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On the cross-correlated relaxation of homonuclear spin pairs

by James William Whipham

When a spin ensemble is perturbed from thermal equilibrium, it may return to such a state via a

variety of incoherent mechanisms. This process is referred to as relaxation, the theory of which has

been of intense interest in the fields of nuclear magnetic resonance (NMR), among others. This thesis

considers the cross-correlated mechanisms of second-rank interactions, restricting the treatment to

the intrapair dipole-dipole and symmetric chemical shift anisotropy.

After reviewing the mathematical and quantum mechanical requirements, our focus is directed to

spin relaxation theory, and specifically on how one may describe the e↵ects of anisotropic rotational

di↵usion of the host molecule has on the spin system. This is applied to the description of spectral

line shape in a near-equivalent system exhibiting asymmetric broadening in its NMR spectrum. This

leads naturally to consider longitudinal and singlet-order relaxation.
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Chapter 1

Mathematical Formalism

As are many works covering linear algebra, this chapter is a flamboyant list of definitions. The

beauty of linear algebra lies in elegant mathematics resulting from a set of self-contained and in-

tuitive axioms, which behave as an extension of the basic arithmetic we’re all familiar with. In

the mathematical description of an NMR experiment, we are e↵ectively exploring a vector space

by mapping one vector onto another via unitary transformations. When describing the relaxation

dynamics after applying some perturbation to the system, vectors are mapped onto others via non-

unitary transformations. With this in mind, we will now briefly review the mathematics of linear

vector spaces, with an extension from a state (Hilbert) space to an operator (Liouville) space.

1



2 CHAPTER 1. MATHEMATICAL FORMALISM

1.1 Linear vector spaces

An abstract vector space consists of,

• A set V, with elements called vectors

• A set F of scalars (the field)

• Operations addition and multiplication, which are closed1 and satisfy the following axioms:

1. |V y ` |W y “ |W y ` |V y @ |V y , |W y P V commutativity

2. |V y ` p|W y ` |Xyq “ p|V y ` |W yq ` |Xy @ |V y , |W y , |Xy P V associativity

3. There exists a null vector |0y P V, such that |V y ` |0y “ |V y @ |V y P V

4. @ |V y P V there is a vector |´V y such that |V y ` |´V y “ |0y

5. c p|V y ` |W yq “ c |V y ` c |W y @ |V y , |W y P V and c P F distributivity

6. 1 |V y “ |V y @ |V y P V multiplication by 1

7. pc1 ` c2q |V y “ c1 |V y ` c2 |V y

8. pc1c2q |V y “ c1 pc2 |V yq

A set of vectors is said to be linearly independent [1] if the only linear relation of the form,

ÿ

i

ci |Viy “ 0, (1.1)

is trivial, when all ci “ 0. This leads directly to the definition of the dimension of the vector

space, which is that a vector space with dimension d may accommodate a maximum of d linearly

independent vectors. This itself allows us to define the concept of a basis; which is that any vector

|V y in a d-dimensional space may be written as a linear combination of d linearly independent

vectors,

|V y “
dÿ

i“1

ci |iy @ |V y , |iy P V, ci P F (1.2)

where the set of linearly-independent vectors t|iyud
i“1

is the basis, and scalars tciudi“1
are components

of vector |V y in basis t|iyud
i“1

.

1That is, addition and scalar multiplication produce another vector in V.
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1.1.1 Hilbert space

For our purposes, we will only be concerned with finite-dimensional spaces. A d-dimensional Hilbert

space Hd is a complex linear vector space with a defined scalar product [2–4]. Hd is complex in the

sense that the field is complex; i.e. tciudi“1
P C, and the scalar product is written as the bracket,

x�| y, to which is assigned a complex number [5]. As is customary in quantum mechanics, the vectors

in Hd are denoted with Greek letters. Often, the basis vectors will be denoted with Latin letters,

particularly when used as an index to sum over. This will be context-dependent. Components will

continue to be denoted c1, c2, ¨ ¨ ¨ , cd.

For each ket vector in Hd is a direct correspondence with a bra vector in a dual space,

|�y d.c.–Ñ x�| , (1.3)

and we write,

|�y “
dÿ

i“1

ci |�iy d.c.–Ñ x�| “
dÿ

i“1

c˚
i

x�i| , (1.4)

and the vectors |�y and x�| are said to be the adjoint of each other. We find that we have, for the

scalar product,

1. x�| y “ x |�y˚

2. x�|
´∞

d

i“1
ci | iy

¯
“ ∞

d

i
ci x�| iy

3. x�|�y • 0 @ |�y P Hd

It follows from the last inequality above that if x�|�y “ 0 then |�y “ |0y. From the first two, we

have,

˜
dÿ

i

c˚
i

x�i|
¸

| y “
dÿ

i

c˚
i

x�i| y . (1.5)

The scalar product vanishes for orthogonal vectors, x�| y “ 0. For orthonormal vectors, we

have,
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x�i|�jy “ �ij ”
#

1 if i “ j

0 if i ‰ j
, (1.6)

where �ij is the Kronecker delta. The norm of a vector in Hd is given by the root of the scalar

product of a vector with itself,

} |�y } “
a

x�|�y. (1.7)

Expressing vectors in Hd in an orthonormal basis t|iyud
i“1

allows us to write,

|�y “
dÿ

i“1

|iy xi|�y , (1.8)

and we see that the completeness relation,
∞

d

i“1
|iy xi| “ 1 is obtained, where 1 is the identity

operator. Taking the adjoint of both sides of eq. (1.8) gives the decomposition of the corresponding

vector in the dual space,

x�| “
˜

dÿ

i“1

|iy xi|�y
¸:

“
dÿ

i“1

x�|iy xi| ,
(1.9)

where : denotes the adjoint operation, and the relation p|iy xj|q: “ |jy xi| is used. Multiplying a

vector by unity may seem trivial, and perhaps didn’t need to be stated here or indeed expressed as

an axiom, but we will see this is a useful tool in numerous scenarios. This leads us to the important

topic of operators...

An operator maps a vector onto another in Hd [1]. Linear operators have the following properties

[1–3]:

1. A pc1 |�1y ` c2 |�2yq “ c1A |�1y ` c2A |�2y linearity

2. pA ` Bq |�y “ A |�y ` B |�y

3. pABq |�y “ A pB |�yq
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4. A |�ay “ a |�ay eigenvector |�ay and eigenvalue a of A

5. 1 |�y “ |�y identity operator

and for inverse operators we have, A´1A “ AA´1 “ 1. Operators will be represented with upper-

case Latin letters.

Equation (1.8) led to the expression for the identity operator as a sum of dyads of elements of

an orthonormal basis,

1 “
dÿ

i“1

|iy xi| , (1.10)

sometimes called the completeness relation.

From this, it follows that all linear operators in Hd have a dyadic decomposition for the form,

A “
ÿ

i,j

|iy xi|A|jy xj|

“
ÿ

i,j

Aij |iy xj| ,
(1.11)

where Aij “ xi|A|jy are matrix elements of A. The adjoint of an operator becomes,

A: “
ÿ

i,j

A˚
ji

|jy xi| , (1.12)

and the matrix elements are given by the complex-transpose of the matrix representation of A.

An operator N is diagonalisable if there exists an orthonormal basis such that,

N |iy “ ni|iy, ni P C, (1.13)

and the matrix elements of N may then be written,

Nij “ xi|N |jy

“ ni�ij ,
(1.14)
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and from (1.8) and (1.11) N has spectral decomposition,

N “
ÿ

i

ni |iy xi| , ni P C. (1.15)

Hermitian operators are linear operators which are self-adjoint ; i.e. H: “ H. Hermitian op-

erators have the property of being diagonalisable whilst having real eigenvalues, and thus may be

decomposed as,

H “
ÿ

i

ri |iy xi| , ri P R. (1.16)

These properties lead to Hermitian operators having a particularly important role in quantum

mechanics, and we will encounter them many times, and are often referred to as observables. An

immensely important theorem of Hermitian operators is as follows: Hermitian operators commute

if, and only if, they have a common orthonormal basis of eigenvectors. This theorem is integral to

quantum mechanics and will be returned to in chapter 2.

A positive operator is defined as,

x�|A |�y • 0 @ |�y , (1.17)

and the expectation value of operator A is real and non-negative. Then, every positive operator is

Hermitian and has spectral decomposition,

A “
ÿ

i

ai |�iy x�i| . (1.18)

Examples of positive operators relevant to quantum mechanics and NMR are density operators.

Consider the decomposition given by eq. (1.8). We may rewrite this as,

|�y “
ÿ

i

Pi |�y

“
ÿ

i

ci|iy
(1.19)
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where Pi “ |iy xi| is the projection operator [6] for ket |iy; that is, Pi projects out the ith component

of a vector. Pi also acts on x�| in the same way, projecting out component c˚
i
. projection operators

have the following properties:

1. P 2 “ P idempotent

2. P : “ P Hermitian

Density operators of pure states are projection operators [7]; something we will revisit in chapter 2.

A unitary linear operator has the property U : “ U´1. Unitary operators are diagonalisable and

have the spectral decomposition [3],

U “
ÿ

j

ei�j |jy xj| , �j P R, (1.20)

with eigenvalues which are phase factors, and i ” ?´1 here. From the definition of the exponential

of an operator,

eA “
8ÿ

k“0

1

k!
Ak, (1.21)

and from (1.16) and (1.20), it follows immediately that Uptq “ eiHt, t P R, is unitary when H is

Hermitian. Operators of the type Uptq “ eiHt are important in quantum mechanics and NMR since

propagators which act on wavefunctions and density operators take this form [6, 8, 9]. In this case,

we also find that,

U pt “ 0q “ 1 (1.22)

U pt1qU pt2q “ U pt1 ` t2q , (1.23)

when H at t1 commutes with H at t2.

The norm of a vector and the trace of an operator are invariant to unitary transformations

|�1y “ U |�y and A1 “ UAU´1. Using equation (1.7), we have,



8 CHAPTER 1. MATHEMATICAL FORMALISM

a
xU�|U�y “

b
x�|U :U |�y

“
a

x�|�y,
(1.24)

and if U : “ U´1, we have U :U “ 1. We may also write,

Tr
 
UAU´1

(
“ Tr

 
U´1UA

(

“ Tr tAu ,
(1.25)

where the cyclical permutation property of the trace is used.

A composite system of state |�y and | y is described by the tensor product,

ˇ̌
�A, B

D
“

ˇ̌
�A

D
b

ˇ̌
 B

D
(1.26)

and belongs to a composite Hilbert space,

HAB

d
“ HA

dA
b HB

dB
, (1.27)

where
ˇ̌
�A

D
P HA

dA
and

ˇ̌
 B

D
P HB

dB
. The associated bra vector has the form,

`ˇ̌
�A, B

D˘: “
@
�A, B

ˇ̌
“

@
�A

ˇ̌
b

@
 B

ˇ̌
, (1.28)

and belongs to the dual composite space of HAB

d
.

If t|iyudA

i“1
is a basis for space HA

dA
and t|jyudB

j“1
for space HB

dB
, then vector

ˇ̌
�AB

D
P HAB

d
may

be decomposed as,

ˇ̌
�AB

D
“

dÿ

i,j

cij
ˇ̌
iA, jB

D
, (1.29)

with the basis of HAB given by
 ˇ̌
iA, jB

D(d

i,j“1
“
 ˇ̌
iA

D
b

ˇ̌
jB

D(d

i,j“1
. The dimension d of space HAB

d

is then given by
`
dimHA

dA

˘
ˆ

`
dimHB

dB

˘
. States which cannot be written as in eq. (1.26), but instead
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by a superposition of such vectors, are called entangled. These states are of relevance to NMR (and

specifically to us), since singlet states are entangled states.

The scalar product becomes,

@
�A, B |✓A,�B

D
“

@
�A|✓A

D @
 B |�B

D
, (1.30)

where the product is taken over the individual spaces. It follows that
 ˇ̌
iA, jB

D(d

i,j“1
is an orthonor-

mal basis if,

@
iA, jB |i1A, j1BD

“ �ii1�jj1 ; (1.31)

i.e., if t|iyudA

i“1
and t|jyudB

i“1
are orthonormal bases.

If CA and DB are linear operators in HA and HB , respectively, then a product operator is defined

by the tensor product,

CA b DB ” CADB , (1.32)

which acts on vectors in individual spaces analogously to the scalar product above. That is,

CADB
ˇ̌
�A, B

D
“

ˇ̌
CA�A, DB B

D
, (1.33)

which acts linearly in the usual sense and we write,

CADB
ÿ

i,j

cij
ˇ̌
iA, jB

D
“

ÿ

i,j

cij
ˇ̌
CAiA, DBjB

D
. (1.34)

The tensor product of vectors defined by eq. (1.26) is used in the theory of quantum mechanical

angular momentum to couple state vectors belonging to di↵erent subspaces, and product operators

are often used to monitor the spin dynamics of an NMR experiment [6, 9, 10].
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1.1.2 Liouville space

The quantum mechanical description of NMR relies on the unitary and non-unitary dynamics of

density operators [6, 11]. As such, it is useful to work in Liouville space, LD; the space of linear

operators which act on Hd. The vectors of LD are denoted |Aq, |Bq, ¨ ¨ ¨ , and are the linear operators

which act on Hd described in the previous section.

When working in Liouville space, the dyad decomposition in eq. (1.11) may be written [8],

|Aq “
dÿ

i,j“1

“ Aij

ˇ̌
|iy xj|

˘
, (1.35)

and the dimension, D, of LD is seen to be pdim Hdq2.

The scalar product between operators in LD is defined,

pA|Bq “ Tr
 
A:B

(
. (1.36)

Every operator may be decomposed in an orthonormal basis, giving the scalar product the following

properties:

1. pQi|Qjq “ �ij orthonormality

2.
∞

D

i“1
|Qiq pQi| “ 1 completeness

3.
∞

D

i“1
|Qiq pQi|Aq spectral decomposition

In terms of dyads, we have
`

|iy xj|
ˇ̌
|i1y xj1|

˘
“ �ii1�jj1 .

As in Hd, we may define linear operators, called superoperators, which map vectors of LD onto

others. That is, superoperators act on the operators in the corresponding Hilbert space. The adjoint,

Hermitian, positivity, and unitary properties of operators acting on Hd extend to LD.

Important superoperators in our case are the commutation superoperator, Ĉ‚ “ rC, ‚s, and

unitary transformation superoperator, Û‚ “ U ‚ U´1, which have the properties,

Ĉ |Qq “
“
C,Q

‰
(1.37)
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and,

Û |Qq “ UQU´1. (1.38)

The former is important in describing how the spin system in question evolves temporally under

coherent and incoherent interactions, whilst the latter is used in describing the rotation of a spin

system.
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Chapter 2

Quantum Mechanics

The cornerstone of any modern theoretical treatment of NMR is quantum mechanics (QM), and

in particular the mathematical framework of angular momentum and spin. This is necessary, since

we often must juggle with the algebra of rotations, of which angular momentum operators are the

generators. Firstly, however, the postulates of QM are stated with some terseness, treating them as

axioms in the sense that they are simply accepted. In NMR, we deal with an ensemble of spins; that

is, a statistical mixture of spin states. The toolbox of chapter 1 is then used to develop the idea of a

density operator, allowing us in turn to average populations and coherences over the entire ensemble.

These nuclear spins must interact with their environment, though, giving rise to the structure of the

NMR spectrum as well as relaxation phenomena. Relevant QM operators and their properties are

discussed, and how they relate to these interactions. After these prerequisites, we close this chapter

how we initially intended; with a thorough discussion of rotations, leaving us with relations used

throughout the following chapters.

13
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2.1 Postulates

The postulates presented here are those of non-relativistic QM, and consider a single particle only

[2–4, 12].

Postulate 1 The state of an isolated quantum system may be described by a normalised ket | y
in a complex Hilbert space Hd. Such a state is referred to as a pure state.

From this, the basis elements are all possible states of the system, as are superpositions of basis

elements so long as the resultant ket is normalised.

Postulate 2 All possible measurements in a quantum system are described by a Hermitian opera-

tor, called an observable, which may be time-dependent. The possible measured values of observable A

are the associated eigenvalues ai in orthonormal basis t|ug

i
yud

i“1
, defined by the eigenvalue equation,

A |ug

i
y “ ai |ug

i
y , (2.1)

where the superscript g denotes the degree of degeneracy. That is, states associated with equal

eigenvalues, ai.

The probability ppaiq of obtaining ai when measuring A in a system of state | y is equal to,

ppaiq “ x |Pi| y , (2.2)

where Pi “ ∞
g

|ug

i
y xug

i
| is the projection operator which projects onto the eigenspace with eigenvalue

ai. Since
∞

i
Pi “ 1, it follows that the total probability equals unity,

∞
i
ppaiq “ x | y “ 1, as

expected. The expectation value for observable A is,

xAy “
ÿ

i

ppaiqai

“ x |A| y .
(2.3)

As eluded to in chapter 1, if observables A,B,C, ¨ ¨ ¨ commute, they have a common set of

eigenvectors. Thus, all observables may be measured to arbitrary precision. The set A,B,C, ¨ ¨ ¨ is

then called a complete set of commuting observables.
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Postulate 3 The state ket | ptqy evolves in time according to the time-dependent Schödinger

equation,

i~ d

dt
| ptqy “ Hptq | ptqy , (2.4)

where Hptq is the Hamiltonian (energy operator) of the quantum system, and i ” ?´1.

| ptqy evolves via a unitary transformation between arbitrary times t0 and t1 according to,

| ptqy “ Upt, t0q | p0qy (2.5)

,

where U :pt, t0q “ U´1pt, t0q, and has the properties, Upt0, t0q “ 1 and Upt2, t1qUpt1, t0q “ Upt2, t0q.
The dynamic equation for this operator is,

i~ d

dt
Upt, t0q “ HptqUpt, t0q. (2.6)

~ in equations (2.4) and (2.6) is the reduced Planck’s constant, having the value, ~ » 1.05ˆ10´34 J s.

From here on, this will be defined as ~ ” 1.

2.2 The density operator

Up until now, the description of the state of the spin system has been to use pure states; that is,

by vectors in the Hilbert space. A more general formalism to describe a quantum state would allow

us to describe mixed states. Density operators allow such a treatment, and lead to a statistical

description of an ensemble of states [7].

2.2.1 Pure states

The density operator for a pure state is defined as,

⇢ ” | y x | . (2.7)
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The following properties may be deduced immediately from this:

1. ⇢ is positive; i.e. x�| ⇢ |�y • 0 @ |�y P Hd

2. Tr t⇢u “ 1

3. ⇢ is idempotent; i.e. ⇢2 “ ⇢

As a consequence of the above properties, it follows that ⇢ is Hermitian, as well as Tr
 
⇢2

(
“ 1,

and the density operator for pure states is a projection operator. Making use of the decomposition

| y “ ∞
i
ci |iy, we find,

⇢ “
dÿ

i,j“1

⇢ij |iy xj| (2.8)

,

where ⇢ii “ |ci|2 P R`
0

are called populations and, from properties 1 and 2, are positive and sum to

unity. ⇢ij “ cic˚
j

P C (i ‰ j) are called coherences, and ⇢ij “ ⇢˚
ji

due to the Hermiticity of ⇢.

We may obtain the expectation value of operator O using the orthonormal basis t|iyu of Hd,

xOy “ x |O | y

“
dÿ

i,j“1

@
 

ˇ̌
i
D @

i
ˇ̌
O

ˇ̌
j
D @

j
ˇ̌
 

D

“
dÿ

i,j“1

xj| ⇢ |iy xi|O |jy

“
dÿ

j“1

xj| ⇢O |jy

“ Trt⇢Ou,

(2.9)

where the closure relation,
∞

i
|iy xi| “ 1 has been used extensively, with 1 the identity operator.

The pure state is an idealisation, whereby all spin systems of the ensemble are in the same state.

Thus, they may be described by the same state function, | iy. This is di↵erent for mixed states.



2.2. THE DENSITY OPERATOR 17

2.2.2 Mixed states

For an ensemble in thermal equilibrium, we have a mixed state, and we may only be able to assign a

probability pk that a spin system in the ensemble is in state | ky. The density operator for a mixed

state becomes [6],

⇢ ”
ÿ

k

pk | ky x k| , (2.10)

with
∞

k
pk “ 1.

For a time-dependent | kptqy, (2.10) expands as,

⇢ptq “
ÿ

k

pk | kptqy x kptq|

“
ÿ

k

pk
ÿ

i,j

⇢pkq
ij

ptq |iy xj|

“
ÿ

i,j

ciptqc˚
j

ptq |iy xj|

(2.11)

where the overbar denotes an ensemble average. The density operator of a mixed states has two of

the three properties outlined above for a pure state:

1. ⇢ is positive for pure and mixed states

2. Tr t⇢u “ 1 for pure and mixed states

It follows that an operator must fulfill these two conditions to be a density operator. However,

density operators of mixed states are not idempotent and,

Tr
 
⇢2

(
† 1. (2.12)

We see that the density operator of a mixed state is no longer a projection operator due to lacking

idempotency.
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2.2.3 Equation of motion

Using the time-dependent Schrödinger equation, the unitary dynamics of ⇢ptq become,

d

dt
⇢ptq “ d

dt
U⇢pt0qU´1

“ ´iHU⇢pt0qU´1 ` iU⇢pt0qU´1H

“ ´i
“
H, ⇢ptq

‰
,

(2.13)

where U ” Upt, t0q and ⇢ptq “ Upt, t0q⇢pt0qU´1pt, t0q have been used. Eq. (2.13) is often referred to

as the Liouville-von Neumann equation. In Liouville space we write this as,

d

dt

ˇ̌
⇢ptq

˘
“ L̂

ˇ̌
⇢ptq

˘
, (2.14)

with L̂‚ ” ´i
“
H, ‚

‰
, referred to as the Liouvillian superoperator.

2.2.4 Thermal equilibrium

At thermal equilibrium at temperature T , the populations obey the Boltzmann distribution, and the

density operator may be written,

⇢0 “ 1

Z
e´~H{kBT , (2.15)

where,

Z “ Trte´~H{kBT u, (2.16)

is the partition function of the system, H the Hamiltonian of the system, and kB is Boltzmann’s

constant. Evaluating ⇢0 in the eigenbasis t|iyud
i“1

ofH, we see that the expression for the populations

is given by,

⇢ii “ 1

Z
e´~Ei{kBT , (2.17)



2.3. ANGULAR MOMENTUM AND SPIN 19

where Ei is the energy associated with state |iy, and all coherences vanish at thermal equilibrium

(⇢ij “ 0 @ i ‰ j). Note, in equations (2.15)-(2.17), ~ is reintroduced, and will be so when required

in an exponent.

2.3 Angular momentum and spin

Thus far, quantum states and systems have been spoken about in a general and abstract way. We

will, however, be exclusively concerned with spin states; that is, quantum states associated with an

intrinsic property of subatomic particles, called spin. Spin behaves much in the same way as angular

momentum does in the quantum realm, at least in terms of the mathematics. Therefore, we will

cover the basic relations of angular momentum here and extend them to describe spin states and

their dynamics.

2.3.1 Angular momentum operators and their properties

Classically, a particle of mass m and velocity v located at position r from some origin has linear

momentum p “ mv and angular momentum,

L
pclq “ r ˆ p, (2.18)

where the superscript (cl) denotes a classical property. To obtain the QM operator, the substitution

p Ñ ´ir is made [13, 14], with r the gradient operator, which takes the form,

r “ B
Bxex ` B

Byey ` B
Bz ez, (2.19)

in Cartesian form, with ex, ey, and ez the Cartesian basis vectors of R3. The Cartesian components

of p are then,

px “ ´i
B

Bx, py “ ´i
B

By , and pz “ ´i
B

Bz , (2.20)

and those of L are,
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Lx “ ypz ´ zpy “ ´i

ˆ
y

B
Bz ´ z

B
By

˙
,

Ly “ zpx ´ xpz “ ´i

ˆ
z

B
Bx ´ x

B
Bz

˙
,

Lz “ xpy ´ ypx “ ´i

ˆ
x

B
By ´ y

B
Bx

˙
,

(2.21)

where i ” ?´1. From these definitions, we have,

“
xj , pk

‰
“ i�jk, (2.22)

and we see that position and momentum along the same direction cannot be measured to arbitrary

precision [13].

