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Abstract

Surrogate modelling is a popular approach for reducing the number of high fidelity simulations
required within an engineering design optimization. Multi-fidelity surrogate modelling can further
reduce this effort by exploiting low fidelity simulation data. Multi-output surrogate modelling tech-
niques offer a way for categorical variables e.g. the choice of material, to be included within such
models. While multi-fidelity multi-output surrogate modelling strategies have been proposed, to date
only their predictive performance rather than optimization performance has been assessed. This paper
considers three different multi-fidelity multi-output Kriging based surrogate modelling approaches
and compares them to ordinary Kriging and multi-fidelity Kriging. The first approach modifies
multi-fidelity Kriging to include multiple outputs whereas the second and third approaches model
the different levels of simulation fidelity as different outputs within a multi-output Kriging model.
Each of these techniques is assessed using three engineering design problems including the optimiza-
tion of a gas turbine combustor in the presence of a topological variation, the optimization of a
vibrating truss where the material can vary and finally, the parallel optimization of a family of airfoils.

Keywords: Multi-output, Multi-fidelity, Kriging

1 Introduction

Engineering design optimization typically involves
the use of expensive computational simulations in
order to accurately predict the performance of a
design. The expense of these simulations, which
can be of the order of days even with modern
computing hardware resources, makes their direct
application within an optimization algorithm com-
pletely infeasible. Instead, it has become the
norm within the design optimization community
to employ some sort of surrogate modelling-based
approach whereby a surrogate (otherwise known
as a metamodel or response surface) is constructed

using a relatively small amount of simulation data
and then used to guide a subsequent design search.

This process of surrogate construction, fol-
lowed by sequential updating and improvement
in regions of interest, was popularized by authors
such as Jones et al (1998) almost 25 years ago.
Since then, whilst the general philosophy has
changed little, there have been numerous advances
in terms of the surrogate model formulation (Stork
et al, 2020; Alizadeh et al, 2020), sampling plans
(Garud et al, 2017; Alizadeh et al, 2020), updat-
ing and infilling strategies (Haftka et al, 2016; Liu
et al, 2017; Zhan and Xing, 2020) to name but
a few. While the application of surrogate based
approaches to robust design (Chatterjee et al,
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2017), multi-objective (Tabatabaei et al, 2015;
Deb et al, 2020) as well as traditional single objec-
tive optimization problems has grown throughout
engineering.

Most surrogate-based optimization applica-
tions within the literature tend to focus on prob-
lems where the design variables are continuous in
nature. While this makes the problem tractable
for most surrogate modelling techniques it is per-
haps somewhat removed from the realities of real
engineering design where designers are often faced
with discrete choices as part of the design process,
for example, the choice of optimal feature or mate-
rial. As discussed by Allmendinger et al (2017)
there is a considerable business case in favour
of being able to efficiently tackle such problems
within industry.

A potential solution to this problem comes in
the form of surrogate modelling strategies for the
prediction of multiple outputs (also referred to
as multi-task prediction/learning (Bonilla et al,
2007), categorical modelling or multi-variate mod-
elling (Kleijnen and Mehdad, 2014) within the
literature). However, these methods appear to
have been applied to relatively few engineering
design optimization problems. Notable exceptions
include the design optimization of metamaterials
(Tran et al, 2019), multi-scale topology optimiza-
tion (Wang et al, 2020), sounding rocket engine
(Pelamatti et al, 2018) and centrifugal pump blade
optimization (Zhang and Zhao, 2020). Beyond
design optimization, the predictive performance
advantages of multi-output models have been
demonstrated on a number of occasions (Liu et al,
2018b, 2014; Wang and Chen, 2015). It is worth
noting that multi-output Kriging models have
also been recently extended to include gradient
information (Quan et al, 2022).

The performance of a surrogate model-based
optimization strategy is largely a function of
the predictive accuracy of the underlying surro-
gate used. Generally speaking, the more a sur-
rogate model is representative of the trends in
the true response the greater the rate of conver-
gence towards an optimal design. That is to say,
the surrogate model does not have to be accurate
everywhere in the design space but in order for
the surrogate to be useful, from an optimization
point of view, it should help guide our searches
effectively towards an optimum.

In engineering design optimization applica-
tions, where the data is generated from expensive
simulations or experiments, often it is not feasi-
ble to construct a surrogate model from a large
amount of data. Multi-fidelity surrogate modelling
methods offer an alternative to this by enabling
multiple sources of data to be exploited within
a single model. These methods enable inexpen-
sive but large low fidelity data sets to provide
an accurate global trend throughout the design
space which is then corrected by a much smaller
subset of high fidelity data. Recent advances in
this field include, for example, the use of radial
basis functions (Serani et al, 2019; Eddine et al,
2022), support vector regression (Shi et al, 2020),
neural networks (Li et al, 2022), conditional gen-
erative adversarial networks (Zhang et al, 2022),
graph neural networks (Black and Najafi, 2022)
and deep neural networks (Li et al, 2022). For the
interested reader the article by Peherstorfer et al
(2018) provides a useful review of multi-fidelity
surrogate modelling approaches for optimization
and uncertainty quantification.

The literature contains numerous examples
of multi-fidelity surrogate modelling applied to
the design optimization of engineering systems
demonstrating both an improvement in surrogate
model predictive, and subsequent optimization,
performance. Examples, focusing in particular on
the application of Kriging or Gaussian process
models, include the design of airfoils (Liu et al,
2018a,b; Phiboon et al, 2021), gas turbine com-
pressor blades (Brooks et al, 2011), combustion
systems (Zhang et al, 2015; Toal et al, 2021),
engine structures (Yong et al, 2019), composite
structures (Guo et al, 2020) and hull forms (Liu
et al, 2022).

In summary, multi-output surrogate models
enable designers to model problems with integer or
categorical variables. The correlation of responses
across outputs, in such an approach, can pro-
duce a more accurate surrogate model than if
a single independent surrogate were constructed
for each output. This assumes, of course, that
the outputs are indeed correlated. Multi-fidelity
surrogate models, by fusing different sources of
data together, can potentially reduce the amount
of high fidelity data required, improve surro-
gate model accuracy and accelerate convergence
towards an optimum.
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Given the advantages of multi-output and
multi-fidelity surrogate models, it makes perfect
sense to attempt to combine these into a sin-
gle modelling approach. To date, the work of Lin
et al (2021) represents the only serious attempt
to achieve this. Here the autoregressive model of
Kennedy and O’Hagan (2000) is combined with a
correlation matrix parameterized using the hyper-
sphere approach of Zhou et al (2011) to model
the interactions between outputs. However, while
Lin et al (2021) demonstrated the predictive per-
formance advantage of such a model for airfoil
aerodynamic coefficient prediction, the optimiza-
tion performance of this approach was never
assessed. One could also argue that their choice
of engineering problem (where both lift and drag
come from the same simulation) resulted in an
isotropic dataset which has been demonstrated
to offer poorer performance on multi-output pre-
diction problems than a heterotopic dataset (Liu
et al, 2018b; Lin et al, 2021). Since this publica-
tion, Nasti et al (2022) have applied the modelling
approach of Lin et al (2021) to the design opti-
mization of the secondary air seals within an aero
engine. However, this study only compared the
resulting optimization performance to that of a
genetic algorithm and not alternative surrogate
modelling strategies.

This paper aims to address a number of
the observed limitations from the literature with
a focus on Kriging based surrogate modelling
approaches. The multi-fidelity multi-output Krig-
ing approach of Lin et al (2021) is compared
to competing surrogate modelling strategies with
respect to their optimization performance. This
includes a comparison to standard single and
multi-fidelity, single-output modelling approaches.
But also assesses an alternative approach to
embedding multi-fidelity data within a multi-
output model by including it as an additional
output of the model. While this approach has
been suggested within the literature (Kleijnen
and Mehdad, 2014) it is yet to be demonstrated
on multi-fidelity problems with discrete design
variables.

Optimization of the hyperparameters is often
an extremely important, and often overlooked,
step in the creation of any surrogate model. To
date, little emphasis within the literature has been
given to the solution of this problem for multi-
output Kriging models in general, whether they

are single or multi-fidelity in nature. This paper
goes some way to addressing this by deriving an
analytical expression for the adjoint of the likeli-
hood of both single and multi-fidelity multi-output
Kriging models which can be used to accelerate
hyperparameter optimization.

The paper begins by presenting the mathe-
matics behind the construction of each of the
Kriging based surrogate models employed within
the remainder of the paper. This includes details
of ordinary single output Kriging (Section 2.1),
its extension to multi-output Kriging (Section
2.2), multi-fidelity Kriging (Section 2.3) and its
extension to multi-fidelity multi-output Kriging
(Section 2.4). The formulation of the adjoint of
the likelihood function with respect to the hyper-
parameters is presented for each model.

