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Abstract—Hybrid transceivers are designed for linear decen-
tralized estimation (LDE) in a mmWave multiple-input multiple-
output (MIMO) IoT network (IoTNe). For a noiseless fusion
center (FC), it is demonstrated that the MSE performance is
determined by the number of RF chains used at each IoT node
(IoTNo). Next, the minimum-MSE RF transmit precoders (TPCs)
and receiver combiner (RC) matrices are designed for this setup
using the dominant array response vectors, and subsequently, a
closed-form expression is obtained for the baseband (BB) TPC at
each IoTNo using Cauchy’s interlacing theorem. For a realistic
noisy FC, it is shown that the resultant mean squared error
(MSE) minimization problem is non-convex. To address this
challenge, a block-coordinate descent-based iterative scheme is
proposed to obtain the fully digital TPC and RC matrices fol-
lowed by the simultaneous orthogonal matching pursuit (SOMP)
technique for decomposing the fully-digital transceiver into its
corresponding RF and BB components. A theoretical proof of the
convergence is also presented for the proposed iterative design
procedure. Furthermore, robust hybrid transceiver designs are
also derived for a practical scenario in the face of channel state
information (CSI) uncertainty. The centralized MMSE lower
bound has also been derived that benchmarks the performance
of the proposed LDE schemes. Finally, our numerical results
characterize the performance of the proposed transceivers as
well as corroborate our various analytical propositions.

Index Terms—Hybrid transceiver design, Internet of things
(IoT), mmWave communication, linear decentralized estimation,
wireless sensor networks.

I. INTRODUCTION

Internet of Things networks (IoTNes) constitute a key com-
ponent of the Internet of Things (IoT) [1], which has the poten-
tial of supporting cutting-edge applications spanning diverse
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areas such as precision agriculture [2], remote healthcare [3],
environmental monitoring [4], and smart cities [5] etc.. IoTNes
are comprised of miniature IoT nodes (IoTNos) dispersed
over a wide geographical area for the transmission of their
suitably pre-processed observations to a fusion centre (FC)
over a wireless channel for further processing and estimation.
The ever-increasing mobile device density coupled with the
large number of data-intensive applications has led to the
impending spectrum crunch in the sub 6 GHz band. This is
further aggrevated by the deployment of a large number of
IoT systems, each comprised of a multitude of IoTNos.

The abundant spectrum in the mmWave (30-300 GHz)
band, which has hitherto only been partially explored, has
the potential of supporting high data rates coupled with
massive connectivity in the IoTNes. However, communication
in the mmWave regime encounters several obstacles such
as severe signal blockage and debilitating propagation losses
[6]. Fortunately, the low wavelength of mmWave signals
renders it possible to integrate a large number of antennas
into the otherwise small wireless devices. This in turn fa-
cilitates beamforming, which is capable of overcoming the
aforementioned challenges in mmWave communication. The
higher cost and power consumption due to the large number
of RF chains required to support the increased number of
antennas in a conventional architecture can be circumvented
by employing innovative hybrid transceiver architectures [7]–
[10]. Such a transceiver jointly performs analog TPC/ RC in
the RF domain, together with digital TPC/ RC in the baseband,
which minimizes the number of RF chains required.

Coming next to parameter estimation in IoTNes, linear de-
centralized estimation (LDE), constitutes an excellent strategy
[11], [12] where multiple IoTNos precode their observations
and transmit them to the FC using a multiple access channel
(MAC) for receive combining. This in turn necessitates the
design of optimal TPCs and RCs that minimize the MSE of
parameter estimation at the FC. An overview of the various
related works in this area is presented next.

A. Literature Review

The most popular model of LDE has been developed
in the seminal works [11] and [12]. The authors of [13]
have proposed novel zero-forcing based TPC designs for
sub-6 GHz IoTNes for the LDE of a vector parameter. An



TABLE I
BOLDLY AND EXPLICITLY CONTRASTING OUR CONTRIBUTIONS IN THE LITERATURE

Feature [6] [13] [14] [21],[22] [24] [28] [29] [30] [40] Our work
mmWave WSN X X X X X
Vector parameter estimation X X X X X X X
Per sensor power constraint X X X X X X X
Coherent MAC X X X X X X X X
Hybrid transceiver design X X X X X
Noiseless FC X
Gaussian CSI uncertainty X X

interesting aspect of the scheme described is that it does
not require any post-processing at the FC. The treatise [14]
developed majorization theory-based closed-form transceiver
designs considering scenarios of both noiseless as well as
noisy IoTNo observations. Zhou et al. [15] described a
learning-based iterative mixed algorithm for the detection-
estimation of a scalar parameter, while also considering IoTNo
defects, thus making it suitable for practical applications. The
authors of [16] proposed an edge computing based scheme
for decentralized sensing of a spatially correlated process. A
subset of IoTNos is efficiently selected by the algorithm, which
strikes an attractive trade-off between energy efficiency and
sensing quality.

Leong et al. [17] conceived optimal power allocation
schemes for estimating a time varying scalar parameter. The
TPCs and RCs of [17] are designed with the goal of mini-
mizing the resultant MSE at the FC. Furthermore, the authors
of [18] analyse the MSE of estimating and tracking a time-
varying parameter. The FC of [18] employs Kalman filtering
to track the parameter of interest. Akhtar et al. [19] described
TPC designs that sequentially estimate a time-varying parame-
ter vector. Their design is iterative in nature and it is capable of
operating in the face of time-varying channels while obeying
specific transmit power constraints. The authors of [20] present
a framework for sequentially estimating a parameter of inter-
est, wherein only a subset of IoTNos transmit information to
the FC based on prior communication among the IoTNos. A
variety of schemes were proposed in [21]–[23] for LDE in a
wireless powered IoTNe, where the IoTNos run on the energy
harvested from the RF signals transmitted by energy access
points. A set of LDE schemes have been proposed in [24]–[26]
for cutting-edge massive MIMO IoTNes, which exploit the
asymptotic beamforming properties of large antenna arrays.
The authors of [27] propose a secure diffusion-based least-
mean squares algorithm for distributed parameter estimation in
the presence of an eavesdropper. However none of the above
impressive contributions are directly applicable to mmWave
MIMO systems relying on the bespoke signal processing
employed in a hybrid transceiver. The literature specifically
related to beamforming in mmWave IoTNes is reviewed next.

Liu et al. [28] developed novel hybrid transceiver designs
for maximizing the spectral efficiency of an orthogonal MAC-
based mmWave IoTNe. The cutting-edge scheme described
initially derives the fully digital transceivers followed by de-
composing them into their baseband and RF components. An
iterative algorithm is proposed for obtaining the closed-form
expressions of baseband TPCs. Then a pair of procedures are

proposed for the analog TPC/ RC using the popular alternating
direction method of multipliers (ADMM) and the steepest
descent principles, respectively. However, a drawback of the
system is that it relies on an orthogonal MAC, which is not
bandwidth efficient as it requires dedicated channels between
the constituent IoTNos and the FC. It must be noted at this
juncture that the orthogonal MAC concept considerably differs
from a coherent MAC, wherein the signal received at the FC
constituted by a superposition of the signals transmitted by all
the IoTNos. To further develop the latter system, the authors
of [29] presented both centralized and distributed LMMSE
transceiver designs for a mmWave MIMO IoTNe. A state-
of-the-art hybrid transmit beamforming algorithm is proposed
in [30] for EAPs and simultaneous wireless information and
power transfer (SWIPT) in the support of IoT receivers .
However, a limiting aspect of the above contributions, which
restricts their applicability in practice, is that they assume
perfect knowledge of the channel between the FC and the
constituent IoTNos. Needless to say, this is hard to achieve in
practice owing to several limitations, such as the limited pilot
overhead and the finite precision error-prone feedback. Papers
that address this critical issue of robust TPC/ RC design, in
both sub-6 GHz and mmWave systems, are discussed next.

