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Abstract
Response functions of resonant circuits create ringing artefacts if their input changes rapidly. When 
physical limits of electromagnetic spectroscopies are explored, this creates two types of problems. 
Firstly, simulation: the system must be propagated accurately through every response transient, this 
may be computationally expensive. Secondly, optimal control: circuit response must be taken into 
account; it may be advantageous to design pulses that are resilient to such distortions. At the root of 
both problems is the popular piecewise-constant approximation for control sequences in the rotating 
frame; in magnetic resonance it has persisted since the earliest days and has become entrenched in 
the commercially available hardware. In this paper, we report an implementation and benchmarks of 
recent Lie-group methods that can efficiently simulate and optimise smooth control sequences.
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1. Introduction
The original formulation [1] and many subsequent refinements [2-4] of the gradient ascent pulse 
engineering (GRAPE) method for quantum optimal control use the piecewise-constant approximation 
for the control Hamiltonian in the interaction representation. GRAPE also makes an unstated 
assumption that hardware response functions (of amplifiers, lasers, cavities, etc.) create negligible 
distortions in the control sequence [1]. When this approximation holds, for example in liquid state 
nuclear magnetic resonance (NMR) [5,6] and atom interferometry [7,8], optimal control theory yields 
impressive results. Some instrumental effects, such as radiofrequency coil wire distance modulation 
in magic angle spinning NMR [9,10], can be accounted for within the piecewise-constant 
approximation. However, there are cases where – in our hands, and in the unpublished experience of 
other groups – theoretically optimal piecewise-constant GRAPE control sequences inexplicably fail to 
generate the intended dynamics in experimental systems.

One likely reason is illustrated in Figure 1 for a typical composite radiofrequency pulse used in 14N 
NMR spectroscopy. The significant distortion introduced by the probe circuit [10] prevents the control 
sequence from taking the ensemble of 14N spins to the intended destination state. It also makes the 
simulation harder because the spin system sees the distorted waveform: time discretisation 
requirements are more stringent for the circuit output in Figure 1 compared to the input.

Figure 1. Distortions created in a composite pulse by a nuclear magnetic resonance probe tuned to the 14N spin precession 
frequency in a 14.09 Tesla magnet. The probe is modelled, using Spinach 2.8 [11], as a lumped RLC circuit with a quality factor 
Q = 80. Top Left: input voltage as a function of time; oscillations at 43.37 MHz appear as solid blocks. Top Right: rotating 
frame representation of the same pulse, indicating the in-phase (blue line) and out-of-phase (red line) components relative 
to the 0/2π = 43.37 MHz reference frequency. Bottom Row: same quantities plotted after the application of the response 
function of the probe RLC circuit.

Such distortions can sometimes be ignored: they diminish for higher frequencies and smaller quality 
factors, they may also be tolerated because the definition of a GRAPE optimum is zero derivative 
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(meaning first-order resilience) of the fidelity with respect to small variations in the control sequence 
[1]. Still, there are cases – notably, quadrupolar NMR and time-domain EPR spectroscopy [12] – where 
anecdotal evidence indicates that instrument response functions destroy the fidelity advantages 
predicted by idealised GRAPE optimisations. Figure 1 suggests that the reason is the presence of circuit 
response transients at the edges of the pulse sequence. An obvious solution would be to create a 
sequence without such edges: to move from a piecewise-constant to at least piecewise-linear 
sequence in the rotating frame, with appropriate upgrades to the hardware.

2. Two- and three-point product integrators
Upgrading the shaped pulse model from piecewise-constant to piecewise-linear in the interaction 
representation strikes down the first approximation made in foundational texts on numerical 
magnetic resonance simulation [13,14] and optimal control [1,15] – time slicing followed by the 
assumption that the Hamiltonian does not change within a sufficiently thin slice. 

