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A B S T R A C T   

Pseudomonas aeruginosa biofilms are relevant for a variety of disease settings, including pulmonary infections in 
people with cystic fibrosis. Biofilms are initiated by individual bacteria that undergo a phenotypic switch and 
produce an extracellular polymeric slime (EPS). However, the viscoelastic characteristics of biofilms at different 
stages of formation and the contributions of different EPS constituents have not been fully explored. For this 
purpose, we develop and parameterize a mathematical model to study the rheological behavior of three biofilms 
— P. aeruginosa wild type PAO1, isogenic rugose small colony variant (RSCV), and mucoid variant biofilms 
against a range of experimental data. Using Bayesian inference to estimate these viscoelastic properties, we 
quantify the rheological characteristics of the biofilm EPS. We employ a Monte Carlo Markov Chain algorithm to 
estimate these properties of P. aeruginosa variant biofilms in comparison to those of wild type. This information 
helps us understand the rheological behavior of biofilms at different stages of their development. The mechanical 
properties of wild type biofilms change significantly over time and are more sensitive to small changes in their 
composition than the other two mutants.   

1. Introduction 

Bacterial pathogens and other microorganisms adhere and grow at 
surface interfaces. This population forms a biofilm, which is a commu-
nity of adherent microorganisms encased in a self-produced extracel-
lular polymeric slime (EPS). The EPS is complex and composed of 
extracellular DNA, protein, and multiple species of exopolysaccharides. 
These EPS components are involved in biofilm development and 
attachment to a substratum, and they assure structural integrity of 
biofilm [1–5]. This EPS network is heterogeneous and subject to change 
over time. Therefore, studying the material properties of biofilm and 
EPS interactions is fundamental to understanding structural dynamics 
and developing methods for removing and preventing biofilm-induced 
infections [6–8]. 

Mathematical models and numerical schemes have been developed 
since the 1980s to model the dynamics of biofilm development in order 

to understand the physics of such bio-organism systems and to predict 
the growth and development of these communities. These models focus 
on different spatial and temporal scales, which show the inherent mul-
tiscale nature of such biomechanical systems [9]. Wanner and Gujer’s 
1-D model [10] is amongst one of the first models, which described the 
dynamics and spatial distribution of bacteria in biofilms. Later, different 
continuum and individual-based models were developed to determin-
istically and stochastically investigate biofilm growth and bacteria 
population within biofilms [11]. Individual-based models were found to 
be useful tools to simulate mixed-species biofilms [12–14]. Xavier and 
Foster [15] investigated the competition dynamics between different 
strains that differ in the level of polymer production and predicted that 
mixed-strain biofilm tends to have increased polymer production; 
however, polymer production is not expected to increase indefinitely, 
and it will stabilize at an intermediate level. Zhang et al. [16]’s multi-
scale model showed that the biofilm community is a complex system, 
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that its metabolism is coupled to the spatial dependence of external 
chemical concentrations. 

Another important element in biofilm dynamics is the distribution of 
polymeric components and water content within the biofilm, signifi-
cantly influencing how biofilm moves under different flow conditions 
[17]. Computational fluid dynamics can be combined with other 
mathematical models to investigate biofilm dynamics [18] as well as the 
effects of flow on biofilm growth on different surfaces and complex 
geometries [19,20]. Other factors that flow simulations can model are 
the wettability, elasticity, and antimicrobial properties of surfaces [11]. 
Cogan and Keener [21] showed that diffusion-driven growth can lead to 
heterogeneous towers and mushroom-like structures via fluid/structure 
instabilities modulated by the interaction between differential produc-
tion and chemical properties of the EPS. 

Despite the numerous research studies on biofilm modeling, the 
quantification and parameterization of biofilm models, how EPS prop-
erties affect biofilm structure and maturation, and the interactions be-
tween the components of biofilm remain largely unexplored [22]. 
Typical models of biofilm mechanics fail to quantify the viscoelastic 
properties of biofilms. Zhang et al. [23] incorporated viscoelastic 
stresses built in biofilms into their mathematical model and described 
the interaction between biofilm components and fluid flow. Klapper 
et al. [6] formulated a mathematical model based on the Jeffrey visco-
elastic fluid constitutive law and found that biofilms behave as visco-
elastic fluids, demonstrating both the unreversed flow as well as the 
elastic and viscoelastic recoil. Later, the viscoelastic properties of such 
biofilms were quantified using creep-recovery and oscillatory frequency 
sweep tests [24]. Tierra et al. [25] characterized the effects of me-
chanical parameters of biofilm components in the fluid–biomass inter-
action and concluded that biofilm’s resistance to deformation 
introduced by flow shear can be largely attributed to its viscosity. It 
should be noted that all these models assumed simple-constituent EPS. 