The authors of [31] and [32] propose robust TPC/ RC
designs for LDE in a IoTNe, for sparse and temporally
correlated parameter vectors, respectively, relying on imperfect
CSI. Venkategowda et al. [33] designed TPCs robust to
imperfect CSI for estimating a scalar parameter. Their robust
designs were shown to yield an improved performance in
comparison to non-robust designs that are oblivious to the
CSI imperfections. The treatise [34] proposes robust closed-
form TPC matrices for parameter vector estimation. The
authors of [33], [34] propose robust designs employing a
zero-forcing (ZF) constraint at the FC to make the post-
processing simple. However, the ZF equalizer leads to noise
amplification at the receiver, which degrades the signal-to-
noise ratio (SNR). Moreover, they also impose a total power
constraint on the MIMO IoTNe. In the context of mmWave
MIMO systems, minimum-MSE robust transceivers are devel-
oped in [35] for a mmWave multi-user system. Explicitly, the
authors proposed a non-linear hybrid transceiver design based
on Tomlinson/Harashima precoding. Jiang et al. [36] have
proposed robust transceiver designs for a half-duplex mmWave
relay system, where the RF TPC/ RC are designed based on
the strongest eigenmode of the mmWave channel. An iterative
algorithm based on mutual information maximization has also
been developed in their treatise for designing the baseband



Fig. 1. Schematic diagram of hybrid MIMO signal processing for vector parameter estimation in mmWave MIMO IoTNe over a coherent MAC.

TPCs. Cai et al. [37] have developed a robust transceiver
design based on the principle of sum-rate maximization for
full-duplex (FD) MIMO relay-aided multi-user mmWave sys-
tems. Furthermore, Zhao et al. [38] have proposed a robust
transceiver design in a full-duplex (FD) mmWave multi-cell
network. In [37], [38], iterative algorithms are developed based
on the classic penalty dual decomposition (PDD) technique for
a scenario subject to imperfect CSI. The authors of [39] char-
acterized the performance of a robust hybrid TPC scheme in a
downlink mmWave IoTNe relying on single antenna IoTNos
and a multi-antenna FC. Furthermore, a noteworthy aspect of
the design procedure of [39] is that it maximizes the minimum
secrecy at each IoTNo, in the presence of an eavesdropper
(ED), which guarantees privacy of the transmitted information.
Moreover, in their work [39], the CSI between the ED and
the FC is assumed to be imperfectly known, whereas that
between each IoTNo and the FC is assumed to be perfectly
known. In the pioneering paper in [40], the authors describe
a strategy to design the hybrid TPC in a mmWave-based
IoTNe with multiple-antenna IoTNos and a single antenna FC.
Hybrid baseband and RF TPCs were designed that attained
the minimum-MSE for LDE of the parameter. Robust hybrid
TPCs were also designed accounting for the CSI uncertainty.
However, the results and framework of [40] are restricted to
scalar parameter estimation due to having a single antenna
FC in the system. To the best of our knowledge, there is no
literature on the design of the robust hybrid transceivers for the
LDE of a parameter vector in a coherent MAC-based mmWave
IoTNe, accounting also for realistic CSI uncertainty. We fill
the knowledge-gap in the present work. Table I presents a
comparison of the contributions of this paper against those
reviewed above. The novel contributions of this work are
boldly contrasted to the literature at a glance in Table I and
are also elaborated below in a point-wise fashion.

• To begin with, hybrid transceiver designs are presented
for MSE minimization at the FC. The RF TPCs and
RCs are determined using the dominant array vectors of
the channel. Subsequently, the BB RC is derived using

the LMMSE rule, while the BB TPC corresponding to
each IoTNo is derived in closed-form using Cauchy’s
interlacing theorem [11].

• For a noisy FC, the MSE minimization problem of
hybrid transceiver designs is observed to be non-convex.
Hence, to render the optimization problem tractable,
the non-convex constant-magnitude constraints are elim-
inated by initially considering the design of a fully-
digital transceiver. The non-convexity of the optimization
objective is handled by exploiting the block-coordinate
descent (BCD)-based iterative design procedure, which
ultimately yields a closed-form expression for the optimal
fully-digital transceiver in each iteration.

• Upon convergence, the simultaneous orthogonal matching
pursuit (SOMP) technique is harnessed for decomposing
it into its RF and BB components.

• To account for CSI uncertainty in real-world systems,
robust transceiver designs are developed for a noisy
FC scenario that mitigate the performance degradation
imposed by imperfect CSI.

• The centralised MMSE bound has been derived that
benchmarks the performance of the proposed LDE
schemes. Our numerical results demonstrate the effec-
tiveness of the proposed hybrid transceiver designs, and
also validate the improved performance of our robust
transceiver design over its non-robust counterpart, which
is oblivious of the CSI imperfection.

B. Outline of the paper

The rest of the manuscript is organized as follows. Section-
II presents our LDE system model in a mmWave MIMO
IoTNe. Section-III describes our hybrid transceiver relying on
MSE minimization for a noiseless FC, while Section-IV de-
scribes its counterpart designed for a general system relying on
a noisy FC. Section-V describes our robust hybrid transceiver
designs incorporating CSI uncertainty. Finally, Section-VI and
Section-VII present our numerical results and our conclusions,
respectively.



Notation: The following notation is used throughout this
paper. Lowercase (c) and uppercase (C) letters denote vectors
and matrices, respectively. The operators (.)T , (.)H and |.|
denote the transpose, Hermitian and magnitude. Tr(.) and
E[.] represent the trace and statistical expectation operators,
respectively. For a matrix C, its (i, j)th element is denoted
as C(i, j), while its column and row spaces are denoted by
C(C) and R(C), respectively. The Frobenius and l0 norms are
represented as ||.||F and ||.||0. Finally, c = diag(C) denotes
a vector comprising of the principal diagonal elements of the
matrix C.

