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Abstract

Propagation of elastic waves along the axis of cylindrical shells is of great current
interest due to their ubiquitous presence and technological importance. Geometric
imperfections and spatial variations of properties are inevitable in such structures. Here
we report the existence of branched flows of flexural waves in such waveguides. The
location of high amplitude motion, away from the launch location, scales as a power law
with respect to the variance, and linearly with respect to the correlation length of the
spatial variation in the bending stiffness. These scaling laws are then theoretically
derived from the ray equations. Numerical integration of the ray equations also exhibit
this behaviour—consistent with finite element numerical simulations as well as the
theoretically derived scaling. There appears to be a universality for the exponents in the
scaling with respect to similar observations in the past for waves in other physical
contexts, as well as dispersive flexural waves in elastic plates.

Introduction

Waves propagating through heterogeneous media with spatially correlated randomness
show a peculiar behaviour, known as branched flows [1], in a variety of physical contexts
such as optics [2], microwaves [3], electron waves [4], tsunami waves [5], sound waves in
ocean [6] etc. The phenomenon of branched flows of waves is characterised by the
emergence of flow-like patterns with spatial branching. Emergence of branching is also
associated with the occurrence of focusing events or caustics which leads to regions of
high amplitude. Additionally, the expected distance ⟨lf ⟩ – of the first of such focusing
events from the point of launch – scales as

⟨lf ⟩ ∝ Lc⟨h2⟩−1/3, (1)

where ⟨·⟩ signifies the mean, Lc is the correlation length of the isotropic randomness
field and ⟨h2⟩ is a non-dimensional measure of the severity of the randomness; h is
defined more rigorously below.

In the context of elastic waves, we recently showed the existence of branched flows
and the associated scaling law in thin elastic plates [7]. This raises a natural question
about the universality of branched flows in mechanical waves carried by elastic
structures. Pipes and elastic tubes are ubiquitous due to the ease of their fabrication
and their frequent use to transport fluids through them. Many musical instruments,
especially wind instruments, make use of cylindrical shells as acoustic wave guides.
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Cylindrical shells also are found in many practical applications such as health
monitoring of buried gas pipes, where they act as waveguides for elastic waves.
Cylindrical geometry affords a practical context of an elastic waveguide to study
branched flows without reflections from the edges, unlike a wave bearing plate strip of
finite width [7] where reflections from the two edges parallel to the main direction of
propagation are inevitable. Further, the need for contrived periodic boundary
conditions, as previously implemented in studies concerning propagation through
random media in other branches of physics [8], is obviated. An cylindrical elastic surface
wraps circumferentially onto itself, so it does not have any reflecting boundary running
parallel to it axis, the main propagation direction; thus it naturally provides
propagation space that eliminates reflections azimuthally.

Waves in elastic shells have attracted the attention of dynamicists for
sometime [9,10]. Pioneering work on the statics of cylindrical shells was carried out by
Donnell [11]. This has been extended, for example, by Yu [12,13] and Naghdi &
Cooper [14], to derive the complete equations of motion. Numerous formulations of the
dynamics of shells, of varying degrees of accuracy —often differing in the kinematic
assumptions, exist; these have been summarized by Greenspon [10] and Leissa [15].
Propagating waves [16–18], normal modes [12,13], shells under random excitation [19]
have been studied theoretically, computationally [20] and experimentally [21]. The
propagation behaviour of plane waves in the presence of inevitable manufacturing
tolerances has not been studied in any detail so far. Here we examine the the effect of
such spatial non-homogeneities and explore the emergence of channels of energy flow in
such elastic waveguides.

Asymptotic approaches in elastic shells have been used frequently. A formal
treatment of shell dynamics, after considering two parameters representing a length
scale and a time scale, can be found in the works of Kaplunov et al. (see, e.g., [22]).
Waves that propagate in one direction but are localised in another, i.e. exponentially
decaying (e.g. Rayleigh waves [23] in semi-infinite medium) have been reported in the
past (for example, the so called Konenkov [24] waves travelling at the edge of a flat
plate, or other related waves in shells, see, e.g., Mikhasev [25]. This class of localised
waves are also known as trapped waves, and often appear as a consequence of the
boundary conditions (e.g. free-edge of an elastic plate). By contrast, the localised
propagation via ”channels” of propagation in a random medium, and reported here, are
a consequence of the heterogeneity of the medium.

