
Annals of Operations Research
https://doi.org/10.1007/s10479-023-05326-1

ORIG INAL RESEARCH

Deep learning and hyperparameter optimization
for assessing one’s eligibility for a subcutaneous implantable
cardioverter-defibrillator

Anthony J. Dunn1 · Stefano Coniglio2 ·Mohamed ElRefai3 · Paul R. Roberts3 ·
Benedict M. Wiles4,5 · Alain B. Zemkoho6

Accepted: 17 March 2023
© The Author(s) 2023

Abstract
It is standard cardiology practice for patients suffering from ventricular arrhythmias (the
main cause of sudden cardiac death) belonging to high risk populations to be treated via
the implantation of Subcutaneous Implantable cardioverter-defibrillators (S-ICDs). S-ICDs
carry a risk of so-called Twave over sensing (TWOS), which can lead to inappropriate shocks
that carry an inherent health risk. For this reason, according to current practice patients’
Electrocardiograms (ECGs) are manually screened by a cardiologist over 10 s to assess the
T:R ratio—the ratio between the amplitudes of the T and R waves which is used as a marker
for the likelihood of TWOS—with a plastic template. Unfortunately, the temporal variability
of a patient’ T:R ratio can render such a screening procedure, which relies on an inevitably
short ECG segment due to its manual nature, unreliable. In this paper, we propose and

B Stefano Coniglio
stefano.coniglio@unibg.it

Anthony J. Dunn
anthonydunn@das-ltd.co.uk

Mohamed ElRefai
mohammed.elrefai@uhs.nhs.uk

Paul R. Roberts
paul.roberts@uhs.nhs.uk

Benedict M. Wiles
ben.wiles@doctors.org.uk

Alain B. Zemkoho
a.b.zemkoho@soton.ac.uk

1 Decision Analysis Services Ltd, Grove House, Basingstoke RG24 8AG, UK

2 Department of Economics, University of Bergamo, Via Dei Caniana 2, 24127 Bergamo, Italy

3 University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK

4 Aberdeen Royal Infirmary, Foresterhill, Aberdeen AB25 2ZN, UK

5 Institute of Medical Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK

6 School of Mathematical Sciences, University of Southampton, University Road, Southampton SO17
1BJ, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-023-05326-1&domain=pdf
http://orcid.org/0000-0001-9568-4385
http://orcid.org/0000-0002-1226-5335


Annals of Operations Research

investigate a tool based on deep learning for the automatic prediction of the T:R ratios from
multiple 10-second segments of ECG recordings capable of carrying out a 24-hour automated
screening. Thanks to the significantly increased screening window, such a screening would
provide farmore reliable T:R ratio predictions than the currently utilized 10-second, template-
based, manual screening is capable of. Our tool is the first, to the best of our knowledge,
to fully automate such an otherwise manual and potentially inaccurate procedure. From a
methodological perspective, we evaluate different deep learning model architectures for our
tool, assess a range of stochastic-gradient-descent-based optimization methods for training
their underlying deep-learning model, perform hyperparameter tuning, and create ensembles
of the best performing models in order to identify which combination leads to the best
performance. We find that the resulting model, which has been integrated into a prototypical
tool for use by clinicians, is able to predict T:R ratios with very high accuracy. Thanks to
this, our automated T:R ratio detection tool will enable clinicians to provide a completely
automated assessment of whether a patient is eligible for S-ICD implantation which is more
reliable than current practice thanks to adopting a significantly longer ECG screeningwindow
which better and more accurately captures the behavior of the patient’s T:R ratio than the
current manual practice.

Keywords Deep learning · Machine learning · Optimization · Subcutaneous implantable
cardioverter defibrillators

1 Introduction

Sudden Cardiac Death (SCD) is one of the main causes of death worldwide. Most inci-
dences of SCD can be attributed to ventricular arrhythmias (Adabag et al., 2010). For patients
belonging to high risk populations, it is highly recommended that Implantable Cardioverter-
Defibrillators (ICDs) be used for preventing ventricular arrhythmias from triggering an SCD
(Kusumoto et al., 2018; Priori et al., 2015). S-ICDs are comprised of a can and of a subcu-
taneous lead1 (shown in Fig. 1a), which can deliver a shock to treat episodes of ventricular
arrhythmias.While S-ICDs have been proven to have equally effective sensing capabilities as
other forms of ICD (Boersma et al., 2017), S-ICDs entirely avoid the classical complications
other ICDs suffer from by utilizing a totally avascular approach (Knops et al., 2020). Unfortu-
nately, themethod that is currently used by S-ICDs to detect ventricular arrhythmias is known
to be vulnerable to TWave Over Sensing (TWOS) (van Rees et al., 2011). If the amplitude of
the T and R waves are similar (Fig. 1b shows a diagram of the PQRST complex—the ECG
(Electrocardiogram) of a single heartbeat—comprised of 5 main waveforms, i.e., the P, Q,
R, S, and T waves), the T wave can be misinterpreted as a second R wave and this apparent
doubling in heart rate can be incorrectly identified by the S-ICD as an episode of ventricular
arrhythmia. Such an error can cause the S-ICD to deliver an inappropriate shock, leading to
increased morbidity and mortality (van Rees et al., 2011).

According to current practice, patients are screened before S-ICD implantation by ana-
lyzing short, non-invasive, three-lead, surface ECGs to assess their risk of TWOS. This ECG
recording spans several PQRST complexes and, for its recording, the electrodes are placed in
the locations that the sensing electrodes of an S-ICD would occupy. The T:R ratio (the ratio

1 Using a single lead, the S-ICD is able to record the ECG signals on 3 vectors—see Fig.1a. When using
a Holter ECG recording to assess the patients’ S-ICD implantation eligibility, numerous leads are used. We
refer to a single lead of a Holter recording as the ECG recording for a single vector.

123



Annals of Operations Research

Fig. 1 a An S-ICD with the underlying human anatomy showing the can (pulse generator), the sensing
electrodes (Pr and D) and the vectors between them. bDiagram of a single PQRST complex, comprised of the
P, Q, R, S, and T waves. The figure also labels the QRS complex (a section of the PQRST complex featuring
the Q, R, and S waves only). © Boston Scientific Corporation or its affiliates. Reproduced with permission

between the T wave’s and the R wave’s respective amplitudes) is used to predict a patient’s
S-ICD implantation eligibility. Patients with high T:R ratios are deemed to have an increased
risk of TWOS and, as such, are not eligible for S-ICD implantation. It is current practice
to measure the T:R ratio by locating a plastic template (designed to fit PQRST complexes
with acceptably low T:R ratios (below 1/3) completely within its boundary) over the PQRST
complexes within a recording of the patient’s ECG. The patient passes the screening if the
T:R ratio of at least one lead is suitably low. Despite this screening process, most of the
inappropriate shocks that take place in patients implanted with S-ICDs are still caused by
TWOS (Knops et al., 2020).

Crucially, the T:R ratio of a patient can vary over time due to frequent temporal variations
in the R and T waves’ respective amplitudes due to multiple factors such as a variation in
electrolyte levels (Madias et al., 2001; Madias, 2005; Fosbøl et al., 2008; Assanelli et al.,
2013). In patients implanted with S-ICDs, these variations commonly go unnoticed as so-
called silent TWOS episodes. As such, they carry a considerably high risk for a patient to
be subjected to inappropriate shocks. The ECG recording currently used for the screening
process has a short duration of roughly 10s and, as such, it does not allow for taking the
variability of the T:R ratio over an extended period into consideration. It follows that a patient
whose T:R ratio is usually low could fail the screening and a patient whose T:R ratio is usually
high could pass it.

In this paper, we outline a methodology for constructing models capable of accurately
and reliably predicting the T:R ratio of multiple given 10-second, single-lead ECG recording.
Thus, a three-lead, 24-hour ECG recording can then be broken into its constituent 10-second,
single-lead ECG signals which can then be passed to our model to output a predicted T:R
ratio for each ECG signal. This process would enable 24-hour automated screening, which,
thanks to its significantly increased screening window, would provide far superior insight
into the normal variations in the patient’s T:R ratio as well as a greater level of detail and
reliability than the currently utilized 10-second screening is capable of.

The paper is organized as follows. In Sect. 2, we provide an overview of previous works
that are related to ours. In Sect. 3, we first introduce our methodology and the preprocessing
techniques we use to de-noise the ECG signals. We then detail the structure of the deep
learning layers we use and the architectures of the deep learning models we propose for the

123



Annals of Operations Research

T:R ratio prediction task. We then outline the way our models are evaluated, the way we
build ensemble models, and the way hyperparameter tuning is carried out (which is key to
the performances we achieve). In Sect. 4, we assess the accuracy of our models by selecting
the best training algorithm, tune the corresponding hyperparameters, and create ensemble
models. In Sect. 5, we demonstrate how our best-performing models can be incorporated into
a clinical screening process for predicting the T:R ratio for a time much longer than what the
current (manual) practice allows for.

