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DERIVATION OF SCALING LAW FROM EQUATIONS OF MOTION OF CYLINDRICAL SHELLS

The equation of motion for the radial displacement of a cylindrical shell, η(x, s, t), is given by (Yu [S1])
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where ∇2 = ∂xx + ∂ss. The material parameters, ν, E and ρ – Poisson’s ratio, Young’s Modulus and density
respectively, are constant throughout.

This formalism ignores contributions to strain energy due to through thickness shear deformation, rotary inertia,
and geometric non-linearity. The time independent terms in the resulting shell dynamics equations above are the
same as Donnell’s equations [S2] for statics.

Note that the system of equations given by Yu have expressions for the time evolution of the displacement in the
circumferential and axial directions too. Equation S1 describes the time evolution of the radial displacement that is
independent of the displacements in the other two directions. If we were interested in the displacements in the other
two directions, they could be obtained in conjunction with the solution of Equation S1.

Eikonal equation and dispersion relations

We assume that λ ≪ Lc. This means that H(x, s) has properties that are spatially “slowly varying” which allows
us to derive the eikonal equation from Equation S1. This is done by setting η(x, s, t) = η̂(x, s)e−iωt+iS(x,s), where
S(x, s) is the eikonal. All derivatives of H and all derivatives of S higher than the first order are discarded due to the
slowness of the spatial varitation of the properties. The eikonal equation thus obtained is
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FIG. S1. Comparison of dispersion relations Dispersion relations obtained from equation of motion of a cylindrical shell
are plotted with blue dotted lines; the same dispersion relation at the R → ∞ limit is shown with orange dotted lines; the
dispersion relation obtained from the equation of motion of a flat plate is plotted with a yellow dotted line. It can be seen that,
in the parameter regime of interest (H0 ≪ λ ≪ R), the lowest branch of the dispersion relations from equation of motion a
cylinder is approximated well by the dispersion relation obtained from equation of a flat plate.

By setting ∂sS = 0, ∂xS = kx, H = H0, one gets the dispersion relation for flexural wave transmission along the
axial direction in a uniform cylinder,
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where kx is the axial wavenumber. Further, setting R → ∞ would yield the dispersion relation for a flat plate.
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This can be compared with the dispersion relation for a flat plate [S3],
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We anticipate that all three dispersion relations will behave similarly in the regime of our interest (H0 ≪ λ ≪ R).
This can be seen from Figure S1 where the three dispersion relations have been plotted for typical material and
geometric parameters used in the current study. We can see that in the parameter regime of interest, the lowest
branch of the dispersion relations obtained from the equation of motion for a cylinder have similar values as those of
the dispersion relation obtained from the equations of motion of a plate.

For the numerical study, we excite the elastic tubes by imposed displacements at a certain dominant frequency,
shown in Figure S1 as ω1, ω2, ω3. The dispersion relations obtained from the equations of motions of a cylinder yield
more branches as compared to the one from equations of a plate. This is because of the higher order of the governing
equation and the other branches corresponding to other flexural and membrane-type displacements. However, it is seen
from numerical simulations (FE) that the higher branches are not appreciably excited. This is because the excitation
is predominantly radial. Hence, we can restrict ourselves to the lowest branch of the dispersion relation. As noted
earlier, this lowest branch can be satisfactorily approximated by the dispersion relation obtained from equations of a
plate in the parameter regimes of interest. Given the formal simplicity of the dispersion relation obtained from plate
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equations we shall use them later, to write down kx explicitly in terms of ω in the derivation of non-dimensionalised
ray equations.

The red region on the left in Figure S1 corresponds to small wave-numbers or, alternatively, large wavelengths. When
the wavelengths become comparable to the radius of the cylinder i.e. λ ∼ R, the curvature plays an increasingly
important role in the dynamics of wave propagation. This explains why the dispersion relations for a cylinder
(with finite R) and dispersion relations in the R → ∞ limit begin to diverge from each other in this region (see
Figure S1, inset). Meanwhile, the red region on the right-hand side of Figure S1 corresponds to large wave-numbers
or, alternatively small wavelengths (similar order as H0). This is a regime (H0 ∼ λ) in which the suitability of the
thin plate and shell equations we used to derive the dispersion relations is itself questionable.