We consider the propagation of flexural waves through a hollow cylindrical
waveguide when the wavelength of interest is much shorter than the correlation length
of the heterogeneity of properties, e.g., thickness or material stiffness. The tubular
cross-section undergoes breathing displacement that is radial, as a deformation pattern
propagates axially as a wave. The nominal thickness of the elastic cylinder is much
smaller than the wavelength of interest, in order to justify ignoring shear through the
thickness in our analyses. Consider a cylinder of non-uniform thickness with the axis
along the x-direction; the circumferential direction along s (with units of length) and
thickness H(x, s) about the nominal cylindrical surface. The thickness of the hollow
elastic cylinder has the form H(x, s) = H0(1− h(x, s)) where h(x, s) is a smoothly
varying random field with an isotropic auto-correlation function; the correlation length
is Lc, and ⟨h⟩ = 0, ⟨h2⟩ ≪ 1 (see Fig 1).

Results

Consider an initially plane wavefront of predominantly one wavelength propagating
axially through a thin cylindrical shell. The assumption of slow spatial variation of
properties enables the simplification of the wave elastodynamics to a set of ray equations
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Fig 1. Spatial variation of thickness over the surface of a cylindrical
waveguide. The radius of the cylindrical shell is R, axial length Lx, thickness H that
varies spatially as per H(x, s) = H0(1− h(x, s)), where ⟨h⟩ = 0, ⟨h2⟩ ≪ 1. Heatmap
shows the spatial variation of h(x, s). Inset on the top left is an “unwrapped” view of
h(x, s). In the middle of the inset, a circle of radius Lc, equal to the correlation length,
is shown.

using the eikonal/WKB approximations [26,27]. They are further simplified using the
paraxial approximation [28], permitted by the weak scattering nature of the problem,
which asserts a predominantly axial direction of the wave vector. These ray equations
are then used to analytically derive the scaling law (Eq 1) relating the position of
focusing and the severity of the non-homogeneity. We also numerically integrate the ray
equations to investigate the emergence of branched flow and to validate the theoretically
derived scaling law. The same scaling is also probed using finite element simulations
which capture the complete wave elastodynamics, including dispersion.

Ray equations

Thin shell theory

Plane waves of predominantly single wavelength k0 are launched at the left end of the
elastic waveguide. Rays are fully described by four quantities: spatial variables x, s
indicating the location of the ray along the axis and circumference respectively, and
kx, ks, the wavenumber components in the axial and circumferential directions
respectively. The spatial variables are non-dimensionalised with respect to the nominal
radius, i.e. x̃ = x/R, s̃ = s/R, whereas the wavenumbers are non-dimensionalised with
respect to the initial wavenumber k̃x = kx/k0, k̃s = ks/k0. Given the parameter regime
of interest, (thin shell, small curvature, and slowly varying parameters) we can use the
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dispersion relation given by Pierce [16] to obtain the non-dimensionalized ray equations

∂τ x̃ = k̃x

k̃2x + k̃2s − α
k̃2xk̃

2
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)3
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where α = 12(ν2 − 1)γ
2

ϵ2 , γ = (k0R)−1, ϵ = H0k0. Additionally, h̃(x/R, s/R) = h(x, s)

and ∇̃ = [∂x̃ ∂s̃]
T . Here, τ is an arbitrary time variable, consistent with ray

approximations. The initial condition is x̃ = 0, k̃x = 1, k̃s = 0 and k̃s ∈ [0, 2πR)
depending on the circumferential location of the ray’s starting point.

