
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are

retained by the author and/or other copyright owners. A copy can be downloaded for personal non-

commercial research or study, without prior permission or charge. This thesis and the accompanying

data cannot be reproduced or quoted extensively from without first obtaining permission in writing

from the copyright holder/s. The content of the thesis and accompanying research data (where appli-

cable) must not be changed in any way or sold commercially in any format or medium without the

formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Author (Year of Submission) ”Full thesis title”, University of Southampton, name of the

University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]





UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering and Physical Sciences
School of Electronics and Computer Science

Smart Electronic Materials and Systems Research Group (SEMS)

Investigating and Developing Low-Cost
Wearable Respiration Sensors

by

Mahdi Mohamed Saleh Abdulla Ahmed Shaban
BEng Electromechanical Engineering

ORCiD: 0000-0002-7219-3708

A thesis for the degree of
Doctor of Philosophy

June 2023

http://www.southampton.ac.uk
https://orcid.org/0000-0002-7219-3708




University of Southampton

Abstract

Faculty of Engineering and Physical Sciences
School of Electronics and Computer Science

Doctor of Philosophy

Investigating and Developing Low-Cost Wearable Respiration Sensors

by Mahdi Mohamed Saleh Abdulla Ahmed Shaban

Respiration is a vital parameter in healthcare monitoring, in which it can be used to
identify and help prevent illnesses such as sleep apnoea and sepsis. Small changes in
respiration can be linked to deteriorating health, where failing to detect these changes
promptly can often result in poorer outcomes for the patient, and in serious cases mor-
tality. In some cases where respiratory rate is ≥ 27 BPM, it can be a better indicator
for cardiac arrest from up to 72 hours. This brings the importance of continuous res-
piration monitoring of time greater than 1 hour. The current sensors that are available
for use can monitor respiration rate continuously, but not all of them can for long peri-
ods of time. An example on the importance of continuous monitoring is sepsis, where
continuous monitoring could be used to identify early risk warnings for the medical
professionals.

Many sensor technologies showed potential in detecting respiration, but the capaci-
flector sensor shined due to the low number of research done on it for applications in
respiration detection, and due to the ease of use. The sensor is developed into a sensor
system that is manufactured and compared to a pneumotachometer and a belt sensor
which are both gold standard sensors in respiration monitoring. The data is directly
compared using Bland Altman Statistical Analysis, with limits of agreement being ±3
BPM for the difference between the capaciflector and the gold standard sensor. This
research aims to identify and develop a low cost wearable respiration sensor that is
capable of accurately (within ± 3 BPM) measuring respiration, as well as continuously
monitoring respiration over long periods of time (≥ 1 hour).

Two short studies with 70 participants were conducted to assess the capaciflector as a
respiration sensor, where study one was done on stationary participants and the second
study on participants riding a bicycle. A new algorithm was developed to process and
analyse the data, which resulted in biases and lower limits of agreements of 0.05 ± 0.04
BPM and 0.70 ± 0.20 BPM in the stationary tests respectively. While the biases and
agreements are 0.12 ± 0.03 BPM and 3.02 ± 0.13 BPM for the bicycle tests respectively.
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A new algorithm was developed and tested in MATLAB based off a short Fourier trans-
form which analysed the signal in the spectral plane. The results from these studies
allowed a capaciflector which is PCB based to be developed. The hardware was devel-
oped to match the needed specifications and was tested with the same algorithm from
the studies. The new hardware contained better and improved methods for reading
the capacitance from the capaciflector, while also having more sensors such as a real
time clock and an accelerometer. Results from testing the hardware showed potential
in utilising the accelerometer data as part of the processing algorithm. The hardware
developed is capable of continuously monitoring respiratory rate for periods spanning
more than 48 hours on a single CR2032 coin cell battery.

Thus by running a small trial of 10 participants, the new sensor system was tested
alongside a newly developed algorithm that can segment stationary data from data
that contains movement artefacts. Three studies were conducted, the first study is a
metronome study which resulted in a bias of 0.04BPM with ±0.54 BPM for the lim-
its of agreement across all 10 participants. While the second study which is a walking
study achieved results of −0.04 BPM for the bias and ±1.48 BPM for the limits of agree-
ment. This study utilised the new algorithm which allowed the results to be within the
required accuracy even while including walking data. And when compared against the
initial results found, the algorithm developed proved to be very useful for monitoring
respiration rate. Finally the last study is a study that aimed to explore the effects of
speaking on respiratory data, in which the study showed that speaking has a unique
pattern of being similar to a saw tooth wave which is reflected in the respiratory data.

Overall the capaciflector based sensor system developed proved to be within the re-
quired aims as well as satisfying the conditions set, with being compact, comfortable
and capable of continuously monitoring respiration rate over long periods of time. And
this research demonstrates that it is viable for use towards long term home monitoring
or ambulatory care patients.



v

Contents

List of Figures ix

List of Tables xiii

Listings xv

Declaration of Authorship xvii

Acknowledgements xix

Definitions and Abbreviations xxi

1 Introduction 1
1.1 Published and Peer Reviewed Chapters . . . . . . . . . . . . . . . . . . . 4
1.2 List of Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Respiration Background and Theory 7
2.1 What is a Breath? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Fast Fourier Transform (FFT) . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Bland Altman Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Pneumotachometer and Cardiopulmonary Exercise Testing . . . . . . . 10
2.5 Doppler-Radar Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Belt Respiration Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Accelerometers as Respiration Sensors . . . . . . . . . . . . . . . . . . . . 12
2.8 Piezoelectric and Piezoresistive Sensors in Respiration Sensing . . . . . . 13
2.9 ECG Sensor in Healthcare and Respiratory Monitoring . . . . . . . . . . 14
2.10 PPG Sensors as Respiration Sensors . . . . . . . . . . . . . . . . . . . . . 15
2.11 Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.12 Flow Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.13 Capaciflector Distance Sensor as a Respiration Sensor . . . . . . . . . . . 17
2.14 Hardware: Sensor Comparison . . . . . . . . . . . . . . . . . . . . . . . . 19
2.15 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.16 Opportunity in Respiration Sensors Technology . . . . . . . . . . . . . . 20

