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Abstract4

Pseudomonas aeruginosa biofilms are relevant for a variety of disease settings, in-

cluding pulmonary infections in people with cystic fibrosis. Biofilms are initiated

by individual bacteria that undergo a phenotypic switch and produce an extracel-

lular polymeric slime (EPS). However, the viscoelastic characteristics of biofilms

at different stages of formation and the contributions of different EPS constituents

have not been fully explored. For this purpose, we develop and parameterize

a mathematical model to study the rheological behavior of three biofilms — P.

aeruginosa wild type PAO1, isogenic rugose small colony variant (RSCV), and

mucoid variant biofilms against a range of experimental data. Using Bayesian

inference to estimate these viscoelastic properties, we quantify the rheological

characteristics of the biofilm EPS. We employ a Monte Carlo Markov Chain algo-

rithm to estimate these properties of P. aeruginosa variant biofilms in comparison

to those of wild type. This information helps us understand the rheological behav-

ior of biofilms at different stages of their development. The mechanical properties

of wild type biofilms change significantly over time and are more sensitive to

small changes in their composition than the other two mutants.
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1. Introduction7

Bacterial pathogens and other microorganisms adhere and grow at surface in-8

terfaces. This population forms a biofilm, which is a community of adherent9

microorganisms encased in a self-produced extracellular polymeric slime (EPS).10

The EPS is complex and composed of extracellular DNA, protein, and multiple11

species of exopolysaccharides. These EPS components are involved in biofilm de-12

velopment and attachment to a substratum, and they assure structural integrity of13

biofilm [1, 2, 3, 4, 5]. This EPS network is heterogeneous and subject to change14

over time. Therefore, studying the material properties of biofilm and EPS in-15

teractions is fundamental to understanding structural dynamics and developing16

methods for removing and preventing biofilm-induced infections [6, 7, 8].17

Mathematical models and numerical schemes have been developed since the18

1980s to model the dynamics of biofilm development in order to understand the19

physics of such bio-organism systems and to predict the growth and develop-20

ment of these communities. These models focus on different spatial and temporal21

scales, which show the inherent multiscale nature of such biomechanical systems22

[9]. Wanner and Gujer’s 1-D model [10] is amongst one of the first models, which23

described the dynamics and spatial distribution of bacteria in biofilms. Later,24

different continuum and individual-based models were developed to deterministi-25

cally and stochastically investigate biofilm growth and bacteria population within26

biofilms [11]. Individual-based models were found to be useful tools to simulate27

mixed-species biofilms [12, 13, 14]. Xavier and Foster [15] investigated the com-28

petition dynamics between different strains that differ in the level of polymer pro-29

duction and predicted that mixed-strain biofilm tends to have increased polymer30
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production; however, polymer production is not expected to increase indefinitely,31

and it will stabilize at an intermediate level. Zhang et al. [16]’s multiscale model32

showed that the biofilm community is a complex system, that its metabolism is33

coupled to the spatial dependence of external chemical concentrations.34

Another important element in biofilm dynamics is the distribution of poly-35

meric components and water content within the biofilm, significantly influencing36

how biofilm moves under different flow conditions [17]. Computational fluid dy-37

namics can be combined with other mathematical models to investigate biofilm38

dynamics [18] as well as the effects of flow on biofilm growth on different sur-39

faces and complex geometries [19, 20]. Other factors that flow simulations can40

model are the wettability, elasticity, and antimicrobial properties of surfaces [11].41

Cogan and Keener [21] showed that diffusion-driven growth can lead to heteroge-42

neous towers and mushroom-like structures via fluid/structure instabilities mod-43

ulated by the interaction between differential production and chemical properties44

of the EPS.45

Despite the numerous research studies on biofilm modeling, the quantifica-46

tion and parameterization of biofilm models, how EPS properties affect biofilm47

structure and maturation, and the interactions between the components of biofilm48

remain largely unexplored [22]. Typical models of biofilm mechanics fail to quan-49

tify the viscoelastic properties of biofilms. Zhang et al. [23] incorporated vis-50

coelastic stresses built in biofilms into their mathematical model and described51

the interaction between biofilm components and fluid flow. Klapper et al. [6]52

formulated a mathematical model based on the Jeffrey viscoelastic fluid consti-53

tutive law and found that biofilms behave as viscoelastic fluids, demonstrating54

both the unreversed flow as well as the elastic and viscoelastic recoil. Later, the55
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viscoelastic properties of such biofilms were quantified using creep-recovery and56

oscillatory frequency sweep tests [24]. Tierra et al. [25] characterized the effects57

of mechanical parameters of biofilm components in the fluid–biomass interaction58

and concluded that biofilm’s resistance to deformation introduced by flow shear59

can be largely attributed to its viscosity. It should be noted that all these models60

assumed simple-constituent EPS.61

One very important characteristic of biofilms is their wide variability [26].62

This variability is present between samples, where biofilms of the same strain and63

growth conditions lead to different biofilm structures, due to spatial diversity and64

heterogeneity [27]. Within a single biofilm, the growth rates, cell densities, and65

mechanical properties also vary in both time and space, due to gradients estab-66

lished within the biofilm and the diverse EPS production. This variability and the67

inherent uncertainty of model parameters require a detailed uncertainty analysis.68

The model parameters can be estimated based on observational data to optimize69

the mathematical model. Coupling experimental observations with mathemati-70

cal modeling has been well established in other fields such as meteorology [28],71

where it is generally referred to as data assimilation (DA). These techniques were72

later used in other fields, such as ecology [29, 30], and engineering applications,73

for example, dielectric elastomers, solid amorphous polymers, and lithium-ion74

batteries [31, 32, 33]. However, this is much less widespread in biomathemat-75

ics applications, where challenges in estimating relevant parameters are unique76