Paraxial ray equations

In the regime of weak scattering studied here, the thin shell ray equations can be
simplified. k̃x and k̃s, the wavenumbers in the axial and circumferential directions
respectively, are not expected to vary substantially from their initial values of 1 and 0
respectively, as the initially launched plane wave is purely axial, and it remains
predominantly axial. For weak scattering of initially plane waves, it is customary to
make the simplifying assumption that the wave-number does not change at all in the
main propagation direction. This can be achieved by setting ∂τ k̃x = 0, k̃x = 1 in Eq 2,
which is the essence of the paraxial approximation. Finally, dropping all k̃s terms
compared to O(1) terms, the ray equations become

∂τ x̃ = 1, ∂τ s̃ = k̃s(1 + α), ∂τ k̃x = 0, ∂τ k̃s =
1

2
∂s̃h̃. (3)

The approximations made to obtain Eq 3 from the full thin shell ray equation use
arguments about the physics of the problem. Nonetheless, the validity of these
assumptions is further confirmed later here by numerical integration of ray equations.

Fig 2 (left) shows a comparison between the rays obtained from numerical integration
of the full thin shell ray equations (Eq 2), and the simplified equations obtained
following the paraxial approximation (Eq 3) for increasing values of ⟨h2⟩. The rays have
been plotted “unwrapped” in the left column of the figure, where 300 rays equi-spaced
along the circumference at the left end are launched as they curve and veer downstream
due to scattering. Transmission behavior on the cylindrical surface, is shown in Fig 2
(middle) where interesting spiral structures with no preferred handedness, as expected,
are observed. Such structures are not present in the case of branched flow of flexural
waves in thin plates [7] due to the presence of reflecting boundaries. The rays as
computed using thin shells theory versus that using the paraxial approximation look
fairly similar, confirming the validity of the paraxial approximation. At the time instant
for which the simulation is terminated, all rays have reached the right edge in case of
the paraxial approximation, unlike the rays obtained from integrating the thin shell ray
equations. This is a consequence of assuming ∂τ k̃x = 0 under the paraxial assumption.
Most importantly, it can be seen that the spatial location of the first caustic, indicated
by circular and cross-shaped markers, is approximately the same from both sets of ray
equations, except for the highest levels of ⟨h2⟩ shown here.

In Fig 2 (right), the time evolution of the four quantities describing one ray is
plotted. The values of x̃, s̃, k̃s obtained from the two ray formulations are in excellent
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Fig 2. Comparison of thin shell ray equations and equations obtained from
making the paraxial approximation. Left: Ray propagation using full thin shell
theory and paraxial approximation of thin shell theory. Circular and cross markers
indicate the location of the first caustic. The s̃ axis has been “unwrapped” for
representational purposes. Middle: Same ray propagation shown on the cylindrical shell.
Right: Plot of the temporal evolution of quantities describing the one of the rays. Here,
markers indicate temporal location of the first caustic. It can be seen that, at higher
values of ⟨h2⟩, the location of the first caustic detected from the paraxial approximation
differs from thin shell.

agreement. k̃x has a constant value in the paraxial approximation as stated earlier.
While it does not show the variation with time that the thin shell case shows, note that
the values do not change appreciably from 1. Regardless, the first caustic is detected by
looking for the instant where the s̃− k̃s curve becomes locally two valued (details below)
and is not dependant on k̃x directly. In Fig 2 (right), markers indicate temporal
location of the first caustic.

The paraxial approximation becomes more inaccurate as time passes. However, since
we are interested only in the location of the first caustic, and they tend to appear fairly
early, this eventual drift is inconsequential. The paraxial approximation also breaks
down faster when the value of ⟨h2⟩ is higher, i.e. when the weak scattering assumption
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starts breaking down. However, this is partially counteracted by the fact that when the
value of ⟨h2⟩ is higher, the first caustic appear earlier. Nonetheless, the progressive
degradation of the paraxial approximation with increase in ⟨h2⟩ can be seen in Fig 2.