3 Analysis of the Capaciflector in a Clinical Environment 23
3.1 Methodology and Post Processing Techniques . . . . . . . . . . . . . . . 23
3.2 Data and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Study One Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1.1 Metronome Results . . . . . . . . . . . . . . . . . . . . . 28



vi CONTENTS

3.2.1.2 Sitting Results . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1.3 Laying Results . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Study Two Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Data and Channel Usability . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Study One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 Study Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Capaciflector Sensor Configuration Analysis 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Capacitance to Digital Converter IC . . . . . . . . . . . . . . . . . 42
4.2.2 Capaciflector Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 Capacitance Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.4 Sensor Specifications and Manufacturing . . . . . . . . . . . . . . 45
4.2.5 Testing Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.6 Processing and Analysis Method . . . . . . . . . . . . . . . . . . . 49

4.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.1 Capaciflector Mode Results . . . . . . . . . . . . . . . . . . . . . . 49
4.3.2 Capacitance Mode Results . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Wearable PCB and Software Development 57
5.1 Hardware and Software Development . . . . . . . . . . . . . . . . . . . . 57

5.1.1 Hardware Development and Testing . . . . . . . . . . . . . . . . . 58
5.1.1.1 Components and Sensors . . . . . . . . . . . . . . . . . . 58
5.1.1.2 Data Integrity and Timing Testing . . . . . . . . . . . . . 59
5.1.1.3 Use-case Testing . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.1.4 Power Testing . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.2 Software Development . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.2.1 Micro Controller Firmware . . . . . . . . . . . . . . . . . 64
5.1.2.2 Processing Software . . . . . . . . . . . . . . . . . . . . . 66

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.1 Metronome Test Result . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1.1 Belt Metronome Comparison . . . . . . . . . . . . . . . . 72
5.2.2 Walking Test Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.3 Long Term Test Result . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Analysis and Verification of the capaciflector hardware data 79
6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1.1 Hardware Details and Sensor Mounting . . . . . . . . . . . . . . . 79
6.1.2 Study 1: Metronome Tests . . . . . . . . . . . . . . . . . . . . . . . 82
6.1.3 Study 2: Walking Tests . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.1.4 Study 3: Speaking Tests . . . . . . . . . . . . . . . . . . . . . . . . 83



CONTENTS vii

6.1.5 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Data and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.1 Study 1: Metronome Results . . . . . . . . . . . . . . . . . . . . . 87
6.2.2 Study 2: Walking Results . . . . . . . . . . . . . . . . . . . . . . . 87
6.2.3 Study 3: Speaking Results . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Conclusion 95
7.1 Chapter 3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2 Chapter 4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3 Chapter 5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.4 Chapter 6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.5 Overall Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Appendix A Schematics for Relaxation Oscillator 99

Appendix B Frequency and Current table for Chapter 4 101
Appendix B.1 Current Reference Table . . . . . . . . . . . . . . . . . . . . . . 101
Appendix B.2 Sensor Design and Current Drive Value . . . . . . . . . . . . . 101

Appendix C Schematics for Developed Sensor System 105

Appendix D MCU Firmware and MATLAB Processing Code 109
Appendix D.1 MATLAB Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Appendix D.2 Micro controller Firmware Code . . . . . . . . . . . . . . . . . 118

Appendix E Speaking Tests And Supplementary Materials 127
Appendix E.1 Text Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Appendix E.2 Raw Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Appendix F Gantt Chart 141

Appendix G IEEE Sensors Conference Paper 145

Appendix H Ethics Supplementary Materials and Consent Forms 151
Appendix H.1 Consent Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Appendix H.2 Participant Information Sheet . . . . . . . . . . . . . . . . . . . 154

References 157





ix

List of Figures

1.1 Pattern in unexpected deaths, where respiration can be linked to possible
early detection (Sourced and edited from (Lynn and Curry, 2011)) . . . . 2

2.1 An example respiratory signal sampled with a capaciflector, highlights
the main points that identify a breath within a respiratory signal. . . . . 8

2.2 Shows two different examples of different forms of data displayed in a
Bland Altman plot. Both cases represented use the difference as units.
Plots are from Giavarina (2015) . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Shows the capaciflector sensor layers and the circuit for the sensor model. 18

3.1 Capaciflector Placement in both Study one and Study two . . . . . . . . 24
3.2 Laying test results which highlights all usable data in Green . . . . . . . 27
3.3 Metronome test results which highlights all usable data in Green . . . . 27
3.4 Sitting test results which highlights all usable data in Green . . . . . . . 28
3.5 Shows the results from the Metronome Belt tests for all usable data . . . 29
3.6 Shows the results from the Metronome Belt tests for 3 usable channels

per participant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 Shows the results from the Metronome Belt tests for all tests which have

4 usable channels per participant . . . . . . . . . . . . . . . . . . . . . . . 31
3.8 Shows the results from the Sitting tests for all usable channels per partic-

ipant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.9 Shows the results from the Laying tests for all usable channels per par-

ticipant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.10 Shows the tests from the second study with the usable data in Green . . 34
3.11 A sample signal from one of the tests from the second study showing

failure at the end of the sampling period, where the frequency spikes to
12kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.12 Shows the results from the post processing done on the data from the
second study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.13 Results from adjusting the sample rate of the processing algorithm, from
10Hz to 10.4Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Valid and Invalid calibration voltages for the CDC. . . . . . . . . . . . . 44
4.2 Capacitor in capaciflector mode showing the field lines between all layers. 44
4.3 Capacitor in capacitance mode showing the field lines between all layers. 45
4.4 Modes used for the capacitance mode, where Mode 1 is using both the

sensor and ground layer while Mode 2 uses only the sensor layer. . . . . 46
4.5 All sensor designs used, with 3 rigid sensors and 4 flexible sensors tested

(Rigid PCB’s are 50mm in diameter while the Flexible PCB’s are 40mm). 46



x LIST OF FIGURES

4.6 Side view and top view of the flexible sensors modified to allow the sen-
sor to run in capaciflector mode. . . . . . . . . . . . . . . . . . . . . . . . 48