[34, 35, 36]. For example, one of the most important outcomes in biological DA77

is to predict and optimize the relevant factors involved in biofilm development so78

that efficient optimal control targets can be identified by coupling DA with sensi-79

tivity analysis [36].80
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In this paper, we develop a Bayesian framework that assimilates experimental81

data with linear viscoelastic models to help us estimate the viscoelastic parameters82

of different P. aeruginosa variants that emerge during chronic infections. First, we83

model biofilm EPS by a viscoelastic Burger model, that consists of a combination84

of springs and dashpots, representing the elasticity and viscosity of biofilm, re-85

spectively. Then, we utilize a Bayesian estimation platform based on a Markov86

chain Monte Carlo (MCMC) method to estimate the viscoelastic properties of87

P. aeruginosa biofilm variants using experimental data [24]. MCMC methods88

comprise a class of stochastic techniques which use a set of discrete samples to89

approximate model parameters as a posterior distribution [37]. We use a deter-90

ministic viscoelastic model, with parameters drawn from a distribution, to explore91

the stochastic nature of this behavior. This stochasticity is due to the parametric92

variability of biofilm viscoelastic properties.93

Biofilm structure and chemistry change over the course of their development,94

and there is a high variability in biofilm mechanical properties due to their intrinsi-95

cally heterogeneous and dynamic behavior. These biofilm characteristics, together96

with the use of different analysis parameters, including timescales of analysis97

and magnitude of forces applied, along with the unavoidable errors in measure-98

ment techniques add uncertainties to the measurement and quantitative analysis99

of biofilm mechanical properties [24]. Given the variability in biofilm measure-100

ments, incorporating uncertainty is very important for understanding model pre-101

dictions. Therefore, this line of research will help guide future studies focusing102

on different biofilm variants at different stages of formation and lead to better103

predictive modeling.104
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2. Materials and Methods105

2.1. Bayesian data assimilation framework106

We designed a Bayesian data assimilation framework to find the rheological107

estimates of biofilm EPS based on theoretical viscoelastic models and experimen-108

tal data. We systematically assimilated experimental data to better estimate the109

relevant parameter values involved in the biofilm rheology and quantify the uncer-110

tainty in their measurement and prediction as a probability. Unlike classical statis-111

tics and non-Bayesian parameter estimation approach, Bayesian methods provide112

distributions for estimated parameter sets based on the knowledge we have from113

experimental data, the prior information we have from parameters of interest, and114

the mathematical model structure.115

Our Bayesian-based algorithm is briefly presented in Fig. 1. First, we as-116

sembled the input, including the theoretical model and experimental data for our117

Bayesian estimation toolbox. Our theoretical model was parameterized using a118

linear viscoelastic model that describes the viscoelastic response of biofilm EPS119

under constant shear stress during a creep-recovery test. The experimental data120

were obtained from the experiments on creep-recovery measurements of differ-121

ent biofilm variants at different stages of their formation [24]. Then, using our122

Bayesian-based parameter estimation technique, which is explained in the next123

sections and Appendix A, we computed the distributions of estimated values for124

each biofilm’s viscosity and elasticity. These distributions give us insight into the125

uncertainty and variability of each model parameter, as well as the prediction of126

error variance for future measurements.127
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Figure 1: The flowchart of our Bayesian framework.

2.2. Theoretical viscoelastic model128

Viscoelasticity is a mechanical property that characterizes the rheological be-129

havior of a material. It exhibits both the viscous and elastic characteristics of a130

substance when they undergo mechanical deformation. Linear viscoelastic models131

have been used to describe polymeric solutions [38] and to quantify viscoelastic132

properties of polymeric substances such as biofilm matrix [39], where polymeric133

substances undergo a small strain and where we can assume there is a linear rela-134

tionship between stress and strain. These models are structured by various combi-135

nations of linear spring and dashpot elements, representing elasticity and viscos-136

ity, respectively. These elasticity parameters characterize biofilms’ tendency to137

reform their shape after being stretched under stress, while viscosity characterizes138

biofilm resistance to deformation.139

The numbers and arrangements of spring and dashpot elements can be altered140

to provide different linear viscoelastic models, such as the Maxwell, Kelvin-Voigt,141

and Burger models. The Maxwell and Kelvin-Voigt models consist of one spring142

and one dashpot connected in series and in parallel, respectively. The Burger143

model contains a spring and a dashpot in series (Maxwell compartment) con-144

nected to a spring and a dashpot in parallel (Kelvin-Voigt compartment), as shown145

in Fig. 2. E denotes spring coefficient, and η denotes dashpot coefficient. The un-146

derscripts m and k represent the Maxwell and Kelvin compartments, respectively.147

The Maxwell model is accurate in modeling the instant elastic strain increase148
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Figure 2: The arrangement of spring and dashpot components in Maxwell, Kelvin-Voigt, and

Burger models.

during loading and the elastic strain decrease right after unloading stress; however,149

it captures neither the time-dependent recovery nor the decreasing strain rate of150

substance under a creep-recovery test. On the other hand, although the Kelvin-151

Voigt model precisely shows the time-dependent recovery, it does not demonstrate152

the instant strain during loading and unloading. Thus, it is clear that a mix of both153

models is needed to properly describe the viscoelasticity of complex rheological154

substances.155

After exploring different linear viscoelastic models, we chose to use the Burger156

model which is a combination of the Maxwell and Kelvin-Voigt models. There157

are several advantages to using this model: Firstly, we were able to analytically158

solve for the strain and therefore, allowing us to run our data assimilation scheme159