Mathematically speaking, we would be moving away from the picture where the time-ordered 
exponential [16] expression for the adjoint representation (aka “Liouville space”) propagator : tP
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is approximated by a product integral – as the zero slice width limit of a time-ordered product:
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where  is the density matrix,  is the evolution generator (commonly called the Liouvillian),  tρ  tL
 is the Hamiltonian commutation superoperator,  is the relaxation superoperator (not usually  tH R

time-dependent), arrow over the exponential indicates Dyson time order [16], slices of duration  kt
are centred around , and the product is ordered from right to left in time.kt

2.1 Lie group methods
Computationally efficient extensions of this scheme to higher accuracy orders with respect to  are kt
recent [17-19]. They go under the general name of Lie group methods [18]; their key feature is that 
the approximation is made at the level of the generator of the exponential map. Consider the general 
algebraic form of the Lie equation in the magnetic resonance notation:

(3)     ,d t i t t
dt

 ρ ρ ρL

where  is the state vector evolving under the (possibly dissipative, as well as time- and state-ρ
dependent) generator . Popular numerical methods for solving this equation (for example, Runge-L
Kutta [20,21]) do not observe essential conservation laws; they also fail on critical accuracy 
requirements (for example, trajectory endpoint phase) of quantum dynamics simulations.
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It has been recognised for some time [17-19] that one class of numerical methods that does deliver 
on those requirements is based on the following reformulation of the time evolution problem:

(4)
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where  are Bernoulli numbers [22]. The series in the differential equation for  may be kB  tΩ
truncated and the equation then solved using standard numerical ODE methods [17-19]. The 
exponential action ensures that group-theoretical invariants (and therefore conservation laws) are 
observed. 

Using Magnus expansions [19,23] yields the following one-point, two-point, and three-point 
propagation rules when the evolution generator  is not state-dependent:L
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where L, R, and M subscripts indicate the left edge, the right edge, and the midpoint of the  interval; t
the one-point rule is identical to the established practice in Eqs (1) and (2). These rules are different 
from those recently explored in the optimal control context by Dalgaard and Motzoi [24]: 
discretisation point locations (interval edges and midpoint instead of Gauss-Legendre quadrature 
points) are here dictated by the logistics of magnetic resonance hardware. Logistically, the left point 
of each interval is the right point of the preceding one: generators may be re-used.

The same propagation rules are also applicable to isospectral flow problems (colloquially called 
“Hilbert space evolution” in magnetic resonance [25]) where the propagation step involves two-sided 
multiplication of the density matrix [19] by the propagator and its Hermitian conjugate. 

When the evolution generator does depend on the state (radiation damping [26], relaxation theories 
at low temperature [27], non-linear chemical kinetics [28], etc.), the simplest (of many possibilities 
[17-19]) second order Lie group method estimates the generator at the midpoint, and uses the 
estimate to propagate:

(6)
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The simplest fourth order method proceeds to estimate the generator at the right edge and adds the 
following stages to Eq (6):
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(7)
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Other methods in this class differ in the details of the approximations used to solve Eq (4) for ;  tΩ
a comprehensive review was published by Iserles, Munthe-Kaas, Nørsett, and Zanna [18].

2.2 Numerically efficient implementations
When the propagator is computed explicitly, the additional cost of using two-and three-point rules in 
Eq (5) – two sparse matrix-matrix multiplications – is negligible relative to the cost of the subsequent 
calculation of the matrix exponential. However, computing the exponential explicitly (cubic 
complexity with matrix dimension and much increased memory utilisation relative to storing only the 
generator) is rarely efficient, particularly in situations when the generator is defined implicitly, for 
example as a polyadic object with un-opened Kronecker products [29] or a DMRG-type tensor 
structure [30]. In those cases, only the product of  with a user-specified vector is available, and L
Krylov type propagation algorithms [31] must be used – those are free of matrix-matrix 
multiplications. A simple illustration is the Taylor expansion of the action by the exponential of a 
matrix  on a vector :A v
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where the right hand side is reordered to have only matrix-vector products. Those are cheaper 
(quadratic complexity with dimension) than matrix-matrix products involved in the Taylor series for 
the exponential of . This simple trick is in practice equivalent to Krylov methods, where the problem A
is projected into the Krylov subspace of  and  spanned by the set of products , A v  2, , ,...v Av A v
the product  is computed inside the Krylov subspace, and then projected back [31]. Eq (8)  exp A v
is a shortcut because the expansion coefficients of  in  are already known.  exp A v  2, , ,...v Av A v