4.7 Compares the belt against the capaciflector and capacitance mode for
a selected design, showing the light and heavy breaths as part of the
test. The signal is inverted from the capaciflector due to the calculation
from the CDC, however the negative peaks of the capaciflector match
the positive peaks from the belt. . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8 An example comparing two signals from design 1 but with a different
frequency in capaciflector mode (100kHz and 10MHz). . . . . . . . . . . 55

5.1 Render of the 3D printed case used for the Li-Po battery system. . . . . . 59
5.2 Final sensor systems developed with sensors attached to them. On the

left is the rigid sensor design 2, and on the right is the flexible sensor
design 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 ADC test results, tested over the span of ten minutes. . . . . . . . . . . . 61
5.4 Battery Voltage test results for a duration of 20 hours with the CR2032

battery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5 RTOS task diagram during the operation of the data logging. The tasks

are repeating for the entirety of the data logging. . . . . . . . . . . . . . 66
5.6 Flow chart for the sensor system simplified with the main functions shown. 67
5.7 Three step process of cleaning the data into a spectrogram. . . . . . . . . 68
5.8 Shows the full block diagram of the full system from data acquisition to

generating the respiration rate data. . . . . . . . . . . . . . . . . . . . . . 69
5.9 Frequency tracing example before and after. . . . . . . . . . . . . . . . . . 70
5.10 Raw and processed results for the 13 BPM sitting metronome test. . . . . 71
5.11 Processed results for the 13 and 15 BPM laying down metronome tests. . 72
5.12 Processed results for the 14 BPM metronome test. . . . . . . . . . . . . . 73
5.13 Walking test results and raw data. . . . . . . . . . . . . . . . . . . . . . . 75
5.14 Raw and Processed results for long sleeping test. . . . . . . . . . . . . . . 76

6.1 Overview of the respiration sensing system alongside the setup and a
sample output of the comparative comparison of the belt and the capac-
itance based system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 The newly developed Capaciflector Hardware . . . . . . . . . . . . . . . 81
6.3 Capaciflector and Belt Data alignment . . . . . . . . . . . . . . . . . . . . 81
6.4 Figures showing the placement of the sensors on the chest . . . . . . . . 82
6.5 Example of the expected output for this part of the study. . . . . . . . . . 84
6.6 Is the overview of the signal processing steps. . . . . . . . . . . . . . . . . 86
6.7 Results from study 1 (metronome study). . . . . . . . . . . . . . . . . . . 88
6.8 Is the results from study 2 (walking study). . . . . . . . . . . . . . . . . . 89
6.9 Results from study 2 (walking study) segmented into stationary and

walking with separate Bland Atman’s. . . . . . . . . . . . . . . . . . . . . 90
6.10 Results from study 3 (speaking study) for test 8, which the raw and com-

pare figures are seen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Appendix A.1 Relaxation Oscillator schematic used for the capaciflector test-
ing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



LIST OF FIGURES xi

Appendix B.1 Current Settings for Rigid Design 1 for both the capaciflector
and capacitance mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Appendix B.2 Current Settings for Rigid Design 2 for both the capaciflector
and capacitance mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Appendix B.3 Current Settings for Rigid Design 3 for both the capaciflector
and capacitance mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Appendix C.1 Schematic for the first version of the sensor system. . . . . . . 106
Appendix C.2 Schematic for the second version of the sensor system. . . . . 107
Appendix C.3 Schematic for the final version of the sensor system, this ver-

sion was modified to accept the inputs from two different sources (CR2032
and Li-Po Battery). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Appendix E.1 Pattern in unexpected deaths, where respiration can be linked
to possible early detection (Sourced and edited from (Lynn and Curry,
2011)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Appendix E.2 Raw results for test 1 in the speaking study. . . . . . . . . . . . 130
Appendix E.3 Raw results for test 2 in the speaking study. . . . . . . . . . . . 131
Appendix E.4 Raw results for test 3 in the speaking study. . . . . . . . . . . . 132
Appendix E.5 Raw results for test 4 in the speaking study. . . . . . . . . . . . 133
Appendix E.6 Raw results for test 5 in the speaking study. . . . . . . . . . . . 134
Appendix E.7 Raw results for test 6 in the speaking study. . . . . . . . . . . . 135
Appendix E.8 Raw results for test 7 in the speaking study. . . . . . . . . . . . 136
Appendix E.9 Raw results for test 8 in the speaking study. . . . . . . . . . . . 137
Appendix E.10 Raw results for test 9 in the speaking study. . . . . . . . . . . . 138
Appendix E.11 Raw results for test 10 in the speaking study. . . . . . . . . . . 139

Appendix F.1 Original Gantt Chart laying out the most major tasks in the PhD142
Appendix F.2 Updated Gantt Chart laying out the most major tasks in the

PhD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143





xiii

List of Tables

2.1 Comparison table for different commercial and non-commercial respira-
tion sensor technologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Results from Study One Metronome Study with all usable channels com-
piled into a table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Results from Study One Metronome Study with 3 usable channels per
participant compiled into a table. . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Results from Study One Metronome Study with 4 usable channels per
participant compiled into a table. . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Results from Study One Sitting Study with all usable channels compiled
into a table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Results from Study One Laying Study with all usable channels compiled
into a table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Results from Study two compiled into a table. . . . . . . . . . . . . . . . 35

4.1 Outlines all the channels used and the appropriate calculated and mea-
sured frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Ratios and layer sizes for all the sensor designs. . . . . . . . . . . . . . . 47
4.3 A sample of one of the current settings per mode for some of the designs. 48
4.4 Results from the testing the rigid sensors Designs with the capaciflector

mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5 Results from testing the flexible sensors with the capaciflector mode. . . 50
4.6 Results for the rigid sensor designs in capacitance mode. . . . . . . . . . 51
4.7 Results from testing the flexible sensor designs in capacitance mode. . . 52

5.1 Sensor system specification, detailing the main components used in the
design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Use Case Testing Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Power testing results for both the CR2032 coin cell PCB and the Li-Po

battery PCB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1 Metronome Values Selected per test . . . . . . . . . . . . . . . . . . . . . 83

