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A B S T R A C T   

This paper presents the results obtained using Machine Learning (ML) algorithms to predict the mechanical 
properties, including ultimate tensile strength, yield strength, 0.2% proof strength and elastic modulus, of high 
strength steel plate material at elevated temperatures. High strength steels are increasingly used in several areas 
of construction offering efficient structural solutions with a high strength-to-weight ratio. Safe fire design of these 
structures relies heavily on accurate prediction of mechanical properties of the material with temperature. The 
data on elevated temperature mechanical properties collected from the literature experimental tests show a high 
degree of scatter, implying that they are influenced significantly by various factors, most notably the testing 
method, manufacturing process and chemical composition. However, the current methods for predicting the 
mechanical properties of high strength steels at elevated temperatures by using ‘reduction factors’ as adopted by 
the structural design codes do not consider these effects and may lead to inaccurate predictions. To overcome 
these deficiencies, a ML-based prediction method that uses temperature and chemical composition as input 
parameters is developed in this paper. Deep Neural Networks are trained and validated on the basis of elevated 
temperature material data collated from the literature test programmes. The analysis of the results show that the 
trained algorithm gives an excellent correlation coefficient with very small error value in predicting the strength 
and stiffness reduction factors of HSS.   

1. Introduction 

The use of high strength steel (HSS) in structural engineering ap-
plications has increased in recent years as it offers opportunities for both 
material and carbon savings. HSS enables structural designs with lighter 
supporting structures as well as layouts with more usable spaces. The 
thinner sections achieved with a higher strength steel require reduced 
welding effort and are easier to transport and construct. High strength 
steels are typically used in high rise construction, long-span structures 
and bridges where reduction of structural self-weight is paramount. 
High strength steels are defined as steels with yield strengths higher than 
460 MPa within the European steel construction practice. The design of 
steel structures is currently covered in EN 1993-1-1 [1] for mild steel 
grades of S235 to S460 and in EN 1993-1-12 [2] for high strength steel 
grades of S500 to S700, where the digits represent the yield strength. In 
the second generation of Eurocodes the range of applicability of both of 

these design specifications will be increased to higher HSS grades, 
reflecting the greater knowledge and understanding gained from the 
recent research studies on high strength steel structures worldwide. EN 
1993-1-1 will provide design rules for S235 to S700 grades, while EN 
1993-1-12 will cover S700 up to S960 grades. The fire design of steel 
structures is covered in EN 1993-1-2 [3] for conventional strength steels. 
For HSS, EN 1993-1-12 currently states that the rules in EN 1993-1-2 are 
applicable to high strength steels up to S700. 

The production of HSS is different from that of other steel types in 
two main aspects, the steel chemical composition and the heat treatment 
process that are adopted to achieve their higher strengths. There are four 
main processing routes for the production of high strength steel plates, 
namely: Thermo-Mechanical (TM) rolling, Thermo-Mechanical rolling 
with Accelerated Cooling (TM-ACC), Thermo-Mechanical rolling with 
Direct Quenching (TM-DQ) and Conventional route for QT plates [4]. 
The different chemical composition and heat treatment processes 
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employed in the production of HSS by these routes lead to material 
stress–strain behaviours that are different from those of conventional 
mild steels at both room and elevated temperatures. At room tempera-
ture, the ductility and the ratio of the ultimate-to-yield strength of HSS 
reduce with increasing strength. At elevated temperatures, high strength 
steels, like all steels, lose strength and stiffness with increasing tem-
peratures, but the rate of degradation is influenced by the chemical 
composition and the heat treatment process. 