2 Related works

To the best of our knowledge, the problem of predicting T:R ratios from ECG signals has
not yet been explored in the literature. The only works on such a topic are the preliminary
work we (the authors of this paper) published in (Dunn et al., 2021) (which has a strong
clinical focus and lacks the more advanced machine-learning developments we outline here)
and three other papers we published on the clinical aspects of applying our tool within a
clinical environment (ElRefai et al., 2022a, b, c, 2023). In particular, due to our work being
the first to automatize an otherwise manual procedure, it is not possible to compare it to any
previously-established state of the art.

The developments from our preliminary work to this paper are significant. Firstly, we
present a detailed methodology, providing details on how we construct and train our deep
neural networks. Secondly, in this work we perform a much more extensive, reliable and
detailed set of experiments to determine the best network architecture. Finally, we conduct
numerous additional experiments to select the best optimisation algorithm to use for model
training, and also tune the model’s hyperparameters (many details of these methods and algo-
rithms are provided in our methodology Sect. 3). Beyond the methodological contributions,
we find that the clinical tool resulting from the neural network models we developed is able
to predict T:R ratios from ECG signals with a much greater accuracy than in our previous
works.

The tool we propose is based on deep learning and, in particular, on Convolutional Neural
Networks (CNNs). In ECG analysis, CNNs have been used for classifying atrial fibrillation
(Fan et al., 2018; Pourbabaee et al., 2018), heart attacks (Liu et al., 2017) and other arrhythmias
(Kiranyaz et al., 2015; Zhang et al., 2020; Sangaiah et al., 2020; Lih et al., 2020), as well
as for predicting blood pressure (Miao et al., 2020). Differently from these works where the
multi-lead ECG is used as input for the CNN, in our model we include the additional step of
transforming the 1-dimensional ECG signal of each lead into a 2-dimensional phase-space
reconstruction (PSR) image which is then fed as input to the CNN. PSR images are typically
used for computer vision tasks which learn to extract relevant features from them but, to the
best of our knowledge, have never been used as input to a CNN. As a second element of
novelty and differently from most of the literature where CNNs are used for classification
(see Babu et al., 2016 for an exception), in this work we use them to perform a regression
task.

In the literature, machine learning methods have been typically used to classify various
Cardiovascular Diseases (CVDs) from ECG data (Vemishetty et al., 2019, 2016; Rocha et
al., 2008; Roberts et al., 2001; Zhang et al., 2020; Pourbabaee et al., 2018; Kiranyaz et al.,
2015; Fan et al., 2018; Lih et al., 2020). Machine learning has also been used for analyzing
ECGs to detect heart attacks and seizures (Lee et al., 2014; Liu et al., 2017) as well as to
predict patients’ blood pressure (Miao et al., 2020). Brain computer interfaces (BCI) have been

123



Annals of Operations Research

Fig. 2 Flowchart of our proposed methodology

created using brain ECG analysis for detecting which body part was being used to complete
a task (Djemal et al., 2016; Chen et al., 2014). The creation of PSR images from ECG data is a
commonly employed technique in ECG analysis. Manual approaches for extracting features
from the PSR matrices (using box counting or calculating column and row statistics) have
been used for, e.g., predicting CVD (Vemishetty et al., 2016, 2019; Rocha et al., 2008;
Roberts et al., 2001), creating BCIs (Chen et al., 2014; Djemal et al., 2016) and detecting
facial expressions Dawid (2019). Differently from such works, in this paper we input the
entirety of the PSR matrix to a (deep learning) model which, during its training, learns to
extract relevant features. We are not aware of another work where the entire PSR image is
used in such a way.

3 Methodology

Predicting T:R ratios by locating T and R waves, measuring their peaks and calculating
the T:R ratio (manually, with a plastic template) is vulnerable to TWOS when the T wave
and R wave have similar characteristics. In this section, we propose a method for building
deep learning models which are able to predict the T:R ratio of a single-lead ECG segments
without explicitly detecting R and T peaks, which could then be used for 24-hour automated
screening. A flowchat giving an overview of our methodology can be found in Fig. 2.

3.1 ECG signal preprocessing

Before using the ECG data as input to our deep learning models, we preprocess it to calculate
the T:R ratios, filter out noise from the ECG signal and generate PSR images. This process,
outlined in Fig. 3 (Lugovaya, 2005), is explained in this section.2

2 The preprocessing techniques we use in this paper to derive PSR images from 10-second single-lead ECG
segments were first illustrated in our preliminary work on the clinical impact of this type of tool (Dunn et al.,
2021). For the sake of completeness, we briefly overview these methods here.

123



Annals of Operations Research

Fig. 3 Flowchart providing an overview of the preprocessing method

The data used in this paper consists of 10-second three-lead ECG signals collected from
a Holter recording. The vectors used by the leads in this recording are the same vectors that
are used by the S-ICD. These three-lead ECG recordings are then broken into three single-
lead ECG signals. We denote each 10-second segment with sampling frequency f by the
vector (x1, . . . , x10 f ). Each such segment is manually annotated with the positions of the T
wave peaks at indexes {T1, . . . , Tn} and R wave peaks at indexes {R1, . . . , Rn}. Using these
annotations, we calculate the average T:R ratio (the dependent variable) as

∑n
i=1 xTi∑n
i=1 xRi

.

This quantity is negative when the T wave has negative amplitude. While, in clinical use,
positive and negative T:R ratios are considered as equivalent and, thus, only the magnitude
of the T:R ratio is used, when analyzing the single lead ECG signals we note that positive or
negative T waves are significantly different. Therefore, when building models for predicting
T:R ratios of single-lead ECG signals, we retain the T:R ratio’s sign (i.e., its positivity or
negativity).

The 10-second, single-lead segments of ECG signal are filtered to remove various forms of
noise. Firstly, a one-dimensional Discrete Wavelet Transformation (DWT) is used to correct
the baseline drift. We then create a 9 level decomposition of the ECG signal using the
Daubechies 8 (db8) wavelet. The level 9 coefficients are used to reconstruct the unstable
baseline of the ECG signal which is then subtracted from the original signal. The resulting
signal has a stable baseline of 0. Secondly, the 50Hz power-line noise is suppressed using
bandstop filtering. Finally, any remaining high frequency noise is suppressed using a lowpass
filter. Figure4a show an ECG segment with a significant baseline drift before any filtering.
Figure4b shows the same segment after filtering has been applied.

TWOS is particularly likely to occur in PQRST complexes with small Rwaves. To address
this, the standard algorithm employed within S-ICDs will search the QRS complex (shown
in Fig. 1a) for negative Q or S waves with greater amplitude than that of the R wave. Provided
that the amplitude of the largest wave in the QRS complex is significantly larger than that of
the Twave, the S-ICDwill not deliver a shock. For this reason, we are not strictly interested in
predicting the T:R ratio but, rather, the ratio between the amplitudes of the wave of greatest
amplitude in the QRS complex and the T wave. To account for this in our analysis, after
filtering (including baseline drift correction), we search for the peak of greatest magnitude
within a narrow region surrounding each R peak label. For simplicity, in the rare case that
the largest peak found is not the R peak, these new peaks are assigned as the new R peak
despite, in fact, being a Q or an S wave. As R waves are always positive, to ensure that all
signals handed to our models have a positive wave labeled as the R wave, when the R peak
label is moved to a Q or an S wave, the whole ECG signal is flipped, making these waves
positive. Figure4c gives an example of an ECG segment (which has had filtering applied)
with a very small R wave and a large negative wave in the QRS complex. Figure4d shows
the same segment with its reassigned R peaks after negative QRS flipping.

The one-dimensional time series x1, x2, . . . , xn representing the filtered and potentially
flipped single ECG signal of a single lead is then transformed to a two-dimensional Phase

123



Annals of Operations Research

Fig. 4 a The first 5 s of an unfiltered 10-second ECG segment showing significant baseline drift with R peaks
in red and T peaks in blue. b The signal shown in Fig. 4a post-filtering. c The first 5 s of a 10second ECG
segment with very small R wave but a large negative wave in the QRS complex with R peaks in red and T
peaks in blue. d The signal shown in Fig. 4c after flipping and relabeling. eA 32×32 pixel PSR image created
from 10 seconds of single-lead ECG signal. f The PSR image shown in Fig. 4e darkened for readability

Space Reconstruction (PSR) image. While high-dimension PSR transformations have been
used in the field of BCI (Chen et al., 2014; Djemal et al., 2016), two-dimensional PSR
transformations are more commonly used in the literature on ECG analysis (Rocha et al.,
2008; Krishnan et al., 2007; Vemishetty et al., 2019; Roberts et al., 2001). The transformed
time-series is given as

B =

⎡

⎢
⎢
⎢
⎢
⎣

1
q x1

1
q x1+τ

1
q x2

1
q x2+τ

...
...