The fundamental angular momentum commutation relation is [2, 13, 14],

“
Lj , Lks “ i✏jklLl @j, k, l P tx, y, zu (2.23)

where ✏jkl is the Levi-Civita symbol defined by ✏jkl “ 1 if tj, k, lu is a cyclic permutation, ´1 if

tj, k, lu is an anti-cyclic permutation, and 0 otherwise.

The total angular momentum is defined,

L
2 “ L2

x
` L2

y
` L2

z
, (2.24)

and although the components of angular momentum do not commute, each commutes with L
2,

“
L
2, Lj

‰
“ 0 @j P tx, y, zu, (2.25)

and there exists a simultaneous eigenbasis for L
2 and each component Lj independently. By con-

vention, the eigenbasis considered is that associated with Lz, and satisfies the relations,
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L
2 |lmy “ l pl ` 1q |lmy (2.26)

Lz |lmy “ m |lmy , (2.27)

where l is an integer and m P tl, l ´ 1, ¨ ¨ ¨ ,´lu, giving 2l ` 1 values m may take, and |lmy are the

spherical harmonics, Ylmpx, y, zq [13], tabulated in table 2.1 for l “ 0, 1, 2.

In this case, when l takes integer values and operators the form (2.21), we are dealing with orbital

angular momentum. To generalise this and account for half-integer angular momentum, we define

general angular momentum operator J which obeys the commutation rules [13, 14],

“
Ji, Jj

‰
“ i✏ijkJk @i, j, k P tx, y, zu , (2.28)

for which
“
J
2, Ji

‰
“ 0 @i P tx, y, zu is a consequence. Introducing the ladder operators,

J` “ Jx ` iJy

J´ “ Jx ´ iJy,
(2.29)

the following commutation properties may be deduced:

“
J
2, J˘

‰
“ 0

“
Jz, J

k

˘
‰

“ ˘kJ˘ (2.30)

“
J`, J´

‰
“ 2Jz.

And since the general operators in eq. (2.28) are defined to be Hermitian, from definition (2.29) the

ladder operators are adjoints of each other. Matrix elements of the angular momentum operators in

a basis for which J
2 and Jz are diagonal are given by,
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l m Ylmpx, y, zq

0 0 1{
?
4⇡

1
0

b
3

4⇡

z

r

˘1 ¯
b

3

8⇡

x˘iy

r

2

0
b

5

16⇡

2z
2´x

2´y
2

r2

˘1 ¯
b

15

16⇡

px˘iyqz
r2

˘2
b

15

32⇡

px˘iyq2
r2

Table 2.1: The spherical harmonics in Cartesian coordinates for l “ 0, 1, 2 [13],

where r “
a
x2 ` y2 ` z2

@
jm|J2|j1m1D “ j pj ` 1q �jj1�mm1

@
jm|Jz|j1m1D “ m1�jj1�mm1

@
jm|Jx|j1m1D “ 1

2

 
j pj ` 1q ´ m1 `

m1 ˘ 1
˘( 1

2 �jj1�m,m1˘1 (2.31)

@
jm|Jy|j1m1D “ ¯i

1

2

 
j pj ` 1q ´ m1 `

m1 ˘ 1
˘( 1

2 �jj1�m,m1˘1

@
jm|J˘|j1m1D “

 
j pj ` 1q ´ m1 `

m1 ˘ 1
˘( 1

2 �jj1�m,m1˘1.

2.3.2 Coupling of angular momenta

The sum of two angular momenta,

J “ J1 ` J2, (2.32)

is also a QM angular momentum operator and satisfies the commutation property (2.28), and has

Cartesian components,
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Jx “ J1x ` J2x

Jy “ J1y ` J2y (2.33)

Jz “ J1z ` J2z.

This implies immediately that,

m “ m1 ` m2. (2.34)

Consider the two sets of commuting operators
 
J
2
1
, J1z,J2

2
, J2z,�

(
and

 
J
2
1
,J2

2
,J2, Jz,�

(
, where �

represents operators in the set invariant to unitary transformation (and, thus, rotation) [14]. The

simultaneous eigenvectors of the first set are denoted, |j1m1, j2m2y ” |j1m1y b |j2m2y, and obey the

relations,

J
2

1
|j1m1, j2m2y “ j1 pj1 ` 1q |j1m1, j2m2y

J1z |j1m1, j2m2y “ m1 |j1m1, j2m2y

J
2

2
|j1m1, j2m2y “ j2 pj2 ` 1q |j1m1, j2m2y

J2z |j1m1, j2m2y “ m2 |j1m1, j2m2y .

(2.35)

States |j1m1, j2m2y span a space of dimension p2j1 ` 1q p2j2 ` 1q and are referred to as the uncoupled

representation. States |jmy are simultaneous eigenvectors of the latter set of operators, and obey

the relations,

J
2

1
|jmy “ j1 pj1 ` 1q |jmy

J
2

2
|jmy “ j2 pj2 ` 1q |jmy

J
2 |jmy “ j pj ` 1q |jmy

Jz |jmy “ m |jmy .

(2.36)

States |jmy span a space of dimension 2j`1, and are called the coupled representation. To transform

between bases, a unitary transformation is performed. This is obtained using the completeness

relation over the basis t|j1m1, j2m2yu,
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|jmy “
ÿ

m1,m2

|j1m1, j2m2y xj1m1, j2m2|jmy . (2.37)

Thus, the two bases are connected by,

|jmy “
ÿ

m1,m2

Cjj1j2
mm1m2

|j1m1, j2m2y , (2.38)

where Cjj1j2
mm1m2

are the Clebsch-Gordan coe�cients [13], which are matrix elements of the unitary

transformation which connects the t|jmyu and t|j1m1, j2m2yu bases. They are defined as,

Cjj1j2
mm1m2

” xj1m1, j2m2|jmy , (2.39)

and chosen to be real by convention. Clebsch-Gordan coe�cients vanish unless,

m “ m1 ` m2 (2.40)

and

|j1 ` j2| • j • |j1 ´ j2| . (2.41)

Expressions for Clebsh-Gordan coe�cients are tabulated in many texts [13–16], but will not be

used explicitly. However, they will be used in the construction of the rank-1 and 2 chemical shift

anisotropy Hamiltonians in the irreducible spherical tensor formalism (see sections 2.4 and 2.5.2).

2.3.3 Angular momentum operators as generators of infinitesimal rota-

tions

Consider the rotation of particle coordinates by infinitesimal angle �� in the xy-plane. In polar

coordinates, this transformation then takes the system through � Ñ � ` �� and, hence, the angle

� Ñ �´ �� in the coordinates frame. This is written,

Rzp��q | pr, ✓,�qy “ | pr, ✓,�´ ��qy . (2.42)
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Since �� is defined to be infinitesimal, | pr, ✓,�´ ��qy may be expanded in the Taylor series,

| pr, ✓,�´ ��qy » | pr, ✓,�qy ´ ��
�

��
| pr, ✓,�qy ` O

“
p��q2

‰
` ¨ ¨ ¨ . (2.43)

Truncating at first-order,

| pr, ✓,�´ ��qy »
ˆ
1 ´ ��

�

��

˙
| pr, ✓,�qy , (2.44)

shows us that,

Rzp��q “ 1 ´ i��Lz, (2.45)

where it is recognised that the z-component orbital angular momentum operator in eq. (2.21) takes

the form, Lz “ ´i p�{��q in polar coordinates for infinitesial changes in �. The general relation for

a spatial rotation through �� about arbitrary axis with unit vector n is,

Rnp��q “ 1 ´ i��n ¨ L, (2.46)

and it is said that orbital angular momentum operators are the generators of infinitesimal rotations.

The operator for finite rotations over angle � may be constructed in term of successive rotations

by ��. Writing � “ N��, it follows that,

Rnp�q “ lim
NÑ8

ˆ
1 ´ i

�

N
n ¨ L

˙N

“ e´i�n¨L,

(2.47)

where the relation, limNÑ8 p1 ` x{NqN “ ex is used. The properties of a function of an operator

are determined by the operator itself. Thus, the operator in eq. (2.47) obeys the commutation

properties of L and the corresponding components. To involve rotations of spin angular momentum,

the substitution L Ñ J is made, and the general form of a rotation operator for finite angle of

rotation � is,
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Rnp�q “ e´i�n¨J, (2.48)

with Cartesian components,

R⇣p�q “ e´i�J⇣ @⇣ P tx, y, zu . (2.49)

From eq. (2.48), it follows that the rotation operator is a unitary operator, and maps one vector

onto another in Hd, with the property,

R:
⇣
p�q “ R´1

⇣
p�q “ ei�J⇣ “ R⇣p´�q. (2.50)

It follows that the adjoint or – equivalently – the inverse of the rotation operator performs a rotation

also of angle � but in reverse. That is, successive application of R⇣p�q with its adjoint leaves the

system unchanged, as expected.

As noted above, the algebraic properties of an operator are reflected in those of a function

of the operator. Thus, the rotation operator in (2.49) commutes with J
2, and so will a rotation

operator which is a product of rotation operators about the Cartesian axes. Therefore, the total

angular momentum is conserved under rotation, and state |jmy may be decomposed into a linear

combination of states of varying m upon upon application of Rnp�q. We write,

Rnp�q
ˇ̌
jm

D
“

jÿ

m1“´j

ˇ̌
jm1D@

jm1 ˇ̌Rnp�q
ˇ̌
jm

D

“
jÿ

m1“´j

Dpjq
m1mp�q

ˇ̌
jm1D,

(2.51)

where Dpjq
m1mp�q are the matrix elements of Rnp�q in the eigenbasis of J2, of which there are p2j `

1q ˆ p2j ` 1q entries [13, 14, 17]. These matrix elements are known as Wigner functions, and will be

returned to countless times; they are fundamental to the description of time-dependent molecular

rotations and the consequences these have on spin relaxation.
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2.3.4 Spin angular momentum

It is an experimental fact that many particles possess an intrinsic angular momentum, which we call

spin [18–20]. The spin angular momentum operator I is related to the magnetic moment µ of the

particle proportionally;

µ “ �I, (2.52)

where � is the magnetogyric ratio of the spin in question. The angular momentum operator referred

to thus far may be written,

J “ L ` I, (2.53)

where I is the total spin angular momentum operator with Cartesian component operators which

obey the commutation relations,

“
Ij , Ik

‰
“ i✏jklIl @j, k, l P tx, y, zu , (2.54)

as well as,

“
I
2, Ij

‰
“ 0 @j P tx, y, zu. (2.55)

Again, convention is to work in the eigenbasis associated with Iz, and satisfies the relations,

I
2 |ImIy “ I pI ` 1q |ImIy

Iz |ImIy “ mI |ImIy .
(2.56)

This time, though, I may be a half-integer, unlike l. Still, mI P tI, I ´ 1, ¨ ¨ ¨ ,´Iu, giving 2I ` 1

values mI may take.

The particularly important case for us is that when I “ j “ 1{2, and mI “ m takes values `1{2
and ´1{2; that is,
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I
2

ˇ̌
ˇ̌1
2
,˘1

2

F
“ 3

4

ˇ̌
ˇ̌1
2
,˘1

2

F

Iz

ˇ̌
ˇ̌1
2
,˘1

2

F
“ ˘1

2

ˇ̌
ˇ̌1
2
,˘1

2

F
.

Using the general expressions for the matrix elements of an angular momentum operator in

(2.31), the spin vector I may be written,

I “ 1

2
�, (2.57)

where the matrix representations of the Cartesian components of � are the Pauli matrices [2, 17],

given by,

�x “
¨

˝0 1

1 0

˛

‚; �y “
¨

˝0 ´i

i 0

˛

‚; �z “
¨

˝1 0

0 ´1

˛

‚. (2.58)

The Pauli matrices satisfy the cyclic commutation relation,

“
�j ,�k

‰
“ 2i✏jkl�l @j, k, l P tx, y, zu , (2.59)

and the anticommutation relation,

 
�j ,�k

(
“ 21�jk @j, k P tx, y, zu , (2.60)

which leads to, �2

j
“ 1. The Pauli matrices are Hermitian and traceless.

The ladder operators I˘ “ Ix ˘ iIy have the matrix representations,

I` “
¨

˝0 1

0 0

˛

‚; I´ “
¨

˝0 0

1 0

˛

‚. (2.61)

By convention in NMR, we will write
ˇ̌
1

2
,` 1

2

D
” |↵y and

ˇ̌
1

2
,´ 1

2

D
” |�y. From the discussion thus

far, the column vector representations are,
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|↵y “
¨

˝1

0

˛

‚; |�y “
¨

˝0

1

˛

‚, (2.62)

and we’re left with the relations,

I` |↵y “ 0

I` |�y “ |↵y

I´ |↵y “ |�y

I´ |�y “ 0.

(2.63)

We see that the ladder operators I˘ shift mI by ˘1 wherever possible, returning zero otherwise.

2.4 Spin Hamiltonian

In the description of magnetic resonance experiments, we have the luxury of dealing only with the

nuclear spin Hamiltonian of the system, rather than the full molecular Hamiltonian [21–24]. A total

spin Hamiltonian may be written as a sum of Hamiltonians, each describing a di↵erent interaction

⇤ the spin system is experiencing with its environment [25, 26]. We write,

Hspinptq “
ÿ

⇤

H⇤ptq (2.64)

These interactions may be split into two categories; coherent and incoherent interactions [27].

Coherent interactions are those which are uniform over the spin ensemble, whilst incoherent inter-

actions di↵er instantaneously for ensemble members. With some hindsight, we will denote these as

H0 and H1, respectively, where H1 is interpreted as a small perturbation on H0. We write,

Hspinptq “
ÿ

⇤

H⇤ptq

“ H0ptq ` H1ptq.
(2.65)

Each spin Hamiltonian H⇤ptq may be written as a dot product,
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H⇤ptq “ c⇤I ¨ A⇤ptq ¨ S⇤, (2.66)

where c⇤ is an interaction-specific constant, I is a spin-vector, A⇤ is a rank-2 Cartesian tensor with

nine independent components, and S⇤ is a second vector, which may be the same spin-vector as

the first, a di↵erent spin-vector, a static magnetic field vector, or the molecular angular momentum

vector, depending on the interaction in question. Due to this, the interactions also divide themselves

among three other categories; linear, bilinear, and quadratic in the spin operators.

2.4.1 The Zeeman interaction

The Zeeman interaction describes the intearction of a spin with a static magnetic field, such as that

of an NMR spectrometer, and is thus linear in spin operators. The classical expression for the energy

of interaction between a dipole and magnetic field is,

EZ “ ´µ ¨ B, (2.67)

where µ is the classical dipole moment and B is the magnetic field vector. Substitution of µ with

its QM analogue, µ Ñ ~�I, gives us the Zeeman hamiltonian, and introducing the identity operator

casts it into the form in equation (2.66) to give (while setting ~ ” 1 again),

HZ “ ´�I ¨ 1 ¨ B0, (2.68)

where � is the magnetogyric ratio of the spin, and B0 is the static magnetic field vector of the

spectrometer and defined in the z-component of the vector; i.e., B0 “ p0, 0, B0q. Performing the

tensor product in (2.68) and summing over all spins i,

HZ “
ÿ

i

!0iIiz, (2.69)

where !0i “ ´�iB0 is the Larmor frequency of spin i.

Note that inclusion of 1 in (2.68) was trivial, and included only to conform to the formalism

expressed by (2.66). This emphasises that there are no spatial coordinates of the nucleus associated
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with the spin in question. Thus, the Zeeman interaction is uniform over ensemble members and is

a coherent interaction, which does not cause relaxation.

2.4.2 The chemical shift interaction

Another interaction linear in spin is the chemical shift, which has coherent and incoherent com-

ponents. In the presence of an external static magnetic field, the motion of the electron cloud

surrounding a nucleus generates a localised magnetic field which also interacts with the spins. For

a spin in the system, a magnetic field B
1 “ ´� ¨ B0 is induced, where � is the chemical shift tensor.

Using (2.67),

ECS “ ´µ ¨ B1

“ µ ¨ � ¨ B0.
(2.70)

Again, making the substitution, µ Ñ �I and summing over all spins i gives,

HCS “
ÿ

i

�iIi ¨ �i ¨ B0. (2.71)

The chemical shift tensor (like all rank-2 tensors) may be written as a linear combination of

isotropic, antisymmetric, and symmetric components. These are given, respectively, by,

�p0q “ 1�iso (2.72)

�p´q “ 1

2

`
� ´ �T

˘
(2.73)

�p`q “ 1

2

`
� ` �T

˘
´ �p0q, (2.74)

where �iso “ 1

3
Trt�u, T denotes the transpose operation, and � “ �p0q ` �p´q ` �p`q. In solution

NMR, the Hamiltonian associated with �p0q describes a coherent interaction, and is a term in H0,

whilst those Hamiltonians associated with �p´q and �p`q are incoherent interactions and contained

in H1.
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2.4.3 Spin-spin coupling interaction

The spin-spin coupling is an indirect interaction between two spin moments, mediated by electrons

in chemical bonds [28]. Since two spins are involved, the interaction will be bilinear in the spin

operators. The treatment here follows that in Smith et al. (1992) [25]. The classical energy is,

EJ “ µi ¨ µ1
j

r3
ij

, (2.75)

where µ1
j
is the e↵ective magnetic moment of spin j. Defining the coupling tensor J

1pijq as that

which acts on µj to give,

J
1pijq ¨ µj “ 1

r3
ij

µ1
j
, (2.76)

the spin-spin coupling interaction energy between spins i and j becomes,

EJ “ µi ¨ J1pijq ¨ µj . (2.77)

As in all cases in this section, the Hamiltonian is obtained by making the substitution µ Ñ �I. By

convention, the coupling tensor is written in units of Hz and the Hamiltonian reads,

HJ “ 2⇡
ÿ

i†j

Ii ¨ Jpijq ¨ Ij , (2.78)

where �ipjq are absorded into J
pijq, and is related to J

1pijq by a constant.

2.4.4 Intrapair dipole-dipole interaction

Consider two dipoles, µi and µj , connected by a vector rij “ rj ´ ri. The classical interaction

energy is,

EDD “ µi ¨ µj

r3
ij

´ 3 pµi ¨ rq pµj ¨ rq
r5
ij

, (2.79)

and the Hamiltonian for all spins becomes [6],
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HDD “
ÿ

i†j

bij

#
Ii ¨ Ij ´ 3 pIi ¨ rijq pIj ¨ rijq

r2
ij

+
, (2.80)

where bij “ µ0�i�j~{p4⇡r3
ij

q is the dipolar coupling constant for spins i and j. Eq (2.80) may be

written,

HDD “
ÿ

i†j

bijIi ¨ Dpijq ¨ Ij , (2.81)

where elements of Dpijq are given by,

Dpijq
pq

“ �pq ´ 3epjq
p

epiq
q
, (2.82)

where p, q P tx, y, zu, �pq is the Kronecker delta defined by eq (1.6) in chapter 1, and ep and eq

are components along coordinates p and q. From (2.81), the intrapair dipole-dipole interaction is

bilinear in spin operators.

2.4.5 Spin-rotation interaction

Consider a charged particle orbiting some origin, with mass m and at radius r. The magnetic field

induced is given by the classical expression,

B “ µ0

4⇡

v ˆ r

r3
q, (2.83)

where q is the charge of the particle and v the velocity. Writing this in terms of the classical angular

momentum about the origin, Lpclq “ r ˆ p with p “ mv as in eq. (2.18), the induced field is,

B “ ´µ0

4⇡

q

mr3
L

pclq. (2.84)

Now consider a collection of particles, each with charge qj orbiting at a radius rj of their own

about the same origin. One can imagine that if a spin is at or close to this origin, it will experience

the induced field as the sum of all contributions,
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B “ ´µ0

4⇡

ÿ

j

qj
mjr3j

L
pclq
j

. (2.85)

Using ESR “ ´µ ¨B for a single particle, substitution of Lpclq and µ for their QM counterparts, and

summing over all spins i, the Hamiltonian may be written,

HSR “ ´
ÿ

i

�iIi ¨ B

“ µ0

4⇡

ÿ

i,j

�i
qj

mjr3j
Ii ¨ Lj .

(2.86)

This is often written in the formalism of the tensor product as [29],

HSR “
ÿ

i

Ii ¨ Cpiq ¨ L, (2.87)

where L is the angular momentum of the molecule which hosts the spin system, and C
piq is a tensor

describing the spatial aspects of the interaction for spin i and is usually determined experimentally.

The spin-rotation mechanism will not be considered explicitly in any theoretical treatment that

follows. Here, then, it will be stated that the spin-rotation mechanism is incoherent, and spin

relaxation results from molecular collisions, which cause molecular reorientation, which in turn

modulates the magnetic field created by the molecular rotations.

2.4.6 Random field interaction

The last Hamiltonian to be considered here is that associated with spins experiencing random

fluctuating fields [26]. This occurs when magnetic moments close to the spin system generate small,

time-dependent magnetic fields. These small fields may be generated from paramagnetic impurities

in solution, molecular geometry fluctuations, solvent molecules, etc. The spin system, therefore,

experiences a local field which is random in magnitude and direction.

Recall eq. (2.67) and substitude B Ñ B
randptq, where Brandptq is the time-dependent fluctuating

random field vector the spin experiences. The relevant Hamiltonian becomes,
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Hrandptq “ ´
ÿ

i

�iIi ¨ Brand

i
ptq. (2.88)

In an isotropic medium, the field produced is isotropic, since the mechanisms responsible for the

fluctuating field will have no preferred orientation. Then,
A
Brand

⇣
ptq2

E
@⇣ P tx, y, zu are equivalent,

where B⇣ is the component of Brandptq along B
rand

⇣
.

2.4.7 Coherent and incoherent interactions

In solution state NMR, whereby the molecule hosting the spin system tumbles in an isotropic

medium, the coherent interactions are the Zeeman, isotropic chemical shift, and isotropic spin-spin

coupling interactions [6, 9, 11]. We write,

H0 “ HZ ` HCS ` HJ

“
ÿ

i

!0i p1 ´ �isoq `
ÿ

i†j

JijIi ¨ Ij
(2.89)

where HCS is the isotropic chemical shift Hamiltonian, and Jij “ xTrtJijuy.

The remaining interactions are incoherent, and H1 is given by,

H1ptq “ HDDptq ` HCSAptq ` HSRptq ` H 1
J
ptq ` Hrandptq (2.90)

where HCSAptq is the chemical shift anisotropy Hamiltonian [30–32] and may be split into anti-

symmetric and symmetric terms, HCSA “ Hp´q
CSA

` Hp`q
CSA

, and H 1
J
contains the antisymmetric and

symmetric terms for the spin-spin coupling [33], H 1
J

“ Hp1q
J

`Hp2q
J

. Each Hamiltonian is left without

expansion in eq. (2.90), since the most convenient representation is in terms of irreducible spherical

tensor components; their properties under rotation are known and convenient (see section 2.5.2).

Other interactions may also be active which aren’t covered here, particularly spin relaxation by

paramagnetic agents [34–39] and quadrupolar relaxation [34, 40–42].
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2.5 Tensor operators

As eluded to in section 2.4, a tensor may often be decomposed into a linear combination of tensors

which cannot be decomposed further. A tensor which may be decomposed in such a way is termed

reducible, and those which cannot are irreducible. Generally, a tensor of rank-k has dk components,

where d is the dimension of the space. Thus, for a three-dimensional Cartesian tensor, there are 9

components.