The microstructure of mild steel can be either pearlite, bainite, or 
combination of both depending on the rate of cooling of austenite steel 
[5]. Bainite and pearlite transformations are stable phases, and do not 
transform to other phases without reheating to form austenite (at about 
900 ◦C). On the other hand, the microstructure of HSS is martensite 
which forms when the austenite is rapidly cooled, or quenched, to a 
relatively low temperature in order to prevent carbon diffusion and 
hence the formation of pearlite or bainite. Martensite is not an equi-
librium phase because the quenching process prevents diffusion of car-
bon out of the austenite structure. It tends to transform to stable ferrite 
and cementite phases when it is heated to a temperature (higher than 
250 ◦C) that initiates diffusion of trapped carbon in the lattice [6]. The 
strength of HSS is controlled by the amount of developed cementite 
which is primarily a function of the chemical composition of the steel, 
the attained temperature and the duration of fire. Therefore, a combi-
nation of all of these factors, in particular the effect of chemical 
composition, need to be considered when predicting the elevated tem-
perature mechanical properties of HSS materials. 

2. Assessment of codified reduction factors 

In structural design codes, elevated temperature material properties 
are typically expressed as a portion of the corresponding room tem-
perature properties through reduction factors. The codified elevated 
temperature reduction factors are typically derived based on fitting the 
experimentally derived data points. However, there is typically a high 
degree of scatter in the measured elevated temperature mechanical 
properties as evidenced by the data from literature elevated temperature 
tests, plotted in Figs. 1 to 4. This scatter in the data is not systematically 
accounted for in the codified values. Moreover, the fitting methods do 
not specifically allow for the effect of chemical composition of the ma-
terial on the elevated temperature mechanical properties, which is 
found to be an important factor especially for HSS and may therefore 
lead to their incorrect prediction. 

To overcome the above mentioned limitations with the codified 
reduction factors, data-driven Machine Learning (ML) methods may be 
employed to predict the mechanical properties of HSS at elevated tem-
peratures. M. Naser [7] adopted Machine Learning methods to predict 
the strength and stiffness of mild steel at elevated temperatures. A 
simple regression approach, where one parameter is included in the 
input layer, which was temperature, to predict one output, which was a 
reduction factor, was considered in their ML model. Desu et al. [8] 
adopted a multivariate regression approach to predict the mechanical 
properties of stainless steel 304L and 316L at elevated temperatures, 
which involved having more than one parameter in the input layer, 
which were various strain rates, to predict one output, which was a 
mechanical property. The trained ML models based on both the simple 
and the multivariant regression approaches adopted in these studies 
were found to successfully predict the mechanical properties at elevated 
temperatures, but a higher degree of accuracy was achieved for the 
multivariate regression. 

3. Purpose of the study 

The present study introduces a novel approach to derive strength and 
stiffness reduction factors for HSS at elevated temperatures using ML 
techniques. To the authors’ knowledge, no prior studies are available in 
the open literature regarding the prediction of HSS mechanical prop-
erties at elevated temperatures by ML, particularly when the effect of 
material chemical composition is explicitly considered. A multivariate 
regression analysis approach is adopted which includes both the tem-
perature and the chemical composition of the material in the input layer. 
The ML model is trained and validated on the basis of a database of 
elevated temperature material properties collected from published 
literature experimental programmes. 

4. Data collection 

A total of 366 data was collected from elevated temperature material 
testing programmes across 19 papers, covering high strength steel 
grades with nominal yield strengths ranging from 460 MPa to 960 MPa. 
Table 1 shows a summary of the key information related to the collected 
data experimental programmes. The elevated temperature tests included 
both steady state and transient state tests. Under steady state conditions, 
the specimen is heated to a specified temperature, then left for a period 
of time (holding time) until the temperature has stabilised and is then 

Fig. 1. Elevated temperature reduction factors for ultimate tensile strength.  
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loaded until failure whilst maintaining constant temperature as illus-
trated in Fig. 5(a). Under transient state conditions, the specimen is 
loaded to a specified tensile load and then the temperature is increased 
as illustrated in Fig. 5(b). Testing under transient state conditions more 
closely replicates the conditions that a structure is subject to during a 
fire, whereby the structure is already taking load when the temperature 
increases. However, steady state tests are easier to conduct in a labo-
ratory and thus is the more common testing method. The heating rate 
and holding time for the tests were recorded where stated in the liter-
ature. Fig. 6 shows the variation in these parameters for each of the 
recorded tests; these discrepancies in testing methodology can be a 
source of scatter in the data. 