10,000,000 times to estimate our parameter estimates with high precision. Sec-160

ondly, this relatively simple model helped us avoid over-fitting, which is a com-161

mon problem in models with many parameters and modest amount of data.162
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In the Burger model, the instant increase in elastic strain at the beginning of163

the creep test, which fully recovers after unloading shear stress, is characterized164

by the Maxwell spring (Em), while the strain rate at the end of the creep test is165

described by the Maxwell dashpot (ηm). The Kelvin-Voigt spring (Ek) and Kelvin-166

Voigt dashpot (ηk) are accountable for the gradual increase and decrease in strain167

during creep and recovery tests. The constitutive equation for a Burger model can168

be derived based on linear spring and dashpot equations:169

(
ηmηk

EmEk
)σ̈ +(

ηm

Ek
+

ηm

Em
+

ηk

Ek
)σ̇ +σ = (

ηmηk

Ek
)ε̈ +ηmε̇ (1)

where σ , ε , E, and η denote the stress, strain, linear spring constant, and linear170

dashpot constant, respectively. σ̇ and σ̈ are the first and second time derivatives171

of the stress; while ε̇ and ε̈ are the first and second time derivatives of the strain,172

respectively. The underscripts m and k represent the Maxwell and Kelvin com-173

partments in the Burger model. Note that, the Maxwell elements (Em and ηm)174

are an elastic element and a viscous element in series, respectively, and the values175

associated with these elements can be isolated and calculated directly through ex-176

periments, while the Kelvin elements (Ek and ηk) are in parallel and interact and177

do not have direct, measurable interpretations. They are present in our theoretical178

model to describe the time-independent creep and recovery response of biofilm179

EPS.180

We used the aforementioned Burger model to parameterize the rheological re-181

sponse of our biofilms during a creep-recovery test. Creep-recovery response tests182

are among the standard tests to measure the viscoelastic properties of biofilms183

and to characterize the time-dependent responses of materials during loading and184

unloading of constant shear stress [39]. In this mechanical test, a sudden fixed185

9



shear stress (σ0) is applied to biofilm for a specified time period (creep test), and186

then it is unloaded after a certain time (recovery test). Biofilm responds to this187

creep-recovery test by deforming in the direction of the applied shear stress. The188

viscoelastic parameters of biofilm will be extracted based on this deformation and189

the time-dependent response [40]. The measured local displacement in the direc-190

tion of the stress is non-dimensionalized by the biofilm thickness and is called191

strain (ε). This total strain explained in the context of a spring-dashpot model is192

essentially the sum of three separate strains: 1) The instant elastic strain which oc-193

curs right after loading the constant stress and fully recovers right after unloading.194

This strain is characterized by the Maxwell spring. 2) The gradual strain response195

that is due to the Kelvin spring and dashpot. This strain increases gradually under196

the applied stress during the creep test and will fully recover during the recovery197

test. 3) The strain due to the Maxwell dashpot. This strain progressively increases198

during the creep test; however, it will not recover once the stress is unloaded. As199

a result, at the end of the recovery test, a permanent strain will remain. Our theo-200

retical model has no viscoplastic elements, and the biofilm is loaded under a low201

constant shear stress (0.5Pa), which is below the biofilm yield stress. Therefore,202

it is in the viscoelastic range and will not exhibit any instantaneous viscoplastic203

strain response related to the viscoplasticity behavior. Fig. 3 shows the different204

stages of biofilm strain response to a creep-recovery test. The elements that are205

informed by each stage of the strain response are illustrated in the figure.206

In a creep-recovery test, shear stress is constant, and thus stress derivatives are207
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Figure 3: The different stages of a typical biofilm strain response to the creep-recovery test.

zero. Therefore, equation 1 reduces to:208

(
ηmηk

Ek
)ε̈ +ηmε̇ = σ0, if t < τ (2)

(
ηmηk

Ek
)ε̈ +ηmε̇ = 0, if t ≥ τ (3)

where σ0 is the constant shear stress during creep test, and τ is the time that shear209

stress is unloaded. At t = 0, biofilm experiences an instant elastic strain, therefore,210

the initial strain can be calculated as ε(0) = σ0
Em

. The rate of change in the strain at211

the initial condition is represented by both the Maxwell and Kelvin-Voigt dashpots212

ε̇(0) = σ0
ηm

+ σ0
ηk

. Solving equations 2 and 3 with these initial conditions leads to:213

ε =
σ0

Ek
(1− e−(Ek/ηk)t)+

σ0

ηm
t +

σ0

Em
, if t < τ (4)

ε =
σ0

Ek
(e(Ek/ηk)τ −1)e−(Ek/ηk)t +

σ0

ηm
τ, if t ≥ τ (5)
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2.3. Experimental Data214

P. aeruginosa is an opportunistic pathogen associated with biofilm-associated215

chronic infections, specifically in immunocompromised people. P. aeruginosa is216

also considered a model organism for studying biofilms. The EPS of P. aeruginosa217

biofilms is complex, and consists of three different exopolysaccharides: alginate,218

Pel and Psl, and extracellular DNA and proteins, including CdrA [41].219

During chronic infections, P. aeruginosa adaptively evolves to form variants220

that have increased fitness and survival. Of particular interest are the mucoid vari-221

ants and rugose small colony variants (RSCVs). These colony variants acquire222

mutations that lead to the overproduction of extracellular matrix components. Ge-223

netic mutations lead to the overproduction of alginate in mucoid, and overproduc-224

tion of Psl, Pel polysaccharides, and the biofilm matrix protein CdrA in RSCVs225