Appendix B.1 Reference table for the drive current values, sourced from the
data sheet of the FDC2214 (Texas Instruments Incorporated., 2015). . . . 101





xv

Listings

Appendix D.1 Matlab Code used to process the data in Chapter 3 . . . . . . 109
Appendix D.2 Matlab Code used to process the data in Chapter 5 . . . . . . 113
Appendix D.3 Initialisation Code for the Sensor Controller Studio Tasks . . . 118
Appendix D.4 Execution Code for the Sensor Controller Studio Tasks . . . . 119
Appendix D.5 Data Logger Main Code (Simplified View) . . . . . . . . . . . 120





xvii

Declaration of Authorship

I declare that this thesis and the work presented in it is my own and has been generated
by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree
at this University;

2. Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

3. Where I have consulted the published work of others, this is always clearly at-
tributed;

4. Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published as: Published:Nick Hayward, Mahdi Sha-
ban, James Badger, Isobel Jones, Yang Wei, Daniel Spencer, Stefania Isichei, Mar-
tin Knight, James Otto, Gurinder Rayat, Denny Levett, Michael Grocott, Harry
Akerman, and Neil White. A capaciflector provides continuous and accurate res-
piratory rate monitoring for patients at rest and during exercise. Journal of Clinical
Monitoring and Computing, January 2022. doi: 10.1007/s10877-021-00798-7. URL
https://doi.org/10.1007/s10877-021-00798-7

Unpublished conference paper (Found in Appendix G): Mahdi M S A A Sha-
ban, Daniel C Spencer, and Neil M. White. A new type of respiration sensing
system for continuous monitoring. IEEE Sensors Conference, 2022
Submitted for review: Mahdi M S A A Shaban, Daniel C Spencer, Harry Aker-
man, Isobel Jones, and Neil M. White. A new type of respiration sensing system
for continuous monitoring. IEEE Sensors Journal, 2023

https://doi.org/10.1007/s10877-021-00798-7


xviii LISTINGS

Signed:.......................................................................... Date:..................



xix

Acknowledgements

A thank you goes to both my supervisors, Prof. Neil White and Dr Daniel Spencer for
their continuous support and guidance throughout my PhD journey. I would like to
also thank Dr Harry Akerman who was a streamline of valuable input and insight
throughout my research. Special thanks to all my friends who supported me and
pushed me to the finish line.

And this work is dedicated to my family : my parents Mohamed Saleh and Amina, my
siblings Zianab, Feras, Zain, and Ali and both my grandparents. Thank you for your
endless support and encouragement every step of the way. You are all a guiding light
towards achieving my dreams.

And lastly, a thank you to all my colleagues who I met throughout this journey, whom
inspired me with interesting ideas and pushed me to complete my goals.





xxi

Definitions and Abbreviations

ADC Analog to Digital Converter
BLE Bluetooth Low Energy
BPM Breaths Per Minute
CDC Capacitance to Digital Converter
CPET Cardiopulmonary Exercise Testing
CSV Comma Separated Values
DFT Discrete Fourier Transform
ECG Electrocardiography
FFT Fast Fourier Transform
IC Integrated Circuit
IMU Inertial Measurement Unit
LI − PO Lithium Polymer
MCU Micro Controller Unit
PCB Printed Circuit Board
PPG Photoplethysmogram
RAM Random Access Memory
RTC Real Time Clock
RTOS Real Time Operating System
RR Respiratory Rate
SNR Signal to Noise Ratio
TENS Transcutaneous electrical nerve stimulation
UWB Ultra Wide-band radar





1

Chapter 1

Introduction

Breathing is a vital part of every human’s body and is a set of sophisticated processes
that help regulate and clean the incoming gases that we breathe. Breathing has many
forms and rhythmic movement that links it to other organs movement such as the heart
and lungs.

While breathing occurs on a physical level of the human body, respiration occurs at
the cellular level; due to the key functionalities of both, they become part of the full
breathing cycle in the human body (Negro et al., 2018). The speed of this cycle changes
from age to age as a healthy person normally breathes at a standard rate of 12-20 breaths
per minute while an infant can breath 25-40 breaths per minute (Yuan et al., 2013).
Having slight changes in respiration rate can also be an early indicator of deteriorating
health, where respiration rates of ≥ 27 BPM can predict cardiac arrest from up to 72
hours (Kelly, 2018).

In hospitals there are multiple methods for detecting respiration, some of the meth-
ods are in the form of machines such as a capnograph or by having a nurse manually
count the number of times the chest rises and falls over a set period of time. This is
typically done in 1 minute intervals at set intervals. This becomes a long and tedious
task for nurses that are in charge of this process (Wheatley, 2018). The capnograph
is an accurate machine which can continuously monitor the respiration of a patient,
this is considered a gold standard machine in respiration detection, due to the accu-
racy and reliability, as it measures the amount of airflow and pressure coming from the
body as well as the amount of carbon dioxide expelled (Donnelly et al., 2013). The only
downside is that this method takes time and requires a machine that is not portable
or comfortable to wear for long periods of time. This is the reason why they are more
common in the ICU in hospitals.

This shows the need for a respiration monitoring system that is able to continuously
monitor the changes in breathing over long periods of time, while also being easy
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to wear and portable. This type of system should allow the detection of many dif-
ferent types of disorders and conditions that are directly related to respiration, such
as obstructive sleep apnoea/hypopnoea (OSAHS), central sleep apnoea (CSA), and
hypoventilation syndromes which are all different forms of sleeping disorders (Riha,
2015). With conditions like sepsis, pneumonia, and cardiac arrest, they can all be iden-
tified early by looking at a continuous respiration signal (Ginsburg et al., 2018).

In an analysis done by Lynn and Curry (2011) on unexpected hospital deaths, the re-
search shows that the early detection of respiration rate changes in disease such as
sepsis, could potentially identify and help prevent early death by having proper mon-
itoring and alarm systems that are set up to identify the appropriate changes. Where
one of the main factors that change in a predictable manner is the respiratory rate. Fig-
ure 1.1 shows an example of an unexpected hospital death signals, and in that figure
respiration rate can be seen to have a steady increase over time in an event such as
sepsis.

