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Abstract

UNIVERSITY OF SOUTHAMPTON
ABSTRACT
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Doctor of Philosophy

DEVELOPMENT, CHARACTERISATION AND ANALY SIS OF NARROW
LINEWIDTH, SINGLE-FREQUENCY DFB FIBRE LASERS IN THE
1.5 um — 2 um REGION

by Nyuk Y oong Voo

The main aim of this study was to investigate the anomalous linewidth behaviour of
the DFB fibre lasers, as the observed linewidths of these lasers remain far above their
predicted theoretical limit based on the Schawlow-Townes linewidth formula
Narrow linewidth, single-frequency fibre lasers are attractive sources for optical
coherent communication, wavelength division multiplexing, optica sensors and
spectroscopy, as they have kilohertz linewidths, direct compatibility with the fibre
network, wavelength tunability and are simple to fabricate. Another aim of the study
was to extend the operating wavelength of the fibre DFB lasers around 2 um, this
research was driven by the number of possible applications in areas such as remote
gas sensing, laser imaging detection and ranging (LIDAR) and medicine.

Er’*-Yb® DFB fibre lasers showed that not only does the laser linewidth deviate
from the Schawlow-Townes linewidth formula, by increasing with pump and laser
power, but it also varieswith the pump configuration. It was found that the backward
pumping scheme has the lowest threshold and highest efficiency, while the dual-
pumping scheme was the worst in these aspects. The lowest linewidth operation was
actualy obtained with the dual-pumping configuration. The variations in laser
linewidth were 25-40 kHz. Then, the anomalous linewidth was found to be caused by
the fundamental thermal noise at low pump power levels and by temperature
fluctuations, induced by pump intensity, at higher powers, which in turn leads to
refractive index fluctuations and, thus, to the laser frequency jitter. Some of the
potential techniques to overcome the linewidth limitations were experimentally
investigated and good agreement was observed. The double phase shifts DFB laser
showed a reduction in lasing wavelength shift, as compared with the single phase
shift design, for similar laser efficiencies. This suggests that the wavel ength shift was
not only due to the absorbed pump power but was also affected by the signal
intensity distribution in the cavity. A 10% decrease in the laser linewidth with the 5
mm apart phase shifts laser was observed in the backward pumping configuration.

A Tm* co-doped DFB fibre laser operated at 1836 nm, the longest reported
operating wavelength, was in-band pumped at 1565 nm and gave an output power of
5 mW with a slope efficiency of 1%. With the MOPA configuration, the laser output
was amplified, with 1 m of amplifier fibre, to 345 mW. A Ho**-doped DFB fibre
laser was designed to operate at 2140 nm. However, neither the pump wavelength at
1119 nm nor at 1836 nm managed to make it lase. The reasons could be due to
concentration quenching resulting from a high concentration of the Ho® in the fibre,
a nonradiative transition in the 2 um region and also the large intrinsic losses of the
silicafibre associated with the 2.1 pm wavelength.
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Chapter 1 Introduction

Chapter 1

| ntroduction

Narrow-linewidth, single-frequency lasers are attractive sources for optical coherent
communications, wavelength division multiplexing, optical fibre sensors and high-
resolution spectroscopy. Single-frequency fibre lasers are promising alternatives to
semiconductor lasers as they have kHz linewidths, direct compatibility with the fibre
network, wavelength tunability and are simple to fabricate. The single frequency
operation of fibre lasers has been demonstrated in: fibre ring lasers [1], linear cavity
fibre lasers with a narrow filter [2], distributed Bragg reflector (DBR) fibre lasers 3,
4] and distributed feedback (DFB) fibre lasers [5] and aso in the Fabry-Perot type
lasers by making the cavity extremely short <1 mm [6]. The research described here
aims to develop compact sources with a narrow linewidth, low noise and good

wavelength stability, suitable for high-end applications.

Laser linewidths of < 10 kHz have been reported in the Er3+-doped fibre ring-lasers
[1, 7]. In [1] the single-frequency of the laser was obtained by maintaining the
polarisation of the mode. Single-mode operation in the fibre ring cavity can be
achieved with the Fabry-Perot filter [7]. Lasing is easy to obtain in the fibre ring-
laser with alow Er®" concentration fibre in which the gain medium must be very long
(typically longer than 10 m) to produce enough gain. Owing to the long cavity

length, this also gives narrow linewidths. However, the long cavity length results in




Chapter 1 Introduction

closely spaced multiple longitudinal modes. This can severely limit their applications
due to multimode oscillation and mode hopping. In addition, the length of the cavity
is susceptible to thermal drift and this will cause long-term mode hopping, even with
a combination of filters inside the ring-cavity to suppress the mode hopping [8].
M ode hopping can be eliminated by actively stabilising the laser through dithering of
the cavity length using a piezoelectric transducer (PZT) fibre stretcher controlled by
feedback from the output of the laser [9]. However, this solution makes the laser
design become more compl ex.

Recently, a single-frequency ytterbium (Yb>") fibre laser was demonstrated based on
a linear cavity in which a narrow bandwidth filter is used to select the single
longitudina mode and the dual-cascaded fibre Bragg gratings act as an output
coupler [2]. Single-mode operation of this laser was achieved by using a saturable
absorber, a section of unpumped gain fibre, in which counter-propagating waves
formed an interference pattern that generated a dynamic Bragg grating at 1064 nm.
The cavity length of this laser was about 1 m and an output power of 18 mW was
obtained with a pump power of 107 mW at 976 nm. The mode stability of this laser
was limited at high pump power due to the spatial hole burning caused by the high

intensity in the cavity.

One can also obtain single-frequency operation in Fabry-Perot-type lasers by making
the cavity extremely short < 1mm. Single-longitudinal mode operation is obtained,
with the mode spacing in the resonator relatively larger than the gain bandwidth, so
that only one mode acquires sufficient gain to reach lasing threshold. A 100-um long
erbium-ytterbium (Er¥*-Yb**) phosphate-glass fibre Fabry-Perot laser, operating at
1535 nm was demonstrated with a two-mirror laser resonator design [6]. Due to a

short cavity length, the output power of this laser was very low (~ 20 uW).

Robust single-longitudina mode operation without mode hopping has been
demonstrated in the DBR [3, 4, 10-13] and DFB [5, 14, 15] fibre lasers. Very narrow
laser linewidth of afew tens of kilohertz and a low relative intensity noise of <-140
dB/Hz in the megahertz region have been reported for both cavity designs[3, 13, 14].

The construction and operation of these lasers is much simpler than the fibre ring
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lasers and linear cavity design. Unlike thering fibre lasers and linear cavity, in which
the laser wavelength was defined by a filter such as an interference filter [1], afibre
Fabry-Perot filter [7] or auto-tracking filter [2]. In the DBR and DFB fibre lasers, the
laser wavelength is determined by the ultraviolet (UV) written Bragg gratings and it
can be accurately set to < 0.1 nm during manufacture and has a low sensitivity to
temperature (~10 pm/K). DBR fibre lasers are only robustly singlefrequency
provided that the grating bandwidth is kept below ~0.2 nm and the laser length is
reduced to afew centimetresto increase the axial mode spacing.

DFB fibre lasers integrate a single grating over the entire cavity for feedback and
wavelength determination. The advantage of the geometry of the DFB design, as
compared with the DBR design in which the two Bragg gratings are separated by a
gain section, is that it can be made shorter to provide robust single-mode operation.
In addition, the DFB fibre lasers are more environmentally stable than the DBR fibre
lasers as the thermal response of the Bragg wavelength of the two reflectors of the
DBR varied dightly and also the wavelength of the reflectors varied dightly as a
function of grating exposure. Hence it is this type of DFB fibre laser source that we
consider here and also because the fibre DFB lasers have shown flexibility in the
pumping conditions and pump redundancy by configuring them in a parallel array
[16].

To date, the observed linewidths of these fibre lasers remain far above their
theoretical limit predicted, based on the Schawlow-Townes linewidth formula, to be
just 60 Hz or less [12]. One common suggestion for this excess phase noise is due to
the environmental perturbations, such as external vibration and acoustic noise, to
which the fibre laser may be more susceptible. Experimental investigation of the
linewidth characteristics of the Er**-Yb®* DFB fibre lasers is conducted to find the
main cause of the excess phase noise. Also, most of the work has been concentrated
in developing the single-frequency fibre lasers at the 1.5 um wavelength region for
applications related to optical communications, to gas sensors and to high resolution
spectroscopy. The development of laser sources operating around the 2 um ‘eye-
safe’ region has also started to gather pace, mainly driven by a number of possible

applications in areas such as remote gas sensing, laser imaging detection and ranging
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(LIDAR) and medicine. The single-frequency DFB fibre laser in the 2 um region is
sill under development. Therefore, we aso aimed to extend the operating
wavelength of the DFB fibre lasers around 2 um using thulium (Tm) and holmium

(Ho) asthe gain medium.

1.1 Developments of the single-frequency fibre lasers
with Bragg gratings

This section gives a brief history of the development of the single-frequency fibre
lasers with Bragg gratings. Short-cavity single-frequency fibre lasers have been a
topic of continued interest since the early work of Ball et al. on erbium-doped
distributed Bragg reflector fibre lasers [3]. Currently, the singlefrequency fibre
Bragg grating lasers operating in the spectral region of 1 um have been demonstrated
with ytterbium (Yb®") and neodymium (Nd**) as the gain medium. In the 1.5 pm
region, the gain medium used was erbium (Er®"). The single-frequency DFB fibre
lasers operating at ~2 um based on thulium (Tm3+) dopant have been demonstrated.
The advances in the laser cavity designs of the DFB fibre lasers are also included in
this chapter.

Most of the research activities in single-frequency fibre lasers has been concentrated
in the wavelength region around 1.5 um, as it is the key component of the optical
communication systems such as wavelength division multiplexed (WDM) networks.
The first Er3+-doped DBR silica fibre laser was demonstrated by Ball et al. in 1991
[3]. It consisted of a 50-cm long Er**-doped fibre with two discrete Bragg grating
reflectors on opposite ends of the fibre. For a robust single-mode operation, the
cavity needs to be sufficiently short so that the mode spacing is comparable to the
grating bandwidth. For a grating bandwidth below ~0.2 nm, it is desired to have a
mode spacing of the order of 10 GHz, i.e. cavity length of the order of 1 cm. The
concentration of the Er®" is limited by the germanosilicate glass host, so it is
necessary to keep the Er** concentration below 100 ppm to reduce ion-pair
guenching. Combining these practical limits meant that pump absorption in the
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cavity length was low and as a result the output power, for a cavity length of only a
few centimetres long, was limited to about 200 uW [10, 11, 14]. This power can be
boosted using the residual pump in the master oscillator power amplifier (MOPA)
configuration [11, 14]. An output power of 60 mW was obtained with a fibre length
of 19-m in a Er**-doped fibre amplifier [11]. However, the amplified spontaneous
emission from the amplifier increased the output noise. This fundamental problem
was then solved by, Kringlebotn et al., co-doping the Er®* -doped fibre with Yb**
[17]. This increases the pump absorption at 980 nm by more than two orders of
magnitude and thus enhances the laser efficiency operation of centimetre long lasers
with relatively low Er** concentration [4, 17]. The pump excites the Yb*" ions which
then transfer their energy to the Er* jons by resonant coupling. An output power of
19 mW for 100 mW pump power was achieved with a 2-cm long Er¥*-Yb*" -doped
fibre [4]. However, for efficient Er*-Yb®* -doped devices, fibres require a
phosphosilicate host glass, which is not photosensitive. Therefore, the UV written
Bragg gratings are unable to be directly written into the fibre. For these lasers, the
Bragg grating reflectors were written into a photosensitive fibre which was then
spliced to the doped fibre, and as a result intra-cavity splice loss was introduced. A
heavily co-doped Er**-Yb** fibre laser has also been reported with an output power
of 200 mW, with a pump power of ~850 mW [13]. The laser cavity was based on
two passive fibre Bragg gratings (FBGs) that are fusion spliced to a 2-cm long doped
fibre.

The photosensitivity of the Er**-Yb*" -doped fibre can be enhanced by loading the
fibre with hydrogen and nearly 100% reflectivity in the grating was observed by
Kringlebotn et al. and was followed by the first demonstration of DFB fibre laser in
1994 [5]. The feedback grating at 1.5 um was directly written into a length of 2-cm
Er**-Yb*" -doped fibre. The output power of this laser was 3.2 mW, with a slope
efficiency of 5.4%. Then, a DFB fibre laser based on Er¥*-Yb** co-doped with tin,
(rather than using the hydrogenation technique which increased the fibre losses), to
improve the fibre photosensitivity has been demonstrated [18]. The slope efficiency
of thislaser was 11%. A further improvement in the photosensitivity of the Er¥*-yp*
co-doped fibre has been demonstrated, by L. Dong at €., using a highly

photosensitive boron/germanium (B/Ge)-doped ring to surround the Er*-Yb®* core
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[19]. Both DBR and DFB lasers have been realised with this fibre and have shown
slope efficiencies of 25%. Before the photosensitivity of the Er3*-Yb*" -doped fibre
was enhanced by using the B/Ge cladding, developments were carried out to improve
the laser efficiency in the Er3+-doped fibre by using an intra-cavity pumping scheme
[20] and aso by pumping into the 520 nm absorption band [21]. For the intra-cavity
pumping, the DFB laser was placed inside an Yb*" fibre laser, which was used as the
pump source for the DFB laser. A three-fold increase in the output power was
observed as compared with direct 980 nm pumping [20]. Pumping in the 520 nm
absorption band has shown an increase in the slope efficiency of 10% which was an

order of magnitude improvement over that attainable by 980 nm pumping [21].

Research was not only conducted in improving the fibre material for high pump
absorption of Er*, but also in the desi gns of the feedback cavity of the DFB fibre
lasers to maximise the laser output. A DFB laser with a uniform grating, i.e. without
a phase shift and with no end reflectors, will operate in two longitudinal modes at
different wavelengths, corresponding to the edges of the grating bandgap and gives
equal output power from both ends [22]. However, single wavelength operation is
required in real practice. In [5] the single-frequency operation of the DFB fibre lasers
has been achieved by using an end reflector to change the round-trip phase shift in
the cavity or by locally heating the grating to slightly increase its refractive index
around that point in order to create the optical phase shift of ©/2 such that the round-
trip phase condition is satisfied at the Bragg wavelength. The permanently induced
phase shift in the centre of the grating has been achieved by localy elevating the
background refractive index in the fibre core with additional exposure of UV light
around the centre of the uniform grating [14]. The other techniques to introduce the
phase-shifted gratings were with the moving fibre-scanning beam technique and with
phase masks in which the phase shifts can be incorporated into the grating during the
writing process by simply moving the fibre by an appropriate distance at the desired
time while the UV beam is scanning [23]. The output powers of these lasers are
equally divided at both ends; this is because of the symmetry of the cavity. The laser
wavelength coincided with the Bragg wavelength. For a high performance laser,
unidirectional output is desirable. This can be obtained by placing the phase shift
asymmetrically with respect to the grating centre and a large output was obtained
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from the shorter end [24, 25]. A further improvement in the laser efficiency has been
demonstrated with a step-apodised design in which the position and length of the
effective cavity can be enhanced without impacting the cavity asymmetry, cavity Q-
factor, or the overall laser length [26]. Basically, the step-apodised DFB laser has
employed a step change in the coupling coefficient on either side of the phase shift to
restore the optimum optical feedback. It has shown an increase in the pump-to-signal
conversion of 40% in the Er¥*-Y b co-doped fibre. The different types of DFB laser
cavity mentioned are shown in Figure 1.1, P, and Py refer to output powers of the

|aser.
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Figure 1.1: DFB laser cavity designs (a) uniform non phase shifted, (b) symmetric single z-phase
shifted, (c) asymmetric single z-phase shifted and (d) asymmetric single z-phase shifted step-apodised
[26].

Other laser wavel engths operating in the 1 um region have been demonstrated with
Nd**-doped [27] and Yb**-doped [28] fibre. The cavity feedback of the Nd**-doped
fibre laser was based on the intra-core Bragg reflectors on the opposite ends of a4-m
long doped fibre. The output power was ~12 mW with a pump power of 265 mW. In
[28] the DFB fibre laser was a 10-cm long grating, with a UV -induced n phase shift




Chapter 1 Introduction

in the centre of the grating, written throughout the whole length of the Yb3+-doped
fibre. The maximum power achieved was ~8 mW with a pump power of ~20 mW.
The sources operating around 2 pm aso began to develop, driven by a number of
applications such as in LIDAR, sensing applications and medicine. The single
frequency DFB fibre laser operating in the 2 pum region was demonstrated with
Tm3*-doped fibre by S. Agger at el. two years ago [29]. The laser cavity was 5-cm
long and had an output power of 1 mW with a slope efficiency of 0.2%.

Some applications, as in the wavelength-division multiplexing and sensor systems,
required a continuously tunable wavelength. The single-frequency DBR and DFB
fibre lasers are not restricted by their Bragg grating wavelength, they are capable of
being continuously wavelength tuned, without mode hopping [30-32]. The laser
wavelength tuning techniques used are uniformly stretching [30], compression [31]
and a combination of extension and compression [32]. In the stretching or
compression technique, the change in reflected wavelength from the Bragg reflector
tracks the change in cavity resonance wavelength so that mode hopping is avoided.
The fibre laser was mounted, at both ends, onto a PZT and a maximum wavelength
tuning of 0.72 nm was obtained for maximum stretching. This technique is
mechanically ssimple to implement but its tuning range is limited by the maximum
range of the PZT as well as the fibre strength. The compression technique has shown
a wavelength tuning of over 32 nm in a DBR fibre laser [31]. In this compression
technique, the fibre laser was fixed by epoxy between two ferrules, one mounted to a
fixed stage and the other to the stepper motor for compression. Three floating
ferrules were placed between the two fixed ferrules and attached to the stepper
motor. The other technique that has been demonstrated was using a combination of
the extension and compression [32]. The DFB fibre laser was embedded in a firm

bendable material and a wavelength tuning range of 27 nm was demonstrated.

1.2 Applications

Fibre distributed Bragg reflector and distributed feedback lasers are attractive

devices for optical communication systems, sensing applications and spectroscopy
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because of their narrow linewidth, robust single-mode operation, compact in-fibre
design, flexible and accurate wavelength selection in production, as well as easy
tuning of the wavelength. A number of the applications have been illustrated with

these sources.
(@) Optical communication systems

The first data transmission experiment has been demonstrated using an Er®*-doped
DBR fibre laser transmitter [33]. The available laser power was 91 uW and
externally modulated at 2.5 Gbit/s. This permitted data transmission over 654 km,
with Er3+-doped fibre amplifiers to boost the signal power. Even at higher
transmission rates of 5 Ghit/s this has also been demonstrated with an Er**-doped
DBR fibre laser with a similar output power as in Ref. [33] and the bit-error-rate
(BER) at the 10™ level has been observed over a distance of 86-km with non-
dispersion shifted transmission fibre [34].

Both DBR and DFB fibre lasers have also been demonstrated in wavelength-division
multiplexing (WDM) systems, in which multiple optical signals are carried on a
single optical fibre for a multiplication in capacity [35-37]. The Er**-doped DBR
fibre laser with MOPA has been modulated at 2.5 Ghit/s and signals transmitted over
a 475 km long WDM transmission line [35]. Multiplexing of four DFB fibre lasers,
separated in frequency by 100GHz (0.8 nm), on a 10 Ghit/s WDM link has been
demonstrated over a 200 km standard single-mode fibre [36]. A further increase in
channel capacity has been demonstrated by multiplexing eight and sixteen DFB fibre
lasers together to form an 8- and 16-channel WDM transmitter array respectively
[37]. In this setup, the DFB fibre lasers were pumped using a pump redundancy
scheme in which the powers from the pumps are split equally between the fibre

lasers. It will always remain in operation even if one or more pump failures occur.
(b) Acoustic sensors

Optical fibre acoustic sensors have been demonstrated both in air [38] and for

underwater pressure measurement [39]. The acoustic sensor in air consisted of an
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uncoated fibre DFB laser to sense the acoustic-wave motion and the fibre laser’s
frequency shifts induced by it were measured by using a Mach-Zehnder
interferometer. The acoustically induced frequency shifts measured in [38] ranged
from 0.61 MHz/Pa at 100-Hz to 0.34 kHz/Pa at 15 kHz. The use of DBR and DFB
fibre lasers as a hydrophone has been demonstrated [39]. The principle of operation
of the hydrophone is similar to the acoustic air sensor, in which the pressure induced
wavelength shift of the laser is then measured with the interferometer. The fibre
lasers gave a minimum detectable acoustic signal of -69 dB re Pah/ Hz at 1 kHz [39].
Then, three DFB fibre lasers were spliced together on a single fibre to form a

hydrophone array and no optical cross-talk was observed [39].

() Spectroscopic application
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Figure 1.2: Absorption wavelength of various molecular species present in the atmosphere and
environment within the transmission loss of typical fibres and the gain bandwidth of the rare-earth

materials[40].

Figure 1.2 shows absorption wavelengths of various common gases in the

atmosphere and environment, together with the transmission loss of typical fibresin
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the visible and near infrared regions, in which the associated wavelength can be
covered by the rare-earth doped fibre lasers. The possibility of using a grating-based
fibre laser for the spectroscopic detection of gaseous species has been demonstrated
in [41]. Thefibre laser realised was used for the detection of atmospheric water. The
laser cavity was formed by two UV written Bragg gratings at both ends of the Nd**-
doped fibre. The laser operating wavelength was at 1117.96 nm and tuned around an

absorption line of water moleculesat 1118.06 nm.

1.3 Fabrication of gratings inside the fibre

Currently, fibre grating fabrication techniques used for the feedback gratings in the
lasers are holographic [42] and by using the phase mask approaches [43, 44]. In the
holographic method, the gratings are formed, usually in the core of the fibres which
is photosensitive, by irradiating the fibre from the side, with a coherent two-beam
UV interference pattern. The 244-nm UV radiation is split into two equal-intensity
beams and then recombined to produce a periodic interference pattern that writes a
corresponding periodic index grating in the core. The period of the grating depends
on the angle between the two interfering coherent beams. For the phase mask
technique, it allows fibre gratings to be written with a lower coherence UV laser
beam and with better repeatability. The phase mask is a surface relief grating etched,
by a photolithographic technique, in fused silica. In this technique, a phase mask
grating is placed in contact, or nearly in contact, with the fibre. When the UV laser
beam is incident on the mask, it diffracts into the O, +1 and -1 orders as seen in
Figure 1.3, wherethe zero-order is suppressed by the depth of the corrugations in the
phase mask. The +1 and -1 order diffracted beams interfere to produce a periodic
pattern that photoimprints a corresponding grating in the fibre. The period of the
photoimprinted index grating is half of the phase mask grating. For the fabrication of
a phase shifted DFB fibre laser, the uniform phase mask method based on the
moving fibre-scanning beam technique allows the insertion of the phase shift into the
fibre grating [45]. The fibre is mounted on a computer-controlled PZT stage, and it
can move slowly relative to the phase mask, permitting the phase shift to be

incorporated into the grating during the writing scan.

11
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Figure 1.3: Phase mask technique with the zero order being suppressed.

1.4 Outline of thesis

Following this introduction chapter, Chapter 2 begins with the basic principles of
fibre DFB lasers with aphase shift.

Chapter 3 studies the linewidth characteristics of the Er®*-Yb®*" DFB fibre laser as
they were found to contradict the Schawlow-Townes linewidth prediction. A few
experiments were conducted to investigate this anomalous laser linewidth. Lastly, an
anaytical model was developed to explain the main cause of the excess phase noise
that was due to the temperature fluctuation resulting from the intensity noise of the

pump source. This was followed by the possible techniques that could be used to
avoid this limitation.

The non-standard DFB fibre laser designs were investigated in Chapter 4. Some of
the suggested techniques for the linewidth limitation were experimentaly
investigated in this chapter. The laser was operated in the narrow linewidth regime
with low output power and subsequently, operated in the MOPA regime to show that
the characteristics of the laser were still maintained. The other methods were to
investigate the laser linewidth due to different effective cavity lengths by using
coupling coefficients of 100 m™, 150 m®* and 200 m™. Its linewidth was
configuration dependent. We aso observed that the laser wavelength shift was
decreased as the coupling coefficient was reduced. Then, a step-apodised design was

12
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fabricated to increase the effective cavity length of the laser and its performance was
compared with the standard design. The discrete double phase shift lasers were
implemented to modify the intra-cavity intensity and this showed a reduction in

linewidth as well as the lasing wavelength shifting with DFB power or pump power.

From the success in redlising the Er¥*-Yb®* DFB fibre lasers, with the same phase
mask technique and DFB structure, it was feasible for us to reaise even longer
wavelengths to open a new window for the possible applications of this source. In
Chapter 5, an improved efficiency of the DFB laser at 1.8 pm was demonstrated with
the thulium, co-doped with antimony, fibre. The laser output was about 5 mW with a
pump power of 1.4 W at 1565nm. Then, the output was amplified with the MOPA
for high power and a gain of 15 dB was achieved.

In Chapter 6, we aimed to push the laser wavelength even further into the 2.1 um
region with the holmium doped fibre. The laser has been pumped with a Raman fibre
laser a 1119 nm and aso the thulium DFB fibre laser. However, no lasing was
observed for either pump source. Then, the DBR fibre laser was set-up and still no
lasing was observed. Some of the reasons causing failure to lase have been discussed.