Since high strength steels do not always demonstrate a clear yield 
point and a yield plateau in their stress–strain curves, the effective yield 

stress fy was defined as the stress at 2% total strain. The 0.2% proof 
stress, f0.2, is the stress at the intersection of the stress–strain curve with 
the proportional line offset by 0.2% strain, as illustrated by Fig. 7. 
Equations (1)-(4) present the definitions of the elevated temperature 
reduction factors for the ultimate tensile strength ku, effective yield 
strength ky, 0.2% proof strength k0.2 and Young’s modulus kE that have 
been adopted throughout the analysis in this paper, where θ represents 
the temperature value. 

ku =
fu,θ

fu
(1)  

ky =
fy,θ

fy
(2)  

Fig. 2. Elevated temperature reduction factors for yield stress.  

Fig. 3. Elevated temperature reduction factors for 0.2% proof stress.  
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k0.2 =
f0.2,θ

f0.2
(3)  

kE =
Eθ

E
(4) 

The chemical compositions of the steel grades were also recorded for 
elements C, Si, Mo, Mn, Nb, Ni, Cu and Al. Figs. 8 to 10 show the 
chemical composition by weight for the steel grades 460 MPa, 690 MPa 
and 960 MPa steel, respectively. There is significant variation in the 
compositions of the steel, even within the same strength grade. This will 
also cause additional scatter in the data. 

5. Development of the Artificial neural network (ANN) 

Artificial neural networks (ANNs) consists of multiple layers and 
neurons that work together to process inputs and produce outputs. The 
number of neurons in each layer is determined by the complexity of the 
relationship between inputs and outputs. Supervised learning with a 
multilayer perception model with feed-forward back-propagation is 
used to develop an ANN in the present study. This model is composed of 
three layers: an input layer that contains the independent variables such 
as chemical composition and temperature, one or more hidden layers 
that establish relationship between the input and the output, and an 
output layer that contains the target variable such as strength reduction 

Fig. 4. Elevated temperature reduction factors for Young’s Modulus.  

Table 1 
Summary of collected test data.  

Ref. Material 
type 

Temperature range 
(℃) 

Testing 
method 

Heating rate 
(℃/min) 

Holding time 
(min) 

Nominal fy 

(MPa) 
Nominal fu 

(MPa) 
Number of 
tests 

Qiang, Bijlaard & Kolstein, 
2012a [9,11] 

S690QL 20–700 Steady 50 10 690 770–940 9 
Transient 10 – 13 

Qiang, Bijlaard & Kolstein, 
2012b [10,11] 

S460NL 20–700 Steady 50 10 460 550–720 12 
Transient 10 – 13 

Qiang, 2013 [11] S960QL 20–700 Steady 50 10 960 980–1150 10 
Transient 10 – 14 

Chen, Young & Uy, 2006 [12] BISPLATE80 20–940 – – – 620–690 720–930 16 
Chiew, Zhao &Lee, 2014 [13] S690 RQT 20–800 Steady 20 10 690 770–940 10 
Choi, Chung & Kim, 2014 [14] HSA800 20–900 Steady 10 10 650–770 800–950 10 
Winful et al, 2017 [15] S690 QL 20–800 Steady Varies 15 690 770–940 9 
Xiong & Liew, 2016 [16] RQT701 20–700 Steady 10 60 690 770–940 9 

Transient 10 – 8 
Li et al, 2003 [17] 20MnTiB 20–700 Steady – – 930 1130 10 
Wang et al, 2018 [18] Q690 20–900 Steady 20 20 690 770–940 9 
Huang et al, 2018 [19] Q550 20–800 Steady 20 15 550 640–820 10 