2.5.1 Reducible tensors

A Cartesian tensor may be decomposed into tensors of rank-0, 1, and 2 as,

A “ A
p0q ` A

p1q ` A
p2q, (2.91)

with,

A
p0q “ 1Tr tAu

A
p1q “ 1

2

`
A ´ A

T
˘

(2.92)

A
p2q “ 1

2

`
A ` A

T
˘

´ A
p0q,

where the superscript T denotes the transpose operation. In terms of components,

Ap0q
ij

“ 1

3

ÿ

i,j

Aij�ij

Ap1q
ij

“ 1

2
pAij ´ Ajiq (2.93)

Ap2q
ij

“ 1

2
pAij ` Ajiq ´ Ap0q

ij
.

The tensor A
p0q in eq. (2.92) has only one independent component, and transforms as does a

scalar under rotation; i.e. invariant to such transformations. Tensor Ap1q is an antisymmetric tensor

of rank-1, which transforms as does a vector under rotation and has three independent components.

The tensor Ap2q is a symmetric, traceless tensor of rank-2, which has five independent components.

A
p2q may not be reduced further and the five independent components define an irreducible tensor.
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2.5.2 Irreducible spherical tensors and rotations

Cartesian tensors become unsuitable for theoretical treatments in NMR since they are reducible

under rotation. However, spherical tensors are irreducible and transform linearly among themselves

under rotation. An irreducible spherical tensor (IST) of rank k is defined to be a set of 2k ` 1

operators Tkq, with q P tk, k ´ 1, ¨ ¨ ¨ ,´ku, which transform analogously to angular momentum

under rotation of coordinate frame [13, 17, 43, 44]. That is,

R̂np�qTkq “
`kÿ

q1“´k

Dpkq
q1q p�qTkq1 , (2.94)

where R̂np�q is rotation superoperator for finite rotation �, and defined by R̂np�q‚ ” Rnp�q‚R:
n

p�q.
Like Y ˚

lm
p✓,�q “ p´1qm Yl´mp✓,�q, IST have the property,

T :
kq

“ p´1qq T :
k´q

. (2.95)

Defining commutation superoperators Ĵz ”
“
Jz, ‚

‰
and Ĵ˘ ”

“
J˘, ‚

‰
, we may write the commu-

tation relations of IST operators as,

ĴzTkq “ qTkq, (2.96)

and,

Ĵ˘Tkq “ tk pk ` 1q ´ q pq ˘ 1qu 1
2 Tk,q˘1. (2.97)

Note how the eigenvalues in (2.96) and (2.97) take analogous form to the matrix elements of Jz and

J˘ in the eigenbasis t|kqyu of J2 and Jz.

To find the matrix elements of Tkq, (2.96) may be used to write,

@
jm

ˇ̌
ĴzTkq ´ qTkq

ˇ̌
j1m1D “ 0

ñ
`
m ´ m1 ´ q

˘ @
jm

ˇ̌
Tkq

ˇ̌
j1m1D “ 0,

(2.98)
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and xjm|Tkq |j1m1y vanishes unless m “ m1 ` q, suggesting it to be proportional to the Clebsch-

Gordan coe�cients. This leads to the Wigner-Eckart theorem, which states: The matrix elements

of spherical tensor operators Tkq, with respect to the eigenbasis of J2 and Jz, are given by,

@
jm

ˇ̌
Tkq

ˇ̌
j1m1D “ Cjj

1
k

mm1q

@
j
››Tkq

››j1D, (2.99)

where Cjj
1
k

mm1q “
@
j1m1, kq|jm

D
is a Clebsch-Gordan coe�cient and

@
j
››Tkq

››j1D is some value inde-

pendent of m, m1, and q, and is called the reduced matrix element. This theorem has been used

to show that singlet- and triplet-states do not mix under the influence of HDD [45], generalising the

findings of early singlet-NMR experiments [46]; a topic we return to in section 3.3.

The IST operator basis forms a matrix basis for the decomposition of Cartesian tensors, with

elements given by,

T00 “ ´ 1?
3

pTxx ` Tyy ` Tzzq

T10 “ ´ i?
2

pTxy ´ Tyxq

T1˘1 “ ´1

2
rTzx ´ Txz ˘ i pTzy ´ Tyzqs

T20 “ 1?
6

r3Tzz ´ pTxx ` Tyy ` Tzzqs

T2˘1 “ ¯1

2
rTxz ` Tzx ˘ i pTyz ` Tzyqs

T2˘2 “ 1

2
rTxx ´ Tyy ˘ i pTxy ` Tyxqs ,

(2.100)

where Txx has entry 1 for component tTxxu
11

and 0 elsewhere, Txy has entry 1 for component

tTxyu
12

and 0 elsewhere, and so on. A Cartesian tensor A decomposition in this basis takes the

form,

A “
2ÿ

k“0

`kÿ

q“´k

AkqTkq. (2.101)

This basis is orthonormal,

Tr
!
T

:
kq
Tk1q1

)
“ �kk1�qq1 , (2.102)

and, thus, coe�cients Akq may be obtained by,
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Akq “ Tr
!
T

:
kq
A

)
. (2.103)

These components have a similar form to tensors in (2.100) with some minor sign changes. They

are,

A00 “ ´ 1?
3

pAxx ` Ayy ` Azzq

A10 “ i?
2

pAxy ´ Ayxq

A1˘1 “ ´1

2
rAzx ´ Axz ¯ i pAzy ´ Ayzqs

A20 “ 1?
6

r3Azz ´ pAxx ` Ayy ` Azzqs

A2˘1 “ ¯1

2
rAxz ` Azx ¯ i pAyz ` Azyqs

A2˘2 “ rAxx ´ Ayy ¯ i pAxy ` Ayxqs .

(2.104)

Explicit forms for these coe�cients are considered on a case-by-case basis for some of those Cartesian

tensors in section 2.4.

In general, a spin Hamiltonian may be written in terms of IST operator components by decom-

posing the spatial Cartesian tensor. We write, for interaction ⇤,

H⇤ “ c⇤I ¨ A⇤ptq ¨ S⇤

“ c⇤Tr tA⇤ptqX⇤u

“ c⇤Tr

#
2ÿ

k“0

`kÿ

q“´k

A⇤

kq
ptqT⇤

kq

2ÿ

k1“0

`k
1ÿ

q1“´k1
X⇤

k1q1T
⇤

k1q1

+

“ c⇤

2ÿ

k“0

`kÿ

q“´k

p´1qq A⇤

k´q
X⇤

kq
,

(2.105)

where X⇤ “ S⇤ b I is a dyad which has analogous components to A⇤ in the IST operator basis,

and are given by,
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X00 “ ´ 1?
3

pSxIx ` SyIy ` SzIzq

X10 “ i?
2

pSxIy ´ SyIxq

X1˘1 “ ´1

2
rSzIx ´ SxIz ¯ i pSzIy ´ SyIzqs

X20 “ 1?
6

r3SzIz ´ pSxIx ` SyIy ` SzIzqs

X2˘1 “ ¯1

2
rSxIz ` SzIx ¯ i pSyIz ` SzIyqs

X2˘2 “ 1

2
rSxIx ´ SyIy ¯ i pSxIy ` SyIxqs ,

(2.106)

and the relation T
:
kq

“ p´1qq Tk´q has been used, along with Tr
!
T

:
kq
Tk1q1

)
“ �kk1�qq1 .

2.5.3 Active and passive rotations

Upon describing the relaxation properties of a spin system in solution, time-dependent rotations of

the spatial part of the Hamiltonian are used to describe the e↵ects of stochastic tumbling of the

molecule in space. Rotations may be described in one of two ways, which both rely on the use of

observer- and body-fixed frames of reference, and the meaning of equation (2.94) is determined by

which point of view is taken. These are the active and passive points of view. The mathematical

formalism of rotations has been studied strictly and presented in detail in the literature[43, 44, 47,

48]. Here, inspiration is taken from the work and reviews by Bouten (1968), Mueller (2011), Man

(2014), and Millot and Man (2012), and the relations are used extensively throughout the following

chapters.

Before giving the details of active and passive rotations, a convention must be chosen for the

angles which parameterise them. Consider a fixed reference frame, OF

xyz
, and a rotated reference

frame, OR

xyz
. The orientation of the rotated frame with respect to the fixed one may be parameterised

by the Euler angles, ⌦ “ t↵,�, �u. Suppose these two frames are initially coincident. Then, these

angles describe successive rotations which transform OR

xyz
from its initial orientation coincident with

OF

xyz
to its final orientation. They are:

1. A rotation about the zF -axis by angle ↵

2. A rotation about the transformed yR-axis by angle �

3. A rotation about the transformed zR-axis by angle �
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Figure 2.1: Euler-angle parameterisation for a rotation in which the fixed and rotated reference

frames are initailly coincident; Euler-angles ⌦ “ t↵,�, �u parameterise the orientation of the

rotated in the fixed reference frame.

The above transformations are depicted in figure 2.1. Note that each of the operations are performed

using the right-hand rule.

Under the active rotation formalism, a body may be rotated about a fixed origin O relative to an

observer-fixed frame Oxyz. The orientation of the body is then determined by the orientation of the

body-fixed OR

xyz
frame relative to the observer-fixed OF

xyz
frame. In the passive rotation formalism,

OR

xyz
is the observer-fixed frame, whilst OF

xyz
is the body-fixed frame. Then, the observer-fixed frame

is rotated with respect to the body and its fixed frame under a passive rotation. Further, in both

contexts, the coordinates of the body are expressed in the observer-fixed reference frame.

Without further ado, Bouten derives the active rotation operator as,
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RAp⌦q “ e´i↵Lze´i�Lye´i�Lz , (2.107)

and the passive rotation operator as,

RPp⌦q “ ei�Lzei�Lyei↵Lz , (2.108)

and we take the liberty of making the substitution L⇣ Ñ I⇣ in the following discussion. From eq.

(2.107) and (2.108), the two operators are unitary as well as each other’s inverse, and we may write,

RAp⌦q “ R´1

P
p⌦q “ R:

P
p⌦q, (2.109)

or simply,

RAp⌦qRPp⌦q “ 1. (2.110)

The physical consequence is that if one were to perform an active rotation on a body, followed

by a passive one using the same set of Euler angles, the body would be appear unchanged in the

observer-fixed frame. That is, the passive rotation restores the body to its original position.

The distinction between active and passive rotations is important, since the associated QM

operators clearly have di↵ering matrix elements. For an active rotation, these matrix elements

(Wigner functions, see section 2.3.3) may be written,

Dpkq
qq1 p⌦q “ e´i↵qe´i�q

1
dpkq
qq1 p�q, (2.111)

and for a passive rotation,

Dpkq
qq1 p⌦q “ ei�qei↵q

1
dpkq
qq1 p´�q. (2.112)

For both types of rotation, dp0q
00

p˘�q “ 1. The remaining values for dpkq
qq1 p�q with k “ 1, 2 are

gathered in tables 2.2 and 2.3, respectively. These entries correspond to the active point of view,

and substitution � Ñ ´� will correspond to the passive one.
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q, q1 `1 0 ´1

`1 cos2 �

2
´ 1?

2
sin� sin2 �

2

0 1?
2
sin� cos� ´ 1?

2
sin�

´1 sin2 �

2

1?
2
sin� cos2 �

2

Table 2.2: Reduced Wigner functions, d
p1q
qq1 p�q @ q, q

1 P t`1, 0,´1u. Using these, the Wigner

functions for an active rotation are constructed with eq. (2.111). For a passive rotation, substitu-

tion � Ñ ´� is made and eq. (2.112) is used.

q, q1 `2 `1 0 ´1 ´2

`2 cos4 �

2
´ 1

2
sin� pcos� ` 1q

b
3

8
sin2� 1

2
sin� pcos� ´ 1q sin4 �

2

`1 1

2
sin� pcos� ` 1q 1

2
p2cos� ´ 1q pcos� ` 1q ´

b
3

2
sin�cos� 1

2
p2cos� ` 1q pcos� ´ 1q 1

2
sin� pcos� ´ 1q

0
b

3

8
sin2�

b
3

2
sin�cos� 1

2

`
3cos2� ´ 1

˘
´

b
3

2
sin�cos�

b
3

8
sin2�

´1 1

2
sin� pcos� ´ 1q 1

2
p2cos� ` 1q p1 ´ cos�q

b
3

2
sin�cos� 1

2
p2cos� ´ 1q pcos� ` 1q 1

2
sin� pcos� ` 1q

´2 sin4 �

2

1

2
sin� p1 ´ cos�q

b
3

8
sin2� 1

2
sin� pcos� ` 1q cos4 �

2

Table 2.3: Reduced Wigner functions, dp2q
qq1 p�q @ q, q

1 P t`2,`1, 0,´1,´2u. The same applies

here as in caption 2.2 to construct the Wigner functions for active and passive rotations.
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In the theoretical description of spin rotation, we are concerned with the way in which the spatial

tensors of spin Hamiltonians associated with incoherent interactions rotate. These spatial tensors

are outlined in section 2.4, and include the intrapair dipole-dipole, first- and second-rank chemical

shift, and spin-rotation tensors, among others. From the rotational properties of IST operators and

the decompositon of Cartesian tensors in such a basis (recall eq. (2.94) and (2.101)), an alluring

means to achieve such a rotation is to first decompose a Cartesian tensor in the IST operator basis,

and use the linearity of the rotation superoperator to rotate the decompostion component-wise.

Then,

R̂np⌦qA “ R̂np⌦q
2ÿ

k“0

`kÿ

q“´k

AkqTkq

“
2ÿ

k“0

`kÿ

q“´k

Akq

`kÿ

q1“´k

Dpkq
q1q p⌦qTkq1

“
2ÿ

k“0

`kÿ

q“´k

`kÿ

q1“´k

Dpkq
q1q p⌦qAkqTkq1 ,

(2.113)

and the coe�cient of component q1 of the transformed rank-k tensor is given by,

A1
kq1 “

`kÿ

q“´k

Dpkq
q1q p⌦qAkq. (2.114)

Note the di↵erence between eq. (2.94) (rotation of an IST operator) and (2.114). The former

describes the transformation of a component of a tensor of a specific rank, while the latter gives the

coe�cient of a specific tensor component after transformation.

With some hindsight, we will be using a covariant spherical tensor basis, writing the decompo-

sition of a tensor T as,

T “
2ÿ

k“0

`kÿ

q“´k

BkqTkq, (2.115)

where Bkq “ A˚
kq

is a covariant spherical tensor component. Then, eq (2.114) becomes,

B1˚
kq1 “

`kÿ

q“´k

Dpkq
q1q p⌦qB˚

kq
, (2.116)

or, equivalently,
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B1
kq1 “

`kÿ

q“´k

Dpkq˚
q1q p⌦qBkq, (2.117)

which is the relation used throughout the following chapters. The reason for the use of the covariant

basis is due to being that which is implemented in the SpinDynamica [49] software package, which

is consistent with the definition of a covariant basis in Man [43], and that used in Mehring [50]. The

active rotation formalism, covariant basis, and transformation in eq. (2.117) are also used implicitly

throughout Smith et al. [25, 26].

2.6 Measurement and NMR

Solution-state NMR samples host highly mixed states. We thus turn to the density operator for-

malism to interpret experiments, and observables are averaged over the ensemble [11]. The solution

to the Liouville-von Neumann equation in which the density operator evolves under coherent inter-

actions only may be written,

ˇ̌
⇢ptq

˘
“ Ûpt, t0q

ˇ̌
⇢pt0q

˘
, (2.118)

where Ûpt, t0q is a unitary transformation superoperator (see section 1.1.2, eq. (1.38)). Incorporating

incoherent interactions, evolution is no longer unitary, and we write eq. 2.118 in terms of the so-called

Liouvillian superoperator, L̂, as,

ˇ̌
⇢ptq

˘
“ V̂ pt, t0q

ˇ̌
⇢pt0q

˘
, (2.119)

with solution,

V̂ pt, t0q ” eL̂pt´t0q, (2.120)

for a time-independent L̂.1 Working in an eigenoperator basis tQquD
q“1

of L̂, we find,

ˇ̌
⇢ptq

˘
“

ÿ

q

ˇ̌
Qq

˘`
Qq

ˇ̌
⇢pt0q

˘
e⇤qpt´t0q, (2.121)

1We will see in chapter 3 that L̂ is indeed time-independent, and will be so throughout chapters 4 and 5, too.
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where ⇤q is an eigenvalue of L̂ associated with operator
ˇ̌
Qq

˘
.

In NMR, the detection method is most often quadrature detection [6, 9, 51], and the observables

are (´1)-quanatum coherences, represented by the operator, ´ i

2

ˇ̌
I´

˘
ei�rec with �rec the receiver

phase. Setting �rec “ 0, the signal may then be written,

sptq “ i

2

`
I´

ˇ̌
⇢ptq

˘

“
ÿ

q

aqe
⇤qpt´t0q (2.122)

,

with aq the peak amplitude given by,

aq “ i

2

`
I´

ˇ̌
Qq

˘`
Qq

ˇ̌
⇢pt0q

˘
. (2.123)

Density operator
ˇ̌
⇢pt0q

˘
corresponds to the state of the ensemble at the beginning of the detection

period, and is created via a pulse-sequence. This is returned to in chapters 4 and 5 when considering

spectral line-shapes and longitudinal relaxation processes.



Chapter 3

Spin Relaxation

Following some perturbation, our spin system returns to thermal equilibrium via a complicated set

of processes catalysed by molecular collisions. Collectively, this set constitutes spin relaxation. Each

of these processes is Markovian in nature, and the task of describing a given process is forwarded to

a master equation.

The history of theoretical spin relaxation is a rich one, and two prominent frameworks are

considered here; that attributed to Wangsness, Bloch, and Redfield, and that to Lindblad (and

others). In the former, it is well documented that positivity of the density operator isn’t always

conserved. The latter remedies this by invoking the secular approximation, whereby su�ciently

oscillating terms are neglected, resulting in trace-preserving dynamics.

Here, though, no approximation will be invoked other than the agreed starting point; that

the molecule hosting the spin system maintains a rigid geometry as it tumbles stochastically in a

homogeneous medium. Then, secular terms only survive as a natural mathematical consequence for

a molecule of arbirary geometry. This in itself suggests translation to Lindbladian form o↵ers a valid

master equation.

47
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3.1 The Markovian master equations

A Markovian process is one which is memoryless and stochastic. These processes are described by

the temporal evolution of the density operator of the system; i.e. a master equation. Sparing the

reader of the mathematical details,1 the general form of a QM Markovian master equation is [52,

53],

d

dt
⇢ptq “ L⇢ptq, (3.1)

where L is the generator of a quantum-dynamical semigroup; i.e. generates the propagator with

semigroup property,

V pt1qV pt2q “ V pt1 ` t2q, (3.2)

where the initial time t0 is set to 0, and t1, t2 • 0. We see immediately that our generator satisfies

the solution,

V ptq “ eLt, (3.3)

and, therefore, must be time-independent.

When describing relaxation in Liouville space, we see that L ” L̂ is the Liouvillian superoperator,

and superoperator V̂ ptq preserves the trace of the density operator.

The intention behind the theory of open quantum systems is to disentangle the dynamics of the

quantum system from the environment. After a brief discussion of the interaction picture and its

practical consequences, we see how just how this is achieved, allowing us to follow this up with two

theoretical treatments describing a Markovian process.

1The original derivation for a quantum Markovian master equation utilises mathematics outside the scope of this

thesis; the interested reader is deferred elsewhere, and to references therein.
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3.1.1 Quantum dynamics in the interaction picture

As described in section 2.4, interactions may be categorised as coherent or incoherent, described,

respectively, by Hamiltonians H0 and H1. The Liouville-von Neumann equation becomes,

d

dt
⇢ptq “ ´i

“
H0 ` H1, ⇢ptq

‰
. (3.4)

To remove the influence of the coherent Hamiltonian, we move to the interaction picture [11] using,

Q̃ptq “ e`iH0tQe´iH0t, (3.5)

for an arbitrary operator, Q, and the time-dependence of Q̃ptq is contained in the exponents for

time-independent operators. The ptq has been dropped from H0ptq for brevity. Eq. (3.4) in the

interaction picture becomes,

d

dt
⇢̃ptq “ ´i

“
H̃1ptq, ⇢̃ptq

‰
. (3.6)

Formal integration gives,

⇢̃ptq “ ⇢̃p0q ´ i

ª
t

0

dt1“H̃1pt1q, ⇢̃pt1q
‰
, (3.7)

which o↵ers approximate solutions via perturbative treatments, such as Wangsness-Bloch-Redfield

(WBR) relaxation theory [11, 54–58].

3.1.2 Open quantum systems

A spin system will inevitably interact with its environment. When the environment is in thermal

equilibrium we refer to it as the bath. Then, we describe the Hilbert space of the total system HT

as the composite Hilbert space,

HT “ HS b HB, (3.8)
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where HS and HB are the Hilbert spaces of the system and bath, respectively. Then, the total

Hamiltonian may be written,

HTptq “ HS b 1B ` 1S b HB ` Hintptq, (3.9)

where HS and HB are Hamiltonians of the system and bath, respectively, and Hintptq is the Hamil-

tonian describing the interaction between the two. HS and HB may or may not be time-dependent

depending on the physical problem at hand, but are written not to be so here to draw analogy

with the situation in solution NMR. Eq. (3.9) illustrates the motivation behind the theory of open

quantum systems; the dynamics of the bath and spin system are separated, and the evolution of the

latter is inferred from those of the total system.

The dynamics of the spin system density operator ⇢S are studied by application of the partial

trace over the bath degree of freedom to density operator of the whole system [3, 52, 57]. That is,

⇢S “ TrB
 
⇢T

(
, (3.10)

which may be appreciated by noting that the trace of a density operator equates to unity. ⇢S is

referred to as the reduced density operator, and the equation of motion becomes,

d

dt
⇢Sptq “ ´iTrB

“
HT, ⇢Tptqs. (3.11)

The most popular master equation used in NMR to date is that referred to as the Redfield

equation, and, recently, interest has been sparked by integration of a Lindbladian formalism in the

treatment of long-lived states.

3.1.3 WBR as standard repertoire

As mentioned in section 3.1.1, semiclassical WBR theory o↵ers an approximate perturbative solution

to the Liouville-von Neumann equation. Stated explicitly in the introduction of the 1965 paper by

Redfield, this theory concerns a system interacting weakly with the bath [57]. Here, H0 is time-

independent, and the state vector of each member of the ensemble may be written in terms of its

eigenvectors. H1, however, is a time-dependent, stochastic, and Hermitian perturbation.
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Starting from eq. (3.7), substitution back into the Liouville-von Neumann equation and succes-

sive integration to second-order yields,

d

dt
⇢̃ptq “ ´i

“
H̃1ptq, ⇢̃p0q

‰
´
ª

t

0

dt1“H̃1ptq,
“
H̃1pt1q, ⇢̃pt1q

‰
, (3.12)

where ⇢ptq is the density operator of the spin system only, and gives no information on the bath. An

ensemble averaging of all terms is taken, since remote parts of the spin ensemble relax independently,

leading to di↵ering local density operators. From here, a stream of assumptions are introduced to

perform an ensemble averaging;

1. H1ptq “ 0; more precisely, all matrix elements vanish under ensemble averaging

2. The quantity xQy evolves slowly on the timescale of the correlation time ⌧c

3. It is permissable to make the substitution ⇢̃pt1q Ñ ⇢̃ptq on the RHS of eq. (3.12)

4. The upper limit of integration may be extended to infinity

5. Higher-order terms may be neglected in eq. (3.12); a consequence of WBR theory being a

weak collision theory.