The final chapter summarises the key results and recommendations for further work.
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Chapter 2

Background Theory of Fibre
DFB Lasers

The lasing action in a DFB laser occurs as a result of the signal generation by the
gain medium and the feedback by the gratings. The objective of this chapter is to
elucidate the physical phenomena involved in the operation of DFB lasers with a
gualitative discussion. The optical feedback of the fibre DFB lasers is performed
with the FBGs that are formed by exposure of the fibre core to an optical interference
pattern. The parameters for optimum feedback of the gratings are described in the
following section. For the gain in the fibre, it may be obtained by solving the
appropriate atomic rate equations. First, the genera rate equations of the two- and
three-level lasers are described and this is followed by a set of rate equations that
describes the gain medium of our fibre DFB lasers, i.e. EF*-Yb™, Tm* and Ho®" -
doped fibre. A number of gain models have been developed for the numerical
anaysis of Er**-Yb*" co-doped fibre lasers pumped at 980 nm [1-4]. The different
pump schemes for Tm*" have been numerically modelled by Jackson and King [5].
Numerical analysis and experimental data of Er®*-Yb** co-doped DFB fibre lasers
has also been reported [6]. The model of the fibre lasers comprised the pump source,

the active medium and the grating.
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2.1 Operation of DFB lasers

The theoretical analysis for the operation of lasers with a distributed feedback
structure was first proposed in the semiconductor field, by Kogelnik and Shank [7],
this analysis can aso be used to describe the operation of the fibre DFB lasers. The
analysis is based on two counter-propagating waves coupled via backward Bragg
scattering from the periodic perturbations of the refractive index [7]. Figure 2.1
shows a simplified illustration of the operation of a distributed feedback structure
with the two counter-propagating waves represented with arrows, where A is the
wavelength of light in the medium. As each wave travels in the periodic structure, it
receives light at each point along its path by Bragg scattering from the oppositely
travelling wave. In this way, the feedback mechanism is distributed throughout the
length of the periodic structure, entirely within the gain medium. Because of the
gain, these waves grow and their energy is coupled into each other due to Bragg

scattering.

< A2 >

cfaf=]=] e
o ool

Figure 2.1: Illustration of the laser oscillation in a periodic structure[7].

The forward and the backward propagating waves can get strongly coupled provided
the Bragg condition is satisfied, in which the difference in the propagation constants
of the waves is equal to the spatial frequency of the grating [8].

— = =
ﬂl-i-ﬁz:K:T (2.1

Where p;is the wave vector of the forward propagating guided mode, £, is the
backward propagating guide mode, and Ais the spatia period of the grating. Since

the propagation constants for the forward and backward direction are the same,
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then|,|= |B,|= %neﬁ , Where n, is the effective index of the mode. Then, Equation

(2.1) can be written as

A{ & J (22)
2N

where 1; is the Bragg wavel ength that satisfied the Bragg condition.

2.2 Optimisation of fibre Bragg gratings

This section introduces the definition of the reflectivity of the fibre grating and the
effective cavity length (Ler) which is used to optimise the gratings design for the
DFB lasers. The coupled-mode theory has been used to model the optical properties
of the fibre gratings [9, 10]. In this section, we leave out the derivation of coupled-
mode theory asit has been detailed in numerous articles and texts[7, 8]. In the Bragg
gratings, the light is coupled from a forward propagating mode to the same mode
propagating in the backward direction. To consider this coupling let ; and /5, be the
propagation constant of the mode travelling in the +z and —z directions, respectively.
Assuming that the power gets coupled only among these two modes, then the total
electric field at any z isgiven as[g],

E(x, z,t) = [A@)E, (x)e7% + B(2) E,(x)e= | 23)
where E1(x) and Ex(x) represent the transverse mode profiles and A(z) and B(z) are

the z-dependent amplitudes of the two modes. The coupling between the two modes

is described by the following coupled-mode equations,

dA

— = kBe'? 2.4
e e (2.4
a8 =KkAe (2.5)
dz

where I'=p4, + B, +k=0 is the phase matching condition and « is the coupling

coefficient among the modes. The solution of the equationsis given as follows:-

A(2) =be” -b,e™ (2.6)
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B(2)=be” +be™ 2.7

The reflection coefficient (r) of a periodic structure of length (L) is found by
assuming a forward-going wave incident fromz =0, i.e. A (z = 0) = 1 and requiring

that no backward-going wave exists beyond z = L, then

r=BZ=0_ ahi (2.8)
A(z=0)

The energy reflection coefficient is given by

R=|r|* = tanh®xL (2.9)

For a medium of refractive index n having a periodic refractive index grating given
by

n(z) = n,,+Ans n(%jz (2.10)

where nae IS the index change averaged over a grating period, the coupling
coefficient isgiven as

AN
K=
A’B

(2.11)

where An is the index modulation. The coupling coefficient (x) depends on the
photo-induced refractive index change in the fibre which depends on the irradiation
conditions (wavelength, intensity, and total dosage of irradiating light), the
compositions of glassy materia forming the core and any processing of the fibre
prior to irradiation.

In an optical fibre with a refractive index in the core given by the equation (2.10),
then the reflectivity of afibre grating of length L is

mAnL

R =tanh?( ) (2.12)

B
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The reflectivity of a grating with constant gain a the Bragg wavelength is
approximately equal to the reflectivity of a passive grating, with no gain, provided
that the coupling coefficient is very much larger than the gain [11]. With the
definition of the reflectivity, it implies that we can vary the reflectivity of our laser
cavity with the coupling coefficient and length of the gratings. In the phase shift
lasers, the laser cavity comprises two grating segments separated by the phase shift
and each grating segment is considered as a separate reflector, i.e. a high reflector
(Ry) and an output coupler (Ry). For a constant ¥ case, i.e. auniform refractive index
profile, by moving the phase shift, we change the length of the segments and this
leads to a change in reflectivity of both grating segments. The other approach, to
vary the reflectivity of the laser cavity, is to change the coupling coefficient and keep
the length of the segments constant.

Now, we look at the definition of the effective length (Les) of the laser cavity, as
demonstrated in [11] that increased the effective cavity length of the laser in which
more of the gain medium can be used for signal generation, and hence increased the
optical efficiency. The total effective cavity length of the phase shift DFB laser isthe
sum of the penetration depth into the grating segments on the left- and on the right-
hand side of the phase shift. The penetration depth (D) is defined as the effective
distance in which the incident wave penetrates into the grating, as a result of the
distributed nature of the reflection process, before re-emerging at the front end. It is
defined as follows, with constant gain at the Bragg wavelength, by [11]

tanh(yL) B 1 2
o L al( i’ COShZ(yL)) +tanh®(5L)
_1 . (2.13)
2 atanh” (yL) +y tanh(yL)

where « isthefidddgainand y = vx*+a?. If a <<k, then D can be approximated

by its passive cavity value

_tanh(sl) |
T2 2

D (2.14)

For ar phase shifted DFB laser, the total length of the effective cavity (L) in which

thefields are circulating is given as follows by
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L. =D,+D ~(M+M) 2.15
of = U1 2~2Kl 2%, (2.15)

where D1 and D are the penetration depths into the grating segments on the left- and
on the right-hand side of the phase shift, respectively. In the case of a uniform

refractive index profile, x, =k, =k .

The penetration depth can be increased by reducing the coupling coefficient and,
therefore, decreasing the reflectivity of the grating results in a decrease in the optical
feedback, and aso a deviation from the optimum confinement condition. For a
stronger grating, the round-trip reflectivity is close to unity, showing a much stronger
cavity confinement. The reduction in the reflectivity, due to smaller k, can be
compensated by increasing the segment length. When the length of one segment is
increased, the other segment length needs to be reduced so that the total device
length is unchanged. In this case, the reduction in the other segment can be
compensated by increasing its coupling coefficient so that the optimum reflectivity is
restored. This has been shown with a step-apodised design in which a step change in
the coupling coefficient on either side of the phase shift can be realised [11]. The
effective cavity length of the step-apodised design is given by

ol )
Ly (z)=| 22— +(=—=-2)z 2.16
«(2,) ch (o, 20 )% .19
where z_is the phase shift location, kL, =c,,x,L, =c, and the total cavity length
L=L+L,.

The effective length of the cavity isincreased towards the left-hand side of the phase
shift, and this means that its coupling coefficient hasto increase and thisis limited by

the photosensitivity of the fibre.

Based on the above definitions of the reflectivity and the effective cavity length, the
feedback gratings of our DFB lasers are designed and optimised. For instance, the
effective laser cavity length of the DFB lasers is varied with different coupling
coefficients.
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2.3 General rate equations of laser

The atomic rate equations are used to analyse the performance and efficiency of a
laser. This system of equations relates the total number of atoms undergoing a
transition and the total number of photons being created or annihilated. First, the
general three-level laser system is shown in Figure 2.2, with the ground state denoted
by 1, an intermediate state labelled 3 which is the pump level, and state 2 as the
metastable level which has along lifetime. In the lasing process, pump ground-state
absorption excites the ions from level 1 to level 3 and this is followed by a rapid
decay to level 2, the upper laser level. In level 2 the ions may decay to the ground
level through either spontaneous emission or stimulated emission, at the signa
wavelength. This three-level system is intended to represent that part of the energy
level structure of Er®" and Ho>* that is relevant to the pump scheme used for our fibre
DFB lasers. To obtain lasing, a population inversion is required between state 1 and
state 2, and since state 1 is the ground state, at least half of the population of ionsis
required to be excited to level 2 to achieve population inversion. The populations of
the levels are labelled N1, N2 and Ns. The rate equations for the population changes
are[1, 12]:-

3 .
/\ 1 As2
2
W W
13 a Am
Waz || |[W21
|

Figure 2.2: Three-level laser scheme[12].

%z_WBNl +VV31N3_VV12N1+W21N2+A21N2 (2.17)
ON
6'[2 :VV12 N1_W21N2 - A21N2 + Asz N3 (2.18)
ON
?3 =W, N; -W;, N, — A, N, (2.19)
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In a steady-state situation,
ON, _ 0N, _ON; _ 0 (2.20)
ot ot ot

By the conservation relation, the total population N is given by

N=N;,+N,+ N, (2.21)
where Wi; terms represent the stimulated transition rates between the i and j levels,

A21 isthe spontaneous transition rate and Asz, the nonradiative relaxation rate.

Using equation (2.19), the population of level 3is

Wi

=— 2.22
’ Wi, + Ay ' 222

The decay rate from level 3 to level 2 is fast as compared to the pump rate into level
3, so the population is mostly in level 1 and level 2, and level 3 is assumed empty,

i.e. N3~ 0. Using equation (2.22) to substitute for Nz in equation (2.18), then

N _ VV12W31 +W12A32 + A32VV13 N (2 23)
2 - .
WoWo1 +Wo; Agy + Ay, Agy +Woo Wy +Wip Agy + Az Wi
N _ W31W21 +W31A21 + A’>2W21 + A32 AZl (2 2 4)
1 - .
Vv31W21 +W31A21 + AGZV\/21 + A32 A21 +W12W31 +VV12 A32 + A32W13
Population inversion is as follows
AN =N, — N, (2.25)
Theindividual definitions of these terms are as follows:
W, = e o} (2.26)
hv,
W,, = e R (2.27)
hv,
ls &
W, =-—-04 (2.28)
hvg
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|
W, =—-0¢ (2.29)
S
1
A, =— (2.30)
7,
1
A=t (2.31)
T3

| -,I sare the pump and signal photon intensities and their photon energies are
hv,, hvg, respectively. The absorption and emission cross-section of the pump and

signa are denoted byo? ,o5,05 and oS. The spontaneous lifetime of level 2 and 3

arerepresented by 7,, 7.

Now, we consider the two-level laser system in which the upper pump level and the
upper laser level belong to the same multiplet, i.e. broadened individua levels due to
interaction of the ions and the crystalline host, as shown in Figure 2.3. Our lasers
were also configured to operate in the two-level system as the theoretical quantum
efficiency limit of the lasers is much higher. The entire system can be represented
through the absorption and emission cross sections that interact with the pump and
signal fields. The rate equations of the two-level system involve only the total
population densities of multiplets 1 and 2 [12].

]
il
A

Multiplet 2

Pump Signal | Ay

H—r

Multiplet 1

=<

Figure2.3: Energy level of atwo-level system where the two levels comprise many sublevels [12] .

oN e ay | a ey |
a_tl: AZlNZ + (NZGS - Nlo-s)hvss - (Nlap - Nzap)ﬁ (2.32)
oN, a e s e ay Ip

p =—A,N,+(No;—N,o.) . —(Nyo,—N,o)) v (2.33)
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Thetotal population density N is given by

N=N,+N, (2.34)
We have
N, __oN, 235
ot ot '

and only one of the equations from equation (2.32) and (2.33) is an independent
equation. Nz is calculated in terms of signal and pump intensities. Ny is then simply
given by N — No.

After introducing the general rate equations, the following sections describe the gain
media of our lasers with detail rate equations, particular for the Er**-Yb** case.

() Er**-Yb>* co-doped system

Depending on the pump wavelength, pump energy can be absorbed by both the Er3*
ionsin the4I15,2 and by the Yb* ionsin the 2F7,2 ground levels. The excited Yb**ions
in the 2Fs;2 level transfer their energy to neighbouring Er®* ions in the *l1s2 ground
level, then these ions are excited to the “l,y, pump level from where they rapidly
relax to the metastable %115, level. The radiative and nonradiative transitions of the
Er**-Yb*" co-doped system is shown in Figure 2.4. These transitions include pump
absorption, spontaneous emission, forward and backward energy transfer, and the
upcoversion among Er®* ions. The system is described in the steady-state by the
following rate equations[1] :-

N N
aﬁ_tl: Wi N —Wi5N; + W, N, +T_2+ Cup Nz2 —CuNiN, + CUP N32 —CaN;Ng =0
Er
(2.36)
aNz N2 2
22N, W N, o AN, 2C,N2 + 20, NN, =0 (2.37)
Er
N
%:Wlle ~ AN + AgN, —2C, N2 +C_N,N, =0 (238)
5;4 = C,NZ-CN;N, ~ AN, +C, N2 =0 (2.39)
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ON N

6t6 Z\/\éeNs—T_G—WesNe—Ccr N;Ns=0 (2.40)
Yo

N, +N, +N; + N, = Ng (2.41)

Ng +Ng =Ny, (2.42)

N1, Np, N3, N, are the populations of Er** levels *l15/, 132, *li1j2, “lgr2 and Ns, Ng the
populations of Yb** levels 2F4,, 2Fs;,. The tg and 1y, are the spontaneous emission
lifetimes for “l132 and *Fs2 levels, respectively. Az and Asz are the nonradiative
transition rates and Cyp, C1s4 and C. are the upconversion and cross-relaxation
coefficients, respectively. Ng,, Ny, are the Er** and Yb** concentrations. The Wsg,

I I : , : :
Wes represent h—Paz and H F—o% in which the cross-sectiona absorption and
Ve Ve

emission are of the Yb*".

Er3*
F7/2 __________ y 'y
5 Y
'Cp }
loz Ny =% , T TN
' 43 \V, A
v Tl Na = = — Co b Ng *Fs
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l132 Np == ;
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Figure 2.4: Energy-level diagram for the Er>*-Yb®" co-doped system[1].

For the case when the “l13» upper laser level is pumped directly, the system rate
equations involve (2.36) and (2.37) with the cross relaxation process neglected.
Equation (2.36) contains the term —Wy, + W,; (with W;3 omitted) and also the
spontaneous transition from level 2 to level 1, Ax1. Equation (2.37) contains the term
Wy, W, and Ay, The rate equations are the same as in Equation (2.32) and (2.33).
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(b) Thulium (Tm*") system

A simplified energy diagram of Tm>* is shown in Figure 2.5. The °*Hg — °H, pump
scheme was used in our Tm** fibre DFB laser, this corresponded to a two-level laser
and the system rate equations can be described as in Equation (2.32) and (2.33). The

lasing transition of the laser occurs between the °H, and 3He.

‘G4 N /\
X We

F23 Ns

We1
FaN,
/\W14 E W4,
*Hs N3 ! :
o N, A X CR o As
| W, Ay
Wiz ||Wi2 X
*He N1 ! Y

Figure 2.5: Smplified energy-level diagram of m** system.

(c) Holmium (Ho>") system

Figure 2.6 is the energy diagram of Ho>" showing the pump absorption band that our
DFB fibre laser is pumped by, i.e. °lg — °ls, and laser emission. The Ho ions
absorbed the pump energy and were excited from the ®lg ground state to the °l¢ level.
The ions are then rapidly decayed to the upper laser level, °I;. Laser action occurs
between the °I7 and the ground state. The rate equations of the system are the same as
in Equation (2.17-2.19). We aso pumped the laser in the °lg —°l; scheme which is
an in-band pumping scheme. The system rate equations of this scheme are the same
asin Equation (2.32) and (2.33).
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Figure 2.6: Smplified energy level diagram of Ho* system.

In the Er¥*-Yb* co-doped system, the laser efficiency is diminished due to the
cooperative upconversion in which the neighbouring Er* ions, which are excited to
the *l132 laser level, transfer energy among the ions and the result is that one decays
to the ground “l15:2 level, while the other is promoted to the “lo;2 level. From this
level, it decays rapidly back to the “%l;3, level by multiphonon decay. The
consequence of the upconversion is that one excited Er® in the ‘132 level is
guenched to the ground level so the population of that level is reduced by 50%. The
other cause of areduction in the efficiency of the laser is due the lifetime quenching
of aportion of Yb*" in which the pump energy is lost [6]. The short lifetime causes
the excited Yb ions to return to the ground state through some nonradiative

relaxation.

The upconversion and the cross relaxation process are eliminated in the two-level
laser system. In fact, thisis an advantagein operating the laser in atwo-level system
asit avoids the pump energy being lost through these processes.

2.4 Summary

This chapter described the parameters for the feedback gratings and the effective
laser cavity length of the lasers. The effective laser cavity length of the uniform
apodised and step-apodised design are discussed. In the case of the step-apodised
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design, its effective cavity length can be increased while maintaining the optimum

reflectivity of the grating, so that more of the gain medium can be utilised for signal

generation. The rate equations are used to describe the gain media of the laser in

which the ions’ population for inversion and the losses in the system, such as the

upconversion, cross-relaxation and the ion quenching, can be predicted, which in-

turn predicts the laser efficiency.
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Chapter 3

Erbium-Y tterbium Co-doped
Fibre DFB Laser

Short-cavity single frequency fibre lasers have been a topic of continued interest
since the early work of Ball et al. on Er** -doped DBR fibre lasers [1]. Their size,
simplicity, ease of fabrication, compatibility to transmission fibre and their optical
emission characteristics make them attractive for a number of applications,
particularly in the sensing area. However, there have been few detailed experimental
investigations on the linewidth or phase noise characteristics of these lasers, with
much of the work being focused on improving the efficiency and output power
through fibre, cavity, or grating design [2-4]. With the widespread adoption of Er¥*-
Yb* fibres, laser efficienciesin the tens of percent are now easily achievable [5]. An
implicit assumption, however, in many of these designs is that the attainable laser
frequency noise characteristics will not be substantively compromised by the
proposed modifications. This is clearly an important assumption as it is usually the
single frequency characteristics of these kinds of fibre lasers that make them so
attractive. To our knowledge, however, there has been very little evidence given to

verify the extent to which this assumption is true.
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To date, the phase noise properties of these fibre lasers continues to fail to measure
up to that achievable in bulk solid state lasers. Thisis perhaps surprising, considering
that predictions of the intrinsic linewidths of fibre lasers, based on the well-know
Schawlow-Townes formulg, indicate linewidths of just 60 Hz or less [6]. A common
suggestion as to why the observed linewidths remain far above their theoretical limit
is that the increased noise is caused by environmenta perturbations, such as external
vibration and acoustic noise, to which the fibre laser may be more susceptible The
inference then is that this issue is primarily a packaging problem, which could be
solved by better mechanical designs in holding the fibre, vibration isolation and
stabilisation.

The purpose of thiswork isto present experimental data which strongly suggests that
the anomalously large linewidths of these fibre lasers should be more accurately
viewed as an intrinsic aspect of these lasers, and show that designs for maximizing
output power and efficiency may need to take into account potential trade-offs in
their single frequency characteristics [7, 8]. Later, an anaytical model is used to
explain the observed anomalous linewidth. We found good agreement between the
anaytical model and the observations [9, 10]. The excess noise is significantly
elevated due to the temperature fluctuations induced by pump intensity noise. The
various possibilitiesto overcome these linewidth limitations are also discussed in this
chapter. Some of the possibilities for reducing the linewidth are experimentally

anaysed in the next chapter.

I would like to acknowledge that this work was carried out in collaboration with Dr
P. Horak, a senior research fellow in the ORC, who did the simulation and

modelling.

3.1 Review of linewidth of DBR/DFB fibre lasers

This section reviews some of the linewidths of the DBR and DFB fibre lasers,
operating around 1.5 pum, that have been demonstrated in Er®* and Er®*-Yb** doped
fibres Linewidth variations of 47 kHz to 6 MHz, depending on the cavity designs,
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have been reported for the Er**-doped DBR fibre lasers [1, 11]. Two grating
reflectors of 12.5 mm long were written on opposite ends of a 0.5 m long Er¥*-doped
fibre. The laser had a linewidth of < 47 kHz, with an output of 5 mW for the
maximum pump power of 50 mW at 980 nm [1]. Another DBR fibre laser, with a 2
cm resonator, having an output power of 181 uW for a maximum pump of 61 mW at
980 nm has been demonstrated. The output of this laser exhibited self-pulsation
possibly associated with clustering of erbium in the high concentration (2500 ppm)
and this could be the reason that the linewidth was larger. The linewidth of this laser
was 6 MHz [11]. For the Er**-doped DFB designs, linewidths of 13 kHz to 300 kHz
were observed [12-14]. A 10-cm long DFB fibre laser, with a permanent phase shift
incorporated into the fibre grating during writing, was pumped at 980 nm and an
output power of 1 mW was measured for the maximum pump power of 120 mW.
The optical linewidth of 13 kHz was observed [12].

A MOPA DFB laser configuration, having a linewidth of 15 kHz, based on a 36 mm
long Bragg grating with a n/2 phase shift, was pumped with a50 mW semiconductor
laser at 1480 nm and an output power of 5.4 mW was demonstrated [14]. Pumping
into the large absorption cross-section of Er¥* in the 520 nm band, a laser with an
output power of 17 mW for 190 mW pump power, was demonstrated [13]. The
linewidth was broader at high output power. A linewidth of 260 kHz was observed at
an output power of 17 mW and was 40 kHz a 2 mW. Due to the low pump
absorption of Er®*, the fibre was then co-doped with ytterbium (Yb*"), to enhance the
pump absorption by energy transfer from Yb>* to Er**. Both DBR [4, 15] and DFB
[4] designs have been demonstrated with this fibre. Using Er*-Yb** co-doped
phosphosilicate fibre, with relatively high Er®* doping concentrations (1000 ppm
[2]), DBR lasers have shown output powers of up to 60 mW [4], and 166 mW in a
MOPA configuration [15]. Unfortunately, these lasers have shown a much broader
linewidth of 200 to 500 kHz.

In [4] alaser linewidth of 500 kHz was observed. The cavity of this laser was based
on a highly reflecting mirror butt-coupled onto one end of the fibre and the other end
was a centimetre long Bragg grating written directly into the fibre. The entire laser

was shorter than 1.5 cm. A 5-cm long DFB laser made from the same material, has
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shown a much better performance with a 18 kHz linewidth [4]. The laser cavity of
Ref. [15] exploited the advantages of low noise and stable-single-mode operation of
phase-shifted DFB fibre laser, and combined this with a DBR laser to boost the fibre
laser output power. The laser cavity consisted of a fibre grating with an/2-phase shift
and with two fibre gratings of different reflectivity at both ends, it was 48 mm long
with the gratings written directly into the fibre. The laser linewidth of 200 kHz was
observed. A tin co-doped Er**-Yb® DFB fibre laser with an output power of 10 mW,
pumped at 980 nm, having a linewidth of 25 kHz, was demonstrated [16]. The laser
cavity was formed by using a strong reflectivity grating, having a length of 1.5 cm,
spliced to a 8.5-cm long active grating. Recently, a DBR fibre laser, based on heavily
Er**-Yb** co-doped phosphate glass, with a linewidth as low as 2 kHz was
demonstrated [17]. The laser cavity was formed by two spectrally narrow passive
fibre Bragg gratings that were fusion spliced to a 2-cm long Er*-Yb*" fibre. The

output power of 200 mW was achieved with a maximum pump power of ~850 mW
at 980 nm.

3.2 Er**-Yb* co-doped phosphosilicate fibre

This section gives the details of the fibre that we used to construct the DFB laser,
covering the function of Er®*" co-doping with Yb*, the structure of the fibre, the
concentration of the dopants and the small signal loss at the pump wavelength. In a
singly doped Er** fibre, the amount of Er®* doping concentration is limited to 100
ppm by the germanosilicate glass host, in order to avoid clustering problems, and the
pump absorption islow in ashort laser length, which leads to poor laser efficiencies
of <1%. It has been demonstrated that by co-doping Er* fibre with Yb*, the
absorption of 980-nm pump energy can be increased by more than 2 orders of
magnitude due to energy transfer to the Er¥* [2, 18]. This allows the redlisation of
highly efficient short cavity lasers. However, a phosphosilicate glass host, which is
not photosensitive, is required to ensure efficient energy transfer between Er*" and
Yb* ions. Nevertheless, Ref. [19] has shown that the photosensitivity of the fibre
can be achieved by surrounding the core with a highly photosensitive

boron/germanium (B/Ge) doped silica cladding, as seen in Figure 3.1. The structure
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of our fibre used for constructing the DFB lasers is similar to that reported in [19].
The same refractive index as of the pure silica can be achieved by the cladding, as Ge
doping increases the refractive index of silica and B doping lowers it. In addition,
UV-exposure of the gain medium during grating fabrication induced loss that can
cause degradation of the gain medium and thus a lowering of the laser efficiency
[20]. The concentration of Er®* in our fibre was 1x10% m. The concentration ratio
of Er** to Yb* in the fibre was 1:19. The maximum small signal absorption of the
fibre was 850dB/m at 975 nm, and was 45dB/m at 1530 nm, as measured in the next

section.