With the model formulations defined the paper
then proceeds to explore the potential of sin-
gle and multi-fidelity multi-output Kriging models
through a combination of analytical and engi-
neering test problems. In Section 3 the one-
dimensional Forrester function is used to illustrate
graphically the predictive power of these methods
before progressing to the engineering problems.

Each of the three engineering design opti-
mization problems is novel in its formulation and
showcases the benefits of a multi-output approach
to multi-fidelity design optimization. Section 4
considers a multi-point airfoil design optimization
problem where four airfoils from the same family
are optimized simultaneously. Section 5 considers
the multi-fidelity optimization of a vibrating truss
where the choice of material can vary. Finally,
Section 6 considers the optimization of a gas tur-
bine combustor sub-system where a multi-fidelity
multi-output approach is used to optimize the
positions of two competing topologies of dilution
port in parallel.

Section 7 concludes the paper with a summary
of the results from each study and a discussion
on the application of these surrogate modelling
techniques to future engineering problems.

2 Surrogate Model
Formulations

The single and multi-fidelity multi-output models
employed within the current paper have their ori-
gins in the popular surrogate modelling approach
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known as Kriging. The following section captures
the mathematics of these models commencing
from the basics of ordinary Kriging.

2.1 Ordinary Kriging

A Kriging model is based on the assumption
that points within a design space close to each-
other will have a similar function value. Given a
d dimensional hypercube, it is assumed that the
correlation between points is given by,

Rij = exp

(
−

d∑
l=1

10θ
(l)

‖x(l)
i − x

(l)
j ‖

p(l)

)
(1)

where θ defines the rate of correlation decrease
and p defines the ‘smoothness’ of the model in
each dimension. These parameters, along with a
regularization term, 10λ, if applied to the diagonal
of the correlation matrix (Forrester et al, 2006),
can be determined by optimizing the concentrated
log-likelihood function (Jones et al, 1998),

φ = −n
2

ln(σ̂2)− 1

2
ln(|R|). (2)

Here the variance is given by,

σ̂2 =
1

n
(y − 1µ̂)TR−1(y − 1µ̂), (3)

and the mean of the observations by,

µ̂ =
1TR−1y

1TR−11
, (4)

where 1 is a vector of n ones. n is equal to the num-
ber of data points contained within the sampling
plan upon which the model is constructed. With
the hyperparameters determined, the predictor,

y(x∗) = µ̂+ rTR−1(y − 1µ̂), (5)

provides the output of the model at an unsampled
location.

The optimization of the hyperparameters is an
important step in the construction of any Kriging
model and has implications on the accuracy of the
resulting model. Unfortunately due to the O(n3)
cost of inverting the correlation matrix R this can
be rather expensive if the size of the training set
is large. To reduce this burden and accelerate the

optimization process Toal et al (2011) presented
an adjoint formulation of the likelihood function
which can efficiently calculate the derivatives of
the likelihood function with respect to each of the
hyperparameters. Using the collection of adjoints
provided by Giles (2008), it can be shown that the
adjoint of the correlation matrix, R, is given by,

R̄ =
1

2σ̂2
R−T (y−1µ̂)T (y−1µ̂)TR−T − 1

2
R−T . (6)

The derivatives of the log-likelihood function with
respect to θ are given by,

∂φ

∂θl
= ln 10

∑
ij

−10θl ||xil − xjl ||plRijR̄ij (7)

and with respect to p by,

∂φ

∂pl
=
∑
ij

−10θl ||xil−xjl ||pl ln ||xil − xjl ||RijR̄ij .

(8)
If a regularization term has been included to
account for noise within the training data its
derivative can also be found,

∂φ

∂λ
= 10λ ln 10

∑
i

R̄ii. (9)

In order to solve the hyperparameter opti-
mization problem the hybridized particle swarm
algorithm of Toal et al (2011) is employed. A mod-
ified version of the particle swarm developed by
Eberhart and Kennedy (1995), this search algo-
rithm employs a particle initialization based on
an optimal Latin hypercube with a rank-based
selection scheme used to select a particle in each
generation for local improvement via sequential
quadratic programming (SQP). In addition to
this diversity in the swarm is preserved via re-
initialization process which aims to explore regions
of the space not previously searched through a
maxmin distance criterion. A terminal local SQP
search is applied to the global optimum indicated
by the swarm.

This optimization algorithm along with all of
the surrogate models presented within this paper
have been implemented within the proprietary
Rolls-Royce optimization toolkit, CM02, formally
known as OPTIMATv2. In all cases, the particle
swarm used in the hyperparameter optimization
employs a population size of 50 points for 100
generations.
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2.2 Multi-Output Kriging

In order to extend ordinary Kriging to predict
multiple outputs we follow the approach of Bonilla
et al (2007) and recently Lin et al (2021). Bonilla
et al. proposed that a single Gaussian process
model could be constructed which would be capa-
ble of modelling multiple tasks or outputs. They
achieved this through the construction of a ‘free-
form’ correlation matrix which would ‘learn’ the
correlations between the multiple tasks within
the model. Furthermore, they drew inspiration
from Cholesky decomposition in the parameter-
ization of this correlation matrix to ensure that
is was positive semi-definite. Lin et al. took the
approach of Bonilla et al. a step further and intro-
duced this ‘free-form’ correlation matrix approach
into the multi-fidelity framework of Kennedy and
O’Hagan (2000) to enable multiple levels of fidelity
to enhance the prediction of multiple tasks or
outputs.

In the following notation it is assumed that
in addition to the training data X comprising of
n training points within a d dimensional hyper-
cube, there exists a vector of categorical values, q.
The vector, q, contains n entries where each entry
corresponds to the location of a training point,
x. Each entry within q can have one of m differ-
ent levels. As will be discussed later there is no
reason why the model cannot have multiple cate-
gories each with a differing number of levels but
for simplicity, it is assumed for now that the model
has only one categorical variable with m different
levels.

The correlation between each level is defined
by a second correlation matrix, K, which is m×m
in size and should be unit diagonal, symmetrical
and positive definite. This matrix is then used to
modify the Kriging correlation matrix, R, defined
by equation 1, such that the i, jth entry of the
updated correlation matrix, RK , is given by,

RKij = Kqi,qjRij . (10)

In simple terms, each entry in the original corre-
lation matrix, R, is multiplied by an entry in the
correlation matrix, K where the index of the entry
in K depends on the categorical level indicated by
the corresponding pair of values in the vector, q.

To aid with the definition of the adjoint of the
likelihood function we define an additional piece of

notation, a subscript n, to represent the mapping
from an m×m matrix to an n×n matrix using the
indices of the categorical variables stored within
q. In this notation, the i, jth entry of the matrix
Kn is given by,

Knij = Kqi,qj (11)

where RK can now be written as,

RK = KnR. (12)

In order for RK to be symmetric positive def-
inite, K must also be symmetric and positive
definite. This requirement on K is difficult to
achieve with a direct parameterization. Instead
the approach of Zhou et al (2011) is used whereby
the matrix L, which is the lower triangular matrix
resulting from the Cholesky decomposition of K,

K = LLT , (13)

is parameterized using a spherical coordinate sys-
tem. If each entry of L is defined as lr,s then letting
l1,1 = 1, for r = 2, . . . ,m the below spherical
coordinate system (Zhou et al, 2011) is used,

lr,1 = cos(αr,1)

lr,s = cos(αr,s)

s−1∏
i=1

sin(αr,i)

for s = 2, . . . , r − 1 (14)

lr,r =

r−1∏
i=1

sin(αr,i),

where αr,s ∈ (0, π).
For a model with m levels this parameteriza-

tion results in m(m−1)/2 additional hyperparam-
eters to be determined in addition to those of the
original ordinary Kriging model. The number of
parameters therefore increases quite rapidly with
the number of levels in the model.

Optimization of the hyperparameters is per-
formed in an identical manner to that of an
ordinary Kriging model. The likelihood function
defined in equation 2 is again minimized but
with R now replaced by RK . With the addi-
tional hyperparameters the presence of an efficient
derivative calculation is of even greater impor-
tance.
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The adjoint of the likelihood with respect to
each of the hyperparameters of the spherical coor-
dinate system can be derived by extending the
approach outlined in the previous section. As
noted previously, the formulation of the likelihood
function is identical for both single and multi-
output Kriging with RK replacing R. It therefore
follows that the adjoint of the likelihood function
with respect to RK is given by,

R̄K =
1

2σ̂2
R−T
K (y−1µ̂)T (y−1µ̂)TR−T

K − 1

2
R−T
K

(15)
where RK has directly replaced R, but this time
in Equation 6.

From this point the adjoint of the likelihood
with respect to both R and Km can be found to
be,

R̄ = R̄KKn (16)

and
K̄n = R̄KR. (17)

With R̄ calculated, the derivatives of the likeli-
hood with respect to the hyperparameters θ, p and
λ can be found as before via Equations 7, 8 and 9
respectively.