Technical details are given in Chapter 4 of IK’s book on the subject [32]. The simplicity of adapting this 
process for the two- and three-point rules in Eq (5) is illustrated by Matlab code of the inner loop in 
the summation of Eq (8). The midpoint code, where k is the summation variable, t/nsteps is the 
subdivided time step, L is the Liouvillian, and next_term refers to the terms of the summation, is:

            
    % Centre point propagator
    next_term=-(1i/k)*(t/nsteps)*(L*next_term);

The two-point propagator adaptation of this code pre-computes  and , and re-uses them LρL RρL
within the commutator; the overall complexity ends up being four matrix-vector multiplications per 
term of the Taylor series for the middle row of Eq (5):

    % Re-usable intermediates
    rho_a=L{1}*next_term; rho_b=L{2}*next_term;
                        
    % Left edge + right edge two-point propagator
    next_term=-(1i/2)*(1/k)*(t/nsteps)*(rho_a+rho_b)+...
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               (1/6)*(1/k)*(t^2/nsteps)*(L{1}*rho_b-L{2}*rho_a);

The three-point propagator in the bottom row of Eq (5), when similarly implemented, requires five 
matrix-vector multiplications per summation term. When the time step is appropriately scaled [32], 
the series converges quickly and monotonically in the norm. The implementation for the state-
dependent generator case in Eqs (6) and (7) is similar, open-source code is available in Spinach [11].

2.3 Practical accuracy benchmarks
Even before their benefits in the context of optimal control theory are evaluated, the improvement in 
the accuracy (relative to the currently dominant piecewise-constant implementations) is so significant 
(Figure 2) that we recommend adopting these methods in all magnetic resonance simulation 
packages. Dalgaard and Motzoi were pessimistic in their conclusions section [24] about the logistical 
overhead of high-rank Lie group integrators, but a simple three-point integrator does actually exist 
(last row of Eq (5) and yellow curve in Figure 2); further hope is offered by commutator-free methods 
that are currently being explored [33]. 

For a popular Veshtort-Griffin band-selective shaped pulse [34] in NMR spectroscopy, the accuracy of 
the three-point integrator at 50 time slices exceeds the piecewise-constant approximation at 1000 
slices. This 20-fold saving factor pertains directly to Hilbert space evolution; for Liouville space Krylov 
propagation, it is reduced to 4-fold on the wall clock when we take into account the greater numerical 
cost of the three-point propagation step, but that is still a major efficiency improvement. 

Similar accuracy scaling was obtained for propagation through a rotor period of a magic angle spinning 
NMR simulation (Figure S1 in the Supplementary Information) and for the calculation of the effective 
Hamiltonian over the period of the radiofrequency rotating frame in a quadrupolar overtone NMR 
simulation (Figure S2 in the SI). In general, this scaling behaviour is to be expected whenever the 
evolution generator is time-dependent.

Figure 2. (Left) Veshtort-Griffin E1000B band-selective radiofrequency pulse used in NMR spectroscopy to achieve selective 
magnetisation excitation [34], here in the ±500 Hz interval for a chain of 31 J-coupled 1H nuclei with Larmor frequencies 
uniformly spaced in the ±2500 Hz interval. (Right) Final state accuracy as a function of discretisation point count using: (blue 
line, marked LP) left point piecewise-constant approximation; (red line, marked MP) midpoint piecewise-constant 
approximation; (yellow line, marked LG-2) second-order Lie integrator from Eq (5); (violet line, marked LG-4) fourth-order Lie 
integrator from Eq (5). Reproduced from the example set of Spinach library [11].

The same improvement is seen in simulations involving state-dependent generators; a common 
example in magnetic resonance is radiation damping, for which the modified Bloch equations are [26]:
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where  are cartesian components of the magnetisation vector,  is the Larmor frequency,  XYZ  1,2r
are longitudinal and transverse relaxation rates, and  is the radiation damping rate constant. rdk
Rewriting this equation in pseudolinear form exposes the state-dependent generator:
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which goes into Eqs (6) and (7). The accuracy profile is shown in Figure 3 – the scaling of the residual 
error is the same as it was for the state-independent generator in the right panel of Figure 2. 