Ray equations

By setting ∇S = [kx ks]
T , where kx & ks are wavenumbers in the axial and circumferential directions respectively

and then using Cauchy’s method of characteristics (see [S3]), we obtain the ray equations
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Here, k0 is the wavenumber excited in the structure on excitation at frequency ω. Notice that the eikonal equation is
only unique up to a multiplicative constant. Hence the scaling of the time variable τ is arbitrary, as is the case with
ray approximations.

For the purpose of our discussions it would be useful to define two non-dimensional parameters which strongly
influence the transmission of flexural waves in thin cylinder: (1) γ = 1

k0R
and (2) ϵ = H0k0.

We will now non-dimensionalise the ray equations using x̃ = x/R, s̃ = s/R, k̃x = kx/k0, k̃s = ks/k0. We shall
also replace τ with

(
R

k7H0

)
τ as we can scale time arbitrarily. This scaling simplifies the non-dimensionalized ray

equations. It also ensures that the time derivative terms are roughly O(1). This helps avoid any possible machine
precision/overflow based issues when the ray equations are integrated numerically. The numerical integration worked
fine without this scaling also. Machine precision/overflow issues might be rare for the system under consideration.
However, we choose this scaling as a matter of good numerical computing practice. Apart from the two stated above,
there are no other reasons to choose this specific scaling for τ . We shall use the expression ω =

√
EH2

0k
4
0

12ρ(1−ν2) from
dispersion relations of a flat plate. Ideally, we should obtain an expression for k0 in terms of ω by solving the dispersion
relation we obtained earlier for wave propagation in cylinders. While it may be possible to write it in closed form, it is
expected to be algebraically complicated. Given that, we had earlier established, using observations from Figure S1,
that the dispersion relation for a flat plat approximates the dispersion relation of a cylinder of the geometric and
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FIG. S2. Comparison of thin shell ray equations and equations obtained from making the paraxial approximation
using Yu’s formulation. Left: Ray propagation using full thin shell theory and paraxial approximation of thin shell theory.
Circular and cross markers indicate location of the first caustic. The s̃ axis has been “unwrapped” for representational purposes.
Middle: Same ray propagation shown on the cylindrical shell. Right: Plot of the temporal evolution of quantities describing
the one of the rays. Here, markers indicate temporal location of the first caustic. It can be seen that, at higher values of
⟨h2⟩, complete backscattering of rays is observed in the thin shell case. This not modeled by the paraxial approximation which
assumes weak scattering.



5

material parameters of interest,

∂τ x̃ =
−k̃x

216(ν − 1)ϵ2

[
k̃2x

(
18(ν − 3)ϵ4k̃2s − 432(ν − 1)ϵ2k̃4s + 864γ2(ν − 1)2(ν + 1) (S7)

+ ϵ6 + 72(ν − 1)ϵ2
)
+ 9k̃4x

(
(ν − 3)ϵ4 − 48(ν − 1)ϵ2k̃2s

)
− 144(ν − 1)ϵ2k̃6x

+ ϵ2
(
−144(ν − 1)k̃6s + k̃2s

(
72(ν − 1) + ϵ4

)
+ 9(ν − 3)ϵ2k̃4s

+ 36γ2
(
2ν2 + ν − 3

)
− 3(ν − 3)ϵ2

)]
,

∂τ s̃ =
−k̃s

216(ν − 1)

[
−144(ν − 1)k̃6x + 9k̃4x

(
(ν − 3)ϵ2 − 48(ν − 1)k̃2s

)
+ k̃2x

(
−432(ν − 1)k̃4s + 18(ν − 3)ϵ2k̃2s + 72ν + ϵ4 − 72

)
− 144(ν − 1)k̃6s

+ k̃2s
(
72ν + ϵ4 − 72

)
+ 9(ν − 3)ϵ2k̃4s + 36γ2ν − 36γ2 − 3νϵ2 + 9ϵ2

]
,[

∂τ k̃x
∂τ k̃s

]
=

−∇̃h̃

432(1− ν)

(
k̃2x + k̃2s

)2 (
12(k̃2x + k̃2s)− ϵ2

)(
6(ν − 1)(k̃2x + k̃2s) + ϵ2

)
,

where ∇̃ = [∂x̃ ∂s̃]
T .

