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Abstract

i

UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING, SCIENCE & MATHEMATICS
OPTOELECTRONICS RESEARCH CENTRE

Doctor of Philosophy
DEVELOPMENT, CHARACTERISATION AND ANALYSIS OF NARROW

LINEWIDTH, SINGLE-FREQUENCY DFB FIBRE LASERS IN THE
1.5 μm – 2 μm REGION

by Nyuk Yoong Voo

The main aim of this study was to investigate the anomalous linewidth behaviour of
the DFB fibre lasers, as the observed linewidths of these lasers remain far above their
predicted theoretical limit based on the Schawlow-Townes linewidth formula.
Narrow linewidth, single-frequency fibre lasers are attractive sources for optical
coherent communication, wavelength division multiplexing, optical sensors and
spectroscopy, as they have kilohertz linewidths, direct compatibility with the fibre
network, wavelength tunability and are simple to fabricate. Another aim of the study
was to extend the operating wavelength of the fibre DFB lasers around 2 μm, this
research was driven by the number of possible applications in areas such as remote
gas sensing, laser imaging detection and ranging (LIDAR) and medicine.

Er3+-Yb3+ DFB fibre lasers showed that not only does the laser linewidth deviate
from the Schawlow-Townes linewidth formula, by increasing with pump and laser
power, but it also varies with the pump configuration. It was found that the backward
pumping scheme has the lowest threshold and highest efficiency, while the dual-
pumping scheme was the worst in these aspects. The lowest linewidth operation was
actually obtained with the dual-pumping configuration. The variations in laser
linewidth were 25-40 kHz. Then, the anomalous linewidth was found to be caused by
the fundamental thermal noise at low pump power levels and by temperature
fluctuations, induced by pump intensity, at higher powers, which in turn leads to
refractive index fluctuations and, thus, to the laser frequency jitter. Some of the
potential techniques to overcome the linewidth limitations were experimentally
investigated and good agreement was observed. The double phase shifts DFB laser
showed a reduction in lasing wavelength shift, as compared with the single phase
shift design, for similar laser efficiencies. This suggests that the wavelength shift was
not only due to the absorbed pump power but was also affected by the signal
intensity distribution in the cavity. A 10% decrease in the laser linewidth with the 5
mm apart phase shifts laser was observed in the backward pumping configuration.

A Tm3+ co-doped DFB fibre laser operated at 1836 nm, the longest reported
operating wavelength, was in-band pumped at 1565 nm and gave an output power of
5 mW with a slope efficiency of 1%. With the MOPA configuration, the laser output
was amplified, with 1 m of amplifier fibre, to 345 mW. A Ho3+-doped DFB fibre
laser was designed to operate at 2140 nm. However, neither the pump wavelength at
1119 nm nor at 1836 nm managed to make it lase. The reasons could be due to
concentration quenching resulting from a high concentration of the Ho3+ in the fibre,
a nonradiative transition in the 2 μm region and also the large intrinsic losses of the
silica fibre associated with the 2.1 μm wavelength.
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Chapter 1

Introduction
____________________________________________________________________

Narrow-linewidth, single-frequency lasers are attractive sources for optical coherent

communications, wavelength division multiplexing, optical fibre sensors and high-

resolution spectroscopy. Single-frequency fibre lasers are promising alternatives to

semiconductor lasers as they have kHz linewidths, direct compatibility with the fibre

network, wavelength tunability and are simple to fabricate. The single frequency

operation of fibre lasers has been demonstrated in: fibre ring lasers [1], linear cavity

fibre lasers with a narrow filter [2], distributed Bragg reflector (DBR) fibre lasers [3,

4] and distributed feedback (DFB) fibre lasers [5] and also in the Fabry-Perot type

lasers by making the cavity extremely short <1 mm [6]. The research described here

aims to develop compact sources, with a narrow linewidth, low noise and good

wavelength stability, suitable for high-end applications.

Laser linewidths of ≤10 kHz have been reported in the Er3+-doped fibre ring-lasers

[1, 7]. In [1] the single-frequency of the laser was obtained by maintaining the

polarisation of the mode. Single-mode operation in the fibre ring cavity can be

achieved with the Fabry-Perot filter [7]. Lasing is easy to obtain in the fibre ring-

laser with a low Er3+ concentration fibre in which the gain medium must be very long

(typically longer than 10 m) to produce enough gain. Owing to the long cavity

length, this also gives narrow linewidths. However, the long cavity length results in
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closely spaced multiple longitudinal modes. This can severely limit their applications

due to multimode oscillation and mode hopping. In addition, the length of the cavity

is susceptible to thermal drift and this will cause long-term mode hopping, even with

a combination of filters inside the ring-cavity to suppress the mode hopping [8].

Mode hopping can be eliminated by actively stabilising the laser through dithering of

the cavity length using a piezoelectric transducer (PZT) fibre stretcher controlled by

feedback from the output of the laser [9]. However, this solution makes the laser

design become more complex.

Recently, a single-frequency ytterbium (Yb3+) fibre laser was demonstrated based on

a linear cavity in which a narrow bandwidth filter is used to select the single

longitudinal mode and the dual-cascaded fibre Bragg gratings act as an output

coupler [2]. Single-mode operation of this laser was achieved by using a saturable

absorber, a section of unpumped gain fibre, in which counter-propagating waves

formed an interference pattern that generated a dynamic Bragg grating at 1064 nm.

The cavity length of this laser was about 1 m and an output power of 18 mW was

obtained with a pump power of 107 mW at 976 nm. The mode stability of this laser

was limited at high pump power due to the spatial hole burning caused by the high

intensity in the cavity.

One can also obtain single-frequency operation in Fabry-Perot-type lasers by making

the cavity extremely short < 1mm. Single-longitudinal mode operation is obtained,

with the mode spacing in the resonator relatively larger than the gain bandwidth, so

that only one mode acquires sufficient gain to reach lasing threshold. A 100-μm long

erbium-ytterbium (Er3+-Yb3+) phosphate-glass fibre Fabry-Perot laser, operating at

1535 nm was demonstrated with a two-mirror laser resonator design [6]. Due to a

short cavity length, the output power of this laser was very low (~ 20 μW).

Robust single-longitudinal mode operation without mode hopping has been

demonstrated in the DBR [3, 4, 10-13] and DFB [5, 14, 15] fibre lasers. Very narrow

laser linewidth of a few tens of kilohertz and a low relative intensity noise of < -140

dB/Hz in the megahertz region have been reported for both cavity designs [3, 13, 14].

The construction and operation of these lasers is much simpler than the fibre ring
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lasers and linear cavity design. Unlike the ring fibre lasers and linear cavity, in which

the laser wavelength was defined by a filter such as an interference filter [1], a fibre

Fabry-Perot filter [7] or auto-tracking filter [2]. In the DBR and DFB fibre lasers, the

laser wavelength is determined by the ultraviolet (UV) written Bragg gratings and it

can be accurately set to ≤0.1 nm during manufacture and has a low sensitivity to

temperature (~10 pm/K). DBR fibre lasers are only robustly single-frequency

provided that the grating bandwidth is kept below ~0.2 nm and the laser length is

reduced to a few centimetres to increase the axial mode spacing.

DFB fibre lasers integrate a single grating over the entire cavity for feedback and

wavelength determination. The advantage of the geometry of the DFB design, as

compared with the DBR design in which the two Bragg gratings are separated by a

gain section, is that it can be made shorter to provide robust single-mode operation.

In addition, the DFB fibre lasers are more environmentally stable than the DBR fibre

lasers as the thermal response of the Bragg wavelength of the two reflectors of the

DBR varied slightly and also the wavelength of the reflectors varied slightly as a

function of grating exposure. Hence it is this type of DFB fibre laser source that we

consider here and also because the fibre DFB lasers have shown flexibility in the

pumping conditions and pump redundancy by configuring them in a parallel array

[16].

To date, the observed linewidths of these fibre lasers remain far above their

theoretical limit predicted, based on the Schawlow-Townes linewidth formula, to be

just 60 Hz or less [12]. One common suggestion for this excess phase noise is due to

the environmental perturbations, such as external vibration and acoustic noise, to

which the fibre laser may be more susceptible. Experimental investigation of the

linewidth characteristics of the Er3+-Yb3+ DFB fibre lasers is conducted to find the

main cause of the excess phase noise. Also, most of the work has been concentrated

in developing the single-frequency fibre lasers at the 1.5 μm wavelength region for

applications related to optical communications, to gas sensors and to high resolution

spectroscopy. The development of laser sources operating around the 2 µm ‘eye-

safe’ region has also started to gather pace, mainly driven by a number of possible

applications in areas such as remote gas sensing, laser imaging detection and ranging
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(LIDAR) and medicine. The single-frequency DFB fibre laser in the 2 μm region is

still under development. Therefore, we also aimed to extend the operating

wavelength of the DFB fibre lasers around 2 μm using thulium (Tm) and holmium

(Ho) as the gain medium.

1.1 Developments of the single-frequency fibre lasers

with Bragg gratings

This section gives a brief history of the development of the single-frequency fibre

lasers with Bragg gratings. Short-cavity single-frequency fibre lasers have been a

topic of continued interest since the early work of Ball et al. on erbium-doped

distributed Bragg reflector fibre lasers [3]. Currently, the single-frequency fibre

Bragg grating lasers operating in the spectral region of 1 μm have been demonstrated

with ytterbium (Yb3+) and neodymium (Nd3+) as the gain medium. In the 1.5 μm

region, the gain medium used was erbium (Er3+). The single-frequency DFB fibre

lasers operating at ~2 μm based on thulium (Tm3+) dopant have been demonstrated.

The advances in the laser cavity designs of the DFB fibre lasers are also included in

this chapter.

Most of the research activities in single-frequency fibre lasers has been concentrated

in the wavelength region around 1.5 μm, as it is the key component of the optical

communication systems such as wavelength division multiplexed (WDM) networks.

The first Er3+-doped DBR silica fibre laser was demonstrated by Ball et al. in 1991

[3]. It consisted of a 50-cm long Er3+-doped fibre with two discrete Bragg grating

reflectors on opposite ends of the fibre. For a robust single-mode operation, the

cavity needs to be sufficiently short so that the mode spacing is comparable to the

grating bandwidth. For a grating bandwidth below ~0.2 nm, it is desired to have a

mode spacing of the order of 10 GHz, i.e. cavity length of the order of 1 cm. The

concentration of the Er3+ is limited by the germanosilicate glass host, so it is

necessary to keep the Er3+ concentration below 100 ppm to reduce ion-pair

quenching. Combining these practical limits meant that pump absorption in the
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cavity length was low and as a result the output power, for a cavity length of only a

few centimetres long, was limited to about 200 μW [10, 11, 14]. This power can be

boosted using the residual pump in the master oscillator power amplifier (MOPA)

configuration [11, 14]. An output power of 60 mW was obtained with a fibre length

of 19-m in a Er3+-doped fibre amplifier [11]. However, the amplified spontaneous

emission from the amplifier increased the output noise. This fundamental problem

was then solved by, Kringlebotn et al., co-doping the Er3+ -doped fibre with Yb3+

[17]. This increases the pump absorption at 980 nm by more than two orders of

magnitude and thus enhances the laser efficiency operation of centimetre long lasers

with relatively low Er3+ concentration [4, 17]. The pump excites the Yb3+ ions which

then transfer their energy to the Er3+ ions by resonant coupling. An output power of

19 mW for 100 mW pump power was achieved with a 2-cm long Er3+-Yb3+ -doped

fibre [4]. However, for efficient Er3+-Yb3+ -doped devices, fibres require a

phosphosilicate host glass, which is not photosensitive. Therefore, the UV written

Bragg gratings are unable to be directly written into the fibre. For these lasers, the

Bragg grating reflectors were written into a photosensitive fibre which was then

spliced to the doped fibre, and as a result intra-cavity splice loss was introduced. A

heavily co-doped Er3+-Yb3+ fibre laser has also been reported with an output power

of 200 mW, with a pump power of ~850 mW [13]. The laser cavity was based on

two passive fibre Bragg gratings (FBGs) that are fusion spliced to a 2-cm long doped

fibre.

The photosensitivity of the Er3+-Yb3+ -doped fibre can be enhanced by loading the

fibre with hydrogen and nearly 100% reflectivity in the grating was observed by

Kringlebotn et al. and was followed by the first demonstration of DFB fibre laser in

1994 [5]. The feedback grating at 1.5 µm was directly written into a length of 2-cm

Er3+-Yb3+ -doped fibre. The output power of this laser was 3.2 mW, with a slope

efficiency of 5.4%. Then, a DFB fibre laser based on Er3+-Yb3+ co-doped with tin,

(rather than using the hydrogenation technique which increased the fibre losses), to

improve the fibre photosensitivity has been demonstrated [18]. The slope efficiency

of this laser was 11%. A further improvement in the photosensitivity of the Er3+-Yb3+

co-doped fibre has been demonstrated, by L. Dong at el., using a highly

photosensitive boron/germanium (B/Ge)-doped ring to surround the Er3+-Yb3+ core
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[19]. Both DBR and DFB lasers have been realised with this fibre and have shown

slope efficiencies of 25%. Before the photosensitivity of the Er3+-Yb3+ -doped fibre

was enhanced by using the B/Ge cladding, developments were carried out to improve

the laser efficiency in the Er3+-doped fibre by using an intra-cavity pumping scheme

[20] and also by pumping into the 520 nm absorption band [21]. For the intra-cavity

pumping, the DFB laser was placed inside an Yb3+ fibre laser, which was used as the

pump source for the DFB laser. A three-fold increase in the output power was

observed as compared with direct 980 nm pumping [20]. Pumping in the 520 nm

absorption band has shown an increase in the slope efficiency of 10% which was an

order of magnitude improvement over that attainable by 980 nm pumping [21].

Research was not only conducted in improving the fibre material for high pump

absorption of Er3+, but also in the designs of the feedback cavity of the DFB fibre

lasers to maximise the laser output. A DFB laser with a uniform grating, i.e. without

a phase shift and with no end reflectors, will operate in two longitudinal modes at

different wavelengths, corresponding to the edges of the grating bandgap and gives

equal output power from both ends [22]. However, single wavelength operation is

required in real practice. In [5] the single-frequency operation of the DFB fibre lasers

has been achieved by using an end reflector to change the round-trip phase shift in

the cavity or by locally heating the grating to slightly increase its refractive index

around that point in order to create the optical phase shift of π/2 such that the round-

trip phase condition is satisfied at the Bragg wavelength. The permanently induced

phase shift in the centre of the grating has been achieved by locally elevating the

background refractive index in the fibre core with additional exposure of UV light

around the centre of the uniform grating [14]. The other techniques to introduce the

phase-shifted gratings were with the moving fibre-scanning beam technique and with

phase masks in which the phase shifts can be incorporated into the grating during the

writing process by simply moving the fibre by an appropriate distance at the desired

time while the UV beam is scanning [23]. The output powers of these lasers are

equally divided at both ends; this is because of the symmetry of the cavity. The laser

wavelength coincided with the Bragg wavelength. For a high performance laser,

unidirectional output is desirable. This can be obtained by placing the phase shift

asymmetrically with respect to the grating centre and a large output was obtained
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from the shorter end [24, 25]. A further improvement in the laser efficiency has been

demonstrated with a step-apodised design in which the position and length of the

effective cavity can be enhanced without impacting the cavity asymmetry, cavity Q-

factor, or the overall laser length [26]. Basically, the step-apodised DFB laser has

employed a step change in the coupling coefficient on either side of the phase shift to

restore the optimum optical feedback. It has shown an increase in the pump-to-signal

conversion of 40% in the Er3+-Yb3+ co-doped fibre. The different types of DFB laser

cavity mentioned are shown in Figure 1.1, Pleft and Pright refer to output powers of the

laser.

(d)

Figure 1.1: DFB laser cavity designs (a) uniform non phase shifted, (b) symmetric single π-phase

shifted, (c) asymmetric single π-phase shifted and (d) asymmetric singleπ-phase shifted step-apodised

[26].

Other laser wavelengths operating in the 1 μm region have been demonstrated with

Nd3+-doped [27] and Yb3+-doped [28] fibre. The cavity feedback of the Nd3+-doped

fibre laser was based on the intra-core Bragg reflectors on the opposite ends of a 4-m

long doped fibre. The output power was ~12 mW with a pump power of 265 mW. In

[28] the DFB fibre laser was a 10-cm long grating, with a UV-induced πphase shift

(a)

(b)

(c)
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in the centre of the grating, written throughout the whole length of the Yb3+-doped

fibre. The maximum power achieved was ~8 mW with a pump power of ~20 mW.

The sources operating around 2 μm also began to develop, driven by a number of

applications such as in LIDAR, sensing applications and medicine. The single

frequency DFB fibre laser operating in the 2 μm region was demonstrated with

Tm3+-doped fibre by S. Agger at el. two years ago [29]. The laser cavity was 5-cm

long and had an output power of 1 mW with a slope efficiency of 0.2%.

Some applications, as in the wavelength-division multiplexing and sensor systems,

required a continuously tunable wavelength. The single-frequency DBR and DFB

fibre lasers are not restricted by their Bragg grating wavelength, they are capable of

being continuously wavelength tuned, without mode hopping [30-32]. The laser

wavelength tuning techniques used are uniformly stretching [30], compression [31]

and a combination of extension and compression [32]. In the stretching or

compression technique, the change in reflected wavelength from the Bragg reflector

tracks the change in cavity resonance wavelength so that mode hopping is avoided.

The fibre laser was mounted, at both ends, onto a PZT and a maximum wavelength

tuning of 0.72 nm was obtained for maximum stretching. This technique is

mechanically simple to implement but its tuning range is limited by the maximum

range of the PZT as well as the fibre strength. The compression technique has shown

a wavelength tuning of over 32 nm in a DBR fibre laser [31]. In this compression

technique, the fibre laser was fixed by epoxy between two ferrules, one mounted to a

fixed stage and the other to the stepper motor for compression. Three floating

ferrules were placed between the two fixed ferrules and attached to the stepper

motor. The other technique that has been demonstrated was using a combination of

the extension and compression [32]. The DFB fibre laser was embedded in a firm

bendable material and a wavelength tuning range of 27 nm was demonstrated.

1.2 Applications

Fibre distributed Bragg reflector and distributed feedback lasers are attractive

devices for optical communication systems, sensing applications and spectroscopy
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because of their narrow linewidth, robust single-mode operation, compact in-fibre

design, flexible and accurate wavelength selection in production, as well as easy

tuning of the wavelength. A number of the applications have been illustrated with

these sources.

(a) Optical communication systems

The first data transmission experiment has been demonstrated using an Er3+-doped

DBR fibre laser transmitter [33]. The available laser power was 91 μW and

externally modulated at 2.5 Gbit/s. This permitted data transmission over 654 km,

with Er3+-doped fibre amplifiers to boost the signal power. Even at higher

transmission rates of 5 Gbit/s this has also been demonstrated with an Er3+-doped

DBR fibre laser with a similar output power as in Ref. [33] and the bit-error-rate

(BER) at the 10-15 level has been observed over a distance of 86-km with non-

dispersion shifted transmission fibre [34].

Both DBR and DFB fibre lasers have also been demonstrated in wavelength-division

multiplexing (WDM) systems, in which multiple optical signals are carried on a

single optical fibre for a multiplication in capacity [35-37]. The Er3+-doped DBR

fibre laser with MOPA has been modulated at 2.5 Gbit/s and signals transmitted over

a 475 km long WDM transmission line [35]. Multiplexing of four DFB fibre lasers,

separated in frequency by 100GHz (0.8 nm), on a 10 Gbit/s WDM link has been

demonstrated over a 200 km standard single-mode fibre [36]. A further increase in

channel capacity has been demonstrated by multiplexing eight and sixteen DFB fibre

lasers together to form an 8- and 16-channel WDM transmitter array respectively

[37]. In this setup, the DFB fibre lasers were pumped using a pump redundancy

scheme in which the powers from the pumps are split equally between the fibre

lasers. It will always remain in operation even if one or more pump failures occur.

(b) Acoustic sensors

Optical fibre acoustic sensors have been demonstrated both in air [38] and for

underwater pressure measurement [39]. The acoustic sensor in air consisted of an
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uncoated fibre DFB laser to sense the acoustic-wave motion and the fibre laser’s

frequency shifts induced by it were measured by using a Mach-Zehnder

interferometer. The acoustically induced frequency shifts measured in [38] ranged

from 0.61 MHz/Pa at 100-Hz to 0.34 kHz/Pa at 15 kHz. The use of DBR and DFB

fibre lasers as a hydrophone has been demonstrated [39]. The principle of operation

of the hydrophone is similar to the acoustic air sensor, in which the pressure induced

wavelength shift of the laser is then measured with the interferometer. The fibre

lasers gave a minimum detectable acoustic signal of -69 dB re Pa/√Hz at 1 kHz [39].

Then, three DFB fibre lasers were spliced together on a single fibre to form a

hydrophone array and no optical cross-talk was observed [39].

(c) Spectroscopic application

Figure 1.2: Absorption wavelength of various molecular species present in the atmosphere and

environment within the transmission loss of typical fibres and the gain bandwidth of the rare-earth

materials [40].

Figure 1.2 shows absorption wavelengths of various common gases in the

atmosphere and environment, together with the transmission loss of typical fibres in

Nd
Yb Er

Tm Ho
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the visible and near infrared regions, in which the associated wavelength can be

covered by the rare-earth doped fibre lasers. The possibility of using a grating-based

fibre laser for the spectroscopic detection of gaseous species has been demonstrated

in [41]. The fibre laser realised was used for the detection of atmospheric water. The

laser cavity was formed by two UV written Bragg gratings at both ends of the Nd3+-

doped fibre. The laser operating wavelength was at 1117.96 nm and tuned around an

absorption line of water molecules at 1118.06 nm.

1.3 Fabrication of gratings inside the fibre

Currently, fibre grating fabrication techniques used for the feedback gratings in the

lasers are holographic [42] and by using the phase mask approaches [43, 44]. In the

holographic method, the gratings are formed, usually in the core of the fibres which

is photosensitive, by irradiating the fibre from the side, with a coherent two-beam

UV interference pattern. The 244-nm UV radiation is split into two equal-intensity

beams and then recombined to produce a periodic interference pattern that writes a

corresponding periodic index grating in the core. The period of the grating depends

on the angle between the two interfering coherent beams. For the phase mask

technique, it allows fibre gratings to be written with a lower coherence UV laser

beam and with better repeatability. The phase mask is a surface relief grating etched,

by a photolithographic technique, in fused silica. In this technique, a phase mask

grating is placed in contact, or nearly in contact, with the fibre. When the UV laser

beam is incident on the mask, it diffracts into the 0, +1 and -1 orders, as seen in

Figure 1.3, where the zero-order is suppressed by the depth of the corrugations in the

phase mask. The +1 and -1 order diffracted beams interfere to produce a periodic

pattern that photoimprints a corresponding grating in the fibre. The period of the

photoimprinted index grating is half of the phase mask grating. For the fabrication of

a phase shifted DFB fibre laser, the uniform phase mask method based on the

moving fibre-scanning beam technique allows the insertion of the phase shift into the

fibre grating [45]. The fibre is mounted on a computer-controlled PZT stage, and it

can move slowly relative to the phase mask, permitting the phase shift to be

incorporated into the grating during the writing scan.
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Figure 1.3: Phase mask technique with the zero order being suppressed.

1.4 Outline of thesis

Following this introduction chapter, Chapter 2 begins with the basic principles of

fibre DFB lasers with a phase shift.

Chapter 3 studies the linewidth characteristics of the Er3+-Yb3+ DFB fibre laser as

they were found to contradict the Schawlow-Townes linewidth prediction. A few

experiments were conducted to investigate this anomalous laser linewidth. Lastly, an

analytical model was developed to explain the main cause of the excess phase noise

that was due to the temperature fluctuation resulting from the intensity noise of the

pump source. This was followed by the possible techniques that could be used to

avoid this limitation.

The non-standard DFB fibre laser designs were investigated in Chapter 4. Some of

the suggested techniques for the linewidth limitation were experimentally

investigated in this chapter. The laser was operated in the narrow linewidth regime

with low output power and subsequently, operated in the MOPA regime to show that

the characteristics of the laser were still maintained. The other methods were to

investigate the laser linewidth due to different effective cavity lengths by using

coupling coefficients of 100 m-1, 150 m-1 and 200 m-1. Its linewidth was

configuration dependent. We also observed that the laser wavelength shift was

decreased as the coupling coefficient was reduced. Then, a step-apodised design was
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fabricated to increase the effective cavity length of the laser and its performance was

compared with the standard design. The discrete double phase shift lasers were

implemented to modify the intra-cavity intensity and this showed a reduction in

linewidth as well as the lasing wavelength shifting with DFB power or pump power.