FIGURE 1.1: Pattern in unexpected deaths, where respiration can be linked to possible
early detection (Sourced and edited from (Lynn and Curry, 2011))

This need for respiration data is reflected by the many different types of scoring systems
that are developed to prevent many of these unexpected deaths. The widely used one
in the United Kingdom National Health Service (NHS) is the National Early Warning
Score (NEWS) developed the Royal College of Physicians, which was updated recently
in 2017 to NEWS2. The main aim of this system is to create a standardised approach
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for assessing illness (RCP, 2020). The scoring system uses six physiological parameters
that produces a score representing the risk of the patient (RCP, 2020). The NEWS2
score emphasises the need of respiration rate as a primary parameter, as it is important
in determining the severity of the patient. And recently there is work done on a new
risk score for assessing corona virus patients, which adopts respiration as a primary
parameter due to the effects the virus has on the lungs (Knight et al., 2020).

Similarly, the Quick SOFA score that is used for scoring sepsis patients uses respiration
as one of the primary parameters for assessing a patients health and their appropriate
mortality risk value.

This brings the topic of building such systems that can detect many of these changes
in respiration by continuously monitoring the patient and potentially avoiding these
deaths. An example is towards Figure 1.1 where continuously monitoring the respi-
ration rate could have given an early warning, while potentially preventing the unex-
pected death. However, for the system to be effectively used in many environments
such as the home and hospital, as well as to be used in low-resource environments, the
system must have a low manufacturing cost without having an affect on the accuracy
of the sensor/system. In this paper a low-cost sensor system is attributed to be in the
range of £100 - £500, which was chosen by the exploration of the average market prices
of respiration sensors.

Currently there are sensors that exist in the market to fill the gaps of continuous res-
piration monitoring while also being relatively cheap (between £500 - £1000), however
many of these technologies are not well suited to be easily wearable and portable or
more importantly continuous in monitoring respiration rate over long periods of time.
Hence this research aims to produce a better sensor system that can fill in the gap in
which many sensor technologies could not, while also having the goal of being low
cost, continuous and accurate to be deployed in both home and hospital environments.

The sensor technology that has been decided upon to be used to fill this gap is the ca-
paciflector. The sensor is a essentially a distance sensor that measures respiration by
correlating the distance between the chest and the sensor to be attributed as breathing
data. This capaciflector is evaluated by testing it in a clinical environment with a to-
tal of 70 participants. Two studies were undertaken to assess the effectiveness under
stationary conditions, while the other study is to assess the effectiveness and accuracy
under the movement of the body by the use of a bicycle. The results from this analysis
were used to develop a different form of system that can utilise the capaciflector sensor
effectively. As well as continuously data logging the breathing data of the subjects.

The developed sensor system is explored by finding the optimal capaciflector sensor
design to be used for respiratory monitoring. Thus by testing seven different designs
through a series of controlled tests that compare against a belt sensor. Two designs
were selected and developed further alongside a new sensor system.
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The sensor system was developed aimed to be small in size, as well as having the
capability of continuously data logging raw capacitance data for long periods of time.
The sensor system is tested against a series of tests targeting power, use case and data
integrity in order to assess the new sensor system hardware. The tests resulted in a
successful system capable of monitoring respiratory rate at a fixed breathing frequency
with up to ±0.1 BPM. And for the walking tests it resulted in a average respiratory rate
difference of −0.24 ± 0.08. Thus assessing the system to be capable of continuously
monitoring respiration rate accurately.

Lastly the capaciflector based sensor system was put to the test in a larger study of 10
participants, targeting three different studies: metronome, walking, and speaking. This
helped to solidify the results gathered during the hardware development phase. The
sensor system developed resulted for the first study to be within ±0.54 BPM with a
positive bias of 0.04 BPM for the metronome data. While study two resulted in higher
limits of ±1.48 BPM with a bias of −0.04 BPM for the walking study. This chapter
demonstrated the accuracy of the capaciflector based sensor system as well as the algo-
rithm developed. Thus finalising the development of the sensor system and showing
that the capaciflector based systems show promising potential for becoming reliable
and low-cost sensing system for respiration monitoring in ambulatory or home care
patients.

1.1 Published and Peer Reviewed Chapters

1. The work done in Chapter 3 is published under the Journal of Clinical Monitor-
ing and Computing. My contribution in this paper is performing all the analysis
of the data collected from the studies by using different signal processing tech-
niques. Nick Hayward, Mahdi Shaban, James Badger, Isobel Jones, Yang Wei,
Daniel Spencer, Stefania Isichei, Martin Knight, James Otto, Gurinder Rayat,
Denny Levett, Michael Grocott, Harry Akerman, and Neil White. A capaciflec-
tor provides continuous and accurate respiratory rate monitoring for patients
at rest and during exercise. Journal of Clinical Monitoring and Computing, Jan-
uary 2022. doi: 10.1007/s10877-021-00798-7. URL https://doi.org/10.1007/

s10877-021-00798-7.

2. The work done in Chapter 5 was peer reviewed for the IEEE Sensors Conference
2022. The conference was not attended due to visa issues. The document can be
seen in Appendix G. Mahdi M S A A Shaban, Daniel C Spencer, and Neil M.
White. A new type of respiration sensing system for continuous monitoring.
IEEE Sensors Conference, 2022.

3. The work done in Chapter 6 is under review in the IEEE Sensors Journal. The
initial work submitted to the conference is expanded upon and flushed out into a

https://doi.org/10.1007/s10877-021-00798-7
https://doi.org/10.1007/s10877-021-00798-7
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full journal article. Mahdi M S A A Shaban, Daniel C Spencer, Harry Akerman,
Isobel Jones, and Neil M. White. A new type of respiration sensing system for
continuous monitoring. IEEE Sensors Journal, 2023.

1.2 List of Contribution

Chapter 3 and 4: This chapter contributed in expanding the knowledge of the capaci-
flector as sensor for respiration monitoring. This mainly applies towards assessing
the limitations and possible hybrids of the capaciflector sensor, as well as examples of
some of the methods. In Chapter 3 new processing methods were explored for respira-
tion rate monitoring, which provides a higher accuracy result that is within the error of
a commercial device.

Chapter 5: This chapter contributes toward the development and implementation of
the sensor system which is comfortable to wear and small in size. The system shows
the capability of the capaciflector in which the sensor system’s size is mainly attributed
to the minimum size of the capaciflector sensor.