Q690 690 770–940 10 
Q890 890 940–11100 10 

Jiang et al, 2019 [20] Q690 CFD 20–900 Steady  20 690 770–940 10 
Li & Song, 2020 [21] Q690 TMCP 20–800 Steady 20 15 690 770–940 10 
Neuenschwander et al, 2017  

[22] 
S690 20–900 Steady 15 30 690 770–940 12 
S960 960 980–1150 13 

Shakil, Lu & Puttonen, 2020  
[23] 

S700MC 20–800 Transient – – 700 750–950 16 

Wang et al, 2020 [24] Q960E 20–900 Steady  20 960 980–1150 10 
Xiong & Liew, 2020 [25] S690 TMCP 20–800 Steady 10 30 690 770–940 9 

Transient 10 – 7 
Schneider & Lange, 2011 [26] S460 20–800 Transient Varies – 460 550–720 77 
Lange & Wohlfeil, 2010 [27] S460 20–900 Transient 10 – 460 550–720 20 

Note: “-” means data not available. 
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factors. 
The training process for ANN begins by assigning random weight 

values to the connections between the input, hidden, and output layers. 
Input data is then inputted into the first layer’s nodes and multiplied by 
the assigned weight values. These values are then passed through a 
transfer function, such as a sigmoid function, and the output is used to 
make predictions. These predictions are then compared to known values 
and the error between them is calculated. This error is then used to 
adjust the weight values through a process called backpropagation and 
the process is repeated until the predicted outputs match the known 
values within an acceptable range. 

Fig. 11 illustrates the neural network architecture comprising the 
input layer, hidden layers, and output layer. Each layer can have one or 
more connected neurons passing signals to each other based on the 
received input and form a complex network that learns with some 
feedback mechanism. The connection between any two neurons would 
have an associated weight which defines the influence of the input to the 
output for the next neuron and eventually for the overall final output. To 

derive an effective neural network architecture, a number of parameters 
need to be introduced including, input variables, the number of hidden 
layers and the associated number of neurons, the activation function, the 
number of epochs, and the output variables. These parameters are 
generally identified through trial-and-error loops until the model is well 
generalized. However, there are some guidance available in the litera-
ture to find an effective architecture with minimal number of loops [28]. 

The input layer receives input parameters governing a phenomenon. 
It should be pointed out that both multivariate and simple regression 
models were considered in this study to give an insight into the 
importance of using chemical composition and holding time in addition 
to temperature in predicting the elevated temperatures reduction fac-
tors. The chemical composition input variables for the multivariate 
model (see Fig. 11) included the main elements C, Si, Mo, Ni. The other 
chemical compositions shown in Figs. 8-10 were not considered as they 
were absent in several publications. It should be noted that the phase 
transformation during the fire is affected by the time exposure duration 
and thus the holding time under which the tests were performed was 
also considered as an input variable for the steady state tests dataset. The 
input layer for the simple model only included the temperature. The 
input layer is then connected to successive hidden layers through 
nonlinear activation functions such as Sigmoid and leads onto the output 
layer, which in this case is the predicted values of the elevated tem-
perature reduction factors, ku, ky, k0.2 or kE, of high strength steel plate 
material for both models. The input variables were initially normalised 
within the range of 0.0–1.0 using Equation (5) to improve the learning 
speed, accuracy, and the convergence rate. 

Xn =
X − Xmin

Xmax − Xmin
(5)  

where, Xmin and Xmax are the minimum and maximum values of input X, 
and Xn is the normalised data of the corresponding X. The normalised 
data is then returned to the original value using Equation (6) after the 
best trained network is obtained. 

X = Xn(Xmax − Xmin) + Xmin (6) 

The experimental data is randomly divided into three parts for 
training, validation, and testing process – 70% of the collected data was 

Fig. 5. Steady state and transient state test methods.  