From the success in realising the Er3+-Yb3+ DFB fibre lasers, with the same phase

mask technique and DFB structure, it was feasible for us to realise even longer

wavelengths to open a new window for the possible applications of this source. In

Chapter 5, an improved efficiency of the DFB laser at 1.8 μm was demonstrated with

the thulium, co-doped with antimony, fibre. The laser output was about 5 mW with a

pump power of 1.4 W at 1565nm. Then, the output was amplified with the MOPA

for high power and a gain of 15 dB was achieved.

In Chapter 6, we aimed to push the laser wavelength even further into the 2.1 μm

region with the holmium doped fibre. The laser has been pumped with a Raman fibre

laser at 1119 nm and also the thulium DFB fibre laser. However, no lasing was

observed for either pump source. Then, the DBR fibre laser was set-up and still no

lasing was observed. Some of the reasons causing failure to lase have been discussed.

The final chapter summarises the key results and recommendations for further work.
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Chapter 2

Background Theory of Fibre

DFB Lasers
____________________________________________________________________

The lasing action in a DFB laser occurs as a result of the signal generation by the

gain medium and the feedback by the gratings. The objective of this chapter is to

elucidate the physical phenomena involved in the operation of DFB lasers with a

qualitative discussion. The optical feedback of the fibre DFB lasers is performed

with the FBGs that are formed by exposure of the fibre core to an optical interference

pattern. The parameters for optimum feedback of the gratings are described in the

following section. For the gain in the fibre, it may be obtained by solving the

appropriate atomic rate equations. First, the general rate equations of the two- and

three-level lasers are described and this is followed by a set of rate equations that

describes the gain medium of our fibre DFB lasers, i.e. Er3+-Yb3+, Tm3+ and Ho3+ -

doped fibre. A number of gain models have been developed for the numerical

analysis of Er3+-Yb3+ co-doped fibre lasers pumped at 980 nm [1-4]. The different

pump schemes for Tm3+ have been numerically modelled by Jackson and King [5].

Numerical analysis and experimental data of Er3+-Yb3+ co-doped DFB fibre lasers

has also been reported [6]. The model of the fibre lasers comprised the pump source,

the active medium and the grating.
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2.1 Operation of DFB lasers

The theoretical analysis for the operation of lasers with a distributed feedback

structure was first proposed in the semiconductor field, by Kogelnik and Shank [7],

this analysis can also be used to describe the operation of the fibre DFB lasers. The

analysis is based on two counter-propagating waves coupled via backward Bragg

scattering from the periodic perturbations of the refractive index [7]. Figure 2.1

shows a simplified illustration of the operation of a distributed feedback structure

with the two counter-propagating waves represented with arrows, where λ is the

wavelength of light in the medium. As each wave travels in the periodic structure, it

receives light at each point along its path by Bragg scattering from the oppositely

travelling wave. In this way, the feedback mechanism is distributed throughout the

length of the periodic structure, entirely within the gain medium. Because of the

gain, these waves grow and their energy is coupled into each other due to Bragg

scattering.

Figure 2.1: Illustration of the laser oscillation in a periodic structure [7].

The forward and the backward propagating waves can get strongly coupled provided

the Bragg condition is satisfied, in which the difference in the propagation constants

of the waves is equal to the spatial frequency of the grating [8].


  2

21 K (2.1)

Where 1is the wave vector of the forward propagating guided mode, 2 is the

backward propagating guide mode, and is the spatial period of the grating. Since

the propagation constants for the forward and backward direction are the same,

Output
Output

λ/2
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then effn




2

21  , where effn is the effective index of the mode. Then, Equation

(2.1) can be written as













eff

B

n2


(2.2)

where B is the Bragg wavelength that satisfied the Bragg condition.

2.2 Optimisation of fibre Bragg gratings

This section introduces the definition of the reflectivity of the fibre grating and the

effective cavity length (Leff) which is used to optimise the gratings design for the

DFB lasers. The coupled-mode theory has been used to model the optical properties

of the fibre gratings [9, 10]. In this section, we leave out the derivation of coupled-

mode theory as it has been detailed in numerous articles and texts [7, 8]. In the Bragg

gratings, the light is coupled from a forward propagating mode to the same mode

propagating in the backward direction. To consider this coupling let β1 andβ2 be the

propagation constant of the mode travelling in the +z and –z directions, respectively.

Assuming that the power gets coupled only among these two modes, then the total

electric field at any z is given as [8],

  tizizi eexEzBexEzAtzxE  21 )()()()(),,( 21   (2.3)

where E1(x) and E2(x) represent the transverse mode profiles and A(z) and B(z) are

the z-dependent amplitudes of the two modes. The coupling between the two modes

is described by the following coupled-mode equations,

ziBe
dz
dA  (2.4)

ziAe
dz
dB  (2.5)

where 021   is the phase matching condition and κ is the coupling 

coefficient among the modes. The solution of the equations is given as follows:-

zz ebebzA   21)( (2.6)
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zz ebebzB   21)( (2.7)

The reflection coefficient (r) of a periodic structure of length (L) is found by

assuming a forward-going wave incident from z = 0, i.e. A (z = 0) = 1 and requiring

that no backward-going wave exists beyond z = L, then

L
zA
zBr tanh

)0(
)0( 


 (2.8)

The energy reflection coefficient is given by

LrR 22 tanh (2.9)

For a medium of refractive index n having a periodic refractive index grating given

by

znnzn ave 









2

sin)( (2.10)

where nave is the index change averaged over a grating period, the coupling

coefficient is given as

B

n

  (2.11)

where n is the index modulation. The coupling coefficient (κ) depends on the

photo-induced refractive index change in the fibre which depends on the irradiation

conditions (wavelength, intensity, and total dosage of irradiating light), the

compositions of glassy material forming the core and any processing of the fibre

prior to irradiation.

In an optical fibre with a refractive index in the core given by the equation (2.10),

then the reflectivity of a fibre grating of length L is

)(tanh 2

B

nLR


 (2.12)
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The reflectivity of a grating with constant gain at the Bragg wavelength is

approximately equal to the reflectivity of a passive grating, with no gain, provided

that the coupling coefficient is very much larger than the gain [11]. With the

definition of the reflectivity, it implies that we can vary the reflectivity of our laser

cavity with the coupling coefficient and length of the gratings. In the phase shift

lasers, the laser cavity comprises two grating segments separated by the phase shift

and each grating segment is considered as a separate reflector, i.e. a high reflector

(R1) and an output coupler (R2). For a constantκcase, i.e. a uniform refractive index

profile, by moving the phase shift, we change the length of the segments and this

leads to a change in reflectivity of both grating segments. The other approach, to

vary the reflectivity of the laser cavity, is to change the coupling coefficient and keep

the length of the segments constant.

Now, we look at the definition of the effective length (Leff) of the laser cavity, as

demonstrated in [11] that increased the effective cavity length of the laser in which

more of the gain medium can be used for signal generation, and hence increased the

optical efficiency. The total effective cavity length of the phase shift DFB laser is the

sum of the penetration depth into the grating segments on the left- and on the right-

hand side of the phase shift. The penetration depth (D) is defined as the effective

distance in which the incident wave penetrates into the grating, as a result of the

distributed nature of the reflection process, before re-emerging at the front end. It is

defined as follows, with constant gain at the Bragg wavelength, by [11]

)tanh()(tanh

)(tanh)
)(cosh

1)tanh((

2
1

2

2
2

LL

L
LL

LL
D











 (2.13)

where  is the field gain and 22   . If <<, then D can be approximated

by its passive cavity value




22
)tanh( rL

D  (2.14)

For a πphase shifted DFB laser, the total length of the effective cavity (Leff) in which

the fields are circulating is given as follows by
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)
22

(
2

2

1

1
21 

rr
DDLeff  (2.15)

where D1 and D2 are the penetration depths into the grating segments on the left- and

on the right-hand side of the phase shift, respectively. In the case of a uniform

refractive index profile,   21 .

The penetration depth can be increased by reducing the coupling coefficient and,

therefore, decreasing the reflectivity of the grating results in a decrease in the optical

feedback, and also a deviation from the optimum confinement condition. For a

stronger grating, the round-trip reflectivity is close to unity, showing a much stronger

cavity confinement. The reduction in the reflectivity, due to smaller κ, can be

compensated by increasing the segment length. When the length of one segment is

increased, the other segment length needs to be reduced so that the total device

length is unchanged. In this case, the reduction in the other segment can be

compensated by increasing its coupling coefficient so that the optimum reflectivity is

restored. This has been shown with a step-apodised design in which a step change in

the coupling coefficient on either side of the phase shift can be realised [11]. The

effective cavity length of the step-apodised design is given by






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
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r
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zLeff )
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2

2

1

1

2

2 (2.16)

where z is the phase shift location, 111 cL  , 222 cL  and the total cavity length

21 LLL  .

The effective length of the cavity is increased towards the left-hand side of the phase

shift, and this means that its coupling coefficient has to increase and this is limited by

the photosensitivity of the fibre.

Based on the above definitions of the reflectivity and the effective cavity length, the

feedback gratings of our DFB lasers are designed and optimised. For instance, the

effective laser cavity length of the DFB lasers is varied with different coupling

coefficients.
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2.3 General rate equations of laser

The atomic rate equations are used to analyse the performance and efficiency of a

laser. This system of equations relates the total number of atoms undergoing a

transition and the total number of photons being created or annihilated. First, the

general three-level laser system is shown in Figure 2.2, with the ground state denoted

by 1, an intermediate state labelled 3 which is the pump level, and state 2 as the

metastable level which has a long lifetime. In the lasing process, pump ground-state

absorption excites the ions from level 1 to level 3 and this is followed by a rapid

decay to level 2, the upper laser level. In level 2 the ions may decay to the ground

level through either spontaneous emission or stimulated emission, at the signal

wavelength. This three-level system is intended to represent that part of the energy

level structure of Er3+ and Ho3+ that is relevant to the pump scheme used for our fibre

DFB lasers. To obtain lasing, a population inversion is required between state 1 and

state 2, and since state 1 is the ground state, at least half of the population of ions is

required to be excited to level 2 to achieve population inversion. The populations of

the levels are labelled N1 , N2 and N3. The rate equations for the population changes

are [1, 12]:-

Figure 2.2: Three-level laser scheme [12].
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In a steady-state situation,

0321 









t
N

t
N

t
N

(2.20)

By the conservation relation, the total population N is given by

321 NNNN  (2.21)

where Wij terms represent the stimulated transition rates between the i and j levels,

A21 is the spontaneous transition rate and A32, the nonradiative relaxation rate.

Using equation (2.19), the population of level 3 is

1
3231

13
3 N

AW
W

N


 (2.22)

The decay rate from level 3 to level 2 is fast as compared to the pump rate into level

3, so the population is mostly in level 1 and level 2, and level 3 is assumed empty,

i.e. N3 ~ 0. Using equation (2.22) to substitute for N3 in equation (2.18), then

N
WAAWWWAAAWWW

WAAWWW
N

133232123112213221312131

133232123112
2 


 (2.23)
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1 


 (2.24)

Population inversion is as follows

12 NNN  (2.25)

The individual definitions of these terms are as follows:

a
P

P

P

h
IW 


13 (2.26)

e
P

P

P

h
IW 


31 (2.27)

a
S

S

S

h
IW 


12 (2.28)



Chapter 2 Background theory

25

e
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21 (2.29)

2
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1


A (2.30)

3
32

1

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SP II , are the pump and signal photon intensities and their photon energies are

SP hh  , , respectively. The absorption and emission cross-section of the pump and

signal are denoted by a
P , e

P , a
S and e

S . The spontaneous lifetime of level 2 and 3

are represented by 2, 3.

Now, we consider the two-level laser system in which the upper pump level and the

upper laser level belong to the same multiplet, i.e. broadened individual levels due to

interaction of the ions and the crystalline host, as shown in Figure 2.3. Our lasers

were also configured to operate in the two-level system as the theoretical quantum

efficiency limit of the lasers is much higher. The entire system can be represented

through the absorption and emission cross sections that interact with the pump and

signal fields. The rate equations of the two-level system involve only the total

population densities of multiplets 1 and 2 [12].

Figure 2.3: Energy level of a two-level system where the two levels comprise many sublevels [12].
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The total population density N is given by

21 NNN  (2.34)

We have

t
N

t
N






 21 (2.35)

and only one of the equations from equation (2.32) and (2.33) is an independent

equation. N2 is calculated in terms of signal and pump intensities. N1 is then simply

given by N – N2.

After introducing the general rate equations, the following sections describe the gain

media of our lasers with detail rate equations, particular for the Er3+-Yb3+ case.

(a) Er3+-Yb3+ co-doped system

Depending on the pump wavelength, pump energy can be absorbed by both the Er3+

ions in the 4I15/2 and by the Yb3+ ions in the 2F7/2 ground levels. The excited Yb3+ ions

in the 2F5/2 level transfer their energy to neighbouring Er3+ ions in the 4I15/2 ground

level, then these ions are excited to the 4I11/2 pump level from where they rapidly

relax to the metastable 4I13/2 level. The radiative and nonradiative transitions of the

Er3+-Yb3+ co-doped system is shown in Figure 2.4. These transitions include pump

absorption, spontaneous emission, forward and backward energy transfer, and the

upcoversion among Er3+ ions. The system is described in the steady-state by the

following rate equations [1] :-
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N1, N2, N3, N4 are the populations of Er3+ levels 4I15/2, 4I13/2, 4I11/2, 4I9/2 and N5 , N6 the

populations of Yb3+ levels 2F7/2, 2F5/2. The τEr and τYb are the spontaneous emission

lifetimes for 4I13/2 and 2F5/2 levels, respectively. A32 and A43 are the nonradiative

transition rates and Cup, C14 and Ccr are the upconversion and cross-relaxation

coefficients, respectively. NEr, NYb are the Er3+ and Yb3+ concentrations. The W56,

W65 represent a
s

P

P

h
I




and e
P

P

P

h
I




in which the cross-sectional absorption and

emission are of the Yb3+.

Figure 2.4: Energy-level diagram for the Er3+-Yb3+ co-doped system [1].

For the case when the 4I13/2 upper laser level is pumped directly, the system rate

equations involve (2.36) and (2.37) with the cross relaxation process neglected.

Equation (2.36) contains the term –W12 + W21 (with W13 omitted) and also the

spontaneous transition from level 2 to level 1, A21. Equation (2.37) contains the term

W12 –W21 and A21. The rate equations are the same as in Equation (2.32) and (2.33).
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(b) Thulium (Tm3+) system

A simplified energy diagram of Tm3+ is shown in Figure 2.5. The 3H6 → 3H4 pump

scheme was used in our Tm3+ fibre DFB laser, this corresponded to a two-level laser

and the system rate equations can be described as in Equation (2.32) and (2.33). The

lasing transition of the laser occurs between the 3H4 and 3H6.

Figure 2.5: Simplified energy-level diagram of Tm3+ system.

(c) Holmium (Ho3+) system

Figure 2.6 is the energy diagram of Ho3+ showing the pump absorption band that our

DFB fibre laser is pumped by, i.e. 5I8 → 5I6, and laser emission. The Ho ions

absorbed the pump energy and were excited from the 5I8 ground state to the 5I6 level.

The ions are then rapidly decayed to the upper laser level, 5I7. Laser action occurs

between the 5I7 and the ground state. The rate equations of the system are the same as

in Equation (2.17-2.19). We also pumped the laser in the 5I8 →5I7 scheme which is

an in-band pumping scheme. The system rate equations of this scheme are the same

as in Equation (2.32) and (2.33).
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Figure 2.6: Simplified energy level diagram of Ho3+ system.

In the Er3+-Yb3+ co-doped system, the laser efficiency is diminished due to the

cooperative upconversion in which the neighbouring Er3+ ions, which are excited to

the 4I13/2 laser level, transfer energy among the ions and the result is that one decays

to the ground 4I15/2 level, while the other is promoted to the 4I9/2 level. From this

level, it decays rapidly back to the 4I13/2 level by multiphonon decay. The

consequence of the upconversion is that one excited Er3+ in the 4I13/2 level is

quenched to the ground level so the population of that level is reduced by 50%. The

other cause of a reduction in the efficiency of the laser is due the lifetime quenching

of a portion of Yb3+ in which the pump energy is lost [6]. The short lifetime causes

the excited Yb ions to return to the ground state through some nonradiative

relaxation.

The upconversion and the cross relaxation process are eliminated in the two-level

laser system. In fact, this is an advantage in operating the laser in a two-level system

as it avoids the pump energy being lost through these processes.

2.4 Summary

This chapter described the parameters for the feedback gratings and the effective

laser cavity length of the lasers. The effective laser cavity length of the uniform

apodised and step-apodised design are discussed. In the case of the step-apodised
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design, its effective cavity length can be increased while maintaining the optimum

reflectivity of the grating, so that more of the gain medium can be utilised for signal

generation. The rate equations are used to describe the gain media of the laser in

which the ions’ population for inversion and the losses in the system, such as the

upconversion, cross-relaxation and the ion quenching, can be predicted, which in-

turn predicts the laser efficiency.
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Chapter 3

Erbium-Ytterbium Co-doped

Fibre DFB Laser
____________________________________________________________________

Short-cavity single frequency fibre lasers have been a topic of continued interest

since the early work of Ball et al. on Er3+ -doped DBR fibre lasers [1]. Their size,

simplicity, ease of fabrication, compatibility to transmission fibre and their optical

emission characteristics make them attractive for a number of applications,

particularly in the sensing area. However, there have been few detailed experimental

investigations on the linewidth or phase noise characteristics of these lasers, with

much of the work being focused on improving the efficiency and output power

through fibre, cavity, or grating design [2-4]. With the widespread adoption of Er3+-

Yb3+ fibres, laser efficiencies in the tens of percent are now easily achievable [5]. An

implicit assumption, however, in many of these designs is that the attainable laser

frequency noise characteristics will not be substantively compromised by the

proposed modifications. This is clearly an important assumption as it is usually the

single frequency characteristics of these kinds of fibre lasers that make them so

attractive. To our knowledge, however, there has been very little evidence given to

verify the extent to which this assumption is true.
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To date, the phase noise properties of these fibre lasers continues to fail to measure

up to that achievable in bulk solid state lasers. This is perhaps surprising, considering

that predictions of the intrinsic linewidths of fibre lasers, based on the well-know

Schawlow-Townes formula, indicate linewidths of just 60 Hz or less [6]. A common

suggestion as to why the observed linewidths remain far above their theoretical limit

is that the increased noise is caused by environmental perturbations, such as external

vibration and acoustic noise, to which the fibre laser may be more susceptible. The

inference then is that this issue is primarily a packaging problem, which could be

solved by better mechanical designs in holding the fibre, vibration isolation and

stabilisation.

The purpose of this work is to present experimental data which strongly suggests that

the anomalously large linewidths of these fibre lasers should be more accurately

viewed as an intrinsic aspect of these lasers, and show that designs for maximizing

output power and efficiency may need to take into account potential trade-offs in

their single frequency characteristics [7, 8]. Later, an analytical model is used to

explain the observed anomalous linewidth. We found good agreement between the

analytical model and the observations [9, 10]. The excess noise is significantly

elevated due to the temperature fluctuations induced by pump intensity noise. The

various possibilities to overcome these linewidth limitations are also discussed in this

chapter. Some of the possibilities for reducing the linewidth are experimentally

analysed in the next chapter.

I would like to acknowledge that this work was carried out in collaboration with Dr

P. Horak, a senior research fellow in the ORC, who did the simulation and

modelling.

3.1 Review of linewidth of DBR/DFB fibre lasers

This section reviews some of the linewidths of the DBR and DFB fibre lasers,

operating around 1.5 μm, that have been demonstrated in Er3+ and Er3+-Yb3+ doped

fibres. Linewidth variations of 47 kHz to 6 MHz, depending on the cavity designs,
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have been reported for the Er3+-doped DBR fibre lasers [1, 11]. Two grating

reflectors of 12.5 mm long were written on opposite ends of a 0.5 m long Er3+-doped

fibre. The laser had a linewidth of ≤47 kHz, with an output of 5 mW for the

maximum pump power of 50 mW at 980 nm [1]. Another DBR fibre laser, with a 2

cm resonator, having an output power of 181 μW for a maximum pump of 61 mW at

980 nm has been demonstrated. The output of this laser exhibited self-pulsation

possibly associated with clustering of erbium in the high concentration (2500 ppm)

and this could be the reason that the linewidth was larger. The linewidth of this laser

was 6 MHz [11]. For the Er3+-doped DFB designs, linewidths of 13 kHz to 300 kHz

were observed [12-14]. A 10-cm long DFB fibre laser, with a permanent phase shift

incorporated into the fibre grating during writing, was pumped at 980 nm and an

output power of 1 mW was measured for the maximum pump power of 120 mW.

The optical linewidth of 13 kHz was observed [12].

A MOPA DFB laser configuration, having a linewidth of 15 kHz, based on a 36 mm

long Bragg grating with a π/2 phase shift, was pumped with a 50 mW semiconductor

laser at 1480 nm and an output power of 5.4 mW was demonstrated [14]. Pumping

into the large absorption cross-section of Er3+ in the 520 nm band, a laser with an

output power of 17 mW for 190 mW pump power, was demonstrated [13]. The

linewidth was broader at high output power. A linewidth of 260 kHz was observed at

an output power of 17 mW and was 40 kHz at 2 mW. Due to the low pump

absorption of Er3+, the fibre was then co-doped with ytterbium (Yb3+), to enhance the

pump absorption by energy transfer from Yb3+ to Er3+. Both DBR [4, 15] and DFB

[4] designs have been demonstrated with this fibre. Using Er3+-Yb3+ co-doped

phosphosilicate fibre, with relatively high Er3+ doping concentrations (1000 ppm

[2]), DBR lasers have shown output powers of up to 60 mW [4], and 166 mW in a

MOPA configuration [15]. Unfortunately, these lasers have shown a much broader

linewidth of 200 to 500 kHz.

In [4] a laser linewidth of 500 kHz was observed. The cavity of this laser was based

on a highly reflecting mirror butt-coupled onto one end of the fibre and the other end

was a centimetre long Bragg grating written directly into the fibre. The entire laser

was shorter than 1.5 cm. A 5-cm long DFB laser made from the same material, has
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shown a much better performance with a 18 kHz linewidth [4]. The laser cavity of

Ref. [15] exploited the advantages of low noise and stable-single-mode operation of

phase-shifted DFB fibre laser, and combined this with a DBR laser to boost the fibre

laser output power. The laser cavity consisted of a fibre grating with a π/2-phase shift

and with two fibre gratings of different reflectivity at both ends, it was 48 mm long

with the gratings written directly into the fibre. The laser linewidth of 200 kHz was

observed. A tin co-doped Er3+-Yb3+ DFB fibre laser with an output power of 10 mW,

pumped at 980 nm, having a linewidth of 25 kHz, was demonstrated [16]. The laser

cavity was formed by using a strong reflectivity grating, having a length of 1.5 cm,

spliced to a 8.5-cm long active grating. Recently, a DBR fibre laser, based on heavily

Er3+-Yb3+ co-doped phosphate glass, with a linewidth as low as 2 kHz was

demonstrated [17]. The laser cavity was formed by two spectrally narrow passive

fibre Bragg gratings that were fusion spliced to a 2-cm long Er3+-Yb3+ fibre. The

output power of 200 mW was achieved with a maximum pump power of ~850 mW

at 980 nm.

3.2 Er3+-Yb3+ co-doped phosphosilicate fibre

This section gives the details of the fibre that we used to construct the DFB laser,

covering the function of Er3+ co-doping with Yb3+, the structure of the fibre, the

concentration of the dopants and the small signal loss at the pump wavelength. In a

singly doped Er3+ fibre, the amount of Er3+ doping concentration is limited to 100

ppm by the germanosilicate glass host, in order to avoid clustering problems, and the

pump absorption is low in a short laser length, which leads to poor laser efficiencies

of <1%. It has been demonstrated that by co-doping Er3+ fibre with Yb3+, the

absorption of 980-nm pump energy can be increased by more than 2 orders of

magnitude due to energy transfer to the Er3+ [2, 18]. This allows the realisation of

highly efficient short cavity lasers. However, a phosphosilicate glass host, which is

not photosensitive, is required to ensure efficient energy transfer between Er3+ and

Yb3+ ions. Nevertheless, Ref. [19] has shown that the photosensitivity of the fibre

can be achieved by surrounding the core with a highly photosensitive

boron/germanium (B/Ge) doped silica cladding, as seen in Figure 3.1. The structure
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of our fibre used for constructing the DFB lasers is similar to that reported in [19].