Er/Yb/AI/S

B/Ge/Si ring
Normal cladding

Refractive index Profile

Figure 3.1: Structure of the photosensitive Er®*-Yb® with an index matching B/Ge/S cladding [19].

3.2.1 Absorption of the fibre used

The absorption of the Er¥*-Yb** co-doped fibre was measured to ensure that the
operating wavelength of the pump diode was within the absorption band of the Er*
Yb* co-doped fibre The absorption loss of a ~13 c¢cm long doped fibre was
measured, by the cut-back technique, with a white light source, launched into one
end of the fibre, with the use of an objective lens, and the other end was measured
with an OSA (Advantest Q8384 optical spectrum analyser). The measured absorption
loss in the spectral regions of 970 — 980 nm and 1400 — 1600 nm is shown in
Figure 3.2. The magjority of this work was conducted with the 977 nm pump laser
diode, as Yb* has high pump absorption around this wavelength region, so by
energy transfer from Yb® to Er®, it can provide an efficient indirect pumping
mechanism for Er¥*, as mentioned earlier. The use of 1480 nm as the pumping

wavelength, directly pumping into the upper laser level of Er*, was aso performed
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for the investigation of the laser linewidth. The associated self-heating, due to the
non-radi ative phonon decay, is eliminated with this pumping wavelength. Later, we
used a diode laser operated at 975 nm for the validation of the analytica model

which explained the main cause of the laser linewidth behaviour in the later part of
this chapter.
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Figure 3.2 The measured absorption loss of the Er**-Yb®* co-doped fibre in spectral regions
(a) 970 - 980 nm and (b) 1400 - 1600 nm.
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As observed in the absorption loss of thisfibrein the 980 nm region, the slope of the
absorption is very steep at this absorption band. A wavelength variation of just 5 nm,
from 970 nm to 975 nm, has an absorption loss increase from 0dB/m to ~ 850dB/m.
The absorptions measured at pump wavelengths of 977 nm and 975 nm are
~4500B/m and ~850dB/m, respectively. The absorption of Er¥* at 1480 nm is

~14dB/m which is very much lower as compared with that of 977 nm.

3.3 The structure of the DFB fibre laser

N
o
I

Transmission (dB)
. . .
o

o2}
o
I

-80 ‘
1549.9 1549.95 1550 1550.05 1550.1
Wavelength (nm)

Figure 3.3: A typical transmission spectrum of the feedback grating with grating strength of 10 of a
DFB laser.

This section describes the structure of the DFB laser, which is constructed from a
125 um diameter, Er**-Yb* co-doped phosphosilicate fibre with a B/Ge ring
surrounding the core, as described in Section 3.2. The laser cavity, based on UV
written Bragg gratings that were written with the phase-mask technique [21], was 5
cm in length with an-phase shift located dlightly off centre, 3mm from the mid-point
of the gratings. This asymmetry enables the output power to be emitted
predominantly from one end of the laser [22, 23]. The DFB gratings, with a resulting
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period (A) of 539 nm, are written into the B/Ge ring surrounding the core. After
writing, the gratings were annealed for 24 hours at 100 °C to stabilise the index
modulation. The fina grating strength (xL) was estimated to be ~10 with a
transmission of ~ -80 dB. Hgure 3.3 shows a typical transmission of the feedback
grating with grating strength of 10 is simulated by, my colleague, Zhaowei Zhang.
The single polarisation operation of the laser was obtained by writing the phase-
shifted gratings with continuous-wave (CW) UV light a 244 nm, polarised
perpendicular to the propagation axis of the fibre, as reported in [23], and is shown in
Figure 3.4. A relative coupling coefficient change along the y-axis of 2% is adequate
to cause the laser to lase in the direction parallel to y-axis.
4\ 3t

. dE(r);e;I( EBtjrfg,//f fi"' (j\\

e - -

AVAVAVAVAVAVAY
-

P-polarised UV liaght at 244 nm

Figure 3.4: Technique for the formation of polarisation dependent gratings [ 23] .

3.4 Linewidth and phase noise characteristics of the
DFB fibre laser

This section presents the experimentally observed data which suggested that thelarge
linewidths of the laser should be viewed as the intrinsic aspect of the laser, and that
designs for maximizing the output power and efficiency in the laser may be required
to take into account trade-offs in their single-frequency characteristics. The fibre
DFB laser was set-up in three different pumping configurations for this study. The
possible sources responsible for this anomalous laser linewidth, such as due to
heating of the fibre because of heat dissipation of the absorbed pump power, the
cavity intensity noise of the laser and the non-radiative phonon decay from the
metastable level (*l112) to the upper laser level (“1132), were investigated.
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3.4.1 Experimental set-up
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Figure 3.5: Schematic of the laser configurations with pump wavelength of 980 nm: (a) backward

pumping, (b) forward pumping, and (c) dual pumping configuration.
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The fibre laser was investigated by pumping through three different configurations,
as shown in Figure 3.5. The first configuration, backward pumping, consists of the
pump power counter-propagating to the main laser output, i.e. the pump is coupled in
at the end nearer to the grating phase shift. The second configuration, forward
pumping, has the pump coupled in from the opposite end of the grating, i.e. the far
end with respect to the phase shift. In the third scheme, dua pumping, the pump is
split equally in two and coupled into the fibre laser at both ends. A 980-nm optical
isolator is used at the output of the pump laser in all cases to prevent undesired
optical feedback from destabilising the pump diode. 1550-nm optical isolators were
also placed at both output ends of the fibre laser to ensure that the linewidth
behaviour being studied is not compromised by unintended feedback effects into the
DFB laser. The fibre laser is placed on a temperature-controlled heat sink, and
pumped with a 977-nm, grating stabilised, laser diode. The lasing threshold, output

power, and linewidth were all measured for the three pumping configurations.

60 km

SMF Polarisation
Controll er
0.0, 3-dB

Coupler 90 % Coupler HP
DFB 1] D LightWave
Fibre Laser Optica Isolator Andlyser
Attenuator 1550 nm
Acousto-optic
Modulator (35 MHZz)

Figure 3.6: Schematic diagram showing the linewidth measurement set-up.

The laser linewidth measurement has been demonstrated by using a delayed self-
heterodyne technique [24]. Our delayed self-heterodyne setup is shown in Figure 3.6.
In this setup, the laser beam is divided into two paths by a 10/90 fibre coupler for the
optimal fringe visibility. One beam is sent through a delay line which provides some
time delay (td), while the other beam is frequency shifted with respect to the other
before both beams are recombined, and the resulting beat response is measured with
a HP lightwave signal analyser which consists of an optical detector with a RF
anayser. The laser linewidth can be estimated from the width of this beat spectrum.
A 35 MHz acousto-optic modulator was used to shift it to a frequency much higher

40



Chapter 3 Erbium-Y tterbium Co-doped Fibre DFB L aser

than the noise spectrum to be measured. For an accurate linewidth measurement of a
laser with a white frequency noise spectrum, the delay path needsto be greater than
the coherence length of the laser so the two combining beams would be effectively
uncorrelated. In this case, a high measurement resolution is achieved with a longer
delay line. However, as will be shown later our DFB laser does not exhibit a white
frequency noise spectrum. In such a situation [25] the delay time has to be long
enough to generate a sufficient number of cycles of sinf (mftq) within the frequency
noise spectrum to avoid undersampling. On the other hand, a long delay line will
introduce high propagation losses. For our setup, a delay line of 60 km long single
mode fibre is used which, for a white noise laser, provides a linewidth resolution of
3.5 kHz. The single polarisation status of the laser was confirmed with an Agilent

lightwave polarisation analyser.

3.4.2 DFB power characteristics

Figure 3.7 shows the threshold and output power characteristics of the fibre laser
under the three pumping configurations. As indicated in the figure, the backward
pumping scheme had the lowest threshold and highest efficiency, while the dual
pumping scheme was the worst in these aspects. This can be explained by the
asymmetry of the grating design and the different pumping configurations. The pump
intensity within the grating was strongest at the grating input, saturating the Yb**
absorption there first, and then decayed during propagation as it was strongly
absorbed. The resulting unabsorbed pump power was less than 1% of the input pump
power. The lasing threshold approximately corresponded to the pump power where
the laser light experienced gain on one side of the phase shift and loss on the other.
Because of the asymmetry, this was achieved for lower pump powers in the
backward pumping configuration than for forward pumping. For dua pumping, on
the other hand, where each input port only receives half the pump power, the pump
absorption is generally a little larger according to the later onset of the saturation of
the Yb®" transition. This results in the highest lasing threshold for this configuration.
A pump to signal conversion efficiency of 17 %, with an output power of ~20 mW,

was achieved in the backward pumping scheme for a pump power of ~110 mW.
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Forward pumping has an output power of ~18 mW with a power conversion
efficiency of 14 % for the same pump power. An output power of ~14 mW, with a
conversion efficiency of 10 %, was obtained for the dual pumping. If maximizing
efficiency and output power is the over-riding criterion, then backward pumping is
clearly the configuration to adopt. The laser output was highly asymmetric for all
three pumping configurations, which is expected due to the location of the grating
phase shift: ~95% of the total laser output was measured to come out of the end

nearer to the phase shift.
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Figure 3.7: Threshold and laser output characteristics of the DFB fibre laser for the three pumping

configurations.

3.4.3 Laser linewidth characteristic

The measured 3-dB laser linewidth behaviour, as afunction of pump power and |aser
output power, is shown in Figure 3.8 (a) and (b), respectively. The trend lines shown
in the figure are presented ssimply as a guide, rather than as a rigorous fit. As
observed the laser linewidth behaviours were different for the three pumping
configurations, particularly for the backward pumping in which the linewidth is
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nearly constant over the pump power range shown. This behaviour is related to the
different response of various configurations to pump intensity fluctuation. At the low
pump powers, the backward pumping configuration has the largest wavelength
sensitivity to pump power compared to the other pumping configurations. This may
be attributed the fact that for the backward pumping configuration, the pump
intensity at the grating phase shift is large than for the other configurations, and thus
the thermal response to intensity fluctuation is stronger. At high pump powers, this
simple picture no longer holds due to saturation effects. This is discussed in more
detail in Section 3.5. In direct contrast to the threshold characteristics, the data
showed that the lowest linewidth operation was actually obtained with the dual
pumping configuration, with linewidths of 15 kHz to 35 kHz over the pump power
range of ~110 mW. For the given pump power range, the linewidth of the backward
pumping configuration was between 30 kHz and 35 kHz and between 20 kHz to 40
kHz for the forward pumping configuration. In fact, for output powers up to 1 mW,
the linewidth of the dual pumping configuration was about half that achievable with
a backward pump, athough it increases and then levels off at high powers as seenin
(b). Even over its entire output power range, the laser linewidth under the dual
pumping configuration was lower or comparable to that attainable with the other two

pump configurations.

,,,,,,,,,,,,,,,,,,,,, P ——————_4

20

15 ~

Linewidth (kHz)

10 +----------- it e il * Backward pumping ~ -~~~
l l l = Forward pumping
A ___ o _____ L _____ L ______ ADual pumping  _____]
> | ] T
I I I
I I I
T T T

0 20 40 60 80 100 120
Pump power (mW)

(@




Chapter 3 Erbium-Y tterbium Co-doped Fibre DFB L aser

I
[8)]

N
o
|

w
(6]
|

w
o
|

N
(€3]
|

N
o
|

Linewidth (kHz)

[ |

1 * Backward pump
,,,,,,,,,,,,,,,,,,,,,,,,, G- ______ ®Forwardpump _____

|

|

|

|

|

|

|

|

T

101

A Dual pump

8 10 12 14 16 18 20 22
DFB laser power (mW)

(b)

Figure 3.8: Laser linewidth with (@) pump power and (b) output power for the three pumping
configurations.

Clearly, there are significant trade-offs between efficiency and power, with linewidth
and optical phase noise, when designing and operating these fibre lasers. We showed
that the trends displayed are real, given our linewidth uncertainty of 5 kHz. It is aso
worth pointing out that this anomalous linewidth behaviour is not unique to this
laser, but has been seen elsewhere in the other DBR [26] and DFB [13] fibre lasers.
Theissuesraised by thiswork are, thus, likely to be quite genera in nature.

Now, we take a look at the relation of the laser linewidth with DFB power. The
behaviour of the laser linewidth with power is somewhat surprising. The well-known

Schawlow-Townes linewidth formula[27]

B 27zhv(Avcav )2
- P

Av (3.1

where v is the lasing frequency, P is the laser output power, and Avea the (passive)
grating linewidth, predicts that the laser linewidth should decrease in inverse

proportion to the laser power. It may be instructive to briefly review the physical
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picture underlying the above formula. The origin of this linewidth is the perturbation
to the laser phase caused by spontaneous emission into the laser cavity. Intuitively, it
is clear that each spontaneous emission event, resulting in the emission of a single
photon, will have less impact as the total number of photons (laser power) in the
cavity gets larger. This is the physical basis for the decrease of the Schawlow-
Townes linewidth with increasing laser power. In particular, note that as the DFB
power increased from 1 to 10 mW, the linewidth should have decreased tenfold.
Instead, we observed the opposite, with the linewidth actually increasing
substantially with power, particularly for the forward and dua pumping
configurations. As it seems inconceivable that the spontaneous emission rate could
have increased by more than ten-fold, the observations here point to a different

physical origin for the linewidth.

Although the underlying reason(s) for the anomalous linewidth behaviour is still
unclear at this point, the dependence on pump and output power suggests that the
variations in linewidths (15 kHz to 40 kHz) are a feature of the laser rather than due
to externally induced environmental perturbations. One would expect external
perturbations (e.g. mechanical vibration) to contribute to a fixed noise floor that is
independent of pump power. As pointed out in [5], alarge intensity build-up occurs
around the phase shift because field propagation is trapped around it by the two
grating segments. Accordingly, the lasing intensity profile of the DFB in the three
pumping configurations was modelled by Dr P. Horak. The model of the DFB laser
was based on a gain mechanism together with the feedback grating. The gain of the
DFB was obtained based on the rate equations given in Ref. [28] and using the
transfer matrix equations in Ref. [29] for the feedback mechanism. The numerical
model of the lasing profile is shown in Figure 3.9. It shows that the lasing intensity
within the fibre laser in the close vicinity of the phase shift is very high, but the peak
lasing intensity was very similar (to within 5%) for the three pumping configurations,
given the same operating powers. Therefore, one might also expect effects arising
directly from strong spatial or polarisation hole burning that could cause gain
saturation, i.e. distortion of the gain shape, or fibre nonlinearity (e.g. modification of
the propagation of light in the cavity), to be similar for different pumping

configurations, in contrast to the different behaviours observed in Figure 3.8. In
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addition, with backward pumping, the pump is counter-propagating to the main laser
output; nonlinear optical interactions (e.g. cross-phase modulation) between the
pump and signal should, thus, have the least impact, a odds with the trends
observed. The effect of pump noise on the DFB laser frequency noise has also been
anayzed in [30] to be a secondary factor compared to thermal noise. The
temperature fluctuations in the optical cavity lead to local strains and refractive index
perturbations which in turn result in phase detuning. It is perhaps most surprising that
the forward and backward pumping configurations yield significantly different
linewidth behaviour with pump and output power, as the grating phase shift is only
located a little off-centre, by 3 mm. This suggests that modifying the grating or
cavity design solely to optimize for threshold and output power may incur

unexpected and undesired penalties in the laser phase noise characteristics.
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Figure 3.9: Laser intensity profile build-up around the phase shift of the 5-cmlong DFB.

To investigate further, the laser linewidth was analysed from the measured self-
heterodyne rf (radio frequency) spectrum, shown in Figure 3.10. Although the

spectral shapeis clearly non-Lorentzian, an excellent fit could be obtained, with little
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deviation over arange of more than 20 dB, using a convolution of a Gaussian and a

Lorentzian function,

1
(f —w)®/w?

S(f)oc [dw exp(-w?/ w) » (3.2)

Experimental
Fitted convolution
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Figure 3.10: Self-heterodyne rf-spectrum and its theoretical fit using a convolution of a Gaussian and
Lorentzian function.

For the particular spectrum shown, the extracted Gaussian 1/e width was we= 36.8
kHz, and the 3-dB width of the Lorentzian component was w, = 7.9 kHz. It was
found that, as the linewidth increases, both these components increase as well. It is
often assumed that these components represent two distinct noise contributions. The
Lorentzian component is sometimes viewed as more intrinsic by association with the
Schawlow-Townes Lorentzian lineshape, and laser linewidths have been reported
based on estimates of the Lorentzian component only [17]. Our findings, that the
Lorentzian component of the linewidth actually increases with power, contravening
the Schawlow-Townes inverse power relation, render the above assumption
guestionable. That the extracted Lorentzian component of the linewidth might not be

uniquely related to spontaneous emission should not be too unexpected. First, these
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Lorentzian linewidths are still orders of magnitude larger than that expected from the
Schawlow-Townes spontaneous emission-induced values [6]. Secondly, while the
white noise spectrum, arising from spontaneous emission, will yield a Lorentzian
lineshape, the converse need not be strictly true. As has been pointed out by Lax, it is
primarily the noise behaviour in the close vicinity of the laser frequency which

dictates the Lorentzian lineshape [31].

In general, the laser spectrum () is related to the laser frequency jitter (FM-noise)
spectrum S(f) by the relationship [32].

suw{ex{_qdw& ()M} @9

o2
where F{...} denotes the Fourier transform with regect to . Depending on the
origin and behaviour of S(f), various spectral lineshapes, non-Lorentzian or pseudo-
Lorentzian, would result. For example, Lorentzian-like lineshapes can also be shown
to result from thermally-excited index fluctuations [33], using the derived expression
for the associated optical phase noise in fibres [34]. One should therefore be cautious
in assuming that any Lorentzian component extracted from the laser lineshape
naturaly represents a more important contribution to the phase noise than, say, the

Gaussian portion.

3.4.4 Thermal effects of the DFB laser

The relatively high pump powers involved here and the strong pump absorption
afforded by the Yb*-Er*" in the fibre core, and also the fibre small signal absorption
a 977 nm being 450 dB/m, required us to investigate the possibility of
heating/thermal effects occurring in the fibre in accounting for the anomalous |aser
behaviour. It has been pointed out that the temperature may rise by as much as 30 °C
for every 10 mW/cm of absorbed pump power in doped fibres [35] with an insulating
fibre cladding interface. With our pump powers of up to 100 mW and more, virtualy
all of it absorbed over the 5 cm grating length, it was necessary to check the

effectiveness of the heat sink in maintaining the temperature stability of the doped
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fibre. For this reason, the lasing wavelength was measured as a function of pump
power for three heat sink temperatures. The lasing wavelength was measured with a
Burleigh wavemeter WA 1500, having a resolution of 0.2 pm. Figure 3.11 shows the
lasing wavelength as a function of pump power at a heat sink temperature of 13 °C,
24 °C and 80 °C. It was found that, for a fixed pump power, the lasing wavelength
increases with heat sink temperature at the rate of 0.01 nm/°C, in line with the
temperature sensitivity of the fibre grating, i.e ~8 pm/°C. For a fixed heat sink
temperature, the lasing wavelength increased gradually with pump power, by ~20 pm
as pump power increased from 20 mW to 110 mW. This indicated a maximum

temperature increase due to the pump of less 3 °C.
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Figure 3.11: Lasing wavelength with pump power of dual-pumping scheme for different heat sink

temperatures.

To confirm that the temperature increase in the fibre, due to the large absorbed
pump, was actually below 3 °C, the heat diffusion equations for the fibre as given in
Ref. [35] were used, by Dr. P. Horak, to simulate the temperature profile in the fibre.
In this numerical simulation, only the heat flow out of the sides of the fibre was
considered, as the temperature gradient is larger than at the end of the fibre, i.e. heat

flow is radia rather than longitudinal. Assuming that a fixed amount of heat is
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deposited in the core, due to the pump, for afinite time, then heat is radiated outward
so temperature rise is spread towards the sides of the fibre. Figure 3.12 shows the
numerical simulation of the radial temperature profile in the fibre with 100 mwW
pump absorption in the core, assuming that the 125 um fibre cladding interface is
held at 20 °C, this aso showed that the resulting temperature rise in the core would
be ~1°C.

0 10 20 30 40 50 60 70
Distance (um)

Figure 3.12: Radial temperature profile in the fibre at 100 m\W absorbed pump power.

As the thermal contribution to optical noise in the fibre [33, 34] is generally accepted
to vary as T (T is the temperature in Kelvin), the 3 °C change incurred in the fibre
over the entire laser operating range would seem to be much too small to be able to
account for large increases in observed linewidth, so long as the laser is properly
placed in the heat sink. Nonetheless, it has been pointed out that the thermal noise
contribution to the frequency stability of these fibre lasers is not necessarily
negligible [36, 37]. To verify this, the linewidth of the dual pumping scheme was
measured for heat sink temperatures between 10 °C to 80 °C. The results are shown
in Figure 3.13, with just the two extreme temperatures for clarity of presentation.
Indeed, for low pump powers, there is a marked broadening of the linewidth by

~50% when the temperature is increased from 13 °C to 75 °C, which is roughly in
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line with the expected T? relation for thermally-induced phase noise. These
observations indicate that thermally-excited index fluctuations in the fibre laser do
contribute to a substantive portion of the laser phase noise, particularly at low
operating powers. However, it was found that at high pump powers, the linewidth
proves to be virtually insensitive to temperature over the range that we were able to

investigate, indicating that another dominant factor is operating here.
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Figure 3.13: Linewidth behavi our with pump power for two different heat sink temperatures.

3.4.5 Relative intensity noise of the DFB laser

As indicated in [37], the laser frequency and intensity noise are to some degree
correlated, due to thermal effectsin the gain medium. It is therefore of interest also to
investigate the intensity noise of the laser. The relative intensity noise (RIN) of the
laser describes the intensity stability of the laser output. It is defined as the mean
sguare fluctuation of the power, in unit frequency range, divided by the square of the

average power. The unit of RIN isdB/Hz.
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avg

2
RIN = {@JHZl (34)

where <AP2 > is the mean square optical intensity fluctuations (in WZ/Hz) inalHz

bandwidth at a specified frequency, and Pay is the average optical power (in W). The
ratio of the optical powers squared is equivalent to the ratio of the detected electrical
powers. Thus, RIN can be expressed in terms of detected electrical powers [38].

Equation (3.4) can be written as

RIN = P dB/Hz (3.5

avg(elec)

Where Peqec is the power-spectral density of the photocurrent at a specified

frequency, and Pogeieq) 1S the average power of the photocurrent.

The RIN of the laser was measured at the relaxation oscillation frequency (ROF), i.e.
the oscillation of intensity in the cavity around their steady state values, caused when
either the laser is first turned on or when the laser is suddenly perturbed by a small
fluctuation in gain or cavity loss. It was performed with the lightwave signdl
analyser, in which the laser RIN was directly measured as a function of frequency,
with the shot noise and thermal noise of the system being removed from the

measurement.
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Figure 3.14: Measured RIN at the relaxation oscillation frequency of the laser for three pumping

configurations.
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Figure 3.14 shows the RIN peak at the relaxation oscillation frequency, as a function
of the laser power. The ROF of the dual pumping configuration was dlightly lower
for the given output power, but there was no obvious difference in the RIN for the

three pumping configurations. As observed, the RIN peak at ‘turn on’ was -80 dB/Hz
at 100 kHz and this peak reduced to -127 dB/Hz at 1.1 MHz as the laser power

increased to 20 mW. This was expected because as the laser began lasing, the
intensity in the cavity was unstable so noise due to this fluctuation was a maximum
close to the threshold and reduced with increasing output power. The ROF increased

as the laser power increased and the curve followed a \/5 relationship as expected,

where gis the small signa gain [39]. Nevertheless, this RIN peak can be suppressed
by means of electronic feedback circuits [40] and, by using a semiconductor optical
amplifier, operated in the saturated gain regime [41], a noise reduction of -30 dB has
been demonstrated.

The observed RIN were similar for the three pumping configurations and yet their
linewidths were quite different. This indicated that the RIN and the laser frequency

noise was uncorrelated for our DFB laser.

3.4.6 Self-heating effect associated with non-radiative

phonon decay

The observed laser linewidth contradicted the Schawlow-Townes linewidth formula,
i.e. it broadened as the power increased; self-heating from the non-radiative phonon
decay could be the possible noise source. The high absorption cross section of the
Yb* ion enables it to absorb the pump radiation at 980 nm efficiently and then
transfer this absorbed energy to Er**, as the °Fy, level of Yb*" and the *1,, level of
Er** are near-resonant in energy. The excited Er® ions then drop non-radiatively, by
phonon decay, to the upper laser level “l,3,. This non-radiative relaxation process
caused some of the absorbed pump power to be turned into heat and this raised the
fibre temperature. As for our DFB laser pumped at 980 nm, the laser efficiency was
~20 % which indicated that some of the pump and signal power had turned into heat.

Accordingly, the performance of the laser was investigated by pumping, directly into
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the upper laser level %l;5, of Er*, at 1480 nm to eliminate the heat generated due to
the non-radiative phonon decay. The lasing threshold, output power, laser linewidth,
wavelength shift with pump power, as well as RIN and relaxation oscillation of the

laser, were measured.
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Figure 3.15: Schematic of the laser pumping configurations pumped at 1480 nm: (a) backward and
(b) forward pumping configuration.

Figure 3.15 shows the experimental set-up of the DFB laser pumped at 1480 nm in
backward and forward pumping configurations. The laser was pumped with a 130
mW, grating-stabilised, laser diode operating at 1480 nm. The pump laser was
coupled into the DFB laser via a WDM through a 1550-nm optical isolator which
works well at the 1480 nm pump wavel ength. 1550-nm isolators were also spliced to
the outputs of the laser to prevent feedback effects. The laser is placed on a
temperature-controlled heat sink at 24 °C. Only two pumping configurations,
backward and forward, were set-up for this analysis. As it was found that the
linewidth in both pumping configurations remained at ~ 14 kHz throughout the
absorbed pump power range of ~ 30 mW, this indicated that the linewidth had
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reached the thermal noise level of the laser. The same is true for the linewidth of the

dual pumping configuration; it isbelieved to be limited by the noise floor as well.