We will now use these ray equations to derive the scaling of ⟨lf ⟩ analytically. We will
also numerically integrate them to study the scaling. The ray equations Eq 2 (and,
therefore, Eq 3 too) are obtained from simplified dispersion relation for flexural waves in
a thin shell. At the higher ⟨h2⟩, some rays are expected to completely back-scatter due
to the severity of randomness. This is not captured by Eq 2. In the Supplementary
Information (S1 File), we derive the ray equations starting from the governing equations
of the displacements of a thin cylindrical shell. These ray equations are more
sophisticated and show the expected back scattering at higher values of ⟨h2⟩. However,
after applying the paraxial approximation, the resultant set of ray equations show very
similar results to Eq 3. The analytical and numerical validation of the scaling law Eq 1
using these ray equations is also shown in the Supplementary Information (S1 File).

Scaling law: from analysis, ray equations, and finite element
elastodynamics

We use the ray equations obtained after making the paraxial approximations Eq 3, and
following a process very similar to other branched flow works [5, 7] we obtain,
⟨lf ⟩ ∼ Lc⟨h2⟩−1/3 barring an extremely weak dependence of the proportionality
constant on γ and ϵ (S1 File).

The scaling of the location of the first caustic resulting from the analysis of ray
equations can also be obtained numerically from: (i) numerical integration of the ray
equations, and (ii) finite element elastodynamic simulations. The emergence of branched
flows is clearly visible from finite element elastodynamics simulations; an example of
which is shown in Fig 3. ‘Snapshots’ of the temporal evolution are shown in (a → b → c
→ d) of an initially plane wave front, as it propagates along the elastic cylinder with
non-uniform thickness. The entire domain is shown on the top of each panel and regions
of high amplitude, indicated by colored lines, are zoomed into and shown on the bottom
of each panel. The radial displacement has been greatly exaggerated for representational
purposes. Note that the absolute value of displacement can be scaled arbitrarily since
we are considering the linear regime. The initially plane wave front (a) splits into
distinct branches (b) leading to regions of extreme amplitudes. As the wavefront
propagates further (c, d) more branching is observed. The widening of the wavefront as
expected because of the dispersive nature of flexural waves in shells as seen here.

Using the approach of detecting the first caustic described in the Methods section,
the scaling of location of the first caustic with the statistical properties of the random
field and the geometry of the cylinder are now explored. Fig 4 shows results for the
distance of the first focusing event from the point of launch as a function of the severity
of randomness for 800 realisations of the shells of correlated randomness. The mean for
each value of ⟨h2⟩ is shown by a blue square marker. The figure of the left is from the
numerical integration of ray equations whereas that on the right is from FE simulations,
both showing good agreement with the scaling ⟨lf ⟩ ∼ ⟨h2⟩−1/3.

The linear scaling of the location of focusing with the correlation length ⟨lf ⟩ ∝ Lc is
also validated using the two numerical methods, see Fig 5. Using the curve obtained for
Lc/L

ref
c = 1 as reference, the prediction assuming the linear scaling with Lc is shown

using dashed lines. It is clear that the actual simulations (markers) agree with this
prediction both for ray simulations as well as finite elements elastodynamics.. In the
results from FE elastodynamics simulations, the scaling seems to diverge from the
prediction at higher values of ⟨h2⟩; this is expected since the weak scattering
assumption breaks down at these values of ⟨h2⟩. This does not happen in the
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Fig 3. Emergence of branched flow in for an initially plane wavefront in a
thin cylinder of non-uniform thickness. Temporal evolution (a → b → c → d) of
an initially plane flexural wave front in a thin elastic cylinder of non-uniform thickness.
The full cylinder has been shown on the top of each panel. The regions of high
amplitude at each time instant is indicated with colored lines and they been zoomed
into and shown at the bottom of each panel. The emergence of branching leading to
locations of extreme amplitudes and widening of the wavefront consistent with the
dispersive character of this class of elastic waves is also observed.