One very important characteristic of biofilms is their wide variability 
[26]. This variability is present between samples, where biofilms of the 
same strain and growth conditions lead to different biofilm structures, 
due to spatial diversity and heterogeneity [27]. Within a single biofilm, 
the growth rates, cell densities, and mechanical properties also vary in 
both time and space, due to gradients established within the biofilm and 
the diverse EPS production. This variability and the inherent uncertainty 
of model parameters require a detailed uncertainty analysis. The model 
parameters can be estimated based on observational data to optimize the 
mathematical model. Coupling experimental observations with mathe-
matical modeling has been well established in other fields such as 
meteorology [28], where it is generally referred to as data assimilation 
(DA). These techniques were later used in other fields, such as ecology 
[29,30], and engineering applications, for example, dielectric elasto-
mers, solid amorphous polymers, and lithium-ion batteries [31–33]. 
However, this is much less widespread in biomathematics applications, 
where challenges in estimating relevant parameters are unique [34–36]. 
For example, one of the most important outcomes in biological DA is to 
predict and optimize the relevant factors involved in biofilm develop-
ment so that efficient optimal control targets can be identified by 
coupling DA with sensitivity analysis [36]. 

In this paper, we develop a Bayesian framework that assimilates 
experimental data with linear viscoelastic models to help us estimate the 
viscoelastic parameters of different P. aeruginosa variants that emerge 
during chronic infections. First, we model biofilm EPS by a viscoelastic 
Burger model, that consists of a combination of springs and dashpots, 
representing the elasticity and viscosity of biofilm, respectively. Then, 
we utilize a Bayesian estimation platform based on a Markov chain 

Monte Carlo (MCMC) method to estimate the viscoelastic properties of 
P. aeruginosa biofilm variants using experimental data [24]. MCMC 
methods comprise a class of stochastic techniques which use a set of 
discrete samples to approximate model parameters as a posterior dis-
tribution [37]. We use a deterministic viscoelastic model, with param-
eters drawn from a distribution, to explore the stochastic nature of this 
behavior. This stochasticity is due to the parametric variability of bio-
film viscoelastic properties. 

Biofilm structure and chemistry change over the course of their 
development, and there is a high variability in biofilm mechanical 
properties due to their intrinsically heterogeneous and dynamic 
behavior. These biofilm characteristics, together with the use of 
different analysis parameters, including timescales of analysis and 
magnitude of forces applied, along with the unavoidable errors in 
measurement techniques add uncertainties to the measurement and 
quantitative analysis of biofilm mechanical properties [24]. Given the 
variability in biofilm measurements, incorporating uncertainty is very 
important for understanding model predictions. Therefore, this line of 
research will help guide future studies focusing on different biofilm 
variants at different stages of formation and lead to better predictive 
modeling. 

2. Materials and methods 

2.1. Bayesian data assimilation framework 

We designed a Bayesian data assimilation framework to find the 
rheological estimates of biofilm EPS based on theoretical viscoelastic 
models and experimental data. We systematically assimilated experi-
mental data to better estimate the relevant parameter values involved in 
the biofilm rheology and quantify the uncertainty in their measurement 
and prediction as a probability. Unlike classical statistics and non- 
Bayesian parameter estimation approach, Bayesian methods provide 
distributions for estimated parameter sets based on the knowledge we 
have from experimental data, the prior information we have from pa-
rameters of interest, and the mathematical model structure. 

Our Bayesian-based algorithm is briefly presented in Fig. 1. First, we 
assembled the input, including the theoretical model and experimental 
data for our Bayesian estimation toolbox. Our theoretical model was 
parameterized using a linear viscoelastic model that describes the 
viscoelastic response of biofilm EPS under constant shear stress during a 
creep-recovery test. The experimental data were obtained from the ex-
periments on creep-recovery measurements of different biofilm variants 
at different stages of their formation [24]. Then, using our 
Bayesian-based parameter estimation technique, which is explained in 
the next sections and Appendix A, we computed the distributions of 
estimated values for each biofilm’s viscosity and elasticity. These dis-
tributions give us insight into the uncertainty and variability of each 
model parameter, as well as the prediction of error variance for future 
measurements. 

2.2. Theoretical viscoelastic model 

Viscoelasticity is a mechanical property that characterizes the 
rheological behavior of a material. It exhibits both the viscous and 
elastic characteristics of a substance when they undergo mechanical 
deformation. Linear viscoelastic models have been used to describe 
polymeric solutions [38] and to quantify viscoelastic properties of 
polymeric substances such as biofilm matrix [39], where polymeric 
substances undergo a small strain and where we can assume there is a 
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linear relationship between stress and strain. These models are struc-
tured by various combinations of linear spring and dashpot elements, 
representing elasticity and viscosity, respectively. These elasticity pa-
rameters characterize biofilms’ tendency to reform their shape after 
being stretched under stress, while viscosity characterizes biofilm 
resistance to deformation. 

The numbers and arrangements of spring and dashpot elements can 
be altered to provide different linear viscoelastic models, such as the 
Maxwell, Kelvin-Voigt, and Burger models. The Maxwell and Kelvin- 
Voigt models consist of one spring and one dashpot connected in se-
ries and in parallel, respectively. The Burger model contains a spring and 
a dashpot in series (Maxwell compartment) connected to a spring and a 
dashpot in parallel (Kelvin-Voigt compartment), as shown in Fig. 2. E 
denotes spring coefficient, and η denotes dashpot coefficient. The 
underscripts m and k represent the Maxwell and Kelvin compartments, 
respectively. 

The Maxwell model is accurate in modeling the instant elastic strain 
increase during loading and the elastic strain decrease right after 
unloading stress; however, it captures neither the time-dependent re-
covery nor the decreasing strain rate of substance under a creep- 
recovery test. On the other hand, although the Kelvin-Voigt model 
precisely shows the time-dependent recovery, it does not demonstrate 
the instant strain during loading and unloading. Thus, it is clear that a 
mix of both models is needed to properly describe the viscoelasticity of 
complex rheological substances. 