The derivative of the likelihood with respect to
a hypersphere parameter α, is given by,

∂φ

∂α
=
∑
ij

K̄nK̇n (18)

where K̇n is an n× n matrix where each element
represents the derivative of the corresponding ele-
ment of Kn with respect to the α hypersphere
parameter of interest. This is effectively an expan-
sion of the m × m matrix of derivatives K̇ to a
n×n representation using the vector of categorical
indices, q. As K = LLT then,

K̇ = L̇LT + LL̇T , (19)

with L̇ representing the derivative of the matrix
L with respect to α.

The definition of L, as a function of each α, is
outlined in Equation 14. L̇, like L, is lower diago-
nal in nature and as l1,1 is a constant l̇1,1 = 0. For
the remaining components,

∂lr,1
∂αr,i

= − sin(αr,i), (20)

when i = 1 and 0 when i 6= 1. For the diagonal
terms,

∂lr,r
∂αr,i

=
lr,r cos(αr,i)

sin(αr,i)
(21)

while for the remaining terms,

∂lr,s
∂αr,i

=
lr,s cos(αr,i)

sin(αr,i)
(22)

for i = 1, . . . , s− 1 and finally,

∂lr,s
∂αr,s

= − lr,s sin(αr,s)

cos(αr,s)
. (23)

With the above adjoint formulation providing
a relatively efficient calculation of the derivatives
of the likelihood function, the hybridized particle
swarm algorithm of Toal et al (2011) can again be
used to perform the optimization.

With the hyperparameters determined, the
predictor given in equation 5 can be modified to
predict any of the m levels,

y(x∗) = µ̂+ rTKR−1
K (y − 1µ̂). (24)

Here the vector of correlations between the new
point x∗ and the existing points, rK , has also been
modified by the correlation matrix K where the
correlation used is dependent on the categorical
level of x∗ and that of the training data.

The matrix, K describing correlations between
levels in a multi-output Kriging model enables
one level to influence another. This is quite dif-
ferent to a multi-fidelity Kriging model (described
in the following section) where the inexpensive
data influences the expensive prediction but not
vice versa. This mutual influence between levels
leads to some important considerations regarding
the definition of the sampling plan used in the
construction of the model. Employing an identical
sampling plan for each level (an isotropic dataset)
has been demonstrated to result in a poorer per-
forming multi-output model as the correlation
between outputs adds no useful information to the
prediction of each output (Liu et al, 2018b; Lin
et al, 2021). A heterotopic approach (where the
sampling plans differ between levels) allows the
predictor to benefit from the potential correlation
between levels.

The above multi-output Kriging formulation
makes the assumption of a common set of θ and
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p hyperparameters for the d input variables. For
the case when the correlation between each of
the levels is high this makes sense. A high level
of correlation implies a similar level of activity
and smoothness in each response and therefore
a similar optimal set of θ and p hyperparame-
ters. However, when the correlation between levels
is poor, the optimization of the hyperparameters
naturally leads to a compromise in the parame-
ter values and therefore a set of parameters which
is sub-optimal for either level. This results in a
reduction in predictive performance (Kleijnen and
Mehdad, 2014). This is similar to the construction
of a Kriging model of a non-stationary response
where a single value of each hyperparameter is
inappropriate at all locations in the space (Toal
and Keane, 2012). This effect can also be observed
when the amount of data from which to construct
the model is sufficiently large. In this case, sepa-
rate ordinary Kriging models for each output have
better predictive performance than a single multi-
output model combining all of the data (Liu et al,
2018b).

As noted above the number of hyperparame-
ters can increase relatively quickly with an increas-
ing number of outputs. This is the case if a
categorical variable has many different levels but
also if multiple categorical variables are to be
captured within a single matrix. A problem with
two categorical variables each with two levels, for
example, results in four possible combinations of
these variables and therefore a total of six addi-
tional hyperparameters to optimize. For such a
problem the number of hyperparameters can be
reduced significantly by assigning each category
to a separate correlation matrix, K. Instead of
a single 4 × 4 correlation matrix in the above
example, one would employ two separate 2 × 2
matrices resulting in two additional hyperparam-
eters instead of six. However, this will naturally
come at the cost of some flexibility within the
model.

2.3 Multi-fidelity Kriging

Ordinary Kriging can be extended into multi-
fidelity Kriging using the autoregressive approach
of Kennedy and O’Hagan (2000). Here it is
assumed that the predicted output of an expen-
sive simulation is equal to the scaled prediction of
an inexpensive simulation plus a prediction of the

difference between the two,

Ze(x) = ρZc(x) + Zd(x). (25)

Here ρ is a scaling parameter determined dur-
ing the subsequent hyperparameter optimization.
The sub-scripts c, e and d are used to denote,
inexpensive, expensive and the difference between
inexpensive and expensive respectively.

The correlation matrix for such a model is
defined as,

C =

(
σ2cRc(Xc,Xc) ρσ2cRc(Xc,Xe)

ρσ2cRc(Xe,Xc) ρ2σ2cRc(Xe,Xe) + σ2dRd(Xe,Xe)

)
(26)

where Rc(Xc,Xc) defines the correlation matrix
between the known inexpensive sample points
and Rc(Xc,Xe) defines the correlation between
expensive and inexpensive sample points both
using the hyperparameters from the Kriging
model of the inexpensive data. Rd(Xe,Xe) how-
ever, defines the correlation matrix between the
expensive sample points using the hyperparam-
eters obtained from the difference model. In all
cases the correlation defined by equation 1 is
assumed.

The construction of such a multi-fidelity model
is a two step process. Firstly, an ordinary Kriging
model of only the inexpensive data is constructed
with the hyperparameters optimized in the usual
manner, via a maximization of the likelihood func-
tion. A second ordinary Kriging model is then
constructed to predict the difference between the
inexpensive and expensive data. To create this a
vector of differences, d, is calculated where,

d = ye − ρyc(Xe). (27)

The construction of this difference model is there-
fore identical to that of an ordinary Kriging
model except that the hyperparameter, ρ, must
also be optimized along with the usual θ and p
parameters. The adjoint formulations presented in
equations 7 and 8 can be used again to accelerate
this optimization process while the derivative of
the likelihood with respect to ρ can be calculated
as,

∂φ

∂ρ
= −

ne∑
i=1

yci d̄i, (28)



Springer Nature 2021 LATEX template

8 MFMO Kriging

where the adjoint of the vector of differences is
given by (Toal and Keane, 2011),

d̄ = −R−1
d (d− 1µ̂d)

(
1

σ̂2
d

)
. (29)

Here σ2
d refers to the variance in the difference

model calculated using equation 3 where y, R and
µ̂ have been replaced by d, Rd and µ̂d respectively.

With the hyperparameters determined predic-
tions of the expensive function response at an
unknown point, x∗ are given by,

ye(x
∗) = µ̂+ cTC−1(y − 1µ̂), (30)

with the mean given by,

µ̂ =
1TC−1Y

1TC−11
, (31)

and where the vector of correlations is,

c =

[
ρσ̂2

cRc(Xc,x
∗)

ρ2σ̂2
cRc(Xe,x

∗) + σ̂2
dRd(Xe,x

∗)

]
. (32)

Y is a single vector combining both inexpensive
and expensive observations, i.e. [yc,ye].

2.4 Multi-fidelity Multi-Output
Kriging

Extending a multi-fidelity Kriging model to pre-
dict multiple outputs is a relatively simple process
with the correlation matrices for the inexpensive
and difference models now modified to include
the correlation between outputs. In other words,
Rc and Rd in the above equations are modi-
fied using the correlation matrices Kc and Kd

respectively. Including two different matrices in
this manner makes the model flexible enough to
capture similar correlations between inexpensive
data but different correlations in the difference
model. The assumption of a common set of corre-
lations for the inexpensive and difference model is
perhaps not entirely sensible when, for example,
additional physics is included into a simulation
moving between fidelity levels. As discussed pre-
viously the construction of such a multi-output
model comes at the expense of a potential com-
promise in the θ and p parameters but in this case
the compromise impacts both the inexpensive and
difference models.

As per the single fidelity multi-output Kriging
model each of these additional correlation matri-
ces is parameterized using the spherical coordinate
system. As before, multiple correlation matrices
can then be used for each model to capture mul-
tiple categorical variables and reduce the number
hyperparameters requiring optimization.

The process of constructing such a model
closely follows that of the single-output multi-
fidelity model except at each stage a multi-output
model is constructed. Firstly, a multi-output Krig-
ing model is constructed from the observed inex-
pensive data with the hyperparameters optimized
with the aid of the adjoint approach described pre-
viously. Then a second multi-output model, rep-
resenting the differences between the inexpensive
and expensive data, is constructed. As with the
multi-output model, the scaling parameter ρ must
again be determined via a likelihood optimization.
Once R̄ has been calculated via Equation 16, the
derivative of the likelihood with respect to ρ can
be calculated as before using Equations 28 and
29. With efficient derivatives available for both the
inexpensive and difference model, the hybridized
particle swarm can again be used to optimize the
hyperparameters.