[42]. Due to the overproduction of these EPS components, both variants have226

increased biofilm phenotypes compared to the ancestor. We were therefore inter-227

ested in determining if the overproduction of EPS by mucoid and RSCVs was also228

associated with changes in biofilm mechanics, relative to the parental wild type229

strain [24].230

To assess this colony-biofilms of P. aeruginosa wild type PAO1 and isogenic231

mucoid variant (PAO1 mucA22) and RSCV (PAO1 ∆wspF) were analyzed. Ster-232

ile nitrocellulose filter membranes (25mm, 0.45µm pore size; Milliopore) were233

inoculated with overnight cultures normalized to OD600nm 0.1. Filters were trans-234

ferred to Pseudomonas isolation agar, and incubated at 37◦C. Colony-biofilms235

were transferred to a new plate every 24h. Colony-biofilms were analyzed days 2,236

4 and 6 [24].237

At each time point, biofilms were analyzed by uniaxial mechanical indenta-238
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tion and shear rheology [24]. Of relevance to this study, biofilms were analyzed239

by creep-recovery, using a Discovery Hybrid-2 rheometer (TA instruments) fitted240

with a 25mm Smart-Swap sand blasted geometry. Creep-recovery measurements241

were performed by applying a shear stress of 0.5Pa for 60s, followed by a 120s re-242

covery [24]. 4 colony-biofilms were analyzed at each timepoint. The experimental243

conditions of these replicates were consistent, and any variability was intrinsic to244

biofilm growth and development rather than the experimental design and analysis.245

2.4. Parameter estimation process246

We used the strains calculated by the Burger model (equations 4 and 5) as247

estimates for our biofilm deformation under shear stress during a creep-recovery248

test (σ0 = 0.5Pa). However, we know that this model, like any other mathemat-249

ical model, can not predict real experiments perfectly, as there are always errors250

involved in predicting real-world events. Let’s assume our observations are in-251

dependent and identically distributed (i.i.d), meaning that each observation has252

the same probability distribution as others and the observations are mutually in-253

dependent [43]. Note that this assumption is across different observations, not254

along the creep-recovery test time-series data. We used four observations for each255

dataset, each consisting of a time-series of strain. Thus, we can assume the errors256

were normally distributed with standard deviation γ , which is a common practice257

in many engineering and real-world applications [44]. Therefore, the likelihood,258

the probability of the observed data y (measurements of the creep-recovery test),259

given the model parameters θ (elasticities and viscosities) and the error variance260

γ2, can be written as:261
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p(y|θ ,γ2) =
N

∏
i=1

1√
(2π)γ

e
(xi−yi)

2

2γ2 (6)

where xi, and yi are the i th of the N model-derived estimate and observed data262

points, respectively. In this work, xi are the time series of calculated strain ε from263

equations 4 and 5 that is a function of model parameters (Ek, ηk, Em, and ηm). yi264

are the measured values of strain over time from the creep-recovery experiments265

that were explained in the previous section. This likelihood is then incorporated266

with Bayes’ theorem to calculate the probability of viscoelastic model parameters267

given the experimental data [45].268

A Markov Chain Monte Carlo (MCMC) method [45] was used to construct269

the target posterior distributions, which are our desired distributions for the vis-270

coelastic parameters. Various MCMC sampling algorithms have been developed271

over the past decades. Metropolis-Hastings (MH) is one of the classic sampling272

methods [46] for MCMC Bayesian estimation, that generates sample candidates273

from a parameter space. These sample candidates are then either rejected or ac-274

cepted based on the posterior ratio of the new parameter candidate to the previous275

parameter. Here, we employed a modified MH algorithm which helped us im-276

prove the efficiency and speed of our computations by increasing convergence277

and acceptance rate [47]. The details of our numerical algorithm can be found in278

Appendix A.279

This Bayesian data assimilation framework provides us with estimates and280

variability of our model parameters, as well as information about the stochas-281

tic structure of our data, and the relationship between model parameters. These282

parameter estimates are formed as distributions of samples that can be used to283

construct probability density functions. The shape of these probability density284
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functions represents the variability and uncertainty of the parameters. In the con-285

text of biofilm EPS viscoelasticity, Bayesian data assimilation helps us have distri-286

butions for the viscosity and elasticity in a probabilistic form. The mean of these287

distributions represents the deterministic value of viscosity and elasticity, showing288

how viscous and deformable the biofilm is, whereas the variance and shape of the289

distribution suggest how certain we are in determining the mechanical properties290

of biofilm. For example, we know biofilms are very heterogeneous and dynamic291

substances, and a small change in their composition during their early stages of292

formation may lead to statistically significant (P < 0.05) changes in their me-293

chanical properties. Our results, which are discussed in the next section, show294

that these changes in the mechanical properties of biofilm can be up to two or-295

ders of magnitudes. The quantification of this variability helps us understand the296

biofilm dynamics and develop robust bounds on the uncertainty of our predictions.297

3. Results298

Here, we characterize the viscoelasticity of P. aeruginosa biofilms, including299

wild type (WT) PAO1 and isogenic RSCV and mucoid variant biofilms grown for300

2, 4, and 6 days with four viscoelastic parameters (Em,ηm,Ek, and ηk). These301

viscoelastic parameters and the uncertainty of these parameters were estimated302

and the error variance was quantified using the creep-recovery experimental data303