* Backward pumping
01 +-------mmgr £ I R R ® Forward pumping

0.00 5.00 10.00 15.00 20.00 25.00 30.00
Absorbed pump power (mW)

Figure 3.16: Threshold and laser output characteristics pumped at 1480 nm.

As observed from the measured absorption spectrum of the fibre, the absorption at
1480 nm was ~14dB/m which was very low as compared with the absorption at 977
nm. According, the unabsorbed pump powers were measured for both pumping
configurations. For the backward pumping, the unabsorbed pump was measured at
the end opposite to the laser output. The unabsorbed pump of the forward pumping
was measured at the end co-propagating with the laser output. The unabsorbed pump
powers for both pumping configurations were ~80 % of the launched pump power.
The threshold and output power characteristics of the laser for both pumping
configurations were measured and plotted, as shown in Figure 3.16, as a function of
the absorbed pump power. Threshold values as low as ~3 mW were observed in both
pumping schemes. The output power of < ImW, at an absorbed pump power of ~27
mW, was obtained for both pumping configurations. The quantum limit of the laser
pumped at 1480 nm was ~95%. However, the slope efficiencies of the backward
pumping and forward pumping configurations were 3.8% and 3.6%, respectively. As
observed, the efficiency for 977 nm pumping is higher than for the 1480 nm
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pumping, which is because of the higher small signa gain. It was ~6 times more
efficient than pumping at 1480 nm. A laser efficiency of lessthan 1% was observed
in [14, 37] for 1480 nm pumping.
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Figure 3.17: 3-dB laser linewidth as a function of absorbed pump power at 1480 nm pump
wavelength.

The 3-dB laser linewidth was measured using the same delayed self-heterodyne setup
as before. The laser linewidth behaviour, as a function of the absorbed pump power,
was plotted in Figure 3.17. The inset in the figure shows the laser linewidth versus
output power. The linewidth of the backward pumping configuration was between 14
kHz and 15.5 kHz. As for the forward pumping configuration, a linewidth of 13-14
kHz was observed. Their linewidth can be considered to be the same, as the
resolution of the delayed self-heterodyne setup was ~3.5 kHz. Both pumping
configurations have shown a decrease in linewidth as compared with pumping at 977
nm. When the laser was pumped at 977 nm, the linewidth of the backward pumping
configuration, in the regime of ~1 mW output power, was ~ 30 kHz. While for the
forward pumping configuration, a linewidth of ~20 kHz was observed for the same
output power. Hence, this showed that the non-radiative decay has some effect on the
laser linewidth. The linewidths of both configurations have decreased to ~ 14 kHz
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and remained quite constant at this value. This could suggest that the laser linewidth
has reached the thermal noise level which depends on the material properties of
silica, the temperature, and the optical mode volume [34]. Pumping at 1480 nm has
shown a decrease in the laser linewidth but the laser power was too low, i.e. in the
uW regime. Nevertheless, the laser power can be boosted by using a MOPA
configuration. In the next chapter, we show how the linewidth limitation of this laser
can be improved by operating the laser a a narrower linewidth and subsequently the
laser was configured in the MOPA for high power.
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Figure 3.18: Laser wavelength shift with the absorbed pump power.

As observed, the linewidth became narrower at the 1480 nm pump wavelength so it
is interesting to investigate the thermal effects due to absorbed pump power.
Consequently, the lasing wavelength of the fibre laser was measured with the
wavemeter. Figure 3.18 shows the change in the lasing wavelength as a function of
absorbed pump power for the backward- and forward-pumping scheme. The
backward pumping scheme shows that the lasing wavelength increased by ~1.5 pm
for ~27 mW absorbed pump power. This indicates a temperature increase of ~0.2 °C
in the fibre due to absorbed pump. There was no clear increase in the lasing

wavelength of the forward pumping configuration over the absorbed pump power
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range. But, the wavelength was noted to vary by ~0.8 pm, this indicates a
temperature variation of ~ 0.1 °C. The temperature rise in the fibre, due to the
absorbed pump power, was ~0.003 °C/mW. This indicates that the temperature rise
in the fibre was 10 times lower than when pumped at 977 nm. This suggests that the
fibre heating was mainly due to the non-radiative decay.

The RIN of the laser, for both pumping configurations, was also investigated. The
RIN measurement was performed with the lightwave signal analyser. Figure 3.19
shows the RIN peak at the ROF of the laser as a function of DFB power. Both
pumping configurations showed a similar ROF at the given DFB power. Similar RIN
peak values from ~-58 dB/Hz to ~-90 dB/Hz were observed in the output power
ranges of 0.15 to 0.9 mW. The RIN of the laser at this pump wavelength was higher
than for the 977 nm pumping wavelength for the given DFB power.
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Figure 3.19: Measured RIN and ROF of the laser in the backward and forward pumping

configurations.

The possible noise source(s) that could cause the anomalous laser linewidth has just
been investigated through the possibility of therma effects in the fibre due to the
high pump absorption and the non-radiative phonon decay from the metastable level
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to the upper laser level. The fibre temperature rise of 3 °C in the fibre core was too
small to explain the broadening of laser linewidth due to fundamental thermal
fluctuations. We observed a thermal noise floor of 15 kHz when the heating due to
non-radiative phonon decay was eliminated. Nevertheless, the main cause of laser
linewidth broadening, identified by Dr P. Horak, was actually due to the temperature
fluctuation induced by the pump noise. The details of this are explained in the

following section.

3.5 The main cause of excess noise

This section describes an analytical model used to explain the mechanisms giving
riseto the laser linewidth, for the three pumping configurations, and the experimental
verification of some of the parameters in the model. Overall, we find good agreement
between the analytica model and the observed linewidth of the laser, as reported in
[9, 10]. The understanding of these mechanisms allowed optimization of the design

of the laser, in order to minimise the linewidth broadening, as has been proposed.

3.5.1 Analytical model of the laser linewidth

The anaytical model was developed based on a potential noise source due to
dissipated pump power which resulted in heating of thefibre laser [35]. Accordingly,
the lasing wavelength of the three pumping schemes was measured and the results
are plotted in Figure 3.20(a) as a function of the pump power. The wavelength shift
for the three pump configurations was quite different, particularly as the curvature of
the backward- and dual- pump configurationsresults werein opposite directions. The
curves in the figure imply that the low-frequency intensity noise of the pump laser
leads to fibre temperature fluctuations, which in turn leads to refractive index
fluctuation and, thus, to laser frequency jitter. From a close examination of the data,
the change of wavelength with pump power is seen to depend on both the power
level and the pump configuration. This becomes more readily evident by plotting the
slope dipre/dP in Figure 3.20(b), obtained by a third-order polynomial fit to the data
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points in (a). The backward pumping configuration clearly has the largest
wavelength sensitivity to pump power compared to the other pumping

configurations, particularly for the low pump power.
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Hence, Dr P. Horak predicted that the instantaneous laser frequency jitter Af(t) is
related to slow pump power fluctuations AP(t) by

€ Yo jpy

Af (t) =
0=, o

(3.6)
where Aprg IS the laser wavelength, P is the pump power, and 4P is the rms
amplitude of the pump fluctuations. Consequently, the laser frequency spectrum Se(f)
can be expressed in terms of the relative intensity noise, RIN(f), of the pump laser

2
sF(f)zz[ZLdﬁ%J P2RIN( f )T (f)2. 37)

DFB

The function T(f) represents the frequency response of the DFB laser to pump
fluctuations. Because of the large pump absorption, ~99 % of the pump power being
absorbed (due to the high concentration of the Yb3+), heat is generated in the DFB
laser. This leads to the consideration of the frequency-dependent response of the
rare-earth ions as well as the finite response time of the fibre to be the dominating
factors. The measurements for the RIN of the pump laser and the filter function T(f)
are found in the followings sections.

The contribution of SH(f) to the laser spectrum, as measured by a self-heterodyne
technique, is given rigorously by [32],

S(f) = F{ex;{— af s (1) %(1— cos(2zfr,, ) }} 39

where F denotes the Fourier transform. For the measured values of dipeg/dP and
RIN, Equation (3.8) is solved to a good approximation for a Gaussian laser lineshape
with full-width at half-maximum,

1/2

Af ~ [8|og(2)j0‘” S, (f)sin? (ﬂffd)df} | 39)

Substituting Equation (3.7) into (3.9), the expression for the linewidth in terms of

measured quantities was given as

c dl - ) 1/2
Af =E$Pv RIN[lGIog(Z)J; T(f)zgnz(ﬂde)df} . (3.10)
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3.5.2 Pump laser RIN measurement
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Figure 3.21: Relative pump intensity noise (RIN) as a function of pump power.

The RIN of the pump laser was measured with an external detector, as the built-in
detector of the lightwave signal analyser is insensitive to the pump wavelength, and
then the RIN was calculated using Equation (3.5). The output of the pump laser via
the 980 nm isolator was connected to a 1 GHz, New Focus model 1611, detector
which consisted of an InGaAs PIN photodetector followed by a transimpedance
amplifier. The detector has a DC and AC output port. The DC output of the detector
was connected to an oscilloscope for measuring the average voltage, Vaygaec), and the
average power of the electrical signa was calculated using Peec = (O.O7Vavg(e|ec))2/R.
A scaling factor of 0.07 is included in the Vay@e) for the compensation of the DC
and AC transimpedance gain conversion. The AC output of the detector was
connected to the lightwave signal analyser to measure the intensity fluctuations, Py,
of the pump laser in a bandwidth of 750 Hz. The intensity fluctuations measured in
dBm were then converted into W/Hz using (10%8™19/750. Due to the limitation of
the analyser that prevented us from measuring the noise at the relevant lower
frequency, the pump RIN was measured over the frequency range of 200 kHz to 1
MHz and was found to be approximately flat in this region, and hence, it can be
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assumed to be frequency-independent below 1 MHz. The results are shown in Figure
3.21. The pump RIN was dlightly decreased as a function of power from -112 dB/Hz
at 20 mW to -119 dB/Hz at 110 mW.

3.5.3 Filter function of the DFB laser measurement

To observe the frequency response of the DFB laser to pump power fluctuation, T(f),
experimentally, the spectral broadening of the DFB fibre laser under periodic pump
power modulation, using the same delayed self-heterodyne set-up as before, was
measured. The pump laser was externally modulated with a sinusoidal wave a a
fixed amplitude of ~120 mV, corresponding to ~ 3 mW of power fluctuation, over a
frequency range of 200 Hz - 2 MHz. Then, the linewidth of backward and dual
pumping configurations, at pump powers of 33 mW and 100 mW, were measured.
The measured linewidth broadening per milliwatt pump fluctuation was plotted, for a
better observation of the T (f), as shown in Figure 3.22. It can be seen that a slowly
varying envelope function Af,oq(f) appears, modified by the sinusoidal response of
the interferometer. In fact, Figure 3.22(a) shows the dependence on the laser
configuration and pump power in line with Figure 3.20(b), i.e. 4fmod IS proportional
to T(f), where the proportionality factor is obtained from the low frequency jitter
response in Equation (3.6). The periodic nature of the curves on Figure 3.22(b) is due
to the interference of the two combining beams and the period is depending on the
length of the delay line[25].

To confirm that the envelope function is independent of the measurement, i.e. that is
not an artifact of the interferometer response, the delay line in the self-heterodyne
set-up was varied. The delay line of 42 km was used to measure the linewidth of the
backward pumping configuration at 100 mW pump power. And yet, it still followed
the same envelope function as the 60 km delay line, with a change in the periodic
function, as shown in Figure 3.22 (b). Hence, it was confirmed that the function was

caused totally by the laser dynamics.
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3.5.4 Model calculation of the laser linewidth

The contribution of pump-noise induced therma fluctuations to the DFB laser
linewidth for the different pumping configurations was calculated using Equation
(3.10). The calculated linewidth, plotted as a function of pump power, is shown in
Figure 3.23. These curves agree qudlitatively with the behaviour of the
experimentally observed linewidth as in Figure 3.8. The remaining difference
between the model calculations and the experimental results can be explained by
other noise sources, in particular a linewidth floor due to the fundamenta thermal
noise [33, 34] of ~15 kHz as observed in Figure 3.13. Note also that the theoretical
expression for fundamental temperature fluctuations [42]
_ kBTZ

AT? =
pcV

(311)

where p isthe density (2.2 x 10° kg/mg), cv is the specific heat capacity of silica (741
Jkg/K), V is the effective mode volume (17.34 x 102 m®), kg is the Boltzmann
constant (1.38 x 10 m’kgs > K ™), predicts a linewidth of 9 kHz which agrees quite
well with our value of 15 kHz.
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Figure 3.23: Contribution of pump-noise-induced temperature fluctuations to the DFB laser linewidth
for the different pump configurations.

65



Chapter 3 Erbium-Y tterbium Co-doped Fibre DFB L aser

A previous anaysis of pump intensity noise as a potential source of linewidth
broadening in single-frequency fibre lasers [30] primarily considered its effect
through the laser gain, which led to a negligible impact. Thermal fluctuations due to

pump noise were also dismissed as a significant noise source in [37].

3.5.5 Validation of the model

For a rough check on the validation of the analytical model, the change of the DFB
laser wavelength due to the pump power fluctuation(dy /0P), one of the
parameters that contributed to the laser linewidth, was measured. A diode laser
operating at 975 nm was used to pump the DFB laser and the laser wavelength of the

DFB was measured in the three pumping configurations. The threshold and output
characteristics of the laser were also measured and plotted in Figure 3.24.
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Figure 3.24: Threshold and output characteristics of the laser for the three pumping configuration
pumped at 975 nm.

The same characteristics resulted as were observed with the 977 nm pump

wavelength. The backward pump has the lowest threshold and the highest laser

66



Chapter 3 Erbium-Y tterbium Co-doped Fibre DFB L aser

efficiency as compared with the other two pumping schemes. This can be explained,
as for the 977 nm pump wavelength, as being associated with the asymmetry of the
grating design and the different pump absorption within the grating for different
pumping configurations. The output power of the laser was dightly lower as
compared with the 977 nm pump wavelength for the given pump power. The total
efficiencies of the laser in the backward, forward and dua pumping configurations
were 16 %, 15 % and 11 %, respectively. The efficiency is dlightly lower than for the
977 nm pumping wavelength owing to a dlightly higher absorption loss (0.85
dB/cm), so the threshold of the laser is increased and hence, a decrease in the laser

efficiency will result.
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Figure 3.25: Laser wavelength shift as a function of pump power.

The DFB laser wavelength was measured and the laser wavelength shift, as a
function of pump power, is plotted in Figure 3.25 for the three pump schemes. It is
clearly shown that the backward pump has the largest laser wavelength shift, i.e. ~25
pm for ~100 mW pump power. The laser wavelength shifts, for the forward and dual
pump schemes, were ~17 pm and ~11 pm, respectively. This laser wavelength shift
was dightly higher than that when pumped with the 977 nm diode laser for the given

pump power. Therefore, an increase in the laser linewidth would be expected.
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Accordingly, the 3-dB laser linewidth of the laser, measured with the delayed self-
heterodyne setup, is shown in Figure 3.26. The trendlines shown are ssmply a guide
for viewing. The laser linewidth of the forward pumping configuration was the
largest, i.e. 43 kHz — 68 kHz. The dual pumping configuration had the smallest
linewidth at pump powers below 90 mW, from 26 kHz — 40 kHz, and these increased
to 45 kHz at 100 mW pump power. The backward pumping scheme had a linewidth
of ~ 40 kHz up to pump power of ~80 mW and then this decreased, at higher pump
powers, to 35 kHz.
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Figure 3.26: Laser linewidth as a function of pump power.

From the measured linewidth of the three different pump schemes, the results
showed that the linewidths were constant at pump powers below 60 mW. These
behaviours were different from those observed with the 977 nm pump diode. The
reason for this was unclear. However, at high pump powers the linewidth behaviours
were similar for both pump diodes. This may suggest that the RIN of the pump laser
becomes dominant at high pump power. The linewidth of the backward pumping
scheme was decreased at high pump power. For the forward- and dual- pumping

configurations, its linewidths were increased as pump power increased. The increase

in theox/oP , between 60 to 100 mW pump power, was ~26%, ~30% and ~24% as
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compared with the 977 nm diode laser for the backward-, forward- and dual-
pumping schemes, respectively. We observed a linewidth increase of 19%, 31% and

7% for the backward-, forward- and dual- pumping schemes, respectively.

Then, the RIN of the laser was aso investigated. The results are shown in Figure
3.27. The ROF was higher for the backward and forward pump, and lower for the
dual pump scheme as compared to the results for the 977 nm pump wavelength. This
might be due to the spontaneous emission, during the laser operation being different.

However, the RIN peak at the 975 nm pump wavelength was about the same as for

the 977 nm pump.
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Figure 3.27: RIN measured at the peak relaxation oscillation of the laser.

3.6 Possibilities of reducing linewidth broadening

As observed, linewidth broadening of the DFB laser was due to the temperature
fluctuation caused by the pump intensity noise. Therefore, one obvious solution is to
use a very low noise pump. This may not be the most cost-effective solution.

Another possibility is to use a material with a temperature-insensitive refractive
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index (dn/dT = 0), e.g., through specially tailored phosphate glasses [43, 44]. This
has the added advantage of reducing both pump-fluctuation-induced linewidth

broadening and fundamental thermal noise.

Varying the length of the grating while keeping the grating strength constant
modifies the fundamental thermal noise, which causes the associated linewidth floor

to scale as Af oc]/ Ly » Cf. EQ (3.11). On the other hand, assuming that the same

fraction of the pump power is converted into heat within the entire grating, the pump-

induced broadening is expected to scale asAf «c1/L .. Similarly, the fibre core

radius can be enlarged to increase the mode volume and thereby decrease the thermal
effects.

Another approach to reduce the linewidth deterioration by pump noise is to use the
DFB laser in the low power regime in a master oscillator power amplifier (MOPA)

configuration.

3.7 Conclusion

This chapter described the experimental and theoretical linewidth characteristics of

the 5 cm long Er**-Yb*" doped fibre DFB laser operating in the region of 1.5 um.

The experimental data were presented which highlight the anomalous linewidth
behaviour of the single-frequency fibre lasers. It is shown that the linewidth deviates
drastically from the Schawlow-Townes linewidth formula by increasing with pump
and laser power, even when the laser was mounted on a temperature-controlled heat
sink. For the same laser cavity, the choice of pumping configuration is also found to
have a considerable bearing, not just on the threshold and laser efficiency, but aso
on the linewidths achievable. Although the cause was not yet fully understood at this
point, the results on the anomalous linewidth behaviour strongly suggested that the
design aimed at maximizing the laser efficiency and output power may well impact

on its phase noise properties in unexpected and undesired ways.
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A detailed analysis of the laser linewidth revealed that two noise sources are mainly
responsible for limiting the linewidth. (i) At low pump power levels, a constant noise
floor due to fundamental thermal noise limits the minimum achievable linewidth to
~15 kHz for our DFB design. This value is still many order of magnitude larger than
the Schawlaw-Townes linewidth prediction and is due to the small mode volume. (i)
At higher pump powers, the main cause of the excess noise is due to the temperature
fluctuations induced by pump intensity noise. This pump fluctuation effect is large
due to high pump absorption over a small mode volume and is configuration
dependent. A validation of the model was conducted with a 975 nm diode laser and
good agreement was observed. Then, it followed by severa discussions how to
attempt to overcome these linewidth limitations of fibre lasers.
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Chapter 4
Non-Standard DFB Designs: A
Comparative Study on

Performance

This chapter presents the performance of the non-standard DFB designs. gep-
apodised and double discrete phase shifts designs. In this work, we compared the
performance of the non-standard with the standard designs. This chapter aso
presents the experimental data for some of the suggested techniques, as described in
Chapter 3, to reduce laser linewidth. The laser was operated in the MOPA
configuration and lower coupling coefficient (k) designs were used to test out the
anaytical model. Narrower laser linewidths were observed when the laser was
pumped with a 1480 nm laser diode and the maximum output power of ~1 mW with
an absorbed pump power of 20% was obtained. Subsequently, the laser was
configured in the MOPA configuration for high power and its performance was
anaysed. For reducing the fundamental therma noise, we modified the effective
cavity length (Let) of the laser by using different coupling coefficients (k). Then, a
step-apodised phase shift design, in which the effective cavity length can be

increased without deviating from the optimal cavity confinement, was fabricated and
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its performance was compared with the standard laser design. In these designs, the
signal intensity around the phase shift is very high as the fields propagating to the | eft
and to the right are trapped by the two grating segments and they are circulating
within a short effective cavity length. This intensity is dependent on the Q-factor of
these gratings, and the laser will experience a much higher intensity at the phase shift
with higher reflectivity gratings. Because the intensity profile of the single discrete
phase shift is non-uniform, the peak intensity is built up in the vicinity of the phase
shift and then decays exponential to both ends of the grating. Then, we designed a 2
x ©/2 phase shifts DFB laser, with the phase shift separation of 5 mm and 10 mm, to
investigate the effects of intra-cavity intensity. The significance of this double phase
shift design isthat the intensity distribution is much more uniform.

4.1 MOPA laser

Isolator
1
Erbium- 530 nm
doped Fibre Er¥yp® Z§
DFB Laser 1480 nm
| ((((. <« JIRE Laser Diode
| solator Isolator o
Output 1550 nm 1550 nm 1480/1550 nm
| solator
1550 nm

Figure4.1: DFB laser + MOPA configuration for high output.

As observed in Section 3.4.6, the laser pumped at 1480 nm has a narrower linewidth,
~14 kHz, but its output power is ~ ImW for ~30mW of absorbed pump power. A
few MOPA configurations have been reported that were designed to boost the low
output power of the laser [1, 2]. Consequently, our laser was configured in the
MOPA configuration, as shown in Figure 4.1, for high output and its performance
was experimentally analysed. In this MOPA configuration, the unabsorbed pump
power was absorbed within the additional section of erbium-doped fibre, that acts as
an amplifier, and is separated from the laser by a 1550-nm isolator. The additional
length of the amplifier fibre used was 6-m long with an absorption loss of 7dB/m at

1480 nm. The DFB laser was operated in the forward direction. In this set-up, the
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performance of the laser with the MOPA configuration was experimentally analysed
not only for the threshold, output power, and linewidth but also the shift in lasing

wavelength with pump power and the stability of the output power were measured.

4.1.1 Lasing threshold and output power characteristics
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Figure 4.2: MOPA output characteristics of the laser.

A plot of the output of the MOPA laser, as a function of pump power is shown in
Figure 4.2. The inset in the figure shows the laser output characteristics, in the
forward pumping configuration, of the DFB laser itself. A maximum MOPA power
of ~30 mW for ~130 mW of pump power was obtained. The slope efficiency of the
MOPA laser was ~30 % with alasing threshold of ~27 mW. The threshold power of
the DFB laser was lower than in the MOPA configuration, as nearly full inversion
can be easily achieved with a short length fibre. The output of the DFB laser was
amplified to ~30 mW, i.e, anet gain of ~15 dB.
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4.1.2 Laser linewidth

The 3-dB linewidth of the MOPA laser was measured to ensure that it was still
maintaining the same linewidth as with the DFB laser itself. The results are shown in
Figure 4.3. The measured linewidth was about the same as that without the
amplifying fibre. A linewidth of ~ 14 kHz was observed over 130 mW pump power.
In fact, 15 kHz linewidth has been observed in an Er®* -doped DFB fibre laser with a
MOPA configuration [2] .
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Figure 4.3: Measured 3-dB linewidth of the MOPA laser.

4.1.3 Lasing wavelength

The lasing wavelength shift was measured with the Burleigh wavemeter. Figure 4.4
shows the MOPA lasing wavelength as a function of pump power. The maximum
shift in lasing wavelength observed in the MOPA configuration was ~1.4 pm for
130mW pump power. It was in Section 3.4.6 that the wavelength shift of the DFB
laser itself in the forward pumping configuration was ~0.8 pm for the same pump

power. This indicated that a small further increase in lasing wavelength of ~0.6 pm
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was observed in the MOPA configuration. Thisimpliesatemperature rise in the fibre
of not more than 0.2 °C with 130 mW absorbed pump.

1.6

0 20 40 60 80 100 120 140
Pump power (mW)

Figure 4.4: The MOPA lasing wavelength shifted against pump power.

4.1.4 RIN of the MOPA laser

As the cavity length of the laser had been increased, the stability of the laser output
power needed to be investigated. The measured RIN and the ROF of the MOPA laser
is shown in Figure 4.5. There was no penalty of instability of the laser output due to
the additional length of amplifier fibre. The RIN of the MOPA laser was still
maintained at ~-90 dB/Hz with the output power of 30 mW. In fact, it followed the
RIN and ROF of the DFB laser itself and only the output power was amplified.
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Figure 4.5: Measured RIN at the ROF of the MOPA laser against output power.

4.2 Laser performances with different effective cavity

lengths

As mentioned in Section 3.6, the linewidth floor due to the fundamental thermal
noise can be reduced by increasing the effective mode volume and this can be
achieved by increasing the effective cavity length (Le) of the grating. The L« can be
increased by decreasing the k of the grating as L ~ 1/« [3]. In this work, the
performance of three asymmetric = phase shift DFB lasers with « values of 100 m™,
150 m? and 200 m™* were experimentally analysed. The design of these lasers was
the same asin Chapter 3, in which the phase shift of these lasers was located at 3 mm
from the mid-point of the grating and the grating was 5 cm long. The Let Of the
grating with « of 100 m™, 150 m™ and 200 m™* was 9.6, 6.6 and 4.9 mm. So far, the
mentioned « of the grating for the DFB lasers is uniform aong the grating length and
the Lex is then divided equally at both sides of the phase shift. In this kind of design,
the L could not increase just by decreasing the « of the grating, as this would reduce
the reflectivity of the cavity and, therefore, decrease the optical feedback and, as a

result, deviate from the optimal confinement condition. The step-apodised design is
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capable of increasing the L by a step change in the x on either 9de of the phase
shift and alters the length of the grating segments so as to restore the optimal
reflectivity. This structure has been theoretically and experimentally analysed, and
the pump to signal conversion ratio was increased by 40% [4]. This feature has led us
to investigate its characteristics.