Finally, it should be observed that this mod-
elling approach assumes that the same categories
are present at each level of fidelity otherwise
the modification of Rc(Xc,Xe) to include the
correlations between outputs is not possible.

3 An Illustrative Analytical
Example

The, so-called Forrester function (Forrester et al,
2007), has been employed repeatedly throughout
the literature to demonstrate multi-fidelity surro-
gate modelling techniques. Its simplicity, and one
dimensional nature, make it useful for graphically
illustrating the benefits of multi-fidelity surrogate
modelling.

The Forrester function defines an expensive,
high fidelity function,

f1e(x) = (6x− 2)2 sin(12x− 4), (33)

and an ‘inexpensive’, low fidelity function,

f1c(x) = 0.5f1(x) + 10(x− 0.5)− 5 (34)
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where x ∈ [0, 1]. This, of course, only considers
a single output so to extend the Forrester func-
tion to two outputs we add 2x to both f1e(x) and
f1c(x) producing,

f2e(x) = (6x− 2)2 sin(12x− 4) + 2x, (35)

and

f2c(x) = 0.5f1(x) + 10(x− 0.5)− 5 + 2x. (36)

This simple modification ensures that each pair
of inexpensive and expensive functions is well
correlated. Each of the functions is illustrated
graphically in Figure 1a.

Let us first consider the benefits of multi-
output Kriging compared to single output (SO)
Kriging. Figure 1b illustrates the case when f1e
has been sampled with 11 evenly distributed
points across the design space (indicated by the
black circles) whereas f2e has only been sampled
at three locations, x = [0.1, 0.4, 1]. An ordinary
Kriging model through only the f1e data is reason-
ably accurate, giving an r2 correlation of approx-
imately 0.999. Rather unsurprisingly, an ordinary
Kriging model through only the f2e data is a
rather poor approximation of the true function,
giving an r2 correlation of 0.188. However, when a
multi-output Kriging model is constructed using
both sets of data the resulting r2 correlations are
0.999 and 0.998 for f1e and f2e respectively, a con-
siderable improvement. The multi-output model’s
prediction of f2e is able to exploit the high level of
correlation between both outputs resulting in an
improvement in predictive performance.

Of course, the multi-output Kriging model is
effective in this instance because of the relatively
high level of correlation between f1e and f2e. They
exhibit an r2 of approximately 0.986. One would
expect a lack of correlation between the functions
to result in a reduction in predictive accuracy.
We can demonstrate this is indeed the case by
changing our second output from f2e to f3e where,

f3e(x) = f1e(x+A). (37)

As illustrated in Figure 1c, by varying A between
0 and 0.15 the level of correlation between f1e and
f3e can be controlled. For each of the 21 values
of A highlighted in Figure 1c we sample f3e at
x = [0.1, 0.4, 1]. We could use this data directly

to construct a single output Kriging model or we
could combine this data with 11 evenly spaced
sample points of f1e to construct a multi-output
Kriging model. Figure 1d illustrates the variation
in the predictive accuracy of the resulting single
and multi-output Kriging models with respect to
f3e as the level of correlation between f1e and f3e
varies. This illustrates that as the level of corre-
lation between the outputs drops so to does the
accuracy of the resulting multi-output prediction
until a single output model constructed from only
the f3e sample points is actually superior. This
is a rather crude illustration in that we consider
only one test function and ignore the impact of
sample density, location of sample points etc. But
nevertheless, it does illustrate that the level of cor-
relation between outputs has an important role to
play in the performance of a multi-output model.

Figures 1e and 1f extend this process to mul-
tiple levels of fidelity. Figure 1e presents multi-
fidelity predictions of f1e while Figure 1f presents
multi-fidelity predictions of f2e. As illustrated
in Figure 1e we have sampled f1e at x =
[0.0, 0.4, 0.6, 1] but in addition to this, and not
illustrated, we have sampled f1c at 11 equally
spaced locations over the design space. Figure
1f illustrates the two sample points for f2e at
x = [0.1, 0.4] and while also not illustrated
there are the four sample points for f2c at x =
[0.1250, 0.375, 0.625, 0.875]. When attempting to
predict f1e we therefore have a situation very sim-
ilar to the classic multi-fidelity Kriging example
illustrated in Forrester et al (2007) with a lot of
data for f1c and a smaller dataset for f1e. When
attempting to predict f2e the amount of data
available for both f2e and f2c has been reduced.
This in analogous to an engineer attempting to
reuse data from a previous multi-fidelity model of
f1e to inform a new multi-fidelity model of f2e
where less information is available, for example, at
the preliminary stages of a surrogate based opti-
mization. For ease of reference a summary of the
accuracy metrics for each prediction of f1e and f2e
are presented in Table 1. This includes the Pear-
son r2 correlation, root mean square error (RMSE)
and maximum absolute error (MAE).

As expected the multi-fidelity (MF) Kriging
model illustrated in Figure 1e produces an accu-
rate prediction of f1e resulting in a r2 of 0.999.
However, a single output multi-fidelity model con-
structed from only the f2c and f2e sample points
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(a) True response of f1e, f2e, f1c & f2c (b) Single fidelity Kriging & MO Kriging pre-
dictions

(c) Correlation between f1e & f3e with A (d)

(e) Predictions of f1e using MF, MO & MFMO
Kriging

(f) Predictions of f2e using MF, MO & MFMO
Kriging

Fig. 1: Figures illustrating the the true Forrester functions (a), a comparison of a single fidelity prediction
of the expensive functions using single fidelity ordinary Kriging and multi-output (MO) Kriging models
(b), the correlation between f1e and f3e with varying A (c), predictive accuracy of f3e with varying corre-
lation level between f1e and f3e (d) and predictions of the expensive functions using multi-fidelity (MF)
Kriging, multi-output Kriging and multi-fidelity multi-output (MFMO) Kriging modelling approaches
(e) and (f).
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Table 1: A summary of the accuracy of the surrogate models presented in Figures 1e and 1f.

f1e r2 %RMSE %MAE

MF Kriging 0.999 0.25 0.88
MFMO Kriging 0.995 2.19 5.07
MO Kriging (2× 2) 0.770 11.09 27.28
MO Kriging (4) 0.636 16.40 38.68

f2e r2 %RMSE %MAE

MF Kriging 0.171 19.22 60.02
MFMO Kriging 0.977 3.81 8.93
MO Kriging (2× 2) 0.793 10.56 26.27
MO Kriging (4) 0.513 30.38 105.83

results in a much poorer prediction with an r2 of
0.171. In this case there is very little data upon
which to build the inexpensive model resulting in
a poor prediction of f2c upon which to build the
difference model. As can be observed graphically
in Figure 1f, the resulting multi-fidelity model
does little to adjust the prediction from the simple
linear trend observed in the f2e sample points.

Using the multi-fidelity multi-output (MFMO)
Kriging model described in Section 2.4 we can
combine all of our sample data from each of the
four functions, f1e, f2e, f1c and f2c into a sin-
gle model and use this to predict both f1e and
f2e. Here the high level of correlation between
both the inexpensive and expensive data (and
therefore differences between them) results in a
significant improvement in predictive performance
for f2e achieving a r2 of 0.977. In this case,
the multi-output model of both the inexpensive
data and differences in inexpensive and expensive
responses are able to exploit the high correlation
between functions (as was observed in Figure 1b)
to produce a more accurate model of f2e. This
improvement in accuracy can be seen graphically
in Figure 1f.

We observed from Table 1 that the accuracy of
the MFMO predictor for f1e has dropped slightly,
achieving a r2 of 0.995. This is most likely a result
of the compromise the hyperparameter optimiza-
tion process has to make described previously, but
in this case, the impact of this is negligible.

As discussed previously, an alternative method
of including multiple levels of fidelity within a
single model is via the multi-output Kriging
model itself. In this case, the different levels of

fidelity can be modelled as different outputs. For
this particular example, there are two alternative
approaches. The inexpensive and expensive out-
puts can be modelled as one categorical variable
with four different outputs (MO Kriging(4)) or
as two categorical variables each with two out-
puts (MO Kriging(2 × 2)). The choice between
these approaches is effectively a trade-off between
model flexibility and complexity. The case with
four different outputs is more flexible as corre-
lations between all combinations are explicitly
parameterized but this increases the number of
hyperparameters to determine and therefore the
complexity of the hyperparameter optimisation.
Using two separate categories (MO Kriging(2 ×
2)) only requires two additional hyperparameters
compared to the six required for MO Kriging(4).
This difference in the number of parameters will
become more marked as the number of output lev-
els increases. Therefore, an important question for
the current article to address is whether or not the
additional flexibility offered by a more complex
parameterization is worth it.