    
Figure 3. (Left) Rotating frame picture of the radiation damping during precession of an ensemble of magnetic dipoles in the 
presence of a linearly swept magnetic field (Zeeman frequency ramp from 0 to 200 Hz in 0.5 seconds), decoherence (T1 = T2 = 
0.1 seconds), and radiation damping coefficient krd = 40 Hz in Eq (9). The initial condition is off by 2 degrees from the negative 
direction of the Z axis. (Right) Relative error in the final state after propagation to t = 0.5 s: (blue line, marked LP) left point 
evolution generator followed by the piecewise-constant approximation; (red line, marked LG-2) second-order Lie-group 
integrator from Eq (6); (yellow line, marked LG-4) fourth-order Lie-group integrator from Eq (7). Reproduced from the example 
set of Spinach library [11].

3. Lie group extension of the GRAPE algorithm
Gradient ascent pulse engineering [1-3] is an open-loop quantum control framework that seeks to 
maximise measures of experiment fidelity with respect to instrumentally constrained control 
parameters. For common dissipative ensemble control problems, the equation of motion is:

(11)         ,           d t i t t t t i
dt

   ρ ρL L H R

where  is the ensemble state vector (typically a vectorised density matrix [25]),  is the unitary ρ  tH
evolution generator (typically the Hamiltonian commutation superoperator), and  is the dissipative R
dynamics generator. The Liouvillian  may be split into the uncontrollable “drift” part  and  tL  tD
a linear combination of the operators  whose coefficients  the instrument can vary:kC    kc t

(12)       k
k

k
t t c t  L D C

For an experiment of duration  with initial condition  and the desired destination state , T 0ρ δ
popular measures of fidelity are functions of the overlap between  and :δ  Tρ
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where the arrow indicates Dyson’s time-ordered exponential [16]. When this quantity and its 
variational derivatives with respect to the control sequences  are available from a simulation,    kc t
the fidelity may be optimised. GRAPE does this by discretising time and assuming both the drift and 
the control sequences to be piecewise-constant (Figure 4, left panel):
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This yields a remarkably efficient gradient evaluation algorithm reminiscent of backpropagation [35] 
in machine learning, wherein the gradient of the fidelity 
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is calculated by one forward trajectory calculation from , one backward trajectory calculation with 0ρ
Hermitian conjugate generators from , and a number of inner products with propagator derivatives δ
in the middle [5]. The efficiency extends to arbitrary waveform basis sets; this is useful when 
instrumental constraints exist on which control functions can be generated. Consider a real 
orthonormal basis set of discretised waveforms : 1, , Mw w
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such that the control sequence  at k-th channel has an expansion kc
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where m enumerates basis waveforms, n enumerates time points and k enumerates control channels. 
These are special cases of matrix calculus chain rules; these relations connect the methods that use 
waveform basis sets to GRAPE algorithms [1,2].
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Figure 4. Schematic illustrations of the control sequence parameter update stage in GRAPE [1] (variation of 
piecewise-constant control coefficients, left), TGRAPE (Section 3.2, variation of slice durations with piecewise-
constant control coefficients, middle), and of the extension of the same principle to continuous control sequences 
(Sections 2.1 and 3.1, piecewise-linear version shown, abbreviated LGRAPE, right).

Eq (15) essentially relies on the control sequence being piecewise-constant; the shortcomings of this 
approach are described in the Introduction. Lifting this constraint could alleviate the hardware 
response function problem – the control sequence would no longer be piecewise-constant – but it 
would also require the corresponding update to the mathematics and the logistics of Eq (15) because 
adjacent Hamiltonians would influence the evolution in more than one slice (Figure 4, right panel). 