After exploring different linear viscoelastic models, we chose to use 
the Burger model which is a combination of the Maxwell and Kelvin- 
Voigt models. There are several advantages to using this model: 
Firstly, we were able to analytically solve for the strain and therefore, 
allowing us to run our data assimilation scheme 10, 000, 000 times to 
estimate our parameter estimates with high precision. Secondly, this 
relatively simple model helped us avoid over-fitting, which is a common 
problem in models with many parameters and modest amount of data. 

In the Burger model, the instant increase in elastic strain at the 
beginning of the creep test, which fully recovers after unloading shear 
stress, is characterized by the Maxwell spring (Em), while the strain rate 
at the end of the creep test is described by the Maxwell dashpot (ηm). The 
Kelvin-Voigt spring (Ek) and Kelvin-Voigt dashpot (ηk) are accountable 
for the gradual increase and decrease in strain during creep and recovery 
tests. The constitutive equation for a Burger model can be derived based 
on linear spring and dashpot equations: 

(
ηmηk

EmEk

)

σ̈ +

(
ηm

Ek
+

ηm

Em
+

ηk

Ek

)

σ̇ + σ =

(
ηmηk

Ek

)

ϵ̈ + ηmϵ̇ (1)  

where σ, ϵ, E, and η denote the stress, strain, linear spring constant, and 
linear dashpot constant, respectively. σ̇ and σ̈ are the first and second 
time derivatives of the stress; while ϵ̇ and ̈ϵ are the first and second time 
derivatives of the strain, respectively. The underscripts m and k repre-
sent the Maxwell and Kelvin compartments in the Burger model. Note 
that, the Maxwell elements (Em and ηm) are an elastic element and a 
viscous element in series, respectively, and the values associated with 
these elements can be isolated and calculated directly through experi-
ments, while the Kelvin elements (Ek and ηk) are in parallel and interact 
and do not have direct, measurable interpretations. They are present in 
our theoretical model to describe the time-independent creep and re-
covery response of biofilm EPS. 

We used the aforementioned Burger model to parameterize the 
rheological response of our biofilms during a creep-recovery test. Creep- 
recovery response tests are among the standard tests to measure the 
viscoelastic properties of biofilms and to characterize the time- 
dependent responses of materials during loading and unloading of 
constant shear stress [39]. In this mechanical test, a sudden fixed shear 
stress (σ0) is applied to biofilm for a specified time period (creep test), 
and then it is unloaded after a certain time (recovery test). Biofilm re-
sponds to this creep-recovery test by deforming in the direction of the 
applied shear stress. The viscoelastic parameters of biofilm will be 
extracted based on this deformation and the time-dependent response 
[40]. The measured local displacement in the direction of the stress is 
non-dimensionalized by the biofilm thickness and is called strain (ϵ). 
This total strain explained in the context of a spring-dashpot model is 
essentially the sum of three separate strains: 1) The instant elastic strain 
which occurs right after loading the constant stress and fully recovers 
right after unloading. This strain is characterized by the Maxwell spring. 
2) The gradual strain response that is due to the Kelvin spring and 
dashpot. This strain increases gradually under the applied stress during 

Fig. 1. The flowchart of our Bayesian framework.  

Fig. 2. The arrangement of spring and dashpot components in Maxwell, Kelvin- 
Voigt, and Burger models. 

Fig. 3. The different stages of a typical biofilm strain response to the creep- 
recovery test. 
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the creep test and will fully recover during the recovery test. 3) The 
strain due to the Maxwell dashpot. This strain progressively increases 
during the creep test; however, it will not recover once the stress is 
unloaded. As a result, at the end of the recovery test, a permanent strain 
will remain. Our theoretical model has no viscoplastic elements, and the 
biofilm is loaded under a low constant shear stress (0.5 Pa), which is 
below the biofilm yield stress. Therefore, it is in the viscoelastic range 
and will not exhibit any instantaneous viscoplastic strain response 
related to the viscoplasticity behavior. Fig. 3 shows the different stages 
of biofilm strain response to a creep-recovery test. The elements that are 
informed by each stage of the strain response are illustrated in the figure. 

In a creep-recovery test, shear stress is constant, and thus stress de-
rivatives are zero. Therefore, equation (1) reduces to: 
(

ηmηk

Ek

)

ϵ̈ + ηmϵ̇ = σ0,  if  t < τ (2)  

(
ηmηk

Ek

)

ϵ̈ + ηmϵ̇ = 0,  if  t ≥ τ (3)  

where σ0 is the constant shear stress during creep test, and τ is the time 
that shear stress is unloaded. At t = 0, biofilm experiences an instant 
elastic strain, therefore, the initial strain can be calculated as ϵ(0) = σ0

Em
. 