Fig 4. Scaling of location of the expected location of the first focusing event
with “severity” of randomness. Locations of first caustic as obtained from
numerical ray integration (left) and FE elastodynamics simulations (right). Circular
markers indicate locations of first caustic from individual simulations. Square markers
show the expected location of the first caustic. Vertical lines indicate 2 standard
deviation (centered around the mean). The expected locations of the first caustic show
the expected power law scaling with ⟨h2⟩.

simulations using numerical integration of ray equations since we use the formulation
obtained from applying the paraxial approximation which assumes weak scattering. The
linear scaling can also be inferred from dimensional arguments that the only length
scale in the problem is the correlation length.

The insensitivity of ⟨lf ⟩ to wavelength (for λ ≪ Lc) is confirmed by the two
numerical approaches, see Fig 6. The expected breakdown of the scaling due to strong
scattering is seen here for the FE elastodynamics simulations. Finally, using ray
simulations, we verified that ⟨lf ⟩ is insensitive to variations of the radius of the cylinder
in the shallow cylinder regime λ ≪ R, see Fig 7. The same could not be carried out
using FE simulations due to computational constraints. Note that, since l̃f is

non-dimensionalised with respect to the radius, a nominal radius R0 is used to scale l̃f
appropriately when studying (in Fig 7) the effect of changing radius.
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Fig 5. Scaling of the expected location of the first focusing event with
correlation length of the randomness. Expected locations of the first caustic from
numerical ray integration (left) and FE elastodynamics simulations (right) for different
correlation lengths. Taking the curve corresponding to Lc/L

ref
c = 1 to be the reference,

dashed lines show the predicted behavior at other correlation lengths assuming
⟨lf ⟩ ∝ L1

c . The actual simulations agree well this prediction hence confirming the linear
scaling.

Discussions

The present study extends our previous observations for non-homogeneous elastic plates.
The presence of branched flows in thin elastic shells suggests the robustness of the
phenomenon across physics and also geometry of the wave-bearing media. Further, the
scaling of the location of the first focusing event from the point of launch of the waves
appears to have universality in terms of the exponent on the measure of heterogeneity.

The ray dynamics approximation of this wave propagation problem presents a
numerically inexpensive way to explore the essential physics of this phenomenon
without an associated high computational cost. Nonetheless, some of the characteristics
of this wave-bearing media are not captured by the ray dynamics approximation. This
is why we complemented it with full wave elastodynamics simulations using FEM.
While, FEM is of much higher fidelity than numerical ray dynamics, some high
frequency/short wavelength regime behaviour may still have been missed out due to the
limitation on how fine the meshing could realistically be.

The elastic medium as well as the randomness considered here are isotropic. When
the randomness is anisotropic, the directionality of randomness is likely to affect the
branched flows, and intuitively a directional bias is expected. Likewise, directionality in
the medium itself would change the governing equation of motion, via the constitutive
relationship and the wave-speed on the surface of a cylindrical shell will have a
directional dependence. This could be of practical interest to many engineering
structures where orthotropic shells or laminates with orthotropic layers are commonly
used. We would expect a chirality in the branched flows under such situations. However,
we are not concerned with these aspects in the present work.

The findings of the paper could have a more general implication, but at this stage
such suggestions are at best speculative. For example, one could imagine the emergence
of branched flows of waves in infinite elastic plates radially spreading from a source
driven at a point. Branched flow for similar geometry in water waves [30] have been
reported. The presence of the phenomenon reported for isotropic shells is expected to be
robust to other isotropic materials, because regardless of the material in question, the
properties are described by just two elastic constants. Material properties do not appear
in any of the scaling concerning branched flows, instead the non-dimensional level of
randomness does. Branched flows in anisotropic elastic media remains an open question.

The findings of the present work may have interesting implications to acoustic
condition monitoring of elastic pipes such as those used by Pipeline Inspection Gadgets
(or Guages, PIGs for short; the process being known as ”pigging”), where
inhomogeneity in the elastic shell to be monitored as well as its geological surroundings
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Fig 6. Scaling of the expected location of the first focusing event wavelength
of the initial wavefront. Expected locations of the first caustic from numerical ray
integration (left) and FE elastodynamics simulations (right) for different wavelengths.
As long as λ ≪ Lc, ⟨l̃f ⟩ is independent of wavelength. The power law scaling seems to
break down at higher ⟨h2⟩, especially in FE simulations. This is consistent with the
expectation that the scaling holds only for weak scattering and higher ⟨h2⟩ corresponds
to higher scattering.