3.1 Control sequence derivatives
Let us now apply the explicit assumption that the control sequence generated by the instrument is 
not piecewise-constant, but piecewise-linear. The most accurate three-point propagation rule in Eq 
(5) is simplified because now , and therefore: M L R 2 L L L

(19)
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Note the different coefficient in front of the commutator compared to the two-point rule in Eq (5): 
this is because we constrain the interval midpoint generator  to a specific value here. The ML
expression for the fidelity is modified because each propagator now depends on two adjacent points 
of the discretised control sequence, and adjacent propagators share a point:
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There are three types of derivatives in this setting – the first-point (one propagator), the last point 
(one propagator), and midpoint (two adjacent propagators):
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For the first-point and the last-point propagators, the directional derivative calculation problem is 
already solved [2,36]; the most elegant method uses auxiliary matrices:

(22)exp
e e

e
        

    
    

A A

A

A A
0 A 0

Numerical implementations are available in Spinach [11], including the cases where only the action by 
an exponential derivative on a vector is needed [3,36]. It bears notice (proof by induction for matrix 
powers, followed by Taylor series) that also:
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for any scalar function  that can be extended to a matrix function using Taylor series. Propagator  f x
product derivatives are reduced by the application of matrix product rule:
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The problem is therefore reduced to calculating the derivatives of the generator in the curly brackets 
of Eq (20) with respect to the control coefficients. Consider a particular time interval with a left (L) and 
a right (R) time point. The interval evolution generator is:

(25)
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where  are drift generators,  are control operators,  are control coefficients, and the sum L,RD kC  
L,R
kc

runs over control channels. After straightforward rearrangements and differentiation, we arrive at the 
following expressions for the derivatives of the Liouvillian with respect to the control coefficients:
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under the specific assumption that the control sequence is piecewise-linear at the hardware level.

3.2 Time slice duration derivatives
An under-appreciated optimisation strategy within the GRAPE framework is variation of time slice 
durations (Figure 4, middle panel). Its practical value comes from dismal instrumental realities: once 
a particular experiment is running, adjusting time slice durations may be the easiest thing to do.

Within the piecewise-constant original formulation of GRAPE [1], obtaining the gradient of the fidelity 
with respect to the slice duration vector  is straightforward:τ
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which is compatible with the efficient implementation logistics described above – the system is 
propagated forward from the initial condition, backward from the destination state, and the elements 
of the fidelity gradient are calculated in a parallel loop:

(28)
 

1 1 0

,           exp

,       

n n n n n n
n

n N n n n

f i i 





   



 

δ ρ

δ δ ρ ρ 

L P L

P P P P

The extension to the situation when the control sequence generated by the experimental hardware is 
not piecewise-constant, but piecewise-linear, follows from the results of the preceding section:
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The derivative of this propagator with respect to slice duration is straightforward. Consider an interval 
of duration  with a left edge Liouvillian  and a right edge Liouvillian . Eq (22) and its  LL RL
numerically efficient refinements [3,36] are directly applicable with:

(30)
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and likewise for any other generator in the Lie-group methods family. An open-source numerical 
implementation of slice-duration GRAPE is available in Spinach [11].

3.3 Practical benchmarks: broadband pulse
Consider a 90-degree universal rotation 13C pulse in a modern 28.2 Tesla (1.2 GHz proton frequency) 
NMR magnet. The pulse must accomplish the following transformation of the basis operators:

(31)Z X Y Y X Z,      ,         S S S S S S

uniformly within a bandwidth of around 200 ppm (≈ 60 kHz) and must be short enough for the worst-
case 13C-1H J-coupling (around 200 Hz) to have a negligible effect. The latter requirement caps the 
pulse duration at about 1/100J = 50 µs. Maximum instrumentally achievable nutation frequency varies 
from 50 to 70 kHz across the radiofrequency coil of the NMR probe, and it is therefore clear that a 
hard 13C pulse (i.e. the shortest pulse at the maximum available RF power, here about 4 µs) is not 
possible in a 1.2 GHz magnet due to significant phase errors across the spectral window (Figure 5, top 
panel). A key advantage of optimal control theory is the ability [5] to generate pulse waveforms that 
are: (a) free of such errors; (b) more resistant to resonance offset and power miscalibration than 
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composite pulses; (c) able to accommodate secondary considerations, such as keyhole subspaces and 
dead times [32]. Optimal control pulses are longer than hard pulses, but they still fit comfortably into 
the timing window imposed by J-couplings; an example is shown in the bottom panel of Figure 5.