The rate of change in the strain at the initial condition is represented by 
both the Maxwell and Kelvin-Voigt dashpots ϵ̇(0) = σ0

ηm
+ σ0

ηk
. Solving 

equations (2) and (3) with these initial conditions leads to: 

ϵ =
σ0

Ek
(1 − e− (Ek/ηk)t) +

σ0

ηm
t +

σ0

Em
,  if  t < τ (4)  

ϵ =
σ0

Ek
(e(Ek/ηk)τ − 1)e− (Ek/ηk)t +

σ0

ηm
τ,  if  t ≥ τ (5)  

2.3. Experimental data 

P. aeruginosa is an opportunistic pathogen associated with biofilm- 
associated chronic infections, specifically in immunocompromised 
people. P. aeruginosa is also considered a model organism for studying 
biofilms. The EPS of P. aeruginosa biofilms is complex, and consists of 
three different exopolysaccharides: alginate, Pel and Psl, and extracel-
lular DNA and proteins, including CdrA [41]. 

During chronic infections, P. aeruginosa adaptively evolves to form 
variants that have increased fitness and survival. Of particular interest 
are the mucoid variants and rugose small colony variants (RSCVs). These 
colony variants acquire mutations that lead to the overproduction of 
extracellular matrix components. Genetic mutations lead to the over-
production of alginate in mucoid, and overproduction of Psl, Pel poly-
saccharides, and the biofilm matrix protein CdrA in RSCVs [42]. Due to 
the overproduction of these EPS components, both variants have 
increased biofilm phenotypes compared to the ancestor. We were 
therefore interested in determining if the overproduction of EPS by 
mucoid and RSCVs was also associated with changes in biofilm me-
chanics, relative to the parental wild type strain [24]. 

To assess this colony-biofilms of P. aeruginosa wild type PAO1 and 
isogenic mucoid variant (PAO1 mucA22) and RSCV (PAO1 ΔwspF) were 
analyzed. Sterile nitrocellulose filter membranes (25 mm, 0.45 μm pore 
size; Milliopore) were inoculated with overnight cultures normalized to 
OD600nm 0.1. Filters were transferred to Pseudomonas isolation agar, and 
incubated at 37◦C. Colony-biofilms were transferred to a new plate 
every 24 h. Colony-biofilms were analyzed days 2, 4 and 6 [24]. 

At each time point, biofilms were analyzed by uniaxial mechanical 

indentation and shear rheology [24]. Of relevance to this study, biofilms 
were analyzed by creep-recovery, using a Discovery Hybrid-2 rheometer 
(TA instruments) fitted with a 25 mm Smart-Swap sand blasted geom-
etry. Creep-recovery measurements were performed by applying a shear 
stress of 0.5Pa for 60s, followed by a 120s recovery [24]. 4 
colony-biofilms were analyzed at each timepoint. The experimental 
conditions of these replicates were consistent, and any variability was 
intrinsic to biofilm growth and development rather than the experi-
mental design and analysis. 

2.4. Parameter estimation process 

We used the strains calculated by the Burger model (equations (4) 
and (5)) as estimates for our biofilm deformation under shear stress 
during a creep-recovery test (σ0 = 0.5 Pa). However, we know that this 
model, like any other mathematical model, can not predict real exper-
iments perfectly, as there are always errors involved in predicting real- 
world events. Let’s assume our observations are independent and 
identically distributed (i.i.d), meaning that each observation has the 
same probability distribution as others and the observations are mutu-
ally independent [43]. Note that this assumption is across different 
observations, not along the creep-recovery test time-series data. We used 
four observations for each dataset, each consisting of a time-series of 
strain. Thus, we can assume the errors were normally distributed with 
standard deviation γ, which is a common practice in many engineering 
and real-world applications [44]. Therefore, the likelihood, the proba-
bility of the observed data y (measurements of the creep-recovery test), 
given the model parameters θ (elasticities and viscosities) and the error 
variance γ2, can be written as: 

p
(
y
⃒
⃒θ, γ2) =

∏N

i=1

1
̅̅̅̅̅̅̅̅̅
(2π)

√
γ
e−

(xi − yi)
2

2γ2 (6)  

where xi, and yi are the i th of the N model-derived estimate and 
observed data points, respectively. In this work, xi are the time series of 
calculated strain ϵ from equations (4) and (5) that is a function of model 
parameters (Ek, ηk, Em, and ηm). yi are the measured values of strain over 
time from the creep-recovery experiments that were explained in the 
previous section. This likelihood is then incorporated with Bayes’ the-
orem to calculate the probability of viscoelastic model parameters given 
the experimental data [45]. 

A Markov Chain Monte Carlo (MCMC) method [45] was used to 
construct the target posterior distributions, which are our desired dis-
tributions for the viscoelastic parameters. Various MCMC sampling al-
gorithms have been developed over the past decades. 
Metropolis-Hastings (MH) is one of the classic sampling methods [46] 
for MCMC Bayesian estimation, that generates sample candidates from a 
parameter space. These sample candidates are then either rejected or 
accepted based on the posterior ratio of the new parameter candidate to 
the previous parameter. Here, we employed a modified MH algorithm 
which helped us improve the efficiency and speed of our computations 
by increasing convergence and acceptance rate [47]. The details of our 
numerical algorithm can be found in Appendix A. 