Chapter 6: This chapter mainly contributes towards the development of a new and
improved technique of noise reduction in the calculation of respiration rate. The tech-
nique is improved upon Chapter 3’s processing method, which adds the capability of
reducing the noise of the captured signal by the use of the accelerometer data. This
chapter also tested the algorithm on a series of participants to assess the accuracy of
the algorithm and the sensor system as a whole.
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Chapter 2

Respiration Background and Theory

There are many different sensor technologies that are capable of measuring respira-
tion rate accurately. It is important for the sensor to be able to accurately capture the
slightest changes while breathing. With that in mind different sensor technologies are
identified with their advantages and disadvantages including cost, portability, weara-
bility and reliability when compared against each other. These methods can range from
standard manual count, to different forms of sensor technology such as: Doppler-radar,
piezo electric/resistive sensors, and flow sensors.

2.1 What is a Breath?

To understand what exactly is being measured, an exact definition of what a breath is
must be outlined. In simple medical terms a breath can be expressed as the expansion
and contraction of the lungs in the body to clean the incoming gases by the process of
inhaling and exhaling. On the other hand for sensors, the movement needed to describe
a breath is primarily the movement from the lungs which in turn exhibit movement
in the rib cage that is correlated to the breath data collected from the sensors. Some
sensors differ as they correlate the amount of air inhaled/exhaled to the equivalence
of a breath. And even though many sensors rely on different types of technologies to
correlate the breath to the signal measured, this general classification helps standardise
the types and methods of measuring respiration in this research.

As the breath is collected there are different approaches to measure breathing infor-
mation from a signal. In this classification the breath is normalised as the full cycle of
inhale and exhale, which in turn means the full positive peak and the negative peak in
the signal. And by calculating how many full cycles are in a minute, respiratory rate
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(RR) can be calculated and has a unit of breaths per minute (BPM). Figure 2.1 demon-
strates an example respiratory signal which indicates the main breathing cycle as well
as the depth, negative peaks, positive peaks, inhale, exhale and the length of the breath.
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FIGURE 2.1: An example respiratory signal sampled with a capaciflector, highlights
the main points that identify a breath within a respiratory signal.

To identify what a good breathing signal is, an adequate parameter must be built to ac-
commodate the comparison between the different sensor technologies. For an accurate
sensor the limits of agreement is ± 3 Breaths Per Minute (BPM) is selected as a standard
in accordance with the medical limits for accuracy (Kelly, 2018). This is also what the
FDA requires for a sensor to be approved (Chan et al. (2022)). This value is not with
respect to time (i.e. the change in breaths per minute over a period of time), but the
limits of agreements used for measuring short signals between 5-10 minutes, is going
to be used for the longer signals (above 1 hour) extracted from the sensors.

2.2 Fast Fourier Transform (FFT)

The Fourier Transform is a mathematical technique that is widely used in many ap-
plications such as communications, signal processing, analysing linear time invariant
signals, and spectral analysis (Brigham, 1988; Oshana, 2006; Cooley et al., 1969). The
Fourier transform is generally expressed as the integral seen in equation 2.1 .The main
problem with solving the Fourier transform mathematically is that the required pro-
cessing time is extremely long due to the large number of operations needed to finish
the computation (expressed as N2 operations for N data points) (Cooley et al., 1969).
And to process signals on a computer or a micro controller the signal must be discrete
and continuous, in which a discrete Fourier transform (DFT) is used (Oshana, 2006).
The discrete Fourier transform does not differ from the Fourier transform as it still
needs N2 operations to complete, where the DFT can be expressed to be the continuous
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Fourier transform. The DFT can be expressed mathematically as seen in equation 2.2,
where N is the number of points and yi is the actual data (Fischer-Cripps, 2002).

F(ω) =
∫ ∞

−∞
f (t)e−jωtdt (2.1)

F(ω) =
N−1

∑
i=0

yi(i∆t)e−jω(i∆t)∆t (2.2)

This brings up the fast Fourier transform (FFT) which is the faster form of the discrete
Fourier transform. The way the FFT works is by separating the problem from a big
problem into multiple small problems, this allows for a much faster processing of the
data, which makes it more practical to use (Cooley et al., 1969). The FFT reduces the
operations from being N2 operations to being Nlog2N, which is significantly faster.

The use cases in detecting respiration rate using FFT is important as it allows the signal
to be analysed in the frequency domain. This allows the respiration data to be anal-
ysed, and to identify the strongest frequency throughout the sample. This technique is
used throughout many research done for detecting respiration due to the simplicity of
the method and the accuracy in identifying the frequency present in the signal. This
technique however is very basic and can only provide information over a portion of
the respiration signal, which is not useful in identifying changes in the frequency. The
signal can further be segmented into equally spaced segments where the FFT can then
be run on each segment to identify the dominant frequencies over time. Thus creating
a spectorgram image which provides information that is much more valuable than a
simple FFT.

2.3 Bland Altman Statistical Analysis

The Bland Altman analysis method is a simple method that is widely used in the medi-
cal field to compare two different methods of measurement. The method uses a graphi-
cal analysis approach to quickly convey the information to the reader (Giavarina, 2015).
The way the analysis is done, is by first calculating the difference between the two data
sets, this difference is then processed to get the mean difference (Bias), and the stan-
dard deviation. Where the bias is the average value above or below the zero line that
shifts the limits of agreement accordingly; while the limits of agreement are the 95%
confidence interval values of the two data sets. To calculate both the upper and lower
limits of agreement equation (2.3) and equation (2.4) are used.

Upper Limit Of Agreement = Bias + 1.96 × (Standard Deviation) (2.3)
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Lower Limit Of Agreement = Bias − 1.96 × (Standard Deviation) (2.4)

An example figure can be seen in Figure 2.2 which shows 2 different example plots
that compare between two data sets that are varied in each case. The plot clearly con-
veys the difference between the two signals, as well as quickly identifying the limits
of agreement which are represented by the dotted lines. The main advantage to using
this method is that patterns can be easily identified in large data sets, where Figure 2.2a
would be considered a normal data set with a slight regression while the other case rep-
resents a scenario with a constant difference between all point while slowly increasing,
which is seen with the increasing mean (Figure 2.2b). And in the case of respiration
data that is over 10 minutes long, this makes it easier to understand and compare be-
tween the data sets. Different Bland Altman Patterns can be observed however, in the
context of this research these two examples are sufficient in understanding the plots.