Fig. 6. (a) Proportion of steady state and transient states, (b) Variation in holding time and (c) Variation in heating rate from collected test data.  
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used to train the model, of which 15% was used for validation, and the 
remaining 30% was used to test the performance of the developed 
model. A good model will have the ability to digest new data and make 
accurate predictions; this can be achieved by generalising the model and 
avoiding overfitting or underfitting. Although adopting many neurons in 
the hidden layers improves the accuracy of the model, this requires more 
computational time and may also lead to undesirable overfitting. 

6. Performance and validation of derived material models 

Following the training of the model, the performance of the trained 
network was assessed by comparing the predicted and experimental 
values of the reduction factors for the whole database. To assess the 
accuracy of the model, two parameters, the coefficient of determination 
(R2) and mean absolute errors (MAE), are considered. R2 is a statistical 
measurement that examines the goodness of fit of a linear relationship 
between the predicted and experimental values which is calculated 
using Equation (7). 

R2 = 1 −

∑n

i=1

(
yi

p − yi
exp

)2

∑n

i=1

(
yi

exp − yi
mean

)2 (7)  

where, yexp is the experimental value, yp is the predicted value, ymean is 
the mean value of the experimental data, and n is the total number of 
data points being considered. The coefficient of determination alone is 
not sufficient to validate the trained model. The predictions of the model 
may be biased towards higher or lower values. Thus, MAE between the 
predicted and the experimental values is also considered which can be 
calculated by Equation (8), where the symbols are as previously 
defined. 

MAE =

∑n

i=1

⃒
⃒
⃒yi

p − yi
exp

⃒
⃒
⃒

n
(8) 

Table 2 summarises the coefficient of determination (R2) and the 
mean absolute errors (MAE) for the training and the testing data sets for 

Fig. 7. Typical stress–strain curve for high strength steels.  

Fig. 8. Chemical composition wt% for steel grades with nominal yield strength 460 MPa.  
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the multivariate and simple models. The multivariate training model is 
shown to have excellent predictive accuracy as the R2 values for all the 
reduction factors are above 0.92 and the MAE values are negligible. 
Despite the R2 values for the simple model being comparable with those 
of the multivariate model, the MAE values of the simple model are 
significantly higher, particularly for the testing data set. This implies 
that the R2 alone is not sufficient to evaluate the model performance. 
Section 5 provides a detailed comparison between the multivariate and 
simple regression models considered in this study. Fig. 12 presents the 
multivariate predicted versus the experimental values for all the 
considered reduction factors, where it is shown that for both the training 
and testing datasets, the predicted data points lie within a ±10% bound. 
It is also clear from Table 2 and Fig. 12 that the model prediction for the 
training and the testing data set are comparable and hence indicating 
that the model is well generalised. Thus, it can be concluded that the 
multivariate model can predict the strength reduction factors of high 
strength material with good accuracy. 

7. Comparison of simple and multivariate models 

To evaluate the effect of considering the chemical composition of the 

material on the predicted elevated temperature reduction factors, a 
comparison between the predicted values using simple regression (i.e. 
including temperature only in the ANN model) and multivariate 
regression (i.e. including temperature and chemical composition in the 
ANN model) is shown in Fig. 13 for both the training and the testing 
datasets. Both the simple and the multivariate regression methods depict 
the trend of the experimental values. However, the former predicts only 
a single reduction factor at each temperature that fits precisely between 
the collected observations, while the latter provides various reduction 
factors at each temperature depending on the chemical composition of 
the material. 

Tables 3 and 4 compares the experimental values of the ultimate 
tensile strength reduction factors with the predicted values from the 
above-described simple and multivariant regression methods together 
with their corresponding errors, where ku,exp is the experimental ulti-
mate tensile strength reduction factor, ku,m and ku,s are the corre-
sponding predicted reduction factors by the multivariate and simple 
regression methods, respectively and ρu,m and ρu,s are the percentage 
errors for the multivariate and simple regression methods, respectively. 
Reduction factors for temperatures below 350 ◦C are not included in the 
table as the scatter in the test data is not significant and the predictions 

Fig. 9. Chemical composition wt% for steel grades with nominal yield strength 690 MPa.  