The ray equations derived from the equations of motion of transverse displacement of a cylindrical shells are rather
complicated and not particularly amenable to further analysis. However, in the regime of weak scattering that we
study here, the ray equations can be simplified greatly. k̃x and k̃s, the wavenumbers in the x and s directions are
not expected to vary substantially from their initial values of 1 and 0 respectively, as the initially launched plane
wave is purely axial. For weak scattering of initially plane waves, it is customary to make the simplifying assumption
that the wave-number does not change at all in the main propagation direction. This can be achieved by setting
∂τ k̃x = 0, k̃x = 1 in Equation S7, which is the essence of the paraxial approximation. Finally, dropping all k̃s terms
compared to O(1) terms, the ray equations become

∂τ x̃ = c1, ∂τ s̃ = c2k̃s, ∂τ k̃x = 0, ∂τ k̃s = c3h̃s̃, (S8)

where, c1 = γ2(−ν/3 + (1− ν2)4/ϵ2 − 1/2) + ζ, c2 = −γ2/6 + ζ, c3 = ζ/2, ζ = − (ϵ2−12)(6ν+ϵ2−6)
216(ν−1) .

Figure S2 shows the comparison of ray equations from thin shell theory and the one obtained after applying the
paraxial approximation. The figure is similar to Fig. 2 in the main article. However, here we can see that the ray
equations based on thin shell theory are able to model even complete back scattering at higher values of ⟨h2⟩ unlike
the formulations of ray equations used in the main text. Nonetheless, it can be seen that after the application of the
paraxial approximation (which negates any back-scattering behavior), the rays look identical to the one in the main
text even at higher ⟨h2⟩.

Figure S3 shows the scaling of ⟨lf ⟩ with ⟨h2⟩ from all the sets of ray equations used in this work. Thin shell ray
equations from Yu’s formulation is the most accurate and is able to capture back scattering, that is expected at higher
⟨h2⟩. This explains why thin shell equations from Yu’s formulation show significant departure from the predicted
exponential scaling at higher ⟨h2⟩.
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FIG. S3. Comparison of ⟨lf ⟩ obtained from different ray equations. ⟨lf ⟩ obtained from thin shell and paraxial ray
equations from Pierce’s and Yu’s formulations. Thin shell equations from Yu’s formulations shows significant deviation from
the expected scaling at higher ⟨h2⟩, as expected.

Scaling law from the analysis of ray equations

We use the ray equations obtained after making the paraxial approximations Equation S8, and following a process
very similar to other branched flow works [S4, S5] we obtain, ⟨lf ⟩ ∝ α(γ, ϵ)Lc⟨h2⟩−1/3 where
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Note that, α has an explicit dependence on γ & ϵ i.e. H0, R & λ. However, it can be seen from Figure S4 that the
dependence is actually quite weak in the parameter ranges of interest (α ≈ 1.55± 5%). Green cross markers indicate
the cases that have been reported here. Therefore, we can conclude that the expected location of the first caustic is
independent of wavelength, assuming the thickness is small, and the radius is large.

Numerical simulations using ray equations derived from Yu’s formulation

In Figure S5, it can be seen that the scaling of ⟨lf ⟩ predicted in the main text is confirmed from numerical integration
of the paraxial ray equations resulting from Yu’s formulation of the equations of motion of a cylindrical shell. Details
of other parameters used in numerical ray integration and FE simulations, reported here and in the main text, is in
Table S1. It must be noted that our results are not dependent on this specific choice of parameter values, as confirmed
by the analysis presented.
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FIG. S4. Plot of α(γ, ϵ). This plot shows that in the parameter region of interest, α has a weak dependence on γ & ϵ. Green
cross markers indicate the parameters used in studies reported here.
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FIG. S5. Scaling of ⟨lf ⟩ obtained from numerical ray integration of ray equations obtained from Yu’s equations
of motion. a) Scaling of ⟨lf ⟩ with ⟨h2⟩ agrees well with the predicted exponential scaling. b) ⟨lf ⟩ is independent of wavelength
as predicted. c) The linear scaling of ⟨lf ⟩ with Lc is confirmed. d) ⟨lf ⟩ does not scale with R in the parameter regime of
interest.

Variable Name Symbol Units Value(s)
Young’s Modulus E MPa 200
Density ρ kgm−3 7800
Poisson’s Ratio ν 1 0.3
Correlation length Lc m 0.1, 0.07, 0.15
Radius R m 0.0955, 0.0477, 0.1432
Wavelength λ m 0.01, 0.007, 0.015
Nominal thickness H0 m 0.001
Length in propagation direction Lx m 4, 8 -depending on ⟨h2⟩

TABLE S1. List of parameters used in numerical ray integration and FE simulations for all the results. When it
is unclear from the text, it may be assumed that the parameter values in bold face were used.
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