(A) Case A: Random Variability between
Method A and B

(B) Case B: Constant Variability between
Method A and B (Constant Difference

across all points)

FIGURE 2.2: Shows two different examples of different forms of data displayed in a
Bland Altman plot. Both cases represented use the difference as units. Plots are from

Giavarina (2015)

2.4 Pneumotachometer and Cardiopulmonary Exercise Testing

Cardiopulmonary Exercise Testing (CPET) is a test that is used to assess the heart and
lungs conditions during exercise, this test is generally done before a major surgery.
The test uses full body sensors including electrocardiogram (ECG) for the heart and a
pneumotachometer for the lung air and respiration measurements. The way the pneu-
motachometer works is by applying the main airflow with pressurised air of known
pressure, and as the patient breathes, there is a slight drop in pressure which is then
correlated to the volume of air inhaled/exhaled (Engineering, 2018). This method al-
lows for measurements such as oxygen uptake and carbon dioxide production, both
which are useful for medical professionals (Albouaini et al., 2007).
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The pneumotachometer can be attributed to be one of the gold standards of respiration
measurement. Where gold standard is identified as one of the best in the field. This is
due to the data retrieved from the tests to be highly accurate within ±1 BPM. Hence
the use and comparison of pneumotachometer data to any of the used sensors, is highly
valuable as data retrieved from the test can validate or exclude certain sensor outputs.

2.5 Doppler-Radar Sensors

Ultra Wide-band radar (UWB) or known as Doppler-Radar is a highly researched type
of sensor technology that aims to eliminate the main disadvantage of existing sensors
in the market; which is the method of testing (currently direct connections/interfacing
with the body) (Chung et al., 2016). This type of sensor technology aims to remove the
interface between the sensor and the human by using radar waves that are directed
at the patients chest to measure the changes in the chest deflection. Currently only a
few commercial companies which manufactures this type of sensor provide them in the
form of development boards, one of them is XeThru by Novelda, which had previous
runs with this technology.

More studies are being published using this technology in the past few years, and one
of the most notable one’s, is the study done by Yang et al. (2020) where a hybrid be-
tween a camera and an ultra wide band radar are used together to properly assess
distance and changes in respiration. A test on a stationary person was conducted with
three different distances, where the algorithm and system developed achieved a max
error of 0.79 BPM and a standard deviation of 0.71 BPM. This is one of the better results,
where movement causes the largest amount of error. Hence the need of classification
of movement error is crucial in any ultra Wide-Band radar system.

This is important, as in a study by Kim et al. (2019), which used the same sensor to build
a respiration monitor for newborn babies. The study used a pneumography mask to
acquire the reference respiration rate. A good movement detection algorithm was put
in place, where movement was classified into three levels (low, intermediate and high).
The results however were not as good, where the results are analysed using the Bland
Altman analysis. The results are split into three sets of results based on the movement
classification. The low movement level resulted in a Bland Altman plot with a bias of
−0.17 BPM and large limit of agreement (LOA) of -9.6 to 10.0. As for the intermediate
and high movement classification, the accuracy is much lower than the low level move-
ment making it unusable. Nonetheless, this method if applied successfully in software
can be a more viable solution for newborns and infants which are more sensitive to
patch based respiration sensors.
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Even though this type of sensor technology is still under research, the applications for
this sensor in real world scenarios is yet to be practical. This is mainly due to the ex-
treme amount of precision the radar wave must achieve to measure the deflection with
minimal amount of noise, hence adding the need for the sensor to be targeted accu-
rately at the patients chest. This was demonstrated by XeThru in their initial product
which was discontinued due to the impracticality of it. Its successor is now a patch
based antenna using the same Ultra Wide-band Radar however with a different ap-
proach of using the device as close as possible to the chest of the person using it (Nov-
elda, 2021).

2.6 Belt Respiration Sensor

Belt sensors are commonly seen as one of the easiest types of sensor technology to be
used, as they mainly utilise force sensors to measure the expansion of the chest which
is correlated as respiration. This sensor technology already excels and is well used in
the medical field and in research due to its low cost in both setup and manufacturing,
and for its precision. The disadvantage for this type of sensor technology is mainly the
comfort of the user; this is due to the design of the belt sensor, where the belt must be
tightly wrapped around the chest and or abdomen area in order to function properly
and get good results. This makes the sensor comfortableness subjective to the person
being used on, especially for long periods of time. (Chu et al., 2019)

There are companies both medical and non-medical that provide this sensor as a prod-
uct. And many of them provide the raw data output from the sensor to easily be used in
custom algorithms for detecting respiration rate. In this case the sensor used is the Go
DirectTM Respiration Belt (Vernier, 2020) which provides both the raw and processed
data, which can be accessed through Bluetooth or through a direct connection with a
computer.

This sensor choice is primarily because it lies within the low cost range specified earlier,
while also being accurate enough to be compared against hospital grade equipment.
Another reason for using this sensor is also because of its certification, making it easier
to apply for ethical approval for when testing needs to be done on participants.

2.7 Accelerometers as Respiration Sensors

Accelerometers are widely used sensors that can be used in many different fields, and
the way they work is by measuring the forces applied to them which also means grav-
itational forces. As for the usage in respiration sensing, the sensor is used to measure
the small amount of changes in either the chest or the abdomen region. This type of
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sensor technology is much more easier to integrate as its already a part of many devices
especially phones and tablets. However, the nature of the sensor and the method of ex-
traction makes it extremely unreliable in any other case from laying down or sitting in a
still position (Fekr et al., 2014). Nonetheless, the sensor technology is good in the right
conditions, making it a good candidate to be used as a low cost sensor, that is easily
portable however lacks the flexibility to be used in many other conditions.

One of the other major use cases for an accelerometer is to measure steps and move-
ment, which is a feature commonly found on modern smart phones. This will be useful
in assessing respiration while walking or running, to allow the identification of move-
ment and correlating them to the respiration data (i.e sitting and lying). Accelerometers
also can be accompanied by other sets of sensors such as a gyroscope and a magnetome-
ter, which are useful in identifying device positioning on the body. But if only move-
ment frequency and identification of the type of movement is needed an accelerometer
is enough. Modern accelerometer IC’s are also very efficient and don’t require much
current to run continuously making them very well suited for this type of work.