Phase shift position z, (mm)

Figure 4.6 : Coupling coefficients at different phase shift position.

Our step-apodised DFB laser is fabricated with a grating strength (kL) of 10, the
same kL as in the standard asymmetric  phase shift design with k~200 m™. The
phase shift location of the step-apodised design is restricted by the photosensitivity
of the fibre which determines the maximum «x that can be attained, which in turn
determines how short the highly reflective segment of the grating is. The coupling
coefficients up to 310 m™ are found to be feasible in the fibre we used. This value
allowed us to place the phase shift at 18 mm from one end of the grating, and
maintained the same reflectivity as in the laser with k~200 m™, as seen in Figure 4.6.
The grating strength (kL) of ~5.6 was achieved with this x. This gives k~140 m’* on
the other side of the phase shift, yielding atota grating strength of 10. The Lt of this
design was ~5.2 mm. Theoretically, the Ly can be increased significantly when the

phase shift is moved towards one of the endsof the grating, as was shown in [4]. For
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our design, the Lg can be made as high as ~5.7 mm in theory. The output of this

laser was emitted predominately from the end with the lower «.

These DFB lasers were constructed using the Er¥-yYb** co-doped fibre with the B/Ge
ring surrounding the core. The lasers were investigated under the three pumping
configurations, as previoudy, i.e. backward-, forward- and dual- pumping
configuration. The experimental set-up is shown in Figure 3.4. The characteristics of
these lasers were investigated by measuring the threshold, output power, linewidth,
laser wavelength shift with pump power, and the stability of the cavity due to
different grating strengths or different Les was assessed.

4.2.1 Threshold and output power characteristics

The threshold and output power characteristics of the lasers, with k~100 m™*, k~150
m™, k~200 m™* and the step-apodised design, for the three pumping schemes, are
shown in Figure 4.7. In the backward configuration, it is clearly shown that the k of
200 m™ was the lowest in the lasing threshold and highest in efficiency as seen in ().
The dlope efficiency of ~24% was obtained with a maximum output power of ~15
mW for a pump power of ~85 mW. The slope efficiency of the x~150 m™ and the
step-apodised |asers was ~22%. The maximum output power of k~100 m*was ~3.3

mW and the lasing threshold was ~27 mW. Its slope efficiency was ~5%.

The step-apodised design has the lowest lasing threshold in the forward pumping
configuration, as shown in (b). As mentioned in the earlier section, the lasing
threshold approximately corresponds to the pump power where the laser light
experiences gain on one side of the phase shift and loss on the other. The phase shift
position of the step-apodised design is the closest to the pump propagating end as
compared with the other three lasers. The lasing thresholds of other lasers were
increased for the same reason as explained. Once lasing, the slope efficiency of these
lasers was almost similar, ~20%, except for the lowest k. The lasing threshold of the
k~100 m™ was ~35 mW and the maximum output power of ~2.7 mW was achieved

for a pump power of ~90 mW.
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Figure 4.7: Threshold and output power characteristics of the DFB lasers with different grating
strengthsin (a) backward-, (b) forward-, and (c) dual- pumping configurations.

In the dual configuration, the threshold power of these lasers was higher than the two
other pumping configurations, as observed in Chapter 3, and the reason for this was
also explained, which is because the pump power was equally split and each input
port received half of the pump power. Therefore, the threshold was slightly larger for
the saturation of the Yb transition to begin. The lasing threshold of the step-apodised
design was the lowest and had the highest output power, as seen in (c). The lasing
threshold of ~20 mW and a maximum output power of ~6.7 mW, for a pump power
of ~80 mW, were obtained. The slope efficiency of this laser was ~14%. The output
power of the lowest k was ~1 mW, with a slope efficiency of ~3.5%. The slope
efficiencies of the k~150 m™’ and the k~200 m™ laser were ~14% and ~15%

respectively.

Generdly, the highest laser efficiency and highest output power were observed with
the backward pumping configuration for all the lasers. The k~200 m™ had the highest
output power for the given pump power in the backward pump configuration. For the

forward pumping configuration, the output powers of these lasers were
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approximately similar except for the k~100 m™. The cavity with a higher round-trip
reflectivity will have alower threshold and higher output. As observed in k~200 m™,
this has the lowest threshold and a higher laser efficiency because the round-trip
reflectivity of the two grating segments was the highest. For a grating length of 5 cm,
the round-trip reflectivity for k~200 m™, k~150 m™ and «~100 m™*was 99.9% (-0.3 x
103 dB), 99.3% (-30 x 10 dB) and 94% (-300 x 102 dB), respectively. Although the
effective cavity length of k~100 m™ isthe hi ghest, the optical feedback is weak and,
as aresult, it gives the highest threshold and lowest output power for al the pumping
configurations. For the step-apodised design, the round-trip reflectivity was 99.9%,
which is the same as k~200 m™. Their output powers were similar in the forward
pumping configuration.

4.2.2 Laser linewidth and laser wavelength

Observing laser efficiencies of these different laser designs in different pumping
configurations, it is interesting to compare the trade-off between the laser efficiencies
and the linewidth as well as the laser wavelength shift. The 3-dB linewidths of these
lasers were measured with the same delay self-heterodyne set-up as before. The

lasers’ wavelength shifted with pump power and was measured with the wavemeter.

Figure 4.8 shows the laser linewidth as a function of DFB power. The trendlines in
the figure serve as a guide for the eye, not a rigorous fit. The largest linewidth was
observed for k~200 m™, in the forward pumping configuration, in which linewidths
of 30 kHz — 60 kHz were obtained for a similar output power as in the backward
pumping configuration. In the dual pumping scheme, the linewidths were 20 kHz —
50 kHz and its linewidth was lower than the backward pumping configuration at
output powers below 2 mW. The narrowest linewidth of this laser was observed with
the backward pumping configuration at output powers above 2 mW. The variations
of linewidth were 25 kHz — 42 kHz in the backward pumping configuration. In the
k~150 m™, the narrowest linewidth was observed in the dual pumping configuration
for the given output power. Its linewidth was 18 kHz — 41 kHz. The linewidth of the

forward pumping configuration was lower at output powers below 5 mW and then
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about the same as the backward pumping configuration at higher powers. Linewidths
of 26 kHz — 42 kHz were observed for the forward pumping configuration and with
30 kHz — 40 kHz in the backward pumping configuration. The linewidths of the
k~100 m* desi gn decreased as the output power increased. This followed the trend
of Schawlow-Townes linewidth prediction, but its magnitude is still too large, so the
spontaneous emission is believed not to be the effect. Also, the same argument
applies as given in Chapter 3 that if the DFB power isincreased by a certain fraction
then the linewidth should be decreased by the same proportion if it is perturbed by
spontaneous emission. This proportion was not observed in any of the pump
configurations. In the backward pumping configuration, the linewidth was decreased
from 37 kHz — 23 kHz when the output power increased from ~0.3 — 3.3 mW. The
linewidth of the forward pumping configuration was the largest for the given output
power. Its linewidth was decreased from 58 kHz — 25 kHz with output power
increasing from ~0.05 — 2.7 mW. The narrowest linewidth was observed for the dual
pumping configuration, in which linewidth of 34 kHz — 28 kHz was measured with
power increasing from 0.2 — 1.2 mW. The narrowest linewidth of the step-apodised
design was observed for the dual pumping scheme. Its linewidth was 30 kHz — 47
kHz with an output power of 0.5 — 7 mW. The linewidth of the forward pumping
configuration was the largest for the similar output power. The variation of the
linewidth for this configuration was 36 kHz — 55 kHz. The linewidth of the backward
pumping configuration was 36 kHz — 52 kHz.

Now, we look at the laser design which offered the narrowest laser linewidth for the
same pumping configuration. Inthe backward pumping configuration (a), itis clearly
shown that the narrowest linewidth was observed in the lowest «, at output powers
above ~1.8 mW. The largest linewidth was observed with the step-apodised design
with linewidth of 35 kHz — 52 kHz. At output powers below 6 mW, the linewidth of
«~200 m™ was lower than k~150 m™, then the linewidths were comparable above 6
mW. In the forward pumping configuration (b), the lowest linewidth was ~25 kHz
which was observed with k~100 m™* at an output power of 2.6 mW and with k~150
m™ at an output power of ~0.1 mW. In this pumping configuration, the linewidth of
k~200 m™ was larger than k~150 m™ for the given DFB power. The linewidth of the

step-apodised design was the largest at output powers above 4 mW and then at
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higher powers it was lower than k~200 m™. In the dua pumping configuration (c),
the k~100 m™ showed a decrease in the linewidth from 35 kHz — 28 kHz for output
powers up to 1 mW. The trend shows that its linewidth will decrease with increasing
output power. The narrowest linewidth was observed for k~150 m'*. The linewidth of
the step-apodised laser was narrower than k~150 m™ at output powers above 4 mw.

In generd, the effect of modifying the effective cavity length Let of the laser was
observed particularly in the uniform refractive index profile with different x values.
We observed that the trend of linewidth of the lasers can be totally different
depending on the k. The Let of k ~100 m™* was two times longer for the k ~200 m™,
and a lower noise for a longer Ly is expected as indicated in the analytical model.
The decrease of the linewidth with increasing laser power is also attributed to the low
reflectivity of the grating and the corresponding operation of the laser near the laser
threshold, which is much higher than for k ~200 m™* and k ~150 m™.

For k ~200 m " and x ~150 m™, the linewidth was increased as output power
increased. As mentioned in the model, the linewidth floor of the laser is inversely
proportional to L, the scaling of the linewidth floor for k ~200 m* and « ~150 m™
was analysed as the laser efficiencies were quite similar. The Lg; of k¥ ~200 m™ was
increased by 33%, so the linewidth floor of k ~150 m™ should be decreased by the
same amount. The linewidth floor of the laser with k« ~200 m™* was at ~20 kHz, as
seen in the dual configuration, so the linewidth floor of « ~150 m™ should be at ~13
kHz. We observed the linewidth floor of 18 kHz which agreed with the prediction.
For the step-apodised design, its Ler was slightly longer than «~200 m”* and we
expected a lower noise floor. However, it was higher and this could be associated
with the laser cavity design as the L« was not the same at both sides of the phase
shift.
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Figure 4.8 Measured 3-dB laser linewidth of the DFB lasers with different grating strengths in (a)
backward-, (b) forward-, and (c) dual- pumping configurations.

After experimental investigation of the linewidths of the lasers the lasing
wavelength of the lasers was measured to analyse the temperature raise in the fibre
due to the effect of modifying the L. As mentioned in the earlier section the high
intensity built up in the vicinity of the phase shift, due to the field propagating to the
left and to the right being trapped by the two grating segments. This high intensity
could create a heating effect and cause a variation in the refractive index and hence,
in the lasing wavelength. The laser wavelength shifts of these lasers, as a function of
pump power, were measured for the three pumping configurations. The results are

summarised in Figure 4.9.

The laser wavelength shifting of k~200 m'*in the backward pumping configuration
was ~36 pm for ~85 mW pump power, indicating a temperaturerise of ~4.5°C in the
fibre. The wavelength shifts of the laser in the forward- and dua- pumping
configurations were ~40 pm for ~90 mW of absorbed pump power and ~22 pm for
~80 mW of absorbed pump power, respectively. These wavelength shifts

corresponded to an increase in the fibre temperature of ~5 °C and ~2.8 °C. The
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temperature increases in the fibre of k~150 m™ in the backward- and forward-
pumping configurations were both ~2.6 °C. In the dua pumping configuration, a
temperature rise of ~1 °C was observed. The lowest k showed the lowest shift in
lasing wavelength for the three pumping schemes. The temperature increases in the
fibre of this k in the backward-, forward- and dua- pumping configurations were
~15 °C, ~1.7 °C and ~1 °C, respectively. For the step-apodised design, the
temperature increases in the fibre for the backward- and forward- pumping were ~4.3
oC and ~1.8 °C for the dua pumping scheme.

The plots in Figure 4.9 show the laser wavelength shift in different laser cavity
designs. In the backward pumping configuration (@), it is clearly indicated that the
larger laser wavelength shift was with the constant k of higher value, i.e. higher
reflectivity of laser cavity, because of the intensity increase with the Q-factor of the
cavity and the resulting increase in temperature. The laser wavelength shifting for
k~200 m™* was the largest and the lowest was in k~100 m™. The laser wavelength
shiftsin the lowest k and k~150 m™* were only ~32% and ~56% of that in k~200 m™.
The step-apodised design aso showed a shift in lasing wavelength of ~23% less than
in 1~200 m™. Plot (b), forward pumping configuration, shows that the largest laser
wavelength shift was in k~200 m™ and that k~100 m™ was the lowest a the
maximum pump power. The wavelength shift in k~150 m " and k~100 m™* was ~52%
and ~33% of the wavelength shift in k~200 m™. In this configuration, the step-
gpodised design showed a lasing wavelength shift of ~10% lower than k~200 m™.
For the dual pumping configuration (c), the largest laser wavelength shift was again
observed in k~200 m* a the maximum pump power. The lowest shift in laser
wavelength was observed in k~150 m™ and k~100 m™. This was ~40% of the shift in
the laser wavelength measured for k~200 m™. For the step-apodised design, the laser
wavelength shift was 75% of that for k~200 m™.

In general, the laser wavelength shift for k~200 m™ was the largest, followed by the
step-apodised design and then the k~150 m™ for the three different pumping
schemes. The smallest wavelength shift was found to be for k~100 m™. The laser
wavelength increases with refractive index which increases with temperature.

Assuming that the same amount of pump power is dissipated in the grating, the
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temperature increase in the fibre isinversely proportional to the mode field volume
which in turn depends on the L. The longest L is with k~100 m™ and hence less
temperature variation is observed as compared with the others. Therefore, the laser
wavelength shift is less for lower k. For the step-apodised design, this showed a
reduction in laser wavelength shift for a slightly longer Lgs as compared with k~200

m™.
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Figure 4.9: The laser wavelength shift as a function of pump power for the DFB lasers with different
grating strength in (a) backward-, (b) forward-, and (c) dual- pumping configurations.

Now, verifying the analytical model developed in Chapter 3 for different laser cavity
designs. The aA/0P for k~100 m™, k~150 m*, k~200 m™ and the step-apodised
design were calculated. The change in the slope of the laser wavelength and the
average of the observed linewidth with a pump power range of 60 — 80 mW, for the
three pumping configurations, are shown in Table 4.1. From the table, it shows the
shifting of laser wavelength for k~100 m™ was lower than k~200 m™ for the three
pumping configurations. Its linewidth was narrower than k~200 m™. This is expected
as linewidth is directly proportiona to laser wavelength shift due to temperature
fluctuation caused by the pump intensity noise, as discussed in Section 3.5. The
percentage change in the 0A/0P and the linewidth for the forward- and dual-
pumping configurations were compared with the backward pumping configuration.
As seen in Table 4.1(b), the change in laser wavelength with the pump power was
higher in the forward pumping configuration except for the step-apodised design. In
the dual pumping configuration, Table 4.1(c), the laser wavelength shifts for «~200
m? and 100 m? were higher than for the backward pumping configuration, except

for k~150 m™* and the step-apodised design.
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k~200m" |k~150m" |[k~100m" | Step-apodised
o2/ P (pm/mW) 0.503 0.277 0.185 0.424
Av. linewidth (kHz) 39.6 39.3 23.0 49.8
(€Y
Kk~200m? [k~150m? |k~100m™ | Step-apodised
OA/ P (pm/mW) 0.602 0.314 0.222 0.404
Av. linewidth (kHz) 58.2 41.6 30.6 52.2
Changein 01/oP (%) 16.3 11.8 16.8 -4.9
Changein linewidth (%) 318 54 24.8 45
(b)
k~200m~ |k~150m™* |[k~100m" | Step-apodised
o2/ P (pm/mW) 0.569 0.194 0.256 0.318
Av. linewidth (kHz) 435 35.7 29.2 445
Changein d4/0P (%) 11.5 -42.6 27.9 -33.1
Changein linewidth (%) 8.9 -10.3 21.2 -12.1
(©)

Table 4.1: The 01/0Pand average linewidth of the (a) Backward- (b) Forward- and (c) Dual-

pumping configurations.

The change in the laser linewidth was of the same order of magnitude as the change

in the 04/0P for the three different x values of the three pumping configurations,

except for the step-apodised design. For the step-apodised design, the change in the

slope of the laser wavelength in the forward pumping configuration was smaller, but

the linewidth was larger than for the backward pumping configuration. The reason

for thisis unclear. The linewidth of k~200 m™ was largest in this configuration.
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4.2.3 RIN of the lasers

We have seen that the behaviour of the linewidth and the laser wavelength shift
varied with different « in different pumping configurations. It isaso important for us
to investigate the intensity noise of these lasers to ensure that the RIN of these lasers
are still maintained at a reasonable, or an even better, intensity noise level. The
intensity noise of these lasers was experimentally investigated from their measured
RIN peak. The measured RIN, at the ROF, versus DFB power for the three pumping

configurations are shown in Figure 4.10.

For the backward pumping configuration (a), the ROF of k~200 m™ was lower than
k~150 m " and k~100 m* and a higher RIN peak would be expected than the other
two lower x, however, it was not observed. Actualy, this behaviour has been
observed in [5] and was said to be caused by the spontaneous emission in the cavity
which resulted in the perturbation of the optical field amplitude of the laser output.
The RIN peak of ~113 dB/Hz at 900 kHz was observed for k~200 m™ at an output
power of ~15 mW. The difference in the RIN and ROF for k~150 m™ and k~100 m™
was not obviousin this configuration. For k~150 m’, anRIN peak of ~-112 dB/Hz at
~950 kHz was observed at an output power of ~12 mW. The RIN peak of k~100 m'*
was similar to k~150 m™ for the given DFB power. ItsRIN peak of ~96 dB/Hz was
observed, at the ROF of 550 kHz, at the maximum output power of ~3.3 mW. The
intensity noise of the step-apodised DFB laser reached ~120 dB/Hz at a maximum
output power of 12 mW. It had asimilar ROFto k~150 m™, but the RIN peak was ~7
dB lower at the maximum output power. This suggests that the cavity of this design

responded to pump perturbation and that the cavity loss was actually lower.

In the forward pumping configuration (b), the ROF of the three different k were
expected to be different, as observed in (a), however, it was found to be similar for
the given output power. The RIN peak would be expected to be similar, as ROF was
similar, however it was observed to be quite different for all of these lasers. An RIN
peak at 1 MHz was observed as low as -129 dB/Hz at the maximum output power of
~14 mW in k~200 m™. This was 12 dB lower than the RIN of k~150 m™ for the
same output power. The RIN peak of k~100 m™* was -95 dB/Hz at the maximum
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output power of ~2.6 mW which was ~5dB higher than «~150 m™. In fact, the ROF
of k~200 m™* and the step-apodised design were higher in this pump configuration.
This might be related to the spontaneous emission in the cavity depending on the
direction of pumping. The RIN peak of the step-apodised configuration was -130
dB/Hz at 1.1 MHz and at output power of ~14 mW.

In the dual pumping configuration (c), the ROF of the lasers were observed to behave
differently in this pumping configuration. As mentioned in (a), the lower ROF would
be expected to have a higher RIN peak, however, the lowest RIN peak of -125 dB/Hz
was observed at an output power of ~6 mW in k~200 m™* whose ROF was the
lowest. This could be due to the spontaneous emission too. The RIN peak of «~150
m™ was similar to the backward pumping configuration for the given output power.
The k~100 m™ showed a RIN peak reduction of ~5 dB as compared with the other
pump configurations. For the step-apodised design, a RIN peak of -118 dB/Hz was
observed at an output power of ~7 mW.

Overadl, the intensity noise performance of k~200 m " was better than the two other
values for the given DFB output power. For the step-apodised design, the intensity

noise in the forward pumping configuration was the lowest for the given DFB power.
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Figure 4.10: RIN of the DFB lasers with different grating strengths in (a) backward-, (b) forward-,

and (c) dual- pumping configurations.
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4.3 Two discrete ©/2 phase shift DFB lasers

The lasing wavelength shifts with the pump power were observed previously. The
remaining question is whether this measured wavelength shift is aresult of the pump-
induced temperature increase only, or is there also an intra-cavity effect arising from
the high signal intensity around the phase shift itself? To investigate this point
further, the 2 x n/2 phase shift DFB fibre laser was implemented and its performance
was experimental analysed against the benchmark of a single asymmetric = phase
shift DFB laser. The benchmark DFB laser was referred to the k~200 m™ DFB laser
in the previous section. For single n phase shift DFB lasers, the peak intensity occurs
around the phase shift location and decays ‘exponentially’ towards each end of the
grating, giving a very non-uniform intensity profile, as mentioned in the previous
section. This peak intensity can cause a variation of the refractive index and gain,
giving rise to a change in the lasing wavelength and a decrease of the output power.
Semiconductor multiple phase shift DFB lasers, with a 2 x n/2 phase shift structure,
have been demonstrated which gave a near uniform intensity profile along their
length, provided that the phase shifts were appropriately positioned [6]. Depending
on the phase shift position, the intensity distribution in the cavity can then behave
like a single & phase shift (phase shifts positioned at the centre of the cavity) and
uniform (phase shifts positioned at the ends of the cavity), DFB structure. As
indicated in Ref. [6], this flat intensity profile could give a more effective utili sation
of the available gain, narrower linewidths because of the small variation in the

refractive index along the structure and less variation in the output wavelength with

power level.
22mm
A_A+AM T AATA A
e e e e e e e e e e
mm ' | ' I ' mm
195 245
mm mm

Figure 4.11: Schematic diagram of a 2 x z/2 DFB fibre laser.

The DFB fibre lasers were constructed with the Er3*-Yb®" phosphosilicate core

having an annular photosensitive boron doped ring, the same fibre as was used
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before. The feedback gratings of these lasers were 5 cm long with a «~200 mi* and
UV-written with the phase mask technique. For our asymmetric n phase shift design,
the phase shift was located at 3 mm from the centre of the grating for the output
power of the DFB laser to be predominantly at the end closer to the phase shift. In
the 2 x n/2 DFB design, the two phase shifts were placed symmetrically about the
position of the asymmetry phase shift design, unlike the semiconductor laser in
which the phase shifts were positioned symmetrically about the centre of the cavity.
These discrete phase shifts were placed 5 mm apart and positioned at 19.5 mm and
24.5 mm as shown in Figure 411 . As mentioned in [6], the intensity distribution in
the cavity is a function of the position of the phase shifts and the strength of the
grating. For this purpose, another double phase shifts laser, with the same grating
strength, was fabricated with the phase shifts separated by 10 mm and positioned at
17 mm and 27 mm. The lasers were configured in the backward, forward and dual
pumping schemes, as shown in Figure 3.5. The lasers were pumped at 977 nm with
the laser diode. Their performance was investigated by measuring the laser threshold,

output power, linewidth, lasing wavelength shift with the power and the RIN.

4.3.1 Threshold and output characteristics

Figure 4.12 shows the threshold power and the output power characteristics of the
single © phase shift and the 2 x n/2 phase shifts DFB laser. It is clearly shown that
the threshold of the single discrete phase shift was the lowest in the three pumping
configurations. This can be explained by the high pump absorption and, because the
phase shifts for the double phase shifts lasers were further apart, the round trip
feedback was longer resulting in a slightly increased lasing threshold. This is evident
by the performance of the 10 mm apart double phase shifts laser, the lasing threshold
is even higher than the laser with the phase shifts of 5 mm apart. Overdl, the
backward pumping configuration gives the lowest lasing threshold and the dual
pumping configuration is the worst, as observed earlier. This behaviour was as
explained in the earlier section, due to the asymmetry of the grating design and the

pump absorption within the grating for the different pumping configurations.
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Figure 4.12: Threshold and power characteristics of the single and two discrete phase shifts DFB

structure in (a) backward-, (b) forward- and (c) dual-pumping configuration.

For a better comparison, the laser efficiencies of these lasers were summarised in

Table 4.2. Backward pumping is found to be marginaly more power efficient than

the other two configurations. Although the lasing thresholds of the double phase

shifts lasers were higher than the single phase shift laser, once lasing, the slope

efficiencies were similar or even higher in the case of the 10 mm apart double phase

shifts laser for the backward and forward pumping configurations.

Backward pump Forward pump Dua pump
n phase shift 24% 20% 15%
2x /2 =5 mm apart 23% 21% 13%
2 x /2 — 10 mm apart 27% 23% 14%

Table 4.2: Sope efficiencies of the lasersin the three pumping configurations.
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4.3.2 Laser linewidth

The 3-dB laser linewidth behaviour, as a function of DFB power for the three
configurations, is plotted in Figure 4.13. The trend-lines in the figures serve as a
guide for viewing only, and this is not arigorous fit. For the backward pump (a), the
linewidth obtained for the double phase shifts, of 5 mm apart, design was ~10%
lower than the single phase shift. Its linewidth exhibited an increase from 21 — 37
kHz over the given pump range. The 10 mm apart phase shifts laser was quite

constant in linewidth at around 37 kHz.

For the forward pumping configuration (b), the laser linewidth of the 5 mm apart
phase shifts laser was lower at powers below 10 mW and then it levels off with the
single phase shift laser at linewidths of 60 kHz. The linewidth of the 10 mm apart
phase shifts lasers shows a linear increase with the power. A linewidth of 42 — 58

kHz was observed and it was lower than the 5 mm phase shifts at powers above 5
mw.