[24] and the Bayesian mathematical platform.304

For this purpose, the four viscoelastic model parameters for each biofilm were305

sampled from a uniform proposal distribution. First, the MCMC algorithm was306

run for an initial run with 10,000,000 iterations. This is referred to as the “burn-307

in” time. Then, these results were used for the main run with a second round of308
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10,000,000 iterations. We disregarded the first 10,000,000 samples to eliminate309

the impact of random initial guess on our target proposal distribution and consid-310

ered the second 10,000,000 samples to construct the Markov chains, that equal311

to the posterior distributions of the parameters (Fig. 4). We observe that the ac-312

cepted candidates fit in a narrow bound of parameters. However, as shown in the313

figure, the viscoelastic parameters vary significantly between the three biofilms,314

and also between different stages of formation (e.g. depending on the age of the315

biofilm). The high variability of WT viscoelastic parameters is related to the high316

variability and heterogeneous complexity in the structure of WT biofilms with317

more uncertainty at the early stages of their formation.318
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Figure 4: MCMC samples of viscoelastic properties after disregarding the first half of the Markov

chains for WT (orange color), RSCV (blue color), and Mucoid (pink color) after 2, 4, and 6 days

of formation.

Then, we employed a kernel density estimation (KDE) algorithm to calculate319
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the probability densities of posterior distributions. Fig. 5 presents these densities320

for the three biofilms at different stages of their formation to better visualize how321

the estimated parameters form a distribution. We observe that these distributions322

are approximately Gaussian for all parameters, which presents the stochasticity323

in the physics of biofilm viscoelasticity. Biofilms undergo several chemical and324

biological processes over the course of their development, and these processes are325

highly dependent on the state of the system and physical conditions during experi-326

ments, which are not fully controllable. Thus, there is an inherent unpredictability327

in the physical and chemical properties of the biofilm components. The distribu-328

tions of WT biofilm properties are highly skewed and have the highest relative329

variations (coefficient of variations) in parameters, especially for Kelvin parame-330

ters, which attributes to the heterogeneity and unpredictability of their physics and331

structure. The WT biofilm is grown from unaltered P. aeruginosa and is inherently332

unpredictable.333

The mean values of the estimated parameters are shown in Fig.6. The plots334

for viscosities are on a logarithmic scale as they vary significantly between the335

three different biofilms and stages of formation. We observe that the Maxwell and336

Kelvin-Voigt elasticities and viscosities do not follow a similar trend for the three337

biofilms. Table 1 shows these mean values of the four viscoelastic parameters338

for each biofilm. The numbers in red are the estimated values of [24] which are339

presented here for the sake of comparison with our estimations.340

The coefficient of variation (CV) and skewness values for the estimated dis-341

tributions are listed in Table 2 and 3, respectively, as measures of variability of342

the estimated parameters. The coefficient of variance is a statistical measure of343

the dispersion of data around the mean, whereas skewness is a measure of the344
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Figure 5: Posterior density distributions of viscoelastic properties for WT, RSCV, and Mucoid

after 2, 4, and 6 days of formation. WT 2-day and WT 6-day are highly skewed and have the

highest variations in parameters.

asymmetry of posterior distributions about their mean values. The values of the345

coefficient of variation were calculated by dividing the standard deviations by346

the mean values, then multiplying by 100. We observe a higher variability and347

skewness for WT biofilms both after 2 days and 6 days of formation, which are348

related to the high intrinsic variability of WT biofilm structure. This variability is349

based on the different observations that we used in our calculation of likelihood.350

The WT biofilm experimental data vary significantly across observations, whereas351

Mucoid and RSCV experimental data are relatively more comparable across ob-352

servations. This intrinsic uncertainty (aleatoric uncertainty) is mainly due to the353

inherent randomness in WT biofilm dynamics, and it is different from the uncer-354

tainty (epistemic uncertainty) caused by the lack of enough experimental data.355
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Figure 6: Mean values of estimated viscoelastic properties for WT, RSCV, and Mucoid after 2, 4,

and 6 days of formation.

Table 1: Means of estimated values for viscoelastic parameters of Burger model.

elastic characteristics viscosity characteristics

biofilm Em (Pa) Ek (Pa) ηm (Pa.s) ηk (Pa.s)

WT-2d 59.19 (79.12) 119.75 841.74 (923.25) 3678.05

WT-4d 8.82 (20.53) 3.7047 62.92 (57.68) 134.76

WT-6d 136.78 (259.55) 154.00 3825.31 (7491.48) 2038.41

RSCV-2d 36.44 (91.29) 25.76 679.68 (646.33) 620.25

RSCV-4d 30.54 (67.22) 22.06 438.90 (523.45) 310.38

RSCV-6d 30.46 (64.18) 25.96 1148.50 (1506.42) 432.78

Mucoid-2d 5.30 (-) 1.55 31.26 (24.02) 36.95

Mucoid-4d 21.95 (6.07) 11.30 176.97 (170.04) 185.59

Mucoid-6d 15.21 (6.45) 7.32 212.50 (158.36) 285.59

Our Bayesian framework also provides us with the relationship between the356

parameters. Fig. 7 shows the correlation between parameters of WT biofilm after357

4 days of formation as a triangle pair-wise plot. From this figure, we can conclude358
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Table 2: Coefficients of variation (CV) of estimated values for viscoelastic parameters of Burger

model.

elastic characteristics viscosity characteristics

biofilm Em(%) Ek(%) ηm(%) ηk(%)