In addition to the MFMO predictions, figures
1e and 1f illustrate the predictions of both of these
multi-output approaches. Once again the sample
data from all four functions, f1e, f2e, f1c and f2c,
is used in the construction of each model.

Focusing on the prediction of f2e, we observe
from Figure 1f and Table 1 that both of these
approaches perform better than the single output
multi-fidelity model. The MO Kriging(4) approach
achieves a r2 of 0.513 and the MO Kriging(2× 2)
approach achieves a r2 of 0.793. However, these
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predictions are significantly less accurate than
that of the MFMO approach.

While the performance of these two strategies
falls behind that of the MFMO Kriging approach
it is worth noting that the nature of this ana-
lytical function makes it rather difficult to apply
the simple and direct correlation that the MO
model assumes between parameters. The example
is constructed in such a way that the inexpensive
and expensive functions are poorly correlated and
that an additive term, the difference model in the
MF Kriging approach, is required to correct from
the inexpensive to expensive functions. Real world
engineering design optimization problems, how-
ever, may have a much greater correlation between
fidelities which such MO Kriging models may bet-
ter exploit. This will be explored with less bias in
the following engineering examples.

4 Multi-point Airfoil Design
Optimization

The first engineering optimization case study con-
siders the multi-point design optimization of a
family of four airfoils from the NASA supercriti-
cal series, the SC(2)-0610, SC(2)-0612, SC(2)-0712
and SC(2)-0710, illustrated graphically in Figure
2a. Multi-point, in the context of airfoil optimiza-
tion, refers to the optimization of an airfoil for
more than one particular flight condition, or oper-
ating point, simultaneously. It is common for an
airfoil optimized for one specific flight condition
to actually perform worse than the baseline at off-
design conditions. Considering multiple operating
points within the optimization is a simple way of
preventing this, see for example Szmelter (2001),
Nemec et al (2004) or Painchaud-Ouellet et al
(2006). Typically the multi-point optimization of
an airfoil is performed in isolation, the following
study therefore, not only explores the potential
of a multi-fidelity, multi-output Kriging approach
within an engineering optimization but the ability
to improve optimization performance by consider-
ing multiple airfoil problems simultaneously. This
is of practical interest if, for example, one were to
optimize a series of related airfoil sections across
the span of a wing in parallel.

In this case each of the four airfoils is anal-
ysed at four different design conditions, outlined in
Table 2, with the overall objective function equal

to the weighted summation of the drag coefficients
at each of these conditions i.e.,

Cdw =

4∑
i=1

wiCdi , (38)

where
∑4

i=1 wi equals unity. The weights
employed in this case study are also provided in
Table 2. It should be observed that the calcu-
lation of a weighted objective function, such as
that of equation 38, can be particularly sensitive
to failures in any of the constituent simulations.
This can reduce the amount of data available to
construct an accurate surrogate model.

The airfoil geometry is modified via a free form
deformation (FFD) approach where the y coordi-
nates of ten points (five on each of the second and
fourth rows of a control grid illustrated in Figure
2b) are varied by ±2.5% of the airfoil chord. This
results in a total of 10 design variables with the
baseline control grid and range of grid point move-
ment consistent between each of the four airfoils.
To simplify the problem in this particular airfoil
optimization there are no additional constraints
on either the pitching moment coefficient or the
aerofoil thickness.

The analysis of each design is performed using
the viscous Garabedian and Korn (VGK) solver
(Lock and Williams, 1987) which is attractive due
to its speed and accuracy (Toal and Keane, 2011).
A single airfoil simulation using VGK will take
approximately one second with 3-4 such analy-
ses required to determine the drag for a fixed lift
coefficient. The analysis of the weighted drag coef-
ficient for a single design can therefore typically
be completed within approximately 20 seconds.
This enables the optimization to be performed a
number of times to obtain a true picture of each
strategy’s performance.

As per the approach outlined by Toal and
Keane (2011) the simulation of each airfoil at
only the highest weighted operating condition, in
this case condition one in Table 2, is used as a
low fidelity version of the multi-point objective
function. A high fidelity objective function will
therefore simulate the airfoil at each of the four
conditions in Table 2 but the low fidelity objec-
tive function will use only the drag coefficient from
condition number one. Each high fidelity function
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Table 2: Definition of the operating conditions and weightings for the calculation of the multi-point drag
coefficient.

Condition Mach No. Required CL Reynolds No. Weight

1 0.7 0.45 6.3× 106 0.4
2 0.7 0.40 6.3× 106 0.2
3 0.7 0.50 6.3× 106 0.2
4 0.72 0.45 6.3× 106 0.2

(a) Supercritical airfoil geometries (b) Morphed SC(2)-0610 & FFD control grid

Fig. 2: Geometry for each of the four supercritical airfoils (a) and a morphed example of the SC(2)-0610
airfoil within the corresponding deformed FFD control grid.

evaluation is therefore the equivalent of four low
fidelity function evaluations.

The design optimization of each airfoil assumes
a total of 45 high fidelity simulations, the equiv-
alent of 25 of which are used to define the initial
sampling plan with the remaining 20 used to pro-
vide updates to the surrogate models in regions
of interest. In all of the case studies presented
here Matlab’s genetic algorithm (GA) using a pop-
ulation size of 200 is run for 1000 generations
to ensure the global optimum of each surro-
gate model’s predictor is located and used as
the update point. All other settings for the GA
remain as the Matlab defaults. For the multi-
fidelity approaches the high fidelity sampling plan
contains 12 points with the effort that would
have been expended calculating the remaining 13
designs instead used to make 52 low fidelity eval-
uations. It should be pointed out that due to

the nature of the weighted drag-coefficient cal-
culation, the low fidelity drag coefficient will be
calculated as part of the high fidelity evaluation.
There will therefore be an additional 12 ‘free’ low
fidelity data points available at the 12 high fidelity
locations. The multi-fidelity approach therefore
comprises of 64 low and 12 high fidelity data
points.

Given that the number of update cycles per
airfoil optimization is identical and the initial sam-
pling plans are equivalent in terms of simulation
cost, the total simulation cost is therefore identi-
cal across all of the optimizations performed here.
This is a recurring theme across each of the three
engineering case studies.

A total of five different surrogate modelling
strategies will be compared using each of the
three engineering case studies presented within
the current paper. For ease of reference, these
are outlined in Table 3. A single output ordinary
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Table 3: A summary of the considered surrogate modelling strategies.

Strategy Name Description

SO Kriging A single output ordinary Kriging model
MF Kriging A single output multi-fidelity Kriging model
MFMO Kriging A multi-fidelity, multi-output Kriging model
MO Kriging (x) A multi-output Kriging model consisting of one

categorical variable with x levels
MO Kriging (x× y) A multi-output Kriging model consisting of two

categorical variables with x and y levels respectively

Kriging approach, referred to as SO Kriging, is
used as a reference. In this approach only high
fidelity data is used to construct the surrogate
with independent models constructed for each
categorical variable level. The multi-fidelity Krig-
ing approach, referred to as MF Kriging, is used
as the baseline multi-fidelity surrogate modelling
approach. Employing both inexpensive and expen-
sive data an independent multi-fidelity model is
constructed for each categorical variable level.

The multi-output multi-fidelity Kriging
approach of Lin et al (2021), referred to here as
MFMO Kriging, employs both inexpensive and
expensive data but constructs a single model to
predict all outputs. It, therefore, combines the
sampling plans across each output in its construc-
tion. As discussed previously, this approach first
constructs a multi-output model of the inexpen-
sive data and then combines this with a second
multi-output difference model.

The final two approaches model the multiple
levels of fidelity via categorical variables instead
of via a difference model. However, the approach
taken to achieve this differs between them. The
strategy referred to as MO Kriging (x) models
all combinations of fidelity and discrete variables
within a single categorical variable and therefore
via a single correlation matrix, K. The x within
the name of this strategy refers to the number
of levels in the categorical variable. The second
approach, MO Kriging (x× y) models the fidelity
as a separate categorical variable to the discrete
design variable. There will therefore be two corre-
lation matrices, k, one x×x in size and the second
y × y.

Table 4 presents the accuracy of the surro-
gate models of the weighted drag coefficient for
each airfoil optimization problem. Accuracy in
each case is computed using a 2000 point optimal

Latin hypercube sampling plan which is indepen-
dent of the data used in the construction of the
surrogate models. As already demonstrated by
Toal and Keane (2011), a multi-fidelity approach
to predicting a weighted drag coefficient is supe-
rior to a single fidelity approach. For each of the
airfoil optimization problems the single output,
multi-fidelity Kriging approach results in a more
accurate surrogate model across all metrics than
a single fidelity approach.