# 7 phase shift
************** m2xm2-10mm apart - - - -

| |
| |
10 4o A S
A 2xXw2-5mm apart

T

|
|
|

T
|
|
|
|
[ |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

,,,,,,,,,,,,,,,,,,,,,,, 4oL

| |
| |
| |

4
|
|
|

-
|
|
|
|
|
|
|
I

6 8 10 12 14 16 18
DFB power (mW)

@

0 2 4

101



Chapter 4

Non Standard DFB Designs

~
o

Linewidth (kH2)
s 8 & &8 8

[EnY
o
I

# 7 phase shift
.2 x /2 - 10 mm apart
A 2X12-5mm agpart

0 2 4 6 8 10
DFB power (mW)

(b)

60

12 14 16

50 -

L Inewidth (kHz)
8 5

N
o
I

# 1 phase shift
L e "2x W2-10mmapat
| A2x /2 -5mm apart
0 T T 1 T T 1
0 1 2 3 4 5 6 7
DFB power (mW)

(©

Figure 4.13: The single and two discrete phase shifts lasers linewidth versus DFB power in (a)

backward-, (b) forward- and (c) dual- pumping configurations.

In the dual pumping configuration (c), the linewidth of the 5 mm phase shift laser

was varied from ~17 — 42 kHz for the given DFB power range. It was still lower than

the single phase shift laser. For the 10 mm phase shifts, the linewidth was varied
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from ~28 — 33 kHz. It was lower than the 5 mm phase shifts at powers below 2 mW.
The linewidth of the 10 mm apart phase shifts design behaved quite differently for
the three pumping configurations. This may be because the separation of the phase
shifts is too large, twice the 1/, and the grating behaves basically as two (only
weakly coupled) lasers around the two phase shifts and therefore it is no surprise that
the linewidth behaviour differs. However, the linewidth of the 5 mm apart phase
shifts design was aways lower than the single phase shift design, as expected from
the theory, but the difference is much smaller than expected from the change of the
dM/dP.

4.3.3 Laser wavelength

The lasing wavelength of the single and double phase shifts were measured as a
function of the pump power to investigate whether the wavelength shifts are due to
internal heating, because of dissipation of pump only, or the signal intensity around
the phase shift. The results are shown in Figure 4.14. It is clearly seen that the lowest
laser wavelength shift wasin the double phase shifts of 5 mm apart design and the
single phase shift design was the worst. For the single phase shift design, the
wavelength was increased by ~35 pm for the backward and forward pumping
configurations over the pump power range of 80 mW. The laser wavelength of the
dua pump was increased by ~22 pm for the given pump power. For the double phase
shifts of 10 mm apart design, increases in laser wavelength of ~25 pm, ~15 pm and
~13 pm were observed in the backward-, forward- and dual- pumping configurations,
respectively. The wavelength increase in the double phase shifts of 5 mm apart
design laser was ~17 pm, ~15 pm and ~7 pm for the backward, forward and dual
pumping configuration, respectively.
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Figure 4.14: Laser wavelength versus pump power of the single and two discrete phase shifts in (a)
backward-, (b) forward- and (c) dual- pumping configurations.

A lasing wavelength reduction of 30% and 50% was observed in the double phase
shifts lasers of the 10 mm and 5 mm apart designs for the backward pump. Both
double phase shifts lasers showed a reduction of ~60% for the forward pumping
configuration. For the dual pumping configuration, a nearly 70% reduction in the
wavelength shift was observed in the 5 mm apart phase shifts design and 40% in the
10 mm apart phase shifts design. This suggests that there was some intra-cavity

intensity contributing to the wavel ength shift of the lasers.

4.3.4 RIN of the lasers

It is important to observe the linewidth characteristics as well as the lasing
wavelength shifts of the lasers, but it is also simultaneously important to examine the
stability of the lasers due to the intra-cavity intensity. The RIN was measured with
the signal analyser. Fgure 4.15 shows the RIN of the lasers, measured at the
relaxation oscillation frequency, as a function of output power.
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In the backward pumping configuration (a), the ROF of these lasers was about the
same for the given DFB power, but the RIN peak of the 10 mm apart phase shifts
design was the highest and then levelled off with the single phase shift design. The 5
mm apart phase shifts design exhibits a lower RIN for output powers above 5 mW in

the backward pumping configuration.

In the forward pumping configuration (b), the ROF of these lasers deviated from
each other, with the largest oscillation in the single phase shift design. As aresult the
RIN of the single phase shift design was the lowest. The lowest ROF was observed
in the 10 mm apart phase shifts design and hence, its RIN was the highest. The
intensity noise of the single phase shift design was the lowest for all output power
levels. Its RIN level *approached below’ -127 dB/Hz for powers above 14 mW. For
the 5 mm apart phase shifts design, its RIN was at 125 dB/Hz at ~14 mW DFB

power.

In the dual pumping configuration (c), the ROF for these lasers was about the same

for the given output power. The single phase shift design was the lowest, -122
dB/Hz, and the 10 mm phase shifts design was the worst, -100 dB/Hz.
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Figure 4.15: The RIN characteristics of the single and two discrete phase shifts laser in (a)

backward-, (b) forward- and (c) dual- pumping configurations.

Overdl, the RIN of the 5 mm apart phase shifts design was the lowest with a value of
-122 dB/Hz at output powers of 13 mW in the backward pumping configuration. The
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RIN of the single phase shift design was the lowest in the forward pumping
configuration with a value of -127 dB/Hz at a DFB power ~14 mW. The reason for

this amplitude noise behaviour is not yet fully understood.

4.4 Conclusion

In this work, we investigated the MOPA configuration and lower coupling
coefficient designs as suggested by the analytical model for reducing the laser
linewidth. The step-apodised design was fabricated to compare with the performance
of the standard DFB fibre laser. The intensity profile of the single phase shift design
is non uniform, as high intensity builds up around the phase shift and causes a
variation in the refractive index and hence, lasing wavelength. The 2 x n/2 phase
shift was designed to investigate the intra-cavity effect of the laser as well as the
laser linewidth.

The laser linewidth of ~14 kHz was observed when the DFB laser was in-band
pumped with a pump wavelength of 1480 nm. With the MOPA configuration, the
output of the laser was amplified to ~30 mW with a net gain of ~15 dB. Its
characteristics followed exactly the DFB laser itself, gpart from a dlight increase in

laser wavelength of ~1.4 pm with a 130 mW pump power.

The laser linewidths of k~200 m?, «~150 m? and k~100 m? and a step-apodised
design were experimental investigated. Its linewidth was configuration dependent.
For ©~200 mtand k~150 m?, the linewidth was increased as DFB power increased.
The laser linewidths of «~100 m™ followed the inverse power rule that was predicted
by the Schawlow-Townes formula, but its magnitude was a few orders higher than
predicted. This is due to the low reflectivity of the cavity and the corresponding
operation of the laser near the laser threshold, which is much higher than the others.
It had the narrowest linewidth at output powers above 1.8 mW, in the backward
pumping configuration. In the forward pumping configuration, the narrowest
linewidths were observed in k~100 m™ at an output power of 2.6 mW and k~150 m*

at an output power of 0.1 mW. The narrowest linewidth was observed for k~150 m™
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in the dua pumping configuration. The laser efficiencies of k~100 m™® were the
lowest due to the weak optical feedback. The efficiencies of k~150 m™ and k~200
m™ were similar. The fundamental thermal noise contributed to the laser linewidth at
low pump levels and was reduced by increasing the L, as observed in the dua
pumping configuration with «~150 m™ and k~200 m™*. We aso observed that the
laser wavelength shift isless with longer L, i.e lower k value. This is because the
mode field volume increases with Lef and hence reduces temperature raise in the
fibre. Consequently, the refractive index change is lower and caused a decrement in

lasing wavel ength shift.

The 2 x /2 phase shift DFB laser with phase shifts located at 5 mm and 10 mm apart
has shown a reduction in lasing wavelength shift as compared with the single phase
shift design for similar laser efficiencies. This suggests that the laser wavel ength shift
was not only due to the absorbed pump power but was aso affected by the signal
intensity distribution in the cavity. We also observed a decrease in the laser linewidth

with the 5 mm apart phase shifts laser.
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Chapter 5

Development of an Improved
Efficiency Thulium-doped DFB
Fibre Laser for 2 um

Applications

Development of laser sources operating around the 2 um ‘eye-safe’ region has started
to gather pace, mainly driven by a number of applications in areas such as medicine
[1], Light Detection And Ranging (LIDAR) [2], remote gas sensing [3] and
spectroscopy [4-7]. Thulium (Tm3+) isaparticular attractive ion for such applications
since it has an emission spectrum ranging from ~1.7 to 2.1 um. This spectra range
covers the absorption bands of water, methane, carbon dioxide and nitrous oxide. In
fact, recently, a single-frequency Tm**-doped fibre laser operating at 1735 nm, with
maximum output power of 1 mW for 590 mW of launched pump power at 800 nm,
was demonstrated [8]. However, this laser suffered from very moderate efficiency
and low output power. It was probably limited by the quantum efficiency as well as
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the three-level operating system which requires at least half of the ions to be excited
to obtain population inversion.

In this work, a continuous-wave (CW), DFB, single-frequency, thulium (Tm3+) co-
doped with antimony (Sb*"), fibre laser operating at 1836 nm was realised and
characterised. Thisis the longest reported operating wavelength of a DFB fibre laser
[9, 10]. The laser itself shows an output power of 5 mW and, with the aid of a
MOPA, the power of the DFB fibre laser was amplified to 345 mW. In this chapter,
the photosensitivity of the fibre, that is required for the UV Bragg gratings written
into the core, and the design and characterisation of the laser is discussed. The pump-
bands for Tm are aso reviewed. Here, the DFB fibre laser was in-band pumped at
1565 nm in the forward pumping configuration and then it was configured in the
MOPA to amplify the signa power. Then, the DFB laser was configured in the
intracavity pumping scheme by using a cladding-pumped Raman fibre laser at 1660
nm. The possible applications of this DFB laser operating in this wavelength region
are also discussed.

5.1 Review of pump absorption bands of Tm** -doped

fibre being used

This section reviews the pump absorption bands that have been used to pump Tm*-
doped fibre lasers and single-frequency DFB fibre lasers. Three main pump bandsin
aTm3+-doped silicafibre are available to achievelasing at 1.7 to 2.1 um: *F4, ®Hs and
3H,. Tm has laser transition bands at 0.47, 1.47, and 1.9 um, as seen in Figure 5.1.
Pumping wavelengths of 0.79, 1.09 and 1.57 um have been demonstrated for 1.9 um
Tm>*-doped silica fibre lasers [11-13]. Pumping at 0.8 um, transition *Hg — 3F,, has
been used to pump alength of 27 cm Tm3+-doped fibre to produce aCW laser at 1.96
um with an output power of 2.7 mW [11]. The dope efficiency of this laser was
13%. For the transition *Hg — *Hs, a Yb**-doped silica double-cladded fibre laser,
operating at 1.1 um, can be used as pump source, this has been demonstrated by [13].

The maximum output power achieved was 1.1 W, with afibre length of 0.42 m, and
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the slope efficiency was 27% (quantum efficiency 58%). However, pumping into the
3Hs level of the Tm® produces excited state absorption, in which energy is lost
through °F,5 and 'G, excited levels [13, 14]. Direct pumping into the upper level
(*H,) of the 1.9 um with the Er**-doped fibre laser at 1.57 um has also been
demonstrated [12]. A slope efficiency of 71% (quantum efficiency 79%), with an
output power of 21 mW, was obtained from a4 m long fibre. An even longer pump
wavelength of 1.63 um has been used to pump Tm3+-doped fluoride fibre [15]. The
output power of the 6 m long fibre laser was 5.5 mW, with a pump power of 8 mW.
Slope efficiency of 81.9% (quantum efficiency 84%) was obtained. In this pumping

scheme, Tm ions are directly excited to the 3H, level of the 1.9 um transition, in

which the photon conversion efficiency is much higher than with 0.8 or 1.06 um

pumping. Whereas with pumping wavelengths of 0.79 and 1.06 um, Tm ions

pumped to 3F, or *Hs levels then rapidly phonon-decay to the upper level of 1.9 um.
For the Tm3+-doped DFB fibre laser, demonstrated with a pump wavelength of 790
nm, lasing at 1735 nm has been demonstrated with a slope efficiency of 0.2% [8].
This efficiency was probably limited by the quantum efficiency and reduced because
the three-level system lases from the °Hs level to the ground *Hes level, which
requires at least half of the thulium ions to be excited to obtain population inversion.
In this work, we demonstrate in-band pumping of the DFB fibre laser at 1565 nm, in
which the theoretical quantum efficiency limit is ~85%. With this pump wavelength
the Tm ions are excited to the upper laser level *Ha di rectly, so the photon conversion
efficiency for 1.8 pm emission will be higher than with the other pumping schemes.
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Figure 5.1: Schematic diagram of the Energy-level diagram of Tnt* in silica [16], showing the

pump, absorption, and emission bands
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5.2 Tm*-Sb co-doped alumino-silicate fibre

The details of the Tm** co-doped Sb fibre used for constructing the DFB laser, such
as the fabrication of the fibre, fibre photosensitivity and photostabilisation of gratings
inscribed, is described in this section. The fibre used for fabricating the DFB laser,
the same as that reported in [17], was made in the ORC by the modified chemical
vapour deposition (MCVD) method. Both thulium (Tm) and antimony (Sh) were
incorporated into the fibre-preform through the solution doping technique during the
preform preparation. Al®* was also added to the solution to homogenize the spatial
distribution of the dopants. The synthesized silica preform was drawn into a fibre,
with an outer diameter of 120 um, and the numerical aperture (NA) was around 0.16.
The cut-off wavelength of the fibre was designed at 1.55 um, the pump and signal
wavelengths used were both singlemode at this cut-off wavelength. The
concentration of Tm and Sb is 1000 ppm and 800 ppm respectively. This fibre is
germanium-free, the only photosensitive material for UV written Bragg gratings is
Sb. The gain medium of the DFB laser was provided by Tm. The small signal
absorption (background loss) of the gain fibre was obtained using a cut-back
technique, with a broadband semiconductor optical amplifier source operating from
~1480 to 1620 nm, and it was found to be ~0.46 dB/cm at 1565 nm.

5.2.1 Photosensitivity of the fibre

This section briefly reviews photosensitization of different types of glass hosts and
the experimental set-up used to study the photosensitivity that can be achieved by our
Tm**-Sb co-doping fibre asit is essentia for realising UV written Bragg gratingsin
the core for cavity feedback of our DFB lasers. Most of the photosensitivity studies
of the fibre for photoinduced refractive index changes have so far concentrated on
germano-silicate (Ge/Si) core optical fibres. Enhancement of photosensitivity in
Ge/Si fibre has been reported by co-doping with boron [18] or tin [19], as well as by
loading the fibre with hydrogen prior to grating writing with UV [20]. The loading

process involved the diffusion of H> molecules into the fibres at low temperatures
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and high pressures. When exposed to UV, the dissolved H> reacted at the Si-O-Ge
sites resulting in the formation of Si-OH and oxygen deficient Ge defects which
contribute to the index changes. However, the Ge/Si glass hosts limit the
incorporation of large concentrations of rare-earths which can impose problems such
as clustering [21]. In order to avoid energy being transferred to the neighbouring
ions, i.e. ion pair-induced quenching, the concentration of the rare-earth has to be
low and hence the pump absorption is low which leads to poor laser efficiency.
Recently, antimony (Sb) -doped optical fibre, made by sol-gel techniques, was found
to be highly photosensitive achieving refractive-index modulation growth rates six
times higher than that of the equivalent Ge-doped fibres [22].

The photosensitivity of our fibre was tested by writing uniform Bragg gratings and
then by analysis of the transmission spectrum. The gratings were written using a
frequency doubled Ar'-ion laser operating a 244 nm, with a beam-intensity of
300W/cm?, to operate strictly in atype | regime, where the refractive index changeis
linearly proportional to the fluence. The fibre was hydrogen loaded at 200 atm for 2
weeks a 70 °C prior to writing UV Bragg gratings, so as to enhance the
photoinduced refractive index changes, using the same technique as in [20]. The
index-modulation of this hydrogen-loaded fibre was 15 times higher than the
unloaded fibre as reported in [17]. After the inscription of the gratings, they were
annealed at 100 °C for 24 hours to outgas any residual hydrogen in the fibre and to
stabilise the index-modulations. The experimental set-up for testing consists of a
broadband semiconductor source and an OSA (Advantest Q8384 optical spectrum
analyser) to measure the transmission spectrum of the grating. One end of the grating
was spliced to the output of the broadband semiconductor source, having a 3-dB
bandwidth of 60 nm ranging from 1500-1560 nm, and the transmission spectrum was
anaysed with the OSA from the other end of the grating. The coupling coefficient
was extracted from the reflectivity of the grating using the coupled-mode theory. The
reflection coefficient is given by [23]
R = tanh®(kL)

Where L is the length of the fibre grating and « is the coupling coefficient. The
reflectivity of the grating was determined from the transmission spectrum as

reflection = 1 — transmission. It was much simpler to use the transmission spectrum
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to determine the reflectivity of the gratings, as the maximum transmission loss
through this can be directly observed from the transmission spectrum. From the
coupling coefficient, the index modulation change, An, was obtained by the
following equation [23]
o _mAnn

>“B
where n is atransverse overlap integral of the modal distribution with gratings ~0.85.
The Bragg wavelength (Ag) was a 1597 nm. The DFB fibre laser operating
wavelength was designed to be at 1836 nm. However, due to the limitation of the
OSA, the maximum wavelength of the OSA is 1750 nm, the grating was written at
1597 nm for the photosensitivity studies. The measured index modulation change is

then used to calculate k at 1836 nm.
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Figure 5.2: Measured index growth and coupling coefficient at 1597 nm against 244 nm CW-fluence

and the cal culated coupling coeffici ent at 1836 nm

The index growth of the fibre was studied at different fluences. Figure 5.2 shows the
measured index growth and the coupling coefficient plotted against fluence, together
with the calculated k at 1836 nm. The index modulation change of ~1x10* was

obtained at a fluence of ~1 kJ/cm® The UV induced refractive index changes in this
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hydrogen- oaded fibre can be explained in the same way as[20], i.e. the formation of
Si-OH and oxygen deficient Ge defects have been involved with index change for the
hydrogenated Ge/Si fibre. For our fibre's refractive index changes, these could a so
be due to the formation of Si-OH and oxygen deficient Sb defects.

As for our 5-cm long Er3*-Yb*" co-doped DFB lasers, a tota grating strength of 10
was used in which the optical feedback in the cavity was high and resulted a better
laser efficiency as compared with a grating strength of 5 and 7.5, observed in Section
4.2. In this case, due to the low concentration of Tm*" ions, i.e. low gain, the length
of the DFB laser isincreased to 8 cm. The maximum index growth of thisfibreis~9
x 10" and the maximum  can be obtained at 1836 nm is ~120 m™. With this
maximum « and a fibre length of 8 cm, the grating strength of 9.6 can be achieved.

5.2.2 Thermal stability of the Sb Bragg grating

Temperature stability of the Bragg grating was assessed, it was annealed at
temperature increments of 100 °C starting at 200 °C until the reflectivity of the
grating was completely erased. At each temperature the grating was annealed for 24
hours to be able to analyse the stabilised level of the induced index-modulations. The
grating was spliced to the output of the broadband semiconductor source and placed
in an oven, and the transmission spectrum of the grating was analysed with the OSA.
The temperature stability of the gratings with coupling coefficients (i) of 140 m™* and
90 m™ were tested. Figure 53 summarises these results through a plot of the
coupling-coefficient, normalised against the coupling coefficient observed after the
initial annealing at 100 °C. It is clearly indicated that the stronger the initial grating,
the greater the value of coupling coefficient that remains after annealing. The
reflectivity decays as gratings are annealed at elevated temperatures, thisis dueto the
dynamics of trapping thermally activated carriers in a distribution of defect sites,
which occurred during gratings writing, returning to their initial sites under high-
temperature excitement [24].
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Figure5.3: Thermal decay of the refractive index modulation of the FBG in the Sb co-doped fibre.

At 200 °C the coupling coefficient of the grating, with «~140 m™, was maintained at
~ 80% of itsinitial strength, whereas the strength dropped to ~ 60% in k~90 m™. At
600 °C, the grating with k~90 m™ remained at ~5%, and for k~140 m™ remained at
~10%, of itsinitial strength. Hence, gratings with a higher coupling coefficient are
more resistant to high temperature. The gratings in the Sb co-doped fibre show a
slow decay in grating strength above 500 °C, and would be able to endure at least up
to 700 °C. This is comparable with the grating therma stability of the
germanosilicate and tin-silicate fibres, being completely erased at 680 °C and
enduring at 780 °C respectively [19]. The high temperature sustainability of the
grating written in this fibre is another important feature for high temperature sensing

applications e.g. gaseous emissions in volcanic sites (above 150 °C), in oil field etc.

5.3 The Structure of the DFB fibre laser

The Tm*'-Sb co-doped fibre, as mentioned in Section 5.2, was used for constructing
the DFB fibre laser. The designed operating wavelength of the DFB was at 1836 nm
which is at the peak emission of the Tm. The laser cavity was based on Bragg
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gratings, that are UV written by the phase-mask technique [25], with a period of A =
636 nm. The DFB grating is written directly into the core of the fibreandis8 cmin
length, with a A/4 phase-shift located 4.8 mm from the mid-point of the grating. This
asymmetry enables the output power to be emitted predominantly from the end of the
laser closest to the phase shift. Single polarisation operation of the laser was obtained
by writing the phase-shifted gratings with CW UV light a 244 nm, polarized
perpendicular to the propagation axis of the fibre, as reported in [26]. After writing,
the grating was annealed for 24 hours at 100 °C to stabilise the index modulation.
The writing time of the grating was 3 minutes with a fluence of ~1 kJcm?. The
resulting coupling coefficient of the grating was 120 m™, yielding a total grating
strength of 9.6. The DFB laser is operated in the forward direction and the output
characteristic is determined in the following section.

5.4 Experimental set-up and result of the DFB laser

Santec WDM Signal output
1836 nm ; !
Tunable 1480/1550 @ v ch_hr0|c
Semiconductor N N Mirror
Laser GainNet I |||—-<{}-: [ oo
High Power
A?n lifier DFB Unabsorbed pump
P Laser @ 1565 nm

Figure 5.4: Experimental configuration of the single-frequency DFB fibre laser, in a forward

pumping scheme.

Figure 5.4 shows the experimental set-up of the DFB fibre laser MOPA
configuration. The source used to pump the laser was a 9 mW Santec, tunable
semiconductor source, operating at 1565 nm, which was subsequently amplified to
1.4 W, by a high-power amplifier from SPI Lasers. The output of the amplifier was
then coupled into the DFB laser, viaa WDM, in order to reduce the back reflection
of the source. The fibre laser is operated in a forward pumping configuration in
which the pump copropagates with the laser output. A dichroic mirror, with a high
reflectivity at around 1.8 um and having a high transmission at the pump wavelength,
was then used to extract the forward propagating signal. The lasing wavelength was
designed to be at 1836 nm, which was confirmed and measured with a Bentham
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M300 monochromator, having a resolution of 0.5 nm. Figure 5.5 shows the output
power of the 1836 nm DFB fibre laser operated on it own. The laser has a threshold
power of 95 mW with respect to the absorbed pump power and has a maximum
output power of ~5 mW, with a slope efficiency of 1%, at a pump power of ~550
mW. One explanation for such arelatively low slope efficiency could be related to
the background loss of the silica-based fibre at wavelengthslonger than 1.8 um [27].
The background loss in our fibre was ~0.7 dB/m. However, without Sb codoping, we
usually get a background loss ~0.4 dB/m [personal discussion with J.K. Sahu]. It
suggests that the Sb co-doping increased the background loss by ~0.3 dB/m.
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Figure 5.5; Output of the single-frequency DFB fibre laser, at a wavelength of 1836 nm, as a function

of absorbed pump power.

Many applications require moderate power, low noise, narrow-linewidth sources for
increased sensitivity and signal to noise ratio. However, due to the, in some cases,
low gain, low material concentration, and associated low pump absorption in a short
cavity, it might be necessary to boost the low output with an amplifier to reach a
satisfactory power level. To do this, the master-oscillator power amplifier (MOPA)
design was constructed to overcome the power limitation sometimes associated with

short single-frequency fibre lasers. A typical combined laser and MOPA design
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includes the short fibre laser and is followed by a length of amplifier fibre identical
to that of the laser. It is a very simple configuration yet it still ensures that key
characteristics of the laser, such as, for example, low noise and narrow-linewidth

performance, are maintained [28-30].

5.5 DFB fibre laser with MOPA configuration and

result
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Figure5.6: Experimental set-up of DFB laser with MOPA configuration.

The experimental configuration of the DFB MOPA laser is shown in Figure 5.6. The
DFB fibre laser is spliced to an additional section of Tm**-Sb fibre used to amplify
the signal output by utilizing the residual pump power not absorbed in the laser. The
single-frequency operation of the DFB laser + MOPA was verified by using an in-
house scanning Fabry-Perot interferometer (FPI), with the plane mirrors used in the
FPI cavity having areflectivity of 3% at the lasing wavelength. The separation of the
mirrors was 17.3 mm, giving a free-spectral range (FSR) of 8.67 GHz. The possible
polarisation effect that could be present in this laser is the orthogonal linear
polarisation mode splitting of this fibre which is calculated to be ~1.13 GHz. Figure
5.7 shows a scan over one FSR and confirms that only one longitudina mode, with
no other polarization or longitudina modes, is present in the MOPA DFB fibre laser.
From our experience in fabricating asymmetrica DFB fibre lasers in the region of
1550 nm, the typica linewidth of the lasers is a few tens of kilohertz, athough it is
difficult to measure this value accurately here due to the equipment limitations. We

believe that the linewidth of this laser will be close to this value, not least due to the
8-cm length of the laser.
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Figure 5.7: Sngle-frequency operation of the DFB fibre laser verified by scanning Fabry-Perot
interferometer with FSR of 8.67 GHz.