II. MMWAVE WSN SYSTEM AND CHANNEL MODEL

A mmWave-based MIMO IoTNe supporting N IoTNos
and a FC is considered as shown in Fig. 1. Each IoTNo
employs Nt transmit antennas (TAs) and Nn

RF RF chains, while
the FC has Nr receive antennas (RAs) and NRF RF chains,
where Nn

RF, NRF << min(Nt, Nr). The IoTNos are sensing/
monitoring a common parameter vector θ ∈ Cq×1 comprised
of q different physical quantities that have to be estimated. The
observation vector of IoTNo n, represented by xn ∈ Cl×1 can
be modeled as

xn = Cnθ + vn, (1)

where Cn ∈ Cl×q and vn ∼ CN (0,Rn) ∈ Cl×1 represent the
observation matrix and the observation noise corresponding to
the nth IoTNo, respectively. Each node employs the hybrid
TPC comprised of the cascaded BB and RF TPC matrices
PBB,n ∈ CNn

RF×l and PRF,n ∈ CNt×Nn
RF , respectively. Subse-

quently, each IoTNo transmits its precoded observations to the
FC over a coherent multiple access channel (MAC). Therefore,
the signal y ∈ CNr×1 received at the FC can be modeled as

y =

N∑
n=1

HnPRF,nPBB,nxn + w

=

N∑
n=1

HnPRF,nPBB,nCnθ +

N∑
n=1

HnPRF,nPBB,nvn + w

= HPRFPBBCθ + HPRFPBBv + w, (2)

where the matrix Hn ∈ CNr×Nt represents the MIMO
channel matrix between each IoTNo n and the FC, whereas
the vector w ∈ CNr×1 represents the FC noise and follows
the distribution CN (0,Rw). The stacked observation matrix
C ∈ CNl×q , concatenated channel matrix H ∈ CNr×NNt ,
the overall block-diagonal BB TPC PBB ∈ CNNn

RF×Nl and RF
TPC PRF ∈ CNNt×NNn

RF are defined as

C = [CT
1 ,C

T
2 , . . . ,C

T
N ]T , (3)

H = [H1,H2, . . . ,HN ], (4)
PBB = diag(PBB,1, . . . ,PBB,N ), (5)
PRF = diag(PRF,1, . . . ,PRF,N ). (6)

At the FC, the hybrid RC operation is performed using the
cascaded RF and BB combining matrices ARF ∈ CNr×NRF

and ABB ∈ CNRF×q , respectively, to yield the estimate θ̂ as

θ̂ = AH
RFA

H
BBy. (7)

Since, the hybrid MIMO architecture employs the constant
magnitude RF TPC and RC matrices, their elements can be
constrained as follows

|PRF,n(i, j)| = 1√
Nt
, 1 ≤ n ≤ N, ∀ i, j,

|ARF(i, j)| = 1√
Nr

, ∀ i, j. (8)

Furthermore, the MIMO channel matrix Hn is defined as [6],
[41]

Hn =

√
NrNt
K

K∑
k=1

αk,naFC(φk)aHs (θk,n), (9)

where the 3-tuple (αk,n, φk, θk,n) represents the complex gain
αk,n, angle of arrival (AoA) φk at the FC, and angle of
departure (AoD) θk,n at the nth IoTNe associated with the kth
cluster and K denotes the total number of clusters. The vectors
aFC(φk) ∈ CNr×1 and as(θk,n) ∈ CNt×1 represent the array
response vectors at the FC and the nth IoTNo, respectively,
corresponding to the kth cluster, which are defined as

aFC(φk) =
1√
NR

[
1, e−jφ̃k , · · · , e−j(r−1)φ̃k

]T
, (10)

as(θk,i) =
1√
NT

[
1, e−jθ̃k,n , · · · , e−j(t−1)θ̃k,n

]T
, (11)

where φ̃k = 2π
λ dR cosφk and θ̃k,n = 2π

λ dT cos θk,n. The
quantities λ, dR, and dT denote the carrier’s wavelength and
inter-antenna spacings at the FC and each IoTNo, respectively.
The mmWave MIMO channel Hn can be equivalently ex-
pressed in the compact form of

Hn = AFCDnAH
s,n, (12)

where AFC = [aFC(φ1), · · · ,aFC(φK)] ∈ CNr×K , As,n =
[as(θ1,n), · · · ,as(θK,n)] ∈ CNt×K are termed the array re-
sponse matrices corresponding to the FC and the nth IoTNo,
respectively, and Dn =

√
NrNt

K diag(α1,n, · · · , αK,n) com-
prises of the path-gains. We assume that the FC has perfect
knowledge of the array response matrices AFC, As,n and the
gain matrix Dn. The next section describes our novel hybrid
transceiver designed for the MSE minimization of a noiseless
FC.

III. HYBRID TRANSCEIVER DESIGN FOR A NOISELESS FC
The purpose of this study is to determine the minimum

number of RF chains required at each sensor to achieve the
minimum MSE. We would like to emphasize that, in this
scenario, the observation noise dominates the thermal noise
at the receiver, which renders the latter negligible. Thus, the
measurements of each sensor are corrupted by observation
noise, which necessitates the design of the hybrid TPCs. On
account of a noiseless FC, the received vector y can be
obtained by substituting w = 0 in (2). The estimate θ̂ ∈ Cm×1

at the output of the LMMSE RC for a noiseless coherent MAC
is given by

θ̂ = AH
BBAH

RFy

= AH
BB AH

RFHPRF︸ ︷︷ ︸
H̄

PBBCθ + AH
BBAH

RFHPRFPBBv. (13)



Fig. 2. Spatial mmWave MIMO channel model

Furthermore, the resultant MSE at the FC, which is defined

as η (PRF,PBB,ARF) = E
[∥∥∥θ̂ − θ

∥∥∥2
]

, can be expressed as

η (PRF,PBB,ARF) = Tr
[
σ2
θIm + CHPH

BBPH
RFH̄

H

(
ARFH̄

PRFPBBRvP
H
BBPH

RFH̄
HARF

)−1

AH
RFH̄PRFPBBC

]−1

. (14)

Hence, we can formulate the optimization problem of our
hybrid transceiver with an objective to minimize the MSE in
(14) as follows

minimize
PRF,PBB,ARF

η (PRF,PBB,ARF)

subject to |PRF,n(i, j)| = 1√
Nt
, 1 ≤ n ≤ N, ∀ i, j,

|ARF(i, j)| = 1√
Nr

, ∀ i, j. (15)

The constant magnitude of the elements in the RF TPC
PRF,n and RC ARF results in the non-convexity of the above
optimization problem, and makes it intractable. In this context,
suitable RF TPCs PRF,n and RC ARF can be obtained by
using the procedure outlined in the next subsection, which
is followed by the design of the optimal BB TPC PBB for
each IoTNo n. This section considers the variance of each
parameter to be σ2

θ = 1 and the observation noise covariance
to be Rn = Il.

A. Design of RF TPCs PRF,n and RC ARF

Since the columns of the matrices AFC and As,n are the
array response vectors corresponding to the AoAs at the FC
and AoDs at the nth IoTNo, the NRF columns of the RF RC
ARF and TPC PRF,n can be set using the NRF dominant array
response vectors, respectively. In order to design the RF TPC
for the nth IoTNo, we organise the complex gains αk,n in
decreasing order of magnitude so that |αk1,n| ≥ |αk2,n| ≥
· · · ≥ |αkK ,n|. The RF TPC PRF,n for the nth IoTNo can

be designed by selecting the NRF columns denoted by the
set Kn =

{
k1, k2, . . . , kNn

RF

}
, which contains the indices of

the NRF dominant transmit array response vectors. This is
mathematically represented as

PRF,n = As,n ( : , Kn ) . (16)

The design of the RF RC ARF is described next. Let the
quantity αk =

∑N
n=1 |αk,n| denote the sum of the magnitudes

of the complex path-gains of each IoTNo corresponding to
the kth cluster. One can now arrange the quantities αl in
decreasing order of their magnitude, so that |αk1 | ≥ |αk2 | ≥
· · · ≥ |αkN |. The RF RC ARF is obtained as

ARF = AFC ( : , K ) , (17)

where we have K = {k1, k2, . . . , kNRF}. Employing these
settings of the RF TPC PRF,n and RC ARF, the design of
the optimal BB TPC PBB,n for each IoTNo n is described
next.