Fig 7. Scaling of the expected location of the first focusing event with the
radius of the cylinder. Scaling of the expected locations of the first caustic with radii
from numerical ray integration. The expected location of the first caustic is independent
of the radius in the parameter ranges of interest.

is inevitable. Insights into the relationship between locations of caustics and the
“severity” of randomness in the elastic properties can also potentially be applied to the
metrology of thin cylindrical shells.

Conclusions

There appears to be a universality of branched flows in the propagation of elastic waves
through random media. Following our previously reported results on branched flow in
elastic plates [7], here we demonstrate analogous behaviour for shells with correlated
random properties. The ray equations for flexural waves in a thin elastic cylinder are
derived. A paraxial approximation, permitted by the parameter regimes of interest, is
applied to the ray equations. This is used to analytically demonstrate that the expected
location of the first caustic in shallow cylinders shows the scaling ⟨lf ⟩ ∝ Lc⟨h2⟩−1/3.
This scaling was then corroborated using numerical integration of ray equations and full
FE elastodynamic simulations.

An immediate extension of this work on cylindrical elastic shells would be to explore
the dependence of the scaling of the first caustic with the radius for shells with
appreciable curvature (i.e small radius). We are unable to do so in this work since the
requirement of 2πR ≳ Lc limits how small the radius can be. This can be remedied by
using anisotropic randomness which would enable one to reduce the radius by using a
smaller correlation length in the circumferential direction. There may be an elegant
scaling of ⟨lf ⟩ with radius in this parameter regime. The existing literature on branched
flows in media with spatially anisotropic randomness [29] can be leveraged.
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Fig 8. Plot of the temporal evolution of the k̃s̃ − s̃ curve obtained from
numerical ray simulations. Since values of k̃s̃ are centered around zero, a constant
positive offset is added for the purpose of visualization. The first caustic is detected by
finding the location where the k̃s̃ − s̃ curve folds over itself (shown in red).

Methods

Detecting first focusing events

For numerical ray simulations, we use a method similar to that described in our earlier
work on flat plate dynamics [7] to detect focusing events. In the ray picture, a caustic
corresponds to the location where the density of rays becomes infinity. It can be shown
that the “density of rays” at any given point will be inversely proportional to ∂s̃/∂k̃s̃.
Therefore, caustics can be detected by finding locations where the k̃s̃ − s̃ curve folds
over itself i.e. ∂s̃/∂k̃s̃ → 0. See [30, 31] for details. The first focusing event is, therefore,
detected by finding the time and location when the k̃s̃ − s̃ curve folds over itself for the
first time. This is done numerically by tracking the local slope of the curve and
detecting locations when the slope become higher than π/2. The temporal evolution of
the k̃s̃ − s̃ curve is plotted in Fig 8. The first time this curve folds over itself, signalling
a caustic, is shown in red. Note that since, k̃s̃ has values centered around 0, a constant
positive value is added to it for representational purposes. This value is not used when
numerically detecting the caustic.

In the wave picture, we do not detect the location of the caustic directly. We detect
the caustic, instead, by locating high amplitude events, a consequence of caustics. From
an implementation point of view, we use a very similar technique as the one used in
existing branched flow literature [7] to detect the location of the first caustic from
Finite Elements (FE) simulations. For each simulation, the displacement fields are used

to construct the integrated intensity, I(x, s) =
∫ T

0
η2(x, s, t)dt. This is in turn used to

construct the scintillation index, S(x) = ⟨I2⟩s/⟨I⟩2s − 1. The location of the first
significant peak of S(x) indicates the location of the first caustic (see Fig 9).