The same refractive index as of the pure silica can be achieved by the cladding, as Ge

doping increases the refractive index of silica and B doping lowers it. In addition,

UV-exposure of the gain medium during grating fabrication induced loss that can

cause degradation of the gain medium and thus a lowering of the laser efficiency

[20]. The concentration of Er3+ in our fibre was 1x1025 m-3. The concentration ratio

of Er3+ to Yb3+ in the fibre was 1:19. The maximum small signal absorption of the

fibre was 850dB/m at 975 nm, and was 45dB/m at 1530 nm, as measured in the next

section.

Figure 3.1: Structure of the photosensitive Er3+-Yb3+ with an index matching B/Ge/Si cladding [19].

3.2.1 Absorption of the fibre used

The absorption of the Er3+-Yb3+ co-doped fibre was measured to ensure that the

operating wavelength of the pump diode was within the absorption band of the Er3+-

Yb3+ co-doped fibre. The absorption loss of a ~13 cm long doped fibre was

measured, by the cut-back technique, with a white light source, launched into one

end of the fibre, with the use of an objective lens, and the other end was measured

with an OSA (Advantest Q8384 optical spectrum analyser). The measured absorption

loss in the spectral regions of 970 – 980 nm and 1400 – 1600 nm is shown in

Figure 3.2. The majority of this work was conducted with the 977 nm pump laser

diode, as Yb3+ has high pump absorption around this wavelength region, so by

energy transfer from Yb3+ to Er3+, it can provide an efficient indirect pumping

mechanism for Er3+, as mentioned earlier. The use of 1480 nm as the pumping

wavelength, directly pumping into the upper laser level of Er3+, was also performed

Refractive index Profile

Er/Yb/Al/Si core

B/Ge/Si ring

Normal cladding
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for the investigation of the laser linewidth. The associated self-heating, due to the

non-radiative phonon decay, is eliminated with this pumping wavelength. Later, we

used a diode laser operated at 975 nm for the validation of the analytical model

which explained the main cause of the laser linewidth behaviour in the later part of

this chapter.
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Figure 3.2: The measured absorption loss of the Er3+-Yb3+ co-doped fibre in spectral regions

(a) 970 - 980 nm and (b) 1400 - 1600 nm.
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As observed in the absorption loss of this fibre in the 980 nm region, the slope of the

absorption is very steep at this absorption band. A wavelength variation of just 5 nm,

from 970 nm to 975 nm, has an absorption loss increase from 0dB/m to ~ 850dB/m.

The absorptions measured at pump wavelengths of 977 nm and 975 nm are

~450dB/m and ~850dB/m, respectively. The absorption of Er3+ at 1480 nm is

~14dB/m which is very much lower as compared with that of 977 nm.

3.3 The structure of the DFB fibre laser
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Figure 3.3: A typical transmission spectrum of the feedback grating with grating strength of 10 of a

DFB laser.

This section describes the structure of the DFB laser, which is constructed from a

125 μm diameter, Er3+-Yb3+ co-doped phosphosilicate fibre with a B/Ge ring

surrounding the core, as described in Section 3.2. The laser cavity, based on UV

written Bragg gratings that were written with the phase-mask technique [21], was 5

cm in length with a π-phase shift located slightly off centre, 3mm from the mid-point

of the gratings. This asymmetry enables the output power to be emitted

predominantly from one end of the laser [22, 23]. The DFB gratings, with a resulting
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period (Λ) of 539 nm, are written into the B/Ge ring surrounding the core. After

writing, the gratings were annealed for 24 hours at 100 ºC to stabilise the index

modulation. The final grating strength (κL) was estimated to be ~10 with a

transmission of ~ -80 dB. Figure 3.3 shows a typical transmission of the feedback

grating with grating strength of 10 is simulated by, my colleague, Zhaowei Zhang.

The single polarisation operation of the laser was obtained by writing the phase-

shifted gratings with continuous-wave (CW) UV light at 244 nm, polarised

perpendicular to the propagation axis of the fibre, as reported in [23], and is shown in

Figure 3.4. A relative coupling coefficient change along the y-axis of 2% is adequate

to cause the laser to lase in the direction parallel to y-axis.

Figure 3.4: Technique for the formation of polarisation dependent gratings [23].

3.4 Linewidth and phase noise characteristics of the

DFB fibre laser

This section presents the experimentally observed data which suggested that the large

linewidths of the laser should be viewed as the intrinsic aspect of the laser, and that

designs for maximizing the output power and efficiency in the laser may be required

to take into account trade-offs in their single-frequency characteristics. The fibre

DFB laser was set-up in three different pumping configurations for this study. The

possible sources responsible for this anomalous laser linewidth, such as due to

heating of the fibre because of heat dissipation of the absorbed pump power, the

cavity intensity noise of the laser and the non-radiative phonon decay from the

metastable level (4I11/2) to the upper laser level (4I13/2), were investigated.

x

y

P-polarised UV light at 244 nm
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3.4.1 Experimental set-up

(a)

(b)

(c)

Figure 3.5: Schematic of the laser configurations with pump wavelength of 980 nm: (a) backward

pumping, (b) forward pumping, and (c) dual pumping configuration.
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The fibre laser was investigated by pumping through three different configurations,

as shown in Figure 3.5. The first configuration, backward pumping, consists of the

pump power counter-propagating to the main laser output, i.e. the pump is coupled in

at the end nearer to the grating phase shift. The second configuration, forward

pumping, has the pump coupled in from the opposite end of the grating, i.e. the far

end with respect to the phase shift. In the third scheme, dual pumping, the pump is

split equally in two and coupled into the fibre laser at both ends. A 980-nm optical

isolator is used at the output of the pump laser in all cases to prevent undesired

optical feedback from destabilising the pump diode. 1550-nm optical isolators were

also placed at both output ends of the fibre laser to ensure that the linewidth

behaviour being studied is not compromised by unintended feedback effects into the

DFB laser. The fibre laser is placed on a temperature-controlled heat sink, and

pumped with a 977-nm, grating stabilised, laser diode. The lasing threshold, output

power, and linewidth were all measured for the three pumping configurations.

Figure 3.6: Schematic diagram showing the linewidth measurement set-up.

The laser linewidth measurement has been demonstrated by using a delayed self-

heterodyne technique [24]. Our delayed self-heterodyne setup is shown in Figure 3.6.

In this setup, the laser beam is divided into two paths by a 10/90 fibre coupler for the

optimal fringe visibility. One beam is sent through a delay line which provides some

time delay (τd), while the other beam is frequency shifted with respect to the other

before both beams are recombined, and the resulting beat response is measured with

a HP lightwave signal analyser which consists of an optical detector with a RF

analyser. The laser linewidth can be estimated from the width of this beat spectrum.

A 35 MHz acousto-optic modulator was used to shift it to a frequency much higher
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than the noise spectrum to be measured. For an accurate linewidth measurement of a

laser with a white frequency noise spectrum, the delay path needs to be greater than

the coherence length of the laser so the two combining beams would be effectively

uncorrelated. In this case, a high measurement resolution is achieved with a longer

delay line. However, as will be shown later our DFB laser does not exhibit a white

frequency noise spectrum. In such a situation [25] the delay time has to be long

enough to generate a sufficient number of cycles of sin2 (πfτd) within the frequency

noise spectrum to avoid undersampling. On the other hand, a long delay line will

introduce high propagation losses. For our setup, a delay line of 60 km long single

mode fibre is used which, for a white noise laser, provides a linewidth resolution of

3.5 kHz. The single polarisation status of the laser was confirmed with an Agilent

lightwave polarisation analyser.

3.4.2 DFB power characteristics

Figure 3.7 shows the threshold and output power characteristics of the fibre laser

under the three pumping configurations. As indicated in the figure, the backward

pumping scheme had the lowest threshold and highest efficiency, while the dual

pumping scheme was the worst in these aspects. This can be explained by the

asymmetry of the grating design and the different pumping configurations. The pump

intensity within the grating was strongest at the grating input, saturating the Yb3+

absorption there first, and then decayed during propagation as it was strongly

absorbed. The resulting unabsorbed pump power was less than 1% of the input pump

power. The lasing threshold approximately corresponded to the pump power where

the laser light experienced gain on one side of the phase shift and loss on the other.

Because of the asymmetry, this was achieved for lower pump powers in the

backward pumping configuration than for forward pumping. For dual pumping, on

the other hand, where each input port only receives half the pump power, the pump

absorption is generally a little larger according to the later onset of the saturation of

the Yb3+ transition. This results in the highest lasing threshold for this configuration.

A pump to signal conversion efficiency of 17 %, with an output power of ~20 mW,

was achieved in the backward pumping scheme for a pump power of ~110 mW.
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Forward pumping has an output power of ~18 mW with a power conversion

efficiency of 14 % for the same pump power. An output power of ~14 mW, with a

conversion efficiency of 10 %, was obtained for the dual pumping. If maximizing

efficiency and output power is the over-riding criterion, then backward pumping is

clearly the configuration to adopt. The laser output was highly asymmetric for all

three pumping configurations, which is expected due to the location of the grating

phase shift: ~95% of the total laser output was measured to come out of the end

nearer to the phase shift.
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Figure 3.7: Threshold and laser output characteristics of the DFB fibre laser for the three pumping

configurations.

3.4.3 Laser linewidth characteristic

The measured 3-dB laser linewidth behaviour, as a function of pump power and laser

output power, is shown in Figure 3.8 (a) and (b), respectively. The trend lines shown

in the figure are presented simply as a guide, rather than as a rigorous fit. As

observed the laser linewidth behaviours were different for the three pumping

configurations, particularly for the backward pumping in which the linewidth is
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nearly constant over the pump power range shown. This behaviour is related to the

different response of various configurations to pump intensity fluctuation. At the low

pump powers, the backward pumping configuration has the largest wavelength

sensitivity to pump power compared to the other pumping configurations. This may

be attributed the fact that for the backward pumping configuration, the pump

intensity at the grating phase shift is large than for the other configurations, and thus

the thermal response to intensity fluctuation is stronger. At high pump powers, this

simple picture no longer holds due to saturation effects. This is discussed in more

detail in Section 3.5. In direct contrast to the threshold characteristics, the data

showed that the lowest linewidth operation was actually obtained with the dual

pumping configuration, with linewidths of 15 kHz to 35 kHz over the pump power

range of ~110 mW. For the given pump power range, the linewidth of the backward

pumping configuration was between 30 kHz and 35 kHz and between 20 kHz to 40

kHz for the forward pumping configuration. In fact, for output powers up to 1 mW,

the linewidth of the dual pumping configuration was about half that achievable with

a backward pump, although it increases and then levels off at high powers as seen in

(b). Even over its entire output power range, the laser linewidth under the dual

pumping configuration was lower or comparable to that attainable with the other two

pump configurations.
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Figure 3.8: Laser linewidth with (a) pump power and (b) output power for the three pumping

configurations.

Clearly, there are significant trade-offs between efficiency and power, with linewidth

and optical phase noise, when designing and operating these fibre lasers. We showed

that the trends displayed are real, given our linewidth uncertainty of 5 kHz. It is also

worth pointing out that this anomalous linewidth behaviour is not unique to this

laser, but has been seen elsewhere in the other DBR [26] and DFB [13] fibre lasers.

The issues raised by this work are, thus, likely to be quite general in nature.

Now, we take a look at the relation of the laser linewidth with DFB power. The

behaviour of the laser linewidth with power is somewhat surprising. The well-known

Schawlow-Townes linewidth formula [27]

 
P

h cav
22 




 (3.1)

where ν is the lasing frequency, P is the laser output power, and Δνcav the (passive)

grating linewidth, predicts that the laser linewidth should decrease in inverse

proportion to the laser power. It may be instructive to briefly review the physical
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picture underlying the above formula. The origin of this linewidth is the perturbation

to the laser phase caused by spontaneous emission into the laser cavity. Intuitively, it

is clear that each spontaneous emission event, resulting in the emission of a single

photon, will have less impact as the total number of photons (laser power) in the

cavity gets larger. This is the physical basis for the decrease of the Schawlow-

Townes linewidth with increasing laser power. In particular, note that as the DFB

power increased from 1 to 10 mW, the linewidth should have decreased tenfold.

Instead, we observed the opposite, with the linewidth actually increasing

substantially with power, particularly for the forward and dual pumping

configurations. As it seems inconceivable that the spontaneous emission rate could

have increased by more than ten-fold, the observations here point to a different

physical origin for the linewidth.

Although the underlying reason(s) for the anomalous linewidth behaviour is still

unclear at this point, the dependence on pump and output power suggests that the

variations in linewidths (15 kHz to 40 kHz) are a feature of the laser rather than due

to externally induced environmental perturbations. One would expect external

perturbations (e.g. mechanical vibration) to contribute to a fixed noise floor that is

independent of pump power. As pointed out in [5], a large intensity build-up occurs

around the phase shift because field propagation is trapped around it by the two

grating segments. Accordingly, the lasing intensity profile of the DFB in the three

pumping configurations was modelled by Dr P. Horak. The model of the DFB laser

was based on a gain mechanism together with the feedback grating. The gain of the

DFB was obtained based on the rate equations given in Ref. [28] and using the

transfer matrix equations in Ref. [29] for the feedback mechanism. The numerical

model of the lasing profile is shown in Figure 3.9. It shows that the lasing intensity

within the fibre laser in the close vicinity of the phase shift is very high, but the peak

lasing intensity was very similar (to within 5%) for the three pumping configurations,

given the same operating powers. Therefore, one might also expect effects arising

directly from strong spatial or polarisation hole burning that could cause gain

saturation, i.e. distortion of the gain shape, or fibre nonlinearity (e.g. modification of

the propagation of light in the cavity), to be similar for different pumping

configurations, in contrast to the different behaviours observed in Figure 3.8. In
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addition, with backward pumping, the pump is counter-propagating to the main laser

output; nonlinear optical interactions (e.g. cross-phase modulation) between the

pump and signal should, thus, have the least impact, at odds with the trends

observed. The effect of pump noise on the DFB laser frequency noise has also been

analyzed in [30] to be a secondary factor compared to thermal noise. The

temperature fluctuations in the optical cavity lead to local strains and refractive index

perturbations which in turn result in phase detuning. It is perhaps most surprising that

the forward and backward pumping configurations yield significantly different

linewidth behaviour with pump and output power, as the grating phase shift is only

located a little off-centre, by 3 mm. This suggests that modifying the grating or

cavity design solely to optimize for threshold and output power may incur

unexpected and undesired penalties in the laser phase noise characteristics.
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Figure 3.9: Laser intensity profile build-up around the phase shift of the 5-cm long DFB.

To investigate further, the laser linewidth was analysed from the measured self-

heterodyne rf (radio frequency) spectrum, shown in Figure 3.10. Although the

spectral shape is clearly non-Lorentzian, an excellent fit could be obtained, with little
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deviation over a range of more than 20 dB, using a convolution of a Gaussian and a

Lorentzian function,

22
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Figure 3.10: Self-heterodyne rf-spectrum and its theoretical fit using a convolution of a Gaussian and

Lorentzian function.

For the particular spectrum shown, the extracted Gaussian 1/e width was wG= 36.8

kHz, and the 3-dB width of the Lorentzian component was wL = 7.9 kHz. It was

found that, as the linewidth increases, both these components increase as well. It is

often assumed that these components represent two distinct noise contributions. The

Lorentzian component is sometimes viewed as more intrinsic by association with the

Schawlow-Townes Lorentzian lineshape, and laser linewidths have been reported

based on estimates of the Lorentzian component only [17]. Our findings, that the

Lorentzian component of the linewidth actually increases with power, contravening

the Schawlow-Townes inverse power relation, render the above assumption

questionable. That the extracted Lorentzian component of the linewidth might not be

uniquely related to spontaneous emission should not be too unexpected. First, these
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Lorentzian linewidths are still orders of magnitude larger than that expected from the

Schawlow-Townes spontaneous emission-induced values [6]. Secondly, while the

white noise spectrum, arising from spontaneous emission, will yield a Lorentzian

lineshape, the converse need not be strictly true. As has been pointed out by Lax, it is

primarily the noise behaviour in the close vicinity of the laser frequency which

dictates the Lorentzian lineshape [31].

In general, the laser spectrum S(f) is related to the laser frequency jitter (FM-noise)

spectrum SF(f) by the relationship [32].
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where F{…} denotes the Fourier transform with respect to τ. Depending on the

origin and behaviour of SF(f), various spectral lineshapes, non-Lorentzian or pseudo-

Lorentzian, would result. For example, Lorentzian-like lineshapes can also be shown

to result from thermally-excited index fluctuations [33], using the derived expression

for the associated optical phase noise in fibres [34]. One should therefore be cautious

in assuming that any Lorentzian component extracted from the laser lineshape

naturally represents a more important contribution to the phase noise than, say, the

Gaussian portion.

3.4.4 Thermal effects of the DFB laser

The relatively high pump powers involved here and the strong pump absorption

afforded by the Yb3+-Er3+ in the fibre core, and also the fibre small signal absorption

at 977 nm being 450 dB/m, required us to investigate the possibility of

heating/thermal effects occurring in the fibre in accounting for the anomalous laser

behaviour. It has been pointed out that the temperature may rise by as much as 30 ºC

for every 10 mW/cm of absorbed pump power in doped fibres [35] with an insulating

fibre cladding interface. With our pump powers of up to 100 mW and more, virtually

all of it absorbed over the 5 cm grating length, it was necessary to check the

effectiveness of the heat sink in maintaining the temperature stability of the doped
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fibre. For this reason, the lasing wavelength was measured as a function of pump

power for three heat sink temperatures. The lasing wavelength was measured with a

Burleigh wavemeter WA1500, having a resolution of 0.2 pm. Figure 3.11 shows the

lasing wavelength as a function of pump power at a heat sink temperature of 13 ºC,

24 ºC and 80 ºC. It was found that, for a fixed pump power, the lasing wavelength

increases with heat sink temperature at the rate of 0.01 nm/ºC, in line with the

temperature sensitivity of the fibre grating, i.e. ~8 pm/ºC. For a fixed heat sink

temperature, the lasing wavelength increased gradually with pump power, by ~20 pm

as pump power increased from 20 mW to 110 mW. This indicated a maximum

temperature increase due to the pump of less 3 ºC.
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Figure 3.11: Lasing wavelength with pump power of dual-pumping scheme for different heat sink

temperatures.

To confirm that the temperature increase in the fibre, due to the large absorbed

pump, was actually below 3 ºC, the heat diffusion equations for the fibre as given in

Ref. [35] were used, by Dr. P. Horak, to simulate the temperature profile in the fibre.

In this numerical simulation, only the heat flow out of the sides of the fibre was

considered, as the temperature gradient is larger than at the end of the fibre, i.e. heat

flow is radial rather than longitudinal. Assuming that a fixed amount of heat is
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deposited in the core, due to the pump, for a finite time, then heat is radiated outward

so temperature rise is spread towards the sides of the fibre. Figure 3.12 shows the

numerical simulation of the radial temperature profile in the fibre with 100 mW

pump absorption in the core, assuming that the 125 µm fibre cladding interface is

held at 20 ºC, this also showed that the resulting temperature rise in the core would

be ~1ºC.
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Figure 3.12: Radial temperature profile in the fibre at 100 mW absorbed pump power.

As the thermal contribution to optical noise in the fibre [33, 34] is generally accepted

to vary as T2 (T is the temperature in Kelvin), the 3 ºC change incurred in the fibre

over the entire laser operating range would seem to be much too small to be able to

account for large increases in observed linewidth, so long as the laser is properly

placed in the heat sink. Nonetheless, it has been pointed out that the thermal noise

contribution to the frequency stability of these fibre lasers is not necessarily

negligible [36, 37]. To verify this, the linewidth of the dual pumping scheme was

measured for heat sink temperatures between 10 ºC to 80 ºC. The results are shown

in Figure 3.13, with just the two extreme temperatures for clarity of presentation.

Indeed, for low pump powers, there is a marked broadening of the linewidth by

~50% when the temperature is increased from 13 ºC to 75 ºC, which is roughly in
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line with the expected T2 relation for thermally-induced phase noise. These

observations indicate that thermally-excited index fluctuations in the fibre laser do

contribute to a substantive portion of the laser phase noise, particularly at low

operating powers. However, it was found that at high pump powers, the linewidth

proves to be virtually insensitive to temperature over the range that we were able to

investigate, indicating that another dominant factor is operating here.
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Figure 3.13: Linewidth behaviour with pump power for two different heat sink temperatures.

3.4.5 Relative intensity noise of the DFB laser

As indicated in [37], the laser frequency and intensity noise are to some degree

correlated, due to thermal effects in the gain medium. It is therefore of interest also to

investigate the intensity noise of the laser. The relative intensity noise (RIN) of the

laser describes the intensity stability of the laser output. It is defined as the mean

square fluctuation of the power, in unit frequency range, divided by the square of the

average power. The unit of RIN is dB/Hz.
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where 2P is the mean square optical intensity fluctuations (in W2/Hz) in a 1-Hz

bandwidth at a specified frequency, and Pavg is the average optical power (in W). The

ratio of the optical powers squared is equivalent to the ratio of the detected electrical

powers. Thus, RIN can be expressed in terms of detected electrical powers [38].

Equation (3.4) can be written as

HzdB
P

P
RIN

elecavg

elec /
)(

 (3.5)

Where Pelec is the power-spectral density of the photocurrent at a specified

frequency, and Pavg(elec) is the average power of the photocurrent.

The RIN of the laser was measured at the relaxation oscillation frequency (ROF), i.e.

the oscillation of intensity in the cavity around their steady state values, caused when

either the laser is first turned on or when the laser is suddenly perturbed by a small

fluctuation in gain or cavity loss. It was performed with the lightwave signal

analyser, in which the laser RIN was directly measured as a function of frequency,

with the shot noise and thermal noise of the system being removed from the

measurement.
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Figure 3.14: Measured RIN at the relaxation oscillation frequency of the laser for three pumping

configurations.
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Figure 3.14 shows the RIN peak at the relaxation oscillation frequency, as a function

of the laser power. The ROF of the dual pumping configuration was slightly lower

for the given output power, but there was no obvious difference in the RIN for the

three pumping configurations. As observed, the RIN peak at ‘turn on’ was -80 dB/Hz

at 100 kHz and this peak reduced to -127 dB/Hz at 1.1 MHz as the laser power

increased to 20 mW. This was expected because as the laser began lasing, the

intensity in the cavity was unstable so noise due to this fluctuation was a maximum

close to the threshold and reduced with increasing output power. The ROF increased

as the laser power increased and the curve followed a g relationship as expected,

where g is the small signal gain [39]. Nevertheless, this RIN peak can be suppressed

by means of electronic feedback circuits [40] and, by using a semiconductor optical

amplifier, operated in the saturated gain regime [41], a noise reduction of -30 dB has

been demonstrated.

The observed RIN were similar for the three pumping configurations and yet their

linewidths were quite different. This indicated that the RIN and the laser frequency

noise was uncorrelated for our DFB laser.

3.4.6 Self-heating effect associated with non-radiative

phonon decay

The observed laser linewidth contradicted the Schawlow-Townes linewidth formula,

i.e. it broadened as the power increased; self-heating from the non-radiative phonon

decay could be the possible noise source. The high absorption cross section of the

Yb3+ ion enables it to absorb the pump radiation at 980 nm efficiently and then

transfer this absorbed energy to Er3+, as the 2F5/2 level of Yb3+ and the 4I11/2 level of

Er3+ are near-resonant in energy. The excited Er3+ ions then drop non-radiatively, by

phonon decay, to the upper laser level 4I13/2. This non-radiative relaxation process

caused some of the absorbed pump power to be turned into heat and this raised the

fibre temperature. As for our DFB laser pumped at 980 nm, the laser efficiency was

~20 % which indicated that some of the pump and signal power had turned into heat.

Accordingly, the performance of the laser was investigated by pumping, directly into
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the upper laser level 4I13/2 of Er3+, at 1480 nm to eliminate the heat generated due to

the non-radiative phonon decay. The lasing threshold, output power, laser linewidth,

wavelength shift with pump power, as well as RIN and relaxation oscillation of the

laser, were measured.

(a)

(b)

Figure 3.15: Schematic of the laser pumping configurations pumped at 1480 nm: (a) backward and

(b) forward pumping configuration.

Figure 3.15 shows the experimental set-up of the DFB laser pumped at 1480 nm in

backward and forward pumping configurations. The laser was pumped with a 130

mW, grating-stabilised, laser diode operating at 1480 nm. The pump laser was

coupled into the DFB laser via a WDM through a 1550-nm optical isolator which

works well at the 1480 nm pump wavelength. 1550-nm isolators were also spliced to

the outputs of the laser to prevent feedback effects. The laser is placed on a

temperature-controlled heat sink at 24 ºC. Only two pumping configurations,

backward and forward, were set-up for this analysis. As it was found that the

linewidth in both pumping configurations remained at ~ 14 kHz throughout the

absorbed pump power range of ~ 30 mW, this indicated that the linewidth had
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reached the thermal noise level of the laser. The same is true for the linewidth of the

dual pumping configuration; it is believed to be limited by the noise floor as well.
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Figure 3.16: Threshold and laser output characteristics pumped at 1480 nm.