Fig. 10. Chemical composition wt% for steel grades with nominal yield strength 960 MPa.  
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by the two regression methods are comparable. From Tables 3 and 4, the 
percentage error for both regression methods is relatively small at the 
low temperatures e.g. at 400 ◦C, the percentage error is less than 12% 
and 18% for multivariate and simple regression methods, respectively. 
However, at high temperatures, larger than 400 ◦C, high strength steels 
exhibit different elevated temperature performance depending on the 
chemical composition of the material, which in turn results in a signif-
icant scatter in the collected data. Having merely a single prediction at 
each temperature by adopting the simple regression method results in a 
significantly large error. For example, the simple regression method 
predicts ultimate tensile strength reduction factors 67% and 325% 
higher than the actual value at 550 ◦C and 700 ◦C, respectively. 
Adopting the multivariate method reduces the gap between the pre-
dicted and the actual values by predicting several reduction factors at 
the same temperature; reducing the absolute errors at 500 ◦C and 700 ◦C 
to 20% and 80%, respectively. The multivariate predicted values at 
800 ◦C and 900 ◦C are comparable with those predicted by the simple 
regression method due to the limited data availability. Thus, the accu-
racy can be increased by feeding further data to the model. The above 

presented discussion is also applicable to the other reduction factors of 
ky, k0.2 and kE. 

8. Effect of chemical composition on the strength reduction 
factor 

Fig. 14 depicts the absolute average error at various temperatures for 
ultimate and yield strength reduction factor predictions when different 
chemical composition was separately used in the ML algorithm, along 
with those corresponding to predictions without considering the 
chemical composition. The reduction factors can be accurately predicted 
at low temperature (500 ◦C) without considering the chemical compo-
sition as various models show approximately similar errors. However, 
the reduction factors show significant dependency on the chemical 
composition at high temperature, particularly between the temperature 
range of 600 ◦C and 900 ◦C. Furthermore, various chemical composi-
tions predict the ultimate strength reduction factor with different ac-
curacy. For example, the best correlation with the tested value was 
obtained when Ni was used in the ML algorithm while Si shows a poor 

Fig. 11. The adopted ANN Model with 4 neurons in the hidden layer for the multivariate model.  

Table 2 
Statistical parameters for the training data.  

Property reduction factor Multivariate model Simple model 

Training data Testing data Training data Testing data 

R2 MAE R2 MAE R2 MAE R2 MAE 

Tensile strength (ku)  0.98  0.030  0.99  0.023  0.97  0.038  0.95  0.047 
Yield stress (ky)  0.98  0.030  0.98  0.029  0.98  0.031  0.94  0.056 
Proof stress (k0.2)  0.98  0.035  0.98  0.028  0.96  0.054  0.97  0.039 
Young’s modulus (kE)  0.92  0.039  0.93  0.038  0.86  0.084  0.81  0.084  
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ku ku

ky ky

k0.2 k0.2

kE kE

Fig. 12. Accuracy of the developed model for the material reduction factors.  
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ku ku

ky ky

k0.2 k0.2

Fig. 13. Accuracy of the developed model for the material reduction factors with temperatures.  
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correlation. This suggests that Ni has a greater impact on the material’s 
ultimate strength at elevated temperatures than other chemical com-
positions. A similar trend was observed for the prediction of the yield 
strength reduction factor, but the accuracy of prediction was found to be 
less affected by the type of chemical composition used in the algorithm. 
All components were able to predict the reduction factor with similar 
accuracy, as shown in Fig. 14(b). 