B. Baseband TPC PBB,n design

Upon employing the LMMSE BB RC ABB at the FC as
shown in (13), the resultant error covariance matrix E is given
by

E =

[
Iq + CHH̃H

(
H̃H̃H

)−1

H̃C

]−1

, (18)

where we have H̃ = H̄PBB ∈ CNn
RF×Nl. Furthermore, assum-

ing that the effective channel H̄n = AH
RFHnPRF,n ∈ CNn

RF×l

between each IoTNo n and the FC is invertible, solving the
optimization problem for PBB,n is equivalent to solving it for
H̃n = H̄nPBB,n. As a result, the optimization problem in (15)
can be restated as

minimize
{H̃n}N

n=1

Tr (E)

subject to E−1 =

[
Iq + CHH̃H

(
H̃H̃H

)−1

H̃C

]
. (19)

The above problem can be solved using Cauchy’s interlacing
theorem which is described next in detail. Let us assume that
the singular value decomposition (SVD) of H̃ is given by

H̃ = UH̃ΣH̃VH
H̃
, (20)

where UH̃ ∈ CNn
RF×N

n
RF , VH̃ ∈ CNl×Nl are unitary matrices

and ΣH̃ ∈ CNn
RF×Nl is the matrix containing singular values

on its principal diagonal. Now, substituting the SVD of H̃ into

H̃H
(
H̃H̃H

)−1

H̃, one obtains

H̃H
(
H̃H̃H

)−1

H̃ = VH̃

[
Ir 0
0 0

]
VH
H̃
, (21)



where we have r = rank
(
H̃
)

. Upon substituting the SVD of
C as C = UCΣCVH

C into VH
CE−1VC , we arrive at:

VH
CE−1VC = VH

C

(
Iq + CHH̃H

(
H̃H̃H

)−1

H̃C

)
VC

= Iq + ΣH
CUH

CVH̃

[
Ir 0
0 0

]
VH
H̃

UCΣC

= Iq + ΣH
CQH

[
Ir 0
0 0

]
QΣC , (22)

where the unitary matrix obeys Q = VH
H̃

UC ∈ CNl×Nl. Let
λk (X) denote the kth smallest eigenvalue of any symmetric
matrix X. Then it follows from (22) that

λk
(
E−1

)
= λk

(
VH
CE−1VC

)
= λk

(
Iq + ΣH

CQH

[
Ir 0
0 0

]
QΣC

)
= λk

(
INl +

[
Ir 0
0 0

]
QΣCΣH

CQH

[
Ir 0
0 0

])
= λk

(
Ir +

(
QΣCΣH

CQH
)

(1:r,1:r)

)
, (23)

where
(
QΣCΣH

CQH
)

(1:r,1:r)
represents the upper r × r

block of the matrix QΣCΣH
CQH . By exploiting Cauchy’s

interlacing theorem for the eigenvalues of a subblock matrix,
we have

λk

((
QΣCΣH

CQH
)

(1:r,1:r)

)
≤ λk

(
ΣCΣH

C

)
= λk

(
CCH

)
,

(24)

for 1 ≤ k ≤ r. Therefore, upon using (23) and (24), we may
conclude that

λk
(
E−1

)
= λk

(
Ir +

(
QΣCΣH

CQH
)

(1:r,1:r)

)
≤ 1 + λk

(
CCH

)
, for 1 ≤ k ≤ r (25)

and λk
(
E−1

)
= 1, when r < k ≤ m. Hence, the MSE can

be lower-bounded as

MSE = Tr (E) =

q∑
k=1

λk (E)

≥
r∑

k=1

1

1 + λk (CCH)
+ (q − r) . (26)

It follows from the above relationship that the minimum
MSE is obtained when q = r. Furthermore, observe that
r = rank

(
H̃
)
≤ Nn

RF, hence the lower bound is achieved
when Nn

RF ≥ q, i.e., the minimum number of RF chains
required is equal to the parameter dimension. This implies
that the singular matrix ΣH̃ has the following structure

ΣH̃ =
[
ΣNn

RF×Nn
RF

0Nn
RF×(Nl−Nn

RF)

]
. (27)

Furthermore, in order to achieve the lower bound in (26),
the inequality in (24) should be satisfied with equality. This
implies that the matrix Q should be set as an identity matrix
of dimension Nn

RF × Nn
RF, which results in the relationship

VH̃ = UC . Hence, the optimal matrix H̃, denoted by H̃opt,
can be set as

H̃opt = UH̃ΣH̃UH
C , (28)

where UH̃ is any unitary matrix, since it does affect the MSE.
Subsequently, the baseband precoder matrix for the individual
sensors can be extracted using

PBB,n = H̄−1
n H̃n,opt, (29)

where H̃n,opt = H̃opt( : , (n − 1)q + 1 : nq). Finally, the
relationship between the MSE performance achieved and the
number of RF chains used can be summarized as follows:

MSE =

{
(q −Nn

RF) +
∑Nn

RF
k=1

1
1+λk(CCH)

, Nn
RF < q,∑q

k=1
1

1+λk(CCH)
, Nn

RF ≥ q.

The next section considers the most general scenario, where
both realistic observation and FC noise are present and de-
velops the hybrid minimum-MSE transceiver design, while
also taking the available transmit power at each IoTNo into
account.

IV. HYBRID TRANSCEIVER DESIGN FOR A NOISY FC

Again, this section develops a novel hybrid transceiver
design for the more general scenario, where realistic channel-
noise is also present. Additionally, another challenging as-
pect is also considered, where one does not have perfect
knowledge of the dominant array response matrices. Hence,
in this scenario, initially an iterative algorithm is developed
for designing the minimum-MSE optimal fully-digital TPCs
and RC matrices. Once convergence is achieved, the fully-
digital matrices are decomposed into their RF and baseband
counterparts using the popular SOMP algorithm. The detailed
procedure is described next. The estimate θ̂ for the received
vector y in (2) can be obtained as

θ̂ =AH
BBAH

RFy

=AH
BBAH

RF

N∑
n=1

HnPRF,nPBB,nCnθ + AH
BBAH

RF×

N∑
n=1

HnPRF,nPBB,nvn + AH
BBAH

RFw. (31)

The expression of the resultant MSE, which denoted by
ζ (ARF,ABB,PRF,n,PBB,n), is given in (30). The average
transmit power corresponding to the nth IoTNo can be evalu-
ated as

E
[
||PRF,nPBB,nxn||2

]
= Tr

[
PRF,nPBB,n

(
CnRθCH

n + Rn

)
PH

BB,nPH
RF,n

]
≤ ρn,

(32)

where ρn represents the maximum available transmit power
at the nth IoTNo. Hence, the MSE-minimization optimization



ζ (ARF,ABB,PRF,n,PBB,n) =Tr

[
A

(
N∑
n=1

HnPn

(
CnRθC

H
n + Rn

)
PH
n HH

n

)
AH + A

 N∑
n=1

N∑
j=1,j 6=n

HnPnCnRθC
H
j PH

j HH
j


AH −A

(
N∑
n=1

HnPnCn

)
Rθ −Rθ

(
N∑
n=1

CH
n PH

n HH
n

)
AH + ARwAH + Rθ

]
. (30)

problem for designing the hybrid transceiver can be formulated
as

minimize ζ (ARF,ABB,PRF,n,PBB,n)

subject to |PRF(i, j)| = 1√
Nt
, |ARF(i, j)| = 1√

Nr
, ∀ i, j

Tr
[
PRF,nPBB,n

(
CnRθCH

n + Rn

)
PH

BB,nPH
RF,n

]
≤ ρn.