1
q xn−τ

1
q xn

⎤

⎥
⎥
⎥
⎥
⎦

,

where q = max {|xi | : i = 1, . . . , n} and each scaled point 1
q xi in the time-series signal is

mapped to a phase space vector comprised of the original scaled point and the scaled point τ

readings before it
[
( 1q xi−τ ,

1
q xi )

]
. The phase space plot (the plot of all phase space vectors

in R2, ranging from −1 to +1 on each axis) is divided into N 2 squares which we denote by
gi j for all i, j ∈ {1, . . . , N }, of size 2

N × 2
N , with N ∈ Z

+. C is the phase space matrix with
dimension N × N and is constructed in such a way that, for each i, j ∈ N , the entry ci j
is equal to the number of phase space vectors in B that fall within the square area gi j . We
construct P by normalizing C such that, for each i, j ∈ N , the element pi j corresponds to
the proportion of all of the phase points which fall within gi j . We calculate P as follows:

123



Annals of Operations Research

P = 1

M
C, M =

N∑

i=1

N∑

j=1

ci j . (1)

At this point, the typical approach in the literature is to extract features from the PSR images
to be used as inputs to numerical models that are used for classifying ECG signals into
categories (Vemishetty et al., 2019; Krishnan et al., 2007; Rocha et al., 2008). Differently, in
this paper we consider these matrices as N ×N (with N = 32) pixel images and rely on deep
learning architectures typically used for computer vision to autonomously perform feature
selection. Figure4e gives an example of one of the PSR images. Figure4f shows the same
PSR image darkened for readability.

3.2 Neural network layers

Here, we briefly overview the 5 types of layer that we use within the architectures of our
neural networks (presented in the next subsection).

A dense layer consists of a number of neurons, each of which is connected to all the
neurons in the previous layer. For each neuron of index i , the neuron’s outputs zi is given by

zi = bi + x � wi ,

where b is a vector containing a bias for each neuron in the layer, wi is a vector of weights
for the i th neuron containing a weight associated to each element in the input and � is the
Hadamard product.

Next, we consider convolutional layers. In a standard convolutional layer, 3-dimensional
filters, also referred to as kernels, are applied to the input at regular intervals (the size of these
intervals is referred to as the stride) to transform it into a 3-dimensional output comprised of
a number of 2-dimensional feature maps. Let k be the index of a feature map. The output for a
neuron in row i and column j of the featuremap k in a convolutional layer with 3-dimensional
input x is given by

zi jk = bk +
fh−1∑

u=0

fw−1∑

v=0

fn′−1∑

k′=0

xi ′ j ′k′ wuvk′k with

{
i ′ = i sh + u

j ′ = j sw + v,

where sh and sw are, respectively, the vertical and horizontal strides, fh , fw and fn′ are the
height, width and depth of this layer’s filters (where fn′ is equal to the number of feature
maps in the previous layer), bk is the bias applied to the feature map k and wk is the matrix
of weights defining the 3-dimensional filter used to generate the k-th feature map. Hence,
wuvk′k is the weight in row u and column v of the two dimensional slice of the filter which
connects to feature map k′ of the input. For a detailed introduction to CNNs, we refer the
reader to (Wu, 2017).

We also consider batchnorm layers. Batch normalization, or batchnorm, is a tool for repa-
rameterizing neural networks to significantly speed up training and reduce generalization
error, allowing us to forgo the use of dropout (the process by which neurons are randomly
turned on and off during training) (Goodfellow et al., 2016). For regularizing CNNs, batch-
norm has been shown to perform better than dropout (Garbin et al., 2020). It can be applied
to any layer and normalizes the distribution across the minibatch for each output in a layer,
thus ensuring that throughout training the inputs to the following layer always have the
same distribution (Garbin et al., 2020). Batchnorm is applied within its own layer. The mini-
batch outputs z = (z(1), . . . , z(m

B )) of a batch normalization layer with minibatch inputs

123



Annals of Operations Research

X = (X (1), . . . , X (mB )) are given by

μB = 1

mB

mB
∑

n=1

X (n)

σB � σB = 1

mB

mB∑

n=1

(
X (n) − μB

)
�

(
X (n) − μB

)

X̂ (n) =
(
X (n) − μB

)
�

(
σ B + ε

)

z(n) = γ � X̂ (n) + β,

where mB is the size of the minibatch and X (n) is the matrix containing the output from
the previous layer for the n-th data point in the minibatch. The outputs z(n), the minibatch
mean μB , the standard deviation σB and the scaling and shifting parameters γ and β are all
matrices with the same shape as the input X (n). The learnable parameters in this layer are
the vectors γ and β. The Hadamard product � and Hadamard division � (also referred to
as element-wise product and division, respectively), are used in these calculations. We apply
the activation function in its own layer, after batchnorm is performed (as was done in the
paper by Ioffe & Szegedy, 2015 where batchnorm is introduced).

In our activation layers, we use the generally recommended activation function rectified
linear unit or ReLU (Nair & Hinton, 2010; Glorot et al., 2011) given by

R(z) = max(0, z).

This function is applied element wise to the output of the layer preceding it.
The last layer we consider is a skip connection layer. Addition skip connections as utilized

in ResNet (He et al., 2016) are used within our deep CNNs, whereby the output of one layer
is added to the input of a layer located significantly deeper into the network. Models with
skip connections have a smoother loss surface (Balduzzi et al., 2017; Li et al., 2017), which
makes optimizing the model parameters easier and thus speeds up training.

3.3 Model architectures

We now discuss the architectures of the deep learning models we use to predict T:R ratios
from 32 × 32 pixel PSR images.

Each model consists of N feature-extraction blocks feeding into a regression block. Fig-
ure5 shows this general structure. Following preliminary experiments (Dunn et al., 2021)
where a wide range of model architectures were accessed, we found two model architectures
to provide a good level of accuracy: the MLP5 and Complex CNN5 models. Their names
refer to the fact that, in these models, the regression block is preceded by 5 Multi Layer
Perception (MLP) feature extraction blocks or by 5 Complex Convolutional Neural Network
(Complex CNN) feature extraction blocks, respectively.

Let us first consider theMLP5model shown in Fig. 6. Each of the 5MLP feature extraction
blocks has a dense layer of 1024 neurons, a batchnorm layer and, then, an activation layer.
These layers extract abstract features from the PSR images and pass them on to the regression
block. Before being used as input into the first 1-dimensional (1D) dense layer, the 32 × 32
pixel PSR images are flattened into a 1D vector. The regression block derives the T:R ratio
from the features’ output from the final feature extraction block. It also utilizes two dense
layers containing 256 and 64 neurons, each followed by batchnorm and activation layers

123



Annals of Operations Research

Fig. 5 The general structure of a model which takes PSR images representing 10-second ECG segments as
input and outputs predicted T:R ratios

Fig. 6 A diagram of the MLP5 model, consisting of 5 MLP feature extraction blocks and the regression block.
The batchnorm and activation layers are not represented. The neurons in the flattened input, feature extraction
blocks and regression block are labeled i , e and r , respectively. Their superscript denotes which layer they
belong to, while the subscript refers to their position in that layer

before a final fully connected layer with a single neuron which generates the predicted T:R
ratio. Further details on the structure of theMLP5 feature extraction blocks and the regression
block are given in Tables 1 and 2 in the Appendix.

Let us now focus on the Complex CNN5 model, in which five Complex CNN feature
extraction blocks are used to extract features from the PSR image which are then flattened
and passed to the regression block. The convolutional layers used within this model aim
to exploit the multi-dimensional nature of the PSR image inputs. As convolutional layers
take three-dimensional (3D) inputs, the original PSR images are considered to have shape
32×32×1. Figure7 shows the first feature extraction block of theComplexCNN5model. The
Complex CNN feature extraction block contains two convolutional layers (each followed by
batchnorm and activation layers) with relatively small kernels which feed into a convolutional
layer with stride 2 and a larger kernel (followed by batchnorm and activation layers). The
first two convolutional layers extract features from the PSR images, while the third reduces
the size of the feature maps and increases their number. While pooling layers are typically
used to decrease the size of the feature maps, using a convolutional layer to do this allows
an additional opportunity to extract more complex features from the outputs of the previous
layers. Addition skip connections are also included, which add the input of the block to the
output of the first two convolutional layers, speeding up training.3 Each subsequent Complex
CNN feature extraction block has twice as many feature maps as its predecessor had and the
height and width of these feature maps are half the size of those in the previous Complex
CNN feature extraction block. The extracted features’ output by the 5th block are flattened
and then input into the regression block. Because of this halving in height and width of the
feature maps, the kernel size of the convolutional layers must also decrease. Details on the
exact structure of the Complex CNN feature extraction blocks can be found in Table 3 in the
Appendix.

3 In preliminary experiments (Dunn et al., 2021) a more basic CNN feature extraction block with a single
convolutional layer, no skip connection and a pooling layer for dimensionality reduction was evaluated and
found to predict T:R ratios with far inferior accuracy.