Amplifier fibrelength (m)

Figure 5.8: Dependence of the output laser power for a constant pump power of 1.4 Won active fibre

length.

In order to investigate the optima amplifier fibre length that gives a maximum
MOPA power for a constant pump power of 1.4 W, alength of 1.85 m of amplifier
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fibre was started with. The fibre was then cut short and the power was measured. The
results are shown in Figure 5.8. It showed that the dependence of the MOPA output
power on the active fibre length. It can be seen that a maximum power of 345 mwW
was obtained with a fibre length of 1-m. As the fibre length increases, the power
tends to decrease. The decrease in output power with increasing fibre length is due to
reabsorption of the laser signal. With the aid of a length of 1-m amplifier fibre, the
output of the DFB at 5 mW was amplified to 345 mW, i.e., anet gain of ~18 dB.
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Figure 5.9: MOPA output of the DFB fibre laser against absorbed pump power at 1565nm, for an
active fibre length of 0.5, 1 and 1.85 m.

The threshold and output powers of the DFB laser with MOPA characteristics for
active fibre length of 0.5, 1 and 1.85 m are plotted, in Figure 5.9, as a function of
absorbed pump power. Slope efficiencies of the MOPA at 0.5, 1 and 1.85 m of active
fibre length, relative to the absorbed pump power, were ~28%, 34%, and 26%,
respectively. All the pump power has been absorbed inthe 1 and 1.85-m active fibre
length as seen in the figure above. At 0.5-m active fibre, the unabsorbed pump power
was ~170 mW.
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5.6 Intracavity pumping set-up and result

Because of the low concentration of the Tm**-Sb co-doped DFB fibre laser, thereis a
low pump absorption and, as a consequence, low output power results. In this section
an intracavity pumping scheme is described that is designed to improve the output
power of the DFB laser, as compared with direct pumping configuration. This is by
placing the DFB laser inside a high reflective cavity of the pump laser, so that the
power that circulates inside the cavity is much greater than the output power. In Ref
[31], the 10 cm long Er®* fibre DFB laser was placed inside the cavity of the Yb*'-
doped fibre laser operated at 975 nm, the output power from the DFB laser has
shown an improvement of threefold as compared with the direct pumping
configuration. In this set-up, the Tm>*-doped DFB laser was placed inside the
cladding-pumped Raman fibre laser’ s cavity operating at 1660nm so asto recycle the
unabsorbed pump power inside the cavity. The estimated absorption loss of the
Tm?3*-Sb co-doped fibre at this wavelength, from Figure 5.10, is ~0.4 dB/cm which is
about the same as at 1565 nm (~0.46 dB/cm).
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Figure 5.10: Absorption loss of Tm**-Sh co-doped fibre.
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The experimental configuration for the intracavity pumping scheme is shown in
Figure 5.11. The cladding-pumped Raman fibre laser used was the same as reported
in [32]. Basicaly, it consisted of a high-power continuous-wave pump source at
1552 nm and a 1.2 km length of double cladding Raman fibre (DCRF). The pump
source for the Raman fibre laser was a two-stage fibre master-oscillator power-
amplifier (MOPA) based on Er®-Yb*" co-doped fibre amplifiers (EYDFAS). The
seed source of the MOPA was a high-power tunable fibre ring laser which used a
commercia 2W EYDFA from SPI Lasers and a tunable fibre Bragg grating. The
power of thering laser was set at 1.4 W, at awavelength of 1552 nm, and it was then
free-space coupled through a pair of lenses and a dichroic mirror into a 4-m long
EYDFA. The 972 nm pump of the EYDFA, together with the 1552 nm signal, is
launched into the EY DF so that the fibre output end can be free-space launched into
the DCRF laser. The Raman laser cavity consisted of a FBG, with 80 % reflectivity
at 1660 nm, written in the core of the DCRF at the 1552 nm launch end and the laser
output coupler was formed by, aflat cleave in the SMF28 fibre at the output end of
the DFB, the 4% Fresnel reflection. The other end of the DFB laser was spliced to a

piece of double-cladding fibre (DCF) to absorb the backward propagating radiation
of the DFB laser.

1.2 km DCRF
Flat cleave end

FBG @ 25(3:('):0 (end of the Raman laser
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1552 nm SMF-28 TmDFB
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Figure5.11: Experimental configuration for intracavity pumping.

The output of the laser was observed with an automatic monochromator, having a
resolution of 3 nm, which is computerised. From the scans of the monochromator, it
was difficult to obtain an accurate picture of the DFB as the cavity was unstable in
time. In addition, it was not possible to know the 1660 nm power being absorbed by

the DFB asit was not possible to measure the power in the cavity. Figure 5.12 shows
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the spectrum obtained with the monochromator. The total power, measured with a
therma power meter at the end of the Raman laser cavity, was 18 W. This was a
combination of the Raman pump, Raman laser and DFB laser powers. With the aid
of “Origin”, a mathematics software program to perform the integration, the DFB
power was estimated to be ~144 mW. Basicaly, the software calculated the areas of

the spectrum and then the total power was divided accordingly.
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Figure 5.12: Experimental spectrum obtained for 100 W of 972 nm pump power/ 25 W of 1552 nm.

5.7 Possible applications of the single-frequency DFB
fibre laser at 1.7 — 2.0 um

Lasers operating at a wavelength around the 2 um eye-safe region have been
extensively used for the development of instrumentation for environmental or
industrial monitoring applications [3-7]. Methane (CH.), carbon dioxide (CO,) and
nitrous oxide (N,O) are important trace gases in the atmosphere as active greenhouse
gases. These gases absorb the infrared radiation from the sun and trap the heat in the
atmosphere and as a result are increasing the average temperature of the Earth.
Rising temperatures may produce changes in weather, sea levels, and land use

patterns, commonly referred to as “climate change.” There are other applications in
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the region such as in LIDAR [2] and aso in medical fields due to the strong
absorption of the 2 um radiation in water and biological tissues. Incisionsin porcine
tissue and chicken breast have been demonstrated with a 1.98 um CW Tm-doped

silicafibrelaser[1].

A number of research studies are being conducted to determine the isotope ratio of
N-O [4, 5] and CH,4 [5]. The isotope abundance ratio in the molecule reflects
different production processes of the molecule and different transportation histories
in the atmosphere. A laser-spectroscope was developed for N2O isotope ratio
measurements using 2 um wavelength-modulated distributed-feedback diode lasers
combined with a multipass cell. In this set-up, the centre wavelength of the lasers
stabilised to the centre of the selected absorption line, were made to travel different
distances in the cell to compensate the large abundance differences. The isotope ratio
is determined by comparing the ratio of the absorbencies for the selected absorption
lines in the sample gas with that in the reference gas of known isotopic composition.
In Ref [5], the DFB semiconductor lasers wavelengths were fixed at the centre of

the absorption lines of CH, and NO,, around 1.7um and 2um respectively.

In Ref [3], adiodelaser spectrometer employed a single mode DFB diode laser at a
wavelength of 1.999 um, with a linewidth of about 10 MHz, for measuring the
concentration of CO2 and H20 in gaseous mixtures. The spectrometer was built on
two separate breadboards. For the first breadboard, a portion of the laser beam was
directed into a Fabry-Pérot interferometer, which provided a precise frequency
calibration of the laser frequency scans, and the remaining part of the beam was
focused into a 10-m-long single mode fibre, by means of a lens, and transmitted to
the second breadboard which contained a multiple reflection cell and an InGaAs
photodiode. Then, the laser beam was collimated in air and into the cell. The
transmitted beam was detected by the photodiode during continuous and periodic
scans of the laser frequency over the absorption lines. However, this spectrometer
involved some optics which is sensitive to the environmental vibration.

Another possible application of our DFB fibre laser operating wavelength is to use it
as the source for the measurement of the second overtone of NO. A DFB diode laser
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sensor at 1.8 um has been developed for measuring the combustion-generated NO,
such asin the emission from an aircraft [6]. The researchers were trying to determine
the emission of NO, with emission levels below 40 partsin 10° by volume (ppmv), as
this is the minimum requirement for a ground certificate of a new engine, for an
aircraft during flight. The DFB laser had an output of 15 mW and the tuning range
was from 1.8068 to 1.8106 um. Due to the limited temperature tuning range of the
DFB lasers, typicaly only several nanometers, it is necessary to specify the desired
operation wavelength range to tolerance before fabrication. Figure 5.13 shows the
calculated absorption spectrum obtained by Ref [6] for the second overtone band of
NO. It is clearly seen that the NO at 800 K has an absorption range from ~1.79 to
1.86 um.
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Figure 5.13: Calculated absorption spectra for the (3,0) band of NO at 800 K[ 6] .

Water exhibits an absorption band at wavelengths around 1.8 um and has been
detected by the fluorescence of a Tm3+-doped fluoride fibre pumped with a laser
diode at 785nm [7], and also by [6] in which water vapour absorption features were
detected in their NO monitoring system.

For a high performance coherent radar system, the laser source has to be frequency
as well as amplitude stabilised, where the laser wavelength has to be held typically to
within afew pm from the absorption line centre and the relative intensity noise has to
be less than -110 dB/Hz. The effective technique used to control emission
wavelength is by injection seeding, where a low power output laser with a narrow
spectral linewidth is used to control the emission wavelength of the Q-switched
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oscillator, as discussed in [2]. Laporta et a. developed a cw single-frequency Tm-
Ho:YAG laser tunable from 2087 to 2099 nm for injection seeding of a coherent
LIDAR system for wind velocity measurement. The laser has both amplitude and
frequency stabilisation by means of an electronics circuit and by locking the
oscillator to an absorption line of amolecule respectively.

5.8 Conclusion

In this chapter, an in-band-pumped, continuous-wave, single-frequency Tm**-Sb co-
doped DFB fibre laser operated at 1836 nm was realised and characterised. This is
the first report of a Tm®* co-doped, single-frequency, DFB fibre laser that is in-band
pumped at 1565 nm and the longest reported operating wavelength of a DFB fibre
laser. The laser itself shows an output power of 5 mW with a slope efficiency of 1%,
at an absorbed pump power of ~550 mW. The laser is then subsequently amplified to
345 mW using a MOPA configuration with an amplifier fibre length of 1 m,
corresponding to a gain of ~18 dB. The single-frequency and single polarisation of
the laser was confirmed with the Fabry-Pérot interferometer. In this work, the DFB
laser was configured in an intracavity pumping scheme by placing it inside the
Raman laser cavity and the DFB output power of 144 mW was obtained. However,
the laser cavity was unstable as a consequence this affected the stability of the DFB
power.

The M/4 phase shift is located 4.8 mm from the mid-point of the grating. The DFB
laser is 8 cm long with a cavity feedback grating strength of 10. The gratings were
UV written into the core of the Tm*" co-doped Sb fibre. The photosensitisation of the
fibre is provided by the Sb and by using hydrogen loading technique to enhance the
photoinduced refractive index by 15 times. The k of the grating remaining at 600 °C,
for k~140 and 90 m', were ~ 10% and ~5% of its initial k. The thermal stability of

the grating written in this fibre is suitable for high temperature sensing applications.

The possible applications of this DFB laser were discussed. We believe that it could

be a practical source for spectroscopy, LIDAR, and medical applications because the
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lasing wavelength is in the ‘eyesafe spectral region and furthermore, the

characteristics of the DFB lasers such as compact size, wavelength stability and

narrow linewidth.
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Chapter 6

Holmium-doped DFB/DBR
Fibre Laser at 2.1um

Lasers operating in the eye-safe 2 um wavelength region can find a number of
important applications as discussed in Chapter 5. Holmium (Ho™) is an rare-earth
ion which has been studied as an active ion in silicate [1-7] and fluoride [8, 9] glass
hosts for lasers operating at ~2.1 pm. Although a highly efficient laser oscillation is
achieved when using fluoride glass hosts [2], due to a lower non-radiative phonon
energy than the silica glass, there are some problems such as fibre strength,
durability, and splicing techniques to be solved to enable fluoride fibre to be
practically applied. The cavity of the fibre lasers is based on the Fabry-Pérot type
cavities which are formed by a high-reflectivity input mirror and an output coupler.
The shortest cavity length of Ho3+-doped silicafibre lasers was 13 cm, having a slope

efficiency of 2.5%, and the maximum laser output power was 6.4 mW [2].

The motivation of this research was to develop a continuous-wave (CW), DFB,
single-frequency, holmium (Ho") doped silicafibre laser operating at 2140 nm. The
design of the DFB was aimed to be as compact as possible, with a stable operating

wavelength and a target output power of <10 mW. This chapter describes the fibre
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design, the loss and emission measurements of Ho®*, and an assessment of the
efficiency of the designed DFB fibre laser operating in the forward pumping scheme.
Section 6.1 reviews the pump absorption bands of Ho>* in silica being used here
Pump sources used to investigate the efficiency of the designed DFB laser were an
Y b**-doped fibre laser at 1119 nm and a Tm** co-doped DFB laser at 1836 nm. The
details of the fibre used for constructing the DFB laser such as the fibre's
photosensitivity, concentration of Ho*, core diameter, numerical aperture (NA) and
cut-off wavelength as well as measurements of loss and emission of Ho®*" are found
in Section 6.2. Based on this information, the DFB laser was designed and the details
of the designed DFB laser are given in Section 6.3. The assessments of the laser
efficiency are given in Section 6.4. The pump absorption for this DFB laser was too
low, a DBR fibre laser was then constructed and assessed. The fina section is the

summary and outcome of this research.

6.1 Review of pump absorption bands of Ho*-doped

silica fibre lasers being used

The 51,5514 laser transition of Ho®* is used to achieve laser emission at 2.1 pm. A
wide range of pumping sources has been used to pump the relevant laser transitions
of Ho*, as it has large, broad, absorption bands which cover the wavelengths from
the visible blue band to the near-infrared band. H03+-doped silica fibre lasers
operated at ~2 pm wavel ength have been pumped by the use of Tm®* [2, 6] or Yb**
[4] sensitization, direct Yb**-doped silica fibre laser pumping [3, 5, 10], and direct
pumping with lasers operating at non-standard wavelengths [1]. The commercially
available semiconductor |asers have emission wavel engths longer than 750 nm which
cannot be used to pump the strongest absorption bands of Ho** located in the visible
range. Therefore, for the first demonstration of H03+-doped fibre lasers it was
pumped by an argon laser at 457.9 nm and had a slope efficiency of 1.7% with a
threshold power of 46 mW [1]. Unfortunately, because of the lack of a suitable
absorption band in the near infrared region which could be pumped by commercially

available laser diodes, the Ho** has to be co-doped with sensitizer ions, either Tm**
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or Yb**, inwhichthereis energy transfer from the sensitizer ionsto Ho ions. In [2, 6]
laser oscillations of Ho in the 2 um region have been demonstrated by pumping the
absorption bands of Tm at 3F, and °Hs levels with a 786 nm Ti:sapphire laser and a
Raman fibre laser operated at 1212 nm respectively; the excited ions drop by phonon
relaxation to the®H, level of Tm*" and by utilising energy transfer from the *H, level
of Tm* to the °; upper laser level of Ho®*. Yb* as a sensitizer ion was
demonstrated in [4], the Ho* was co-doped with Yb** and the fibre laser was
pumped with a 50 W 975 nm diode laser system, whereby Yb** absorbed the pump
radiation and then energy transfer occurred from the 2Fg;, level of Yb* to the %lg
level of Ho*, and multiphonon relaxation from the s level to the °I7 upper laser
level. The weak point of the configuration of these lasers is the strong competition
between the sensitizer ions to Ho energy transfer and the processes of excited state
absorption and the fluorescence of the sensitizer ions [3]. The use of direct pumping,
with Yb3+-doped silica fibre lasers has also been demonstrated. In Ref [3] it was
shown that the 4.5 m-long Ho fibre laser, pumped at 1150 nm with a double-clad Yb-
doped fibre laser, has a slope efficiency of 20% and a maximum output power of 280
mW for 2W absorbed pump power. Ref [5] pumped a length of 2m Ho3+-doped fibre
laser at 1100 nm with a'Y b**-doped silica fibre laser, a maximum slope efficiency of
35% and a maximum output power of 2.7 W was demonstrated for ~10 W launched
pump power. Then, tuning of the 2 um Ho3+-doped silica fibre laser over 144 nm,
from 2019 to 2163 nm, achieving a maximum output power of 1.58 W, has been
demonstrated by [10].

~1150 Laser
nm ~2.1um

Figure 6.1: Smplified three-level energy diagram of Ho* in silica.

Figure 6.1 shows the simplified three-level energy diagram of Ho™>". In this work, the
H03+-doped DFB laser was pumped in the °ls level, the excited Ho ions decay
rapidly, by phonon decay, to the upper lasing level °I;. The pump source used was an

135



Chapter 6 Holmium-doped DFB fibre laser

Y b*-doped fibre laser whose operating wavelength was determined by the Bragg
gratings at 1119 nm. The quantum efficiency limit, at the lasing wavelength of 2140
nm, is ~52%. Pumping at 1836 nm with the Tm® DFB MOPA laser was also

performed in which the theoretical quantum efficiency limit is ~86%.

6.2 Ho>*-doped alumino-silicate fibre

This section is about our Ho**-doped fibre used for implementing the DFB laser.
This was the first trial of fabricating the Ho*'-doped fibre by the ORC fibre
fabricators. The fibre preform was made by conventional modified chemical vapour
deposition (MCVD). Holmium and duminium were incorporated into the core of
fibre-preform through the solution doping technique during the preform preparation.
Germanium and boron were added through MCVD deposition into the core for
photosensitive mechanism. The function of aluminium is mentioned in Section 5.2,
i.e. to even out the distribution of the dopants as well as increase the solubility of the
Ho>" while reduci ng the possibility of concentration quenching. The preform was
then drawn into fibre having a diameter of 95 um. The estimated concentration of
Ho*" in thefibre is ~12000 ppm, it has a core diameter of 7.9 um, NA ~ 0.162, and a
cut-off wavelength of 1670 nm. The gain medium was achieved by Ho**. The small
signal absorptions of Ho>" at 1119 and 1836 nm were found to be ~0.2 dB/cm. The
experimental details for measuring the absorption loss are in Section 6.2.2.

6.2.1 Photosensitivity of the fibre

The photosensitivity of the Ho®" fibreis studied in this section. The technique used to
measure the photosensitivity of the fibre is the same as in Section 5.2.1. The fibre
was hydrogen loaded at 200 atm for 2 weeks at 70°C prior to UV writing the Bragg
gratings and then 1 cm long test gratings, with a Bragg wavelength at 1597 nm, were
written into the core of the fibre with the same Ar*-ion laser operating at 244 nm.
After gratings inscription, they were annealed at 100 °C for 24 hours to outgas any
residual hydrogen in the fibre and to stabilise the index-modulations. The gratings
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were spliced to the output of the semiconductor source and the transmission spectra
of the gratings were measured with the OSA, having a resolution of 0.01 nm. The
coupling coefficient (k) was extracted in the same way as in Section 5.2.1. The index
growth of the fibre was studied at different fluence. The coupling coefficient at 2140
nm, the operating wavelength of the DFB laser, was then calculated from the
measured modulation index of the fibre. Figure 6.2 shows the measured index
growth and coupling coefficient at 1597 nm, as a function of fluence, as well as the
calculated « at 2140 nm. The index modulation change of ~3 x 10 was achieved by
this fibre with a fluence of ~2.2 kJ/cm?. The photosensitivity of the fibre is low as
indicated by the index modulation change. With a fluence of ~2.2 chmZ, the x at
2140 nm that can be obtained is ~30 m™, this meansthat a cavity length of ~30 cm is
needed in order to achieve a grating strength of 10. For a robust single-frequency
output, the cavity length of the laser needed to be only a few centimetres so as to
increase the axial mode spacing. In order to keep the DFB short and to have enough
gain, the length of the DFB gratings chosen is 12 cm and hence a xL of ~4 was
attained. After assessing the photosensitivity, the next section is regarding the pump
absorption loss at the pump wavel engths used, by measuring the absorption bands of
our Ho* -doped fibre.

60 1 1 3.50E-05
~ 50 - 1 1 - 3.00E-05
‘_| I
é : : - 2.50E-05 2
€40 4o A/ I L R
& | | -
g } } - 2.00E-05 §
230 : 1 S
=§ | | - 1.50E-05 =
S 20 - | 1 E
En | | - 1.00E-05
—_ ! ! )
210 | | | 5.00E-06 £
=) : —*—xat 1597 nm . o=
U | ——xat2140 nm
| —* An
0 T T f f 0.00E+00
0 0.5 1 1.5 2 2.5

Fluence, F (kJ/cm?)

Figure 6.2: Measured index growth and coupling coefficient at 1597 nm against 244 nm CW fluence,
together with the calculated coupling coefficient at 2140 nm.
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6.2.2 Absorption of the Ho**-doped fibre

The white light was coupled into the Ho**-doped fibre and the absorption spectrum
was obtained with the OSA by a cut-back technique. The measured absorption
spectrum of the fibre in the range 700-1750 nm is shown in Figure 6.3. A very
similar absorption spectrum was observed as in [5], in which the spectrum showed
the absorption bands of Ho** at °l,, °ls and °ls. The absorption peak of °ls is at 1150
nm with aloss of ~0.7 dB/cm. The pump sources used to pump the DFB laser were
an Yb* -doped fibre laser operating at 1119 nm and a Tm*" DFB MOPA laser at
1836 nm. As observed from the figure below, the absorption loss at 1119 nm was
~0.2 dB/cm. The absorption at 1836 nm, using the Tm** DFB MOPA laser as alight

source, was found to be ~0.2 dB/cm by the cut-back method.
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Figure 6.3: The measured absorption spectrum of our Ho* -doped silica fibre.

6.2.3 Emission of Ho> -doped fibre

This section describes the experimental set-up for measuring the emission of Ho™".
From the laser efficiency point of view, the operating wavelength of the DFB laser
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needed to be at the gain peak. The experimental set-up for investigating the emission
of Ho* is shown in Figure 6.4, in which the Tm® DFB MOPA laser, operated at
1836 nm, is used to excite a 45 cm length of Ho**-doped fibre. The DFB laser was
pumped with a 1 mW Tunics, tunable laser diode source, operating at 1565 nm, and
then amplified to 1W by a high power amplifier from SPI Lasers. The length of the
amplifier fibre was 1.75 m and the power after the MOPA laser, measured with a
Méelles-Griot 13PEMO001 thermal power meter, with all the pump power being
absorbed, was 22 mW at a pump power of 680 mW. The Ho**-doped fibre was
spliced to the output of the MOPA and the other end was spliced to an angle
connector, to prevent back reflections The emission spectrum at the end of the doped

fibre was measured with the automatic monochromator.

Tunics Tm®" Co-doped
Wavelength Tunable Fibre .
Laser Diode Source aIN hsgl)wer ,:\/Iutomanc
1565 nm gnr e Ho*-doped 1ONO-
Amplifier Tm® DFB Laser Fibre chromator/
| — Thermal
| (= +—IIH 1] wer

E-TEK Isolator

Figure 6.4: Experimental set-up for measuring the emission of our Ho*" -doped silica fibre.
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Figure 6.5: The measured emission of Ho*- doped silica fibre as a function of wavelength.
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Figure 6.5 shows the emission spectrum of the Ho3+-doped fibre, scanned with the
monochromator having a resolution of 0.16 nm. The measured full-width half
maximum (FWHM) emission bandwidth of the Ho>*-doped fibre is found to bein the
range of 2080 — 2180 nm and the peak wavelength is at ~2140 nm. The operating
wavelength of the DFB laser is designed at this peak wavelength.

6.3 Structure of the DFB fibre laser

This section outlines the design of the Ho**-doped DFB laser, which is basicaly
having a similar structure to the Er**-Yb** and Tm*" DFB fibre lasers, in which the &
phase shift is placed slightly off-centre with respect to the centre of the grating, i.e. at
aratio of 0.44: 0.56. The length of the DFB gratingsis 12 cm and the phase shift was
placed a 7.2 mm from the mid point of the grating. The gratings were written
directly into the core of the fibre with the phase mask technique that was used in the
Er¥*-Yb* or Tm® DFB fibre laser. The period of the phase mask (A) is 1476 nm and
the operating wavelength of the DFB is 2140 nm. Single polarisation operation was
obtained as mentioned in Chapter 3. As mentioned in the earlier section on the
photosensitivity of the fibre, prior to the fabrication of the UV written Bragg
gratings, the Ho**-doped fibre was hydrogen loaded to make it more photosensitive.
After writing, the grating was annealed for 24 hours at 100 °C to outgas the residual
hydrogen and to stabilise the index modulation. The final grating strength of ~4 was

obtained with a k~ 30 m™.

6.4 Experimental set-up and result

Two pump wavelengths were used to investigate the DFB laser performance. As
mentioned in Section 6.1, the quantum efficiency limit for 1119 nm and 1836 nm, at
the lasing wavelength, is ~52% and ~86%, respectively.
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Figure 6.6 Experimental set-up of the °l s pump band of the Ho* -doped DFB fibre laser.