This Bayesian data assimilation framework provides us with esti-
mates and variability of our model parameters, as well as information 
about the stochastic structure of our data, and the relationship between 
model parameters. These parameter estimates are formed as distribu-
tions of samples that can be used to construct probability density func-
tions. The shape of these probability density functions represents the 
variability and uncertainty of the parameters. In the context of biofilm 
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EPS viscoelasticity, Bayesian data assimilation helps us have distribu-
tions for the viscosity and elasticity in a probabilistic form. The mean of 
these distributions represents the deterministic value of viscosity and 
elasticity, showing how viscous and deformable the biofilm is, whereas 
the variance and shape of the distribution suggest how certain we are in 
determining the mechanical properties of biofilm. For example, we 
know biofilms are very heterogeneous and dynamic substances, and a 
small change in their composition during their early stages of formation 
may lead to statistically significant (P < 0.05) changes in their me-
chanical properties. Our results, which are discussed in the next section, 
show that these changes in the mechanical properties of biofilm can be 
up to two orders of magnitudes. The quantification of this variability 
helps us understand the biofilm dynamics and develop robust bounds on 
the uncertainty of our predictions. 

3. Results 

Here, we characterize the viscoelasticity of P. aeruginosa biofilms, 
including wild type (WT) PAO1 and isogenic RSCV and mucoid variant 
biofilms grown for 2, 4, and 6 days with four viscoelastic parameters 
(Em, ηm, Ek, and ηk). These viscoelastic parameters and the uncertainty of 
these parameters were estimated and the error variance was quantified 
using the creep-recovery experimental data [24] and the Bayesian 
mathematical platform. 

For this purpose, the four viscoelastic model parameters for each 
biofilm were sampled from a uniform proposal distribution. First, the 
MCMC algorithm was run for an initial run with 10, 000, 000 iterations. 
This is referred to as the “burn-in” time. Then, these results were used for 
the main run with a second round of 10, 000, 000 iterations. We dis-
regarded the first 10, 000, 000 samples to eliminate the impact of 
random initial guess on our target proposal distribution and considered 
the second 10, 000, 000 samples to construct the Markov chains, that 
equal to the posterior distributions of the parameters (Fig. 4). We 

observe that the accepted candidates fit in a narrow bound of parame-
ters. However, as shown in the figure, the viscoelastic parameters vary 
significantly between the three biofilms, and also between different 
stages of formation (e.g. depending on the age of the biofilm). The high 
variability of WT viscoelastic parameters is related to the high vari-
ability and heterogeneous complexity in the structure of WT biofilms 
with more uncertainty at the early stages of their formation. 

Then, we employed a kernel density estimation (KDE) algorithm to 
calculate the probability densities of posterior distributions. Fig. 5 pre-
sents these densities for the three biofilms at different stages of their 
formation to better visualize how the estimated parameters form a dis-
tribution. We observe that these distributions are approximately 
Gaussian for all parameters, which presents the stochasticity in the 
physics of biofilm viscoelasticity. Biofilms undergo several chemical and 
biological processes over the course of their development, and these 
processes are highly dependent on the state of the system and physical 
conditions during experiments, which are not fully controllable. Thus, 
there is an inherent unpredictability in the physical and chemical 
properties of the biofilm components. The distributions of WT biofilm 
properties are highly skewed and have the highest relative variations 
(coefficient of variations) in parameters, especially for Kelvin parame-
ters, which attributes to the heterogeneity and unpredictability of their 
physics and structure. The WT biofilm is grown from unaltered 
P. aeruginosa and is inherently unpredictable. 

The mean values of the estimated parameters are shown in Fig. 6. 
The plots for viscosities are on a logarithmic scale as they vary signifi-
cantly between the three different biofilms and stages of formation. We 
observe that the Maxwell and Kelvin-Voigt elasticities and viscosities do 
not follow a similar trend for the three biofilms. Table 1 shows these 
mean values of the four viscoelastic parameters for each biofilm. The 
numbers in red are the estimated values of [24] which are presented 
here for the sake of comparison with our estimations. 

The coefficient of variation (CV) and skewness values for the 

Fig. 4. MCMC samples of viscoelastic properties after disregarding the first half of the Markov chains for WT (orange color), RSCV (blue color), and Mucoid (pink 
color) after 2, 4, and 6 days of formation. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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estimated distributions are listed in Tables 2 and 3, respectively, as 
measures of variability of the estimated parameters. The coefficient of 
variance is a statistical measure of the dispersion of data around the 
mean, whereas skewness is a measure of the asymmetry of posterior 
distributions about their mean values. The values of the coefficient of 
variation were calculated by dividing the standard deviations by the 

mean values, then multiplying by 100. We observe a higher variability 
and skewness for WT biofilms both after 2 days and 6 days of formation, 
which are related to the high intrinsic variability of WT biofilm struc-
ture. This variability is based on the different observations that we used 
in our calculation of likelihood. The WT biofilm experimental data vary 
significantly across observations, whereas Mucoid and RSCV experi-
mental data are relatively more comparable across observations. This 
intrinsic uncertainty (aleatoric uncertainty) is mainly due to the 
inherent randomness in WT biofilm dynamics, and it is different from 
the uncertainty (epistemic uncertainty) caused by the lack of enough 

Fig. 5. Posterior density distributions of viscoelastic properties for WT, RSCV, and Mucoid after 2, 4, and 6 days of formation. WT 2-day and WT 6-day are highly 
skewed and have the highest variations in parameters. 

Fig. 6. Mean values of estimated viscoelastic properties for WT, RSCV, and Mucoid after 2, 4, and 6 days of formation.  