WT-2d 6.50 17.57 1.13 28.82

WT-4d 2.79 2.63 0.33 3.09

WT-6d 12.28 10.17 1.18 33.18

RSCV-2d 5.60 3.88 0.86 9.85

RSCV-4d 6.61 3.75 0.39 11.60

RSCV-6d 3.76 2.54 0.72 7.87

Mucoid-2d 8.83 2.51 0.41 6.30

Mucoid-4d 3.77 1.65 0.15 4.64

Mucoid-6d 2.87 3.73 0.76 3.65

there is no direct relationship between Ek, ηk, Em, and ηm. However, the relation-359

ship between ηk and Em suggests that by increasing one parameter the other one360

decreases. The same correlation happens for Ek and ηm.361

Then, we estimated the error variance in the prediction of the biofilm strain362

response by integrating the error variance as one of the parameters of interest in363

our Bayesian framework. Fig. 8 presents the probability density distributions for364

the square root of the error of variances γ . These results show that predicting365

the strain response for 2-day Mucoid is more difficult than other biofilm variants,366

mainly due to the missing data for the strain right before unloading the stress.367

After estimating the viscoelastic parameters as probability density functions,368

we used this information to predict the strain response. Assuming the mean behav-369
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Table 3: Skewness of estimated values for viscoelastic parameters of Burger model.

elastic characteristics viscosity characteristics

biofilm Em Ek ηm ηk

WT-2d 1.89 -0.32 1.93 0.01

WT-4d 0.21 -0.11 0.21 0.01

WT-6d 1.10 0.29 0.50 1.02

RSCV-2d 0.49 0.16 0.31 0.20

RSCV-4d 0.54 0.12 0.13 0.34

RSCV-6d 0.33 0.11 0.13 0.19

Mucoid-2d 0.66 0.12 0.17 0.14

Mucoid-4d 0.28 0.08 0.05 0.12

Mucoid-6d 0.23 -0.16 0.33 -0.01

ior is representative, it can be used for a deterministic estimate of the viscoelastic370

parameters. The mean values of the posterior distributions were used to evaluate371

the model performance. The model prediction is compared with the experiments372

in Fig. 9. We observe that the Burger model is able to effectively quantify the373

strain response to the creep-recovery test for all the biofilms. As shown in Fig. 9,374

the strains due to the creep and recovery tests fit very well on the experimental375

data. However, at the end of the recovery part, there is a discrepancy between376

the model and data, which might be due to the complications with experiments.377

The propagation of uncertainties in the strain calculation is presented by display-378

ing the 99% credible interval and 99% prediction intervals in the figure. These379

intervals are constructed based on the chains in Fig. 4. The 99% credible interval380

shows that after seeing the observed data with probability 99%, the strain is in the381
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Figure 7: Correlation between all four viscoelastic parameters of WT after 4 days of formation.
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Figure 8: Posterior distribution of square root of error variance for WT, RSCV, and Mucoid after

2 days, 4 days, and 6 days of formation.

interval. However, in the calculation of the 99% prediction interval, error variance382

plays an important role and can predict future observations. The 99% prediction383

interval shows that after seeing the observed data with probability 99%, the strain384
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of the future observation will be inside the plotted interval.385
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Figure 9: Prediction of strain vs the experimental data during the creep-recovery test for WT,

RSCV, and Mucoid after 2 days, 4 days, and 6 days of formation.

4. Discussion386

Biofilms are subject to a wide range of shear forces over many magnitudes of387

time scales, many too short or too long for lab experimental test methods. Ex-388

amples of these are high-speed interactions with water jets, such as interdental389

cleaning jets or pulse lavage in the wound and surgical site debridement as well as390

pressure washing of industrial surfaces such as ship hulls [48, 49]. On the other391

hand, biofilms in the natural environment or on industrial surfaces are exposed392
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to fluid forces over days to weeks to decades, impacting industrial performance.393

Predicting how biofilms may respond to these forces at time scales outside of nor-394

mal testing methods will have application with respect to designing shear-based395

cleaning strategies and predicting long-term stability in systems such as uplift fer-396

menters in wastewater and bioremediation systems.397

Moreover, biofilms have repeatedly been shown to be highly variable making398

robust control methods very difficult [50]. One main outcome of this study is to399

demonstrate that, much of the variability in the mechanical properties of biofilms400

can be ascribed to variations in the microstructure that forms the EPS matrix. This401

understanding points to control strategies that target more specific components.402

This detailed information about the chemical structure of EPS components and an403

understanding of the impact of variations in the microstructure on the macroscopic404

behavior can lead to novel antibiofilm strategies.405

The Burger viscoelastic model used in our study helped us obtain significantly406

better estimates for the viscosities and elasticities of our biofilm variants in com-407

parison to the other well-known linear viscoelastic models, such as the Maxwell408

and Kelvin-Voigt, that are described in previous sections. This is mainly because409

the Burger model has the capability to describe instant elastic strain response,410

as well as time-dependent viscoelastic response and irrecoverable strain during a411

creep-recovery test. Fig. 10 shows the comparison of our predicted strain response412

using the Burger model for WT-4d biofilm, against the Maxwell and Kelvin-Voigt413

for the same biofilm variant. These strains were calculated based on the mean val-414

ues of the viscoelastic parameters estimates using our Bayesian framework. The415

99% credible and 99% prediction intervals are displayed in the figure to address416

the uncertainty in estimating the strain based on the given data as well as the uncer-417
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tainty in the prediction of future observations based on the estimated parameters.418

The stochastic characteristics of our Bayesian framework helped us estimate the419

biofilm viscoelastic parameters with higher accuracy compared to existing models420

that used deterministic estimation techniques such as least-square fitting [40].421

0 50 100 150 200
0

10

20

30

40

50

60

70

Maxwell 99% Prediction Interval

Maxwell 99% Credible Interval

Maxwell model

Kelvin-Voigt 99% Prediction Interval

Kelvin-Voigt 99% Credible Interval

Kelvin-Voigt model

Burger 99% Prediction Interval

Burger 99% Credible Interval

Burger model

experimental data

Figure 10: Comparison of Burger model against Maxwell and Kelvin-Voigt models, in strain

prediction for WT after 4 days for formation.

