDMA en/decoders as follows: 

(1) discrete-phase en/decoders: having discrete phase-distributions with fixed codes, 

(2) reconfigurable-phase en/decoders: having distributed phase-distributions with 

reconfigurable codes, and 

(3) continuous-phase en/decoders: having distributed phase-distributions with fixed 

codes. 

In addition, by simulation and experiments, we also compare OCDMA systems with 

three different configurations: 

(a) discrete-phase encoders and discrete-phase decoders, 

(b) discrete-phase encoders and continuous-phase decoders, and 
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(c) continuous-phase encoders and continuous-phase decoders.  

Configuration (a) has the best autocorrelation and cross-correlation performance. 

However, configuration (c) has special advantages for dynamic reconfiguration and 

bandwidth saving, considering that for the same nominal code sequence, a 

reconfigurable-phase device has the same phase distribution as a continuous-phase device 

and a continuous-phase device has narrower bandwidth compared with a discrete-phase 

device. 

 In this thesis, the OCDMA system based on discrete-phase en/decoders is studied 

from the viewpoint of fibre Bragg gratings, in which the phase matching and mismatch 

between encoders and decoders are used to explain the autocorrelation, cross-correlation 

and their evolution under different device or system parameters, including grating 

strength, input pulse width, wavelength offset, chip number and chip length.  

We make three major advancements in the area of the reconfigurable OCDMA system, 

which is one of the main topics for this thesis. Firstly, the pulse response method is 

introduced to accurately characterize the thermally induced dc refractive index variation 

in an FBG. The characterization reveals complete information on the spatial phase 

distribution of a reconfigurable-phase en/decoder, which is crucial because it is the basis 

for modelling, analyzing and designing of the reconfigurable OCDMA system. Secondly, 

the structure of the reconfigurable-phase device is improved so that it has a fast response 

speed. The reconfiguration is demonstrated to take less than two seconds. Thirdly, a new 

continuous-phase en/decoder is developed. It has a phase profile that matches the 

reconfigurable-phase device accurately and, therefore, when used with a reconfigurable-

phase device, it provides a better performance than a system using discrete-phase 

encoders and reconfigurable-phase decoders. 

 

8.1.2 Tunable fibre Bragg gratings based on the S-bending technique 

    An S-bending structure involves a uniform beam with two supported ends. By 

introducing a vertical displacement between the two supported ends, a linear strain field 

is formed, and its gradient is dependent on the amount of vertical displacement. In 

addition, the strain at the centre of the beam is always zero as the displacement varies. If 

a linearly chirped fibre Bragg grating is embedded into the uniform beam for S-bending, 

the variable linear strain field is applied on the FBG and thus the dispersion of the FBG 

could be altered by controlling the vertical displacement. The special advantage of tuning 
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an FBG using the S-bending technique is that the central wavelength of the FBG is 

invariant as the dispersion is altered. 

In this thesis, new tunable devices are developed by embedding a pair of FBGs in one 

beam for S-bending. The FBG pair experiences the same strain field and, by cascading 

the two FBGs, new tuning functions are achieved.  If only one single FBG is used for S-

bending, it is difficult to change the sign of dispersion or achieve zero dispersion by 

tuning. By using a dual-FBG configuration, the combination of the two FBGs will result 

in a wide tuning range including zero dispersion. If only a single FBG is used for 

dispersion-slope tuning by S-bending, the dispersion of the FBG will also vary when its 

dispersion slope is altered. By using a dual-FBG configuration, the dispersion of the two 

FBGs has opposite signs and will always cancel, while the dispersion slopes of the two 

FBGs have the same sign and can be added, resulting in a pure dispersion slope 

compensator. In this thesis, a tunable dispersion compensator with a large tuning range is 

designed for application in a 40Gbit/s transmission system, and a tunable pure dispersion 

slope compensator is designed and fabricated for application in a 160Gbit/s transmission 

system. 

The application of an S-bending fibre Bragg grating in controlling the pulse width of a 

soliton fibre laser is also demonstrated. 

 

8.2 Future work 

8.2.1 Thermal tuning techniques 

    The thermal tuning structure used in the reconfigurable-phase en/decoder is inherently 

a distributed tuning technique, in the sense that the property of a sub-section of FBG is 

only locally controlled by the tungsten wire in a direct contact. Owing to its high 

flexibility, this distributed tuning technique has great potential to provide complex 

dynamic reflection spectra and therefore can definitely find applications in many other 

areas, such as tunable dispersion or dispersion slope compensation [191] [205], and 

programmable pulse shaping [206].  

To obtain an arbitrary reflection spectrum from a tunable FBG, a dc refractive index 

distribution with a complicated structure is required.  Sometimes, for example in the 

reconfigurable-phase en/decoders or programmable pulse shaping, the thermally induced 

phase-shifts must be highly localized. We have characterized the dc refractive index 
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distribution as the diameter of wires is different. More work is required to achieve a 

localized thermal response for the FBGs. One possibility is to plate many minute metal 

wires, using the micro-fabrication technique, on the FBG, since this will ensure a 

compact contact and a good thermal conduction between the wire and the FBG. Another 

possibility is to use a series of miniature temperature controllers instead of the simple 

heaters on the FBG, so that the temperature is directly controlled at each point of the 

FBG [192]. 

 

8.2.2 Strain-tuning techniques 

The S-bending tuning of fibre Bragg gratings is a simple but powerful technique, 

which can easily provide bandwidth tuning, dispersion tuning or dispersion-slope tuning. 

New devices and functions have been developed. Future work should be mainly focused 

on demonstrating their applications in optical systems. The application in an optical 

transmission system to dynamically compensate dispersion or dispersion slope is 

straightforward. An example of application in laser systems has been demonstrated in this 

thesis. The tunable grating is a fibre based device, which has a simple structure but can 

achieve flexible and complex functions. These apparent advantages imply that in any 

fibre system, if a dynamic bandwidth, dispersion or dispersion slope is required, this S-

bending FBG device will always be the possible solution. 
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