Table 1 
Means of estimated values for viscoelastic parameters of Burger model. Table 2 

Coefficients of variation (CV) of estimated values for viscoelastic parameters of 
Burger model.  

biofilm elastic characteristics viscosity characteristics 

Em(%) Ek(%) ηm(%) ηk(%) 

WT-2d 6.50 17.57 1.13 28.82 
WT-4d 2.79 2.63 0.33 3.09 
WT-6d 12.28 10.17 1.18 33.18 
RSCV-2d 5.60 3.88 0.86 9.85 
RSCV-4d 6.61 3.75 0.39 11.60 
RSCV-6d 3.76 2.54 0.72 7.87 
Mucoid-2d 8.83 2.51 0.41 6.30 
Mucoid-4d 3.77 1.65 0.15 4.64 
Mucoid-6d 2.87 3.73 0.76 3.65  

M. Nooranidoost et al.                                                                                                                                                                                                                         



Biofilm 5 (2023) 100133

7

experimental data. 
Our Bayesian framework also provides us with the relationship be-

tween the parameters. Fig. 7 shows the correlation between parameters 
of WT biofilm after 4 days of formation as a triangle pair-wise plot. From 
this figure, we can conclude there is no direct relationship between Ek, 
ηk, Em, and ηm. However, the relationship between ηk and Em suggests 
that by increasing one parameter the other one decreases. The same 
correlation happens for Ek and ηm. 

Then, we estimated the error variance in the prediction of the biofilm 
strain response by integrating the error variance as one of the parame-
ters of interest in our Bayesian framework. Fig. 8 presents the proba-
bility density distributions for the square root of the error of variances γ. 
These results show that predicting the strain response for 2-day Mucoid 
is more difficult than other biofilm variants, mainly due to the missing 
data for the strain right before unloading the stress. 

After estimating the viscoelastic parameters as probability density 
functions, we used this information to predict the strain response. 
Assuming the mean behavior is representative, it can be used for a 

deterministic estimate of the viscoelastic parameters. The mean values 
of the posterior distributions were used to evaluate the model perfor-
mance. The model prediction is compared with the experiments in 
Fig. 9. We observe that the Burger model is able to effectively quantify 
the strain response to the creep-recovery test for all the biofilms. As 
shown in Fig. 9, the strains due to the creep and recovery tests fit very 
well on the experimental data. However, at the end of the recovery part, 
there is a discrepancy between the model and data, which might be due 
to the complications with experiments. The propagation of uncertainties 
in the strain calculation is presented by displaying the 99% credible 
interval and 99% prediction intervals in the figure. These intervals are 
constructed based on the chains in Fig. 4. The 99% credible interval 
shows that after seeing the observed data with probability 99%, the 
strain is in the interval. However, in the calculation of the 99% pre-
diction interval, error variance plays an important role and can predict 
future observations. The 99% prediction interval shows that after seeing 
the observed data with probability 99%, the strain of the future obser-
vation will be inside the plotted interval. 

4. Discussion 

Biofilms are subject to a wide range of shear forces over many 
magnitudes of time scales, many too short or too long for lab experi-
mental test methods. Examples of these are high-speed interactions with 
water jets, such as interdental cleaning jets or pulse lavage in the wound 
and surgical site debridement as well as pressure washing of industrial 
surfaces such as ship hulls [48,49]. On the other hand, biofilms in the 
natural environment or on industrial surfaces are exposed to fluid forces 
over days to weeks to decades, impacting industrial performance. Pre-
dicting how biofilms may respond to these forces at time scales outside 
of normal testing methods will have application with respect to 
designing shear-based cleaning strategies and predicting long-term sta-
bility in systems such as uplift fermenters in wastewater and bioreme-
diation systems. 

Moreover, biofilms have repeatedly been shown to be highly variable 
making robust control methods very difficult [50]. One main outcome of 
this study is to demonstrate that, much of the variability in the me-
chanical properties of biofilms can be ascribed to variations in the 
microstructure that forms the EPS matrix. This understanding points to 
control strategies that target more specific components. This detailed 
information about the chemical structure of EPS components and an 
understanding of the impact of variations in the microstructure on the 
macroscopic behavior can lead to novel antibiofilm strategies. 

The Burger viscoelastic model used in our study helped us obtain 
significantly better estimates for the viscosities and elasticities of our 
biofilm variants in comparison to the other well-known linear visco-
elastic models, such as the Maxwell and Kelvin-Voigt, that are described 
in previous sections. This is mainly because the Burger model has the 
capability to describe instant elastic strain response, as well as time- 
dependent viscoelastic response and irrecoverable strain during a 
creep-recovery test. Fig. 10 shows the comparison of our predicted strain 
response using the Burger model for WT-4d biofilm, against the Maxwell 
and Kelvin-Voigt for the same biofilm variant. These strains were 
calculated based on the mean values of the viscoelastic parameters es-
timates using our Bayesian framework. The 99% credible and 99% 

Table 3 
Skewness of estimated values for viscoelastic parameters of Burger model.  

biofilm elastic characteristics viscosity characteristics 

Em Ek ηm ηk 

WT-2 1.89 − 0.32 1.93 0.01 
WT-4d 0.21 − 0.11 0.21 0.01 
WT-6d 1.10 0.29 0.50 1.02 
RSCV-2d 0.49 0.16 0.31 0.20 
RSCV-4d 0.54 0.12 0.13 0.34 
RSCV-6d 0.33 0.11 0.13 0.19 
Mucoid-2d 0.66 0.12 0.17 0.14 
Mucoid-4d 0.28 0.08 0.05 0.12 
Mucoid-6d 0.23 − 0.16 0.33 − 0.01  

Fig. 7. Correlation between all four viscoelastic parameters of WT after 4 days 
of formation. 