WT biofilms are very sensitive, and their mechanical properties vary signifi-422

cantly over time. First, the Maxwell and Kelvin-Voigt elasticities and viscosities423

decrease from day 2 to day 4, and then they increase. Biofilm elasticities and vis-424

cosities change over time and are less on day 4 than 2 before increasing by day 6.425

This is due to the higher affinity interactions between EPS components in 2-day426

and 6-day biofilms, compared to 4-day biofilms. Psl is known to be the dominant427

polysaccharide at the early stages of biofilm formation and makes the EPS ma-428

trix stiffer, whereas Pel is produced at later stages when the biofilm matures and429

makes the EPS matrix more viscous and malleable. These behaviors suggest the430

occurrence of different waves of EPS remodeling which results in elasticities and431

viscosities changes over time [24]. WT biofilms have very diverse components432
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that lead to a large variation in mechanical properties. Presumably, this is because433

there are many ways that each biofilm can diversify the constituent production434

with relatively distinct properties. However, this allows for a larger signal-to-noise435

ratio than variants that overproduce one or more constituents. We observe RSCV436

biofilm elasticity to be almost constant over time. However, it is more viscous437

after 2 days and 6 days of formation. Mucoid biofilms, on the other hand, show438

a very low elasticity and viscosity at the first stages of formation, while as time439

goes by, they become more stiff and viscous. The biofilm mechanical properties440

are not subject to change after 4 days of formation, which shows their structural441

stability over time.442

One interesting aspect of data assimilation techniques is their robustness with443

regard to cases where data is missing. In the context of creep-recovery experi-444

ments, extracting the biofilm strain response in the transition from stress loading445

(creep) and unloading (recovery) is challenging due to the rapid change in strain,446

experimental error, and the intrinsic nature of experiments that do not allow the447

operator to impulsively unload stress. This may result in low accuracy in quanti-448

fying the parameters of interest. Hence, the strain response experimental data for449

our 2-day WT biofilm was incomplete right before unloading, as it was difficult450

to capture the rapid drop in the strain. However, our data assimilation technique451

helped predict the unmeasured data and the strain for this time period of incom-452

plete missing data.453

5. Conclusion454

In this paper, we have employed a mathematical framework to characterize the455

viscoelastic properties of P. aeruginosa biofilms during a creep-recovery test. We456
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have described the strain response of WT P. aeruginosa, and isogenic RSCV and457

mucoid variant biofilms using a Burger viscoelastic model.458

We have implemented an adaptive MCMC algorithm, that is based on a Bayesian459

estimation framework to estimate the model parameters based on the prior knowl-460

edge we have from the parameters and the experimental data. We have estimated461

the four model parameters involved in the viscoelastic constitutive equations for462

each biofilm after 2, 4, and 6 days of formation. The viscoelastic properties of463

these different biofilms are subject to a significant change over time, which shows464

the dynamic composition of the biofilm EPS structure. This type of study was465

pioneered in the early 2000s [40]. However, using a Bayesian framework and466

considering different strains have allowed us to incorporate recent advances in467

our understanding of biofilm mechanics. This analysis can help future research468

works elucidate the physics of the polymer network that forms the backbone of469

the biofilm [1]. This understanding is fundamental to the development of targeted470

therapies.471

Additionally, addressing the fundamental variability of biofilm dynamics indi-472

cates weaknesses in the deterministic treatment of biofilm mechanics. Therefore,473

estimates of rheological properties using this method are more robust and de-474

scriptive than estimates using the geometry of relaxation curves. Our study also475

indicates that, since the properties of the constituents vary in time and density,476

methods to estimate the distribution between polymer types are needed.477

This study contributes to our understanding of the connections between mi-478

croscale structure and macroscale behavior. Additionally, we have demonstrated479

robust comparisons between our predictive model and experimental observations480

even in data sets with partial data. Modernizing our methodology and conceptual-481
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ization of the impact of variable EPS microstructure encourages the development482

of highly targeted antibiofilm strategies. Understanding the underlying structure483

of biofilm and its impact on rheological properties provides novel directions to484

explore biofilm removal. For example, many biofilm removal techniques rely485

on applying forces to the biofilm to force sloughing [49]. By applying specific486

treatments that target different constituents, we can enhance this removal by ma-487

nipulating the rheological properties. This requires a detailed understanding of488

the underlying distribution to optimize the targets.489

The broad methodology investigated in this manuscript is directly applicable490

in many other settings. Developing tools to address the multi-component nature491

also plays a role when biofilms grow in soft matter such as within the mucus lining492

of the lungs in people with cystic fibrosis.493
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Appendix A. Numerical Algorithm for Parameter Estimation498

In this Appendix, we provide the details of our Bayesian framework and the499

parameter estimation method. First, we explain Bayes’ theorem and the assump-500

tions we considered to calculate the posterior distributions for a given set of model501

parameters. Then, we describe the Markov Chain Monte Carlo method and how502
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to compute the target posterior distribution by evaluating the candidates that are503

sampled from a proposal distribution.504

Bayes’ theorem is fundamental in the calculation of posterior distributions.