Figure 5. The effect of universal rotation pulses intended to accomplish the state space 
transformation in Eq (31) for an ensemble of 100 13C nuclei (spread uniformly over a ±100 
ppm interval) in a 28.2 Tesla (1.2 GHz proton frequency) NMR magnet. Top panel: 13C NMR 
spectrum following a 4.2 µs hard pulse at 60 kHz nutation frequency, which is the limit of 
currently available hardware. Bottom panel: 13C NMR spectrum following a 40 µs 
piecewise-constant optimal control pulse with 400 time slices, designed to maintain the 
same accuracy in the nutation frequency interval between 50 and 70 kHz. See [5] for 
further information on such pulses; the code generating this figure is available as a part of 
the example set of Spinach 2.8 and later.

In this section, we demonstrate that piecewise-linear versions of such pulses are never worse (in either 
convergence or performance), and in some circumstances are better than piecewise-constant 
versions; this is illustrated in Figure 6. The two panels on the left are “spaghetti plots”, giving the 
infidelity as a function of LBFGS-10 iteration count for the pulse described in the caption of Figure 5: 
it is clear that there is no significant difference in convergence behaviour between the standard 
piecewise-constant LBFGS-GRAPE [2] and its piecewise-linear extension advocated in this paper; the 
same behaviour is observed for a few dozen other optimal control problems in the example set of 
Spinach. The panel on the right demonstrates that, for pulses with few time intervals, the piecewise-
linear version of GRAPE outperforms the piecewise-constant one. For finely discretised pulses, the 
difference disappears because highly optimal (and parameter distribution resilient) universal rotation 
pulses tend to be smooth. Thus, the piecewise-linear version of GRAPE is advantageous in tightly timed 
experiments where the instrument only permits a small number of time slices.
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Figure 6. Relative performance illustrations for piecewise-constant (parameterised by one point per time interval) and 
piecewise-linear (parameterised by two points per time interval) GRAPE algorithms for the 13C excitation pulse described in 
Section 3.3 of the main text. Left and middle panel: “spaghetti plots” illustrating LBFGS convergence behaviour of the two 
versions of GRAPE for a phase-modulated pulse with 60 time intervals, starting from a random initial guess. The convergence 
behaviour is essentially identical. Right panel: fidelity at convergence as a function of the number of intervals in the waveform 
for a phase-modulated pule with the overall duration of 51.2 µs. The more flexible piecewise-linear version of GRAPE 
advocated in this paper shows better performance with fewer time discretisation intervals.

3.4 Practical benchmarks: prephasing pulse
An important use case for optimal control theory is dead time elimination: a control sequence may be 
designed to set the dynamics up for arriving at the desired destination some time after the controls 
are switched off. In magnetic resonance, this is beneficial for NMR of low-γ nuclei (because RLC circuit 
response effects are stronger at lower frequencies) and for quadrupolar NMR of solid powders 
(because of rapid ensemble dephasing by nuclear quadrupolar interaction). In both cases, the sweep 
width of the spectrum can be in the MHz, necessitating sub-microsecond time slices. Short time slices 
then render the pulses vulnerable to the distortions introduced by the hardware.

Here we model the NMR probe as a series RLC circuit; this is a rough approximation, but it is expected 
to capture the differences between piecewise-constant and piecewise-linear (in the rotating frame) 
pulse input. The transfer function is obtained from a combination of Kirchhoff’s first law [37], Ohm’s 
law [38], inductor equation, and capacitor equation [39]:

(32)
       

           
IN R L C

R L C,      ,      

V t V t V t V t

V t RI t V t LI t I t CV t

  

   

where primes indicate time derivatives,  is input voltage,  is the resistance of the resistor,  is INV R C
the capacitance of the capacitor,  is the inductance of the inductor,  is current in the circuit, and L I

 are voltages across the resistor, inductor, and capacitor, respectively. For zero initial conditions  R,L,CV
in the Laplace domain, the corresponding equations are:

(33)
       

           
IN R L C
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V s V s V s V s

V s RI s V s sLI s I s sCV s

  

  

The quantity seen by the spin system is the magnetic field generated within the inductor, that quantity 
is proportional to the current. Thus, the transfer function of interest is:

(34)     
1 1

0
IN 2 2 1 1

0 0 1
QT s I s V s

s Q s
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where  is the resonance frequency and  is the quality factor. In practice, 0 1 LC  Q L C R
each pulse was transformed from the rotating frame into the laboratory frame by mixing it with the 
carrier frequency , then supplied to Matlab Control System Toolbox alongside the transfer function 0
in Eq (34), and the response then heterodyned numerically back into the rotating frame. Documented 
source code is available (restrans.m) as a part of Spinach library versions 2.8 and later.