123



Annals of Operations Research

Fig. 7 A diagram of the first feature extraction block of the Complex CNN5 model. The batchnorm and
activation layers are not represented

Fig. 8 Part A gives an overview of how training and testing sets are iteratively sampled within a single 10-fold
CV. Part B illustrates howwithin each round of a single 10-fold CV, having reserved a testing set, 5 sub-models
are trainedwith different training and validation sets and their predictions for the testing set are averaged giving
the ensemble model’s prediction. If we consider an ensemble model with only one sub-model, this becomes
exactly the same as the 10-fold CV process for training non-ensemble models, which we described in Sect. 3.4

3.4 Model evaluation

For each model architecture, we perform 10 rounds of 10-Fold CV. For each round of 10-fold
CV, the data is shuffled before being split into 10 equally sized folds. Then, at each iteration
of the 10-fold CV one fold is reserved as the testing set. A randomly sampled 20% of the
remaining 9 folds is used to form the validation set which is used to prevent overfitting while
training. The other 80% of the non-testing data is used as training set. Figure8 illustrates our
10-fold CV process as well as the training of an ensemble model (see the next subsection for
the introduction of ensemble models).

In this paper, our models are trained for at most 1000 epochs, employing early stopping
(Prechelt, 1998) for regularization in model training. It is often observed during training that
both the training and validation errors initially decrease and, at some point, the validation
error begins to increase while the training error continues to decrease. The error on the
validation set serves as a proxy for the generalization error which is used to determine when
overfitting has begun. Therefore, in order to achieve the lowest possible validation error, we
reset the model parameters to their values before overfitting began and the validation error
started increasing. This means that we continue training our model until the validation error
has not improved for a given number of epochs (referred to as the patience of the optimization
algorithm) instead of continuing to train until we reach a local minimum of the training error
(Bengio et al., 2017). In all of our experiments, we use a patience of 200 epochs.

While, during the training of our models, we look to minimize the Mean Squared Error
(MSE), when we come to evaluate their performance in predicting T:R ratios of the testing
PSR images there are additional metrics which we are interested in. In particular, we record

123



Annals of Operations Research

the training time for each model as, should two models give comparable accuracy, the one
with a shorter training time is preferable as it would be less computationally expensive to
retrain it if and when new data became available. Similarly, we record the number of epochs
the model trained for before early stopping took place. The average prediction time, i.e., the
average amount of time taken for the model to predict each testing PSR image’s T:R ratio, is
also recorded. A lower average prediction time indicates that predicting T:R ratios in real time
would be less computationally expensive and, therefore, the model would be more suitable
for incorporation into a device with limited computational resources. It is worth noting here
that we only compare the average prediction time of models with different architectures as,
after training, the average prediction time for models with the same architecture should be
consistent. We assess the accuracy of the models’ predictions of the T:R ratios of the testing
PSR images using Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),
defined by

RMSE =
√∑n

i=1(yi − ŷi )2

n

MAE =
∑n

i=1|yi − ŷi |
n

, (2)

where, for each i ∈ {1, . . . , n}, yi is the true T:R ratio, ŷi is the predicted T:R ratio, and
n is the number of PSR images. RMSE, while similar to its squared counterpart the Mean
Squared Error (MSE), does not see such a broad distribution of errors and, thus, lends itself
to a graphical comparison of errors over multiple rounds of CV. MAE is the most intuitive
of these errors and, therefore, it is important when discussing the impact of the prediction of
a model.

3.5 Ensemblemodels

As a final inclusion to improve the performance of our models, we construct and evaluate
ensemble models.

Within each round of CV after the testing set has been excluded, the remaining data is split
into 5 non-overlapping folds. 5 sub-models are then trained, each using one of these 5 folds as
a validation set and the remaining 4 as a training set. The predictions of the ensemble models
for the testing set are calculated by taking the average of the predictions of the sub-models.
This is illustrated in Fig. 8.

By creating an ensemble model, we ensure that each data point which is not used for
testing will be used for training by all but one of the sub-models. In contrast, when training
a single model, the data points in the validation set are never used for training.

Having determined the best model architecture, the best training algorithm and the best
hyperparameter selection, we will construct and evaluate an ensemble model at each iteration
of the 10 rounds of 10-fold CV.

4 Experiments

In this section, we compare the use of various optimization techniques to fine tune our models
for accurately predicting T:R ratios of S-ICD implantation candidates.

123



Annals of Operations Research

4.1 Data sets

To train and evaluate our models, we rely on the Southampton General Hospital ECG (SGH-
ECG) data set, which was collected by our partners at the Southampton General Hospital for
our preliminary study (Dunn et al., 2021). To construct the SGH-ECG data set, we randomly
sampled 10-second ECG segments from 24-hour ECG recordings. A total of 390 segments
(sampled at 500 Hz with annotated R and T peaks) were collected. These 24-hour record-
ings were originally collected for the clinical research study HEART TWO.4 The dataset
comprises a total of 18 patients with an equal number of males and females of a mean age
of 53.16 years. 4 of them (22.22%) displayed a structurally-normal heart, 3 (16.67%) an
adult congenital heart disease, 3 (16.67%) a hypertrophic cardiomyopathy, and 8 (44.44%) a
congestive hart failure. Each of the 10-second ECG segments was used to generate a 32×32
pixel PSR image as well as its corresponding T:R ratio using the preprocessing techniques
detailed in Sect. 3.1.

Due to the relatively small size of our data set, at each round of CV we combine the
training data with 310 32 × 32 pixel PSR images with associated T:R ratios derived from
the open source ECG Identification (ECG-ID) Database (Lugovaya, 2005), containing 10-
second ECG segments with a sampling rate of 500Hz, with R and T peak annotations. In this
dataset, 44 and 46 of the participants were, respectively, male and female and the patients’
age ranged from 13 to 75. We do not add this data to the testing and validation sets as we are
only interested in evaluating the performance of our models for patients with specific heart
conditions which the participants of the ECG-ID study did not have. We remark that, as the
SGH-ECG dataset contains patients with structurally normal hearts, there is no additional
value to be gained in assessing our models on the ECG-ID dataset. Additionally, we have a
higher level of confidence in the quality of the SGH-ECG dataset and, as such, this is the
only data set we will use in the remainder of the paper to measure the performance of the
models we consider.

4.2 Training algorithms

In all of our experiments, training is carried out via minibatch Stochastic Gradient Descent
(minibatch SGD), a variant of gradient descent that makes use of the fact that the average
gradient on a minibatch of m randomly sampled data points is an unbiased estimator of the
gradient on all the data points. Let X and Y be the sets of observations and labels and, for all
i = 1, . . . , |X |, let (xi , yi ) be an observation-label pair. The formulas by which minibatch
SGD calculates the unbiased estimate ĝ of the gradient g and uses it to update the model
parameters θ at each step are ĝ := 1

m

∑
xi∈X̄ ∇θ L( f (xi ; θ), yi ) and θ := θ − ε ĝ, where

X̄ ⊆ X is the set of m data points in the minibatch and f (xi ) is the output of the model with
xi given as input. Training is carried out for a number of epochs. An epoch is comprised of a
number of descent steps such that the gradient is calculated on each data point in the training
set at least once.

A popular inclusion to the minibatch SGD algorithm is momentum (a technique designed
to leverage the fact that,when thegradient is small but consistent acrossmultiple descent steps,
we can afford to take larger steps in that direction, thus achieving an accelerating learning
Bishop, 1995). In cases where the gradient is small, SGD can exhibit a slow convergence.

4 This study was performed with favorable opinion from the REC (17/SC/0623) and with R&D (RHM-
CAR0528) approval. This study was conducted in accordance with the Research Governance Framework for
Health and Social Care (2005), Good Clinical Practice and their relevant updates.

123



Annals of Operations Research

When implementing the classical momentum method (Polyak, 1964), at each descent step
an exponentially decaying history of the previous descent steps is added to the product of
the gradient of the loss function and the learning rate. In this paper, we implement Nesterov
momentum, a variant of momentum wherein, rather than calculating the gradient using the
current value of the model parameters θ , the gradient is calculated using the parameters after
the momentum has been applied (Sutskever et al., 2013).

We consider 3 SGD variants with an adaptive learning rate in which the learning rate is
scaled for each individualmodel parameter:AdaGrad (where the learning rates corresponding
to eachmodel parameter are scaled by the inverse of the sum of the squared partial derivatives
over all training iterations Duchi et al., 2011), RMSprop (an adaptation of AdaGrad designed
to converge more effectively in non-convex optimization problems—such as the training of
multi-layer neural networks—by diminishing the learning rate proportionally to the inverse
of an exponentially decaying window of squared gradients) and ADAM (Kingma & Ba
2014) (in which an exponentially decaying history is kept of both the first and second order
moments of the gradient). The formulas by which ADAM updates the model parameters
θ at each iteration are s := ρ1r + (1 − ρ1)g, ŝ := s

1−p1 t
, r := ρ2r + (1 − ρ2)g � g,

r̂ := r
1−p2 t

, 	θ := −ε ŝ
δ+√

r̂
, and θ := θ + 	θ , where t is the number of descent steps that

the algorithm has been running for, ρ1 and ρ2 are additional hyperparameters and � is the
Hadamard product.