Remarks on numerical ray integration and FE elastodynamics

According to the paraxial approximation, rays travel at a constant speed in the main
propagation direction. This wavespeed corresponds to the speed of propagation for the
monochromatic wave being launched. This enables us to calculate the total time the
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Fig 9. Plot of integrated intensity (top) and scintillation index (bottom) of
an exemplar FE simulation. Note that the integrated intensity has been normalized
along by the mean along the circumferential direction for visually emphasizing the
locations of extreme amplitudes. The first prominent peak (circular marker) of the
scintillation index (SI(x)) curve indicates the location of the first caustic (lf ).

rays would take to travel the entire length of the cylinder. The time stepping in the
numerical ray simulations is set using this to ensure that there are 2000 time steps in
the full length traversal. We can be certain that this time stepping is adequate since no
variation is seen in the rays when the time steps are varied around 2000. Another way
of being confident of the adequacy of the time stepping is to note that the time steps
roughly corresponds the same number of steps the main propagation direction and 2000
steps is adequate to capture the features in the main propagation direction which are of
the order of the correlation length i.e (Lx/2000 ≪ Lc). Note that we are unable to use
any other physical arguments to arrive at the time step since the time scaling for ray
equations is arbitrary as shown earlier.

For the FE elastodynamics simulations, a combination of physical arguments and
some trial and error is used to find the total time of the simulations. The time step is
set to π

4ω , this ensures that there are 8 points per cycle since the forcing has
predominant frequency component of ω. The cylinder is meshed using rectangular
element which have the dimensions λ/8 and 3λ/8 in the axial and circumferential
directions respectively. Note that the meshing can be a bit coarser in the
circumferential direction since the wave predominantly travels in the axial direction and
therefore the variations along the circumference are modest and of length scales much
longer than the wavelength. The element aspect ratio of 1:3 is typically inadvisable in
general, however, since we are confident that the variations in the circumferential
direction are modest and of longer length scales, this aspect ratio will not lead to ill
conditioning or mis-estimation of results. The spatial discretization of λ/8 ensures that
the spatial variation due to a wave of predominant wavelength λ is adequately captured.
Admittedly, since the system being studied is dispersive, wavelength shorter than λ will
also be excited and the chosen discretization may not model them well. The
computational expense of these FE simulations must be emphasized here and this is the
reason behind some compromises in the choices made during meshing.

It was ensured that the location of the detected caustics from numerical ray
integration did not show any angular bias. Fig 10 show the angular distribution of
caustics detected using numerical ray integration. No consistent and appreciable bias is
visible. Angular bias can be introduced inadvertently from improper interpolation of the
randomness field when conducting numerical ray integration.
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Fig 10. Histograms of angular locations of the first focusing events obtained
from numerical ray integration. Polar histograms of the angular locations, shown in
blue, show no consistent appreciable angular bias. The green circle indicates the outline
of a polar histogram with perfectly zero angular bias. The individual data-points used
to construct the histograms are shown with orange dots. Their angular location is the
one obtained from simulations; their radial position in the above plots is randomized in
the interest of visualization.

Ray integration and FE simulation routines developed for our work on branched
flows in elastic plates [7] were suitably modified for the elastic cylindrical domain under
consideration. Most of the required modifications pertain to imposing the continuity
condition as one went around the circumferential direction. The method detailed in [7]
for generating random field of specified correlation length, fortuitously, generates fields
which are periodic along the parallel sides and hence, that code was ready to repurposed
with minimal modification for generating h(x, s) since the continuity requirement was
automatically satisfied. The code snippet detecting caustics numerically during ray
simulations was rewritten to respect continuity in the circumferential direction. The
parameterized FE code was modified to generate the right circular cylindrical geometry.
The code to export integrated intensities was also modified in light of the different
coordinate system.

Supporting information

S1 File. Supplementary Information. Derivation of ray equations and scaling law
from Yu’s formulations of the equations of motion.

S1 Video. Animation showing emergence of branched flows of flexural
waves in a cylindrical shell. (Top) Animation showing the eventual random focusing
and branched flow of an initially planar flexural wave front in an elastic cylinder.
(Bottom) A zoomed in view of the wavefront. Emergence of branches and high
amplitudes is clearly visible.
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