The test case was a 2H excitation pulse in a 14.1 T magnet, designed to set transverse deuterium 
magnetisation in –CD3 alanine powder up for refocussing 100 µs after the end of the pulse. The 
quadrupole interaction tensor anisotropy (partially averaged by rapid methyl group rotation in the 
room temperature solid) is around 40 kHz [40]. A pulse with 24 equal time slices, overall duration of 
156 µs and the maximum nutation frequency of 35 kHz per channel was optimised with the first two 
and the last two pulse discretisation points frozen at zero to comply with the response theory 
assumptions in Eqs (32)-(34). The optimisation was carried out simultaneously for 200 uniformly 
distributed orientations obtained from the REPULSION procedure [41] using its implementation in 
Spinach [11]. RLC distortions with  and  set to deuterium Larmor frequency were then 200Q  0
applied to both waveforms.

X, user
Y, user
X, input
Y, input
X, output
Y, output

X, user
Y, user
X, input
Y, input
X, output
Y, output

 
Figure 7. An illustration of the fact that piecewise-constant composite NMR pulses suffer greater RLC circuit 
distortions and yield smaller fidelities at convergence than piecewise-linear pulses. Faint orange and blue lines 
indicate RLC circuit inputs, strong lines indicate the outputs after the RLC distortion with Q=200 is applied. Left panel: 
a conventional piecewise-constant NMR pulse, designed using GRAPE [1] to start with longitudinal magnetisation 
and produce perfect refocussing of transverse 2H magnetisation in –CD3 alanine powder 100 µs after the end of the 
pulse. Middle panel: a piecewise-linear pulse, designed using the method proposed in this paper and plotted with 
RLC time delay compensation, accomplishing the same objective. Right panel: fidelity-at-convergence histograms 
for 200 pulses optimised from random initial guesses using 1-point and 2-point versions of the GRAPE algorithm.

Several hundred piecewise-constant (Figure 7, left panel) and piecewise-linear (Figure 7, middle panel) 
pulses were obtained by starting the optimisation from different random initial guesses. It is clear 
from Figure 7 that piecewise-linear pulses suffer less from RLC circuit distortions and yield higher 
fidelities at convergence than piecewise-constant ones. In our hands (however, see also [24]), the 
difference in performance between the two types of pulses is not dramatic, and only manifests for 
tightly timed pulses accomplishing difficult objectives. 
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5. Conclusions
The historically dominant piecewise-constant approximation for shaped magnetic resonance pulses 
was in some ways the worst possible choice. From the mathematical point of view, it corresponds to 
the lowest accuracy Lie group integrator; from the engineering side, it creates the strongest RLC circuit 
response transients. What the sample actually sees is the distorted pulse. Experimentally, this means 
that each module of a magnetic resonance instrument should now ideally come with a documented 
response function. From the simulation point of view, it has been clear for some time [18,19,24,42] 
that Lie-group integrators provide dramatically greater accuracy with only a modest increase in 
logistical and computational costs; here we have added a number of practical efficiency improvements 
in the context of quantum optimal control and NMR spectroscopy, and reported an implementation 
in the open-source Spinach library [11] for spin dynamics simulations. 

This implementation has allowed us to extend the GRAPE framework [1-3] for quantum optimal 
control to situations when the control sequences generated by experimental hardware are not 
piecewise-constant, but piecewise-linear in the rotating frame, and therefore more resilient to 
distortions introduced by the response functions of experimental hardware. This extension, including 
integration with LBFGS, ensemble control, and dissipative control, is available in versions 2.8 and later 
of Spinach. 
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Lie group integrators for Liouviile - von Neumann equation are implemented in Spinach and 
benchmarked.

GRAPE framework for quantum optimal control is extended to deal with situations when the control 
sequence is not piecewise-constant.
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