The principal requirement when initializing the model parameters of a neural network
(thereby choosing a starting point for the optimization method) for training via SGD variants
is to break symmetry (Goodfellow et al., 2016). To achieve this, we initialize the weights
randomly using the Glorot normalized initialization method (Glorot & Bengio, 2010) with
0 mean and a variance of Var [W ] = 2

nin+nout
, where W is the matrix of weights in a given

layer, nin is the number of nodes in the previous (input) layer and nout is the number of nodes
in this layer’s output. Differently from the original work, where a uniform distribution is
used, in our work we sample the weights from a Normal distribution as this is the default
implementation in TensorFlow, the Python package we use to train and evaluate our neural
networks.

In this paper, we consider the choice of SGD-based algorithm used to train the model
parameters as a hyperparameter of the model itself which should be selected optimally. We
then look to tune the hyperparameters of these SGD-based algorithms, namely, batch size
and global learning rate.

Running the 10 rounds of 10-fold CV is computationally very expensive. In our experi-
ments, having selected the best performing model architecture we are only able to run the 10
rounds of 10-fold CV 16 times, meaning that we can only assess 16 different hyperparmeter
combinations. Due to this restriction, we opted for tuning the hyperparameters sequentially,
first evaluating SGD, SGD with Nesterov Momentum, AdaGrad, RMSProp, RMSprop with
momentum and ADAM to determine the SGD-based algorithm which gives the best accu-
racy with default hyperparameter selections. We then tune its batch size and finally tune its
global learning rate while using the batch size found in the previous step. We should note that
this approach has the drawback of not fully considering the interaction of the hyperparam-
eters with each other. Ideally, we would instead use an algorithm such as TPE or Gaussian
optimisation (Bergstra et al., 2011). However, these algorithms are typically initialized using
random search to evaluate tens or hundreds of hyperparameter combinations to generate an
initial image of the hyperparameter space (Bergstra et al., 2011; Ozaki et al., 2020). As we do
not have the computational resources to evaluate this many hyperparameter combinations,
we would not be able to properly initialize these algorithms. As for grid search and ran-

123



Annals of Operations Research

dom search, which are widely popular alternatives for hyperparameter tuning due to their
simplicity, with only 16 evaluation points these methods would also be ineffective.5

4.3 Experiment 1: architecture comparison

Firstly, we compare the two model architectures proposed in Sect. 3.3, i.e., Complex CNN5
and MLP5.

In this experiment, we use ADAM as the minibatch SGD variant for training, as “...Adam
works well in practice and compares favorably to other stochastic optimization methods”
(Kingma & Ba, 2014). We use the generally accepted default selections of batch size 32
(Benigo 2012; Master & Luschi, 2018) and learning rate 0.001 as suggested in the original
paper (Kingma & Ba, 2014). These experiments are conducted using Tensorflow in Python
3.10.

Figure 9 comprises 5 violin plots of the distributions of 5 performance metrics (detailed
in Sect. 3.4) over the 100 total rounds of CV for the MLP5 architecture (shown in blue)
and the Complex CNN5 model (shown in red). The MLP5 model completes its training in,
on average, 493s. This is significantly quicker than the time of the Complex CNN5, whose
average training time is 1262s despite taking roughly the same number of epochs to complete
training.

The MLP5 models are found to be able to predict the testing PSR images’ T:R ratios
much quicker than the Complex CNN5 models, with an average prediction time per PSR
image of 0.0075s compared to an average of 0.0119s for the Complex CNN5 one. This
shorter prediction time is valuable, as it indicates that the MLP5 models would require fewer
computational resources to make predictions of the T:R ratio in real time than the Complex
CNN5 models would.

In our analysis, our primary concern is accuracy. Here, we consider RMSE and MAE as
defined in Eq. (2). The MLP5 models achieve an average RMSE of 0.105 and an average
MAE of 0.0567 compared to the Complex CNN5 model’s average RMSE of 0.111 and
MAE of 0.0624. For these reasons, we conclude that the MLP5 architecture leads to better
performance as well as to shorter training and prediction times.

We must note that, while the way our models will be delivered to clinicians (and also
updated and maintained) is yet to be determined from a software engineering perspective,
the shorter prediction and training time of MLP5 is preferable as it may enable to model to
be run on less powerful computing devices and also to be updated/retrained more regularly
when new data becomes available.

In the subsequent experiments, we will look to select the best SGD variant for training
these MLP5 models. We will not consider the prediction times in the subsequent analysis, as
they should be the same for all models with the same architecture.

4.4 Experiment 2: optimizer comparison

In the previous experiment, we assumed ADAM was the preferred minibatch SGD variant.
In this experiment, we test such an assumption by evaluating 6 minibatch SGD variants:
SGD, SGD with Nesterov Momentum, AdaGrad, RMSProp, RMSprop with momentum and
ADAM. At this stage, we still use the default batch size and learning rate of, respectively, 32

5 In our preliminary experiments (Dunn et al., 2021) we assessed the use of image augmentation schemes.
However, we did not find that they significantly improved the models’ performance and, hence, we do not
evaluate these methods here.

123



Annals of Operations Research

Fig. 9 Violin plots showing the distribution of the RMSE, MAE, training time, epochs and average prediction
time of the 100 MLP5 models (blue) and Complex CNN5 models (red) evaluated in the 10 rounds of 10-fold
CV

Fig. 10 Left: Violin plots showing the distribution of the RMSEs of the 100 MLP5 models trained with each
SGD variant evaluated in the 10 rounds of 10-fold CV. Right: The same graph resized for readability

and 0.001. We perform 10 rounds of 10-fold CV, training in each fold an MLP5 model with
each of the 6 minibatch SGD variants for a total of 100 models trained using each minibatch
SGD variant and evaluated on a distinct testing set.

Figure 10 shows the distribution of the RMSEs across the 100 models for each minibatch
SGD variant (left) as well as an expanded version of the same graph (right). The trend shown
in these results is that the prediction error is lower for SGD variants which are better suited
to the non-convex setting (such is the case when training a deep neural network for T:R ratio
prediction from PSR images). MLP5 models trained using ADAM exhibit an average RMSE
of 0.105 compared to those trained using basicminibatch SGD,which have an averageRMSE
of 0.121. We observe that the training time and the number of epochs before early stopping
is generally greater for more complex versions of minibatch SGD such as for ADAM and
RMSprop. This can be seen in Fig. 17 in Section B of the Appendix.

With this experiment, we have confirmed that ADAM does indeed give the best accu-
racy (with a default hyperparameter selection) than a number of popular minibatch SGD
algorithms and, hence, is the optimization algorithm we will use going forward.

123



Annals of Operations Research

Fig. 11 Left: Violin plots showing the distribution of the RMSEs of the 100 MLP5 models trained with each
batch size evaluated in the 10 rounds of 10-fold CV. Right: The same graph resized for readability

4.5 Experiment 3: tuning batch size

Batch size is a hyperparameter of all minibatch SGD based algorithms. In previous experi-
ments, we used the generally recommended batch size of 32 (Benigo 2012, Master & Luschi,
2018). In this experiment, we evaluate batch sizes of 2n for n ∈ {3, 4, 5, 6, 7, 8} (while still
using a learning rate of 0.001) by performing 10 rounds of 10-fold CV, in each fold training
anMLP5 model with each of the 6 different batch sizes for a total of 100 models trained with
each batch size and evaluated on a distinct testing set.

Figure 11 shows the distribution of the RMSEs across the 100 models trained with each
batch size (left) as well as an expanded version of the same graph (right). As can be seen,
increasing the batch size steadily decreases the RMSE up to a batch size of 128, which
achieves an average RMSE of 0.1029, compared to the previously used batch size of 32
which leads to an average RMSE of 0.1053.

Figure 18 in Section B of the Appendix shows that, while the number of epochs before
earlystopping increases as the batch size increases, the training time decreases. In one epoch,
minibatches are propagated forward though the network and their errors are used to calculate
gradients and update the parameters. This is repeated until all data has been seen at least
once. This means that a large batch size results in the parameters being updated far fewer
times per epoch. This is the reason why, in Fig. 18, we see that the models with a large
batch size typically take more epochs to train as each epoch represents fewer descent steps.
However, despite training for more epochs, the large reduction in the number of times the
model parameters are updated results in a drastic reduction in training time for models trained
with larger batch sizes.

Using a batch size of 128 leads to the best average RMSE of 0.1029 while also resulting
in a significant reduction in average training time compared to using a batch size 32 and, as
such, 128 is the batch size we will use going forward.

4.6 Experiment 4: tuning learning rate

ADAM is considered robust to the choice of hyperparameters ρ1 and ρ2 and, as such, we only
tune the global learning rate ε by searching a logarithmic range 10−n for n ∈ {1, 2, 3, 4, 5, 6}
while using the best-performing batch size of 128 found in the previous experiment (Bengio
et al., 2017). We evaluate these learning rates by carrying out 10 rounds of 10-fold CV, in

123



Annals of Operations Research

Fig. 12 Left: Violin plots showing the distribution of the RMSEs of the 100 MLP5 models trained with each
global learning rate evaluated in the 10 rounds of 10-fold CV. Right: The same graph resized for readability

each fold training an MLP5 model with each of the different learning rates for a total of 100
models trained with each learning rate and evaluated on a distinct testing set.