(33)

The above optimization problem is once again non-convex
due to the constant-magnitude constraint as well as the non-
convex objective function. However, for designing the fully-
digital transceiver, one can ignore the non-convex constant
magnitude constraint. Furthermore, the block-convex nature
of the objective function in terms of the TPCs at the IoTNos
and RC at the FC can be exploited using the BCD-based
iterative framework, which designs the minimum-MSE TPC
and combiner in an iterative fashion.

Employing the BCD algorithm, the optimization framework
of the fully digital RC matrix assuming that all the TPC
matrices are known reduces to the unconstrained problem of

minimize
A

ζ (A) . (34)

Since the MSE objective in (30) is a quadratic convex function
in terms of the RC matrix A, the optimal RC matrix A∗ can be
obtained by differentiating it with respect to A and equating
it to zero, which is given as

A∗ = Rθ

(
CH
n PH

n HH
n

) [ N∑
n=1

HnPn (CnRθCn + Rn)

PH
n HH

n +

N∑
n=1

N∑
j=1,j 6=n

HnPnCnRθC
H
j PH

j HH
j + Rw

]−1

.

(35)

Given the minimum-MSE fully digital RC, the TPC matrices
Pn corresponding to each IoTNo n can be designed by
formulating the optimization problem of

minimize
(Pn)Nn=1

ζ
(

(Pn)
N
n=1

)
subject to Tr

[
Pn

(
CnRθCH

n + Rn

)
PH
n

]
≤ ρn, 1 ≤ n ≤ N.

(36)

The above optimization problem is convex in nature for a
particular TPC matrix Pn corresponding to the nth IoTNo
assuming that all the TPC matrices corresponding to the other
IoTNos are known in addition to the RC A∗. Upon invoking

the Karush-Kuhn-Tucker (KKT) framework [42] for the above
problem, the Lagrangian function is given by

L (Pn, λn) = Tr

[
A

(
N∑
n=1

HnPn

(
CnRθC

H
n + Rn

)
PH
n HH

n

)

AH + A

 N∑
n=1

N∑
j=1,j 6=n

HnPnCnRθC
H
j PH

j HH
j

AH + A

RwAH −A

(
N∑
n=1

HnPnCn

)
Rθ −Rθ

(
N∑
n=1

CH
n PH

n HH
n

)

AH + Rθ

]
− λn

[
Tr
[
Fn
(
CnRθCH

n + Rn

)
FHn
]
− ρn

]
,

(37)

where λn is the dual variable corresponding to the nth sensor’s
power constraint. Upon employing the first order optimality
KKT condition, the minimum-MSE TPC matrix corresponding
to the nth IoTNo, which is denoted by P∗n, can be obtained
as

P∗n =
[
HH
n AHAHn + λnI

]−1

[
HH
n AHRθC

H
n −

N∑
j=1
j 6=n

HH
n AHAHjPj

(
CnRθC

H
j

)H ] [
CnRθC

H
n + Rn

]−1
.

(38)

The optimal dual variable corresponding to each IoTNo n
can be obtained by solving the complementary slackness
condition:

λn
[
Tr
[
Pn

(
CnRθCH

n + Rn

)
PH
n

]
− ρn

]
= 0. (39)

The calculation of dual variables is shown in Appendix
A. The above iterative algorithm terminates, when either a
desired MSE level is achieved or a certain pre-set number
of iterations have been performed. Once, the minimum-MSE
fully-digital TPCs and RC matrices are derived, the next two
subsections describe the SOMP algorithm based procedure of
decomposing them into their RF and BB counterparts.

A. SOMP based hybrid transceiver design

1) Precoder design: This subsection describes the detailed
procedure of decomposing the minimum-MSE fully-digital
TPC matrix Pn corresponding to each IoTNo n into its
RF and BB counterparts PRF,n and PBB,n, respectively. The



corresponding optimization problem can be readily formulated
as

minimize
PRF,n,PBB,n

||Pn −PRF,nPBB,n||2F

subject to |PRF,n(i, j)| = 1√
Nt
∀ i, j. (40)

The above problem is non-convex and intractable in nature,
since the elements of the RF TPC must have constant mag-
nitude. However, one can exploit an interesting relationship
between the optimal TPC Pn and the transmit array response
matrix As,n, which is shown next in detail. It allows us
to design PRF,n using the columns of the As,n. To this
end, using the expression for the minimum-MSE TPC P∗n
in (38) and subsequently substituting the SVD of the matrix
Hn = UnΣnVH

n , one obtains

P∗n =
[
VnΣH

n UH
n AHAUnΣnVH

n + λnI
]−1

[
VnΣH

n UH
n

AHRθC
H
n −

N∑
j=1,j 6=n

VnΣH
n UH

n AHAUjΣjV
H
j Pj

(
CnRθ

Cj

)H] [
CnRθC

H
n + Rn

]−1

= Vn

[
ΣH
n UH

n AHAUnΣn + λnI
]−1

VH
n

[
VnΣH

n UH
n AH

RθC
H
n −

N∑
j=1,j 6=n

VnΣH
n UH

n AHAUjΣjV
H
j Pj

(
CnRθ

CH
j

)H] [
CnRθC

H
n + Rn

]−1
. (41)

This implies that the column space of the TPC matrix P∗n
corresponding to the nth IoTNo lies in the column space of
the unitary matrix Vn. Moreover, the columns of Vn span the
row space of the channel matrix Hn. Thus, it can be concluded
that

C (Pn) ⊆ R (Hn) . (42)

It can be observed from (12) that the row-space of the
mmWave MIMO channel matrix Hn is a subset of the column-
space of the transmit array response matrix As,n. Thus, we
can write

C (Pn) ⊆ R (Hn) ⊆ C (As,n) . (43)

Hence, we can design the RF TPC matrix PRF,n by extracting
the Nn

RF columns of As,n, which by default satisfies the
constant-magnitude condition. Thus, the optimization problem
of designing the BB TPC PBB,n can be formulated as

minimize
P̄BB,n

||Pn −As,nP̄BB,n||2F

subject to
∣∣∣∣diag

(
P̄BB,nP̄H

BB,n

)∣∣∣∣
0

= Nn
RF,

(44)

where the first constraint implies that the matrix P̄BB,n is
block-sparse in nature, since only NRF rows out of N rows are
non-zero. Hence, similar to Ayach et al. [8], the simultaneous

Algorithm 1 SOMP- based hybrid precoder design
Require: {Popt

n } and Nn
RF ∀ n

1: for 1 ≤ n ≤ N do
2: PRF,n = [ ]
3: Pres = Pn

4: for k ≤ Nn
RF do

5: Ψ = AH
s,nPres

6: m = arg maxm=1,...,Ncl
(ΨΨH)l,l

7: PRF,n = [PRF,n | A(n)
s,n]

8: PBB,n = (PH
RF,nPRF,n)−1PH

RF,nPn

9: Pres =
Pn−PRF,nPBB,n
‖Pn−PRF,nPBB,n‖F

10: end for
11: PBB,n =

PBB,n||Pn||F
||PRF,nPBB,n||F

12: return PRF,n , PBB,n
13: PRF = blkdiag (PRF,PRF,n)
14: PBB = blkdiag (PBB,PBB,n)
15: end for

orthogonal matching pursuit (SOMP) algorithm is employed
for design of the RF and BB components of the TPC, since the
latter is a simultaneously sparse matrix. Algorithm-1 describes
the proposed SOMP-based hybrid TPC design technique in
detail. The next subsection describes the detailed procedure to
decompose the minimum-MSE RC matrix A into its RF and
BB counterparts.