As observed from the measured absorption spectrum of the fibre, the absorption at

1480 nm was ~14dB/m which was very low as compared with the absorption at 977

nm. According, the unabsorbed pump powers were measured for both pumping

configurations. For the backward pumping, the unabsorbed pump was measured at

the end opposite to the laser output. The unabsorbed pump of the forward pumping

was measured at the end co-propagating with the laser output. The unabsorbed pump

powers for both pumping configurations were ~80 % of the launched pump power.

The threshold and output power characteristics of the laser for both pumping

configurations were measured and plotted, as shown in Figure 3.16, as a function of

the absorbed pump power. Threshold values as low as ~3 mW were observed in both

pumping schemes. The output power of < 1mW, at an absorbed pump power of ~27

mW, was obtained for both pumping configurations. The quantum limit of the laser

pumped at 1480 nm was ~95%. However, the slope efficiencies of the backward

pumping and forward pumping configurations were 3.8% and 3.6%, respectively. As

observed, the efficiency for 977 nm pumping is higher than for the 1480 nm
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pumping, which is because of the higher small signal gain. It was ~6 times more

efficient than pumping at 1480 nm. A laser efficiency of less than 1% was observed

in [14, 37] for 1480 nm pumping.
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Figure 3.17: 3-dB laser linewidth as a function of absorbed pump power at 1480 nm pump

wavelength.

The 3-dB laser linewidth was measured using the same delayed self-heterodyne setup

as before. The laser linewidth behaviour, as a function of the absorbed pump power,

was plotted in Figure 3.17. The inset in the figure shows the laser linewidth versus

output power. The linewidth of the backward pumping configuration was between 14

kHz and 15.5 kHz. As for the forward pumping configuration, a linewidth of 13-14

kHz was observed. Their linewidth can be considered to be the same, as the

resolution of the delayed self-heterodyne setup was ~3.5 kHz. Both pumping

configurations have shown a decrease in linewidth as compared with pumping at 977

nm. When the laser was pumped at 977 nm, the linewidth of the backward pumping

configuration, in the regime of ~1 mW output power, was ~ 30 kHz. While for the

forward pumping configuration, a linewidth of ~20 kHz was observed for the same

output power. Hence, this showed that the non-radiative decay has some effect on the

laser linewidth. The linewidths of both configurations have decreased to ~ 14 kHz
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and remained quite constant at this value. This could suggest that the laser linewidth

has reached the thermal noise level which depends on the material properties of

silica, the temperature, and the optical mode volume [34]. Pumping at 1480 nm has

shown a decrease in the laser linewidth but the laser power was too low, i.e. in the

μW regime. Nevertheless, the laser power can be boosted by using a MOPA

configuration. In the next chapter, we show how the linewidth limitation of this laser

can be improved by operating the laser at a narrower linewidth and subsequently the

laser was configured in the MOPA for high power.
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Figure 3.18: Laser wavelength shift with the absorbed pump power.

As observed, the linewidth became narrower at the 1480 nm pump wavelength so it

is interesting to investigate the thermal effects due to absorbed pump power.

Consequently, the lasing wavelength of the fibre laser was measured with the

wavemeter. Figure 3.18 shows the change in the lasing wavelength as a function of

absorbed pump power for the backward- and forward-pumping scheme. The

backward pumping scheme shows that the lasing wavelength increased by ~1.5 pm

for ~27 mW absorbed pump power. This indicates a temperature increase of ~0.2 ºC

in the fibre due to absorbed pump. There was no clear increase in the lasing

wavelength of the forward pumping configuration over the absorbed pump power
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range. But, the wavelength was noted to vary by ~0.8 pm, this indicates a

temperature variation of ~ 0.1 ºC. The temperature rise in the fibre, due to the

absorbed pump power, was ~0.003 ºC/mW. This indicates that the temperature rise

in the fibre was 10 times lower than when pumped at 977 nm. This suggests that the

fibre heating was mainly due to the non-radiative decay.

The RIN of the laser, for both pumping configurations, was also investigated. The

RIN measurement was performed with the lightwave signal analyser. Figure 3.19

shows the RIN peak at the ROF of the laser as a function of DFB power. Both

pumping configurations showed a similar ROF at the given DFB power. Similar RIN

peak values from ~-58 dB/Hz to ~-90 dB/Hz were observed in the output power

ranges of 0.15 to 0.9 mW. The RIN of the laser at this pump wavelength was higher

than for the 977 nm pumping wavelength for the given DFB power.
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Figure 3.19: Measured RIN and ROF of the laser in the backward and forward pumping

configurations.

The possible noise source(s) that could cause the anomalous laser linewidth has just

been investigated through the possibility of thermal effects in the fibre due to the

high pump absorption and the non-radiative phonon decay from the metastable level
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to the upper laser level. The fibre temperature rise of 3 ºC in the fibre core was too

small to explain the broadening of laser linewidth due to fundamental thermal

fluctuations. We observed a thermal noise floor of 15 kHz when the heating due to

non-radiative phonon decay was eliminated. Nevertheless, the main cause of laser

linewidth broadening, identified by Dr P. Horak, was actually due to the temperature

fluctuation induced by the pump noise. The details of this are explained in the

following section.

3.5 The main cause of excess noise

This section describes an analytical model used to explain the mechanisms giving

rise to the laser linewidth, for the three pumping configurations, and the experimental

verification of some of the parameters in the model. Overall, we find good agreement

between the analytical model and the observed linewidth of the laser, as reported in

[9, 10]. The understanding of these mechanisms allowed optimization of the design

of the laser, in order to minimise the linewidth broadening, as has been proposed.

3.5.1 Analytical model of the laser linewidth

The analytical model was developed based on a potential noise source due to

dissipated pump power which resulted in heating of the fibre laser [35]. Accordingly,

the lasing wavelength of the three pumping schemes was measured and the results

are plotted in Figure 3.20(a) as a function of the pump power. The wavelength shift

for the three pump configurations was quite different, particularly as the curvature of

the backward- and dual- pump configurations results were in opposite directions. The

curves in the figure imply that the low-frequency intensity noise of the pump laser

leads to fibre temperature fluctuations, which in turn leads to refractive index

fluctuation and, thus, to laser frequency jitter. From a close examination of the data,

the change of wavelength with pump power is seen to depend on both the power

level and the pump configuration. This becomes more readily evident by plotting the

slope dλDFB/dP in Figure 3.20(b), obtained by a third-order polynomial fit to the data
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points in (a). The backward pumping configuration clearly has the largest

wavelength sensitivity to pump power compared to the other pumping

configurations, particularly for the low pump power.
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Figure 3.20: (a) DFB Laser wavelength λDFB (b) its derivative of the DFB laser wavelength dλDFB/dP

versus pump power for the different pump configurations.
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Hence, Dr P. Horak predicted that the instantaneous laser frequency jitter Δf(t) is

related to slow pump power fluctuations ΔP(t) by
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where λDFB is the laser wavelength, P is the pump power, and ΔP is the rms

amplitude of the pump fluctuations. Consequently, the laser frequency spectrum SF(f)

can be expressed in terms of the relative intensity noise, RIN(f), of the pump laser
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The function T(f) represents the frequency response of the DFB laser to pump

fluctuations. Because of the large pump absorption, ~99 % of the pump power being

absorbed (due to the high concentration of the Yb3+), heat is generated in the DFB

laser. This leads to the consideration of the frequency-dependent response of the

rare-earth ions as well as the finite response time of the fibre to be the dominating

factors. The measurements for the RIN of the pump laser and the filter function T(f)

are found in the followings sections.

The contribution of SF(f) to the laser spectrum, as measured by a self-heterodyne

technique, is given rigorously by [32],
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where F denotes the Fourier transform. For the measured values of dλDFB/dP and

RIN, Equation (3.8) is solved to a good approximation for a Gaussian laser lineshape

with full-width at half-maximum,
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Substituting Equation (3.7) into (3.9), the expression for the linewidth in terms of

measured quantities was given as
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3.5.2 Pump laser RIN measurement
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Figure 3.21: Relative pump intensity noise (RIN) as a function of pump power.

The RIN of the pump laser was measured with an external detector, as the built-in

detector of the lightwave signal analyser is insensitive to the pump wavelength, and

then the RIN was calculated using Equation (3.5). The output of the pump laser via

the 980 nm isolator was connected to a 1 GHz, New Focus model 1611, detector

which consisted of an InGaAs PIN photodetector followed by a transimpedance

amplifier. The detector has a DC and AC output port. The DC output of the detector

was connected to an oscilloscope for measuring the average voltage, Vavg(elec), and the

average power of the electrical signal was calculated using Pelec = (0.07Vavg(elec))2/R.

A scaling factor of 0.07 is included in the Vavg(elec) for the compensation of the DC

and AC transimpedance gain conversion. The AC output of the detector was

connected to the lightwave signal analyser to measure the intensity fluctuations, Pelec,

of the pump laser in a bandwidth of 750 Hz. The intensity fluctuations measured in

dBm were then converted into W/Hz using (10dBm/10)/750. Due to the limitation of

the analyser that prevented us from measuring the noise at the relevant lower

frequency, the pump RIN was measured over the frequency range of 200 kHz to 1

MHz and was found to be approximately flat in this region, and hence, it can be
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assumed to be frequency-independent below 1 MHz. The results are shown in Figure

3.21. The pump RIN was slightly decreased as a function of power from -112 dB/Hz

at 20 mW to -119 dB/Hz at 110 mW.

3.5.3 Filter function of the DFB laser measurement

To observe the frequency response of the DFB laser to pump power fluctuation, T(f),

experimentally, the spectral broadening of the DFB fibre laser under periodic pump

power modulation, using the same delayed self-heterodyne set-up as before, was

measured. The pump laser was externally modulated with a sinusoidal wave at a

fixed amplitude of ~120 mV, corresponding to ~ 3 mW of power fluctuation, over a

frequency range of 200 Hz - 2 MHz. Then, the linewidth of backward and dual

pumping configurations, at pump powers of 33 mW and 100 mW, were measured.

The measured linewidth broadening per milliwatt pump fluctuation was plotted, for a

better observation of the T (f), as shown in Figure 3.22. It can be seen that a slowly

varying envelope function Δfmod(f) appears, modified by the sinusoidal response of

the interferometer. In fact, Figure 3.22(a) shows the dependence on the laser

configuration and pump power in line with Figure 3.20(b), i.e. Δfmod is proportional

to T(f), where the proportionality factor is obtained from the low frequency jitter

response in Equation (3.6). The periodic nature of the curves on Figure 3.22(b) is due

to the interference of the two combining beams and the period is depending on the

length of the delay line [25].

To confirm that the envelope function is independent of the measurement, i.e. that is

not an artifact of the interferometer response, the delay line in the self-heterodyne

set-up was varied. The delay line of 42 km was used to measure the linewidth of the

backward pumping configuration at 100 mW pump power. And yet, it still followed

the same envelope function as the 60 km delay line, with a change in the periodic

function, as shown in Figure 3.22 (b). Hence, it was confirmed that the function was

caused totally by the laser dynamics.
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Figure 3.22: Spectral broadening Δfmod versus pump modulation frequency (a) dependant on the laser

configuration and pump power (b) showing independence on the length of the delay line for the

backward pump at 100 mW.
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3.5.4 Model calculation of the laser linewidth

The contribution of pump-noise induced thermal fluctuations to the DFB laser

linewidth for the different pumping configurations was calculated using Equation

(3.10). The calculated linewidth, plotted as a function of pump power, is shown in

Figure 3.23. These curves agree qualitatively with the behaviour of the

experimentally observed linewidth as in Figure 3.8. The remaining difference

between the model calculations and the experimental results can be explained by

other noise sources, in particular a linewidth floor due to the fundamental thermal

noise [33, 34] of ~15 kHz as observed in Figure 3.13. Note also that the theoretical

expression for fundamental temperature fluctuations [42]

Vc
Tk

T
v

B



2
2  (3.11)

where ρis the density (2.2 x 103 kg/m3), cv is the specific heat capacity of silica (741

J/kg/K), V is the effective mode volume (17.34 x 10-12 m3), kB is the Boltzmann

constant (1.38 x 10-23 m2kgs-2 K-1), predicts a linewidth of 9 kHz which agrees quite

well with our value of 15 kHz.

Figure 3.23: Contribution of pump-noise-induced temperature fluctuations to the DFB laser linewidth

for the different pump configurations.
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A previous analysis of pump intensity noise as a potential source of linewidth

broadening in single-frequency fibre lasers [30] primarily considered its effect

through the laser gain, which led to a negligible impact. Thermal fluctuations due to

pump noise were also dismissed as a significant noise source in [37].

3.5.5 Validation of the model

For a rough check on the validation of the analytical model, the change of the DFB

laser wavelength due to the pump power fluctuation PDFB  , one of the

parameters that contributed to the laser linewidth, was measured. A diode laser

operating at 975 nm was used to pump the DFB laser and the laser wavelength of the

DFB was measured in the three pumping configurations. The threshold and output

characteristics of the laser were also measured and plotted in Figure 3.24.

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120
Pump power (mW)

D
F

B
po

w
er

(m
W

)

Backward pumping
Forward pumping
Dual pumping

Figure 3.24: Threshold and output characteristics of the laser for the three pumping configuration

pumped at 975 nm.

The same characteristics resulted as were observed with the 977 nm pump

wavelength. The backward pump has the lowest threshold and the highest laser



Chapter 3 Erbium-Ytterbium Co-doped Fibre DFB Laser

67

efficiency as compared with the other two pumping schemes. This can be explained,

as for the 977 nm pump wavelength, as being associated with the asymmetry of the

grating design and the different pump absorption within the grating for different

pumping configurations. The output power of the laser was slightly lower as

compared with the 977 nm pump wavelength for the given pump power. The total

efficiencies of the laser in the backward, forward and dual pumping configurations

were 16 %, 15 % and 11 %, respectively. The efficiency is slightly lower than for the

977 nm pumping wavelength owing to a slightly higher absorption loss (0.85

dB/cm), so the threshold of the laser is increased and hence, a decrease in the laser

efficiency will result.
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Figure 3.25: Laser wavelength shift as a function of pump power.

The DFB laser wavelength was measured and the laser wavelength shift, as a

function of pump power, is plotted in Figure 3.25 for the three pump schemes. It is

clearly shown that the backward pump has the largest laser wavelength shift, i.e. ~25

pm for ~100 mW pump power. The laser wavelength shifts, for the forward and dual

pump schemes, were ~17 pm and ~11 pm, respectively. This laser wavelength shift

was slightly higher than that when pumped with the 977 nm diode laser for the given

pump power. Therefore, an increase in the laser linewidth would be expected.
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Accordingly, the 3-dB laser linewidth of the laser, measured with the delayed self-

heterodyne setup, is shown in Figure 3.26. The trendlines shown are simply a guide

for viewing. The laser linewidth of the forward pumping configuration was the

largest, i.e. 43 kHz – 68 kHz. The dual pumping configuration had the smallest

linewidth at pump powers below 90 mW, from 26 kHz – 40 kHz, and these increased

to 45 kHz at 100 mW pump power. The backward pumping scheme had a linewidth

of ~ 40 kHz up to pump power of ~80 mW and then this decreased, at higher pump

powers, to 35 kHz.
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Figure 3.26: Laser linewidth as a function of pump power.

From the measured linewidth of the three different pump schemes, the results

showed that the linewidths were constant at pump powers below 60 mW. These

behaviours were different from those observed with the 977 nm pump diode. The

reason for this was unclear. However, at high pump powers the linewidth behaviours

were similar for both pump diodes. This may suggest that the RIN of the pump laser

becomes dominant at high pump power. The linewidth of the backward pumping

scheme was decreased at high pump power. For the forward- and dual- pumping

configurations, its linewidths were increased as pump power increased. The increase

in the P , between 60 to 100 mW pump power, was ~26%, ~30% and ~24% as
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compared with the 977 nm diode laser for the backward-, forward- and dual-

pumping schemes, respectively. We observed a linewidth increase of 19%, 31% and

7% for the backward-, forward- and dual- pumping schemes, respectively.

Then, the RIN of the laser was also investigated. The results are shown in Figure

3.27. The ROF was higher for the backward and forward pump, and lower for the

dual pump scheme as compared to the results for the 977 nm pump wavelength. This

might be due to the spontaneous emission, during the laser operation being different.

However, the RIN peak at the 975 nm pump wavelength was about the same as for

the 977 nm pump.
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Figure 3.27: RIN measured at the peak relaxation oscillation of the laser.

3.6 Possibilities of reducing linewidth broadening

As observed, linewidth broadening of the DFB laser was due to the temperature

fluctuation caused by the pump intensity noise. Therefore, one obvious solution is to

use a very low noise pump. This may not be the most cost-effective solution.

Another possibility is to use a material with a temperature-insensitive refractive
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index (dn/dT ≈0), e.g., through specially tailored phosphate glasses [43, 44]. This

has the added advantage of reducing both pump-fluctuation-induced linewidth

broadening and fundamental thermal noise.

Varying the length of the grating while keeping the grating strength constant

modifies the fundamental thermal noise, which causes the associated linewidth floor

to scale as effLf 1 , cf. Eq (3.11). On the other hand, assuming that the same

fraction of the pump power is converted into heat within the entire grating, the pump-

induced broadening is expected to scale as effLf 1 . Similarly, the fibre core

radius can be enlarged to increase the mode volume and thereby decrease the thermal

effects.

Another approach to reduce the linewidth deterioration by pump noise is to use the

DFB laser in the low power regime in a master oscillator power amplifier (MOPA)

configuration.

3.7 Conclusion

This chapter described the experimental and theoretical linewidth characteristics of

the 5 cm long Er3+-Yb3+ doped fibre DFB laser operating in the region of 1.5 μm.

The experimental data were presented which highlight the anomalous linewidth

behaviour of the single-frequency fibre lasers. It is shown that the linewidth deviates

drastically from the Schawlow-Townes linewidth formula by increasing with pump

and laser power, even when the laser was mounted on a temperature-controlled heat

sink. For the same laser cavity, the choice of pumping configuration is also found to

have a considerable bearing, not just on the threshold and laser efficiency, but also

on the linewidths achievable. Although the cause was not yet fully understood at this

point, the results on the anomalous linewidth behaviour strongly suggested that the

design aimed at maximizing the laser efficiency and output power may well impact

on its phase noise properties in unexpected and undesired ways.
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A detailed analysis of the laser linewidth revealed that two noise sources are mainly

responsible for limiting the linewidth. (i) At low pump power levels, a constant noise

floor due to fundamental thermal noise limits the minimum achievable linewidth to

~15 kHz for our DFB design. This value is still many order of magnitude larger than

the Schawlaw-Townes linewidth prediction and is due to the small mode volume. (ii)

At higher pump powers, the main cause of the excess noise is due to the temperature

fluctuations induced by pump intensity noise. This pump fluctuation effect is large

due to high pump absorption over a small mode volume and is configuration

dependent. A validation of the model was conducted with a 975 nm diode laser and

good agreement was observed. Then, it followed by several discussions how to

attempt to overcome these linewidth limitations of fibre lasers.
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Chapter 4

Non-Standard DFB Designs: A

Comparative Study on

Performance
__________________________________________________________________________________

This chapter presents the performance of the non-standard DFB designs: step-

apodised and double discrete phase shifts designs. In this work, we compared the

performance of the non-standard with the standard designs. This chapter also

presents the experimental data for some of the suggested techniques, as described in

Chapter 3, to reduce laser linewidth. The laser was operated in the MOPA

configuration and lower coupling coefficient (κ) designs were used to test out the

analytical model. Narrower laser linewidths were observed when the laser was

pumped with a 1480 nm laser diode and the maximum output power of ~1 mW with

an absorbed pump power of 20% was obtained. Subsequently, the laser was

configured in the MOPA configuration for high power and its performance was

analysed. For reducing the fundamental thermal noise, we modified the effective

cavity length (Leff) of the laser by using different coupling coefficients (κ). Then, a

step-apodised phase shift design, in which the effective cavity length can be

increased without deviating from the optimal cavity confinement, was fabricated and
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its performance was compared with the standard laser design. In these designs, the

signal intensity around the phase shift is very high as the fields propagating to the left

and to the right are trapped by the two grating segments and they are circulating

within a short effective cavity length. This intensity is dependent on the Q-factor of

these gratings, and the laser will experience a much higher intensity at the phase shift

with higher reflectivity gratings. Because the intensity profile of the single discrete

phase shift is non-uniform, the peak intensity is built up in the vicinity of the phase

shift and then decays exponential to both ends of the grating. Then, we designed a 2

x π/2 phase shifts DFB laser, with the phase shift separation of 5 mm and 10 mm, to

investigate the effects of intra-cavity intensity. The significance of this double phase

shift design is that the intensity distribution is much more uniform.

4.1 MOPA laser

Figure 4.1: DFB laser + MOPA configuration for high output.

As observed in Section 3.4.6, the laser pumped at 1480 nm has a narrower linewidth,

~14 kHz, but its output power is ~ 1mW for ~30mW of absorbed pump power. A

few MOPA configurations have been reported that were designed to boost the low

output power of the laser [1, 2]. Consequently, our laser was configured in the

MOPA configuration, as shown in Figure 4.1, for high output and its performance

was experimentally analysed. In this MOPA configuration, the unabsorbed pump

power was absorbed within the additional section of erbium-doped fibre, that acts as

an amplifier, and is separated from the laser by a 1550-nm isolator. The additional

length of the amplifier fibre used was 6-m long with an absorption loss of 7dB/m at

1480 nm. The DFB laser was operated in the forward direction. In this set-up, the
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performance of the laser with the MOPA configuration was experimentally analysed

not only for the threshold, output power, and linewidth but also the shift in lasing

wavelength with pump power and the stability of the output power were measured.

4.1.1 Lasing threshold and output power characteristics
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Figure 4.2: MOPA output characteristics of the laser.

A plot of the output of the MOPA laser, as a function of pump power is shown in

Figure 4.2. The inset in the figure shows the laser output characteristics, in the

forward pumping configuration, of the DFB laser itself. A maximum MOPA power

of ~30 mW for ~130 mW of pump power was obtained. The slope efficiency of the

MOPA laser was ~30 % with a lasing threshold of ~27 mW. The threshold power of

the DFB laser was lower than in the MOPA configuration, as nearly full inversion

can be easily achieved with a short length fibre. The output of the DFB laser was

amplified to ~30 mW, i.e, a net gain of ~15 dB.
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4.1.2 Laser linewidth

The 3-dB linewidth of the MOPA laser was measured to ensure that it was still

maintaining the same linewidth as with the DFB laser itself. The results are shown in

Figure 4.3. The measured linewidth was about the same as that without the

amplifying fibre. A linewidth of ~ 14 kHz was observed over 130 mW pump power.

In fact, 15 kHz linewidth has been observed in an Er3+ -doped DFB fibre laser with a

MOPA configuration [2].

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100 120 140
Pump power (mW)

L
in

ew
id

th
(k

H
z)

Figure 4.3: Measured 3-dB linewidth of the MOPA laser.

4.1.3 Lasing wavelength

The lasing wavelength shift was measured with the Burleigh wavemeter. Figure 4.4

shows the MOPA lasing wavelength as a function of pump power. The maximum

shift in lasing wavelength observed in the MOPA configuration was ~1.4 pm for

130mW pump power. It was in Section 3.4.6 that the wavelength shift of the DFB

laser itself in the forward pumping configuration was ~0.8 pm for the same pump

power. This indicated that a small further increase in lasing wavelength of ~0.6 pm
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was observed in the MOPA configuration. This implies a temperature rise in the fibre

of not more than 0.2 ºC with 130 mW absorbed pump.
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Figure 4.4: The MOPA lasing wavelength shifted against pump power.

4.1.4 RIN of the MOPA laser

As the cavity length of the laser had been increased, the stability of the laser output

power needed to be investigated. The measured RIN and the ROF of the MOPA laser

is shown in Figure 4.5. There was no penalty of instability of the laser output due to

the additional length of amplifier fibre. The RIN of the MOPA laser was still

maintained at ~-90 dB/Hz with the output power of 30 mW. In fact, it followed the

RIN and ROF of the DFB laser itself and only the output power was amplified.
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Figure 4.5: Measured RIN at the ROF of the MOPA laser against output power.