Figure 11 shows the distribution of the RMSEs across the 100 models trained with each
learning rate (left) as well as an expanded version of the same graph (right). Figure11 does
not show the results for models trained with a learning rate of 10−5 and 10−6. However,
the trend demonstrated in Fig. 11 (that, for learning rates less than 0.01, the average RMSE
increases as the learning rate decreases) continues for these values. We observe that using a
learning rate of 0.01 gives an average RMSE of 0.1020 as opposed to the RMSE of 0.1029
given by the previously used default of 0.001 (Fig. 12).

Figure 19 in Section B of the Appendix shows that, as we would expect, the number
of epochs increases for smaller learning rates and, as the batch size is fixed at 128 in this
experiment, the training time is proportional to the number of epochs and so it also increases
as the learning rate becomes smaller.

We conclude from this experiment that anMLP5model trained using ADAMwith a batch
size of 128 and a learning rate of 0.01 offers improved accuracy while taking less time to
train.

Figure 13 shows the average training and validation error at each epoch of each of the 100
models trained using ADAMwith a batch size of 128 and a learning rate of 0.01 in each of the
100 rounds of CV performed in this experiment. As can be seen, while the validation error
is higher than the training error during training, both decrease rapidly before stabilizing and
reduce slowly over the rest of the training. For the purposes of this plot where early stopping
occurs, the errors are kept constant for the remainder of the 1000 epochs (Fig. 14).

4.7 Experiment 5: creating ensemblemodels

In the previous experiments, we found that the a tuned MLP5 model trained using ADAM
with a batch size of 128 and a global learning rate of 0.01 gave the best accuracy. In this
experiment, we assess the benefits of ensemble models by performing 10 rounds of 10-fold
CV and, in each fold, training 5 MLP5 submodels, for a total of 100 ensemble models each
containing 5 tunedMLP5 submodels.We compare each of theseMLP5 ensemble models to a
tuned MLP5 model and to a ’default’ MLP5 model trained using ADAMwith a batch size of
32 and a learning rate of 0.001 (the naive hyperparameter selections we initially considered
to be good defaults).

123



Annals of Operations Research

Fig. 13 The average training and validation loss over the 100 CV rounds over 1000 epochs

Figure 11 shows the distribution of the RMSEs of the 100 MLP5 ensemble models on
their respective testing sets, compared with those of the tuned MLP5 models and the default
MLP5 models (left) as well as to an expanded version of the same graph (right). As can be
seen, the default MLP5 models achieve an average RMSE of 0.1052 while the tuned MLP5
models achieve an average of 0.1024 and the ensemble MLP5 models an average of 0.0928.
This represents a reduction in average RMSE of 12% for the ensemble MLP5 models but of
only 2% for the tuned MLP5 models. If, however, we examine the upper quartile of these
distributions, we see that both the ensemble MLP5 models and the tuned MLP5 models offer
a more significant improvement over the base MLP5 models. The ensemble MLP5 models’
RMSE distribution has an upper quartile of 0.1002 compared to the tuned MLP5 models’
0.1147 and to the base MLP5 models’ 0.1259, which is a reduction of 9% for the tuned
models and of 20% for the ensemble models. We do not examine the number of epochs or the
training duration for this experiment as the number of epochs used to train each submodel
is expected to be the same as for the tuned MLP5 models and, likewise, the training time
for the whole ensemble MLP5 model is expected to be simply 5 times that of a single tuned
MLP5 model.

To this point, we have focused on RMSE because it makes the violin plots we have used
more easily interpretable thanMSE, and it provides a stronger penalization to large prediction
errors than MAE. However, in order to put the performance of our model in context, we will
once again examine MAE, as it as very easy to interpret as the average absolute error across
each prediction. The default MLP5 models achieve an average MAE of 0.0567 compared to
our best performing model, the ensemble MLP5 model, which achieves an average MAE of
0.0461. This represents a substantial reduction in average absolute prediction error (MAE)
of 19%.

5 Discussion

In the previous section, we showed that, through optimization algorithm selection, hyper-
parameter tuning and creating ensemble models, we were able to reduce the average MAE

123



Annals of Operations Research

Fig. 14 Left: Violin plots showing the distribution of the RMSEs of the 100 ensemble MLP5 models (blue),
tuned MLP5 models (red), and default MLP5 models (red) evaluated in the 10 rounds of 10-fold CV. Right:
The same graph rescaled for readability

across the 100 CV rounds to 0.0461, a reduction of 19%, and the mean and upper quartile of
the distribution of RMSEs over the 100 CV rounds by 12% and 20%, respectively.

In this section, we discuss the clinical impact of our models’ ability to predict the T:R
ratios of 10-second, single-lead, ECG segments. As described in Sect. 3.1, from a clinical
perspective the sign of the T:R ratio is irrelevant. Differently, our model is expected to output
both positive and negative predicted T:R ratios depending on the sign of the T wave. For use
in clinical analysis, we can simply compute the absolute value of the model.

Figure 15 shows the predicted absolute T:R ratios for each PSR image (notice that, during
each round of 10-fold CV, each PSR image is used for testing exactly once) generated using
the SGH-ECG dataset when it was reserved for testing in 10-fold CV, plotted against their
true absolute T:R ratios. The green line represents a perfect labeling. As can be seen, the
absolute value of the outputs of the ensemble MLP5 model predicts the true absolute T:R
ratios with very low error.

Having established that this model can be used to accurately and autonomously predict
T:R ratios from 10-second ECG segments, we can now use it to efficiently perform screening
to assess the normal variations in the patients’ T:R ratios across multiple leads over a 24-hour
period. 8640 non-overlapping 10-second, single-lead ECG segments are created by breaking
down a 24-hour, three-lead ECG recording. The 10-second segments are transformed follow-
ing the process laid out in Sect. 3.1. This results in 8640 chronologically ordered PSR images.
For each lead, a time series of T:R ratios can be generated by inputting the PSR images into
the model. As previously mentioned, for clinical use we consider the absolute values of the
predicted T:R ratio. These time series of T:R ratios corresponding to each lead of the ECG
recording can enable clinicians to easily analyze the normal behaviors of the patient’s T:R
ratio over a much longer screening window than the 10-second screening process used in
current practice.

We used such a method to create Fig. 16, which shows the variation of the T:R ratio on
each lead over a 24-hour period. For readability, we have smoothed the time series of T:R
ratios by plotting a moving average with a window of half an hour. For more details on the
clinical applications of this tool, we refer the reader to our other works in this area (ElRefai
et al., 2022a, b, c) where we determine what the T:R ratio cut-off used in the screening should
be and evaluate the variation of the T:R ratio of patients with various heart conditions.

123



Annals of Operations Research

Fig. 15 Graph of the absolute value of true T:R ratios for the SGH-ECG data set plotted against our model’s
predicted T:R ratios during testing. For readability, 5 outliers have been removed

Fig. 16 Graph showing the behavior of the patient’s T:R ratio during the 24-hour screening period for the
three leads using the same vectors that would be used by an S-ICD

6 Conclusions

TWOS is the leading cause of inappropriate shocks for S-ICD implanted patients. Due to
the fact that the T:R ratio can vary significantly over time, the current screening process of
using a 10s ECG recording to estimate a patient’s typical T:R ratio does not reliably capture
the normal behavior of the latter. In this paper, we have developed models which enable

123



Annals of Operations Research

autonomous T:R ratio prediction from PSR images of 10-second, single-lead ECG signals
with a high degree of accuracy. These models can be incorporated into a tool enabling
clinicians to perform 24-hour, automated screenings to assess patients’ normal T:R ratio
variations with greater detail and reliability.

Following 100 total rounds of CV, we have determined that the MLP5 model is preferable
to the Complex CNN5 model as it has a shorter training time, can make predictions faster
and, most importantly, it predicts T:R ratios with higher accuracy (with an average RMSE of
0.105 compared to the Complex CNN5’s average RMSE of 0.111).

Creating ensemble models comprised ofMLP5models, trained using the best-performing
SGD based optimization method and with a tuned batch size and global learning rate, we
were able to greatly reduce the prediction error compared to the models which used default
selections for these hyperparameters.Wewere able to reduce the averageMAE across the 100
CV rounds to 0.0461, a reduction of 19%, and the mean and upper quartile of the distribution
of RMSEs over the 100 CV rounds by 12% and 20% respectively.

Currently, we are using our proposed screening tool to assess the temporal variations of the
T:R ratio in patients belonging to patient groups who are likely to be implanted an S-ICDs.
We are also investigating whether the increased detail provided by our tool can allow the
cut-off threshold for the screening to be increased above the current value of 1/3, allowing
patients who had, under the previous screening process, been determined to be at too high a
risk of TWOS to be safely implanted with S-ICDs. Finally, we hope to determine in future
research if fluctuations in a patient’s T:R ratios can provide indication that a cardiac episode
is impending.