2) Combiner design: Once the optimal RF and baseband
TPC matrices corresponding to each IoTNo n are derived, the
next objective is to decompose the minimum-MSE RC matrix
into its RF and baseband counterparts. The corresponding
optimization is formulated as

minimize
ARF,ABB

||θ −AH
BB,A

H
RFy||2F

subject to |ARF(i, j)| = 1√
Nr
∀ i, j.

(45)

Upon, ignoring the constraint in the above optimization prob-
lem, the optimal solution of the unconstrained optimization
problem is the RC matrix given in (35). As shown in [8], the
above optimization problem may also be modified as

minimize
ARF,ABB

||R
1
2
yy (A−ARFABB) ||2F

subject to |ARF(i, j)| = 1√
Nr
∀ i, j.

(46)

The above problem is non-convex due to the constant-
magnitude constraint. However, similar to the previous subsec-
tion, it can be shown that the column space of the RC matrix A
lies in the column space of the concatenated mmWave MIMO
channel H. The detailed justification for this follows next. The
optimal fully digital RC expression given in (35) can also be
written equivalently as

AH =
[
HP

(
CRθC

H + Rn

)
PHHH + σ2

nI
]−1

HPCRθ,
(47)

where the block-diagonal TPC matrix P ∈ CNNt×Nl is
defined as

P = blkdiag [P1,P2, . . . ,PN ] ,



and Pn = PRF,nPBB,n. Substituting Rn = σ2
nIl, and using the

property (I + GQ)
−1

G = G (I + QG)
−1, for any suitable

matrices G and Q, the optimal fully-digital RC expression
above can further be recast as

AH = HP
[(

CRθC
H + Rn

)
PHHHHP + σ2

nI
]−1

CRθ,
(48)

where G = HP and Q =
(
CRθC

H + Rn

)
PHHH . It can

now be observed that any column of AH can be written
as a linear combination of the columns of H. Furthermore,
the columns of the matrix H are linear combinations of the
columns of the receive array response matrix AFC. Thus, it
can be concluded that

C
(
AH

)
⊆ C (H) ⊆ C (AFC) . (49)

Hence, we can design ARF by extracting NRF columns from
AFC, which also satisfy the constant gain condition on the
elements of the RF RC matrix. Subsequently, one can develop
the BB RC design problem as

minimize
ABB

||R
1
2
yy

(
A−AFCĀBB

)
||2F

subject to
∣∣∣∣diag

(
ĀBBĀH

BB

)∣∣∣∣
0

= NRF.
(50)

The above optimization problem is once again a sparse signal
recovery problem and can be solved similar to (44) upon
employing the SOMP algorithm. The complete iterative pro-
cedure of designing the hybrid transceiver is summarized in
Algorithm-2. The next subsection presents a proof of the
convergence of the proposed BCD-based iterative algorithm.

B. Convergence analysis

The proposed BCD-based iterative transceiver scheme’s
theoretical convergence can be proved as follows. Due to the
fact that the optimization problems of the fully-digital RC
and TPC matrices in (34) and (36) are convex in nature, the
following inequalities hold:

MSE
(
A(i), {Pn(i)}Nn=1

)
≥ min

A
MSE

(
A|{Pn(i)}Nn=1

)
= MSE

(
A(i+ 1), {Pn(i)}Nn=1

)
≥ min

Pn

MSE
(
Pn|A(i+ 1), {Pk(i+ 1)}N−1

k=1 , {Pk(i)}Nk=n+1

)
= MSE

(
Pn(i+ 1),A(i+ 1)

)
. (51)

Hence, MSE
(
{A}(i), {Pn}(i)

)
is a monotonically decreasing

sequence and it is lower-bounded by zero. This proves that the
algorithm converges. On convergence, the SOMP algorithm is
employed for obtaining the RF and BB TPCs and RCs from
their respective fully-digital counterparts. The next section
develops robust transceiver designs for a scenario associated
with CSI uncertainty.

V. ROBUST HYBRID TRANSCEIVER DESIGN FOR A NOISY
FC

In practical scenarios, it is impossible to have perfect CSI
knowledge between each IoTNo and the FC due to the limited

Algorithm 2 BCD-based iterative algorithm for hybrid
transceiver design

1: Input: Observation vector y, maximum iterations imax =
40 and desired accuracy ε = 0.0001.

2: Initialization: i = 1, initialize precoding matrices
{Pn(i− 1)}Nn=1 randomly.

3: while ‖ θ̂
(n)
− θ(n) ‖2≥ ε and i < imax do

4: Evaluate the fully digital combiner matrix A(i) using
(35).

5: Evaluate the optimal precoding matrices {Pn(i)}Nn=1

using (38).
6: update i = i+ 1.
7: end while
8: Employ the SOMP algorithm detailed in Subsection-IV-A

to decompose the fully digital combiner/ precoder into the
corresponding hybrid combiner/ precoder.

9: Output: ARF, ABB, {PRF,n}Nn=1, {PBB,n}Nn=1.

pilot overhead and quantization errors. Hence, in a practical
system, one has to take the CSI uncertainty into account.
Therefore, motivated by [35], [37], [38], we model the channel
between each IoTNo and the FC as

Hn = Ĥn + ∆Hn, (52)

where Ĥn denotes the available channel estimate and ∆Hn

represents the estimation error matrix whose elements obey
the distribution CN

(
0, σ2

H

)
. Substituting Hn from (52) into

the expression in (30), the expression for the resultant average
MSE defined as ζ̄ (A,Pn) = E∆Hn

ζ (A,Pn), is given by

ζ̄ (A,Pn) = Tr

[
A

(
N∑
n=1

ĤnPn

(
CnRθC

H
n + Rn

)
FHn ĤH

n

)

AH + A

(
N∑
n=1

σ2
HTr

[
Pn

(
CnRθC

H
n + Rn

)
PH
n

])
AH + Rθ

+ ARwAH + A

 N∑
n=1

N∑
j=1
j 6=n

ĤnPnCnRθC
H
j PH

j ĤH
j

AH

−A

(
N∑
n=1

ĤnPnCn

)
Rθ −Rθ

(
N∑
n=1

CH
n PH

n ĤH
n

)
AH

]
.