Fig. 8. Posterior distribution of square root of error variance for WT, RSCV, and Mucoid after 2 days, 4 days, and 6 days of formation.  
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prediction intervals are displayed in the figure to address the uncer-
tainty in estimating the strain based on the given data as well as the 
uncertainty in the prediction of future observations based on the esti-
mated parameters. The stochastic characteristics of our Bayesian 
framework helped us estimate the biofilm viscoelastic parameters with 
higher accuracy compared to existing models that used deterministic 
estimation techniques such as least-square fitting [40]. 

WT biofilms are very sensitive, and their mechanical properties vary 
significantly over time. First, the Maxwell and Kelvin-Voigt elasticities 
and viscosities decrease from day 2 to day 4, and then they increase. 
Biofilm elasticities and viscosities change over time and are less on day 4 
than 2 before increasing by day 6. This is due to the higher affinity in-
teractions between EPS components in 2-day and 6-day biofilms, 
compared to 4-day biofilms. Psl is known to be the dominant poly-
saccharide at the early stages of biofilm formation and makes the EPS 
matrix stiffer, whereas Pel is produced at later stages when the biofilm 
matures and makes the EPS matrix more viscous and malleable. These 
behaviors suggest the occurrence of different waves of EPS remodeling 
which results in elasticities and viscosities changes over time [24]. WT 

biofilms have very diverse components that lead to a large variation in 
mechanical properties. Presumably, this is because there are many ways 
that each biofilm can diversify the constituent production with rela-
tively distinct properties. However, this allows for a larger 
signal-to-noise ratio than variants that overproduce one or more con-
stituents. We observe RSCV biofilm elasticity to be almost constant over 
time. However, it is more viscous after 2 days and 6 days of formation. 
Mucoid biofilms, on the other hand, show a very low elasticity and 
viscosity at the first stages of formation, while as time goes by, they 
become more stiff and viscous. The biofilm mechanical properties are 
not subject to change after 4 days of formation, which shows their 
structural stability over time. 

One interesting aspect of data assimilation techniques is their 
robustness with regard to cases where data is missing. In the context of 
creep-recovery experiments, extracting the biofilm strain response in the 
transition from stress loading (creep) and unloading (recovery) is chal-
lenging due to the rapid change in strain, experimental error, and the 
intrinsic nature of experiments that do not allow the operator to 
impulsively unload stress. This may result in low accuracy in quantifying 

Fig. 9. Prediction of strain vs the experimental data during the creep-recovery test for WT, RSCV, and Mucoid after 2 days, 4 days, and 6 days of formation.  

Fig. 10. Comparison of Burger model against Maxwell and Kelvin-Voigt models, in strain prediction for WT after 4 days for formation.  
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the parameters of interest. Hence, the strain response experimental data 
for our 2-day WT biofilm was incomplete right before unloading, as it 
was difficult to capture the rapid drop in the strain. However, our data 
assimilation technique helped predict the unmeasured data and the 
strain for this time period of incomplete missing data. 

5. Conclusion 

In this paper, we have employed a mathematical framework to 
characterize the viscoelastic properties of P. aeruginosa biofilms during a 
creep-recovery test. We have described the strain response of WT 
P. aeruginosa, and isogenic RSCV and mucoid variant biofilms using a 
Burger viscoelastic model. 

We have implemented an adaptive MCMC algorithm, that is based on 
a Bayesian estimation framework to estimate the model parameters 
based on the prior knowledge we have from the parameters and the 
experimental data. We have estimated the four model parameters 
involved in the viscoelastic constitutive equations for each biofilm after 
2, 4, and 6 days of formation. The viscoelastic properties of these 
different biofilms are subject to a significant change over time, which 
shows the dynamic composition of the biofilm EPS structure. This type 
of study was pioneered in the early 2000s [40]. However, using a 
Bayesian framework and considering different strains have allowed us to 
incorporate recent advances in our understanding of biofilm mechanics. 
This analysis can help future research works elucidate the physics of the 
polymer network that forms the backbone of the biofilm [1]. This un-
derstanding is fundamental to the development of targeted therapies. 

Additionally, addressing the fundamental variability of biofilm dy-
namics indicates weaknesses in the deterministic treatment of biofilm 
mechanics. Therefore, estimates of rheological properties using this 
method are more robust and descriptive than estimates using the ge-
ometry of relaxation curves. Our study also indicates that, since the 
properties of the constituents vary in time and density, methods to es-
timate the distribution between polymer types are needed. 

This study contributes to our understanding of the connections be-
tween microscale structure and macroscale behavior. Additionally, we 
have demonstrated robust comparisons between our predictive model 
and experimental observations even in data sets with partial data. 