Assumption 1 holds immediately, since any interactions which have non-vanishing Hamiltonian ma-

trix elements under averaging may simply be included in a redefined H0, and are not considered

perturbations. Then, since all remote parts of the ensemble have equivalent ⇢p0q, the first term in

eq. (3.12) vanishes. If we assume the expectation value of some observable Q varies slowly on the

timescale of ⌧c, then so does ⇢̃ptq, and we choose t " ⌧c. This leads directly into assumption 3, since

only values of t di↵ering from t1 by a small factor of ⌧c will contribute to the integral. Eq. (3.12) is

then local in time, in the sense that time evolution of the system depends only on ⇢ptq, but is not

yet Markovian since it depends on the initial preparation of the system. Further, introducing the

integration variable, ⌧ “ t ´ t1, we may extend the integral to infinity as a consequence of t " ⌧c.

The semiclassical Markovian master equation has finally become,

d

dt
⇢̃ptq “ ´

ª 8

0

d⌧
“
H̃1ptq,

“
H̃1pt ´ ⌧q, ⇢̃ptq

‰‰
, (3.13)

where the overbar has been dropped from the LHS for clarity.
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Eq. (3.13) is the celebrated Redfield equation, which has been the master equation utilised with

great success in the NMR literature and elsewhere. However, there are some caveats which one must

bear in mind. Firstly, the semiclassical theory predicts the system will evolve to equal populations

of all states, which corresponds to a bath of infinite temperature on thermodynamic grounds. This

is remedied in the original literature with the ad hoc correction, ⇢ptq Ñ ⇢ptq ´ ⇢eq on the RHS of eq.

(3.13). In fact, it has been shown theoretically [59, 60] that eq. (3.13) predicts unphysical behaviour

along the way when a system prepared “in an unusual way” returns to thermal equilibrium.

Although eq. (3.13) is the more practical form of the Redfield equation, a purely quantum

mechanical form of the equation was also derived [11, 57], which considers the bath explicitly and

utilises the partial trace to isolate the spin system dynamics rather than take an ensemble average.

This also considers only the weak-coupling limit, and the Hamiltonian of the full system is assumed

to be of the form,

HT “ HS ` HB ` Hint, (3.14)

where Hint here is a time-independent perturbation loosely coupling the spin system to the bath. In

this limit, it is assumed the bath – and hence its density operator – is influenced by the system in

a negligible way. The total density operator may be approximated as,

⇢Tptq » ⇢Sptq b ⇢B, (3.15)

where the time-dependence of the total density operator is contained in the spin system.

From here, derivation is analogous to that leading to eq. (3.12), but the partial trace over bath

degrees of freedom is introduced to give,

d

dt
⇢̃Sptq “ ´iTrB

“
H̃intptq, ⇢̃Sp0q b ⇢̃B

‰
´
ª

t

0

dt1TrB
“
H̃intptq,

“
H̃intpt1q, ⇢̃Spt1q b ⇢̃B

‰‰
, (3.16)

where the notation ⇢̃Tptq “ ⇢̃Sptq b ⇢̃B is used. The same assumptions are made as above, but the

correlation time considered is that associated with the bath correlation functions. That is,

1. TrB
“
H̃intptq, ⇢̃Sp0q b ⇢̃B

‰
“ 0
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2. If the time scale in consideration is large compared to that which the correlation of the bath

decays (t " ⌧B), then we may again make the substitution ⇢Spt1q Ñ ⇢Sptq, and the quantum

mechanical Redfield equation is local in time

3. The substitution t1 Ñ t´ ⌧ is again made with the upper limit of integration taken to infinity,

since the QM Redfield equation still depends on the initial preparation of the system and is

non-Markovian otherwise; since t " ⌧B, the integrand vanishes su�ciently fast

The QM Markovian master equation becomes,

d

dt
⇢̃Sptq “ ´

ª
t

0

d⌧TrB
“
H̃intptq,

“
H̃intpt ´ ⌧q, ⇢̃Sptq b ⇢̃B

‰‰
. (3.17)

Although eq. (3.17) is Markovian, it does not always preserve the positivity of the density

operator [61–64], and as such the operator describing the final state may not fulfill the requirements

of a density operator. To rectify this, the secular approsimation is made, which amounts to averaging

over large oscillating terms in the master equation. This in turn leads to the Gorini-Kossakowski-

Sudarshan-Lindblad (or, simply, Lindblad) master equation...

3.1.4 The Lindblad master equation

In order to secularise eq. (3.17) and put it in Lindbladian form, the perturbing Hamiltonian is

written in operator form. The transformation to the interaction frame provides a master equation

written with oscillating terms, which are then averaged out [52, 53]. This serves as a pedagogical

precursor to the treatment given to the semiclassical equation in section 3.2.

The Hamiltonian Hint may be written in the Schroödinger picture as,

Hint “
ÿ

j

Sj b Bj , (3.18)

where Sj P HS and Bj P HB are operators. The secular approximation is achieved by choosing Sj

to be eigenoperators of ĤS‚ “
“
HS, ‚

‰
which satisfy,

“
HS, Sj

‰
“ ´!jSj . (3.19)
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In the interaction picture of the spin system, these operators become,

S̃jptq “ eiHStSje
iHSt “ e´i!jtSj (3.20)

which immediately implies,

“
HS, S

:
j

‰
“ `!jS

:
j
. (3.21)

We then write,

H̃intptq “
ÿ

j

e´i!jtSj b B̃jptq, (3.22)

where B̃jptq are interaction picture operators of the bath. From the requirement, TrB
“
H̃intptq, ⇢̃Sp0qb

⇢̃B
‰

“ 0, we note,

A
B̃jptq

E
” TrB

!
B̃jptq⇢̃B

)
“ 0, (3.23)

and bath averages vanish for all B̃jptq. Note that the spectrum t!iu is discrete and is in general

degenerate. Substitution of eq. (3.22) into the master equation (3.17) yields,

d

dt
⇢̃Sptq “

ÿ

j,k

eip!k´!jqt�jkp!jq
´
Sj ⇢̃SptqS:

k
´ S:

k
Sj ⇢̃Sptq

¯
` h.c., (3.24)

where h.c. means Hermitian-conjugated terms of those already expressed, and �ijp!iq are the Fourier
transforms of bath correlation functions; i.e. quantum mechanical spectral density functions,

�jkp!jq ”
ª 8

0

d⌧
A
B̃:

j
ptqB̃kpt ´ ⌧q

E
ei!j⌧ , (3.25)

with �:
jk

p!jq “ �˚
kj

p!kq, and
A
B:

j
ptqBkpt ´ ⌧q

E
” TrB

!
B:

j
ptqBkpt ´ ⌧q⇢B

)
.

The timescale on which the open system evolves is defined by a typical value of ⌧S “ |!j ´ !k|´1,

with !j ‰ !k. If this is large compared to the relaxation time of the open system, the terms for
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which !j ‰ !k may be assumed to average to zero much more rapidly than relaxation occurs. That

is, terms proportional to eip!k´!jq, where !j ‰ !k are neglected. We’re then left with,

d

dt
⇢Sptq “

ÿ

j,k

�jkp!jq
´
Sj⇢SptqS:

k
´ S:

k
Sj⇢Sptq

¯
` h.c., (3.26)

and although di↵erent operators Sj and Sk are involved, they are to account for degeneracy, and

both correspond to eigenfrequency !j of ĤS‚.

In a final step, we may obtain the Lindblad form of the QM master equation by decomposing

�jkp!jq into Hermitian and non-Hermitian parts,

�jkp!jq “ 1

2
�jkp!jq ` i✏jkp!jq, (3.27)

with,

�jkp!jq “ �jkp!jq ` �:
jk

p!jq “
ª `8

´8
d⌧

A
B̃:

j
ptqB̃kpt ´ ⌧q

E
ei!j⌧ (3.28)

✏jkp!jq “ 1

2i

´
�jkp!jq ´ �:

jk
p!jq

¯
. (3.29)

The dynamics may then be separated into Hermitian and non-Hermitian, and the master equation

in the interaction picture becomes,

d

dt
⇢Sptq “ ´i

“
HS ` Hshift, ⇢Sptq

‰
` D

“
Sj , Sk

‰
⇢Sptq, (3.30)

where Hshift “ ∞
jk
✏jkp!jqSjSk is a Hermitian operator which contributes to the unitary dynam-

ics, and shifts the unperturbed energy levels due to the system-bath coupling. D
“
Sj , Sk

‰
‚ is the

dissipator of the master equation, and takes the form,

D
“
Sj , Sk

‰
‚ “

ÿ

j,k

�jkp!jq
ˆ
Sj ‚ S:

k
´ 1

2

!
S:
k
Sj , ‚

)˙
, (3.31)

and the QM spectral density functions satisfy,



56 CHAPTER 3. SPIN RELAXATION

�jkp!jq “ �kjp´!jqe�!j , (3.32)

where � ” 1{kBT is the inverse temperature, which is a consequence of ⇢ptq reaching thermal

equilibrium at t Ñ 8.

Finally, Suppose, ⇢B is a stationary state of HB, then it is permissable to make the substitution

t Ñ ⌧ , and �jkp!jq are time-independent. Then, the generator in eq. (3.30) satisfies the time-

independent solution of the Liouville-von Neumann equation and has the semigroup property defined

by eq. (3.2) and (3.3).

A final note to put the Lindblad master equation into the context of NMR: HS and Hshift are

combined into the coherent dynamics, and a refined coherent Hamiltonian H0 “ HS ` Hshift may

thusly be redefined. This is analogous to the dynamic frequency shift [65–67], which stem from the

imaginary part of the classical spectral density function. Practically, the parameters which define

energy levels will be experimentally determined in all following simulations. We, therefore, account

for these shifts indirectly in all that follows.

3.2 Relaxation via anisotropic rotational di↵usion

The theory of spin relaxation often focuses on the rotational di↵usion of the molecules hosting the

spin system; that is, molecular tumbling modulates the time-dependent interactions via random

reorientation of the molecule, which in turn is brought about by molecular collisions. Here, the

tumbling is considered to be entirely anisotropic, implying the molecule is of arbitrary geometry.

The derivation of the spectral density function is very much in the vain of Huntress (1968 and 1970)

[68, 69].

3.2.1 Operator form of the Redfield Equation

In section 2.5, spin Hamiltonians were written in terms of tensor components in the irreducible

spherical tensor (IST) basis, and for interaction ⇤ we write,
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H⇤ptq “ c⇤

2ÿ

k“0

`kÿ

q“k

p´1qqA⇤

k´q
ptqX⇤

kq

“ c⇤
2ÿ

k“0

`kÿ

q“´k

p´1qqA⇤

kq
ptqX⇤

k´q
,

(3.33)

where the Hermiticity H⇤ “ H⇤: is used in the second line. Writing the pertubative Hamiltonian

H1ptq in the form of eq. (3.33), and subsequent substitution into the semiclassical Redfield equation,

(3.13), yields,

d

dt
⇢̃ “ ´

ÿ

⇤,⇤1
c⇤c⇤1

ÿ

k,k1

ÿ

q,q1
p´1qq`q

1 ”
X̃⇤

k´q
,
”
X̃⇤

1
k1´q1 , ⇢̃ptq

ıı

ˆ
ª `8

0

d⌧A⇤

kq
ptqA⇤1

k1q1 pt ´ ⌧q,
(3.34)

where q P tk, k ´ 1, ¨ ¨ ¨ ,´ku and similarly for q1. To remove excessive indices in the expressions, the

time derivative on the LHS of (3.34) may be written as a sum of terms for which k, k1, ⇤, and ⇤1

are kept constant, and linearity of the di↵erential operator is used. We write,

d

dt
⇢̃ “

ÿ

⇤,⇤1

ÿ

k,k1

d

dt
⇢̃⇤⇤

1
kk1 , (3.35)

where,

d

dt
⇢̃⇤,⇤

1

kk1 “ ´c⇤c⇤
1 ÿ

q,q1
p´1qq`q

1 “
X̃⇤

kq
,
“
X̃⇤

1
k1q1 , ⇢̃ptq

‰‰

ˆ
ª `8

0

d⌧A⇤

k´q
ptqA⇤1

k1´q1 pt ´ ⌧q.
(3.36)

While this is a trivial and seemingly pointless step, it will avoid having six indices to sum over (and

even more when Wigner functions are introduced).

To write the equation of motion in the Schrödinger picture, we introduce similar requirements

to those of the Hint open system operators in eq. (3.9),

“
H0, Xkq

‰
“ Ĥ0Xkq “ !qXkq

“
H0, X

:
kq

‰
“ Ĥ0X

:
kq

“ ´!qX
:
kq
,

(3.37)
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with !´q “ ´!q. The operator Xkq in the interaction picture may be written,

X̃kqptq “ eiĤ0tXkq

“ ei!qtXkq,
(3.38)

where !q is an eigenfrequency. The stochastic Hamiltonians then become,

H̃⇤

1
ptq “ eiĤ0tH1ptq

“ c⇤
ÿ

k,q

p´1qqA⇤

k´q
ptqX⇤

kq
ei!qt,

(3.39)

and,

H̃⇤

1
pt ´ ⌧q “ eiĤ0tH⇤

1
pt ´ ⌧q

“ c⇤
ÿ

k,q

p´1qqA⇤

k´q
pt ´ ⌧qX⇤

kq
ei!qte´i!q⌧ .

(3.40)

Inserting (3.39) and (3.40) into (3.36), and utilising H⇤ “ H⇤: gives us,

d

dt
⇢̃⇤,⇤

1

k,k1 “ ´c⇤c⇤1
ÿ

q,q1
p´1qq`q

1
ei

`
!q´!q1

˘
t
“
X⇤

kq
,
“
X⇤

1:
k1q1 , ⇢̃ptq

‰‰

ˆ J⇤⇤
1

kk1qq1
`
!q1

˘
,

(3.41)

where J⇤⇤
1

kk1qq1 p!q1 q is the classical spectral density function,

J⇤⇤
1

kk1qq1 p!qq “ Re

ª `8

0

d⌧A⇤

k´q
ptqA⇤1˚

k1´q1 pt ´ ⌧qei!q1⌧ , (3.42)

whereby only the real part is expressed in the master equation, and the ensemble average is taken

over the spatial components only since ergodocity of the ensemble is assumed, and they are the

components which contain the temporal dependence. The imaginary part is called the dynamic

frequency shift and may be shown to induce small shifts in the unperturbed energy levels. Then,

a refined coherent Hamiltonian H0 may be considered, accounting for these e↵ects. This is an

analogous situation found above when considering Hshift in the Lindblad master equation.
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We can now write the Redfield equation in operator form in the Schrödinger picture. Hopping

into Liouville space from our Hilbert space,

d

dt
|⇢q “ ´iĤ0|⇢ptqq ` �̂|⇢ptq ´ ⇢eqq, (3.43)

where �̂‚ is the relaxation superoperator defined by,

�̂‚ “ ´
ÿ

⇤,⇤1
c⇤c⇤

1 ÿ

k,k1

ÿ

q,q1
p´1qq`q

1
ei

`
!q´!q1

˘
tJ⇤⇤

1
kk1qq1 p!q1 qX̂⇤

kq
X̂⇤

1:
k1q1 ‚, (3.44)

where X̂kq ”
“
Xkq, ‚

‰
has been defined, and |⇢eqq is the thermal equlibrium density operator which is

included as an ad hoc correction in order for the system populations to return to thermal equilibrium

described by a Boltzmann equilibrium. Terms for which ⇤ “ ⇤1 are called auto-correlated, and cross-

correlated otherwise.

For any mechanism treated in the following chapters, the operators X⇤

kq
are known. Thus, our

task is reduced to finding the spectral density function for the system in question...

3.2.2 Classical spectral density function

For a Hamiltonian of the form in (3.33) to make sense, the spatial and spin tensors must be written

in the same reference frame. However, the spin tensors are known in the observer-fixed laboratory

(L-) frame (that which has the z-axis along the static magnetic field) and the spatial tensor a

molecule-fixed arbitrary axis system. The latter is easily written in the principal axis (P-) frame of

the interaction, whereby the tensor is diagonal, which is also molecule-fixed.

The tensors A⇤ contain the spatial components of the Hamiltonian and, therefore, become time-

dependent due to molecular tumbling when expressed relative to the L-frame. We, thus, write the

components of A⇤ relative to the L-frame as time-dependent stochastic functions in the P-frame.

That is, we use the transformation,

”
A⇤

kq
ptq

ıL
“

`kÿ

q“´k

Dpkq˚
qp

p⌦PL

t
q
”
A⇤

kp

ıP
, (3.45)

from section 2.5.3, where the Wigner functions have time-dependent Euler angles as their argument,

and PL denotes the set of angles which parameterise the rotation taking the initial orientation of the
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P-frame into coincidence with the L-frame; that is, a passive rotation formalism is used, and will be

chosen as the formalism in all treatments hereafter. We see that the time-dependence of the time-

correlation function in equation (3.42) is contained entirely in the Wigner functions. In fact, the

time-correlation function is between the Wigner functions only. It follows from these considerations

that the spectral density function for interactions ⇤ and ⇤1 is,

J⇤⇤
1

kk1qq1 p!q1 q “ Re

ª `8

0

d⌧
”
A⇤

k´q
ptq

ıL”
A⇤1˚

k1´q1 pt ` ⌧q
ıL

e´i!q1⌧

“
ÿ

p,p1

”
A⇤

kp

ıP”
A⇤

1˚
k1p1

ıP
Re

ª `8

0

d⌧Dpkq˚
´qp

p⌦PL
0

qDpk1q
´q1p1 p⌦PL

⌧
qe´i!q1⌧ ,

(3.46)

where ⌦0 is the set of Euler angles describing the orientation of the molecular axis at time t ` 0,

and ⌦⌧ the set of Euler angles describing molecular axis orientation at time t ` ⌧ . In practice, the

P-frame may di↵er between interactions. As such, with some hindsight, the reference frame which

diagonalises the di↵usion tensor (D-frame) is a convenient stop-o↵ point since it is both molecule-

fixed (transformations between the P- and D-frames are time-independent) and independent of

interaction. The transformation from the P- to the D-frame, then the D-frame to the L-frame,

means the spectral density function may be written,

J⇤⇤
1

kk1qq1 p!q1 q “
ÿ

m,m1

”
A⇤

km

ıD”
A⇤

1˚
k1m1

ıD
Re

ª `8

0

d⌧Gkk
1

qq1mm1 p⌧qe´i!q1⌧ , (3.47)

with the correlation function given by,

Gkk
1

qq1mm1 p⌧q “ Dpkq˚
´qm

p⌦DL
0

qDpk1q
´q1m1 p⌦DL

⌧
q, (3.48)

and where,

”
A⇤

km

ıD
“

`kÿ

p“´k

Dpkq˚
mp

p⌦PDq
”
A⇤

kp

ıP
. (3.49)

To find Gkk
1

qq1mm1 p⌧q, we write eq. (3.48) as,

Gkk
1

qq1mm1 p⌧q “
ª ª

d⌦0d⌦⌧D
pkq˚
´qm

p⌦0qDpk1q
´q1m1 p⌦⌧ qP p⌦0qP p⌦⌧ |⌦0q, (3.50)
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where P p⌦0q is the probability that the molecule will be at initial orientation ⌦0, and P p⌦⌧ |⌦0q is

the conditional probability that the molecule is at orientation ⌦⌧ at time t ` ⌧ , given that it was at

orientation ⌦0 at time t ` 0. The DL superscripts have been dropped.

Right away, we know that for a rigid molecule in an isotropic liquid, P p⌦0q is constant for all

⌦0, and is equal to,

P p⌦0q “ 1

8⇡2
. (3.51)

The time-derivative of the probability that the molecule will be at orientation ⌦⌧ at time t ` ⌧ , in

the limit of a rigid molecule reorienting in random steps of small angular displacement, is given by

the Favro equation [70],

B
B⌧ P p⌦⌧ q “ ´Hrot´di↵P p⌦⌧ q, (3.52)

where Hrot´di↵ is the rotational-di↵usion Hamiltonian, which may be written in the form,

Hrot´di↵ “ J ‚ D ‚ J

“ D ‚ pJ b Jq,
(3.53)

where J and D are the QM angular momentum operator and di↵usion tensor, respectively. That is,

the di↵usion tensor describes the spatial aspect of the Hamiltonian in this case. Favro shows that

the solution to equation (3.52) is,

P p⌦⌧ q “
ª
d⌦0P p⌦0qP p⌦0|⌦⌧ q, (3.54)

for which P p⌦0q is given by equation (3.51) and the conditional probability is,

P p⌦0|⌦⌧ q “
ÿ

n

x np⌦0q| np⌦⌧ qy e´En⌧ , (3.55)

where  np⌦q are eigenfunctions of Hrot´di↵ with the associated eigenvalue En. This solution is

reliant on the boundary condition P p⌦0|⌦⌧“0q “ �p⌦0,⌦⌧ q, where �p⌦0,⌦⌧ q is the Dirac delta

function [2].
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If eq. (3.53) is written in the D-frame, it takes the form Hrot´di↵ “ ∞
i
DiJ2

i
in which i P tx, y, zu

and Ji have become the Cartesian angular momentum operators. This takes the form of the rigid-

rotor Hamiltonian when considering the substitution Di Ñ ~2{2Ii, where Ii is the moment of inertia

about principal axis i. Thus, (3.55) may be expanded in asymmetric-rotor eigenfunctions [13, 68,

69],

| np⌦qy Ñ |nJMy “
ÿ

K

apJq
n,K

|JKMy , (3.56)

with,

|JKMy “
c

2J ` 1

8⇡2
DpJq˚

MK
p⌦q

“ p´1qM´K

c
2J ` 1

8⇡2
DpJq

´M´K
p⌦q,

(3.57)

and apJq
n,K

constants which satisfy
∞

K

!
apJq
n,K

)2

“ 1. Substitution into (3.55), and extending the sum

over n, J , and M , the time-correlation function becomes,

Gkk
1

qq1mm1 p⌧q “ 1

p8⇡2q2
ÿ

n,J,M

p2J ` 1qe´E
pJq
n ⌧

ÿ

K,K1
apJq˚
n,K

apJq
n,K1

ˆ
ª
d⌦0D

pkq˚
´qm

p⌦0qDpJq
MK

p⌦0q
ª
d⌦⌧D

pk1q
´q1m1 p⌦⌧ qDpJq˚

MK1 p⌦⌧ q.
(3.58)

Using the orthogonality of Wigner functions,

ª
d⌦Dpjq

pq
p⌦qDpj1q

p1q1 p⌦q “ 8⇡2

2j ` 1
�jj1�pp1�qq1 , (3.59)

gives us,

Gkk
1

qq1mm1 p⌧q “ �kJ�´qM�mK�k1J�´q1M�m1K1
1

2J ` 1

ÿ

n

e´E
pJq
n ⌧

ÿ

K,K1
apJq˚
n,K

apJq
n,K1 . (3.60)

We see that k “ J “ k1,´q “ M “ ´q1,m “ K, and m1 “ K 1. Since k “ k1 and q “ q1, the above

becomes,
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Gk

qmm1 p⌧q “ Dplq˚
´qm

p⌦DL
0

qDplq
´q1m1 p⌦DL

⌧
q

“ �kk1�qq1Gkk
1

qq1mm1 p⌧q

“ 1

2k ` 1

ÿ

n

apkq˚
n,m

apkq
n,m1e´E

pkq
n ⌧ .

(3.61)

The strict requirement that q “ q1 in eq. (3.61) removes non-secular terms from the relaxation

superoperator in eq. (3.44), and yields,

�̂‚ “ ´
ÿ

⇤,⇤1
c⇤c⇤1

ÿ

k,q

J⇤⇤
1

kq
p!qqX̂⇤

kq
X̂⇤

1:
kq

‚ (3.62)

with,

J⇤⇤
1

kq
p!qq “

ÿ

m,m1

”
A⇤

km

ıD”
A⇤

1˚
km1

ıD
Re

ª `8

0

d⌧Gk

qmm1 p⌧qei!q⌧ . (3.63)

Note how the oscillating terms have vanished from the relaxation superoperator, and secularisa-

tion is a natural consequence, when stochastic molecular tumbling is mathematically described in a

framework of anisotropic rotational di↵usion of a rigid molecule.