In the case that the error variance γ2 is fixed and known, we can calculate the

posterior of our physical model parameters θ based on the likelihood and prior of

θ . Therefore, Bayes’s theorem can be written as:

p(θ |y) = p(y|θ)p(θ)
p(y)

(A.1)

where p(θ |y) is our posterior distribution, the probability of model parameters505

given the observed data; p(y|θ) is the likelihood, the probability of observed data506

given the model parameters; and p(θ) is the prior distribution. The denominator507

p(y) is integral of the numerator over the parameter space, which is a normaliza-508

tion factor and is fixed. Note that, we do not need to compute the denominator509

as it cancels out in our calculations when we compare the sample candidates to510

decide whether reject or accept them.511

In many scenarios, there is uncertainty in our data, and the error variance of

parameters γ2 is unknown. This uncertainty can be quantified by integrating the

error variance into our Bayesian framework [45]. In this case, the Bayes’s theorem

can be written as:

p(θ ,γ2|y) = p(y|θ ,γ2)p(θ ,γ2)

p(y)
(A.2)

where p(θ ,γ2|y) is our posterior distribution, the probability of model parame-512

ters and error variance given the observed data; p(y|θ ,γ2) is the likelihood, the513

probability of observed data given the model parameters and error variance; and514

p(θ ,γ2) is the joint prior distribution of θ and γ2. The i.i.d condition suggests that515
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p(θ ,γ2) = p(θ)p(γ2) because model parameters and error variance are indepen-516

dent parameters.517

We sampled the model parameters θ from a uniform distribution with only518

positive numbers, as the physics of viscoelastic parameters do not allow them to519

take negative values. The error variance γ2 was sampled from an inverse χ2-520

squared distribution that is an uninformative conjugate prior to the normally dis-521

tributed likelihood [45]. A Gaussian likelihood was employed to calculate the522

probability of the observed data given the model parameters. The Gaussian likeli-523

hood was chosen because we assumed our observations are mutually independent524

and identically distributed (i.i.d.), meaning that each observation has the same525

probability distribution as others, and the observations are mutually independent526

[43]. Thus, we assumed the errors are normally distributed with standard deviation527

γ , which is a common practice in many engineering and real-world applications528

[44]. Therefore, the likelihood, the probability of the observed data y, given the529

model parameters θ and the error variance γ2, can be written as:530

p(y|θ ,γ2) =
N

∏
i=1

1√
(2π)γ

e
(xi−yi)

2

2γ2 (A.3)

where xi, and yi are the i th of the N model-derived estimates and observed data531

points, respectively.532

Markov Chain Monte Carlo (MCMC) method generates sample candidates533

from a parameter space, that are either rejected or accepted based on the accep-534

tance probability. Metropolis-Hastings (MH) is a classic sampling algorithm [46]535

(Algorithm 1) for Bayesian estimation. MH iteratively generates a sequence of536

sample candidates from a proposal distribution, in such a way that each sample is537

only dependent on the immediately preceding sample. Hence, it follows Markov538
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Chain rules. Then, the sample candidates are either accepted or rejected based on539

how good the acceptance probability is compared to a uniform random number.540

Algorithm 1 Metropolis-Hastings
1: initialize model parameters, θ0

2: for i = 1 to n do

3: propose a new candidate θ ∗ from the prior

4: calculate α = p(y|θ∗)p(θ∗)
p(y|θi−1)p(θi−1)

5: generate r from a uniform distribution U (0,1)

6: if r < min{1,α} then

7: θi = θ ∗

8: else

9: θi = θi−1

10: end if

11: end for

In this paper, we employ the Delayed Rejection Adaptive Metropolis (DRAM)541

algorithm developed by [47] (Algorithm 2). This algorithm is a modified standard542

Metropolis-Hastings algorithm that helps improve the efficiency and speed of our543

computations by increasing convergence and acceptance rate. The idea behind544

Delayed Rejection (DR) is that, upon rejection in MH, instead of advancing time545

and retaining the same position, a second stage move is proposed, that can be546

extended to further proposal candidate sampling. Higher staged proposals are547

allowed to depend on the candidates already accepted or rejected, and their ac-548

ceptance probabilities are dependent on the previous delayed rejection candidates549

[47]. Adaptive Metropolis (AM), unlike a regular MH algorithm, allows us to550

sample the posterior distribution based on the past samples’ path of the chain,551
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which accelerates the convergence rate while keeping the ergodicity of the algo-552

rithm [47].553

554
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Algorithm 2 Adaptive Metropolis-Hastings (DRAM)
1: initialize model parameter, θ0

2: initialize covariance matrix, C0

3: set scaling factor, s

4: set covariance regularization factor, ε

5: set initial non-adaption period, n0

6: set number of delayed rejection tries, Ntry

7: set k = 0

8: while a new value is not accepted or k < Ntry do

9: for i = 1 to n do

10: propose a new candidate θ ∗ from N (θi−1,Ci−1)

11: calculate the posterior ratio, αk

12: generate a uniform random number r in [0, 1]

13: if r < min{1,αk} then

14: θi = θ ∗

15: else

16: θi = θi−1

17: end if

18: if i ≥ n0 then

19: Ci = cov(θ0,...,θi)s+ Iε

20: else

21: Ci =C0

22: end if

23: end for

24: k = k+1

25: end while
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