Funding Open access funding provided by Università degli studi di Bergamo within the CRUI-CARE Agree-
ment. The work of Anthony J. Dunn is jointly funded by Decision Analysis Services Ltd andf EPSRC through
the studentship with Reference EP/R513325/1. The work of Alain B. Zemkoho is supported by the EPSRC
grant EP/V049038/1. The work of Stefano Coniglio and Alain B. Zemkoho is supported by The Alan Turing
Institute under the EPSRC grants EP/N510129/1 and EP/W037211/1.

Declarations

Conflict of interest Mohamed ElRefai has received unrestricted grant from Boston Scientific. Paul R. Roberts
has received honoraria from Boston Scientific and Medtronic and Research funding from Boston Scientific.
Benedict M. Wiles has received unrestricted research grant and consultancy fees from Boston Scientific.
Anthony J. Dunn, Stefano Coniglio and Alain B. Zemkoho have no financial or proprietary interests in any
material discussed in this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Model architectures

In this section, we provide details on the regression and feature-extraction blocks used in
our models. Details on the feature extraction block that is used to construct the MLP5 and
Complex CNN5 models are reported in Table 1. Details on the feature extraction blocks

123

http://creativecommons.org/licenses/by/4.0/


Annals of Operations Research

Table 1 Regression block Layer Type Output size

1 Dense 256

2 BatchNorm 256

3 Activation(Relu) 256

4 Dense 64

5 BatchNorm 64

6 Activation(Relu) 64

7 Dense 1

Table 2 MLP feature extraction
block

Layer Type Output size

1 Dense 1024

2 BatchNorm 1024

3 Activation(Relu) 1024

Table 3 Complex CNN feature extraction block n

Layer Type Output size Kernel size Stride

1 Convolutional 2n+2 × 26−n × 26−n (6 − n) × (6 − n) 1

2 BatchNorm 2n+2 × 26−n × 26−n

3 Activation(Relu) 2n+2 × 26−n × 26−n

4 Convolutional 2n+2 × 26−n × 26−n (6 − n) × (6 − n) 1

5 BatchNorm 2n+2 × 26−n × 26−n

6 Activation(Relu) 2n+2 × 26−n × 26−n

7 Skip(Input) 2n+2 × 26−n × 26−n

8 Convolutional 2n+3 × 25−n × 25−n (7 − n) × (7 − n) 2

9 BatchNorm 2n+3 × 25−n × 25−n

10 Activation(Relu) 2n+3 × 25−n × 25−n

used for the MLP5 models are reported in Table 2. The structures of the 5 Complex CNN
feature extraction blocks used within the Complex CNN5 model are given by Table 3, where
n denotes which of the 5 feature extraction blocks we are referring to.

Appendix B: Experiment graphs

In this section, we provide additional figures from the experiments reported in Sect. 4. Fig-
ure17 shows the training time and number of epochs before early stopping for the various
SGD variants evaluated in Sect. 4.4, Fig. 18 shows the training time and number of epochs
before early stopping for the various batch sizes evaluated in Sect. 4.5, and Fig. 19 shows
the training time and number of epochs before early stopping for the various global learning
rates evaluated in Sect. 4.6.

123



Annals of Operations Research

Fig. 17 Left: Violin plots showing the distribution of the training time of the 100 MLP5 models trained with
each SGD variant evaluated in the 10 rounds of 10-fold CV. Right: Violin plots showing the distribution of
the number of epochs required to train the 100 MLP5 models trained with each SGD variant evaluated in the
10 rounds of 10-fold CV

Fig. 18 Left: Violin plots showing the distribution of the training time of the 100 MLP5 models trained with
each batch size evaluated in the 10 rounds of 10-fold CV. Right: Violin plots showing the distribution of the
number of epochs required to train the 100 MLP5 models trained with each batch size evaluated in the 10
rounds of 10-fold CV

Fig. 19 Left: Violin plots showing the distribution of the training time of the 100 MLP5 models trained with
each global learning rate evaluated in the 10 rounds of 10-fold CV. Right: Violin plots showing the distribution
of the number of epochs required to train the 100MLP5models trainedwith each global learning rate evaluated
in the 10 rounds of 10-fold CV

123



Annals of Operations Research

References

Adabag, A. S., Luepker, R. V., Roger, V. L., & Gersh, B. J. (2010). Sudden cardiac death: Epidemiology and
risk factors. Nature Reviews Cardiology, 7(4), 216–225.

Assanelli, D., Di Castelnuovo,A., Rago, L., Badilini, F., Vinetti, G., Gianfagna, F., Salvetti,M., Zito, F., Donati,
M. B., De Gaetano, G., & Iacoviello, L. (2013). T-wave axis deviation and left ventricular hypertrophy
interaction in diabetes and hypertension. Journal of Electrocardiology, 46(6), 487–491.

Babu, G. S., Zhao, P., Li, & X.-L. (2016). Deep convolutional neural network based regression approach
for estimation of remaining useful life. In International Conference on Database Systems for Advanced
Applications (pp. 214–228). Springer

Balduzzi, D., Frean, M., Leary, L., Lewis, J., Ma, K. W. D., &McWilliams, B. (2017). The shattered gradients
problem: If resnets are the answer, then what is the question?. In International Conference on Machine
Learning (pp. 342–350). PMLR.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures. In Neural
networks: Tricks of the trade (pp. 437–478). Springer.

Bengio, Y., Goodfellow, I., & Courville, A. (2017). Deep learning (Vol. 1). MIT Press.
Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter optimization. In:

J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, K. Q. Weinberger, K.Q. (Eds.), Advances in Neural
Information Processing Systems (Vol. 24, pp. 1–9).

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford University Press.
Boersma, L., Barr, C., Knops, R., Theuns, D., Eckardt, L., Neuzil, P., Scholten, M., Hood, M., Kuschyk,

J., Jones, P., & Duffy, E. (2017). Implant and midterm outcomes of the subcutaneous implantable
cardioverter-defibrillator registry: The effortless study. Journal of the American College of Cardiology,
70(7), 830–841.

Chen, M., Fang, Y., & Zheng, X. (2014). Phase space reconstruction for improving the classification of single
trial EEG. Biomedical Signal Processing and Control, 11, 10–16.

Dawid, A. (2019). PSR-based research of feature extraction from one-second EEG signals: A neural network
study. SN Applied Sciences, 1(12), 1–12.

Djemal, R., Bazyed, A. G., Belwafi, K., Gannouni, S., & Kaaniche, W. (2016). Three-class EEG-based motor
imagery classification using phase-space reconstruction technique. Brain Sciences, 6(3), 36.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12(7), 2121–2159.

Dunn, A. J., ElRefai,M. H., Roberts, P. R., Coniglio, S.,Wiles, B.M., &Zemkoho, A. B. (2021). Deep learning
methods for screening patients’ S-ICD implantation eligibility. Artificial Intelligence in Medicine, 119,
102139.

ElRefai,M., Abouelasaad,M., Conibear, I.,Wiles, B.M.,Dunn,A. J., Coniglio, S., Zemkoho,A.B.,&Roberts,
P. R. (2022). The use of artificial intelligence and deep learning methods in subcutaneous implantable
cardioverter defibrillator screening to optimise selection in special patient populations. Europace, 24,
053–448.

ElRefai, M., Abouelasaad, M., Dunn, A. J., Coniglio, S., Zemkoho, A. B., Wiles, B. M., & Roberts, P. R.
(2022). Eligibility for subcutaneous implantable cardiac defibrillator utilising artificial intelligence and
deep learning methods for prolonged screening: Where is the cut-off? Europace, 24, 053–447.

ElRefai, M., Abouelasaad,M.,Wiles, B.M., Dunn, A. J., Coniglio, S., Zemkoho, A. B., Morgan, J., & Roberts,
P. R. (2023). Correlation analysis of deep learning methods in S-ICD screening. Annals of Noninvasive
Electrocardiology. https://doi.org/10.1111/anec.13056

ElRefai,M., Abouelasaad,M.,Wiles, B.M., Dunn,A. J., Coniglio, S., Zemkoho,A. B.,&Roberts, P. R. (2022).
Deep learning-based insights on T: R ratio behaviour during prolonged screening for S-ICD eligibility.
Journal of Interventional Cardiac Electrophysiology. https://doi.org/10.1007/s10840-022-01245-6

Fan, X., Yao, Q., Cai, Y., Miao, F., Sun, F., & Li, Y. (2018). Multiscaled fusion of deep convolutional neu-
ral networks for screening atrial fibrillation from single lead short ECG recordings. IEEE Journal of
Biomedical and Health Informatics, 22(6), 1744–1753.