3.2.3 Approximation to quantum spectral density functions

In contrast to the QM spectral density functions in section 3.1.4, the classical spectral density

functions have the symmetry property,

Jkqp!qq “ Jkqp´!qq. (3.64)

However, we have seen that,

�jkp!jq “ �kjp´!jqe�!j , (3.65)

for QM spectral density functions.

On considering interaction of the open system with its environment, Redfield [57] suggested that

Jkqp!qq 9 e´ 1
2~�!q , which allows one to avoid to ad hoc correction in eq. (3.43), and is also presented
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in Abragam’s text [11]. Independently, various ad hoc corrections have been developed in order for

semiclassical spectral density functions to display the same behaviour as their QM counterparts

[71–77]. Importantly, the detailed balance condition must be satisfied; at thermal equilibrium, every

transition out of a state in the system is balanced on average by a transition into said state [78].

A correction which has had success in applications to neutron scattering [71], vibrational relax-

ation [79], and recently in NMR spin relaxation processes [59, 60, 80], is the Schofield correction

[71],

�jkp!jq Ñ Jkqp!qqe 1
2~�!q , (3.66)

which happens to have the same convenient form as that proposed in Redfield and Abragam’s work.

Note that indices j and k in �jkp!jq refer to spins, whilst indices k and q in Jkqp!qq refer to the

components of interaction in the L-frame.

3.3 Long-Lived States

One of the most prominent applications of WBR relaxation theory is that of long-lived states (LLS)

[27, 81–93]. These are spin-orders which have a decay constant greatly exceeding their longitudinal

relaxation constant T1 [46, 88, 94, 95]. The most commonly accessed of these is singlet-order, which

is defined as the operator whose expectation value is the population imbalance between the singlet-

and triplet-manifolds of a two spin-1/2 system. Usually, TS " T1, where TS is the decay constant of

singlet-order.

HDD is given in eq. (2.81) and may be rewritten in terms of the trace over two rank-2 tensors

as,

HDD “
ÿ

i†j

bijIi ¨ Dpijq ¨ Ij

“ bijTr
!
D

pijq
X

pjiq
)
,

(3.67)

where bij “ µ0�i�j~{p4⇡r3
ij

q is the coupling constant, Dpijq the spatial tensor, and X
pjiq “ Ij b Ii

the spin tensor. As mentioned above, components of Xpjiq are inherently in the L-frame, whilst
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components of Dpijq are known in an arbitrary frame. However, we may express components of

D
pijq in the L-frame via those in the P-frame following diagonalisation to give,

”
D

pijq
ıP

“

¨

˚̊
˚̋

1 0 0

0 1 0

0 0 ´2

˛

‹‹‹‚, (3.68)

which may be decomposed in the IST operator basis as,

”
D

pijq
ıP

“ ´
?
6T20, (3.69)

where only the rank-2 components survive. We then immediately obtain,

�̂DD‚ “ ´b2
ij

ÿ

q

JDD

2q
p!qqX̂DD

2q
X̂DD:

2q
‚, (3.70)

where ⇤ “ ⇤1 since both spins are involved in the coupling.

Operators representing population configurations have zero quantum coherence. An eigenopera-

tor of the zero-quantum block of �̂DD, which describes the relevant population imbalance is,

|QSOq “ 1

2
?
3

˜
3 |S0y xS0| ´

`1ÿ

M“´1

|TM y xTM |
¸
, (3.71)

and we write,

pQSO| �̂DD |QSOq ” Tr
!
Q

:
SO

�̂DDQSO

)

“ 0.

(3.72)

This illustrates why singlet-order is very often long-lived; this particular spin-order does not

evolve under the influence of the intrapair DD mechanism, which is the dominant mechanism in

many cases [9, 88].
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3.4 Spin Relaxation in solution NMR; practical considera-

tions

In solution state NMR, a practical choice is to approximate the coherent Hamiltonian as the Zeeman

Hamiltonian,

H0 « HZ “
ÿ

i

!0iIiz. (3.73)

The reason being is that components Xkq have the commutation relation,

“
Iz, Xkq

‰
“ qXkq, (3.74)

Thus, requirements,

“
H0, Xkq

‰
“ Ĥ0Xkq “ !qXkq

“
H0, X

:
kq

‰
“ Ĥ0X

:
kq

“ ´!qX
:
kq
,

are satisfied, while noting X:
kq

“ p´1qqXk´q, and !´q “ ´!q holds. This gives a particularly simple

spectral density function for simulation when considering a homonuclear two-spin system, since we

may write,

Jkqp!qq Ñ Jkqpq!0q 9 eiq!0⌧ . (3.75)

This approximation presents a clear contradiction; H0 is used to remove the unitary dynamics

from the master equation via transformation to the interaction picture, and will not contain the

Zeeman term only. However, we will see that this approximation allows for simple simulations

which o↵er great insight into the spin dynamics and their consequences.

Further, since bath variables are unknown, when translating the WBR master equation to Lind-

blad form, the QM spectral density function will be substituted for the thermalised semiclassical

form,
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�jkp!jq Ñ J✓⇤⇤
1

kq
pq!0q “ 2J⇤⇤

1
kq

pq!0qe 1
2�q!0 (3.76)

where indices j and k in �jkp!jq refer to spins, whilst indices k and q on the RHS refer to the

components of interaction in the L-frame. The factor of two is included to account for limits of

integration in �jkp!jq ranging from ´8 Ñ `8, whilst those in J⇤⇤
1

kq
pq!0q range only 0 Ñ `8.

Attention must also be paid to the use of spin operators when moving through the two formalisms.

The derivation of the Lindbladian master equation required that the open system operators Sj fulfill,

“
H0, Sj

‰
“ ´!jSj

“
H0, S

:
j

‰
“ `!jS

:
j
,

while the semiclassical master equation relied upon spin-system operators having the properties,

“
H0, Xkq

‰
“ `!qXkq

“
H0, X

:
kq

‰
“ ´!qX

:
kq
.

(3.77)

The above suggests the correspondence,

Sj ô X:
kq

and S:
j

ô Xkq. (3.78)

Finally, as discussed in section 3.1.4, unitary dynamics contain Hamiltonian Hshift, which shifts

the unperturbed energy levels and is absorbed into H0, and analogy exists between Hshift and the dy-

namic frequency shift. In all treatments that follow, H0 is written in terms of the Zeeman, chemical

shift and spin-spin coupling interactions. Parameters which define the corresponding Hamiltonians

are derived from experiment, and, thus, any perturbations in energy levels are indirectly accounted

for. By comparing the WBR and Lindbladian formalisms, it is clear that there exists the correspon-

dence,

H0 ô HS ` Hshift and H1ptq ô Hintptq, (3.79)

where H1ptq and Hshiftptq describe small time-dependent perturbations on the system which induce

relaxation.
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The resulting theory of this chapter and the practical considerations of this section will be used

extensively throughout chapter 4, and in numerical simulations in chapter 5.



Chapter 4

The Triyne System;

Cross-Correlated Lineshapes

After exhausting NMR and spin relaxation theory, we apply all of the above in an exposition of

spectral line shape. In Redfield’s 1965 paper, it is stated that the semiclassical theory, “ . . . has

found its greatest application in predicting line widths of complex spectra of molecules containing

several spins.” Here, we do just that, except the spectrum isn’t complex, and we consider only a

two-spin, rather than a several-spin, system. Nevertheless, we will see interesting e↵ects from the

cross-correlation between spin relaxation mechanisms.

The host of the spin system is a linear triyne derivative; that is, one may draw alternating single

and triple bonds along a chain of carbon atoms as a representation. Initially, interest was stirred

due to the innate symmetry of the molecule, which suggests the existence of very long-lived singlet-

order if one were to label the two central carbons of the chain with 13C isotopes. However, that is

put-o↵ for the time being, since a peculiar line shape materialised from a basic experiment. The

investigation of this line shape self-constructed the material of this chapter.

69
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The main body of this chapter describes the material in Whipham et al. (2022), “Cross-

correlation e↵ects in the solution NMR spectra of near-equivalent spin-1/2 pairs” [96], in detail.

Figures 4.1, 4.2, 4.4, and 4.5 are identical to those found in the publication, whereas figure 4.3 is

very similar to that published but with the addition of the chemical shift tensor.

4.1 Introduction

As written recently, if a nuclear spin system is perturbed from a thermal equilibrium, it slowly returns

to equilibrium through nuclear spin relaxation. Relaxation processes are driven by fluctuations

in the interactions between the nuclear spins and the thermal molecular environment, and these

interactions may be correlated with each other. For example, in solution NMR, the fluctuations

of nuclear spin interactions are caused by stochastic molecular tumbling, and since the rotation

of a molecule modulates all intramolecular interactions at the same time, the fluctuations of these

interactions are correlated. Such cross-correlation e↵ects are well-documented in solution NMR [97–

104]. Cross-correlation gives rise to di↵erential line broadening and line narrowing, and di↵erences in

the longitudinal relaxation behaviour of individual multiplet components [97–100, 102, 104]. Cross-

correlation e↵ects have been used to estimate the relative orientations of nuclear spin interaction

tensors, allowing the estimation of molecular torsional angles [105–107]. A particularly important set

of cross-correlation e↵ects is associated with the so-called TROSY techniques (transverse relaxation-

optimized spectroscopy), which have important applications, especially in biomolecular NMR [108,

109].

Cross-correlation often takes place between the fluctuations of internuclear dipole-dipole (DD)

couplings and chemical shift anisotropy (CSA) interactions. Such DD-CSA cross-correlation e↵ects

are well-known for heteronuclear spin pairs, and underpin important techniques (such as TROSY

mentioned above) [100, 108, 109]. In this chapter, strong DD-CSA cross-correlation e↵ects are

demonstrated in the solution NMR of a system containing homonuclear pairs of 13C nuclei, in the

limit of near-magnetic-equivalence, implying that the chemical shift di↵erence between the coupled

nuclear sites is much smaller than the internuclear spin-spin (or J-) coupling.

The system in question is shown in fig. 4.1a. An analysis of cross-correlated relaxation must

take into account the rod-like shape of the molecule, which causes strongly anisotropic rotational

di↵usion in solution. The theory of nuclear spin relaxation has been developed in the context of

model-free treatments of biomolecules with anisotropic internal motions [110–115]. However, most
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existing treatments of cross-correlated relaxation in small molecules assume approximately isotropic

rotational di↵usion, which is clearly not applicable here. In the following sections, the theory of cross-

correlated relaxation in systems with anisotropic rotational di↵usion is developed, and analytical

formulae are provided which describe the NMR spectrum of a near-equivalent homonuclear spin

pair undergoing cross-correlated relaxation in the presence of anisotropic rotational di↵usion. The

observed spectral asymmetry is reproduced, with good agreement between theory, experiment and

numerical simulations.

Since near-equivalent spin-pairs are the most common subject in the field of long-lived states

[88, 90, 95, 116, 117], the 13C13-DAND system [95, 116] is considered to deduce the relationship

between spectral lineshape and relative orientation of the principal axes of interaction. The “rules”

deduced qualitatively agree with experiment, and numerical simulation of the spectrum using the

theory described in this chapter agrees very well with experiment.

4.2 The triyne molecule and spin system

The system of interest is the 13C2-labelled triyne derivative, with systematic name, 1-methoxy-4-((4-

(methoxymethoxy)phenyl)hexa-1,3,5-triyn-1-yl)benzene... but here referred to as I. The molecular

structure is shown in fig. 4.1a. Assuming a rigid geometry, each molecule of I has a rod-like shape,

with two 13C labels at the central pair of carbon atoms, in the centre of the triyne moiety. The

end groups are di↵erent but far from the labelled nuclei, endowing the two 13C nuclei with slightly

di↵erent chemical shifts (��iso “ 0.16 ppm). Since the J-coupling is large (Jij “ 214.15 Hz) between

the labelled nuclei, the 13C pair is in the near-equivalent regime at all accessible magnetic fields [118].

4.3 Experimental

4.3.1 NMR spectrum

The experiments were performed on a 400 MHZ (9.4 T) Bruker Avance Neo spectrometer. The

pulse sequence was a simple 90°pulse-acquire. The 13C nutation frequency was 6.68 kHz and 1 scan

was performed.

The 13C NMR spectrum of a 0.3 M solution of I in CDCl3 is shown in figure 4.2. This corresponds
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Figure 4.1: (a) Molecular structure of I, with 13C labelled sites depicted by black circles; (b) The

rank-2 part of the 13C -13C dipole-dipole coupling tensor, represented by an ovaloid [119, 120]; (c)

The calculated 13C CSA tensors of the 13C labels represented by ovaloids; (d) The inertia tensor

of the molecule, represented as an ovaloid, superimposed on the molecular structure. The grey

atoms are C, the red atoms O, and white H. The graphics were generated in SpinDynamica [49].
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to the expected AB four-peak structure, although the two outer peaks are too weak to be observed.

The two strong central peaks are only partially resolved, and form a strongly asymmetric lineshape.

As discussed below, the asymmetry of the central peak pair is due to strong DD-CSA cross-correlation

e↵ects.

4.3.2 Computation

Geometry optimisation and simulation of the magnetic shielding tensors of I were performed at the

B3LYP/aug-cc-PVTZ [121–123] level of theory in the Gaussian 09 suite of programs [124]. After

geometry optimisation, the dipole-dipole coupling tensor between the two 13C nuclei was calculated

from the internuclear distance. The parameters obtained from the computations are presented in

table 4.1.

4.4 Interactions

4.4.1 Coherent Hamiltonian

The coherent spin Hamiltonian describes the interactions which are the same for identical members

of the spin ensemble at a given point in time. For a homonuclear spin-1/2 pair in solution, it may

be written in the rotating frame and in the absence of a radiofrequency field as,

H0 “ 1

2
!⌃pI1z ` I2zq ` 1

2
!�pI1z ´ I2zq ` !JI1 ¨ I2, (4.1)

with,

!⌃ “ !1 ` !2 (4.2)

!� “ !1 ´ !2 (4.3)

!J “ 2⇡J12, (4.4)

where J12 is the isotropic part of the spin-spin coupling tensor, and !j is the precession frequency

of spin j,
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Figure 4.2: 13C spectra of a 0.3 M solution of I in CDCl3, at a magnetic field of 9.4 T. (a)

Overview of the 13C spectrum; (b) Black line: Expanded view of the central doublet, showing the

strongly asymmetric linewidths of the doublet components. Dark blue line: Numerical SpinDy-

namica simulation [49], using the theory given in the text and parameters in table 4.1. Green line:

Superposition of two Lorentzians with amplitudes, frequencies, and linewidths specified by table

4.5 and eq. (4.55) spectrum.
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!j “ !0p1 ` �iso
j

q ´ !rf . (4.5)

Here, !0 is the Larmor frequency of the isotope, �iso
j

is the isotropic chemical shift for the jth spin,

and !rf is the radiofrequency carrier frequency.

Generally, the Hamiltonian may be diagonalised by using the B1
ST

basis, defined as,

B1
ST

“
 

|S1
0
y, |T 1

`1
y, |T 1

0
y, |T 1

´1
y
(
, (4.6)

with elements,

|S1
0
y “ cos

✓

2
|S0y ´ sin

✓

2
|T0y (4.7)

|T 1
`1

y “ |T`1y (4.8)

|T 1
0
y “ sin

✓

2
|S0y ` cos

✓

2
|T0y (4.9)

|T 1
´1

y “ |T´1y, (4.10)

where ✓ is the singlet-triplet mixing angle,

tan✓ “ !�{!J . (4.11)

Defining, !2
e

“ !2

�
` !2

J
, the eigenvalues of Hcoh are

!S
1
0

“ ´1

4

`
!J ` 2!e

˘
(4.12)

!T
1
`1

“ `1

4

`
!J ` 2!⌃

˘
(4.13)

!T
1
0

“ ´1

4

`
!J ´ 2!e

˘
(4.14)

!T
1
´1

“ `1

4

`
!J ´ 2!⌃

˘
. (4.15)

These eigenvalues are used in section 4.6 to analyse the signal, allowing assignment of coherence-

peak correspondence.
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4.4.2 Fluctuating Hamiltonian

As explained in section 2.4, the fluctuating Hamiltonian is a sum of contributions from the anisotropic

spin interactions. These interactions di↵er between ensemble members at a given point in time due

to random molecular tumbling. The current analysis is restricted to the intra-pair dipole-dipole

(DD) and chemical shift anisotropy (CSA) interactions,

H1ptq “ HDDptq ` HCSAptq, (4.16)

as well as the cross-correlation between the two mechanisms.

Intrapair dipole-dipole coupling

The case of the DD interaction between spins i and j was covered in section 3.3, but will briefly be

recalled here.

The tensor components
”
XDD

2q

ıL
are equal to the rank-2 spherical tensor spin operators, as

given in table 4.2. Assuming a rigid molecular geometry, the interaction constant for the DD

coupling is given by bij “ µ0�i�j~{p4⇡r3
ij

q, where rij is the internuclear distance. In the current

case, the 13C -13C internuclear distance of rij “ 122 pm corresponds to a direct DD coupling of

bij{2⇡ “ ´4152.84 Hz. The only non-vanishing spatial component of the Cartesian tensor in the

principal axis (P-)frame is A20 “
?
6.

The P-frame of the DD coupling tensor is aligned such that the z-axis is along the 13C -

13C internuclear vector, as shown in figure 4.3. In general, the relative orientation of the DD

P-frame and the molecular di↵usion tensor is defined by Euler angles ⌦DD

PD
“ t↵,�, �u, as shown in

figure 4.3. In the current case, the rod-like geometry of the molecule causes near-coincidence of the

P-frames of the 13C -13C DD coupling and that of the inertia tensor, and in turn the D-frame, so

that the angle � is small, while the angles ↵ and � may be taken as arbitrary.

Chemical shift anisotropy

An alternative way of forming the spin-part components of the Hamiltonian, is to first decompose

the constituent vectors and couple the rank-1 spherical components. In the case of the CSA of spin
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j, spin-field tensors XCSA

kq
of ranks k “ 1, 2 are formed by coupling the rank-1 spherical tensor spin

operators T j

1q1 with the rank-1 spherical components of the external magnetic field [104]:

XCSA

kq
“

ÿ

q1,q2
Ck11

qq1q2T j

1q1B1q2 (4.17)

where Ck11

qq1q2 are Clebsch-Gordan coe�cients. Explicit expressions for the case k “ 2 are given in

the laboratory (L-) frame in table 4.2.

The computed magnetic shielding tensors � are transformed to chemical shift tensors via the

relation,

� “ 1�TMS

iso
´ �, (4.18)

where 1 is the three-dimensional identity matrix, and �iso

TMS
is the isotropic component of the mag-

netic shielding tensor of tetramethylsilane acting as a reference. The chemical shift tensors are

transformed to their P-frames by diagonalisation. Then, the Haeberlen convention[125] is used to

define the anisotropy and biaxiality parameters, respectively, as,

�CSA “ �P
zz

´ �iso (4.19)

and,

⌘ “ �P
xx

´ �P
yy

�CSA
, (4.20)

with principal components arranged by,

|�P
zz

´ �iso| • |�P
xx

´ �iso| • |�P
yy

´ �iso|. (4.21)

Values of these parameters are given in table 4.1, and the computed chemical shift tensors are,

�1 “

¨

˚̊
˚̋

145.32 0 0

0 142.38 0

0 0 ´74.75

˛

‹‹‹‚ ppm, (4.22)



78 CHAPTER 4. THE TRIYNE SYSTEM; CROSS-CORRELATED LINESHAPES

and,

�2 “

¨

˚̊
˚̋

145.32 0 0

0 142.38 0

0 0 ´74.66

˛

‹‹‹‚ ppm. (4.23)

4.5 Relaxation via anisotropic rotational di↵usion

4.5.1 Liouvillian

In Liouville space, the Liouville-von Neumann equation for the spin-sytem may be expressed as,

d

dt
|⇢ptqq “ L̂ |⇢ptqq , (4.24)

where |⇢ptqq is the ensemble-averaged density operator of the spin-system, and L̂ is the Liouvillian,

itself given by,

L̂‚ “ ´iĤ0 ‚ `�̂‚, (4.25)

where Ĥ0ptq is the coherent Hamiltonian commutation superoperator. By eq. (4.16), the relaxation

superoperator may be written as a sum over auto- and cross-correlated mechanisms as,

�̂ “
ÿ

⇤,⇤1
�̂⇤⇤1

“ �̂DD ` �̂CSA ` �̂DDˆCSA,

(4.26)

where ⇤ “ ⇤1 for the auto-correlated DD and CSA mechanisms.

If the Hilbert space Hd of the spin-system has dimension d, then the corresponding Liouville

space LD has dimension D “ d2. It follows that the Liouvillian has a set of D eigenvalues and

eigenoperators,

L̂
ˇ̌
Qq

˘
“ ⇤q

ˇ̌
Qq

˘
@q P t0, 1, ¨ ¨ ¨ , D ´ 1u , (4.27)



4.5. RELAXATION VIA ANISOTROPIC ROTATIONAL DIFFUSION 79

Parameter Value Note

Jij 214.15 Hz Experimentala

��iso 0.16 ppm Experimentalb

bij{2⇡ ´4152.84 Hz Estimatedc

⌦ij

PD
t↵,´2.50, �u Frames obtained by diagonalising

calculated tensors

�CSA

i
´145.7 ppm Calculated

⌘i 0.020 Calculated

⌦i

PD
t0,´2.60, 0u Frames obtained by diagonalising

calculated tensors

�CSA

j
´145.4 ppm Calculated

⌘j 0.023 Calculated

⌦j

PD
t0,´2.60, 0u Frames obtained by diagonalising

calculated tensors

⌧K 136.5 ps Estimated from the parameters in this

table and experimental T1

Table 4.1: Spin system parameters for I in solution. aObtained from 900 pulse-acquire spectrum

on a 700 MHz spectrometer. bEstimated from the 13C-spectrum of natural abundance material.

cEstimated from the internuclear distance, rij “ 122 pm, as determined from a computational

geometry optimisation. The first two entries are coherent parameters, the next block of param-

eters are associated with the DD interaction. The next block of six entries contains parameters

associated with the CSA interaction for each spin. The final entry is the correlation time, which

is derived from the total relaxation superoperator.
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Interaction, ⇤ q
“
X⇤

2q

‰L

DD,

spins i, j

0 1

2
?
6

p4IizIjz ´ I´
i
I`
j

´ I`
i
I´
j

q

˘1 ¯ 1

2
pI˘

i
Ijz ` IizI

˘
j

q

˘2 1

2
pI˘

i
I˘
j

q

CSA,

spin i

0
b

2

3
B0Iiz

˘1 ¯ 1

2
B0I

˘
i

˘2 0

Table 4.2: Irreducible spherical spin and spin-field tensor components for l “ 2 in the L-frame

[26].

Interaction, ⇤ c⇤ p
“
A⇤

2p

‰P

DD, spins i, j bij 0
?
6

CSA,

spin i
´�i

0
b

3

2
�CSA

i

˘2 1

2
�CSA

i
⌘i

Table 4.3: Non-vanishing spatial irreducible spherical tensor components for l “ 2 in their P⇤-

frames [26].
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with,

⇤q “ ´�q ` i!q, (4.28)

where �q and !q are both real. In the case where !q ‰ 0, the eigenoperators correspond to quantum

coherences (QC) which decay with rate constant �q and oscillate at frequency !q. Eigenoperators

with real eigenvalues (! “ 0) represent a particular configuration of spin state populations with

decay rate constant �q.