4.2 Laser performances with different effective cavity

lengths

As mentioned in Section 3.6, the linewidth floor due to the fundamental thermal

noise can be reduced by increasing the effective mode volume and this can be

achieved by increasing the effective cavity length (Leff) of the grating. The Leff can be

increased by decreasing the κ of the grating as Leff ~ 1/κ [3]. In this work, the

performance of three asymmetric πphase shift DFB lasers with κ values of 100 m-1,

150 m-1 and 200 m-1 were experimentally analysed. The design of these lasers was

the same as in Chapter 3, in which the phase shift of these lasers was located at 3 mm

from the mid-point of the grating and the grating was 5 cm long. The Leff of the

grating with κ of 100 m-1 , 150 m-1 and 200 m-1 was 9.6, 6.6 and 4.9 mm. So far, the

mentioned κ of the grating for the DFB lasers is uniform along the grating length and

the Leff is then divided equally at both sides of the phase shift. In this kind of design,

the Leff could not increase just by decreasing the κ of the grating, as this would reduce

the reflectivity of the cavity and, therefore, decrease the optical feedback and, as a

result, deviate from the optimal confinement condition. The step-apodised design is
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capable of increasing the Leff by a step change in the κon either side of the phase

shift and alters the length of the grating segments so as to restore the optimal

reflectivity. This structure has been theoretically and experimentally analysed, and

the pump to signal conversion ratio was increased by 40% [4]. This feature has led us

to investigate its characteristics.
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Figure 4.6 : Coupling coefficients at different phase shift position.

Our step-apodised DFB laser is fabricated with a grating strength (κL) of 10, the 

same κL as in the standard asymmetric π phase shift design with κ~200 m-1. The

phase shift location of the step-apodised design is restricted by the photosensitivity

of the fibre which determines the maximum κ that can be attained, which in turn 

determines how short the highly reflective segment of the grating is. The coupling

coefficients up to 310 m-1 are found to be feasible in the fibre we used. This value

allowed us to place the phase shift at 18 mm from one end of the grating, and

maintained the same reflectivity as in the laser with κ~200 m-1, as seen in Figure 4.6.

The grating strength (κL) of ~5.6 was achieved with this κ. This gives κ~140 m-1 on

the other side of the phase shift, yielding a total grating strength of 10. The Leff of this

design was ~5.2 mm. Theoretically, the Leff can be increased significantly when the

phase shift is moved towards one of the ends of the grating, as was shown in [4]. For
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our design, the Leff can be made as high as ~5.7 mm in theory. The output of this

laser was emitted predominately from the end with the lower κ. 

These DFB lasers were constructed using the Er3+-Yb3+ co-doped fibre with the B/Ge

ring surrounding the core. The lasers were investigated under the three pumping

configurations, as previously, i.e. backward-, forward- and dual- pumping

configuration. The experimental set-up is shown in Figure 3.4. The characteristics of

these lasers were investigated by measuring the threshold, output power, linewidth,

laser wavelength shift with pump power, and the stability of the cavity due to

different grating strengths or different Leff was assessed.

4.2.1 Threshold and output power characteristics

The threshold and output power characteristics of the lasers, with κ~100 m-1, κ~150 

m-1, κ~200 m-1 and the step-apodised design, for the three pumping schemes, are

shown in Figure 4.7. In the backward configuration, it is clearly shown that the κ of 

200 m-1 was the lowest in the lasing threshold and highest in efficiency as seen in (a).

The slope efficiency of ~24% was obtained with a maximum output power of ~15

mW for a pump power of ~85 mW. The slope efficiency of the κ~150 m-1 and the

step-apodised lasers was ~22%. The maximum output power of κ~100 m-1 was ~3.3

mW and the lasing threshold was ~27 mW. Its slope efficiency was ~5%.

The step-apodised design has the lowest lasing threshold in the forward pumping

configuration, as shown in (b). As mentioned in the earlier section, the lasing

threshold approximately corresponds to the pump power where the laser light

experiences gain on one side of the phase shift and loss on the other. The phase shift

position of the step-apodised design is the closest to the pump propagating end as

compared with the other three lasers. The lasing thresholds of other lasers were

increased for the same reason as explained. Once lasing, the slope efficiency of these

lasers was almost similar, ~20%, except for the lowest κ. The lasing threshold of the 

κ~100 m-1 was ~35 mW and the maximum output power of ~2.7 mW was achieved

for a pump power of ~90 mW.
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Figure 4.7: Threshold and output power characteristics of the DFB lasers with different grating

strengths in (a) backward-, (b) forward-, and (c) dual- pumping configurations.

In the dual configuration, the threshold power of these lasers was higher than the two

other pumping configurations, as observed in Chapter 3, and the reason for this was

also explained, which is because the pump power was equally split and each input

port received half of the pump power. Therefore, the threshold was slightly larger for

the saturation of the Yb transition to begin. The lasing threshold of the step-apodised

design was the lowest and had the highest output power, as seen in (c). The lasing

threshold of ~20 mW and a maximum output power of ~6.7 mW, for a pump power

of ~80 mW, were obtained. The slope efficiency of this laser was ~14%. The output

power of the lowest κ was ~1 mW, with a slope efficiency of ~3.5%. The slope

efficiencies of the κ~150 m-1 and the κ~200 m-1 laser were ~14% and ~15%

respectively.

Generally, the highest laser efficiency and highest output power were observed with

the backward pumping configuration for all the lasers. The κ~200 m-1 had the highest

output power for the given pump power in the backward pump configuration. For the

forward pumping configuration, the output powers of these lasers were
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approximately similar except for the κ~100 m-1. The cavity with a higher round-trip

reflectivity will have a lower threshold and higher output. As observed in κ~200 m-1,

this has the lowest threshold and a higher laser efficiency because the round-trip

reflectivity of the two grating segments was the highest. For a grating length of 5 cm,

the round-trip reflectivity for κ~200 m-1 , κ~150 m-1 and κ~100 m-1 was 99.9% (-0.3 x

10-3 dB), 99.3% (-30 x 10-3 dB) and 94% (-300 x 10-3 dB), respectively. Although the

effective cavity length of κ~100 m-1 is the highest, the optical feedback is weak and,

as a result, it gives the highest threshold and lowest output power for all the pumping

configurations. For the step-apodised design, the round-trip reflectivity was 99.9%,

which is the same as κ~200 m-1. Their output powers were similar in the forward

pumping configuration.

4.2.2 Laser linewidth and laser wavelength

Observing laser efficiencies of these different laser designs in different pumping

configurations, it is interesting to compare the trade-off between the laser efficiencies

and the linewidth as well as the laser wavelength shift. The 3-dB linewidths of these

lasers were measured with the same delay self-heterodyne set-up as before. The

lasers’ wavelength shifted with pump power and was measured with the wavemeter.

Figure 4.8 shows the laser linewidth as a function of DFB power. The trendlines in

the figure serve as a guide for the eye, not a rigorous fit. The largest linewidth was

observed for κ~200 m-1, in the forward pumping configuration, in which linewidths

of 30 kHz – 60 kHz were obtained for a similar output power as in the backward

pumping configuration. In the dual pumping scheme, the linewidths were 20 kHz –

50 kHz and its linewidth was lower than the backward pumping configuration at

output powers below 2 mW. The narrowest linewidth of this laser was observed with

the backward pumping configuration at output powers above 2 mW. The variations

of linewidth were 25 kHz – 42 kHz in the backward pumping configuration. In the

κ~150 m-1, the narrowest linewidth was observed in the dual pumping configuration

for the given output power. Its linewidth was 18 kHz – 41 kHz. The linewidth of the

forward pumping configuration was lower at output powers below 5 mW and then
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about the same as the backward pumping configuration at higher powers. Linewidths

of 26 kHz – 42 kHz were observed for the forward pumping configuration and with

30 kHz – 40 kHz in the backward pumping configuration. The linewidths of the

κ~100 m-1 design decreased as the output power increased. This followed the trend

of Schawlow-Townes linewidth prediction, but its magnitude is still too large, so the

spontaneous emission is believed not to be the effect. Also, the same argument

applies as given in Chapter 3 that if the DFB power is increased by a certain fraction

then the linewidth should be decreased by the same proportion if it is perturbed by

spontaneous emission. This proportion was not observed in any of the pump

configurations. In the backward pumping configuration, the linewidth was decreased

from 37 kHz – 23 kHz when the output power increased from ~0.3 – 3.3 mW. The

linewidth of the forward pumping configuration was the largest for the given output

power. Its linewidth was decreased from 58 kHz – 25 kHz with output power

increasing from ~0.05 – 2.7 mW. The narrowest linewidth was observed for the dual

pumping configuration, in which linewidth of 34 kHz – 28 kHz was measured with

power increasing from 0.2 – 1.2 mW. The narrowest linewidth of the step-apodised

design was observed for the dual pumping scheme. Its linewidth was 30 kHz – 47

kHz with an output power of 0.5 – 7 mW. The linewidth of the forward pumping

configuration was the largest for the similar output power. The variation of the

linewidth for this configuration was 36 kHz – 55 kHz. The linewidth of the backward

pumping configuration was 36 kHz – 52 kHz.

Now, we look at the laser design which offered the narrowest laser linewidth for the

same pumping configuration. In the backward pumping configuration (a), it is clearly

shown that the narrowest linewidth was observed in the lowest κ, at output powers

above ~1.8 mW. The largest linewidth was observed with the step-apodised design

with linewidth of 35 kHz – 52 kHz. At output powers below 6 mW, the linewidth of

κ~200 m-1 was lower than κ~150 m-1, then the linewidths were comparable above 6

mW. In the forward pumping configuration (b), the lowest linewidth was ~25 kHz

which was observed with κ~100 m-1 at an output power of 2.6 mW and with κ~150 

m-1 at an output power of ~0.1 mW. In this pumping configuration, the linewidth of

κ~200 m-1 was larger than κ~150 m-1 for the given DFB power. The linewidth of the

step-apodised design was the largest at output powers above 4 mW and then at
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higher powers it was lower than κ~200 m-1. In the dual pumping configuration (c),

the κ~100 m-1 showed a decrease in the linewidth from 35 kHz – 28 kHz for output

powers up to 1 mW. The trend shows that its linewidth will decrease with increasing

output power. The narrowest linewidth was observed for κ~150 m-1. The linewidth of

the step-apodised laser was narrower than κ~150 m-1 at output powers above 4 mW.

In general, the effect of modifying the effective cavity length Leff of the laser was

observed particularly in the uniform refractive index profile with different κ values.

We observed that the trend of linewidth of the lasers can be totally different

depending on the κ. The Leff of κ ~100 m-1 was two times longer for the κ ~200 m-1,

and a lower noise for a longer Leff is expected as indicated in the analytical model.

The decrease of the linewidth with increasing laser power is also attributed to the low

reflectivity of the grating and the corresponding operation of the laser near the laser

threshold, which is much higher than for κ ~200 m-1 and κ ~150 m-1 .

For κ ~200 m-1 and κ ~150 m-1, the linewidth was increased as output power

increased. As mentioned in the model, the linewidth floor of the laser is inversely

proportional to Leff, the scaling of the linewidth floor for κ ~200 m-1 and κ ~150 m-1

was analysed as the laser efficiencies were quite similar. The Leff of κ ~200 m-1 was

increased by 33%, so the linewidth floor of κ ~150 m-1 should be decreased by the

same amount. The linewidth floor of the laser with κ ~200 m-1 was at ~20 kHz, as

seen in the dual configuration, so the linewidth floor of κ ~150 m-1 should be at ~13

kHz. We observed the linewidth floor of 18 kHz which agreed with the prediction.

For the step-apodised design, its Leff was slightly longer than κ~200 m-1 and we

expected a lower noise floor. However, it was higher and this could be associated

with the laser cavity design as the Leff was not the same at both sides of the phase

shift.
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Figure 4.8: Measured 3-dB laser linewidth of the DFB lasers with different grating strengths in (a)

backward-, (b) forward-, and (c) dual- pumping configurations.

After experimental investigation of the linewidths of the lasers, the lasing

wavelength of the lasers was measured to analyse the temperature raise in the fibre

due to the effect of modifying the Leff. As mentioned in the earlier section the high

intensity built up in the vicinity of the phase shift, due to the field propagating to the

left and to the right being trapped by the two grating segments. This high intensity

could create a heating effect and cause a variation in the refractive index and hence,

in the lasing wavelength. The laser wavelength shifts of these lasers, as a function of

pump power, were measured for the three pumping configurations. The results are

summarised in Figure 4.9.

The laser wavelength shifting of κ~200 m-1 in the backward pumping configuration

was ~36 pm for ~85 mW pump power, indicating a temperature rise of ~4.5 ºC in the

fibre. The wavelength shifts of the laser in the forward- and dual- pumping

configurations were ~40 pm for ~90 mW of absorbed pump power and ~22 pm for

~80 mW of absorbed pump power, respectively. These wavelength shifts

corresponded to an increase in the fibre temperature of ~5 ºC and ~2.8 ºC. The
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temperature increases in the fibre of κ~150 m-1 in the backward- and forward-

pumping configurations were both ~2.6 ºC. In the dual pumping configuration, a

temperature rise of ~1 ºC was observed. The lowest κ showed the lowest shift in

lasing wavelength for the three pumping schemes. The temperature increases in the

fibre of this κ in the backward-, forward- and dual- pumping configurations were

~1.5 ºC, ~1.7 ºC and ~1 ºC, respectively. For the step-apodised design, the

temperature increases in the fibre for the backward- and forward- pumping were ~4.3

ºC and ~1.8 ºC for the dual pumping scheme.

The plots in Figure 4.9 show the laser wavelength shift in different laser cavity

designs. In the backward pumping configuration (a), it is clearly indicated that the

larger laser wavelength shift was with the constant κ of higher value, i.e. higher

reflectivity of laser cavity, because of the intensity increase with the Q-factor of the

cavity and the resulting increase in temperature. The laser wavelength shifting for

κ~200 m-1 was the largest and the lowest was in κ~100 m-1. The laser wavelength

shifts in the lowest κ and κ~150 m-1 were only ~32% and ~56% of that in κ~200 m-1.

The step-apodised design also showed a shift in lasing wavelength of ~23% less than

in κ~200 m-1. Plot (b), forward pumping configuration, shows that the largest laser

wavelength shift was in κ~200 m-1 and that κ~100 m-1 was the lowest at the

maximum pump power. The wavelength shift in κ~150 m-1 and κ~100 m-1 was ~52%

and ~33% of the wavelength shift in κ~200 m-1. In this configuration, the step-

apodised design showed a lasing wavelength shift of ~10% lower than κ~200 m-1.

For the dual pumping configuration (c), the largest laser wavelength shift was again

observed in κ~200 m-1 at the maximum pump power. The lowest shift in laser

wavelength was observed in κ~150 m-1 and κ~100 m-1. This was ~40% of the shift in

the laser wavelength measured for κ~200 m-1. For the step-apodised design, the laser

wavelength shift was 75% of that for κ~200 m-1.

In general, the laser wavelength shift for κ~200 m-1 was the largest, followed by the

step-apodised design and then the κ~150 m-1 for the three different pumping

schemes. The smallest wavelength shift was found to be for κ~100 m-1. The laser

wavelength increases with refractive index which increases with temperature.

Assuming that the same amount of pump power is dissipated in the grating, the
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temperature increase in the fibre is inversely proportional to the mode field volume

which in turn depends on the Leff. The longest Leff is with κ~100 m-1 and hence less

temperature variation is observed as compared with the others. Therefore, the laser

wavelength shift is less for lower κ. For the step-apodised design, this showed a

reduction in laser wavelength shift for a slightly longer Leff as compared with κ~200 

m-1.
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Figure 4.9: The laser wavelength shift as a function of pump power for the DFB lasers with different

grating strength in (a) backward-, (b) forward-, and (c) dual- pumping configurations.

Now, verifying the analytical model developed in Chapter 3 for different laser cavity

designs. The P for κ~100 m-1, κ~150 m-1, κ~200 m-1 and the step-apodised

design were calculated. The change in the slope of the laser wavelength and the

average of the observed linewidth with a pump power range of 60 – 80 mW, for the

three pumping configurations, are shown in Table 4.1. From the table, it shows the

shifting of laser wavelength for κ~100 m-1 was lower than κ~200 m-1 for the three

pumping configurations. Its linewidth was narrower than κ~200 m-1. This is expected

as linewidth is directly proportional to laser wavelength shift due to temperature

fluctuation caused by the pump intensity noise, as discussed in Section 3.5. The

percentage change in the P and the linewidth for the forward- and dual-

pumping configurations were compared with the backward pumping configuration.

As seen in Table 4.1(b), the change in laser wavelength with the pump power was

higher in the forward pumping configuration except for the step-apodised design. In

the dual pumping configuration, Table 4.1(c), the laser wavelength shifts for κ~200 

m-1 and 100 m-1 were higher than for the backward pumping configuration, except

for κ~150 m-1 and the step-apodised design.
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κ ~ 200 m-1 κ ~ 150 m-1 κ ~ 100 m-1 Step-apodised

P (pm/mW) 0.503 0.277 0.185 0.424

Av. linewidth (kHz) 39.6 39.3 23.0 49.8

(a)

κ ~ 200 m-1 κ ~ 150 m-1 κ ~ 100 m-1 Step-apodised

P (pm/mW) 0.602 0.314 0.222 0.404

Av. linewidth (kHz) 58.2 41.6 30.6 52.2

Change in P (%) 16.3 11.8 16.8 -4.9

Change in linewidth (%) 31.8 5.4 24.8 4.5

(b)

κ ~ 200 m-1 κ ~ 150 m-1 κ ~ 100 m-1 Step-apodised

P (pm/mW) 0.569 0.194 0.256 0.318

Av. linewidth (kHz) 43.5 35.7 29.2 44.5

Change in P (%) 11.5 -42.6 27.9 -33.1

Change in linewidth (%) 8.9 -10.3 21.2 -12.1

(c)

Table 4.1: The P and average linewidth of the (a) Backward- (b) Forward- and (c) Dual-

pumping configurations.

The change in the laser linewidth was of the same order of magnitude as the change

in the P  for the three different κ values of the three pumping configurations, 

except for the step-apodised design. For the step-apodised design, the change in the

slope of the laser wavelength in the forward pumping configuration was smaller, but

the linewidth was larger than for the backward pumping configuration. The reason

for this is unclear. The linewidth of κ~200 m-1 was largest in this configuration.
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4.2.3 RIN of the lasers

We have seen that the behaviour of the linewidth and the laser wavelength shift

varied with different κ in different pumping configurations. It is also important for us

to investigate the intensity noise of these lasers to ensure that the RIN of these lasers

are still maintained at a reasonable, or an even better, intensity noise level. The

intensity noise of these lasers was experimentally investigated from their measured

RIN peak. The measured RIN, at the ROF, versus DFB power for the three pumping

configurations are shown in Figure 4.10.

For the backward pumping configuration (a), the ROF of κ~200 m-1 was lower than

κ~150 m-1 and κ~100 m-1 and a higher RIN peak would be expected than the other

two lower κ, however, it was not observed. Actually, this behaviour has been

observed in [5] and was said to be caused by the spontaneous emission in the cavity

which resulted in the perturbation of the optical field amplitude of the laser output.

The RIN peak of ~-113 dB/Hz at 900 kHz was observed for κ~200 m-1 at an output

power of ~15 mW. The difference in the RIN and ROF for κ~150 m-1 and κ~100 m-1

was not obvious in this configuration. For κ~150 m-1, an RIN peak of ~-112 dB/Hz at

~950 kHz was observed at an output power of ~12 mW. The RIN peak of κ~100 m-1

was similar to κ~150 m-1 for the given DFB power. Its RIN peak of ~-96 dB/Hz was

observed, at the ROF of 550 kHz, at the maximum output power of ~3.3 mW. The

intensity noise of the step-apodised DFB laser reached ~-120 dB/Hz at a maximum

output power of 12 mW. It had a similar ROF to κ~150 m-1 , but the RIN peak was ~7

dB lower at the maximum output power. This suggests that the cavity of this design

responded to pump perturbation and that the cavity loss was actually lower.

In the forward pumping configuration (b), the ROF of the three different κ were

expected to be different, as observed in (a), however, it was found to be similar for

the given output power. The RIN peak would be expected to be similar, as ROF was

similar, however it was observed to be quite different for all of these lasers. An RIN

peak at 1 MHz was observed as low as -129 dB/Hz at the maximum output power of

~14 mW in κ~200 m-1 . This was 12 dB lower than the RIN of κ~150 m-1 for the

same output power. The RIN peak of κ~100 m-1 was -95 dB/Hz at the maximum
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output power of ~2.6 mW which was ~5dB higher than κ~150 m-1. In fact, the ROF

of κ~200 m-1 and the step-apodised design were higher in this pump configuration.

This might be related to the spontaneous emission in the cavity depending on the

direction of pumping. The RIN peak of the step-apodised configuration was -130

dB/Hz at 1.1 MHz and at output power of ~14 mW.

In the dual pumping configuration (c), the ROF of the lasers were observed to behave

differently in this pumping configuration. As mentioned in (a), the lower ROF would

be expected to have a higher RIN peak, however, the lowest RIN peak of -125 dB/Hz

was observed at an output power of ~6 mW in κ~200 m-1 whose ROF was the

lowest. This could be due to the spontaneous emission too. The RIN peak of κ~150 

m-1 was similar to the backward pumping configuration for the given output power.

The κ~100 m-1 showed a RIN peak reduction of ~5 dB as compared with the other

pump configurations. For the step-apodised design, a RIN peak of -118 dB/Hz was

observed at an output power of ~7 mW.

Overall, the intensity noise performance of κ~200 m-1 was better than the two other κ 

values for the given DFB output power. For the step-apodised design, the intensity

noise in the forward pumping configuration was the lowest for the given DFB power.
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Figure 4.10: RIN of the DFB lasers with different grating strengths in (a) backward-, (b) forward-,

and (c) dual- pumping configurations.
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4.3 Two discrete π/2 phase shift DFB lasers

The lasing wavelength shifts with the pump power were observed previously. The

remaining question is whether this measured wavelength shift is a result of the pump-

induced temperature increase only, or is there also an intra-cavity effect arising from

the high signal intensity around the phase shift itself? To investigate this point

further, the 2 x π/2 phase shift DFB fibre laser was implemented and its performance

was experimental analysed against the benchmark of a single asymmetric πphase

shift DFB laser. The benchmark DFB laser was referred to the κ~200 m-1 DFB laser

in the previous section. For single πphase shift DFB lasers, the peak intensity occurs

around the phase shift location and decays ‘exponentially’ towards each end of the

grating, giving a very non-uniform intensity profile, as mentioned in the previous

section. This peak intensity can cause a variation of the refractive index and gain,

giving rise to a change in the lasing wavelength and a decrease of the output power.

Semiconductor multiple phase shift DFB lasers, with a 2 x π/2 phase shift structure,

have been demonstrated which gave a near uniform intensity profile along their

length, provided that the phase shifts were appropriately positioned [6]. Depending

on the phase shift position, the intensity distribution in the cavity can then behave

like a single πphase shift (phase shifts positioned at the centre of the cavity) and

uniform (phase shifts positioned at the ends of the cavity), DFB structure. As

indicated in Ref. [6], this flat intensity profile could give a more effective utilisation

of the available gain, narrower linewidths because of the small variation in the

refractive index along the structure and less variation in the output wavelength with

power level.

Figure 4.11: Schematic diagram of a 2 xπ/2 DFB fibre laser.

The DFB fibre lasers were constructed with the Er3+-Yb3+ phosphosilicate core

having an annular photosensitive boron doped ring, the same fibre as was used
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before. The feedback gratings of these lasers were 5 cm long with a κ~200 m-1 and

UV-written with the phase mask technique. For our asymmetric πphase shift design,

the phase shift was located at 3 mm from the centre of the grating for the output

power of the DFB laser to be predominantly at the end closer to the phase shift. In

the 2 x π/2 DFB design, the two phase shifts were placed symmetrically about the

position of the asymmetry phase shift design, unlike the semiconductor laser in

which the phase shifts were positioned symmetrically about the centre of the cavity.

These discrete phase shifts were placed 5 mm apart and positioned at 19.5 mm and

24.5 mm as shown in Figure 4.11 . As mentioned in [6], the intensity distribution in

the cavity is a function of the position of the phase shifts and the strength of the

grating. For this purpose, another double phase shifts laser, with the same grating

strength, was fabricated with the phase shifts separated by 10 mm and positioned at

17 mm and 27 mm. The lasers were configured in the backward, forward and dual

pumping schemes, as shown in Figure 3.5. The lasers were pumped at 977 nm with

the laser diode. Their performance was investigated by measuring the laser threshold,

output power, linewidth, lasing wavelength shift with the power and the RIN.