Fosbøl, E. L., Seibæk, M., Brendorp, B., Torp-Pedersen, C., Køber, L., Investigations, D. (2008). Prognostic
importance of change in QRS duration over time associated with left ventricular dysfunction in patients
with congestive heart failure: The DIAMOND study. Journal of Cardiac Failure, 14(10), 850–855.

Garbin, C., Zhu, X., & Marques, O. (2020). Dropout vs. batch normalization: An empirical study of their
impact to deep learning. Multimedia Tools and Applications, 79, 1–39.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. JMLR
Workshop and Conference Proceedings (pp. 249–256).

123

https://doi.org/10.1111/anec.13056
https://doi.org/10.1007/s10840-022-01245-6


Annals of Operations Research

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In Proceedings of the Four-
teenth International Conference on Artificial Intelligence and Statistics. JMLRWorkshop andConference
Proceedings (pp. 315–323).

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778).
Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal

covariate shift. In International Conference on Machine Learning (pp. 448–456). PMLR.
Kingma, D. P., & Ba, J (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Kiranyaz, S., Ince, T., & Gabbouj, M. (2015). Real-time patient-specific ECG classification by 1-d convolu-

tional neural networks. IEEE Transactions on Biomedical Engineering, 63(3), 664–675.
Knops, R. E., Olde Nordkamp, L. R., Delnoy, P.-P.H., Boersma, L. V., Kuschyk, J., El-Chami, M. F., Bon-

nemeier, H., Behr, E. R., Brouwer, T. F., Kääb, S., & Mittal, S. (2002). Subcutaneous or transvenous
defibrillator therapy. New England Journal of Medicine, 383(6), 526–536.

Krishnan, S. M., Dutt, D. N., Chan, Y., & Anantharaman, V (2007). Phase space analysis for cardiovascular
signals. In Advances in Cardiac Signal Processing (pp. 339–354). Springer.

Kusumoto, F. M., Bailey, K. R., Chaouki, A. S., Deshmukh, A. J., Gautam, S., Kim, R. J., Kramer, D. B.,
Lambrakos, L. K., Nasser, N. H., & Sorajja, D. (2018). Systematic review for the 2017 AHA/ACC/HRS
guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac
death: A report of the American college of cardiology/American heart association task force on clinical
practice guidelines and the heart rhythm society. Circulation, 138(13), 392–414.

Lee, S.-H., Lim, J. S., Kim, J.-K., Yang, J., & Lee, Y. (2014). Classification of normal and epileptic seizure
EEG signals using wavelet transform, phase-space reconstruction, and euclidean distance. Computer
Methods and Programs in Biomedicine, 116(1), 10–25.

Li, H., Xu, Z., Taylor, G., Studer, C., & Goldstein, T. (2017). Visualizing the loss landscape of neural nets.
arXiv preprint arXiv:1712.09913.

Lih, O. S., Jahmunah, V., San, T. R., Ciaccio, E. J., Yamakawa, T., Tanabe, M., Kobayashi, M., Faust, O., &
Acharya, U. R. (2020). Comprehensive electrocardiographic diagnosis based on deep learning. Artificial
Intelligence in Medicine, 103, 101789.

Liu, W., Zhang, M., Zhang, Y., Liao, Y., Huang, Q., Chang, S., Wang, H., & He, J. (2017). Real-time multilead
convolutional neural network formyocardial infarction detection. IEEEJournal of Biomedical andHealth
Informatics, 22(5), 1434–1444.

Lugovaya, T. S. (2005). Biometric human identification based on electrocardiogram.Master’s thesis, Faculty of
Computing Technologies and Informatics, Electrotechnical University LETI, Saint-Petersburg, Russian
Federation.

Madias, J. E. (2005). QTc interval in patients with changing edematous states: Implications on interpreting
repeat QTc interval measurements in patients with anasarca of varying etiology and those undergoing
hemodialysis. Pacing and Clinical Electrophysiology, 28(1), 54–61.

Madias, J. E., Bazaz, R., Agarwal, H., Win, M., &Medepalli, L. (2001). Anasarca-mediated attenuation of the
amplitude of electrocardiogram complexes: A description of a heretofore unrecognized phenomenon.
Journal of the American College of Cardiology, 38(3), 756–764.

Masters, D., & Luschi, C. (2018). Revisiting small batch training for deep neural networks. arXiv preprint
arXiv:1804.07612.

Miao, F., Wen, B., Hu, Z., Fortino, G., Wang, X.-P., Liu, Z.-D., Tang, M., & Li, Y. (2020). Continuous
blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques.
Artificial Intelligence in Medicine, 108, 101919.

Nair, V., & Hinton, G. E. (2010) Rectified linear units improve restricted Boltzmann machines. In ICML.
Ozaki, Y., Tanigaki, Y., Watanabe, S., & Onishi, M. (2020). Multiobjective tree-structured parzen estimator for

computationally expensive optimization problems. In Proceedings of the 2020 Genetic and Evolutionary
Computation Conference (pp. 533–541).

Polyak, B. T. (1964). Somemethods of speeding up the convergence of iterationmethods.USSRComputational
Mathematics and Mathematical Physics, 4(5), 1–17.

Pourbabaee, B., Roshtkhari, M. J., & Khorasani, K. (2018). Deep convolutional neural networks and learning
ECG features for screening paroxysmal atrial fibrillation patients. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 48(12), 2095–2104.

Prechelt, L. (1998). Early stopping-but when?. In Neural networks: Tricks of the trade (pp. 55–69). Springer.
Priori, S. G., Blomström-Lundqvist, C., Mazzanti, A., Blom, N., Borggrefe, M., Camm, J., Elliott, P. M.,

Fitzsimons, D., Hatala, R., Hindricks, G., Kirchhof, P., Kjeldsen, K., Kuck, K. H., Hernandez-Madrid,
A., Nikolaou, N., Norekval, T. M., Spaulding, C., & Van Veldhuisen, D. J. (2016). 2015 ESC Guidelines
for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac Death.

123

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1712.09913
http://arxiv.org/abs/1804.07612


Annals of Operations Research

The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of
Sudden Cardiac Death of the European Society of Cardiology. Giornale Italiano di Cardiologia, 17(2),
108–170.

Roberts, F. M., Povinelli, R. J., & Ropella, K. M. (2001). Identification of ECG arrhythmias using phase space
reconstruction. In European Conference on Principles of Data Mining and Knowledge Discovery (pp.
411–423). Springer.

Rocha, T., Paredes, S., De Carvalho, P., Henriques, J., & Antunes, M. (2008). Phase space reconstruction
approach for ventricular arrhythmias characterization. In 2008 30th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (pp. 5470–5473). IEEE.

Sangaiah, A. K., Arumugam, M., & Bian, G.-B. (2020). An intelligent learning approach for improving ECG
signal classification and arrhythmia analysis. Artificial Intelligence in Medicine, 103, 101788.

Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and momentum
in deep learning. In International Conference on Machine Learning (pp. 1139–1147). PMLR.

van Rees, J. B., Borleffs, C. J. W., de Bie, M. K., Stijnen, T., van Erven, L., Bax, J. J., & Schalij, M. J.
(2011). Inappropriate implantable cardioverter-defibrillator shocks: Incidence, predictors, and impact on
mortality. Journal of the American College of Cardiology, 57(5), 556–562.

Vemishetty, N., Acharyya, A., Das, S., Ayyagari, S., Jana, S., Maharatna, K., & Puddu, P. E. (2016). Classifi-
cation methodology of CVD with localized feature analysis using phase space reconstruction targeting
personalized remote health monitoring. In 2016 Computing in Cardiology Conference (CinC) (pp. 437–
440). IEEE.

Vemishetty, N., Gunukula, R. L., Acharyya, A., Puddu, P. E., Das, S., & Maharatna, K. (2019). Phase space
reconstruction based CVD classifier using localized features. Scientific Reports, 9(1), 1–18.

Wu, J. (2017). Introduction to convolutional neural networks. National Key Lab for Novel Software Technol-
ogy. Nanjing University, China.

Zhang, J., Liu, A., Gao,M., Chen, X., Zhang, X., &Chen, X. (2020). ECG-basedmulti-class arrhythmia detec-
tion using spatio-temporal attention-based convolutional recurrent neural network. Artificial Intelligence
in Medicine, 106, 101856.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Deep learning and hyperparameter optimization  for assessing one's eligibility for a subcutaneous implantable cardioverter-defibrillator
	Abstract
	1 Introduction
	2 Related works
	3 Methodology
	3.1 ECG signal preprocessing
	3.2 Neural network layers
	3.3 Model architectures
	3.4 Model evaluation
	3.5 Ensemble models

	4 Experiments
	4.1 Data sets
	4.2 Training algorithms
	4.3 Experiment 1: architecture comparison
	4.4 Experiment 2: optimizer comparison
	4.5 Experiment 3: tuning batch size
	4.6 Experiment 4: tuning learning rate
	4.7 Experiment 5: creating ensemble models

	5 Discussion
	6 Conclusions
	Appendix A: Model architectures
	Appendix B: Experiment graphs
	References