The multi-output Kriging approaches all result
in a significant improvement in surrogate accu-
racy compared to the single output models. Of
the three models the two multi-output approaches,
where the fidelity is captured using a categorical
variable, tend to result in a slightly more accurate
surrogate model than the multi-fidelity multi-
output approach. Using two categorical variables,
one to indicate the baseline airfoil and a separate
variable to indicate the fidelity tends to result in
the highest r2 correlation across the four prob-
lems but defining a single correlation matrix for
all combinations (even with its relatively large
number of hyperparameters) tends to result in
the lowest root mean square error (RMSE) and
maximum absolute error (MAE).

Table 5 presents the results for each airfoil
optimization averaged over 20 different runs, each
commencing from a different design of experi-
ments. In each case, an optimal Latin hypercube
has been generated using a different random num-
ber seed using Matlab’s inbuilt lhsdesign func-
tion. No two DoEs are therefore the same and
the minimum Euclidean distance between any two
points over all DoE pairs is 0.197 where the design
variables have been normalized between 0 and 1.

For the three multi-output surrogate modelling
approaches the four airfoils are optimized in par-
allel i.e. for each update cycle the surrogate model
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Table 4: Accuracy of single, multi-output and multi-fidelity Kriging models for each multi-point airfoil
problem, metrics are averaged over 20 different sampling plans with the standard deviations shown in
brackets.

SC(2)-0610 r2 %RMSE %MAE

SO Kriging 0.304 (0.168) 14.72 (2.93) 65.91 (13.17)
MF Kriging 0.682 (0.190) 8.98 (2.62) 46.55 (11.40)
MFMO Kriging 0.761 (0.197) 9.27 (5.03) 41.40 (13.07)
MO Kriging (4×2) 0.759 (0.188) 8.39 (2.42) 44.49 (17.62)
MO Kriging (8) 0.747 (0.196) 7.65 (2.87) 42.62 (19.19)

SC(2)-0612 r2 %RMSE %MAE

SO Kriging 0.433 (0.252) 10.96 (3.08) 65.16 (7.11)
MF Kriging 0.717 (0.182) 7.65 (2.25) 49.94 (9.61)
MFMO Kriging 0.800 (0.195) 7.84 (4.47) 52.77 (8.68)
MO Kriging (4×2) 0.805 (0.180) 7.13 (1.86) 54.28 (13.10)
MO Kriging (8) 0.784 (0.184) 6.30 (2.17) 53.32 (12.75)

SC(2)-0712 r2 %RMSE %MAE

SO Kriging 0.676 (0.259) 9.90 (4.29) 41.36 (15.52)
MF Kriging 0.860 (0.194) 6.21 (2.99) 32.22 (10.08)
MFMO Kriging 0.865 (0.208) 8.32 (6.72) 29.13 (12.83)
MO Kriging (4×2) 0.889 (0.206) 7.16 (2.45) 29.04 (9.58)
MO Kriging (8) 0.876 (0.209) 5.37 (3.03) 24.00 (10.28)

SC(2)-0710 r2 %RMSE %MAE

SO Kriging 0.654 (0.219) 10.27 (3.99) 50.74 (9.96)
MF Kriging 0.814 (0.196) 7.28 (3.35) 44.89 (10.94)
MFMO Kriging 0.852 (0.205) 8.23 (5.78) 39.10 (10.41)
MO Kriging (4×2) 0.868 (0.201) 6.72 (2.61) 42.07 (11.77)
MO Kriging (8) 0.850 (0.211) 6.07 (3.27) 34.67 (11.36)

Table 5: Average percentage reduction in weighted drag coefficient for each multi-point airfoil optimiza-
tion problem taken over 20 independent optimization runs. Standard deviation in reduction presented in
brackets.

SC(2)-0610 SC(2)-0612 SC(2)-0712 SC(2)-0710

SO Kriging 2.62 (0.266) 3.12 (0.416) 3.78 (0.212) 3.59 (0.367)
MF Kriging 2.59 (0.225) 3.17 (0.320) 3.66 (0.232) 3.61 (0.244)
MFMO Kriging 2.64 (0.183) 3.29 (0.201) 3.79 (0.231) 3.64 (0.121)
MO Kriging (8) 2.64 (0.251) 3.35 (0.257) 3.86 (0.216) 3.71 (0.129)
MO Kriging (4×2) 2.60 (0.295) 3.31 (0.340) 3.85 (0.242) 3.65 (0.200)

is used to find the best design for each airfoil.
This results in a total of four simulations being
performed at each update but the total simula-
tion effort is identical to that of four independent
optimizations of each airfoil.

For each airfoil optimization the multi-output
surrogate modelling strategies produce the great-
est reduction in weighted drag coefficient with the
MO Kriging approach using a single categorical
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(a) SC(2)-0610 search histories (b) SC(2)-0612 search histories

(c) SC(2)-0712 search histories (d) SC(2)-0710 search histories

Fig. 3: Average search histories for the 10 variable airfoil optimization using single and multi-output
surrogate modelling approaches for the SC(2)-0610 (a), SC(2)-0612 (b), SC(2)-0712 (c) and SC(2)-0710
(d) airfoil optimizations respectively

variable performing the best on three of the four
problems.

Figure 3 presents the optimization histories for
each of the airfoil problems averaged over the 20
runs. To simplify the plots only the weighted drag
coefficients of the update evaluations are plot-
ted here. These plots reinforce the performance
advantage of a multi-output approach over a sin-
gle output approach in all cases. The superiority
of a pure multi-output approach compared to a
multi-fidelity multi-output approach in terms of
both rate of convergence and final design quality
is demonstrated clearly in Figures 3b, 3c and 3d.

5 Vibrating Truss
Optimization

The second engineering optimization problem con-
siders the design of a vibrating 2D truss similar
to that found in a satellite structure. Taken from
Nair and Keane (1999), the geometry of the 2D
truss illustrated in Figure 4 is modified in order
to minimize the band-averaged vibration attenua-
tion at the tip of the truss. The truss is modelled
as a set of 42 Euler-Bernoulli beams each defined
by two finite elements. The leftmost nodes are
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assumed to be encastre and a unit force excita-
tion is applied to node one (highlighted with the
diamond in Figure 4) over a 100-200Hz frequency
range. The x and y coordinates of the remaining
numbered nodes in Figure 4 are permitted to vary
within a 0.9×0.9 box centred on the node, result-
ing in a total of 40 design variables. In addition
to the geometric parameters a categorical variable
has been introduced, the choice of material, which
alters the properties of all of the beams within
the model. In this case, a total of three differ-
ent materials are considered steel, aluminium and
titanium. Apart from the design variable bounds
this optimization problem is unconstrained.

This particular engineering problem (exclud-
ing the consideration of material choice) has been
used a number of times within the literature to
test the performance of optimization algorithms.
The complexity of the resulting design space (Toal
and Keane, 2012) coupled with the relatively low
simulation cost provides a realistic, relatively high
dimensional, structural design problem for which
enough cases can be run to gain confidence in the
resulting performance comparisons.

The calculation of the band-averaged vibration
attenuation is performed in the range 100-200Hz
with a step size of 1Hz. In order to create a low
fidelity version of this objective function the step
size has been increased to 4Hz resulting in a sim-
ulation approximately one quarter the cost of the
original high fidelity simulation.

Table 6 presents the resulting surrogate model
accuracy when the five modelling approaches are
considered. In this case a 200 point sampling plan
of only the expensive function is used for the sin-
gle output Kriging model while a sampling plan
consisting of 100 expensive and 400 inexpensive
evaluations is used for each multi-fidelity case.
A separate sampling plan has been defined for
each material choice with the multi-output mod-
els combining the sampling plans across all three
materials. Due to a combination of sampling plan
size and problem dimensionality, the results are
averaged over only 10 different cases.

For the single output modelling strategies the
multi-fidelity approach results in a more accu-
rate surrogate model across all metrics for each
of the three materials. Of the multi-output mod-
elling approaches both the multi-fidelity and two-
category multi-output approach result in surro-
gate models with an improved accuracy over the

multi-fidelity single output approach for each of
the three materials. The single category multi-
output approach, however, appears to struggle
in each case producing surrogate models which
perform worse than the baseline single output
Kriging model. This result is rather curious as
one would expect the additional data and the
relatively high level of correlation between the
results of each material to result in a performance
improvement. However, the number of additional
hyperparameters in this formulation compared to
the two-category model is significant. In terms of
overall surrogate model prediction accuracy the
multi-fidelity multi-output Kriging model is the
clear winner across all categories.

The optimization strategy adopted here
employs a total of 30 update iterations where at
each point the predicted optimum for each of the
three materials is evaluated using the expensive
FE simulation. For the single output surrogates
each optimization is performed independently and
there is no transfer of information between the
material problems. For the multi-output models,
all three of the new data points calculated at
each update cycle are appended to the overall
data set. The prediction of the design space at
each iteration is therefore impacted by the updates
across all three materials from the preceding iter-
ations. Given the expense of constructing the
surrogate models at each iteration, the results are
restricted to being averaged over five independent
optimizations.