(53)

The detailed steps are shown in Appendix B. Hence, the perti-
nent optimization problem for designing the hybrid transceiver
in this framework associated with CSI uncertainty so that the
average MSE is minimized at the FC is similar to (33), with
the objective function ζ (A,Pn) replaced by ζ̄ (A,Pn). The
BCD-based iterative framework can once again be employed
to design the fully-digital robust transceiver followed by the
SOMP algorithm to yield the robust hybrid TPC and RC
matrices. One can determine the robust RC matrix at the FC
for a given set of robust TPC matrices {Pn}Nn=1, by setting
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Fig. 3. (a) MSE versus number of RF chains Nn
RF at SNROB = 0 dB (b) MSE versus SNROB when Nn

RF = 4, for the mmWave MIMO IoTNe with
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∂ζ̄(A)
∂A = 0, as

A∗ = Rθ

(
CH
n PH

n ĤH
n

)[ N∑
n=1

ĤnPn

(
CnRθC

H
n + Rn

)
PH
n ĤH

n +
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n=1

σ2
HTr

[
Pn

(
CnRθC

H
n + Rn

)
PH
n

]
+

N∑
n=1

N∑
j=1,j 6=n

ĤnPnCnRθC
H
j PH

j ĤH
j + Rw

]−1

. (54)

The optimization problem of designing the robust TPC matri-
ces, given the fully-digital RC matrix, is equivalent to (36)
with ζ

(
{Pn}Nn=1

)
replaced by ζ̄

(
{Pn}Nn=1

)
. This can be

solved along similar lines by invoking the KKT framework
of [42] to obtain the robust fully-digital TPC matrices, given
as

P∗n =
[
ĤH
n AHAĤn + σ2

HTr
[
AHA

]
+ λnI

]−1
[
ĤH
n AHRθ

CH
n −

L∑
j=1,j 6=n

ĤH
n AHAĤjPj

(
CnRθC

H
j

)H ][
Cn

RθC
H
n + Rn

]−1

. (55)

As described in the previous section, the SOMP-based algo-
rithm can once again be employed for deriving the hybrid
TPC and RC matrices for this scenario in the face of CSI
uncertainty. The next subsection derives the centralized MMSE
benchmark, which acts as a lower bound for the LDE schemes.

A. Centralized MMSE benchmark

The centralized MMSE benchmark represents the best
achievable performance where all the IoTNo observations are
directly available at the FC. The observation vector x ∈ CNl×1

available at the FC can be modeled as

x = Cθ + v, (56)

where x = [xT1 ,x
T
2 , . . . ,x

T
L]T ∈ CNl×1. The MSE is formu-

lated as

MSEMMSE = Tr
[(

Iq + CHC
)−1
]
. (57)

The MSE bound above can be used as a benchmark for the
evaluation of the performance of the proposed LDE schemes.
The next section discusses the simulation results to illustrate
the effectiveness of the various designs proposed.

VI. SIMULATION RESULTS

A mmWave MIMO IoTNe is considered where each IoTNo
is equipped with Nt = 5 TAs, and the FC has Nr = 10
RAs. The number of clusters in the mmWave MIMO channel
is set to K = 5 clusters. The path-gains αk,n are randomly
generated from the distribution CN (0, 1). The dimension of
the parameter vector to be estimated is set to q = 3 and the
number of observations made by each IoTNo is set to l = 2.
The observation SNR is defined as SNROB = 1

σ2
l

whereas
the SNRFC = 1

σ2
n

. The elements of the observation matrix Cn

have been randomly generated from the distribution CN (0, 1).
Fig. 3(a) illustrates the MSE performance of the proposed

hybrid transceiver against the number of RF chains NRF
employed at each IoTNo at SNROB = 0 dB. Observe that the
MSE performance improves upon increasing the number of
RF chains, and as claimed in (26) it matches the centralized
MMSE benchmark derived in (57) when the number of RF
chains NRF becomes equal to the parameter length q. It can
also be readily observed that increasing the number of RF
chains beyond the parameter dimension does not result in
any improvement in the MSE performance at the FC, thus
validating our analytical result.

Fig. 3(b) illustrates the MSE versus SNROB, when the
number of RF chains NRF is set equal to the length of
the parameter q. It can be observed from the figure that
the MSE of both the proposed scheme and the centralized
benchmark improve upon increasing the observation SNR,
which is along expected lines. Moreover, the gap between
the proposed scheme and the centralized benchmark decreases
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upon increasing the observation SNR and matches the central-
ized benchmark at high SNRs, thus validating the effectiveness
of the proposed scheme.

Fig. 4(a) depicts the MSE performance as a function of
the number of the BCD-iterations for the design proposed in
Section-IV for a noisy FC with perfect CSI. The number of
IoTNos is N ∈ {15, 20} for this particular plot. To benchmark
the SOMP-based hybrid transceiver design’s performance, its
corresponding fully-digital performance has also been shown.
The MSE performance improves as the number of iterations
increases. Furthermore, the MSE also decreases as the number
of sensors K increases, a trend that is along expected lines due
to the availability of a larger number of observations.

Fig. 4(b) illustrates the MSE performance against the
dimension of the underlying parameter vector of interest
for different number of IoTNos N . Observe that the MSE
performance degrades upon increasing the dimensionality of
the parameter. When increasing the number of IoTNos, the
MSE performance improves as it leads to the availability of
more measurements of the parameter, thereby increasing the

estimation accuracy. The performance of the proposed SOMP-
based hybrid transceiver design is observed to be very close to
that of the fully-digital transceiver design, demonstrating the
efficiency of the proposed design.

Fig. 5(a) illustrates the MSE versus the number of RF chains
Nn

RF at each IoTNo for different number of RF chains NRF at
the noisy FC. The number of IoTNos considered in the system
is N = 20. Again, the MSE performance of the SOMP-based
hybrid transceiver improves upon increasing the number of
RF chains. It becomes equivalent to the MSE corresponding
to the fully-digital design, because Nn

RF becomes equal to
the total number of TAs Nt = 5. It is also observed that
upon increasing the number of RF chains at the FC, the
MSE performance further improves. However, for NRF ≥ K
clusters, it is observed that the MSE performance of the
hybrid designs becomes similar. This demonstrates that the
FC is indeed capable of recovering the active beams using
our SOMP-based RF RC when NRF = rank (H) and there is
no further improvement in performance upon increasing NRF.

Fig. 5(b) illustrates the MSE performance of the hybrid
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transceiver designs versus SNRFC. For comparison, a hetero-
geneous IoTNe is considered, where the observation noise

power at each sensor takes values from the following set
{−10,−9, · · · , 9} dB. This setup is compared to a homoge-
neous IoTNe, where the observation noise at each sensor is
σ2
l = −10dB. The homogeneous mmWave IoTNe is observed

to perform better than its counterpart if the SNR value at each
IoTNo for the homogeneous mmWave IoTNe is higher than
that of heterogeneous mmWave counterpart. Upon increasing
the number of RAs Nr from 10 to 20, the MSE performance
improves due to the array gain in the noise limited region. As
SNRFC increases, the performance gain due to the increasing
array gain becomes negligible.

Fig. 6(a) plots the MSE as a function of SNRFC for the
hybrid TPC/ RC designs derived in Section-IV and Section-
V, respectively. The iterative algorithm is run for 15 iterations
for each SNRFC value. As expected, the MSE performance
improves as SNRFC increases, and the robust design offers
significant performance improvements over the imperfect CSI-
based design that ignores the CSI uncertainty. The correspond-
ing performance of the fully-digital transceiver is once again
plotted for benchmarking the hybrid transceiver designs.

Fig. 6(b) shows the MSE performance of the hybrid



transceiver designs proposed in Section-IV and Section-V,
for scenarios of perfect and imperfect CSI, respectively. To
benchmark the performance of the hybrid TPC/ RC designs,
the MSE performance corresponding to their fully-digital
counterparts is also plotted. The iterative algorithm proposed
for our robust transceiver design converges in 15 iterations. It
can observed from the figure that the proposed robust design
offers an improved MSE performance in comparison to its
uncertainty-agnostic counterpart. In addition, its performance
is also close to the perfect CSI-based design, which illustrates
its value for practical systems.