4.5.2 Spectral density function

The time-correlation function was derived for the case of completely anisotropic rotational di↵usion

in chapter 3. Here, by assuming molecular rigidity, I is treated as a symmetric rotor; that is,

two principal axes of inertia are degenerate, and all principal axes are coincident with those of the

di↵usion tensor. To start, refer back to the Favro equation,

B
B⌧ P p⌦⌧ q “ ´Hrot´di↵P p⌦⌧ q, (4.29)

with solution,

P p⌦0|⌦⌧ q “
ÿ

n

x np⌦0q| np⌦⌧ qy e´En⌧ , (4.30)

where | np⌦qy and En are eigenfunctions and eigenvalues, respectively, of the rotational di↵usion

Hamiltonian, Hrot´di↵ .

If we treat I as a rigid linear molecule, then Hrot´di↵ in the D-frame has the form,

Hrot´di↵ “ DK
`
J2

x
` J2

y

˘
` DkJ

2

z
, (4.31)

where DK and Dk are rotational di↵usion constants associated with axes perpendicular and parallel,

respectively, with the z-axis, and hence the molecular long-axis. Eq. (4.31) is of the same form as

the rigid-rotor Hamiltonian for a symmetric top. Eq. (4.30) is then given in terms of eigenfunctions

and values of a symmetric-top, and we make the substitutions,
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| np⌦qy Ñ |JKMy ”
c

2J ` 1

8⇡2
DpJq˚

MK
p⌦q (4.32)

En Ñ EpJq
K

” DKJ pJ ` 1q ` K2
`
Dk ´ DK

˘
. (4.33)

Following the derivation in section 3.2.2, the time-correlation function becomes,

Gk

qm
p⌧q “ �kk1�qq1�mm1Gkk

1
qq1mm1 p⌧q (4.34)

and the spectral density function becomes,

J⇤⇤
1

kq
pq!0q “

ÿ

m

”
A⇤

km

ıD”
A⇤

1˚
km

ıD
Re

ª 8

0

d⌧Gk

qm
p⌧qeiq!0⌧ , (4.35)

and we see that not only is the relaxation superoperator secularised, but spatial components in the

D-frame of di↵erent order m do not mix in the limit of anisotropic tumbling of a symmetric rotor.

Strictly, it is derived that, k “ J “ k1, ´q “ M “ ´q1, and m “ K “ m1.

Further, in this case, J “ k “ 2, and K “ m “ 0 in eq. (4.32). To see this, recall that the spatial

components in the D-frame may be written,

”
A⇤

km

ıD
“

`kÿ

p“´k

Dpkq˚
mp

p⌦PDq
”
A⇤

kp

ıP
, (4.36)

and for a passive rotation,

Dpkq
mp

p⌦q “ ei�mei↵pdpkq
mp

p´�q. (4.37)

Firstly, consider the DD interaction, for which Euler angles ↵ and � are arbitrary and may be chosen

to be zero, and since the z-axes between the P-and D-frames are approximated as parallel, � “ 0.

Thus, the components in the D-frame transform as,

”
ADD

2m

ıD
“

”
ADD

20

ıP
dp2q˚
m0

p� “ 0q, (4.38)
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where the knowledge that
”
ADD

20

ı
is the only non-vanishing component in the P-frame is used.

Further, dpkq
00

p˘�q “ 3cos
2
�´1

2
is the only non-vanishing reduced Wigner function, and equates to

unity for � “ 0. Then, the only surviving component in the D-frame is
”
ADD

20

ı
, and m “ K “ 0.

This is general for linear molecules.

The treatment of the CSA mechanism requires one further approximation; that of axial symmetry.

For an axially symmetric rotor, the biaxiality parameter vanishes; ⌘i “ 0. Then, an analogous

relation to eq. (4.38) results.

The transformation described by eq. (4.36) may be repeated for a chain of any number of

reference frames. Figure 4.3 depicts the transformations relevant here; from the P⇤-frames to the

L-frame via the D-frame. Since the P⇤- and D-frames are molecule-fixed, while the L-frame is space-

fixed, spatial components acquire a stochastic time-dependence through the motional modulation of

the Euler angles ⌦DLptq, representing the rotational di↵usion of the molecules in solution.

4.6 The NMR spectrum

4.6.1 Signal

As explained in chapter 2, the signal may be written in terms of the eigenvalues of eq. (4.28) as,

sptq “
ÿ

q

aqe
⇤qt, (4.39)

with aq the peak amplitude given by,

aq “ pQobs|Qqq pQq| Ûexcpt, t0q |⇢eqq , (4.40)

where Ûexcpt, t0q is the total propagator for the excitation sequence and |⇢eqq is the thermal equilib-

rium density operator. In quadrature detection, |Qobsq « ´1

2
iei�rec |I´q with �rec being the receiver

phase [9]. Since the experiment here is a 90° pulse-acquire, we make the approximation,

Ûexc

ˇ̌
⇢eq

˘
“ R̂xp⇡{2qIz “ ´Iy, (4.41)
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Figure 4.3: An illustration of the relevant frame transformations used here. On the left, the

coordinate system is the molecule-fixed P-frame of the DD interaction, with the z-axis parallel to

the internuclear vector. This is assumed to be coincident with the P-frame of the CSA interaction,

and hence both tensors are depicted to illustrate this. The set of angles ⌦PD orientate the P-

and D-frames. The molecule-fixed D-frame is given by the P-frame of the inertia tensor with its

z-axis parallel to the molecular long axis. We may also approximate this as coincident with the

P-frames of the DD and CSA interactions. The L-frame is defined such that its z-axis is parallel

to the applied magnetic field. The angles ⌦DLptq orient the D- and L-frames with respect to each

other. These angles are time-dependent, since the L-frame is space-fixed and stochastic molecular

tumbling continuously alters the orientation of the D- and L-frames with respect to one another.

The angles parameterising the transformation between the P- and L-frames will be time-dependent

for the same reason.
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ignoring constant numerical factors and relaxation.

Non-vanishing peak amplitudes are associated with p´1q-quantum eigenoperators |Qqq, as defined
by the eigenoperator equation,

Îz |Qqq “ ´ |Qqq , (4.42)

where, as usual, Îz is the commutation superoperator of the spin operator Iz, and eigenvalue ´1

defines the coherence order for operator
ˇ̌
Qq

˘
. In the absence of relaxation, these observable operators

are the p´1q-quantum eigenoperators of Ĥ0 and are given by elements of the basis,

BQ “
!ˇ̌

|S1
0
yxT 1

`1
|
˘
,
ˇ̌
|T 1

´1
yxS1

0
|
˘
,
ˇ̌
|T 1

0
yxT 1

`1
|
˘
,
ˇ̌
|T 1

´1
yxT 1

0
|
˘)

, (4.43)

which is a subset of the 16-element basis of all outer products of elements in B1
ST

.

In the absence of relaxation, the Liouvillian eigenvalues are purely imaginary, and are given by

⇤q “ `i!q, where !q are the peak frequencies. These are given in general by,

!q “ ´p!r ´ !sq, (4.44)

with r, s P
 
S1
0
, T 1

`1
, T 1

0
, T 1

´1

(
, as given in table 4.4.

The two eigenoperators corresponding to p´1q-quantum coherences between the perturbed triplet

states are particularly important in the current context, since these coherences give rise to the two

components of the spectral doublet, as can be seen from their amplitudes in table 4.4. These two

eigenoperators are denoted as follows:

Q` “
ˇ̌
|T 1

0
yxT 1

`1
|
˘

Q´ “
ˇ̌
|T 1

´1
yxT 1

0
|
˘ (4.45)

The corresponding Liouvillian eigenvalues are,

⇤˘ “ ´�˘ ` i!˘. (4.46)
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Figure 4.4: The correspondence between the single-quantum triplet-triplet coherences (wiggly

lines) and the NMR spectrum. The coherence represented by the operator Q` is associated with

the narrow peak while the coherence represented by Q´ is associated with the broad peak.

In general, the superoperators Ĥcoh and �̂ do not commute. The presence of the relaxation

superoperator �̂may therefore modify both the eigenvalues and the eigenoperators of the Liouvillian,

L̂. Indeed the modification of the peak frequencies by relaxation e↵ects has been documented

in the literature in a di↵erent context [126]. In the current case, the eigenvalues of the p´1q-
quantum eigenoperators are only slightly modified by the relaxation superoperator, as shown by

the agreement between theory and experiment. Hence, in the following discussion, we assume that

the p´1q-quantum eigenoperators of the full Liouvillian, including relaxation, are given to a good

approximation by the operators in eq. (4.43). The correspondence between the two triplet-triplet

coherences and the NMR spectrum is depicted in figure 4.4.

.
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ˇ̌
Qq

˘
!q aq

ˇ̌
|S1

0
yxT 1

`1
|
˘

1

2

`
!⌃ ` !J ` !e

˘
1

2
sin2 ✓

2

ˇ̌
|T 1

´1
yxS1

0
|
˘

1

2

`
!⌃ ´ !J ´ !e

˘
1

2
sin2 ✓

2

ˇ̌
|T 1

0
yxT 1

`1
|
˘

1

2

`
!⌃ ` !J ´ !e

˘
1

2
cos2 ✓

2

ˇ̌
|T 1

´1
yxT 1

0
|
˘

1

2

`
!⌃ ´ !J ` !e

˘
1

2
cos2 ✓

2

Table 4.4: Coherence eigenoperators of Ĥcoh along with the associated eigenfrequencies and peak

amplitudes.

4.6.2 Frequencies

The coherence frequencies are given by the imaginary parts of the Liouvillian eigenvalues. As shown

in eq. (4.49) below, the o↵-diagonal parts of the p´1q-quantum Liouvillian block may be ignored

to a first approximation. With this, the coherence frequencies are as specified in Table 4.4. The

frequencies of the two triplet-triplet coherences are given by,

!˘ “ 1

2

`
!⌃ ˘ !J ¯ !e

˘
, (4.47)

which are the coherences responsible for the two main peaks in the spectrum, as shown in fig. (4.4).

Eq. (4.47) implies that the left peak corresponds to coherence Q`, and the right peak to coherence

Q´. This is consistant with the treatment of linewidths below.

4.6.3 Linewidths

The correlation time was estimated using the experimental T1 “ 2.23 s value and the relation,

T´1

1
» ´

`
Iz

ˇ̌
�̂

ˇ̌
Iz

˘
`
Iz

ˇ̌
Iz

˘ , (4.48)

and solving for ⌧K. Then, the p´1q-QC subspace of the Liouvillian is given by,
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L̂BQ “

¨

˚̊
˚̊
˚̊
˝

ˇ̌
|S1

0
yxT 1

`1
|
˘ ˇ̌

|T 1
´1

yxS1
0
|
˘ ˇ̌

|T 1
0
yxT 1

`1
|
˘ ˇ̌

|T 1
´1

yxT 1
0
|
˘

ˇ̌
|S1

0
yxT 1

`1
|
˘

´0.294 ` 1339.86i 0.454 ˆ 10´3 ´0.0106 0.0123
ˇ̌
|T 1

´1
yxS1

0
|
˘

0.454 ˆ 10´3 ´0.629 ´ 1339.86i 0.0120 ´0.0210
ˇ̌
|T 1

0
yxT 1

`1
|
˘

´0.0106 0.0120 ´0.578 ` i5.68 0.324
ˇ̌
|T 1

´1
yxT 1

0
|
˘

0.0123 ´0.0210 0.325 ´1.182 ´ i5.68

˛

‹‹‹‹‹‹‚
s´1.

(4.49)

We see that the o↵-diagonal elements pQ˘|�̂|Q¯q are of the same order of magnitude as the real

parts of the corresponding diagonal elements, and may contribute to relaxation [100]. Nevertheless,

the operators Q˘ have a clear physical interpretation and use of this basis o↵ers qualitative insight,

as well as good agreement with experiment. Thus, the real parts of the Liouvillian eigenvalues are

approximated by the Liouville bracket,

Rep⇤qq » pQq| �̂ |Qqq`
Qq

ˇ̌
Qq

˘ . (4.50)

The real positive quantities �q “ ´Rep⇤qq may be interpreted as the coherence decay rate constants

for the eigenoperators
ˇ̌
Qq

˘
. After Fourier transformation of the NMR spectrum, the peak associated

with the eigenoperator
ˇ̌
Qq

˘
has amplitude aq, centre frequency !q, and has a Lorentzian shape with

half-width-at-half-height equal to �q, in units of rad s´1. Its full-width-at-half-height is given by

�q{⇡ in units of Hz.

The relaxation superoperator �̂ may be written as a sum of auto-correlation terms for the DD

and CSA interactions, and a DDˆCSA cross-correlation term (eq. (4.26)). The coherence decay

rate constants �q may therefore be written as a superposition of terms as,

�q “ �DD

q
` �CSA

q
` �DDˆCSA

q
. (4.51)

For the two triplet-triplet coherences, each term in eq (4.51) is given by,

�DD

˘ “ 3

20
b2
ij
⌧K

ˆ
3 ` 3

1 ` !2
0
⌧2K

` 2

1 ` 4!2
0
⌧2K

˙
, (4.52)

�CSA

˘ “ 1

20
!2

0
⌧K

" ´“
�CSA

i

‰2 `
“
�CSA

j

‰2¯ 5 ` 2!2
0
⌧2K

1 ` !2
0
⌧2K

` �CSA

i
�CSA

j

3

1 ` !2
0
⌧2K

*
, (4.53)
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and,

�DDˆCSA

˘ “ ˘ 3

20
!0bij⌧K

´
�CSA

i
` �CSA

j

¯3 ` 2!2
0
⌧2K

1 ` !2
0
⌧2K

, (4.54)

Equations (4.52)-(4.54) depend on the correlation time ⌧K for molecular rotation around an

axis perpendicular to the long axis of the molecule. Rotational di↵usion around the molecular

long axis does not modulate the spin interactions, under the approximation of a rigid symmetric

top undergoing rotational di↵usion, and does not lead to spin relaxation. In the current case, the

chemical shift anisotropies of the two spins are very similar, allowing the simplification �CSA »
�CSA

i
» �CSA

j
.

The limiting regimes of the correlation time ⌧K are as follows:

1. In the extreme narrowing limit, eq. (4.51) may be written,

�˘ » 3

10

`
4bjk ˘ 3!0�

CSA
˘
bjk⌧K ` �CSA, (4.55)

where the CSA-induced decay rate constant �CSA is given by,

�CSA » 13

20
!2

0

“
�CSA

‰2
⌧K. (4.56)

The field-dependence of the two rate constants �˘ is illustrated in figure 4.5a. The decay rate

constant �` is minimized at a magnetic field such that |4bjk| “
ˇ̌
3!0�CSA

ˇ̌
, in which case the

first term in eq. (4.55) cancels out. At this field, the dipole-dipole contribution to the decay

rate constant vanishes, and �` becomes equal to the limiting CSA relaxation rate constant

�CSA (eq. (4.56)). The decay rate constant �`, on the other hand, increases monotonically

with increasing magnetic field.

2. In the long correlation time limit, |!0⌧K| " 1, eq. (4.51) may be written as,

�˘ » 1

20

`
3bjk ˘ 2!0�

CSA
˘2
⌧K. (4.57)

The field-dependence of the two rate constants �˘ is illustrated in figure 4.5b. In this regime,

the linewidth parameter �` goes to zero at a magnetic field such that |3bij | “
ˇ̌
2!0�CSA

ˇ̌
. The

strong narrowing of one of the two doublet components resembles the TROSY e↵ects exploited

in biomolecular NMR [108, 109].
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Figure 4.5: Plots of the linewidth parameters �˘ against external static field, for the parameters

in table 4.1. (a) The extreme-narrowing limit, based on eq. (4.55), showing the minimum �` “
8.47 ˆ 10´2 s´1 at B0 “ 1.84 T. (b) The long-⌧K limit, with a minimum �` “ 0 at B0 “ 4.0 T.

The DD and CSA mechanisms cancel in the long-⌧K limit at this magnetic field. The cancellation

is incomplete in the extreme-narrowing limit.
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Using eq. (4.40), the peak amplitudes associated with the p´1q-quantum singlet-triplet coher-

ences are 9 sin2p✓{2q, while those associated with the p´1q-quantum triplet-triplet coherences are

9 cos2p✓{2q. In the current case, the singlet-triplet mixing angle is small (✓ “ ´0.0750 “ ´4.30˝),

and the amplitudes are,

aS1
0ÑT

1
`1

“ aT 1
´1ÑS

1
0

» 0.686 ˆ 10´3

aT 1
0ÑT

1
`1

“ aT 1
´1ÑT

1
0

» 0.499,
(4.58)

with the sum over all amplitudes equal to 1. The spectrum is therefore dominated by the strong

peaks from the two triplet-triplet coherences.

From eq. (4.47), !` † !´. This indicates that the left peak of the doublet is associated with

the Q` coherence, while the right-hand peak is associated with the Q´ coherence, after taking into

account the sign of the Larmor frequency [127]. This assignment is shown in figure 4.4. The splitting

between the peaks is given by �!{p2⇡q “ 0.60Hz.

From eqs. (4.52)-(4.54), since bjk, !0, �CSA

j
and �CSA

k
are all negative, we see that the cross-

correlation contributions reduce the value of �` while increasing the value of �´. For the experimen-

tal parameters, the coherence decay rate constants are given by �` » 0.583 s´1 and �´ » 1.190 s´1.

These correspond to full peakwidths at half-height of 0.186 Hz and 0.379 Hz, for the left-hand and

right-hand doublet components, respectively.

The green curve in figure 4.2 is a plot of the analytical spectral function,

Sp!q “ a`
�`

�2` ` p! ´ !`q2
` a´

�´
�2´ ` p! ´ !´q2

, (4.59)

using the parameters in table 4.5. There is good agreement with the experimental 13C NMR spec-

trum (black).

The blue curve in figure 4.2 shows the result of a numerical calculation using SpinDynamica

[49], in which the full Liouvillian is diagonalized. There is good qualitative agreement between the

numerical simulations, the analytical theory and the experimental result. The minor di↵erences

between the SpinDynamica simulation and the analytical theory may be attributed to the neglect

of the o↵-diagonal Liouvillian elements in the analytical theory, since the BQ is not strictly an

eigenbasis of the Liouvillian.
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Parameter Value Note

�` 0.583 s´1 eq. (4.55)

�´ 1.19 s´1 eq. (4.55)

a˘ 0.499 eq. (4.40)

!˘ ¯1.90 rad s´1 eq. (4.47)

Table 4.5: Parameters used to plot the analytical spectral function in fig. 4.2b. Each of these

parameters are fed into eq. (4.59). The first two entries are the peak linewidths, calculated using

eq. (4.55), which uses parameters bjk and �
CSA ultimately derived from computation (see Table

4.1).

4.7 Related systems

The e↵ects of cross-correlated relaxation on lineshape in homonuclear spin pairs crops up more often

than one might anticipate, since these are the most commonly studied type of system in the field of

long-lived states (LLS)[88, 90, 95, 116, 117].

4.7.1 13C2-DAND

The e↵ects of cross-correlation on lineshape in a homonuclear system crops up often in the field of

long-lived states. This is because many systems studied involve nuclei only one bond apart. An

interesting example is in the case of 13C2´DAND, shown in fig. 4.6a. This is another near-equivalent

system with ��iso “ 0.075 ppm and Jij “ 54.39 Hz, giving a mixing-angle of ✓ “ 7.850.

Relaxation via isotropic rotational di↵usion

13C2-DAND is locally planar about the relevant spins, and will tumble anisotropically about the

three principal axes of the D-frame. However, for an asymmetric top such as this, the D-frame is not

necessarily coincident with the principal axes of inertia. With some hindsight, though, it becomes

convenient to treat 13C2-DAND as a spherical molecule undergoing isotropic rotational di↵usion.

The reason for this is two-fold:

1. By inspection, the DD and CSA tensors in fig. 4.6b and 4.6c, respectively, are expected to
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Figure 4.6: (a) Molecular structure of 13C2-DAND (1,2,3,4,5,6,8-heptakis(methoxy-d3)-7-

((propan-2-yl-d7)oxy)naphthalene-4a,8a-[
13C2]), with

13C labelled sites depicted by black circles;

(b) The rank-2 part of the 13C -13C DD coupling tensor; (c) The calculated 13C CSA tensors of

the 13C labels represented by ovaloids. The grey atoms are C, and the red atoms O. The H atoms

are not shown for clarity.
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have perpendicular z-principal axes.

2. Since no axis system in a spherical geometry is unique, we may arbitrarily choose an interaction-

independent axis system to be where is most convenient, henceforth referred to as themolecular

(M-) frame.

Taken together, by choosing the M-frame to be that with z-principal axis parallel with the

internuclear vector, it is coincident with the P-frame of the DD interaction. Then, since the z-

principal axes of the DD and CSA mechanisms are expected to be perdendicular, that of the M-frame

is also perpendicular to the z-axis of the CSA P-frame. The trigonometric Wigner transformations

between the M-frame and P-frames will be greatly simplified, since ⌦PM “ t0, 0, 0u for transformation

of components
“
ADD

kq
ptq

‰P
, and ⌦PM “ t↵,⇡{2, �u for

“
ACSA

kq
ptq

‰P
, which allows one to derive a

simple spectral density function for what would otherwise be a complicated case. This in turn

o↵ers qualitative insight into the cross-correlation e↵ects on NMR spectra, with respect to relative

orientation of the principal axes of interaction.

For this case, we have,

Hrot´di↵ “ D
`
J2

x
` J2

y
` J2

z

˘

“ DJ
2,

(4.60)

which is of the same form as the Hamiltonian of a spherical top. The eigenvalues are then,

EJ “ DJ pJ ` 1q , (4.61)

which is evident both from the theory of angular momentum and the limiting case of Dk “ DK in

eq. (4.32).

We find ourselves in an analogous position to when a symmetric top was considered, since |JKMy
are eigenfunctions of J2 and Jz,1 and spherical and symmetric tops share eigenfunctions. Here,

though, K may not necessarily vanish, and a correlation time ⌧c is considered, which corresponds

with the rotation of the molecule as a whole, rather than about perpendicular axes only.

The spectral density function becomes,

1As required by eq. (4.60) and general angular momentum theory
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J⇤⇤
1

kq
pq!0q “

ÿ

m

”
A⇤

km

ıM”
A⇤

1
km

ıM
Re

ª 8

0

d⌧Gk

q
p⌧qeiq!0⌧ , (4.62)

where Gk

q
p⌧q is given by,

Gk

q
p⌧q “ 1

2J ` 1
�qq1�kk1e⌧{⌧c , (4.63)

with ⌧c “ p6Dq´1. By definition,

”
ADD

km

ıM
”

”
ADD

kp

ıP
, (4.64)

and the only non-vanishing component is k “ 2 and m “ q “ 0. From table 4.3,
”
ADD

20

ıM
“

?
6.

For components
”
ACSA

2˘2

ıP
, we cannot make the approximation ⌘i “ 0 for each spin, since 13C2-

DAND does not have axial symmetry. In fact, from computation, ⌘i “ 0.30 and ⌘j “ 0.31. Also from

computation and utilising routines in SpinDynamica, ⌦i

PM
“ t↵, 89.800, �u and ⌦j

PM
“ t↵, 89.840, �u;

i.e. the z-principal axes associated with the individual spins for the CSA interaction are essentially

perpendicular to the z-principal axis of the M-frame, and will be approximated as being so. The

spatial components in the M-frame for the CSA interaction may be decomposed by,

”
ACSA

20

ıM
“

`2ÿ

p“´2

Dpkq˚
0p

p⌦PMq
”
ACSA

2p

ıP

“ ´
c

3

8

”
ACSA

2`2

ıP
´ 1

2

”
ACSA

20

ıP
´

c
3

8

”
ACSA

2´2

ıP

“ ´
c

3

8
�CSA

i
p⌘i ` 1q ,

(4.65)

where ↵ “ � “ 0 is chosen arbitrarily, � “ ⇡{2, and dpkq
0p

p´�q is used for a passive rotation. By the

same process one may also derive,

”
ACSA

2˘2

ıM
“ 1

4
�CSA

i
⌘i. (4.66)

Consider the limit,

ˇ̌
ˇ̌
”
ACSA

20

ıP ˇ̌
ˇ̌ "

ˇ̌
ˇ̌
”
ACSA

2˘2

ıP ˇ̌
ˇ̌, to the extent that

ˇ̌
ˇ̌
”
ACSA

2˘2

ıP ˇ̌
ˇ̌ are qualitatively

negligible. This is the limit we found ourselves in previously when considering the symmetry of I.
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From eq. (4.65), �DDˆCSA

˘ given by eq. (4.54) will change sign, while being reduced by one-half.