Table 7 presents the average results of these
optimizations for each of the five surrogate mod-
elling approaches while Figure 5 presents the
average search histories for each update iteration.

The optimization of the steel truss shows a
moderate performance improvement when adopt-
ing a single output multi-fidelity approach. In this
case, the multi-fidelity approach offers a more
rapid initial rate of performance improvement
and a noticeably better final design. The perfor-
mance advantage for the other materials is not
quite as clear-cut. For aluminium, the rate of
convergence is relatively similar as the optimiza-
tion progresses with the single fidelity approach
producing a slightly better final design. For tita-
nium, again the rate of convergence is similar but
this time the multi-fidelity approach offers slightly
more design improvement.
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Fig. 4: An illustration of the baseline truss geometry recreated from Toal and Keane (2012).

All three multi-output approaches, where the
data from all three material optimizations has
been combined, offer a considerable improvement
in optimization performance, resulting in similar
final designs. However, on two out of the three
material optimizations the two pure multi-output
approaches, where the simulation fidelity is rep-
resented within a categorical variable rather than
via a difference model, perform better. The excep-
tion is for steel where the MFMO Kriging strategy
produces the best design on average.

The optimization histories presented in Figure
5 illustrate that over the initial few updates the
additional predictive accuracy offered by both the
MFMO Kriging and MO Kriging (3 × 2) strate-
gies leads to a more rapid improvement in design
performance than for the MO Kriging (6) strat-
egy. However, after approximately 10 updates this
strategy has reached or surpassed the level of

improvement achieved by the other two. This sug-
gests an improvement in the predictive accuracy of
this particular model as the optimization has pro-
gressed and indeed by the end of the optimization,
the surrogate model produced using the MO Krig-
ing (6) strategy has a r2 of 0.467, 0.478 and 0.499
when predicting, respectively, steel, aluminium
and titanium. This is much closer to the predic-
tive accuracy of the MFMO Kriging approach, for
example, which achieves r2 of 0.506, 0.522 and
0.538 for the same materials.

6 Combustor Optimization

The final engineering design problem concerns the
optimization of a gas turbine combustor. Based
on the problem outlined by Toal et al (2021), the
porting arrangement of the combustor illustrated
in Figure 6 is optimized in order to minimize the
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Table 6: Accuracy of single and multi-output co-Kriging models for the 40 variable truss problem, metrics
are averaged over 10 different sampling plans with standard deviations in brackets.

Steel r2 %RMSE %MAE

SO Kriging 0.331 (0.044) 10.47 (0.632) 52.02 (4.946)
MF Kriging 0.428 (0.029) 9.59 (0.269) 47.11 (3.023)
MFMO Kriging 0.502 (0.014) 8.70 (0.136) 42.65 (1.702)
MO Kriging (3×2) 0.460 (0.065) 9.01 (0.511) 45.17 (2.234)
MO Kriging (6) 0.226 (0.199) 11.11 (1.887) 55.32 (9.067)

Aluminium r2 %RMSE %MAE

SO Kriging 0.314 (0.063) 10.85 (0.730) 52.85 (5.774)
MF Kriging 0.452 (0.023) 9.56 (0.296) 46.46 (3.000)
MFMO Kriging 0.523 (0.013) 8.63 (0.074) 44.34 (1.567)
MO Kriging (3×2) 0.477 (0.073) 8.99 (0.588) 46.08 (3.956)
MO Kriging (6) 0.233 (0.201) 11.18 (1.877) 52.62 (6.335)

Titanium r2 %RMSE %MAE

SO Kriging 0.381 (0.069) 10.07 (0.676) 49.55 (4.677)
MF Kriging 0.444 (0.034) 9.60 (0.306) 49.05 (5.444)
MFMO Kriging 0.534 (0.012) 8.58 (0.115) 42.92 (2.556)
MO Kriging (3×2) 0.504 (0.063) 8.83 (0.541) 44.32 (2.862)
MO Kriging (6) 0.277 (0.187) 10.71 (1.508) 52.63 (6.754)

Table 7: Optimization results for each material from a 40 variable design optimization employing single
and multi-output surrogate modelling strategies averaged over five optimizations with standard deviations
presented in brackets.

Steel Aluminium Titanium

SO Kriging -38.39 (4.50) -33.07 (3.88) -34.71 (3.69)
MF Kriging -40.15 (5.57) -32.32 (4.47) -36.73 (2.63)
MFMO Kriging −46.01 (4.39) -38.60 (3.59) -43.06 (3.05)
MO Kriging (3×2) -44.76 (3.36) -39.11 (3.67) -43.40 (3.56)
MO Kriging (6) -45.46 (3.77) −39.40 (3.00) −44.94 (3.09)

production of NOx. In this case there are a total
of eight design variables. Each of the four rows
of ports are permitted to move axially with the
radius of the ports in each row also free to vary.
In addition to these eight variables two different
port topologies are considered. One in which there
are no chutes present on any of the ports, as illus-
trated in Figure 6a, and one in which there are
only chutes present on the initial row of ports on
both the inner and outer walls (see Figure 6b).
Other than the variable bounds there are no addi-
tional constraints on this particular optimization
problem.

As per the approach outlined by Toal
et al (2021), manipulation of the geometry is
achieved via a parameterization implemented
within Siemens NX. The Prometheus combus-
tor design system (Zhang et al, 2014) is used to
automatically extract an appropriate CFD fluid
volume and define an appropriate meshing strat-
egy. In this case the CFD mesh is generated using
ICEM CFD with the simulation then performed
using the proprietary Rolls-Royce CFD package,
PRECISE-UNS (Anand et al, 2013). The K-ε
realizable turbulence model is used with each sim-
ulation running for a total of 5000 iterations. Fuel
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(a) Steel search histories (b) Aluminium search histories

(c) Titanium search histories

Fig. 5: Average search histories for the 40 variable truss optimization problem using single and multi-
output surrogate modelling approaches for steel (a), aluminium (b) and titanium (c).

(a) Without chuted ports (b) With chuted primary ports

Fig. 6: Gas turbine combustor geometry without chuted ports and within only primary ports chuted.
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is introduced into the model after 500 iterations
with ignition occurring after 600. Combustion
is modelled via the flamelet-generated manifold
technique with a constant set of velocity profiles
provided at the annuli and swirler inlets. Sim-
ulation conditions are representative of a 100%
throttle condition in a large civil airliner gas
turbine engine.

In order to alter the fidelity of the simulation
the density of the underlying mesh is varied using
the ICEM CFD scripts. A high fidelity simulation
consists of approximately 17.0M elements while a
low fidelity equivalent consists of approximately
3.5M elements. This results in a 5:1 cost ratio
i.e. for each high fidelity simulation it is possible
to perform five low fidelity simulations (including
both meshing and simulation effort). The change
in simulation fidelity naturally has an impact on
the accuracy of the simulation results. Across the
design space the low fidelity prediction of NOx,
for example, is reasonably well correlated with
the high fidelity prediction giving an r2 of 0.924
but with a RMSE of approximately 7.2%. While
providing a reasonable prediction of trend, the
precise level of NOx production, something which
is required for certification reasons, is not some-
thing which the low fidelity model can be relied
upon to provide. This is, of course, what we are
aiming to correct using our multi-fidelity surrogate
modelling approaches.

Each high fidelity CFD simulation is naturally
significantly more expensive than the airfoil and
truss simulations used in the previous engineer-
ing test problems. Running enough simulations to
gain appropriate statistics upon which to judge
the performance of each of the surrogate modelling
strategies therefore becomes difficult. Instead, and
as per Toal et al (2021), a single large sampling
plan is defined and used to construct a relatively
accurate surrogate model of NOx for each fidelity
and port topology. This surrogate model is then
used as the basis for the subsequent surrogate
based design optimizations. In this case a sam-
pling plan consisting of 560 CFD simulations is
performed for each simulation fidelity and port
topology, the results from which are used to cre-
ate a Kriging based surrogate model using the
CM02 toolbox. The sampling plan used here is
an optimal Latin hypercube generated using Mat-
lab’s lhsdesign function. The accuracy of each of

these models is calculated via leave-one-out cross
validation and presented in Table 8.

Table 9 presents the prediction accuracy of
each of the five surrogate modelling strategies for
both combustor port topologies. For the single
output Kriging model a 20 point sampling plan
is defined for each port topology. For the multi-
fidelity modelling approaches the sampling plan
consists of 10 expensive simulations and 50 inex-
pensive simulations. The sampling plan simulation
effort is therefore identical between the single and
multi-fidelity approaches. The results presented in
Table 9 have been averaged over 50 different sam-
pling plans where all ‘simulations’ are evaluated
using the surrogate models presented in Table 8.
Prediction accuracy is determined using a sepa-
rate 8000 point optimal Latin hypercube sampling
plan.