Figure 6.6 shows the experimental set-up for the °lg pump band of the Ho*"-doped
DFB fibre laser. The pump source was an Y b**-doped fibre laser operated at 1119
nm. The Yb3+-doped fibre laser basically consisted of a spool of GTWave fibre, a
high reflectivity grating and an output coupler (OC) grating a 1119 nm. The
GTWave fibre assembly consists of an Yb**-doped fibre and two un-doped silica
pump fibres wrapped around the doped fibre. The GTWave fibreis 1 km long and is
pumped by a pigtailed 977 nm multimode laser diode which was spliced to the pump
fibre. As the pump light propagates along the pump fibre, its evanescent field is
coupled to the Yb*"-doped fibre where it is absorbed. The operating wavelength of
the Yb3+-doped fibre laser was determined by the Bragg gratings at 1119 nm which
coincides with the optimal performance of the Y b**-doped laser. The output power of
the laser, measured at the end of the OC grating, was ~230 mW with an input power
from the pump diode of 3W. The DFB fibre laser was configured in the forward
pumping scheme in which a WDM coupler is eliminated. One end of the DFB laser,
the end further away from the phase shift, was spliced to the output end of the Yb**-
doped fibre laser. The output end of the DFB laser, the end closer to the phase shift,

was measured with the automatic monochromator.

The DFB laser was pumped with 230 mW and the power at the output end of the
laser, measured with the thermal power meter, was ~120 mW. The measured power
might consist of the signa and unabsorbed power, for this reason, the
monochromator was used to investigate the spectrum at the output end of the DFB

laser. Figure 6.7 shows the spectrum at the output end of the DFB laser as a function
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of wavelength that was scanned by the monochromator. From the spectrum, a peak
was observed at 2123 nm. This peak wavelength was far from the designed operating
wavelength of the laser, which is at 2140 nm. So, in order to further investigate the
possibility of this being due to the pump source itself, the DFB laser was broken at
the splice point and a 50 cm piece of Ho**-doped fibre was spliced at the OC grating
end. A pesk a 2123 nm was still observed with a decreasing in amplitude.
Obvioudly, this cannot be due to the pump source as the amplitude should be the
same for both cases. The other possibility was lasing actually occurred at the
maximum emission peak of Ho®>* as the threshold power of the cavity could be lower
than the DFB cavity. As observed in Section 4.2, the DFB laser with kL~5 required a
much higher threshold power than kL~10. This could be the reason as the kL of the
Ho** DFB was low, i.e. ~4, and the threshold power is even higher in order for lasing

to occur.
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Figure 6.7: Spectrum with and without DFB fibre laser at 230 mW pump power.

From the measured unabsorbed power ~120 mW, the absorption of the fibre at 1119
nm was ~0.27 dB/cm, which is about the same as the absorption loss measured
earlier. The absorption of this fibre islow and the pump power available to reach the

threshold of the DFB laser is limited. In addition, the pump wavelength was below
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the 1670 nm cut-off wavelength of the fibre, higher order modes could therefore be
presented and hence power competition between the modes would occur. The
following experimental set-up was used to pump the DFB laser above the cut-off
wavelength of the fibre Using the 1836 nm Tm®* DFB MOPA laser as pump source,
the V -number at this pump wavelength was 2.19 so there was only one mode present.
In addition, it is an in-band pumping scheme at 1836 nm, in which the theoretical
guantum efficiency limit is ~86%. With this pump wavelength, the Ho®> ions are
excited to the upper laser level °I; directly, so the photon conversion efficiency for
2.1 um emission will be higher than with the other pumping schemes. Figure 6.8

shows the experimental set-up of the°l; pump band of the Ho®*-doped DFB laser.
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Figure 6.8: Experimental set-up for the®l; pump band of Ho** -doped DFB laser.

The same experimental set-up for the Tm*" DFB MOPA laser as in Section 6.2.3,
used for obtaining the emission of Ho®*", was used to pump the Ho**-doped DFB
laser. The amplifier fibre length of 1.295 m was used, instead of 1.75 m. The
maximum MOPA output power of ~110 mW was obtained with 960 mW pump
power. The end further away from the phase shift was spliced to the MOPA laser
output and the power after the Ho* -doped DFB laser was ~ 45 mW, measured with
the power meter. Again, the monochromator was used to investigate the output
characteristics of the laser. Figure 6.9 shows the output characteristics of the DFB
laser at a pump power of 110 mW and also 65 mW. For 65 mW pump power, the
power at the output of the DFB laser was 27 mW. Results show that the ASE of the
H03+-doped fibre was increased as the pump power increased and the DFB laser did
not lase with these pump power levels. The pump absorption at this wavelength was
~0.2 dB/cm.
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Pump wavelengths at 1119 nm and 1836 nm were used to pump the DFB laser,
neither wavelength showed that lasing occurred. This could be due to the quality, Q,
of the cavity that is reduced as compared with the Q-value of a grating strength of
~10. Consequently, the loss in the cavity has increased as aresult of decreasing the Q
of the cavity. Furthermore, the gain in the fibre could be low and hence, it is
insufficient to overcome the losses. The estimated |oss introduced by the reflective
gratings was ~0.11 dB. The other problem could be due to the low pump absorption
in a12-cm long laser cavity; to resolve this, a distributed Bragg reflector (DBR) was

constructed in the following section.
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Figure 6.9: The output spectrum of the Ho*-doped DFB laser pumped at °I, band.

6.5 DBR laser: Experimental set-up and result

This section describes the redlisation of a distributed Bragg reflector (DBR) for
increasing the pump absorption by using a longer cavity length. In[11, 12], the DBR
fibre laser was formed with two Bragg gratings that were written into the core of the
Er3+-doped fibreby using atwo beam interference pattern. The two reflector gratings
were written on opposite ends of the fibre. In this work, a DBR Ho**-doped fibre

laser was constructed, by fusion-splicing two reflector gratings on opposite ends of a
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length (L) of Ho3+-doped fibre, to form a cavity. By splicing the gratings on both
ends of the fibre additional splice loss will be introduced; however, it was the initia
trial for this set-up. The gratings were cut from both ends of the DFB laser and
spliced to both ends of the Ho3+-doped fibre. The gratings were 4 cm long so that the
Bragg wavelength of the two reflectors was the same. The reflectivities of the 4 cm
long gratings were 96.4%, i.e. 0.16 dB loss at the reflectivity of the gratings. The
cavity lengths of the laser used were 31 and 85 cm long. The laser was end pumped
with the Yb* -doped fibre laser with 230 mW at 1119 nm. Figure 6.10 shows the
schematic diagram of the DBR fibre laser configuration together with the pump

source.
977 nm MM laser diode
module
GTWave
fibre spool Fibre grating Monochro-
A mator/
Thermal
H —
N—HTHTTTTHC DS [T powermeter
HR Grating OC Grating L
@1119 nm @1119 nm

Figure 6.10: Ho*"-doped DBR fibre laser configuration.
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Figure 6.11: Spectrum of DBR for a cavity length of 31 and 85 cm; and without reflector gratings for
31 cmof Ho3+-doped fibre pumped at 230 mW.

145



Chapter 6 Holmium-doped DFB fibre laser

The power measured at the output of the DBR laser was 50 and 2 mW for a cavity
length of 31 and 85 cm respectively. The output of the laser was investigated with
the scanning monochromator and the spectrum is shown in Figure 6.11. With the 31
cm cavity length, peaks were observed at ~2010 and 2175 nm which is corresponded
to the emission spectrum of Ho**. However, neither of these wavelengths was
corresponded to the designed operating wavelength. Accordingly, the gratings at the
ends of the fibre were then un-spliced and the 31 cm long Ho3+-doped fibre was
spliced directly to the output of the Yb*'-doped fibre laser. Again, the pesks
coincided exactly with the DBR laser wavelength and lasing occurred as explained in
section 6.4. For a cavity length of 85 cm, only the ASE was observed and no peak.

This might be because the cavity length was too long and signal reabsorption can
occur.

6.6 Conclusion

This chapter describes the preliminary work involved to implement a Ho3+-doped
DFB fibre laser and assess the performance of the laser. The DFB laser was designed
to operate at 2140 nm, the peak emission of Ho*'. It was pumped at 1119 nm by an
Y b**-doped fibre laser and at 1836 nm by a Tm*" DFB laser. The quantum efficiency
limit a pump wavelengths 1119 nm and 1836 nm was 52% and 86% respectively.
However, neither pump wavel ength managed to get the DFB laser to lase. This could
be because the losses in the cavity were high and the gain of the fibre was
insufficient to overcome it. The other possibility was due to the pump absorption for
al2cm H03+-doped fibre, that was low at both pump wavelengths ~0.2 - 0.3 dB/cm.
Since the absorption of the DFB is low, a pump source with much higher power,
perhaps, could reach the threshold of the laser. Then, a DBR fibre laser was
constructed to increase the pump absorption by using a much longer cavity length.
The cavity lengths of 31 and 85 cm were used, but still no lasing was observed.
Concentration quenching effects could be one of the problems as our fibre was doped
with a huge Ho®" concentration. Other possible problems were due to the dominant
non-radiative transition in the 2 um region and the large intrinsic losses of the silica
fibre associated with the 2.1 um wavelength.
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Chapter 7

Conclusions

7.1 Subject of this research

Short-cavity single-frequency fibre lasers have been a topic of continued interest
since the early work of Ball et al. on Er**-doped distributed Bragg reflector fibre
lasers. These fibre lasers have shown kilohertz linewidths, direct compatibility with
fibre networks, wavelength tunability and are also simple to fabricate. The above
characteristics have made them attractive for a number of applications such as in
optical coherent communications, wavelength division multiplexing (WDM), optical
fibre sensors and high-resolution spectroscopy. A highly stable laser source is
required to achieve a high performance coherent radar system for measuring gas
concentration whereby the laser wavelength has to be held typically within afew pm
from the absorption line centre and the relative intensity noise hasto be typically less
than -110 dB/Hz [1]. Also mentioned by [2], the optical based gas sensing required
the laser linewidth to be narrower than the absorption line of the gas to be detected
for a good spectral overlap so as to lower the minimum detectable gas concentration
as well as the cross-sengitivity to other gases. The wavelength stability in the WDM
applications becomes an important factor as the channels are increased. Fibre lasers
with a wavelength stability of 0.1 pm have been demonstrated in the 8- and 16-
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channel systems. The power levels required for these applications were in the
milliwatt regime. The objective of this research isto develop a narrow linewidth, low

noise, wavelength stable and compact source for high end applications.

There have been a few detailed experimenta investigations on the linewidth/phase
noise characteristics of these lasers, with much of the work focused on improving the
efficiency and output power through optimising the fibre, cavity and grating design.
The phase noise properties of these lasers fails to measure up to that achievable in
bulk solid-state lasers, even though the linewidth of fibre lasers, based on the well-
known Schawlow-Townes formula, indicate values of 60 Hz or less. One common
suggestion for the source of this excess phase noise is that it is caused by the
environmental perturbations, such as external vibrations and acoustic noise. We
experimental ly investigated the main cause(s) of the anomalous linewidth behaviour
of these fibre lasers and the possible ways of reducing this laser linewidth. In this
research, we also aimed to develop single-frequency fibre DFB lasers operating in
the 2 um ‘eye safe’ wavelength region as it begins to become more important due to
a number of possible applications around 2 um, such as remote gas sensing, LIDAR
and medicine.

7.2 This thesis

In this thesis the anomal ous behaviour of the laser linewidth of the single-frequency
fibre DFB lasers was studied [3, 4] and an analytica model was developed to
describe the main cause of the excess noise in the fibre lasers [5, 6]. Then, the laser
performance of the step apodised and the double phase shifts designs were compared
with the standard design. The effective cavity length of the step apodised DFB laser
can be increased without offsetting the optimal cavity confinement. The 2 x n/2
phase shift design was used to show the intra-cavity effect [7]. A dngle-frequency
fibre DFB laser with improved efficiency operated at 1836 nm was realised with
thulium as the gain medium [8, 9]. Then, aiming for a laser operating wavelength
longer than 2 um, this was attempted to be demonstrated with holmium.
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The first chapter described the motivation of this study and a brief history of the
developments in the single-frequency fibre DFB lasers which included the laser
operating wavelength regions that have been covered and the current laser cavity
designs as well as the mask-technique used for fabricating the feedback gratings into
the core of thefibre.

The feedback mechanism and gain medium, that are essentials for the lasing in DFB
lasers, were described in Chapter 2 This covered the definitions of the reflectivity of
gratings, the effective length in which the signal circulated in the grating before
emerging from the front end, and the rate equations describing the gain medium of

the laser.

Chapter 3 presented an experimental investigation and theoretical analysis of the
anomalous linewidth behaviour of an Er**-Yb** co-doped DFB fibre laser [3, 4]. It
was shown that not only does the laser linewidth deviate from the Schawlow-Townes
linewidth formula by increasing with pump and laser power but it aso varied with
the pump configuration. The backward pumping scheme has the lowest threshold and
highest efficiency, while the dual -pumping scheme was the worst in these aspects. If
maximising efficiency and output power are the over-riding criteria, then backward
pumping is clearly the configuration to adopt. The measured 3-dB laser linewidth
showed that the lowest linewidth operation was actually obtained with the dual-
pumping configuration. This suggested that the designs aimed at maximising the
laser efficiency and output power may well impact its phase noise properties in

unexpected and undesired ways.

This excess laser linewidth cannot be explained by the environmental noise and
fundamental thermal noise floor. The dependence on the pump and output power
suggested that the variations in linewidth are a feature of the laser rather than simply
being due to environmental perturbations. External perturbation should only
contribute to a noise floor independent of pump power. With our pump powers of up
to 100 mW and more, the lasing wavelength was increased by ~20 pm for the given
pump power and this indicated a temperature increase of no more than 3 °C. The

temperature in the fibre was confirmed with a numerical simulation of heat diffusion
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equations. The 3 °C change incurred in the fibre over the entire laser operating range
would seem to be much too small to account for the observed increases in linewidth.
However, the therma noise fluctuations in the laser do comprise a substantive
portion of the laser phase noise, particularly at the low operating powers. At higher
pump powers, the laser linewidth was insensitive to temperature over the range that

we were able to investigate.

The unusual behaviour of the laser linewidth was found to be caused by the
fundamental therma noise at low pump power levels and temperature fluctuations
induced by pump intensity at higher powers[5, 6] . The low-frequency intensity noise
of the pump laser leads to fibre temperature fluctuations, which in turn lead to
refractive index fluctuations and, thus, to the laser frequency jitter. The pump power
fluctuation effect is configuration dependent. The difference between the model

calculation and the experimental results can be explained by fundamental thermal
noise in which alinewidth floor of ~15 kHz was observed.

The potential techniques to overcome these linewidth limitations were discussed.
One possible solution was to use alow noise pump which may not be the most cost-
effective solution. Another possibility is to use a material with a temperature-
insensitive refractive index (dn/dT = 0), such as special tailored phosphate glasses

[10, 11]. The fundamental thermal noise associated with the linewidth floor can be

modified by the effective grating length (L) and it is scaled asAf oc:l/,/Leff .

Similarly, the fibre core radius can be enlarged to increase the mode volume and
hence decrease the thermal effects. Another technique is to operate the laser at low
power, at which the linewidth is much narrower, and subsequently amplify its output
power with aMOPA configuration.

Chapter 4 presented the performance of the non-standard and standard DFB laser
designs. The laser linewidths of k~200 m™, k~150 m™* and k~100 m™ and a step
apodised grating design as well as showing the laser wavelength shift were
measured. The linewidth was found to be configuration dependent. The laser
linewidth of k~100 m™ followed the Schawlow-Townes linewidth formula, but its
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magnitude was a few orders higher. However, the laser output power was the lowest
because of weak optical feedback. Thelaser efficiencies of 1~150 m™* and k~200 m™
were similar. By increasing the L, the fundamental thermal noise contributing to the
laser linewidth at low pump level was reduced, as observed in the dual pumping
configuration with k~150 m™ and «~200 m™*. The linewidth of k~150 m™ was lower
than k~200 m™ in the forward and backward pumping configurations In the
backward pumping configuration, the linewidth was about the same at high output
power. We observed a decrease in the laser wavelength shift as«k reduced. This was
because the intensity distribution around the vicinity of the phase shift decreased as
the reflectivity of the grating reduced.

The 2 x /2 phase shift DFB laser with phase shiftslocated at 5 mm and 10 mm apart
were used to show that the laser wavelength shift was not only due to the absorbed
pump power but also the signal intensity profile in the laser cavity [7]. We observed
areduction in lasing wavelength shift as compared with the single phase shift design
for the similar laser efficiencies. We also observed a decrease in the laser linewidth
for the laser with the phase shifts 5 mm apart. However, the slope of the laser
wavelength shift change with the pump power was not in a quantitative agreement

with the linewidth reduction.

Chapter 5 reported the demonstration of an improved efficiency, thulium doped fibre
DFB, laser operating at 1836 nm. Our fibre DFB laser was 8-cm long, with a grating
strength (xL) of 9.6, and a n-phase shift located at the 44 % point of the total length
of the laser. This is the longest reported operating wavelength of a single-frequency
fibre DFB laser [8, 9]. The laser itself shows an output power of 5 mW having a
slope efficiency of 1% and, with the aid of a master-oscillator power amplifier
(MOPA), the power of the DFB fibre laser was amplified to 345 mW with an
amplifier length of 1 m. The laser was in-band pumped at 1565 nm, which was the
first reported Tm®* doped fibre DFB laser with in-band pumping. Intracavity
pumping of the laser was also conducted with a Raman fibre laser, an output power
of 144 mW was observed. However, the laser output was unstable owing to the
unstable pump. Some of the possible applications of thelaser, operated around 2 um,

were discussed and we believe that this laser could be a practical source for
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spectroscopy, LIDAR, and medical applications because the lasing wavelength is in
the ‘eye-safe€ spectral region.

Chapter 6 described the development of a DFB fibre laser, operating at ~2.1 um,
with Ho**. The laser was pumped at 1119 nm by an Yb®" fibre laser and at 1836 nm
by a Tm** DFB laser. However, with neither of the pump wavelengths was lasing
achieved in the DFB. This could be due to the low pump absorption available in a
length of 12-cm Ho** fibre. Then, a DBR fibre laser was constructed to increase the
pump absorption by using a much longer cavity length. The cavity lengths of 31 and
85 cm were used, but still no lasing was observed. This might be related to the high
concentration of the Ho* in the fibre that resulted in concentration guenching. Other
possible problems were due to the dominant nonradiative transition in the 2 um
region and the large intrinsic losses of the silica fibre associated with the 2.1 um

wavelength.

7.3 Future work

Initial moves towards the 2 um spectral region have followed a number of important
applications in medicine, spectroscopy, and LIDAR. The characteristics of the DFB
fibre lasers, such as narrow linewidth, wavelength stability and tunability, are
believed to be a viable source for these applications. However, in order for the DFB
fibre lasers to be a practical device in medical applications, the laser power needs to
be in a few watts regime. This can be solved by using a MOPA configuration in
which the DFB fibre laser acts as a seed for the amplifier. Currently, the fibre optic
communication networks are operated in the 1550 nm region which is constrained by
the gain band of Er®*. Er**-doped fibre amplifiers are frequently used to amplify the
signal so as to increase the transmission distance and as a result the wavebands are
limited to 1530 — 1570 nm, i.e. the gain band of Er**. The technology is now
relatively mature, but the demanding is still increasing, therefore it might be a need
for expanding the operating region to 2 um spectral region. Perhaps, the emission
spectral of Tm and Ho in the 2 um could open up a new window for optical

tel ecommuni cation networks.
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However, the Ho>*-doped DFB laser developed is needed to improve through
optimise the amount of Ho*" concentration, co-doped with a sensitizer material such
as Yb or Tm, and photosensitivity of the fibre. The concentration of holmium in the
reported fibre lasers was below 2000 ppm as, for our holmium concentration of
12000 ppm in an duminosilicate glass host, there could be a possibility of the
concentration quenching effect due to limited amount of aluminium to even out the
distribution of the dopants by increasing dopant solubility. Co-doping Ho with
sensitizer has shown an improvement in laser efficiency. Perhaps, to increase the

photosensitivity of the fibre by co-doping with Sb.

So far, the gain of the DFB lasers demonstrated has been based on rare-earth ions in
which the operating wavelength was dependent on the ions transitions. The DFB
lasers in the spectral region of 1.08 pm have been demonstrated with Yb** and Nd**
as the gain medium. In the wavelength region of 1.5 um, the gain medium used is
Er3 ions. Lasers operating in the 2 um region have been demonstrated with Tm**
and Ho*". The fibre DFB Raman laser has been proposed by Perlin and Winful [12],
in which the gain mechanism of the laser is provided by stimulated Raman scattering
(SRS). In the stimulated Raman scattering, light is scattered by optica vibration
modes (optical phonons) of the material, resulting in frequency down-shifted Stokes
light. With this scattering process, a laser wavel ength should be possible from 1 to 2
pm which is not limited by the rare-earth ions’ transition. The proposed Raman DFB
fibre laser was about 1-m long owing to the fact that the gain provided by SRS is
small as compared with the rare-earth dopant. The Raman gain coefficient of a
standard single-mode fibre is ~ 10" m/W. However, the Raman gain bandwidth is
quite broad, ~7 THz, which is 1000 times broader than the grating bandwidth of
k~100m™, so the Bragg grating interaction with the Raman gain can be considered
constant. The characteristics of this laser include a flat intensity distribution inside

the cavity and alasing frequency linearly dependent on pump power.

154



Chapter 7 Conclusions

7.4 References

(4

(3]

[4]

(5]

6]

(8]

[9]

[10]

[11]

[12]

P. Laporta, M. Marano, L. Pallaro, and S. Taccheo, "Amplitude and frequency stabilisation
of a Tm-Ho:YAG laser for coherent lidar applications at 2.1 um," Optics and Lasers in
Engineering, vol. 37, pp. 447-457, 2002.

F. J. McAleavey, J. O'Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Maze,
"Narrow linewidth, tunable Tm*'-doped fluoride fiber laser for optical-based hydrocarbon
gas sensing," |EEE Journal of Selected Topics in Quantum Electronics, vol. 3, pp. 1103-
1111, 1997.

N. Y. Voo, P. Horak, M. Ibsen, and W. H. Loh, "Linewidth and phase noise characteristics of
DFB fibre lasers," in SPIE European Symposium on Optics and Photonics in Security and
Defence, vol. 5620. London, 2004, pp. 179-186.

N. Y. Voo, P. Horak, M. Ibsen, and W. H. Loh, "Anomalous linewidth behavior in short-
cavity single-frequency fiber lasers,” |IEEE Photonics Technology Letters, vol. 17, pp. 546-
548, 2005.

P. Horak, N.Y. Voo, M. Ibsen, and W. H. Loh, "Dominant cause of linewidth in DFB Fiber
lasers," in CLEO/QELS 2005. Baltimore, USA, 2005, pp. 1566-1568.

P. Horak, N. Y. Voo, M. Ibsen, and W. H. Loh, "Pump-noise induced linewidth contributions
in distributed feedback fiber lasers," |IEEE Photonics Technology Letters, vol. 18, pp. 998
1000, 2006.

N. Y. Voo and M. Ibsen, "Multiple phase-shift all-fibre DFB lasers," in OFC 2006. Anaheim,
USA, 2006, pp. OWM3.

N. Y. Voo, J. K. Sahu, and M. Ibsen, "345-mW 1836-nm single-frequency DFB fiber laser
MOPA," |EEE Photonics Technology Letters, vol. 17, pp. 2550-2552, 2005.

N. Y. Voo, J. K. Sahu, and M. Ibsen, "345 mW single-frequency Tm>*-Sb co-doped DFB
fibre laser MOPA at 1836 nm," in OAA. Budapest, Hungary, 2005, pp. TuD2.

E. T. Y. Lee and E. R. M. Taylor, "Thermo-optic coefficients of potassium alumino-
metaphosphate glasses," Journal of Physics and Chemistry of Solids vol. 65, pp. 1187-1192,
2004.

E. T. Y. Lee and E. R. M. Taylor, "Compositional effects on the optical and thermal
properties of potassium aluminophosphate glasses,” Optical Materials vol. 27, pp. 323-330,
2004.

V. E. Perlin and H. G. Winful, "Distributed feedback fiber Raman laser," |EEE Journal of
Quantum Electronics, vol. 37, pp. 38-47, 2001.

155



Appendix | List of Publications

Appendix |

List of Publications

Publications from resultsreported in thisthesis

Journal articles:

e N.Y. Voo, P. Horak, M. Ibsen, and W.H. Loh, Anomalous linewidth behaviour in
short-cavity single-frequency fiber lasers, IEEE Photonics Technology Letters,
Vol. 17, pp. 546-548, 2005.

¢ N.Y. Voo, JK. Sahu, and M. Ibsen, 345-mW 1836-nm single-frequency DFB fiber
laser MOPA, |EEE Photonics Technology Letters, Vol. 17, pp. 2550-2552, 2005.

e P. Horak, N.Y. Voo, M. Ibsen, and W.H. Loh, Pump-noise induced linewidth
contributions in distributed feedback fiber lasers, IEEE Photonics Technology
Letters, Vol. 18, pp. 998-1000, 2006.

Conferences:

e N.Y. Voo, P. Horak, M. lbsen, and W.H. Loh, Linewidth and phase noise
characteristics of DFB fibre lasers, in Proc. SPIE European Symposium on Optics
and Photonicsin Security and Defence 2004, Vol. 5620, pp. 179-186.

156



Appendix | List of Publications

¢ JK. Sahu, M.R. Mokhtar, N.Y. Voo, D.N. Payne, and M. Ibsen, Photosensitivity in
germanium-free antimony doped alumino-silicate optical fibre prepared by MCVD,
In Proc. ECOC 2004, paper Th3.3.5.

e P. Horak, N.Y. Voo, M. Ibsen, and W.H. Loh, Dominant cause of linewidth in
DFB Fiber lasers, in Proc. CLEO/QELS 2005, pp. 1566-1568.

e N.Y. Voo, JK. Sahu, and M. Ibsen, 345 mW single-frequency Tm*-Sb co-doped
DFB fibre laser MOPA at 1836 nm, in Proc. OAA 2005, paper TuD2.

e N.Y. Voo and M. lbsen, Multiple phase-shift all-fibre DFB lasers, in Proc. OFC
2006, paper OWM3.

157