4.3.1 Threshold and output characteristics

Figure 4.12 shows the threshold power and the output power characteristics of the

single πphase shift and the 2 x π/2 phase shifts DFB laser. It is clearly shown that

the threshold of the single discrete phase shift was the lowest in the three pumping

configurations. This can be explained by the high pump absorption and, because the

phase shifts for the double phase shifts lasers were further apart, the round trip

feedback was longer resulting in a slightly increased lasing threshold. This is evident

by the performance of the 10 mm apart double phase shifts laser, the lasing threshold

is even higher than the laser with the phase shifts of 5 mm apart. Overall, the

backward pumping configuration gives the lowest lasing threshold and the dual

pumping configuration is the worst, as observed earlier. This behaviour was, as

explained in the earlier section, due to the asymmetry of the grating design and the

pump absorption within the grating for the different pumping configurations.
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Figure 4.12: Threshold and power characteristics of the single and two discrete phase shifts DFB

structure in (a) backward-, (b) forward- and (c) dual-pumping configuration.

For a better comparison, the laser efficiencies of these lasers were summarised in

Table 4.2. Backward pumping is found to be marginally more power efficient than

the other two configurations. Although the lasing thresholds of the double phase

shifts lasers were higher than the single phase shift laser, once lasing, the slope

efficiencies were similar or even higher in the case of the 10 mm apart double phase

shifts laser for the backward and forward pumping configurations.

Backward pump Forward pump Dual pump
πphase shift 24% 20% 15%
2 x π/2 – 5 mm apart 23% 21% 13%
2 x π/2 – 10 mm apart 27% 23% 14%

Table 4.2: Slope efficiencies of the lasers in the three pumping configurations.
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4.3.2 Laser linewidth

The 3-dB laser linewidth behaviour, as a function of DFB power for the three

configurations, is plotted in Figure 4.13. The trend-lines in the figures serve as a

guide for viewing only, and this is not a rigorous fit. For the backward pump (a), the

linewidth obtained for the double phase shifts, of 5 mm apart, design was ~10%

lower than the single phase shift. Its linewidth exhibited an increase from 21 – 37

kHz over the given pump range. The 10 mm apart phase shifts laser was quite

constant in linewidth at around 37 kHz.

For the forward pumping configuration (b), the laser linewidth of the 5 mm apart

phase shifts laser was lower at powers below 10 mW and then it levels off with the

single phase shift laser at linewidths of 60 kHz. The linewidth of the 10 mm apart

phase shifts lasers shows a linear increase with the power. A linewidth of 42 – 58

kHz was observed and it was lower than the 5 mm phase shifts at powers above 5

mW.
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Figure 4.13: The single and two discrete phase shifts lasers linewidth versus DFB power in (a)

backward-, (b) forward- and (c) dual- pumping configurations.

In the dual pumping configuration (c), the linewidth of the 5 mm phase shift laser

was varied from ~17 – 42 kHz for the given DFB power range. It was still lower than

the single phase shift laser. For the 10 mm phase shifts, the linewidth was varied



Chapter 4 Non Standard DFB Designs

103

from ~28 – 33 kHz. It was lower than the 5 mm phase shifts at powers below 2 mW.

The linewidth of the 10 mm apart phase shifts design behaved quite differently for

the three pumping configurations. This may be because the separation of the phase

shifts is too large, twice the 1/κ, and the grating behaves basically as two (only 

weakly coupled) lasers around the two phase shifts and therefore it is no surprise that

the linewidth behaviour differs. However, the linewidth of the 5 mm apart phase

shifts design was always lower than the single phase shift design, as expected from

the theory, but the difference is much smaller than expected from the change of the

dλ/dP.

4.3.3 Laser wavelength

The lasing wavelength of the single and double phase shifts were measured as a

function of the pump power to investigate whether the wavelength shifts are due to

internal heating, because of dissipation of pump only, or the signal intensity around

the phase shift. The results are shown in Figure 4.14. It is clearly seen that the lowest

laser wavelength shift was in the double phase shifts of 5 mm apart design and the

single phase shift design was the worst. For the single phase shift design, the

wavelength was increased by ~35 pm for the backward and forward pumping

configurations over the pump power range of 80 mW. The laser wavelength of the

dual pump was increased by ~22 pm for the given pump power. For the double phase

shifts of 10 mm apart design, increases in laser wavelength of ~25 pm, ~15 pm and

~13 pm were observed in the backward-, forward- and dual- pumping configurations,

respectively. The wavelength increase in the double phase shifts of 5 mm apart

design laser was ~17 pm, ~15 pm and ~7 pm for the backward, forward and dual

pumping configuration, respectively.
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Figure 4.14: Laser wavelength versus pump power of the single and two discrete phase shifts in (a)

backward-, (b) forward- and (c) dual- pumping configurations.

A lasing wavelength reduction of 30% and 50% was observed in the double phase

shifts lasers of the 10 mm and 5 mm apart designs for the backward pump. Both

double phase shifts lasers showed a reduction of ~60% for the forward pumping

configuration. For the dual pumping configuration, a nearly 70% reduction in the

wavelength shift was observed in the 5 mm apart phase shifts design and 40% in the

10 mm apart phase shifts design. This suggests that there was some intra-cavity

intensity contributing to the wavelength shift of the lasers.

4.3.4 RIN of the lasers

It is important to observe the linewidth characteristics as well as the lasing

wavelength shifts of the lasers, but it is also simultaneously important to examine the

stability of the lasers due to the intra-cavity intensity. The RIN was measured with

the signal analyser. Figure 4.15 shows the RIN of the lasers, measured at the

relaxation oscillation frequency, as a function of output power.
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In the backward pumping configuration (a), the ROF of these lasers was about the

same for the given DFB power, but the RIN peak of the 10 mm apart phase shifts

design was the highest and then levelled off with the single phase shift design. The 5

mm apart phase shifts design exhibits a lower RIN for output powers above 5 mW in

the backward pumping configuration.

In the forward pumping configuration (b), the ROF of these lasers deviated from

each other, with the largest oscillation in the single phase shift design. As a result the

RIN of the single phase shift design was the lowest. The lowest ROF was observed

in the 10 mm apart phase shifts design and hence, its RIN was the highest. The

intensity noise of the single phase shift design was the lowest for all output power

levels. Its RIN level ‘approached below’ -127 dB/Hz for powers above 14 mW. For

the 5 mm apart phase shifts design, its RIN was at 125 dB/Hz at ~14 mW DFB

power.

In the dual pumping configuration (c), the ROF for these lasers was about the same

for the given output power. The single phase shift design was the lowest, -122

dB/Hz, and the 10 mm phase shifts design was the worst, -100 dB/Hz.
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Figure 4.15: The RIN characteristics of the single and two discrete phase shifts laser in (a)

backward-, (b) forward- and (c) dual- pumping configurations.

Overall, the RIN of the 5 mm apart phase shifts design was the lowest with a value of

-122 dB/Hz at output powers of 13 mW in the backward pumping configuration. The



Chapter 4 Non Standard DFB Designs

108

RIN of the single phase shift design was the lowest in the forward pumping

configuration with a value of -127 dB/Hz at a DFB power ~14 mW. The reason for

this amplitude noise behaviour is not yet fully understood.

4.4 Conclusion

In this work, we investigated the MOPA configuration and lower coupling

coefficient designs as suggested by the analytical model for reducing the laser

linewidth. The step-apodised design was fabricated to compare with the performance

of the standard DFB fibre laser. The intensity profile of the single phase shift design

is non uniform, as high intensity builds up around the phase shift and causes a

variation in the refractive index and hence, lasing wavelength. The 2 x π/2 phase

shift was designed to investigate the intra-cavity effect of the laser as well as the

laser linewidth.

The laser linewidth of ~14 kHz was observed when the DFB laser was in-band

pumped with a pump wavelength of 1480 nm. With the MOPA configuration, the

output of the laser was amplified to ~30 mW with a net gain of ~15 dB. Its

characteristics followed exactly the DFB laser itself, apart from a slight increase in

laser wavelength of ~1.4 pm with a 130 mW pump power.

The laser linewidths of κ~200 m-1 , κ~150 m-1 and κ~100 m-1 and a step-apodised

design were experimental investigated. Its linewidth was configuration dependent.

For κ~200 m-1and κ~150 m-1, the linewidth was increased as DFB power increased.

The laser linewidths of κ~100 m-1 followed the inverse power rule that was predicted

by the Schawlow-Townes formula, but its magnitude was a few orders higher than

predicted. This is due to the low reflectivity of the cavity and the corresponding

operation of the laser near the laser threshold, which is much higher than the others.

It had the narrowest linewidth at output powers above 1.8 mW, in the backward

pumping configuration. In the forward pumping configuration, the narrowest

linewidths were observed in κ~100 m-1 at an output power of 2.6 mW and κ~150 m-1

at an output power of 0.1 mW. The narrowest linewidth was observed for κ~150 m-1
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in the dual pumping configuration. The laser efficiencies of κ~100 m-1 were the

lowest due to the weak optical feedback. The efficiencies of κ~150 m-1 and κ~200 

m-1 were similar. The fundamental thermal noise contributed to the laser linewidth at

low pump levels and was reduced by increasing the Leff, as observed in the dual

pumping configuration with κ~150 m-1 and κ~200 m-1. We also observed that the

laser wavelength shift is less with longer Leff, i.e lower κ value. This is because the 

mode field volume increases with Leff and hence reduces temperature raise in the

fibre. Consequently, the refractive index change is lower and caused a decrement in

lasing wavelength shift.

The 2 x π/2 phase shift DFB laser with phase shifts located at 5 mm and 10 mm apart

has shown a reduction in lasing wavelength shift as compared with the single phase

shift design for similar laser efficiencies. This suggests that the laser wavelength shift

was not only due to the absorbed pump power but was also affected by the signal

intensity distribution in the cavity. We also observed a decrease in the laser linewidth

with the 5 mm apart phase shifts laser.
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Chapter 5

Development of an Improved

Efficiency Thulium-doped DFB

Fibre Laser for 2 µm

Applications
____________________________________________________________________

Development of laser sources operating around the 2 μm ‘eye-safe’ region has started

to gather pace, mainly driven by a number of applications in areas such as medicine

[1], Light Detection And Ranging (LIDAR) [2], remote gas sensing [3] and

spectroscopy [4-7]. Thulium (Tm3+) is a particular attractive ion for such applications

since it has an emission spectrum ranging from ~1.7 to 2.1 m. This spectral range

covers the absorption bands of water, methane, carbon dioxide and nitrous oxide. In

fact, recently, a single-frequency Tm3+-doped fibre laser operating at 1735 nm, with

maximum output power of 1 mW for 590 mW of launched pump power at 800 nm,

was demonstrated [8]. However, this laser suffered from very moderate efficiency

and low output power. It was probably limited by the quantum efficiency as well as
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the three-level operating system which requires at least half of the ions to be excited

to obtain population inversion.

In this work, a continuous-wave (CW), DFB, single-frequency, thulium (Tm3+) co-

doped with antimony (Sb3+), fibre laser operating at 1836 nm was realised and

characterised. This is the longest reported operating wavelength of a DFB fibre laser

[9, 10]. The laser itself shows an output power of 5 mW and, with the aid of a

MOPA, the power of the DFB fibre laser was amplified to 345 mW. In this chapter,

the photosensitivity of the fibre, that is required for the UV Bragg gratings written

into the core, and the design and characterisation of the laser is discussed. The pump-

bands for Tm are also reviewed. Here, the DFB fibre laser was in-band pumped at

1565 nm in the forward pumping configuration and then it was configured in the

MOPA to amplify the signal power. Then, the DFB laser was configured in the

intracavity pumping scheme by using a cladding-pumped Raman fibre laser at 1660

nm. The possible applications of this DFB laser operating in this wavelength region

are also discussed.

5.1 Review of pump absorption bands of Tm3+ -doped

fibre being used

This section reviews the pump absorption bands that have been used to pump Tm3+-

doped fibre lasers and single-frequency DFB fibre lasers. Three main pump bands in

a Tm3+-doped silica fibre are available to achieve lasing at 1.7 to 2.1 μm: 3F4, 3H5 and
3H4. Tm has laser transition bands at 0.47, 1.47, and 1.9 m, as seen in Figure 5.1.

Pumping wavelengths of 0.79, 1.09 and 1.57 m have been demonstrated for 1.9 m

Tm3+-doped silica fibre lasers [11-13]. Pumping at 0.8 m, transition 3H6 → 3F4, has

been used to pump a length of 27 cm Tm3+-doped fibre to produce a CW laser at 1.96

μm with an output power of 2.7 mW [11]. The slope efficiency of this laser was

13%. For the transition 3H6 → 3H5, a Yb3+-doped silica double-cladded fibre laser,

operating at 1.1 m, can be used as pump source, this has been demonstrated by [13].

The maximum output power achieved was 1.1 W, with a fibre length of 0.42 m, and
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the slope efficiency was 27% (quantum efficiency 58%). However, pumping into the
3H5 level of the Tm3+ produces excited state absorption, in which energy is lost

through 3F2,3 and 1G4 excited levels [13, 14]. Direct pumping into the upper level

(3H4) of the 1.9 μm with the Er3+-doped fibre laser at 1.57 m has also been

demonstrated [12]. A slope efficiency of 71% (quantum efficiency 79%), with an

output power of 21 mW, was obtained from a 4 m long fibre. An even longer pump

wavelength of 1.63 m has been used to pump Tm3+-doped fluoride fibre [15]. The

output power of the 6 m long fibre laser was 5.5 mW, with a pump power of 8 mW.

Slope efficiency of 81.9% (quantum efficiency 84%) was obtained. In this pumping

scheme, Tm ions are directly excited to the 3H4 level of the 1.9 m transition, in

which the photon conversion efficiency is much higher than with 0.8 or 1.06 m

pumping. Whereas with pumping wavelengths of 0.79 and 1.06 m, Tm ions

pumped to 3F4 or 3H5 levels then rapidly phonon-decay to the upper level of 1.9 m.

For the Tm3+-doped DFB fibre laser, demonstrated with a pump wavelength of 790

nm, lasing at 1735 nm has been demonstrated with a slope efficiency of 0.2% [8].

This efficiency was probably limited by the quantum efficiency and reduced because

the three-level system lases from the 3H4 level to the ground 3H6 level, which

requires at least half of the thulium ions to be excited to obtain population inversion.

In this work, we demonstrate in-band pumping of the DFB fibre laser at 1565 nm, in

which the theoretical quantum efficiency limit is ~85%. With this pump wavelength

the Tm ions are excited to the upper laser level 3H4 directly, so the photon conversion

efficiency for 1.8 μm emission will be higher than with the other pumping schemes.

Figure 5.1: Schematic diagram of the Energy-level diagram of Tm3+ in silica [16], showing the

pump, absorption, and emission bands
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5.2 Tm3+-Sb co-doped alumino-silicate fibre

The details of the Tm3+ co-doped Sb fibre used for constructing the DFB laser, such

as the fabrication of the fibre, fibre photosensitivity and photostabilisation of gratings

inscribed, is described in this section. The fibre used for fabricating the DFB laser,

the same as that reported in [17], was made in the ORC by the modified chemical

vapour deposition (MCVD) method. Both thulium (Tm) and antimony (Sb) were

incorporated into the fibre-preform through the solution doping technique during the

preform preparation. Al3+ was also added to the solution to homogenize the spatial

distribution of the dopants. The synthesized silica preform was drawn into a fibre,

with an outer diameter of 120 μm, and the numerical aperture (NA) was around 0.16.

The cut-off wavelength of the fibre was designed at 1.55 μm, the pump and signal

wavelengths used were both single-mode at this cut-off wavelength. The

concentration of Tm and Sb is 1000 ppm and 800 ppm respectively. This fibre is

germanium-free, the only photosensitive material for UV written Bragg gratings is

Sb. The gain medium of the DFB laser was provided by Tm. The small signal

absorption (background loss) of the gain fibre was obtained using a cut-back

technique, with a broadband semiconductor optical amplifier source operating from

~1480 to 1620 nm, and it was found to be ~0.46 dB/cm at 1565 nm.

5.2.1 Photosensitivity of the fibre

This section briefly reviews photosensitization of different types of glass hosts and

the experimental set-up used to study the photosensitivity that can be achieved by our

Tm3+-Sb co-doping fibre, as it is essential for realising UV written Bragg gratings in

the core for cavity feedback of our DFB lasers. Most of the photosensitivity studies

of the fibre for photoinduced refractive index changes have so far concentrated on

germano-silicate (Ge/Si) core optical fibres. Enhancement of photosensitivity in

Ge/Si fibre has been reported by co-doping with boron [18] or tin [19], as well as by

loading the fibre with hydrogen prior to grating writing with UV [20]. The loading

process involved the diffusion of H2 molecules into the fibres at low temperatures
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and high pressures. When exposed to UV, the dissolved H2 reacted at the Si-O-Ge

sites resulting in the formation of Si-OH and oxygen deficient Ge defects which

contribute to the index changes. However, the Ge/Si glass hosts limit the

incorporation of large concentrations of rare-earths which can impose problems such

as clustering [21]. In order to avoid energy being transferred to the neighbouring

ions, i.e. ion pair-induced quenching, the concentration of the rare-earth has to be

low and hence the pump absorption is low which leads to poor laser efficiency.

Recently, antimony (Sb) -doped optical fibre, made by sol-gel techniques, was found

to be highly photosensitive achieving refractive-index modulation growth rates six

times higher than that of the equivalent Ge-doped fibres [22].

The photosensitivity of our fibre was tested by writing uniform Bragg gratings and

then by analysis of the transmission spectrum. The gratings were written using a

frequency doubled Ar+-ion laser operating at 244 nm, with a beam-intensity of

300W/cm2, to operate strictly in a type I regime, where the refractive index change is

linearly proportional to the fluence. The fibre was hydrogen loaded at 200 atm for 2

weeks at 70 C̊ prior to writing UV Bragg gratings, so as to enhance the

photoinduced refractive index changes, using the same technique as in [20]. The

index-modulation of this hydrogen-loaded fibre was 15 times higher than the

unloaded fibre as reported in [17]. After the inscription of the gratings, they were

annealed at 100 C̊ for 24 hours to outgas any residual hydrogen in the fibre and to

stabilise the index-modulations. The experimental set-up for testing consists of a

broadband semiconductor source and an OSA (Advantest Q8384 optical spectrum

analyser) to measure the transmission spectrum of the grating. One end of the grating

was spliced to the output of the broadband semiconductor source, having a 3-dB

bandwidth of 60 nm ranging from 1500-1560 nm, and the transmission spectrum was

analysed with the OSA from the other end of the grating. The coupling coefficient

was extracted from the reflectivity of the grating using the coupled-mode theory. The

reflection coefficient is given by [23]

R = tanh2(κL) 

Where L is the length of the fibre grating and κ is the coupling coefficient. The

reflectivity of the grating was determined from the transmission spectrum as

reflection = 1 – transmission. It was much simpler to use the transmission spectrum



Chapter 5 Thulium-doped DFB fibre laser

116

to determine the reflectivity of the gratings, as the maximum transmission loss

through this can be directly observed from the transmission spectrum. From the

coupling coefficient, the index modulation change, Δn, was obtained by the

following equation [23]

Bλ
ηnπ

where is a transverse overlap integral of the modal distribution with gratings ~0.85.

The Bragg wavelength (λB) was at 1597 nm. The DFB fibre laser operating

wavelength was designed to be at 1836 nm. However, due to the limitation of the

OSA, the maximum wavelength of the OSA is 1750 nm, the grating was written at

1597 nm for the photosensitivity studies. The measured index modulation change is

then used to calculate κ at 1836 nm.
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Figure 5.2: Measured index growth and coupling coefficient at 1597 nm against 244 nm CW-fluence

and the calculated coupling coefficient at 1836 nm.

The index growth of the fibre was studied at different fluences. Figure 5.2 shows the

measured index growth and the coupling coefficient plotted against fluence, together

with the calculated κ at 1836 nm. The index modulation change of ~1x10-4 was

obtained at a fluence of ~1 kJ/cm2. The UV induced refractive index changes in this
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hydrogen-loaded fibre can be explained in the same way as [20], i.e. the formation of

Si-OH and oxygen deficient Ge defects have been involved with index change for the

hydrogenated Ge/Si fibre. For our fibre’s refractive index changes, these could also

be due to the formation of Si-OH and oxygen deficient Sb defects.

As for our 5-cm long Er3+-Yb3+ co-doped DFB lasers, a total grating strength of 10

was used in which the optical feedback in the cavity was high and resulted a better

laser efficiency as compared with a grating strength of 5 and 7.5, observed in Section

4.2. In this case, due to the low concentration of Tm3+ ions, i.e. low gain, the length

of the DFB laser is increased to 8 cm. The maximum index growth of this fibre is ~9

x 10-5 and the maximum κcan be obtained at 1836 nm is ~120 m-1. With this

maximum κ and a fibre length of 8 cm, the grating strength of 9.6 can be achieved.

5.2.2 Thermal stability of the Sb Bragg grating

Temperature stability of the Bragg grating was assessed, it was annealed at

temperature increments of 100 °C starting at 200 °C until the reflectivity of the

grating was completely erased. At each temperature the grating was annealed for 24

hours to be able to analyse the stabilised level of the induced index-modulations. The

grating was spliced to the output of the broadband semiconductor source and placed

in an oven, and the transmission spectrum of the grating was analysed with the OSA.

The temperature stability of the gratings with coupling coefficients (κ) of 140 m-1 and

90 m-1 were tested. Figure 5.3 summarises these results through a plot of the

coupling-coefficient, normalised against the coupling coefficient observed after the

initial annealing at 100 °C. It is clearly indicated that the stronger the initial grating,

the greater the value of coupling coefficient that remains after annealing. The

reflectivity decays as gratings are annealed at elevated temperatures, this is due to the

dynamics of trapping thermally activated carriers in a distribution of defect sites,

which occurred during gratings’ writing, returning to their initial sites under high-

temperature excitement [24].



Chapter 5 Thulium-doped DFB fibre laser

118

0

0.2

0.4

0.6

0.8

1

1.2

100 200 300 400 500 600 700

Temperature (ºC)

N
or

m
al

is
ed

co
up

lin
g

co
ef

fic
ie

nt
(κ

/κ
m

ax
)  

 

κ = 140 /m
κ = 90 /m

Figure 5.3: Thermal decay of the refractive index modulation of the FBG in the Sb co-doped fibre.

At 200 °C the coupling coefficient of the grating, with κ~140 m-1 , was maintained at

~ 80% of its initial strength, whereas the strength dropped to ~ 60% in κ~90 m-1. At

600 ºC, the grating with κ~90 m-1 remained at ~5%, and for κ~140 m-1 remained at

~10%, of its initial strength. Hence, gratings with a higher coupling coefficient are

more resistant to high temperature. The gratings in the Sb co-doped fibre show a

slow decay in grating strength above 500 °C, and would be able to endure at least up

to 700 °C. This is comparable with the grating thermal stability of the

germanosilicate and tin-silicate fibres, being completely erased at 680 °C and

enduring at 780 °C respectively [19]. The high temperature sustainability of the

grating written in this fibre is another important feature for high temperature sensing

applications e.g. gaseous emissions in volcanic sites (above 150 ºC), in oil field etc.

5.3 The Structure of the DFB fibre laser

The Tm3+-Sb co-doped fibre, as mentioned in Section 5.2, was used for constructing

the DFB fibre laser. The designed operating wavelength of the DFB was at 1836 nm

which is at the peak emission of the Tm. The laser cavity was based on Bragg
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gratings, that are UV written by the phase-mask technique [25], with a period of Λ = 

636 nm. The DFB grating is written directly into the core of the fibre and is 8 cm in

length, with a λ/4 phase-shift located 4.8 mm from the mid-point of the grating. This

asymmetry enables the output power to be emitted predominantly from the end of the

laser closest to the phase shift. Single polarisation operation of the laser was obtained

by writing the phase-shifted gratings with CW UV light at 244 nm, polarized

perpendicular to the propagation axis of the fibre, as reported in [26]. After writing,

the grating was annealed for 24 hours at 100 ºC to stabilise the index modulation.

The writing time of the grating was 3 minutes with a fluence of ~1 kJ/cm2. The

resulting coupling coefficient of the grating was 120 m-1, yielding a total grating

strength of 9.6. The DFB laser is operated in the forward direction and the output

characteristic is determined in the following section.

5.4 Experimental set-up and result of the DFB laser

Figure 5.4: Experimental configuration of the single-frequency DFB fibre laser, in a forward

pumping scheme.