As expected the single output multi-fidelity
approach offers a more accurate prediction than
the single output, single fidelity approach. The
multi-output approaches, combining the sampling
plans from both port topologies, however, offer the
best-performing surrogate models across all met-
rics. In this particular engineering example, the
multi-output surrogate modelling approach where
two separate categorical variables is employed
(MO Kriging (2 × 2)) performs noticeably bet-
ter than all of the other strategies. This strategy
is closely followed by the multi-output Kriging
strategy employing a single combined categorical
variable (MO Kriging (4)).

Table 10 and Figure 7 present the optimiza-
tion results for each of the five surrogate modelling
strategies. Each optimization commences from
either a 20 point sampling plan of the expensive
function or 10 and 50 point sampling plans of
the expensive and inexpensive functions respec-
tively. A total of 20 update cycles are performed
with an optimal design for each port topology
evaluated each time. Figure 7 presents the search
history for each optimization averaged over 50
independent optimization runs while Table 10
presents the average reduction in NOx over the
50 optimizations. It should be noted that the per-
centage reduction in NOx is relative to each port
topology’s baseline performance.

In the optimization of both port styles the
multi-output approaches tend to result in a bet-
ter performing final design. The performance of
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Table 8: Accuracy of the surrogate models of raw CFD data used within the subsequent design
optimization and surrogate accuracy studies.

Port Topology Simulation Fidelity r2 %RMSE %MAE

Without Chutes High Fidelity 0.8171 7.36 31.79
Without Chutes Low Fidelity 0.837 6.39 45.49
Primary Chutes Only High Fidelity 0.892 6.98 43.02
Primary Chutes Only Low Fidelity 0.876 7.79 25.37

Table 9: Accuracy of single, multi-output and multi-fidelity Kriging models for each of the 8 variable
combustor problems, metrics are averaged over 50 different sampling plans with standard deviations
presented in brackets.

Without Chutes r2 %RMSE %MAE

SO Kriging 0.448 (0.154) 20.81 (3.30) 87.22 (15.22)
MF Kriging 0.627 (0.078) 16.89 (2.05) 79.66 (12.12)
MFMO Kriging 0.626 (0.087) 17.17 (2.50) 79.97 (13.31)
MO Kriging (2×2) 0.688 (0.058) 15.27 (1.58) 78.26 (11.62)
MO Kriging (4) 0.626 (0.116) 16.69 (2.48) 82.04 (11.88)

With Primary Chutes r2 %RMSE %MAE

SO Kriging 0.591 (0.129) 18.50 (3.08) 72.03 (10.11)
MF Kriging 0.624 (0.107) 18.66 (2.88) 72.58 (9.93)
MFMO Kriging 0.670 (0.083) 16.86 (2.41) 67.34 (8.92)
MO Kriging (2×2) 0.734 (0.078) 14.99 (2.02) 60.97 (9.75)
MO Kriging (4) 0.703 (0.114) 15.33 (2.75) 59.47 (8.27)

(a) Search histories without chutes (b) Search histories with chutes

Fig. 7: Search histories for the 8 variable combustor optimization problem, without chutes (a) and with
primary chutes present (b), averaged over 50 different optimizations.
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Table 10: Optimization results (percentage reduction in NOx) for each combustor topology from
the 8 variable combustor optimization problem employing single and multi-output surrogate modelling
strategies (results averaged over 50 optimizations with standard deviations in brackets).

Without Chutes With Chutes

SO Kriging -23.73 (0.014) -17.78 (0.010)
MF Kriging -23.12 (0.015) -17.98 (0.010)
MFMO Kriging -23.51 (0.015) -18.26 (0.008)
MO Kriging (2×2) −24.35 (0.003) −18.60 (0.005)
MO Kriging (4) -24.21 (0.005) -18.29 (0.005)

the single output approaches appears to be some-
what problem dependent. For the case where no
chutes are present the single output Kriging model
eventually results in a better design than the
multi-fidelity Kriging model even though the bet-
ter accuracy of the multi-fidelity model appears
to produce an initial faster rate of convergence.
Interestingly, in the case of the multi-fidelity
multi-output Kriging model, performance is ini-
tially on a par with that of the other multi-output
models but decays after 6-7 update cycles and
eventually performs slightly worse than the sin-
gle output Kriging model. This coupled with the
poorer than expected performance of the multi-
fidelity model suggests a poor correlation between
fidelity levels for this particular problem which
may limit the performance of a traditional multi-
fidelity approach. The multi-output approaches,
where the fidelity level is included as part of
the categorical variable(s) are able to better tune
the correlation between the fidelity levels to take
this into account thereby outperforming the other
approaches.

For the second chute topology, where chutes
are only present on the primary ports, the story
is slightly different. The multi-output approaches
are the best performing strategies. The single
output multi-fidelity Kriging approach marginally
performs better than the single output Kriging
approach suggesting that, in this case, the pres-
ence of the inexpensive data can be exploited.
The multi-output Kriging approach where port
topology and fidelity are treated as separate cat-
egorical variables, however, performs noticeably
better than the other four strategies.

7 Conclusions

The current article has investigated the per-
formance of three different multi-output, multi-
fidelity Kriging surrogate modelling strategies
with respect to both their predictive and opti-
mization performance on three very different engi-
neering design problems. The mathematics and
modelling philosophy behind each approach has
been explained in full and an adjoint of the like-
lihood function for both single and multi-fidelity,
multi-output Kriging, has been presented for the
first time.

Overall the results on each of the engineer-
ing case studies demonstrate the viability of a
multi-fidelity, multi-output approach to engineer-
ing design optimization when faced with either
categorical variables or topological decisions. The
multi-point airfoil design optimization demon-
strated that, through a multi-output approach,
multiple airfoils from the same family could be
optimized more effectively in parallel rather than
in series. The truss attenuation optimization case
study demonstrated that multi-fidelity, multi-
output modelling, could be employed to capture
the impact of a material choice and accelerate
the design optimization of a structural optimiza-
tion problem. Finally, the combustor optimization
problem demonstrated that a multi-output, multi-
fidelity approach could accelerate the design opti-
mization of a gas turbine combustion system when
presented with a topological decision, in this case
the presence or absence of chuted ports.

Of the three multi-output, multi-fidelity
approaches compared, the results across all three
case studies demonstrated that a pure multi-
output modelling approach, where the fidelity is
considered as a level within a categorical variable,
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is a viable alternative to a more traditional multi-
fidelity approach employing a difference model. In
a number of cases, both surrogate model accuracy
and optimization performance were better when
using a multi-output predictor approach. There is,
however, an important caveat to place on this gen-
eral conclusion in that the multi-output modelling
approach generally requires a high level of correla-
tion between both low and high fidelity responses.
If when moving between output fidelities there is
a significant enough shift in the physics modelled
to result in a reduction in correlation, a more tra-
ditional approach, employing a difference model,
may, in fact, be more appropriate. The three case
studies presented within this article, with perhaps
the exception of the combustor case, exhibit rela-
tively high levels of correlation between fidelities
which the multi-output approach can exploit. It
should, of course, be noted that even a difference
model approach can in some circumstances fail if
the differences between fidelity levels cannot be
accurately modelled given the potentially limited
amount of data available (Toal (2015)).

Of the two purely multi-output modelling
approaches investigated, overall optimization per-
formance appears to be better when including
all combinations of the simulation outputs within
a single categorical variable. For the airfoil case
study this amounted to a total of eight levels
within the categorical variable; two levels of sim-
ulation fidelity for each of the four airfoils. While
this offers the greatest flexibility in terms of mod-
elling correlations between data sets it also results
in a significantly higher number of hyperparam-
eters to optimize. In this case, it may be that
the relatively large designs of experiments (DoEs)
used in these case studies simplify the hyper-
parameter optimization and a combination of a
smaller DoE size and more levels per category
would cause a degradation in performance.

Not addressed within this paper is the poten-
tial for switching between single output and multi-
output models as an optimization progresses. This
could potentially offer an improvement in overall
optimization performance by, for example, exploit-
ing multiple categories at the beginning of an
optimization when data is sparse and then the
more precise hyperparameters of a single output
model when there is more data. An evaluation

of each model’s accuracy via leave-one-out cross-
validation would enable the optimizer to use the
most accurate model at every stage.

As demonstrated using the simple 1D Forrester
function in Section 3, the multi-output Kriging
formulation requires the outputs to be well cor-
related in order to offer a better prediction than
separate single output Kriging models. However,
it is feasible that the level of correlation between
outputs could vary across the design space. While
this aspect is not actively addressed within the
current article the literature does suggest poten-
tial mechanisms in which this could be accounted
for. Snoek et al (2014) suggest, for example, the
use of a beta distribution to warp the spaces so
that they are better correlated which results in
an improvement in the predictive accuracy of a
multi-output Kriging model. Warping the design
space in such a manner may also help to prevent
the compromise in the hyperparameters that can
occur as the amount of sample data increases.
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