Fig. 7(a) compares the MSE performance of our hybrid
TPC/ RC design of Section IV to that of the corresponding
designs in [9] and [10] that proposed the alternating mini-
mization (AltMin) algorithm based on manifold optimization
(MO) and penalty dual decomposition (PDD), respectively.
The figure clearly demonstrates that the proposed SOMP-
based design outperforms both these algorithms. Similarly,
Fig. 7(b) compares the MSE performance of the proposed
SOMP-based robust hybrid TPC/ RC design of Section V
with that of [9] and [10], considering both perfect CSI and
CSI-uncertainty agnostic approaches. It can be deduced from
the figure that the proposed robust design offers a significant
MSE performance improvement over both the agnostic as well
as perfect CSI-based hybrid designs of [9] and [10]. This
illustrates the efficacy of our proposed robust design.

Fig. 8 shows the MSE performance versus the number of
IoTNos N in the network for the schemes proposed in Section-
IV and -V, both with perfect and imperfect CSI, respectively.
As expected, the MSE decreases upon increasing the number
of sensors, which reinforces the trend seen in the previous
figures.

VII. CONCLUSION

Hybrid transceiver designs were conceived for the LDE of
a parameter vector in a mmWave MIMO IoTNe. Separate
design procedures were presented for a noiseless as well as
noisy FC. An important observation for the proposed hybrid
transceiver design for a noiseless FC is that even in systems
having a large number of antennas both at the IoTNos and
the FC, increasing the number of RF chains beyond the
parameter dimension does not result in any further MSE
improvement. For a noisy FC, the fully digital TPC/ RC are
initially determined using a BCD-based iterative framework
followed by the SOMP technique for decomposing it into its
RF and BB components. A robust hybrid design procedure
was also formulated for a practical scenario having CSI
uncertainty, which provides improved estimation performance
over its CSI uncertainty-agnostic counterpart. Our simulation
results illustrate the performance of the proposed schemes and
corroborate our analytical findings.

APPENDIX A
CALCULATION OF DUAL VARIABLES

To obtain the dual variable λn at the nth IoTNo, let the
following matrices be defined as

Xn = HH
n AHAHn, (59)

Yn =

[
HH
n AHRθG

H
n −

N∑
j=1,j 6=n

HH
n AHAHjPj

(
CnRθC

H
j

)H ] [
CnRθC

H
n + Rn

]−1
, (60)

where Xn ∈ CNt×Nt and Yn ∈ CNt×l. The minimum-MSE
TPC matrix in (38) can be compactly written as

P∗n = [Xn + λnI]
−1

Yn, (61)

Since Xn is a Hermitian symmetric matrix, its eigenvalue
decomposition (EVD) is given by ŨnΛ̃nŨH

n . Initially, P∗n
is calculated by setting λn = 0. If the average transmit power
in (32) is satisfied, then λn = 0. Otherwise for a non-zero
dual variable, the average transmit power is met with equality
from the complementary slackness condition

λn
[
Tr
[
Pn

(
CnRθCH

n + Rn

)
PH
n

]
− ρn

]
= 0. (62)

The value of the dual variable λn for the average transmit
power to be satisfied with equality can be calculated as

Tr
[
Pn

(
CnRθCH

n + Rn

)
PH
n

]
= ρn (63)

= Tr
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Xn + λnI
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Yn
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]
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]
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= Tr
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)
YH
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Zn

]

=

Nt∑
k=1

zkk(
λ̃k + λn

)2 = ρn,

where λ̃k is the kth eigenvalue of Xn and zkk is the (k, k)th
element of matrix Zn = ŨH

n Yn

(
CnRθCH

n + Rn

)
YH
n Ũn.

The dual variable λn can now be obtained via the classic
bisection method.
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APPENDIX B
AVERAGE MSE CALCULATION IN (53)

The channel estimation error matrices {∆Hn}Nn=1 for each
IoTNo in (52) are assumed to be independent of each other.
The average MSE ζ̄ (A,Pn) is given by (58) shown at the top
of this page.

The lemma described below is employed to evaluate the
average MSE.

Lemma 1. Consider a matrix Hn ∈ CNR×NT , defined as
Hn = Ĥn + ∆Hn, where Ĥn is known and each element of
∆Hn is assumed to be Gaussian distributed as CN

(
0, σ2

H

)
.

Then, for a matrix K, the following properties hold

E∆Hn

{
HnKKHHH

n

}
= ĤnKKHĤH

n + σ2
HTr

(
KKH

)
INR

E∆Hn,∆Hj

{
HnKKHHH

j

}
= ĤnKKHĤH

j , n 6= j.

Proof. The first result of Lemma 1 can be proved as follows:
The term HnKKHHH

n can be expanded as

HnKKHHH
n =

(
Ĥn + ∆Hn

)
KKH

(
Ĥn + ∆Hn

)H
= ĤnKKHĤH

n + ∆HnKKHĤH
n︸ ︷︷ ︸

T1

+ ĤnKKH∆HH
n︸ ︷︷ ︸

T2

+ ∆HnKKH∆HH
n︸ ︷︷ ︸

T3

. (64)

For compact representation, consider T1,T2 and T3 as shown
above.
Each (a, b) th element of T1 is the dot product of the ath row
of ∆Hn and bth column of KKHĤH

n . This implies that

[T1]ab =

NT∑
i=1

[∆Hn]ai

[
KKHĤH

n

]
ib
.

Thus, the expected value of any element of T1 is zero, since
E [∆Hn]ai = 0, 1 ≤ a ≤ NR, 1 ≤ i ≤ NT . This further
implies that

E∆Hn
{T1} = 0.

Following the same reasoning as above, it can be shown that

E∆Hn {T2} = 0.

To compute the expected value of T3, let us denote the EVD
of the Hermitian matrix KKH as UΛUH . Therefore, we have

E∆Hn
{T3} = E∆Hn

{
∆HnUΛUH∆HH

n

}
= E∆H̃n

{
∆H̃nΛ∆H̃

H
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}
,

where ∆H̃n = ∆HnU, whose elements are also distributed
as CN

(
0, σ2

H

)
since U is a unitary matrix. Thus, the above

expression can be simplified as follows:

E∆H̃n

{
∆H̃nΛ∆H̃

H

n

}
= E∆H̃n

{
NT∑
i=1

λ̃i∆h̃n,i∆h̃
H

n,i

}
,

where ∆h̃n,i denotes the ith column of ∆H̃n. Upon assuming
that all the elements of ∆Hn are independent and identically
distributed, E∆H̃n

{
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}
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, we have
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From the above results and (64), we conclude that

E∆Hn

{
HnKKHHH

n

}
= E∆Hn

{
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n

}
+
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Hence, the first result of Lemma 1 is proved.
The next result of the lemma can be proven by expanding

the quantity HnKKHHH
j as

HnKKHHH
j = ĤnKKHĤH

j + ∆HnKKHĤH
j

+ ĤnKKH∆HH
j + ∆HnKKH∆HH

j .
(65)

As explained previously, the expected value of the second and
third terms above is equal to zero. The expected value of the
fourth term is given by

E∆Hn,∆Hj

{
∆HnKKH∆HH

j

}
a
= E∆Hn {∆Hn}KKHE∆Hj

{
∆HH

j

}
= 0,

where (a) follows from the fact that ∆Hn and ∆Hj are
independent of each other. This implies that

E∆Hn,∆Hj

{
HnKKHHH

j

}
= ĤnKKHĤH

j ,

which proves the second result of Lemma 1.

Now, upon employing Lemma 1 in (58), one obtains the
desired expression given at the top of this page.
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