We find then that,

1. The asymmetric broadening/narrowing is reversed.

2. The e↵ect is less exaggerated.

The case of perfect axial symmetry is recovered immediately by setting ⌘i “ 0 in the last line of eq.

(4.65) and in eq. (4.66), and the above two points are applicable.

When the three components are of similar magnitude,

ˇ̌
ˇ̌
”
ACSA

20

ıP ˇ̌
ˇ̌ „

ˇ̌
ˇ̌
”
ACSA

2˘2

ıP ˇ̌
ˇ̌, eq. (4.65) and

(4.66) show that,

1. The asymmetric broadening/narrowing is reversed.

2. The extent of broadening/narrowing is determined by extent of biaxiality, ⌘i.

Simulations and experiment agree with these findings, as shown in fig. 4.7, with the line shape

reproduced in the literature [116]. In the above analysis, it is assumed that the sign of �CSA is

unchanged.

The algorithm

The algorithm used to predict spectra using the relaxation framework outlined thus far was imple-

mented in Mathematica [128], using the SpinDynamica package, and is as follows:

1. Input atomic coordinates from a computational geometry optimisation.

• From coordinates, deduce bij , and in turn the DD-tensor using expression 2.82 given in

section 2.4

• From coordinates, define the M-frame as that with its z-axis parallel to the internuclear

vector connecting the labelled nuclei

• Diagonalise the DD tensor and find Euler angles between the PDD- and M-frames, which

should be ↵ “ � “ � “ 0.

2. Input magnetic shielding �i tensors for labelled nuclei from computation.
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Figure 4.7: a: 13C2-DAND spectrum simpulated in SpinDynamica. b: Experimental spectrum

at 9.4 T. We see the asymmetric broadening/narrowing is reversed, and less exaggerated than in

the case of I.
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• Transform �i to chemical shift tensors, �i, using computational tetramethylsilane tensors

as a reference (all tensors obtained at the same computational level of theory).

• Diagonalise the chemical shift tensors of the labelled carbons.

• Order diagonal elements based on the Haeberlen convention (see eq. (4.21)).

• Deduce Euler angles parameterising the orientation of the PCSA-frame in the M-frame,

which has � » 900 for 13C2-DAND.

3. Define the relaxation superoperator as a function which takes two interactions, !0, and ⌧c as

arguments, �̂p⇤,⇤1,!0, ⌧cq.

• ⇤ “ ⇤1 for auto-correlated, and ⇤ ‰ ⇤1 for cross-correlated mechanisms

• Define �̂p⇤,⇤1,!0, ⌧cq for auto-correlated and cross-correlated mechanisms individually;

the complete operator is the sum of these.

• ⌧c is approximated using 1{T1 » pIz| �̂p⇤,⇤1,!0, ⌧cq |Izq { pIz|Izq, and solving for ⌧c.

4. Define Ĥcoh.

• Coherent parameters ��iso and Jjk are obtained from experiment

5. Define the Liouvillian as L̂ “ ´iĤ0 ` �̂p⇤,⇤1,!0, ⌧cq

6. Simulate the spectrum as a Fourier Transformed signal using routines implemented in Spin-

Dynamica

• Routines are FT[ ], Signal1D[ ], and BackgroundGenerator[ ]

The above algorithm may be extended to I by making the substitutions, M- Ñ D-frame, and

⌧c Ñ ⌧K, and the process is simplified immensely by approximating the coincidence of PDD-, PCSA-,

and D-frames. Mathematica notebooks are available for both cases.

4.8 Conclusion

The results and theory reported here show that cross-correlated relaxation can have a strong e↵ect

on the NMR spectra of homonuclear spin-1/2 pairs in the near-equivalence regime. This has strong

relevance to NMR experiments on long-lived states, which are often performed on spin systems of

this kind [88, 90, 95, 116, 117]. We also saw that the degree of cross-correlation e↵ects is dependent
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on the relative orientation of the DD and CSA tensors. In two cases, the lineshape is reproduced

using the theoretical framework described in chapter 3, with good agreement with experiment. After

understanding the origin of the peculiar lineshape, we are able to study I in the manner originally

intended; how long-lived is its long-lived state?...
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Chapter 5

The Triyne System; Spin

Relaxation Studies

We end this thesis with a chapter largely experimental; the theory creeping in seeks to aid exper-

imental understanding, and numerical simulations solidify confidence in the theoretical model. As

such, for those experimentally inclined readers, we cannot leave analytical acrobatics at the door.

As mentioned in the prelude to chapter 4, the triyne molecule has the potential to host a long-lived

singlet-order, with a lifetime greatly exceeding that of inverted longitudinal-order. We do, infact,

uncover a remarkable result, justifying the intense interest in this simple system thus far.

101
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5.1 Introduction

In this chapter, we continue investigations of the spin relaxation of I in isotropic solution and the

consequent e↵ects on NMR spectra. In the current paper, we consider the relaxation of the spin state

populations, as investigated by inversion-recovery NMR experiments. As shown below, inversion-

recovery NMR experiments display a strong asymmetry between the recovery trajectories of the

di↵erent spectral peaks after an initial population-inversion pulse. These e↵ects are dependent on

the flip-angle of the pulse used to induce the NMR signal following some delay post-inversion. The

asymmetry in the recovery to thermal equilibrium is associated with the cross-correlation of the

chemical shift anisotropy (CSA) and dipole-dipole (DD) interactions.

Singlet NMR experiments are also presented, demonstrating the long lifetime of 13C2 singlet-

order for I in solution. In particular, the singlet-order decay time constant TS is found to exceed

the magnetization relaxation time constant T1 by a factor a little above 120 at an approximate field

of 2 T. The slow decay of nuclear singlet-order is due, in this case, to the strong cross-correlation of

the chemical shift anisotropy interactions for the two 13C sites, as well as the immunity of singlet

order to relaxation caused by dipole-dipole interactions within the spin pair.

I became an attractive candidate to study the singlet-order relaxation behaviour of for three

reasons; the lifetime of singlet-order will be prolonged due to,

• The small chemical shift di↵erence (0.16 ppm) allows access to singlet-order, but minimises

relaxation via coherent interactions [90, 118, 129]

• By symmetry, singlet-order should have some immunity to relaxation via the symmetric CSA

mechanism [27, 84]

• The high local symmetry about the 13C nuclei may cause the antisymmetric CSA contribution

to singlet-order to be negligible [130]

To elaborate on these points, a symmetry-breaking mechanism is required for coherent mixing

between the singlet- and triplet-manifolds to allow population transfer [118, 129]. One such mecha-

nism is a chemical shift di↵erence. This does, however, cause relaxation, but the shift di↵erence is

small enough for this to potentially be an insignificant e↵ect.

Further, if I is treated as a symmetric rotor, we may approximate the local symmetry about

the labelled nuclei axially and having that of D8h point-group symmetry, as well as the z-principle
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axes parallel. Pileio [27] showed from symmetry arguments that for a spin system with high local

symmetry such as this one, with parallel principle axes, and identical chemical shift anisotropies for

the two spins, the contribution to singlet relaxation rate is zero.

The last point above is also related to the local point-group symmetry about the spins; Buck-

ingham and Malm [130] showed that for a molecule of D8h symmetry, all components of the an-

tisymmetric CSA tensor vanish. Thus, if I was to be treated as a rigid rotor the contribution to

singlet-order relaxation would be zero for the antisymmetric CSA. In reality, I will exhibit random

fluctuations in geometry and divert from D8h geometry. However, to a first approximation, we

assume the local geometry about the spins o↵ers some protection to singlet-order.

The linewidths are related to the decay of coherences, and TS to the decay of singlet-order via

equilibration of populations. A natural progression is to study the longitudinal relaxation, and in

particular the ratio TS{T1. Further, this ratio is determined as a function of static field.

5.2 Methods

5.2.1 Sample

19 mg of I was made up to a 200 µL 0.3 M solution in CDCl3. 5 freeze-thaw degassing cycles were

performed on the solution.

5.2.2 Equipment and pulse sequences

Spectrometers

All experiments were performed on a 400 MHz (9.4 T) Bruker Avance Neo spectrometer. A custom-

built shuttle was used to shuttle the sample to a field as low as 5 mT, and anywhere between.

Estimation of T1

T1 was estimated by the inversion-recovery process, where by the inversion of spin populations was

achieved via a 900
y

´1800
x

´900
y
composite pulse [131], followed by a delay ⌧ , and then by a 900

x
-pulse.

This process is repeated while varying the delay ⌧ to give a longitudinal recovery curve. To estimate
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Figure 5.1: Pulse sequence for each stage of the experiment inversion-recovery experiments. In

(a), a 1800
y composite pulse 900

y ´ 1800
x ´ 900

y inverts the thermal equilibrium populations of the

spin system. In (b), the sample is shuttled to low field for a time ⌧LF and the spin system evolves

freely. Note that there is a delay of ⌧shut while shuttling is taking place. This delay is constant for

all experiments in the measurement, and this experimental artefact should not a↵ect results. In

(c), a pulse with flip-angle � creates measurable coherences before acquisition of the signal.

T1 as a function of static field, the process is repeated with the sample shuttled to a lower field for

time ⌧LF during the delay (see fig. 5.1).

Variable flip-angle experiments

Inversion-recovery experiments are repeated with the final pulse flip-angle (�) varied with values

10°, 50°, and 90° chosen (see fig. 5.1).

Estimation of TS

TS was measured using the M2S-S2M pulse-sequence, shown in figure 5.2. This was implemented

with the shuttling device as depicted in figure 5.3. A singlet-order destruction (SOD-) filter [132]

was used prior to the initial 90x pulse, followed by an M2S block, and a T00-filter [133] was used

after the relaxation delay and upon shuttling the sample back into high field. Singlet-order was

transformed to measurable coherences via an S2M block.
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Figure 5.2: M2S block of an M2S-S2M pulse sequence. J-synchronised spin-echo trains are

utilised to create singlet-order. The number of carriages in the train is specified by loop number li.

delays are given analytically by, ⌧J “ ⌧
1
J “ 1{4J , and optimised along with l1 and l2 in experiment.

Optimised values are, ⌧J “ 1.155 ms, ⌧ 1
J “ 1.099 ms, l1 “ 20, and l2 “ 9. The S2M block is the

chronological reverse of M2S.

Analytically, ⌧J “ ⌧ 1
J

“ 1{4J and l1 “ 2l2, where J is the J-coupling between the two spins.

Practically, however, these parameters must be optimised, and are, ⌧J “ 1.155 ms, ⌧ 1
J

“ 1.099 ms,

l1 “ 20, and l2 “ 9.

5.3 Experimental results

5.3.1 Inversion-recovery

⇡{2 read-out

T1 values at fields ranging from 5 mT to 9.39 T are given in table 5.1. T1 was estimated at each

field by integrating over both peaks in a spectrum at a given delay, fitting each spectrum in the

experiment to the function,

fp⌧LFq “ A0e
´⌧LF{T1 ` A8

´
1 ´ e´⌧LF{T1

¯
, (5.1)

where A0 and A8 are coe�cients at ⌧LF “ 0 and ⌧LF Ñ 8, respectively.
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Figure 5.3: Pulse sequence used to measure the singlet decay time constant TS as a function of

field strength. (a) A singlet-order destruction (SOD) filter removes residual singlet-order, before

singlet-order is created via the M2S pulse sequence [118]. A T00-filter removes residues spin-orders

other than singlet-order. (b) The sample is shuttled to low-field in the interval ⌧shut and evolves

freely during the interval ⌧LF before being shuttled to high-field in the second ⌧shut interval. (c)

Singlet order is converted back to measurable magnetisation via the S2M pulse sequence; i.e.

chronological reverse of M2S, with an additional 90°pulse.

Variable flip-angle experiments

The amplitude of each peak at a given value of ⌧ for a given experiment was obtained by fitting the

spectrum in this region to a superposition of absorption Lorentzians of the form,

Lp!q “ aa
�a

�2
a

` p! ´ !aq2
` ab

�b

�2
b

` p! ´ !bq2
, (5.2)

where aapbq is the peak amplitude, �apbq the linewidth, and !apbq the position for peak apbq. The

fitting for the 90° pulse-acquire spectrum is shown in figure 5.4. Experimental and simulated peak

trajectories are shown in figure 5.5, showing very close agreement between numerical simulations

and experiment.

Fittings were implemented in Mathematica and the details of the process for the � “ ⇡{2 exper-

iment are,

1. Import the high-field ⇡{2 pulse-acquire (or fully relaxed) spectrum and fit parameters.

• Import spectrum in ASCII file format.
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B0 / T T1 { s TS { s TS{T1

9.39 2.23 ˘ 0.04 208.80 ˘ 1.8 93.63 ˘ 1.8

7.96 2.45 ˘ 0.1 271.86 ˘ 6.5 110.96 ˘ 5.2

5.11 4.20 ˘ 0.1 459.09 ˘ 15.4 109.31 ˘ 4.5

1.94 6.54 ˘ 0.2 789.49 ˘ 22.5 120.72 ˘ 5.0

0.845 6.21 ˘ 0.3 789.41 ˘ 22.5 127.12 ˘ 7.1

0.409 6.11 ˘ 0.03 607.56 ˘ 13.8 99.44 ˘ 2.3

0.218 5.92 ˘ 0.03 508.56 ˘ 37.5 85.91 ˘ 6.3

0.126 5.70 ˘ 0.2 ´ ´
0.0428 5.58 ˘ 0.2 ´ ´
0.0210 5.78 ˘ 0.1 ´ ´
0.0116 5.80 ˘ 0.03 ´ ´
0.00695 5.82 ˘ 0.03 536.92 ˘ 50.1 92.25 ˘ 8.6

0.005 5.48 ˘ 0.2 549.18 ˘ 57.4 100.22 ˘ 11.1

Table 5.1: Values of T1 and TS, along with the magnitude of the static magnetic field in which the

measurements were taken. In bold are the two rows with the largest TS{T1 ratios of 120.72 ˘ 5.0

and 127.21 ˘ 7.1. Both are highlighted since there is an overlap of error.
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Figure 5.4: The NMR spectrum of I fitted as a sum of two absorption Lorentzian functions,

given by eq. (5.2). The dashed lines are individual Lorentzians, and the solid line is the sum of

them.

• With restriction aa “ ab ” a, fit parameters a, �a, �b, !a, and !b to the experimental

spectrum using eq. (5.2) (these are henceforth denoted af , �f
a
, etc.).

2. Import spectra from the inversion-recovery experiment and fit aa and ab.

• Each spectrum corresponds to that obtained for a di↵erent delay ⌧ .

• Fit ap1q
a and ap1q

b
independently, with �f

a
, �f

b
, !f

a
, and !f

b
fixed, and ´af as initial guess

for both aa and ab.

• Fit apiq
a and apiq

b
independently, with �f

a
, �f

b
, !f

a
, and !f

b
fixed, and api´1q

a and api´1q
b

as

initial guesses for apiq
a and apiq

b
, respectively.

• For each amplitude apiq
a and apiq

b
corresponds a delay ⌧ piq

• The couples
!
apiq
a , ⌧ piq

)
and

!
apiq
b
, ⌧ piq

)
provide peak amplitude trajectories over the

course of the experiment and may be plotted as in figure 5.5.

The � † ⇡{2 fittings are somewhat more nuanced, and follow the process,

1. Fit parameters to the � † ⇡{2 fully relaxed spectrum

• Define �a “ �f
a

` �1, where �1 accounts for any perturbation from �f
a
, with similar defini-

tions for �b, !a, and !b, with perturbations assumed equal for both peaks.

• Fit the parameters aa, ab, �1, and !1, where aa ‰ ab in this case
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Figure 5.5: Left: Experimental (points) and peak trajectories (curves) for the variable flip-

angle experiments at 9.4 T. Simulations were performed in Mathematica using the SpinDynamica

package [49] using the theory outlined in section 5.5. Parameters: ⌧K “ 160 ps, rjk “ 122 pm,

��iso “ 0.16 ppm, Jjk “ 214.15 Hz. Right: Experimental spectra obtained during the associated

experiments to illustrate di↵erential recovery of peaks.
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Figure 5.6: Plot of T´1
1 against B0, with the polynomial T´1

1 pB0q “ aB
2
0 ` bB0 ` c fitted to the

data. Parameters: a “ 4.70 ˆ 10´3 ˘ 3 ˆ 10´4 s´1 T´2, b “ ´8.86 ˆ 10´3 ˘ 6.1 ˆ 10´3 s´1 T´1,

c “ 0.17 ˘ 5.8 ˆ 10´3 s´1. The fit suggests the CSAp˘q mechanisms to be active with a quadratic

dependence on B0, the DD-CSA cross-correlation to be active with a linear dependence on B0, and

the DD interaction active since the field-dependence is very small outside of the extreme-narrowing

limit at 298 K, and may be approximated as field-independent and contained in c ‰ 0.
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2. Load in remaining spectra from the inversion-recovery experiment

• Spectra are in ASCII file format

• Fit ap1q
a and ap1q

b
independently, with �a, �b, !a, and !b fixed, and ´aa and ´ab as initial

guesses for ap1q
a and ap1q

b
, respectively.

• Fit apiq
a and apiq

b
independently, with �a, �b, !a, and !b fixed, and api´1q

a and api´1q
b

as

initial guesses for apiq
a and apiq

b
, respectively.

• The couples
!
apiq
a , ⌧ piq

)
and

!
apiq
b
, ⌧ piq

)
provide peak amplitude trajectories over the

course of the experiment and may be plotted as in figure 5.5.

The values of T1 as a function of static field are given in table 5.1, and plotted in fig. 5.6

5.3.2 Singlet-order

Both peaks in figure 5.8 were integrated over and peak area was fitted to the biexponential decay,

fp⌧LFq “ A1e
´⌧LF{T1 ` ASe

´⌧LF{TS , (5.3)

with T1 given in table 5.1. Integration was performed in Topspin and fitting in Mathematica. TS

with respect to field is also given in table 5.1, and plotted in fig. 5.7.

5.4 Numerical Simulations

Figure 5.9 compares fitted experimental spectra with those simulated for the variable flip-angle

experiments. All simulations were performed in Mathematica, using SpinDynamica [49]. Section

5.4.3 o↵ers details on implementation into Mathematica, and a notebook is presented alongside the

thesis.

5.4.1 Lindbladian relaxation superoperator

Since the relaxation of spin-state populations are considered here, a Lindbladian-type relaxation su-

peroperator is utilised. All the way back in chapter 3, the derivation of the relaxation superoperator

required that the open system operators Sj fulfill,
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Figure 5.7: Plot of T´1
S against B0. The polynomial T´1

S pB0q “ aB
2
0 ` bB0 ` c is fitted to the

data from 0.845 to 9.39 T. Parameters: a “ 4.70 ˆ 10´5 ˘ 3 ˆ 10´6 s´1 T´2, b “ ´6.80 ˆ 10´5 ˘
3.1ˆ 10´5 s´1 T´1, c “ 1.27ˆ 10´3 ˘ 5.9ˆ 10´5 s´1. The fit suggests the CSAp˘q mechanisms to

be active with a quadratic dependence on B0, and the DD-CSA cross-correlation to be active with

a linear dependence on B0. Field-independent interactions are also active as illustrated by c ‰ 0.

The behaviour below 0.845 T has been attributed to geometry fluctuations in the literature [95],

allowing for interactions such as the antisymmetric CSA and paramagnetic relaxation to dominate

at low fields.
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Figure 5.8: The TS decay curve at 9.4 T is shown, with its exponential nature illustrated with

spectra obtained at time ⌧ “ 20 s, 200 s, and 400 s after the M2S block. The ratio TS{T1 “
93.63 ˘ 1.8 at this field is exceptionally large, owing not only to the immunity of SO to DD

relaxation, but also the small contributions of the CSAp˘q and all cross-correlations due to the

high local symmetry about the spin pair.
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Figure 5.9: Experimental and simulated inversion-recovery spectra at 9.4 T, for � “ 100
, 500

, 900,

with all spectra from an inversion-recovery experiment superimposed. One can imagine the in-

verted peak with amplitude of the greatest magnitude being that which is obtained at the shortest

delay ⌧ . This corresponds to the first point in a recovery-curve plot. Moving vertically upwards,

each spectrum follows ⌧ chronologically. The thermalised relaxation superoperator in Lindbladian

form was used to describe the incoherent interactions active during the delay and acquisition pe-

riod. There is a one-to-one correspondence between each spectrum on the left with one on the

right, since the list of delays implemented in experiment was replicated in simulation. The experi-

mental plots are those of the fitted spectra using the process outlined in section 5.3. The plots were

generated in SpinDynamica [49]. The only input required for the simulations are the magnetic

shielding tensors and the internuclear bond length, rij “ 122 pm. Details of implementation from

here are given in section 5.4.3.
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“
H0, Sj

‰
“ ´!jSj

“
H0, S

:
j

‰
“ `!jS

:
j
,

(5.4)

while the semiclassical master equation relied upon,

“
H0, Xkq

‰
“ `!qXkq

“
H0, X

:
kq

‰
“ ´!jX

:
kq
.

(5.5)

When casting the semiclassical master equation used in chapter 4 to Lindbladian form, the above

suggests the correspondence,

Sj ô X:
kq

and S:
j

ô Xkq. (5.6)

However, one must remember that we are utilising a covariant basis of irreducible spherical tensors

as described in section 2.5.3 in chapter 2, and we instead end up with the correspondence,

Sj ô Xkq and S:
j

ô X:
kq
. (5.7)

The relaxation superoperator for rank-k interactions ⇤ and ⇤1 becomes,

�̂✓⇤⇤
1

k
‚ “ c⇤c⇤1

ÿ

q

J✓⇤⇤
1

kq
pq!0qD̂

“
X⇤

kq
, X⇤

1
kq

‰
‚, (5.8)

where J✓⇤⇤
1

kq
pq!0q “ J⇤⇤

1
kq

pq!0qe 1
2 ✓q!0 is the thermalised spectral density function, with J⇤⇤

1
kq

pq!0q
the classical spectral density function used throughout chapter 4, and ✓ “ ~{kBT is the inverse

temperature. In eq. (5.8), the spectral density function has been written separately from the

dissipator, and the latter is now given by,

D̂
“
X⇤

kq
, X⇤

kq

‰
‚ “ X⇤

kq
‚ X⇤

1:
kq

´ 1

2

!
X⇤

1:
kq

X⇤

kq
, ‚

)
. (5.9)

We find that in all simulations, the spectral density function of chapter 4, section 4.5.2 may be used,

with a simple thermalisation, and the double commutator in the relaxation superoperator may be

substituted for the dissipator in eq. (5.9).
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5.4.2 Interactions

The interactions considered are largely the same as in chapter 4; coherently we consider the Zeeman,

isotropic chemical shift, and scalar coupling interactions, and incoherently we consider the DD, CSA,

and cross-correlation between the two. However, the rank-1 antisymmetric CSA is also considered

here. Although the argument that it should vanish due to symmetry was put forward, a molecule of

I isn’t perfectly symmetrical, and – as shown below – has an associated correlation time three times

that of a rank-2 interaction.