9. Discussion 

The collected data from the literature elevated temperature test 
programmes of high strength steels shows significant scatter in the 
strength and stiffness reduction factors. Thus, predicting the reduction 
factors merely based on the temperature value and irrespective of the 
chemical composition underestimates these values leading to potentially 
overdesigned structural members. The method proposed in the present 
study informs the design process to make construction practices 
economical and more sustainable by optimising the steel design at 
elevated temperatures. Fire testing includes many parameters which 

may eventually have a profound effect on the results including chemical 
composition, the heating rate, holding time, and the strain rate of the 
test. Each of these test parameters can affect the fire performance of high 
strength steels. There is a lack of uniformity and absence of many test 
parameters in published works e.g. holding time and strain rate. While 
the presented methodology which accounts for the chemical composi-
tions is believed to predict the elevated temperatures with a higher ac-
curacy compared with the available methods in the literature, other 
parameters are of importance as well, and should be considered in future 
studies. It should be noted that a similar approach to the one presented 
in this study could be applied to arrive at the optimal chemical com-
positions that can perform well during the fire by using larger volume of 
input data and utilizing other ML optimization techniques. 

10. Conclusion 

The collected data from experimental tests in literature showed that 
there is a large degree of scatter in the elevated temperature reduction 
factors of high strength steels (HSS). The manufacturing process of HSS 
together with their chemical compositions lead to material character-
istics and fire performance that are different from those of conventional 
mild steels. The microstructure of HSS at ambient temperature is the 
martensite which is not stable and tends to transform to stable ferrite 
and cementite phases at elevated temperature. The strength of HSS is 
controlled by the amount of developed cementite which is primarily a 
function of the chemical composition of the steel and the attained 
temperature. The present study adopted a machine learning (ML) al-
gorithm of ANN to predict strength and stiffness reduction factors for 
HSS at elevated temperatures. The developed ML model is trained and 
validated using collected test data from published literature experi-
mental programmes. Both a multivariate and simple regression analysis 
were adopted and compared in this paper. The following conclusions 
were drawn based on the present study:  

• Multivariate regression can predict several reduction factors at a 
specific temperature depending on the chemical compositions while 
simple regression reports a single prediction at each temperature and 
results in a significantly large error. For example, the simple 
regression method predicts ultimate tensile strength reduction fac-
tors 67% and 325% higher than the actual value at 500 ◦C and 
700 ◦C, respectively. Adopting the multivariate method reduces the 
gap between the predicted and the actual values by predicting 

kE kE

Fig. 13. (continued). 

Table 3 
Comparison between actual and predicted strength reduction factor using simple 
and multivariate methods for the testing data set.  

Temp 
(oC) 

ku,act ku,m ku,s ρu,m% ρu,s% 

400  0.84  0.83 0.87 − 1 3 
400  0.87  0.85 − 2 0 
400  0.74  0.83 12 18 
400  0.84  0.84 1 3 
450  0.80  0.79 0.78 − 1 − 2 
450  0.64  0.75 17 22 
500  0.63  0.62 0.66 − 2 4 
500  0.50  0.64 28 32 
500  0.52  0.63 21 27 
500  0.67  0.71 6 − 1 
550  0.43  0.41 0.51 − 3 20 
550  0.61  0.57 − 6 − 16 
600  0.19  0.30 0.36 57 89 
600  0.34  0.28 − 18 6 
700  0.12  0.07 0.14 − 43 16 
700  0.10  0.07 − 26 42 
900  0.06  0.02 0.02 − 58 − 66 
900  0.03  0.03 − 12 –32  
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several reduction factors at the same temperature; reducing the ab-
solute errors at 500 ◦C and 700 ◦C to 20% and 80%, respectively.  

• The strength reduction factors are heavily influenced by the chemical 
composition at high temperatures, specifically within the tempera-
ture range of 600 ◦C to 900 ◦C.  

• Different chemical compositions predict the ultimate strength 
reduction factor with varying levels of accuracy at high temperature. 
The best correlation was found when Ni was individually used in the 
ML algorithm indicating that Ni has a greater impact on the mate-
rial’s ultimate strength at elevated temperatures than other chemical 
compositions.  

• The method proposed in the present study informs the design process 
to make construction practices economical and more sustainable by 
optimising the steel design at elevated temperatures. 
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