Modernizing our methodology and conceptualization of the impact of 
variable EPS microstructure encourages the development of highly tar-
geted antibiofilm strategies. Understanding the underlying structure of 
biofilm and its impact on rheological properties provides novel di-
rections to explore biofilm removal. For example, many biofilm removal 
techniques rely on applying forces to the biofilm to force sloughing [49]. 
By applying specific treatments that target different constituents, we can 
enhance this removal by manipulating the rheological properties. This 
requires a detailed understanding of the underlying distribution to 
optimize the targets. 

The broad methodology investigated in this manuscript is directly 
applicable in many other settings. Developing tools to address the multi- 
component nature also plays a role when biofilms grow in soft matter 
such as within the mucus lining of the lungs in people with cystic 
fibrosis. 
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Appendix A. Numerical Algorithm for Parameter Estimation 

In this Appendix, we provide the details of our Bayesian framework and the parameter estimation method. First, we explain Bayes’ theorem and the 
assumptions we considered to calculate the posterior distributions for a given set of model parameters. Then, we describe the Markov Chain Monte 
Carlo method and how to compute the target posterior distribution by evaluating the candidates that are sampled from a proposal distribution. 

Bayes’ theorem is fundamental in the calculation of posterior distributions. In the case that the error variance γ2 is fixed and known, we can 
calculate the posterior of our physical model parameters θ based on the likelihood and prior of θ. Therefore, Bayes’s theorem can be written as: 

p(θ|y) =
p(y|θ)p(θ)

p(y)
(A.1)  

where p(θ|y) is our posterior distribution, the probability of model parameters given the observed data; p(y|θ) is the likelihood, the probability of 
observed data given the model parameters; and p(θ) is the prior distribution. The denominator p(y) is integral of the numerator over the parameter 
space, which is a normalization factor and is fixed. Note that, we do not need to compute the denominator as it cancels out in our calculations when we 
compare the sample candidates to decide whether reject or accept them. 

In many scenarios, there is uncertainty in our data, and the error variance of parameters γ2 is unknown. This uncertainty can be quantified by 
integrating the error variance into our Bayesian framework [45]. In this case, the Bayes’s theorem can be written as: 

p(θ, γ2|y) =
p(y|θ, γ2)p(θ, γ2)

p(y)
(A.2) 

M. Nooranidoost et al.                                                                                                                                                                                                                         



Biofilm 5 (2023) 100133

10

where p(θ, γ2|y) is our posterior distribution, the probability of model parameters and error variance given the observed data; p(y|θ, γ2) is the like-
lihood, the probability of observed data given the model parameters and error variance; and p(θ, γ2) is the joint prior distribution of θ and γ2. The i.i. 
d condition suggests that p(θ, γ2) = p(θ)p(γ2) because model parameters and error variance are independent parameters. 

We sampled the model parameters θ from a uniform distribution with only positive numbers, as the physics of viscoelastic parameters do not allow 
them to take negative values. The error variance γ2 was sampled from an inverse χ2-squared distribution that is an uninformative conjugate prior to the 
normally distributed likelihood [45]. A Gaussian likelihood was employed to calculate the probability of the observed data given the model pa-
rameters. The Gaussian likelihood was chosen because we assumed our observations are mutually independent and identically distributed (i.i.d.), 
meaning that each observation has the same probability distribution as others, and the observations are mutually independent [43]. Thus, we assumed 
the errors are normally distributed with standard deviation γ, which is a common practice in many engineering and real-world applications [44]. 
Therefore, the likelihood, the probability of the observed data y, given the model parameters θ and the error variance γ2, can be written as: 

p
(
y
⃒
⃒θ, γ2) =

∏N

i=1

1
̅̅̅̅̅̅̅̅̅
(2π)

√
γ
e−

(xi − yi)
2

2γ2 (A.3)  

where xi, and yi are the i th of the N model-derived estimates and observed data points, respectively. 
Markov Chain Monte Carlo (MCMC) method generates sample candidates from a parameter space, that are either rejected or accepted based on the 

acceptance probability. Metropolis-Hastings (MH) is a classic sampling algorithm [46] (Algorithm 1) for Bayesian estimation. MH iteratively gen-
erates a sequence of sample candidates from a proposal distribution, in such a way that each sample is only dependent on the immediately preceding 
sample. Hence, it follows Markov Chain rules. Then, the sample candidates are either accepted or rejected based on how good the acceptance 
probability is compared to a uniform random number. 

Algorithm 1. Metropolis-Hastings   

In this paper, we employ the Delayed Rejection Adaptive Metropolis (DRAM) algorithm developed by Ref. [47] (Algorithm 2). This algorithm is a 
modified standard Metropolis-Hastings algorithm that helps improve the efficiency and speed of our computations by increasing convergence and 
acceptance rate. The idea behind Delayed Rejection (DR) is that, upon rejection in MH, instead of advancing time and retaining the same position, a 
second stage move is proposed, that can be extended to further proposal candidate sampling. Higher staged proposals are allowed to depend on the 
candidates already accepted or rejected, and their acceptance probabilities are dependent on the previous delayed rejection candidates [47]. Adaptive 
Metropolis (AM), unlike a regular MH algorithm, allows us to sample the posterior distribution based on the past samples’ path of the chain, which 
accelerates the convergence rate while keeping the ergodicity of the algorithm [47]. 

Algorithm 2. Adaptive Metropolis-Hastings (DRAM) 
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