The antisymmetric chemical shift anisotropy

The CSA mechanism involves both rank-1 antisymmetric (CSAp´q) and rank-2 symmetric (CSAp`q)

contributions. The antisymmetric and symmetric tensors are, respectively, defined as,

�p´q “ 1

2

`
� ´ �T

˘
(5.10)

and,

�p`q “ 1

2

`
� ` �T

˘
´ �iso, (5.11)

where � is the chemical shift tensor, and �iso is the isotropic chemical shift.

For a symmetric rotor,
”
⌧ pkq

K
ı´1

“ k pk ` 1qDK. From this, we have the relation,

⌧ p1q
K “ 3⌧ p2q

K . (5.12)

Thus, even if the components of the antisymmetric tensor are small compared to the symmetric

tensor components, this may be o↵set by the much longer correlation time.

Upon diagonalisation of �, rank-1 components vanish. However, we may work in the P-frame of

the rank-2 tensor (P2). That is, we use the eigenvectors of the rank-2 tensor to transform the rank-1

tensor; i.e.,

“
A

p1q‰P2 “ S
´1

“
A

p1q‰AAS
S, (5.13)
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q, p
“
XCSA

´
kq

‰L “
ACSA

´
kp

‰P2

0 0 ´ i?
2

p�xy ´ �yxq

˘1 1

2
B0I

˘
j

1

2
t�xz ´ �zx ¯ ip�zy ´ �yzqu

Table 5.2: Irreducible spherical spin and spatial tensor components for the CSAp´q interaction.

where S is a matrix whose columns are the eigenvectors of Ap2q, and
“
A

p1q‰AAS
is the rank-1 tensor

expressed in an arbitrary axis system. Since there is no cross-correlation between interactions of

di↵erent rank, the is no cross-correlation between the CSAp´q and CSAp`q, or CSAp´q and DD

mechanisms. Irreducible spherical spin and spatial tensor components for the CSAp´q interaction

are given in table 5.2.

5.4.3 The algorithm

The algorithm which allowed prediction of spectra for each delay in these T1 experiments is very

similar in structure to that used to simulate lineshapes, but with significant changes. A Mathematica

notebook is provided illustrating its use, and follows the structure,

1. Input atomic coordinates from a computational geometry optimisation.

• From coordinates, deduce bjk, and in turn the DD-tensor using expression 2.82 in section

2.4

• Diagonalise the DD tensor to express it in the PDD-frame

2. Input computed magnetic shielding �j tensors for labelled nuclei.

• Transform �j to chemical shift tensors, �j , using computational tetramethylsilane tensors

as a reference (all tensors obtained at the same computational level of theory).

• Form �p´q and �p`q using eq. (5.10) and (5.11), respectively.

• Use the eigenvectors of �p`q to put �p´q and �p`q in the P2-frame.

• Order diagonal elements of �p`q using the Haeberlen convention, and use this to order

the o↵-diagonal elements of �p´q.
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3. Define the Lindbladian relaxation superoperator as a function which takes two interactions,

!0, and ⌧K as arguments, �̂✓p⇤,⇤1,!0, ⌧
pkq
K q.

• ⇤ “ ⇤1 for auto-correlated, and ⇤ ‰ ⇤1 for cross-correlated mechanisms

• Define �̂✓p⇤,⇤1,!0, ⌧
pkq
K q for auto-correlated and cross-correlated mechanisms individu-

ally; the complete operator is the sum of these.

• ⌧K is approximated using 1{T1 » pIz| �̂✓p⇤,⇤1,!0, ⌧
pkq
K q |Izq { pIz|Izq, and solving for ⌧K.

• Set ⌧ p1q
K “ 3⌧ p2q

K .

4. Define Ĥcoh.

• Coherent parameters ��iso and Jjk are obtained from experiment

5. Define the Liouvillian, L̂ “ ´iĤ0 ` �̂✓p⇤,⇤1,!0, ⌧
pkq
K q

6. Define the thermal equilibrium density operator.

• The Hamiltonian is approximated as HZ and temperature is T “ 300 K.

7. Simulate the spectrum as the real part of a Fourier transformed signal using routines imple-

mented in SpinDynamica

• Routines used are FT[ ], Signal1D[ ] with the Preparation option, and BackgroundGen-

erator[ ].

The Preparation option allows one to specify the pulse sequence in the experiment. To simulate

an inversion-recovery experiment with the 100 final pulse flip-angle, the syntax is,

Preparation Ñ tPulsert⇡,⇡{2us, tNone,#u,Pulsert100,⇡{2usu, (5.14)

whereby the first pulse has flip-angle ⇡ of phase ⇡{2, and the delay is the placeholder #, which is fed

the sequence of delays implemented in experiment. Figure 5.9, where simulations for the variable

flip-angle experiments are compared to experiment. We see excellent agreement between experiment

and theory.
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5.5 Theory

5.5.1 Operator basis

In chapter 4, the spectral lineshape was understood by considering the spin dynamics described

by (´1)-quantum operators. To understand the dynamics during population equilibration during

inversion-recovery and singlet-order experiments, the (0)-quantum operators must be considered.

The set of 0-quantum operators of an appropriate basis is,

ST0 “
"
1

2
1,Tjk

00
,Tg

10
,Tu

10
,Tu

1
10
,Tjk

20

*
, (5.15)

where the normalised spherical tensor operators [60] are,

Tjk

00
“ ´ 2?

3
Ij ¨ Ik

“ ´ 1

2
?
3

p3|S0yxS0| ´ |T`1yxT`1| ´ |T0yxT0| ´ |T´1yxT´1|q ,

Tg

10
“ 1?

2
pIjz ` Ikzq

“ 1?
2

p|T`1yxT`1| ´ |T´1yxT´1|q ,

Tu

10
“ 1?

2
pIjz ´ Ikzq

“ 1?
2

p|T0yxS0| ` |S0yxT0|q

Tu
1

10
“ 1?

2

`
I´
j
I`
k

´ I`
j
I´
k

˘

“ 1?
2

p|T0yxS0| ´ |S0yxT0|q

Tjk

20
“

c
2

3
p3IjzIkz ´ Ij ¨ Ikq

“ 1?
6

p|T`1yxT`1| ´ 2|T0yxT0| ` |T´1yxT´1|q .

(5.16)

The Tjk

00
operator has an expectation value proportional to the population imbalance between
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the singlet and triplet manifolds, and referred to as singlet-order (SO). The Tg

10
operator has an

expectation value proportional to longitudinal magnetisation, and referred to as longitudinal-order

(LO), with the g (“gerade”) superscript referring to the symmetric permutation symmetry of the op-

erator with respect to spin labels. The antisymmetic operators Tu

10
and Tu

1
10

(“ungerade”) represent

ZQ-coherences via their expectation values. The Tjk

20
operator has an expectation value proportional

to a population imbalance in the triplet manifold, and since 1 “ |S0yxS0| ` |T`1yxT`1| ` |T0yxT0| `
|T´1yxT´1|, the 1

2
1 operator represents the sum of populations over all states, and is conserved under

relaxation.

The basis in eq. (5.16) is convenient for our purposes since it is an eigenbasis of the relaxation

superoperator describing DD relaxation, and may be approximated as an eigenbasis for the relaxation

superoperator describing the rank-2 CSA relaxation. Rank-1 CSA components are negligibly small

in the rigid model (recall section 5.1), and will not be considered in this analytical treatment. We

find that SO is immune to relaxation by the DD mechanism, and largely una↵ected by the CSAp`q

mechanism in the rigid-rotor limit. However, the cross-correlation between the two mechanisms

induces transitions between SO and the ZQ-coherences |S0yxT0| and |T0yxS0|.

5.5.2 Observable trajectories: inversion-recovery experiments

Matrix elements and spin dynamics

Since Longitudinal order is approximately an eigenorder of the full Liouvillian involving the DD and

CSA mechanisms, we may write,

⇤DD

LO
“ ´pTg

10
|�̂✓

DD
|Tg

10
q

pTg

10
|Tg

10
q

“ 3

10
b2
jk
⌧K

#
coshp!0✓

2
q

1 ` ⌧2K!
2
0

` 4coshp!0✓q
1 ` 4⌧2K!

2
0

+
,

(5.17)

and,

⇤CSA

LO
“ ´pTg

10
|�̂✓

CSA
|Tg

10
q

pTg

10
|Tg

10
q

“ 3

20
!2

0
⌧K

´“
�CSA

j

‰2 `
“
�CSA

k

‰2¯ coshp!0✓

2
q

1 ` ⌧2K!
2
0

,

(5.18)



5.5. THEORY 121

where axial symmetry is assumed (⌘jpkq “ 0).

Tg

10
is not an eigenorder of the Liouvillian when cross-correlation between the DD and CSA

mechanisms are considered, and is connected to the Tjk

20
operator by,

´pTg

10
|�̂✓

DDˆCSA
|Tjk

20
q

pTg

10
|Tjk

20
q

“ ´3
?
3

10
!0bjk⌧K

`
�CSA

j
` �CSA

k

˘ coshp!0✓

2
q

1 ` ⌧2K!
2
0

. (5.19)

That is, the |T0y state population is in excess relative to |T˘y. This in turn is loosely connected

to the ZQ-coherences, Tu

10
. The o↵-diagonal matrix element Tjk

20
Ñ Tu

10
is given by,

´pTjk

20
|�̂✓

DDˆCSA
|Tu

10
q

pTjk

20
|Tu

10
q

“ 1

5
?
3
!0bjk⌧K

`
�CSA

j
´ �CSA

k

˘
#
1 ´ 3coshp!0✓

2
q

1 ` ⌧2K!
2
0

+
. (5.20)

However, this matrix element is small compared to that in eq. (5.19) due to being proportional to

the di↵erence in CSA of the two sites, which are very similar in our model. The matrix representa-

tion of the relaxation superoperator and the dominant dynamics responsible for the observed peak

trajectories are shown in fig. 5.10 and 5.11, respectively.

From here, we may use the material from chapter 2, section 2.6, to mathematically describe the

e↵ect of a small � on the observed peak amplitudes. For a time-independent L̂, the spin dynamics

of the system may be described in the period t0 to t by the solution of the Liouville-von Neumann

equation as,

|⇢ptqq “ ept´t0qL̂ |⇢pt0qq

“
ÿ

q

|Qqq pQq| ⇢pt0q
˘
ept´t0q⇤q ,

(5.21)

where
∞

q

ˇ̌
Qq

˘`
Qq

ˇ̌
“ 1 is used, and t|QqquLD´1

q“0
is a complete and orthonormal operator basis.

As shown in chapter 4, the (´1)-quantum block is approximately diagonal in the BQ basis, and a

basis may be constructed for which BQ is a subset of ST (BQ P ST). Thus, the set of ⇤q are here

considered eigenvalues if |Qqq are restricted to (´1)-quantum operators. The signal may then be

written as [6, 9, 96],
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Figure 5.10: Matrix representations of the relaxation superoperator. The element outlined by

with a solid black line correspinds to LO, Tg
10. The element outlined by a dashed black line

corresponds to SO, Tjk
00. a) LO shows strong relaxation under the DD mechanism, whilst SO is

immune. O↵-diagonal elements are five- and six-orders of magnitude smaller than those on the

diagonal, and the ST0 operators in eq. (5.15) are considered eigenoperators of � when considering

only the DD interaction. b) Inclusion of the CSA mechanism. O↵-diagonal elements are still

very small compared to those along the diagonal, and although SO is not immune to the CSA

mechanism, the contribution to T
´1
S is proportional to the square of the di↵erence in anisotropy

parameters of the two spins. Since these parameters are very similar, this matrix element is on

the order of 1 ˆ 10´5. c) Inclusion of the DD-CSA cross-correlation. Inclusion of the correlated

mechanisms contributes little to the diagonal elements. However, operators are mixed as illustrated

by the larger o↵-diagonal elements.
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Figure 5.11: Energy level diagram illustrating the spin dynamics and how they describe the

di↵erential recovery e↵ects of the peaks in the spectrum. The filled circles represent positive

populations, and the open circles represent negative populations. a) The spin system at thermal

equilibrium may be approximated by longitudinal-order, T`
10. b) A ⇡-pulse inverts populations,

and a pulse with arbitrary � gives an inverted spectrum. c) After a small delay ⌧ ! 1 s, the

density operator is approximated by an operator intermediate between ´T`
10 and Tjk

20. Relaxation

is assumed to have taken place significantly between states |T0y and |T´1y only. A pulse with

small � leads to a spectrum in which only the Q` operator is measurable. d) The density operator

evolves into Tjk
20. A delay returns thermal equilibrium and a pulse of arbitrary � returns the

recovered spectrum.
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sptq “ 1

2
i pI´| ⇢ptq

˘

“
ÿ

q

aqe
pt´t0q⇤q ,

(5.22)

where aq is the complex amplitude associated with the coherence represented by operator
ˇ̌
Qq

˘
, and

using eq. (5.21) and (5.22) is given by,

aq “ 1

2
i
`
I´

ˇ̌
Qq

˘`
Qq

ˇ̌
⇢pt0q

˘
. (5.23)

If t0 is defined as the start of acquisition,

ˇ̌
⇢pt0q

˘
“ V̂exc

ˇ̌
⇢eq

˘
, (5.24)

where V̂exc is the excitation sequence. In our case, this corresponds to an inversion-recovery experi-

ment and is,

V̂exc ” V̂excp�, ⌧q

“ R̂�p�qeL̂⌧ R̂�p⇡q,
(5.25)

where R̂�p�q and R̂�p⇡q are rotation superoperators of phase � and with angles � and ⇡ as argument.

The complex amplitude in eq. (5.23) may then be written,

aq ” aqp�, ⌧q

“ 1

2
i
`
I´

ˇ̌
Qq

˘`
Qq

ˇ̌
R̂�p�qeL̂⌧ R̂�p⇡q

ˇ̌
⇢eq

˘
.

(5.26)

If approximating
ˇ̌
⇢eq

˘
as longitudinal order as in chapter 4 we may write,

ˇ̌
⇢eq

˘
«

?
2

ˇ̌
Tg

10

˘
, (5.27)

a ⇡-pulse leads to,
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R̂�p⇡q
ˇ̌
⇢eq

˘
« ´

?
2

ˇ̌
Tg

10

˘
, (5.28)

and eq. (5.26) may be written,

aqp�, ⌧q “ 1?
2
i
`
I´

ˇ̌
Qq

˘`
Qq

ˇ̌
R̂�p�qeL̂⌧ R̂�p⇡q

ˇ̌
Tg

10

˘
, (5.29)

The amplitudes of the individual peaks are then,

a˘p�, ⌧q “ 1?
2
i
`
I´

ˇ̌
Q˘

˘`
Q˘

ˇ̌
R̂�p�qeL̂⌧ R̂�p⇡q

ˇ̌
Tg

10

˘
. (5.30)

Considering the dynamics deduced in eq. (5.17)-(5.20) and depicted in fig. 5.11, the peak amplitudes

may be deduced at each point in the inversion-recovery process.

Following the inversion pulse and at ⌧ “ 0 s and with � “ 0, we have,

a˘p�, 0q “ ´ 1?
2
i
`
I´

ˇ̌
Q˘

˘`
Q˘

ˇ̌
R̂0p�q

ˇ̌
Tg

10

˘

“ ´1

2
sin�.

(5.31)

We see that the (0)- and (´1)-quantum operators are connected by the rotation superoperator, with

an amplitude of transformation depending on �. In this limit, both peaks have equal amplitude.

The normalised density operator after free evolution for a small delay (⌧ ! 1 s) as depicted in

fig. 5.11c is given by,

⇢c “ 1

8
1 ´ 1

4
?
3
Tjk

00
´ 3

2
?
2
Tg

10
´ 5

2
?
6
Tjk

20
. (5.32)

The amplitudes become,

lim
⌧Ñ0

a˘p�, ⌧q “ 1

2
i
`
I´

ˇ̌
Q˘

˘`
Q˘

ˇ̌
R̂0p�q

ˇ̌
⇢c

˘

“ ´1

8
p3 ˘ 5cos�q sin�.

(5.33)

Following this, the cases � “ ⇡{2 and � ! ⇡{2 are considered to explain the experimental findings

above.
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⇡{2 read-out

At point depicted in figure 5.11b, no relaxation has occurred and both peaks have equal amplitude

upon excitation of transverse magnetisation, as deduced by eq. (5.31). a˘p⇡{2, 0q becomes,

a˘p⇡{2, 0q “ ´1

2
, (5.34)

and is in greement with that deduced in chapter 4, section 4.6, in the limit of chemical equivalence

and taking into account inversion of spin polarisation. When ⌧ is small (see fig. 5.11c) we have,

lim
⌧Ñ0

a˘p⇡{2, ⌧q “ ´3

8
, (5.35)

and we see that both peaks have equal amplitude again, as observed experimentally.

Small flip-angle read-out

The theory thus far may be used to explain the di↵erential recovery e↵ects observed experimentally.

For small ⌧ and �, when the spin-system resembles fig. 5.11c, eq. (5.33) shows that the Q` peak

amplitude remains negative, whilst theQ´ peak amplitude is positive but tends to zero as � Ñ 0. For

example, a � “ 100 pulse at this point in the experiment gives the following theoretical amplitudes:

lim
⌧Ñ0

a`p100, ⌧q “ ´0.172

lim
⌧Ñ0

a´p100, ⌧q “ 0.0418.
(5.36)

Overall we have,

lim
⌧Ñ0

a`p� ! ⇡{2, ⌧q † 0

lim
⌧Ñ0

a´p� ! ⇡{2, ⌧q » 0,
(5.37)

which qualitatively describes the experimental results obtained in figure 5.5 correctly.
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5.5.3 Singlet-order relaxation

The same process can be used to study SO. We find that SO is immune to DD relaxation, which

is known and the fundamental property which makes it long-lived [27, 81, 82]. Also, ⇤CSA

SO
is

proportional to the square of the di↵erence in chemical shift anisotropy of the two sites:

⇤CSA

SO
“ ´pTjk

00
|�̂✓

CSA
|Tjk

00
q

pTjk

00
|Tjk

00
q

“ 1

15
!2

0
⌧K

`
�CSA

j
´ �CSA

k

˘2
#
2 ` 3coshp!0✓

2
q

1 ` ⌧2K!
2
0

+
.

(5.38)

Since �CSA is very similar for each spin, this suggests SO will be largely immune to the CSA

mechanism if a rigid molecule is assumed.

Like Tg

10
, Tjk

00
is not an eigenoperator of the Liouvillian involving the DD-CSA cross-correlation.

We find that under this influence, Tjk

00
is connected to the operator Tu

10
(ZQ-coherences), which are

in turn connected to Tjk

20
and, ultimately, Tg

10
as descibed at the beginning of section 5.5.2. We find

that the limiting step is,

´ pTjk

00
|�✓

DDˆCSA
|Tu

10
q

pTjk

00
|Tu

10
q

“ ´ 1

20
?
2
!0bjk⌧K

`
�CSA

j
´ 3�CSA

k

˘
#
2 ` 3coshp!0✓

2
q

1 ` ⌧2K!
2
0

+
.

(5.39)

That is, cross-correlation between the DD and CSA mechanisms relaxes singlet-order by trans-

forming it to the ZQ-coherences, which connects the manifolds and allows for population equilibra-

tion. The dominant spin dynamics are depicted in fig. 5.12.

5.6 Discussion and conclusions

Taken together, the field-dependence and �-dependence experiments show interesting relaxation

behaviour. The SO experiments are simpler to interpret, yet o↵er remarkable results and a natural

direction for future work.
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Figure 5.12: Energy level diagram illustrating the dominant spin dynamics of SO relaxation in

molecule I. The filled circles represent positive populations, the open circles negative populations,

and the curly arrows represent coherences. In going from (a) to (b), the M2S pulse-sequence (see

fig. 5.2) creates SO from LO. c) After some delay, coherences connecting the singlet- and triplet-

manifolds are created, with facilitates relaxation back to LO via population transfer between

manifolds as depicted in (d) and (a).
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5.6.1 Inversion-recovery experiments

Inversion-recovery experiments for which � “ ⇡{2 show a field dependence where by T1 increases

with decreasing field to a maximum of 5.82˘0.03 s at B0 « 7 mT. This small T1 may be attributed to

the large DD coupling between the spins, and the large CSAp`q mechanism, which is the dominant

relaxation mechanism active in the system. The variable flip-angle experiments show di↵erential

recovery trajectories of the two main peaks. The numerical simulations show excellent agreement

with these experiment, and were based on the theory presented in chapters 3, 4, and section 5.4

here. Further, analytical theory is presented which accounts for the spin dynamics and successfully

describes the di↵erential recovery e↵ects qualitatively.

5.6.2 Singlet-order relaxation

The TS of 208.80 s at 9.4 T does not seem hugely impressive on its own. However, an arguably more

important quantity is the ratio TS{T1, which is approximately 120-fold for the triyne derivative at

fields B0 “ 1.94 T and 0.845 T. This ratio is exceptionally high, and is attributed to the immunity

of SO to the large DD couplings, as well as the consequences of high local symmetry about the

labelled nuclei.

To elaborate, the analytical theory presented shows that ⇤CSA

SO
is proportional to the square of

the di↵erence in CSA parameters of the two spins. These parameters are �CSA

j
“ ´145.7 ppm and

�CSA

k
“ ´145.4 ppm. As such, the contribution to TS is very small. Further, analysis of the relax-

ation superoperator allows one to trace the spin dynamics induced by the DD-CSA cross correlated

mechanisms. Taken together, the theory outlined in section 5.5.3 o↵ers some understanding of what

makes TS " T1 in this system. However, not all limits, regimes, and mechanisms were considered,

which o↵ers avenues for future work.

For example, the small contribution from the CSAp`q mechanism, and neglect of the CSAp´q

mechanism, assumes a rigid geometry. This is unlikely, and the triyne derivative will undergo

instantaneous conformational fluctuations at any point in time. These changes will a↵ect the degree

to which interactions and the cross-correlation between them contribute to relaxation. For example,

Pileio [27] showed that the contribution of the symmetric CSA mechanisms to T´1

S
is dependent

not only on the di↵erence in chemical shift anisotropies of the two spins, but also the relative

orientation of the PCSA-frames; if the two z-axes are parallel, and anisotropies equal, then there is

no contribution. The treatment in of I in this thesis relied on assuming a rigid geometry, which in



130 CHAPTER 5. THE TRIYNE SYSTEM; SPIN RELAXATION STUDIES

turn allows one to approximate the PCSA-frames as parallel. Yet, at any instant in time, it is likely

that conformational flexibility means we deviate from this ideal.

Of foremost significance is the contribution from the CSAp´q mechanism. In section 4.7, the

molecule 13C2-DAND was considered. Intuitively, one would expect the ring structure to be rigid,

with little flexibility. However, it has been shown by molecular dynamics that the conformational

fluctuations are significant [95]. Further computations also implied that these fluctuations allowed

for CSAp´q to be the dominant mechanism at low fields. It is reasonable to believe that the triyne

derivative is subject to greater conformational fluctuations in the vicinity of the labelled nuclei, than

is 13C2-DAND, and this mechanism may o↵er a large contribution to T´1

S
.

Future work would explore the use of molecular dynamics to predict the relaxation behaviour in

di↵erent limits. For example, to predict the peculiar behaviour of T1 and TS at low-fields, illustrated

by figures 5.6 and 5.7, respectively; in both cases, there is a minimum in the inverse constants when

the field is very low, followed by an increase in the inverse constants. This behaviour has been

predicted by Klauda et al. (2008) in the context of lipids rotating in membranes [134], which also

rotate anisotropically.

As it stands, the vast majority of the work presented in this thesis is analytical, o↵ering results

which are relevant in strict regimes; the model of a rigid symmetric top, tumbling anisotropically

in an isotropic medium. Although this may appear to be a limitation, it has allowed one to derive

significant and meaningful results throughout, describing the spin dynamics of a misleadingly simple

system.
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