Figure 5.4 shows the experimental set-up of the DFB fibre laser MOPA

configuration. The source used to pump the laser was a 9 mW Santec, tunable

semiconductor source, operating at 1565 nm, which was subsequently amplified to

1.4 W, by a high-power amplifier from SPI Lasers. The output of the amplifier was

then coupled into the DFB laser, via a WDM, in order to reduce the back reflection

of the source. The fibre laser is operated in a forward pumping configuration in

which the pump copropagates with the laser output. A dichroic mirror, with a high

reflectivity at around 1.8 μm and having a high transmission at the pump wavelength,

was then used to extract the forward propagating signal. The lasing wavelength was

designed to be at 1836 nm, which was confirmed and measured with a Bentham
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M300 monochromator, having a resolution of 0.5 nm. Figure 5.5 shows the output

power of the 1836 nm DFB fibre laser operated on it own. The laser has a threshold

power of 95 mW with respect to the absorbed pump power and has a maximum

output power of ~5 mW, with a slope efficiency of 1%, at a pump power of ~550

mW. One explanation for such a relatively low slope efficiency could be related to

the background loss of the silica-based fibre at wavelengths longer than 1.8 µm [27].

The background loss in our fibre was ~0.7 dB/m. However, without Sb codoping, we

usually get a background loss ~0.4 dB/m [personal discussion with J.K. Sahu]. It

suggests that the Sb co-doping increased the background loss by ~0.3 dB/m.
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Figure 5.5: Output of the single-frequency DFB fibre laser, at a wavelength of 1836 nm, as a function

of absorbed pump power.

Many applications require moderate power, low noise, narrow-linewidth sources for

increased sensitivity and signal to noise ratio. However, due to the, in some cases,

low gain, low material concentration, and associated low pump absorption in a short

cavity, it might be necessary to boost the low output with an amplifier to reach a

satisfactory power level. To do this, the master-oscillator power amplifier (MOPA)

design was constructed to overcome the power limitation sometimes associated with

short single-frequency fibre lasers. A typical combined laser and MOPA design
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includes the short fibre laser and is followed by a length of amplifier fibre identical

to that of the laser. It is a very simple configuration yet it still ensures that key

characteristics of the laser, such as, for example, low noise and narrow-linewidth

performance, are maintained [28-30].

5.5 DFB fibre laser with MOPA configuration and

result

Figure 5.6: Experimental set-up of DFB laser with MOPA configuration.

The experimental configuration of the DFB MOPA laser is shown in Figure 5.6. The

DFB fibre laser is spliced to an additional section of Tm3+-Sb fibre used to amplify

the signal output by utilizing the residual pump power not absorbed in the laser. The

single-frequency operation of the DFB laser + MOPA was verified by using an in-

house scanning Fabry-Pérot interferometer (FPI), with the plane mirrors used in the

FPI cavity having a reflectivity of 3% at the lasing wavelength. The separation of the

mirrors was 17.3 mm, giving a free-spectral range (FSR) of 8.67 GHz. The possible

polarisation effect that could be present in this laser is the orthogonal linear

polarisation mode splitting of this fibre which is calculated to be ~1.13 GHz. Figure

5.7 shows a scan over one FSR and confirms that only one longitudinal mode, with

no other polarization or longitudinal modes, is present in the MOPA DFB fibre laser.

From our experience in fabricating asymmetrical DFB fibre lasers in the region of

1550 nm, the typical linewidth of the lasers is a few tens of kilohertz, although it is

difficult to measure this value accurately here due to the equipment limitations. We

believe that the linewidth of this laser will be close to this value, not least due to the

8-cm length of the laser.
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Figure 5.7: Single-frequency operation of the DFB fibre laser verified by scanning Fabry-Perot

interferometer with FSR of 8.67 GHz.
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Figure 5.8: Dependence of the output laser power for a constant pump power of 1.4 W on active fibre

length.

In order to investigate the optimal amplifier fibre length that gives a maximum

MOPA power for a constant pump power of 1.4 W, a length of 1.85 m of amplifier
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fibre was started with. The fibre was then cut short and the power was measured. The

results are shown in Figure 5.8. It showed that the dependence of the MOPA output

power on the active fibre length. It can be seen that a maximum power of 345 mW

was obtained with a fibre length of 1-m. As the fibre length increases, the power

tends to decrease. The decrease in output power with increasing fibre length is due to

reabsorption of the laser signal. With the aid of a length of 1-m amplifier fibre, the

output of the DFB at 5 mW was amplified to 345 mW, i.e., a net gain of ~18 dB.
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Figure 5.9: MOPA output of the DFB fibre laser against absorbed pump power at 1565nm, for an

active fibre length of 0.5, 1 and 1.85 m.

The threshold and output powers of the DFB laser with MOPA characteristics for

active fibre length of 0.5, 1 and 1.85 m are plotted, in Figure 5.9, as a function of

absorbed pump power. Slope efficiencies of the MOPA at 0.5, 1 and 1.85 m of active

fibre length, relative to the absorbed pump power, were ~28%, 34%, and 26%,

respectively. All the pump power has been absorbed in the 1 and 1.85-m active fibre

length as seen in the figure above. At 0.5-m active fibre, the unabsorbed pump power

was ~170 mW.
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5.6 Intracavity pumping set-up and result

Because of the low concentration of the Tm3+-Sb co-doped DFB fibre laser, there is a

low pump absorption and, as a consequence, low output power results. In this section

an intracavity pumping scheme is described that is designed to improve the output

power of the DFB laser, as compared with direct pumping configuration. This is by

placing the DFB laser inside a high reflective cavity of the pump laser, so that the

power that circulates inside the cavity is much greater than the output power. In Ref

[31], the 10 cm long Er3+ fibre DFB laser was placed inside the cavity of the Yb3+-

doped fibre laser operated at 975 nm, the output power from the DFB laser has

shown an improvement of threefold as compared with the direct pumping

configuration. In this set-up, the Tm3+-doped DFB laser was placed inside the

cladding-pumped Raman fibre laser’s cavity operating at 1660nm so as to recycle the

unabsorbed pump power inside the cavity. The estimated absorption loss of the

Tm3+-Sb co-doped fibre at this wavelength, from Figure 5.10, is ~0.4 dB/cm which is

about the same as at 1565 nm (~0.46 dB/cm).
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Figure 5.10: Absorption loss of Tm3+-Sb co-doped fibre.
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The experimental configuration for the intracavity pumping scheme is shown in

Figure 5.11. The cladding-pumped Raman fibre laser used was the same as reported

in [32]. Basically, it consisted of a high-power continuous-wave pump source at

1552 nm and a 1.2 km length of double-cladding Raman fibre (DCRF). The pump

source for the Raman fibre laser was a two-stage fibre master-oscillator power-

amplifier (MOPA) based on Er3+-Yb3+ co-doped fibre amplifiers (EYDFAs). The

seed source of the MOPA was a high-power tunable fibre ring laser which used a

commercial 2W EYDFA from SPI Lasers and a tunable fibre Bragg grating. The

power of the ring laser was set at 1.4 W, at a wavelength of 1552 nm, and it was then

free-space coupled through a pair of lenses and a dichroic mirror into a 4-m long

EYDFA. The 972 nm pump of the EYDFA, together with the 1552 nm signal, is

launched into the EYDF so that the fibre output end can be free-space launched into

the DCRF laser. The Raman laser cavity consisted of a FBG, with 80 % reflectivity

at 1660 nm, written in the core of the DCRF at the 1552 nm launch end and the laser

output coupler was formed by, a flat cleave in the SMF-28 fibre at the output end of

the DFB, the 4% Fresnel reflection. The other end of the DFB laser was spliced to a

piece of double-cladding fibre (DCF) to absorb the backward propagating radiation

of the DFB laser.

Figure 5.11: Experimental configuration for intracavity pumping.

The output of the laser was observed with an automatic monochromator, having a

resolution of 3 nm, which is computerised. From the scans of the monochromator, it

was difficult to obtain an accurate picture of the DFB as the cavity was unstable in

time. In addition, it was not possible to know the 1660 nm power being absorbed by

the DFB as it was not possible to measure the power in the cavity. Figure 5.12 shows
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the spectrum obtained with the monochromator. The total power, measured with a

thermal power meter at the end of the Raman laser cavity, was 18 W. This was a

combination of the Raman pump, Raman laser and DFB laser powers. With the aid

of “Origin”, a mathematics software program to perform the integration, the DFB

power was estimated to be ~144 mW. Basically, the software calculated the areas of

the spectrum and then the total power was divided accordingly.
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Figure 5.12: Experimental spectrum obtained for 100 W of 972 nm pump power/ 25 W of 1552 nm.

5.7 Possible applications of the single-frequency DFB

fibre laser at 1.7 – 2.0 m

Lasers operating at a wavelength around the 2 μm eye-safe region have been

extensively used for the development of instrumentation for environmental or

industrial monitoring applications [3-7]. Methane (CH4), carbon dioxide (CO2) and

nitrous oxide (N2O) are important trace gases in the atmosphere as active greenhouse

gases. These gases absorb the infrared radiation from the sun and trap the heat in the

atmosphere and as a result are increasing the average temperature of the Earth.

Rising temperatures may produce changes in weather, sea levels, and land use

patterns, commonly referred to as “climate change.” There are other applications in
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the region such as in LIDAR [2] and also in medical fields due to the strong

absorption of the 2 m radiation in water and biological tissues. Incisions in porcine

tissue and chicken breast have been demonstrated with a 1.98 μm CW Tm-doped

silica fibre laser[1].

A number of research studies are being conducted to determine the isotope ratio of

N2O [4, 5] and CH4 [5]. The isotope abundance ratio in the molecule reflects

different production processes of the molecule and different transportation histories

in the atmosphere. A laser-spectroscope was developed for N2O isotope ratio

measurements using 2 μm wavelength-modulated distributed-feedback diode lasers

combined with a multipass cell. In this set-up, the centre wavelength of the lasers,

stabilised to the centre of the selected absorption line, were made to travel different

distances in the cell to compensate the large abundance differences. The isotope ratio

is determined by comparing the ratio of the absorbencies for the selected absorption

lines in the sample gas with that in the reference gas of known isotopic composition.

In Ref [5], the DFB semiconductor lasers’ wavelengths were fixed at the centre of

the absorption lines of CH4 and NO2, around 1.7μm and 2μm respectively.

In Ref [3], a diode-laser spectrometer employed a single mode DFB diode laser at a

wavelength of 1.999 μm, with a linewidth of about 10 MHz, for measuring the

concentration of CO2 and H2O in gaseous mixtures. The spectrometer was built on

two separate breadboards. For the first breadboard, a portion of the laser beam was

directed into a Fabry-Pérot interferometer, which provided a precise frequency

calibration of the laser frequency scans, and the remaining part of the beam was

focused into a 10-m-long single mode fibre, by means of a lens, and transmitted to

the second breadboard which contained a multiple reflection cell and an InGaAs

photodiode. Then, the laser beam was collimated in air and into the cell. The

transmitted beam was detected by the photodiode during continuous and periodic

scans of the laser frequency over the absorption lines. However, this spectrometer

involved some optics which is sensitive to the environmental vibration.

Another possible application of our DFB fibre laser operating wavelength is to use it

as the source for the measurement of the second overtone of NO. A DFB diode laser
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sensor at 1.8 μm has been developed for measuring the combustion-generated NO,

such as in the emission from an aircraft [6]. The researchers were trying to determine

the emission of NO, with emission levels below 40 parts in 106 by volume (ppmv), as

this is the minimum requirement for a ground certificate of a new engine, for an

aircraft during flight. The DFB laser had an output of 15 mW and the tuning range

was from 1.8068 to 1.8106 μm. Due to the limited temperature tuning range of the

DFB lasers, typically only several nanometers, it is necessary to specify the desired

operation wavelength range to tolerance before fabrication. Figure 5.13 shows the

calculated absorption spectrum obtained by Ref [6] for the second overtone band of

NO. It is clearly seen that the NO at 800 K has an absorption range from ~1.79 to

1.86 μm.

Figure 5.13: Calculated absorption spectra for the (3,0) band of NO at 800 K[6].

Water exhibits an absorption band at wavelengths around 1.8 μm and has been

detected by the fluorescence of a Tm3+-doped fluoride fibre pumped with a laser

diode at 785nm [7], and also by [6] in which water vapour absorption features were

detected in their NO monitoring system.

For a high performance coherent radar system, the laser source has to be frequency

as well as amplitude stabilised, where the laser wavelength has to be held typically to

within a few pm from the absorption line centre and the relative intensity noise has to

be less than -110 dB/Hz. The effective technique used to control emission

wavelength is by injection seeding, where a low power output laser with a narrow

spectral linewidth is used to control the emission wavelength of the Q-switched
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oscillator, as discussed in [2]. Laporta et al. developed a cw single-frequency Tm-

Ho:YAG laser tunable from 2087 to 2099 nm for injection seeding of a coherent

LIDAR system for wind velocity measurement. The laser has both amplitude and

frequency stabilisation by means of an electronics circuit and by locking the

oscillator to an absorption line of a molecule, respectively.

5.8 Conclusion

In this chapter, an in-band-pumped, continuous-wave, single-frequency Tm3+-Sb co-

doped DFB fibre laser operated at 1836 nm was realised and characterised. This is

the first report of a Tm3+ co-doped, single-frequency, DFB fibre laser that is in-band

pumped at 1565 nm and the longest reported operating wavelength of a DFB fibre

laser. The laser itself shows an output power of 5 mW with a slope efficiency of 1%,

at an absorbed pump power of ~550 mW. The laser is then subsequently amplified to

345 mW using a MOPA configuration with an amplifier fibre length of 1 m,

corresponding to a gain of ~18 dB. The single-frequency and single polarisation of

the laser was confirmed with the Fabry-Pérot interferometer. In this work, the DFB

laser was configured in an intracavity pumping scheme by placing it inside the

Raman laser cavity and the DFB output power of 144 mW was obtained. However,

the laser cavity was unstable as a consequence this affected the stability of the DFB

power.

The λ/4 phase shift is located 4.8 mm from the mid-point of the grating. The DFB

laser is 8 cm long with a cavity feedback grating strength of 10. The gratings were

UV written into the core of the Tm3+ co-doped Sb fibre. The photosensitisation of the

fibre is provided by the Sb and by using hydrogen loading technique to enhance the

photoinduced refractive index by 15 times. The κof the grating remaining at 600 ºC,

for κ~140 and 90 m-1, were ~ 10% and ~5% of its initial κ. The thermal stability of

the grating written in this fibre is suitable for high temperature sensing applications.

The possible applications of this DFB laser were discussed. We believe that it could

be a practical source for spectroscopy, LIDAR, and medical applications because the
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lasing wavelength is in the ‘eye-safe’ spectral region and furthermore, the

characteristics of the DFB lasers such as compact size, wavelength stability and

narrow linewidth.
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Chapter 6

Holmium-doped DFB/DBR

Fibre Laser at 2.1µm
____________________________________________________________________

Lasers operating in the eye-safe 2 μm wavelength region can find a number of

important applications as discussed in Chapter 5. Holmium (Ho3+) is an rare-earth

ion which has been studied as an active ion in silicate [1-7] and fluoride [8, 9] glass

hosts for lasers operating at ~2.1 µm. Although a highly efficient laser oscillation is

achieved when using fluoride glass hosts [2], due to a lower non-radiative phonon

energy than the silica glass, there are some problems such as fibre strength,

durability, and splicing techniques to be solved to enable fluoride fibre to be

practically applied. The cavity of the fibre lasers is based on the Fabry-Pérot type

cavities which are formed by a high-reflectivity input mirror and an output coupler.

The shortest cavity length of Ho3+-doped silica fibre lasers was 13 cm, having a slope

efficiency of 2.5%, and the maximum laser output power was 6.4 mW [2].

The motivation of this research was to develop a continuous-wave (CW), DFB,

single-frequency, holmium (Ho3+) doped silica fibre laser operating at 2140 nm. The

design of the DFB was aimed to be as compact as possible, with a stable operating

wavelength and a target output power of <10 mW. This chapter describes the fibre
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design, the loss and emission measurements of Ho3+, and an assessment of the

efficiency of the designed DFB fibre laser operating in the forward pumping scheme.

Section 6.1 reviews the pump absorption bands of Ho3+ in silica being used here.

Pump sources used to investigate the efficiency of the designed DFB laser were an

Yb3+-doped fibre laser at 1119 nm and a Tm3+ co-doped DFB laser at 1836 nm. The

details of the fibre used for constructing the DFB laser such as the fibre’s

photosensitivity, concentration of Ho3+, core diameter, numerical aperture (NA) and

cut-off wavelength as well as measurements of loss and emission of Ho3+ are found

in Section 6.2. Based on this information, the DFB laser was designed and the details

of the designed DFB laser are given in Section 6.3. The assessments of the laser

efficiency are given in Section 6.4. The pump absorption for this DFB laser was too

low, a DBR fibre laser was then constructed and assessed. The final section is the

summary and outcome of this research.

6.1 Review of pump absorption bands of Ho3+-doped

silica fibre lasers being used

The 5I75I8 laser transition of Ho3+ is used to achieve laser emission at 2.1 μm. A

wide range of pumping sources has been used to pump the relevant laser transitions

of Ho3+, as it has large, broad, absorption bands which cover the wavelengths from

the visible blue band to the near-infrared band. Ho3+-doped silica fibre lasers

operated at ~2 μm wavelength have been pumped by the use of Tm3+ [2, 6] or Yb3+

[4] sensitization, direct Yb3+-doped silica fibre laser pumping [3, 5, 10], and direct

pumping with lasers operating at non-standard wavelengths [1]. The commercially

available semiconductor lasers have emission wavelengths longer than 750 nm which

cannot be used to pump the strongest absorption bands of Ho3+ located in the visible

range. Therefore, for the first demonstration of Ho3+-doped fibre lasers it was

pumped by an argon laser at 457.9 nm and had a slope efficiency of 1.7% with a

threshold power of 46 mW [1]. Unfortunately, because of the lack of a suitable

absorption band in the near infrared region which could be pumped by commercially

available laser diodes, the Ho3+ has to be co-doped with sensitizer ions, either Tm3+
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or Yb3+, in which there is energy transfer from the sensitizer ions to Ho ions. In [2, 6]

laser oscillations of Ho in the 2 μm region have been demonstrated by pumping the

absorption bands of Tm at 3F4 and 3H5 levels with a 786 nm Ti:sapphire laser and a

Raman fibre laser operated at 1212 nm respectively; the excited ions drop by phonon

relaxation to the 3H4 level of Tm3+ and by utilising energy transfer from the 3H4 level

of Tm3+ to the 5I7 upper laser level of Ho3+. Yb3+ as a sensitizer ion was

demonstrated in [4], the Ho3+ was co-doped with Yb3+ and the fibre laser was

pumped with a 50 W 975 nm diode laser system, whereby Yb3+ absorbed the pump

radiation and then energy transfer occurred from the 2F5/2 level of Yb3+ to the 5I6

level of Ho3+, and multiphonon relaxation from the 5I6 level to the 5I7 upper laser

level. The weak point of the configuration of these lasers is the strong competition

between the sensitizer ions to Ho energy transfer and the processes of excited state

absorption and the fluorescence of the sensitizer ions [3]. The use of direct pumping,

with Yb3+-doped silica fibre lasers, has also been demonstrated. In Ref [3] it was

shown that the 4.5 m-long Ho fibre laser, pumped at 1150 nm with a double-clad Yb-

doped fibre laser, has a slope efficiency of 20% and a maximum output power of 280

mW for 2W absorbed pump power. Ref [5] pumped a length of 2m Ho3+-doped fibre

laser at 1100 nm with a Yb3+-doped silica fibre laser, a maximum slope efficiency of

35% and a maximum output power of 2.7 W was demonstrated for ~10 W launched

pump power. Then, tuning of the 2 μm Ho3+-doped silica fibre laser over 144 nm,

from 2019 to 2163 nm, achieving a maximum output power of 1.58 W, has been

demonstrated by [10].

Figure 6.1: Simplified three-level energy diagram of Ho3+ in silica.

Figure 6.1 shows the simplified three-level energy diagram of Ho3+. In this work, the

Ho3+-doped DFB laser was pumped in the 5I6 level, the excited Ho ions decay

rapidly, by phonon decay, to the upper lasing level 5I7. The pump source used was an

5I6
5I7

5I8

~1150
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Yb3+-doped fibre laser whose operating wavelength was determined by the Bragg

gratings at 1119 nm. The quantum efficiency limit, at the lasing wavelength of 2140

nm, is ~52%. Pumping at 1836 nm with the Tm3+ DFB MOPA laser was also

performed in which the theoretical quantum efficiency limit is ~86%.

6.2 Ho3+-doped alumino-silicate fibre

This section is about our Ho3+-doped fibre used for implementing the DFB laser.

This was the first trial of fabricating the Ho3+-doped fibre by the ORC fibre

fabricators. The fibre preform was made by conventional modified chemical vapour

deposition (MCVD). Holmium and aluminium were incorporated into the core of

fibre-preform through the solution doping technique during the preform preparation.

Germanium and boron were added through MCVD deposition into the core for

photosensitive mechanism. The function of aluminium is mentioned in Section 5.2,

i.e. to even out the distribution of the dopants as well as increase the solubility of the

Ho3+ while reducing the possibility of concentration quenching. The preform was

then drawn into fibre having a diameter of 95 µm. The estimated concentration of

Ho3+ in the fibre is ~12000 ppm, it has a core diameter of 7.9 μm, NA ~ 0.162, and a

cut-off wavelength of 1670 nm. The gain medium was achieved by Ho3+. The small

signal absorptions of Ho3+ at 1119 and 1836 nm were found to be ~0.2 dB/cm. The

experimental details for measuring the absorption loss are in Section 6.2.2.

6.2.1 Photosensitivity of the fibre

The photosensitivity of the Ho3+ fibre is studied in this section. The technique used to

measure the photosensitivity of the fibre is the same as in Section 5.2.1. The fibre

was hydrogen loaded at 200 atm for 2 weeks at 70ºC prior to UV writing the Bragg

gratings and then 1 cm long test gratings, with a Bragg wavelength at 1597 nm, were

written into the core of the fibre with the same Ar+-ion laser operating at 244 nm.

After gratings inscription, they were annealed at 100 ºC for 24 hours to outgas any

residual hydrogen in the fibre and to stabilise the index-modulations. The gratings
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were spliced to the output of the semiconductor source and the transmission spectra

of the gratings were measured with the OSA, having a resolution of 0.01 nm. The

coupling coefficient (κ) was extracted in the same way as in Section 5.2.1. The index

growth of the fibre was studied at different fluence. The coupling coefficient at 2140

nm, the operating wavelength of the DFB laser, was then calculated from the

measured modulation index of the fibre. Figure 6.2 shows the measured index

growth and coupling coefficient at 1597 nm, as a function of fluence, as well as the

calculated κ at 2140 nm. The index modulation change of ~3 x 10-5 was achieved by

this fibre with a fluence of ~2.2 kJ/cm2. The photosensitivity of the fibre is low as

indicated by the index modulation change. With a fluence of ~2.2 kJ/cm2, the κ at 

2140 nm that can be obtained is ~30 m-1, this means that a cavity length of ~30 cm is

needed in order to achieve a grating strength of 10. For a robust single-frequency

output, the cavity length of the laser needed to be only a few centimetres so as to

increase the axial mode spacing. In order to keep the DFB short and to have enough

gain, the length of the DFB gratings chosen is 12 cm and hence a κL of ~4 was 

attained. After assessing the photosensitivity, the next section is regarding the pump

absorption loss at the pump wavelengths used, by measuring the absorption bands of

our Ho3+-doped fibre.
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Figure 6.2: Measured index growth and coupling coefficient at 1597 nm against 244 nm CW-fluence,

together with the calculated coupling coefficient at 2140 nm.
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6.2.2 Absorption of the Ho3+-doped fibre

The white light was coupled into the Ho3+-doped fibre and the absorption spectrum

was obtained with the OSA by a cut-back technique. The measured absorption

spectrum of the fibre in the range 700-1750 nm is shown in Figure 6.3. A very

similar absorption spectrum was observed as in [5], in which the spectrum showed

the absorption bands of Ho3+ at 5I4, 5I5 and 5I6. The absorption peak of 5I6 is at 1150

nm with a loss of ~0.7 dB/cm. The pump sources used to pump the DFB laser were

an Yb3+-doped fibre laser operating at 1119 nm and a Tm3+ DFB MOPA laser at

1836 nm. As observed from the figure below, the absorption loss at 1119 nm was

~0.2 dB/cm. The absorption at 1836 nm, using the Tm3+ DFB MOPA laser as a light

source, was found to be ~0.2 dB/cm by the cut-back method.
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Figure 6.3: The measured absorption spectrum of our Ho3+-doped silica fibre.

6.2.3 Emission of Ho3+-doped fibre

This section describes the experimental set-up for measuring the emission of Ho3+.

From the laser efficiency point of view, the operating wavelength of the DFB laser
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needed to be at the gain peak. The experimental set-up for investigating the emission

of Ho3+ is shown in Figure 6.4, in which the Tm3+ DFB MOPA laser, operated at

1836 nm, is used to excite a 45 cm length of Ho3+-doped fibre. The DFB laser was

pumped with a 1 mW Tunics, tunable laser diode source, operating at 1565 nm, and

then amplified to 1W by a high power amplifier from SPI Lasers. The length of the

amplifier fibre was 1.75 m and the power after the MOPA laser, measured with a

Melles-Griot 13PEM001 thermal power meter, with all the pump power being

absorbed, was 22 mW at a pump power of 680 mW. The Ho3+-doped fibre was

spliced to the output of the MOPA and the other end was spliced to an angle

connector, to prevent back reflections. The emission spectrum at the end of the doped

fibre was measured with the automatic monochromator.

Figure 6.4: Experimental set-up for measuring the emission of our Ho3+-doped silica fibre.

1900 2000 2100 2200 2300 2400

Wavelength (nm)

E
m

is
si

on
(a

.u
)
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Figure 6.5 shows the emission spectrum of the Ho3+-doped fibre, scanned with the

monochromator having a resolution of 0.16 nm. The measured full-width half

maximum (FWHM) emission bandwidth of the Ho3+-doped fibre is found to be in the

range of 2080 – 2180 nm and the peak wavelength is at ~2140 nm. The operating

wavelength of the DFB laser is designed at this peak wavelength.

6.3 Structure of the DFB fibre laser

This section outlines the design of the Ho3+-doped DFB laser, which is basically

having a similar structure to the Er3+-Yb3+ and Tm3+ DFB fibre lasers, in which the π

phase shift is placed slightly off-centre with respect to the centre of the grating, i.e. at

a ratio of 0.44: 0.56. The length of the DFB gratings is 12 cm and the phase shift was

placed at 7.2 mm from the mid point of the grating. The gratings were written

directly into the core of the fibre with the phase mask technique that was used in the

Er3+-Yb3+ or Tm3+ DFB fibre laser. The period of the phase mask (Λ) is 1476 nm and 

the operating wavelength of the DFB is 2140 nm. Single polarisation operation was

obtained as mentioned in Chapter 3. As mentioned in the earlier section on the

photosensitivity of the fibre, prior to the fabrication of the UV written Bragg

gratings, the Ho3+-doped fibre was hydrogen loaded to make it more photosensitive.

After writing, the grating was annealed for 24 hours at 100 ºC to outgas the residual

hydrogen and to stabilise the index modulation. The final grating strength of ~4 was

obtained with a κ~ 30 m-1.

6.4 Experimental set-up and result

Two pump wavelengths were used to investigate the DFB laser performance. As

mentioned in Section 6.1, the quantum efficiency limit for 1119 nm and 1836 nm, at

the lasing wavelength, is ~52% and ~86%, respectively.
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Figure 6.6: Experimental set-up of the 5I6 pump band of the Ho3+ -doped DFB fibre laser.

Figure 6.6 shows the experimental set-up for the 5I6 pump band of the Ho3+-doped

DFB fibre laser. The pump source was an Yb3+-doped fibre laser operated at 1119

nm. The Yb3+-doped fibre laser basically consisted of a spool of GTWave fibre, a

high reflectivity grating and an output coupler (OC) grating at 1119 nm. The

GTWave fibre assembly consists of an Yb3+-doped fibre and two un-doped silica

pump fibres wrapped around the doped fibre. The GTWave fibre is 1 km long and is

pumped by a pigtailed 977 nm multimode laser diode which was spliced to the pump

fibre. As the pump light propagates along the pump fibre, its evanescent field is

coupled to the Yb3+-doped fibre where it is absorbed. The operating wavelength of

the Yb3+-doped fibre laser was determined by the Bragg gratings at 1119 nm which

coincides with the optimal performance of the Yb3+-doped laser. The output power of

the laser, measured at the end of the OC grating, was ~230 mW with an input power

from the pump diode of 3W. The DFB fibre laser was configured in the forward

pumping scheme in which a WDM coupler is eliminated. One end of the DFB laser,

the end further away from the phase shift, was spliced to the output end of the Yb3+-

doped fibre laser. The output end of the DFB laser, the end closer to the phase shift,

was measured with the automatic monochromator.

The DFB laser was pumped with 230 mW and the power at the output end of the

laser, measured with the thermal power meter, was ~120 mW. The measured power

might consist of the signal and unabsorbed power, for this reason, the

monochromator was used to investigate the spectrum at the output end of the DFB

laser. Figure 6.7 shows the spectrum at the output end of the DFB laser as a function
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of wavelength that was scanned by the monochromator. From the spectrum, a peak

was observed at 2123 nm. This peak wavelength was far from the designed operating

wavelength of the laser, which is at 2140 nm. So, in order to further investigate the

possibility of this being due to the pump source itself, the DFB laser was broken at

the splice point and a 50 cm piece of Ho3+-doped fibre was spliced at the OC grating

end. A peak at 2123 nm was still observed with a decreasing in amplitude.

Obviously, this cannot be due to the pump source as the amplitude should be the

same for both cases. The other possibility was lasing actually occurred at the

maximum emission peak of Ho3+ as the threshold power of the cavity could be lower

than the DFB cavity. As observed in Section 4.2, the DFB laser with κL~5 required a

much higher threshold power than κL~10. This could be the reason as the κL of the

Ho3+ DFB was low, i.e. ~4, and the threshold power is even higher in order for lasing

to occur.
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Figure 6.7: Spectrum with and without DFB fibre laser at 230 mW pump power.

From the measured unabsorbed power ~120 mW, the absorption of the fibre at 1119

nm was ~0.27 dB/cm, which is about the same as the absorption loss measured

earlier. The absorption of this fibre is low and the pump power available to reach the

threshold of the DFB laser is limited. In addition, the pump wavelength was below
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the 1670 nm cut-off wavelength of the fibre, higher order modes could therefore be

presented and hence power competition between the modes would occur. The

following experimental set-up was used to pump the DFB laser above the cut-off

wavelength of the fibre. Using the 1836 nm Tm3+ DFB MOPA laser as pump source,

the V-number at this pump wavelength was 2.19 so there was only one mode present.

In addition, it is an in-band pumping scheme at 1836 nm, in which the theoretical

quantum efficiency limit is ~86%. With this pump wavelength, the Ho3+ ions are

excited to the upper laser level 5I7 directly, so the photon conversion efficiency for

2.1 μm emission will be higher than with the other pumping schemes. Figure 6.8

shows the experimental set-up of the 5I7 pump band of the Ho3+-doped DFB laser.

Figure 6.8: Experimental set-up for the 5I7 pump band of Ho3+-doped DFB laser.

The same experimental set-up for the Tm3+ DFB MOPA laser as in Section 6.2.3,

used for obtaining the emission of Ho3+, was used to pump the Ho3+-doped DFB

laser. The amplifier fibre length of 1.295 m was used, instead of 1.75 m. The

maximum MOPA output power of ~110 mW was obtained with 960 mW pump

power. The end further away from the phase shift was spliced to the MOPA laser

output and the power after the Ho3+-doped DFB laser was ~ 45 mW, measured with

the power meter. Again, the monochromator was used to investigate the output

characteristics of the laser. Figure 6.9 shows the output characteristics of the DFB

laser at a pump power of 110 mW and also 65 mW. For 65 mW pump power, the

power at the output of the DFB laser was 27 mW. Results show that the ASE of the

Ho3+-doped fibre was increased as the pump power increased and the DFB laser did

not lase with these pump power levels. The pump absorption at this wavelength was

~0.2 dB/cm.
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Pump wavelengths at 1119 nm and 1836 nm were used to pump the DFB laser,

neither wavelength showed that lasing occurred. This could be due to the quality, Q,

of the cavity that is reduced as compared with the Q-value of a grating strength of

~10. Consequently, the loss in the cavity has increased as a result of decreasing the Q

of the cavity. Furthermore, the gain in the fibre could be low and hence, it is

insufficient to overcome the losses. The estimated loss introduced by the reflective

gratings was ~0.11 dB. The other problem could be due to the low pump absorption

in a 12-cm long laser cavity; to resolve this, a distributed Bragg reflector (DBR) was

constructed in the following section.

2000 2050 2100 2150 2200
Wavelength (nm)

In
te

ns
it

y
(a

.u
)

Pump power - 116 mW
Pump power - 65 mW

Figure 6.9: The output spectrum of the Ho3+-doped DFB laser pumped at 5I7 band.

6.5 DBR laser: Experimental set-up and result

This section describes the realisation of a distributed Bragg reflector (DBR) for

increasing the pump absorption by using a longer cavity length. In [11, 12], the DBR

fibre laser was formed with two Bragg gratings that were written into the core of the

Er3+-doped fibre by using a two beam interference pattern. The two reflector gratings

were written on opposite ends of the fibre. In this work, a DBR Ho3+-doped fibre

laser was constructed, by fusion-splicing two reflector gratings on opposite ends of a
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length (L) of Ho3+-doped fibre, to form a cavity. By splicing the gratings on both

ends of the fibre additional splice loss will be introduced; however, it was the initial

trial for this set-up. The gratings were cut from both ends of the DFB laser and

spliced to both ends of the Ho3+-doped fibre. The gratings were 4 cm long so that the

Bragg wavelength of the two reflectors was the same. The reflectivities of the 4 cm

long gratings were 96.4%, i.e. 0.16 dB loss at the reflectivity of the gratings. The

cavity lengths of the laser used were 31 and 85 cm long. The laser was end pumped

with the Yb3+-doped fibre laser with 230 mW at 1119 nm. Figure 6.10 shows the

schematic diagram of the DBR fibre laser configuration together with the pump

source.

Figure 6.10: Ho3+-doped DBR fibre laser configuration.
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Figure 6.11: Spectrum of DBR for a cavity length of 31 and 85 cm; and without reflector gratings for

31 cm of Ho3+-doped fibre pumped at 230 mW.
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The power measured at the output of the DBR laser was 50 and 2 mW for a cavity

length of 31 and 85 cm respectively. The output of the laser was investigated with

the scanning monochromator and the spectrum is shown in Figure 6.11. With the 31

cm cavity length, peaks were observed at ~2010 and 2175 nm which is corresponded

to the emission spectrum of Ho3+. However, neither of these wavelengths was

corresponded to the designed operating wavelength. Accordingly, the gratings at the

ends of the fibre were then un-spliced and the 31 cm long Ho3+-doped fibre was

spliced directly to the output of the Yb3+-doped fibre laser. Again, the peaks

coincided exactly with the DBR laser wavelength and lasing occurred as explained in

section 6.4. For a cavity length of 85 cm, only the ASE was observed and no peak.

This might be because the cavity length was too long and signal reabsorption can

occur.

6.6 Conclusion

This chapter describes the preliminary work involved to implement a Ho3+-doped

DFB fibre laser and assess the performance of the laser. The DFB laser was designed

to operate at 2140 nm, the peak emission of Ho3+. It was pumped at 1119 nm by an

Yb3+-doped fibre laser and at 1836 nm by a Tm3+ DFB laser. The quantum efficiency

limit at pump wavelengths 1119 nm and 1836 nm was 52% and 86% respectively.

However, neither pump wavelength managed to get the DFB laser to lase. This could

be because the losses in the cavity were high and the gain of the fibre was

insufficient to overcome it. The other possibility was due to the pump absorption for

a 12 cm Ho3+-doped fibre, that was low at both pump wavelengths ~0.2 - 0.3 dB/cm.

Since the absorption of the DFB is low, a pump source with much higher power,

perhaps, could reach the threshold of the laser. Then, a DBR fibre laser was

constructed to increase the pump absorption by using a much longer cavity length.

The cavity lengths of 31 and 85 cm were used, but still no lasing was observed.

Concentration quenching effects could be one of the problems as our fibre was doped

with a huge Ho3+ concentration. Other possible problems were due to the dominant

non-radiative transition in the 2 μm region and the large intrinsic losses of the silica

fibre associated with the 2.1 μm wavelength.
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Chapter 7

Conclusions
____________________________________________________________________

7.1 Subject of this research

Short-cavity single-frequency fibre lasers have been a topic of continued interest

since the early work of Ball et al. on Er3+-doped distributed Bragg reflector fibre

lasers. These fibre lasers have shown kilohertz linewidths, direct compatibility with

fibre networks, wavelength tunability and are also simple to fabricate. The above

characteristics have made them attractive for a number of applications; such as in

optical coherent communications, wavelength division multiplexing (WDM), optical

fibre sensors and high-resolution spectroscopy. A highly stable laser source is

required to achieve a high performance coherent radar system for measuring gas

concentration whereby the laser wavelength has to be held typically within a few pm

from the absorption line centre and the relative intensity noise has to be typically less

than -110 dB/Hz [1]. Also mentioned by [2], the optical based gas sensing required

the laser linewidth to be narrower than the absorption line of the gas to be detected

for a good spectral overlap so as to lower the minimum detectable gas concentration

as well as the cross-sensitivity to other gases. The wavelength stability in the WDM

applications becomes an important factor as the channels are increased. Fibre lasers

with a wavelength stability of 0.1 pm have been demonstrated in the 8- and 16-
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channel systems. The power levels required for these applications were in the

milliwatt regime. The objective of this research is to develop a narrow linewidth, low

noise, wavelength stable and compact source for high end applications.

There have been a few detailed experimental investigations on the linewidth/phase

noise characteristics of these lasers, with much of the work focused on improving the

efficiency and output power through optimising the fibre, cavity and grating design.

The phase noise properties of these lasers fails to measure up to that achievable in

bulk solid-state lasers, even though the linewidth of fibre lasers, based on the well-

known Schawlow-Townes formula, indicate values of 60 Hz or less. One common

suggestion for the source of this excess phase noise is that it is caused by the

environmental perturbations, such as external vibrations and acoustic noise. We

experimentally investigated the main cause(s) of the anomalous linewidth behaviour

of these fibre lasers and the possible ways of reducing this laser linewidth. In this

research, we also aimed to develop single-frequency fibre DFB lasers operating in

the 2 μm ‘eye safe’ wavelength region as it begins to become more important due to

a number of possible applications around 2 μm, such as remote gas sensing, LIDAR

and medicine.

7.2 This thesis

In this thesis the anomalous behaviour of the laser linewidth of the single-frequency

fibre DFB lasers was studied [3, 4] and an analytical model was developed to

describe the main cause of the excess noise in the fibre lasers [5, 6]. Then, the laser

performance of the step apodised and the double phase shifts designs were compared

with the standard design. The effective cavity length of the step apodised DFB laser

can be increased without offsetting the optimal cavity confinement. The 2 x π/2

phase shift design was used to show the intra-cavity effect [7]. A single-frequency

fibre DFB laser with improved efficiency operated at 1836 nm was realised with

thulium as the gain medium [8, 9]. Then, aiming for a laser operating wavelength

longer than 2 μm, this was attempted to be demonstrated with holmium.
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The first chapter described the motivation of this study and a brief history of the

developments in the single-frequency fibre DFB lasers which included the laser

operating wavelength regions that have been covered and the current laser cavity

designs as well as the mask-technique used for fabricating the feedback gratings into

the core of the fibre.

The feedback mechanism and gain medium, that are essentials for the lasing in DFB

lasers, were described in Chapter 2. This covered the definitions of the reflectivity of

gratings, the effective length in which the signal circulated in the grating before

emerging from the front end, and the rate equations describing the gain medium of

the laser.

Chapter 3 presented an experimental investigation and theoretical analysis of the

anomalous linewidth behaviour of an Er3+-Yb3+ co-doped DFB fibre laser [3, 4]. It

was shown that not only does the laser linewidth deviate from the Schawlow-Townes

linewidth formula by increasing with pump and laser power but it also varied with

the pump configuration. The backward pumping scheme has the lowest threshold and

highest efficiency, while the dual-pumping scheme was the worst in these aspects. If

maximising efficiency and output power are the over-riding criteria, then backward

pumping is clearly the configuration to adopt. The measured 3-dB laser linewidth

showed that the lowest linewidth operation was actually obtained with the dual-

pumping configuration. This suggested that the designs aimed at maximising the

laser efficiency and output power may well impact its phase noise properties in

unexpected and undesired ways.

This excess laser linewidth cannot be explained by the environmental noise and

fundamental thermal noise floor. The dependence on the pump and output power

suggested that the variations in linewidth are a feature of the laser rather than simply

being due to environmental perturbations. External perturbation should only

contribute to a noise floor independent of pump power. With our pump powers of up

to 100 mW and more, the lasing wavelength was increased by ~20 pm for the given

pump power and this indicated a temperature increase of no more than 3 ºC. The

temperature in the fibre was confirmed with a numerical simulation of heat diffusion
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equations. The 3 ºC change incurred in the fibre over the entire laser operating range

would seem to be much too small to account for the observed increases in linewidth.

However, the thermal noise fluctuations in the laser do comprise a substantive

portion of the laser phase noise, particularly at the low operating powers. At higher

pump powers, the laser linewidth was insensitive to temperature over the range that

we were able to investigate.

The unusual behaviour of the laser linewidth was found to be caused by the

fundamental thermal noise at low pump power levels and temperature fluctuations

induced by pump intensity at higher powers [5, 6]. The low-frequency intensity noise

of the pump laser leads to fibre temperature fluctuations, which in turn lead to

refractive index fluctuations and, thus, to the laser frequency jitter. The pump power

fluctuation effect is configuration dependent. The difference between the model

calculation and the experimental results can be explained by fundamental thermal

noise in which a linewidth floor of ~15 kHz was observed.

The potential techniques to overcome these linewidth limitations were discussed.

One possible solution was to use a low noise pump which may not be the most cost-

effective solution. Another possibility is to use a material with a temperature-

insensitive refractive index (dn/dT ≈0), such as special tailored phosphate glasses

[10, 11]. The fundamental thermal noise associated with the linewidth floor can be

modified by the effective grating length (Leff) and it is scaled as effLf 1 .

Similarly, the fibre core radius can be enlarged to increase the mode volume and

hence decrease the thermal effects. Another technique is to operate the laser at low

power, at which the linewidth is much narrower, and subsequently amplify its output

power with a MOPA configuration.

Chapter 4 presented the performance of the non-standard and standard DFB laser

designs. The laser linewidths of κ~200 m-1, κ~150 m-1 and κ~100 m-1 and a step

apodised grating design as well as showing the laser wavelength shift were

measured. The linewidth was found to be configuration dependent. The laser

linewidth of κ~100 m-1 followed the Schawlow-Townes linewidth formula, but its
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magnitude was a few orders higher. However, the laser output power was the lowest

because of weak optical feedback. The laser efficiencies of κ~150 m-1 and κ~200 m-1

were similar. By increasing the Leff, the fundamental thermal noise contributing to the

laser linewidth at low pump level was reduced, as observed in the dual pumping

configuration with κ~150 m-1 and κ~200 m-1. The linewidth of κ~150 m-1 was lower

than κ~200 m-1 in the forward and backward pumping configurations. In the

backward pumping configuration, the linewidth was about the same at high output

power. We observed a decrease in the laser wavelength shift as κ reduced. This was

because the intensity distribution around the vicinity of the phase shift decreased as

the reflectivity of the grating reduced.

The 2 x π/2 phase shift DFB laser with phase shifts located at 5 mm and 10 mm apart

were used to show that the laser wavelength shift was not only due to the absorbed

pump power but also the signal intensity profile in the laser cavity [7]. We observed

a reduction in lasing wavelength shift as compared with the single phase shift design

for the similar laser efficiencies. We also observed a decrease in the laser linewidth

for the laser with the phase shifts 5 mm apart. However, the slope of the laser

wavelength shift change with the pump power was not in a quantitative agreement

with the linewidth reduction.

Chapter 5 reported the demonstration of an improved efficiency, thulium doped fibre

DFB, laser operating at 1836 nm. Our fibre DFB laser was 8-cm long, with a grating

strength (κL) of 9.6, and a π-phase shift located at the 44 % point of the total length

of the laser. This is the longest reported operating wavelength of a single-frequency

fibre DFB laser [8, 9]. The laser itself shows an output power of 5 mW having a

slope efficiency of 1% and, with the aid of a master-oscillator power amplifier

(MOPA), the power of the DFB fibre laser was amplified to 345 mW with an

amplifier length of 1 m. The laser was in-band pumped at 1565 nm, which was the

first reported Tm3+ doped fibre DFB laser with in-band pumping. Intracavity

pumping of the laser was also conducted with a Raman fibre laser, an output power

of 144 mW was observed. However, the laser output was unstable owing to the

unstable pump. Some of the possible applications of the laser, operated around 2 μm,

were discussed and we believe that this laser could be a practical source for
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spectroscopy, LIDAR, and medical applications because the lasing wavelength is in

the ‘eye-safe’ spectral region.

Chapter 6 described the development of a DFB fibre laser, operating at ~2.1 μm,

with Ho3+. The laser was pumped at 1119 nm by an Yb3+ fibre laser and at 1836 nm

by a Tm3+ DFB laser. However, with neither of the pump wavelengths was lasing

achieved in the DFB. This could be due to the low pump absorption available in a

length of 12-cm Ho3+ fibre. Then, a DBR fibre laser was constructed to increase the

pump absorption by using a much longer cavity length. The cavity lengths of 31 and

85 cm were used, but still no lasing was observed. This might be related to the high

concentration of the Ho3+ in the fibre that resulted in concentration quenching. Other

possible problems were due to the dominant nonradiative transition in the 2 μm

region and the large intrinsic losses of the silica fibre associated with the 2.1 μm

wavelength.

7.3 Future work

Initial moves towards the 2 μm spectral region have followed a number of important

applications in medicine, spectroscopy, and LIDAR. The characteristics of the DFB

fibre lasers, such as narrow linewidth, wavelength stability and tunability, are

believed to be a viable source for these applications. However, in order for the DFB

fibre lasers to be a practical device in medical applications, the laser power needs to

be in a few watts regime. This can be solved by using a MOPA configuration in

which the DFB fibre laser acts as a seed for the amplifier. Currently, the fibre optic

communication networks are operated in the 1550 nm region which is constrained by

the gain band of Er3+. Er3+-doped fibre amplifiers are frequently used to amplify the

signal so as to increase the transmission distance and as a result the wavebands are

limited to 1530 – 1570 nm, i.e. the gain band of Er3+. The technology is now

relatively mature, but the demanding is still increasing, therefore it might be a need

for expanding the operating region to 2 μm spectral region. Perhaps, the emission

spectral of Tm and Ho in the 2 μm could open up a new window for optical

telecommunication networks.
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However, the Ho3+-doped DFB laser developed is needed to improve through

optimise the amount of Ho3+ concentration, co-doped with a sensitizer material such

as Yb or Tm, and photosensitivity of the fibre. The concentration of holmium in the

reported fibre lasers was below 2000 ppm as, for our holmium concentration of

12000 ppm in an aluminosilicate glass host, there could be a possibility of the

concentration quenching effect due to limited amount of aluminium to even out the

distribution of the dopants by increasing dopant solubility. Co-doping Ho with

sensitizer has shown an improvement in laser efficiency. Perhaps, to increase the

photosensitivity of the fibre by co-doping with Sb.

So far, the gain of the DFB lasers demonstrated has been based on rare-earth ions in

which the operating wavelength was dependent on the ions’ transitions. The DFB

lasers in the spectral region of 1.08 µm have been demonstrated with Yb3+ and Nd3+

as the gain medium. In the wavelength region of 1.5 µm, the gain medium used is

Er3+ ions. Lasers operating in the 2 µm region have been demonstrated with Tm3+

and Ho3+. The fibre DFB Raman laser has been proposed by Perlin and Winful [12],

in which the gain mechanism of the laser is provided by stimulated Raman scattering

(SRS). In the stimulated Raman scattering, light is scattered by optical vibration

modes (optical phonons) of the material, resulting in frequency down-shifted Stokes

light. With this scattering process, a laser wavelength should be possible from 1 to 2

µm which is not limited by the rare-earth ions’ transition. The proposed Raman DFB

fibre laser was about 1-m long owing to the fact that the gain provided by SRS is

small as compared with the rare-earth dopant. The Raman gain coefficient of a

standard single-mode fibre is ~ 10-13 m/W. However, the Raman gain bandwidth is

quite broad, ~7 THz, which is 1000 times broader than the grating bandwidth of

κ~100m-1, so the Bragg grating interaction with the Raman gain can be considered

constant. The characteristics of this laser include a flat intensity distribution inside

the cavity and a lasing frequency linearly dependent on pump power.
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