2.8 Piezoelectric and Piezoresistive Sensors in Respiration Sens-
ing

There are two main types of sensors that are named base on the fundamental effect that
occurs on the material; the piezoelectric effect and the piezoresistive effect.

Piezoelectric sensors work by converting the changes in stress to electrical voltage, this
is a physical phenomenon that happens in both directions. Which means applying
voltage to the material causes stresses on the surface of the material (Pohanka, 2018).
The way this is used to detect respiration is by converting slight changes in the stress
to voltage that is then converted to signal information. One prominent example is the
Respirasense in collaboration with the NHS. The sensor used by Respirasense uses the
piezoelectric effect to measure the changes between each breath (Pmd-solutions, 2020).
This is done by applying the sensor specifically to the lower abdomen region in order to
correlate the movement of the body to the piezo sensor. The sensor boasts an accuracy
of ± 2 Breaths Per Minute (BPM) and a range of detection of 6-60 Breaths Per Minute.

A study on the Respirasense was conducted to compare the device against the industry
gold standard, the capnography test; where it was tested with 17 patients for two hours
against the capnography with manual counts every 15 minutes. The test measured
stationary data in the first hour and movement data in the second. The results from the
capnography where compared using a Bland Altman Plot which resulted in a bias of
0.38 BPM with limits of agreement of ±2.17 BPM during the first hour at rest. While the
manual count for the first hour resulted in a bias of −0.7 BPM and limits of agreement
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of ±4.2 BPM. Lastly for the second hour the results that included movement showed a
great change in the results, with a bias of −1.72 BPM and limits of agreement of ±5.08
BPM.(Subbe and Kinsella, 2018). The results from these tests show that the device is
accurate for stationary movement while being inaccurate during any movement event.

The second type is the piezoresistive sensor which relies on the resistive changes of the
material that are related to the stresses applied on the surface. This type of sensor is
most commonly known as a strain gauge sensor. This sensor can be used similar to the
piezoelectric sensor to measure the changes in respiration by measuring the changes
in stress on the surface of the skin, however the main difference will be the electronics
used to gather the information as well as the materials used to manufacture this sensor.
(Arja et al., 2019)

These sensors are extremely accurate, well developed, and are available in many differ-
ent forms. However as respiration requires special methods of collection, the sensors
must be manufactured in different materials and shapes, causing them to be poten-
tially expensive when used as a disposable solution. This is a key point in Respirasense
which uses a single use sensor that is disposable after use, making it a potential source
of cost. Currently this device is not available for commercial purchase and hence cost
is a factor that is currently unknown.

2.9 ECG Sensor in Healthcare and Respiratory Monitoring

Electrocardiography sensors (ECG) are the most versatile and widely used sensors in
hospital environments to asses a patient health. They work by monitoring the heart
activity through surface contact with the patient’s skin, and by reading the electrical
signals from the sensor (Rashkovska et al., 2020).

However this signal does not just include heart information, but also more information
about the patient’s respiration rate. Research done by Charlton et al. (2016) shows the
possibilities in extracting respiration information from ECG signals using a software
approach which means minimal hardware integration on already existing devices in
hospitals. The research done was performed on a single simulated ECG electrode,
with 44 algorithms tested to run with ECG sensors. The way the data was extracted
is through a 3 step process to filter out unneeded signal information. A high pass filter
is first applied to remove low frequencies (as low as 4 Breaths per minutes), followed
by a feature extraction filter to extract the respiration data, and finally a band pass filter
to retrieve information only within human breathing range. The final results from the
best algorithm yielded results of ±4.7 BPM with a bias of 0.

Considering that the algorithms described by Charlton et al. (2016) only achieved that
accuracy using a single ECG electrode; there can still be improvement done in terms



2.10. PPG Sensors as Respiration Sensors 15

of refining the algorithms, as a standard ECG system can have up to 12 electrodes
connected to a patient at one time. Overall the ECG data can be said to have a direct
link to respiration rate, hence opening up possibilities for other sensor technologies to
link other vitals as well.

2.10 PPG Sensors as Respiration Sensors

Photoplethysmogram sensors (PPG) are a widely used sensor type in both medical and
consumer level products, these range from professional medical monitoring devices to
smartwatches and fit bands that monitor vitals such as heart rate, respiration and other
activities in the human body (Mouradian et al., 2014). The sensor works by using an
optical method to find small changes in the blood volume (Mouradian et al., 2014), thus
by using this information, many other activities can be correlated to this data.

PPG sensors are a great low cost, non invasive solution to respiration detection, how-
ever the way the sensor works, there is little to be done to improve upon, as there is
already a large amount of papers that research this technology, including the fusion
of other vital signals such as ECG signals (He et al., 2017). The current research does
not improve much upon the hardware, but is mainly focused on the processing on the
software side.

A paper by Ravichandran et al. (2019) where the sensor algorithm was optimised us-
ing a deep learning model to better extract the respiration data from the PPG data.
The main reason for this is due to the PPG raw data containing multiple vital informa-
tion that could make it hard to extract the respiration signal. Another study by Chang
et al. (2018) focuses on extracting respiration rate by using Holo-Hilbert Spectrum. The
study was able to get a good low cost device which still needs a heavy amount of pro-
cessing to get the respiration rate, for both the PPG signal and the extracted respiration
signal. Nonetheless the results of the tests against a transthoracic impedance plethys-
mography resulted in a difference of 0.04 ± 0.96 BPM for patients at rest. While the
second set of test were under a metronome value resulted in a difference of 0.01 ± 0.70
BPM.

2.11 Image Processing

Image processing can be an extremely versatile method of measuring respiration, as the
main sensor used is only a camera, which is commonly available everywhere. The dif-
ficulty in using a camera as a sensor is the amount of post processing that is required to
produce good and fast results. The way most of the image processing algorithms work
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is by analysing the difference between the different frames from the camera, which dif-
fers with the frequency of capture (30 - 60 Hz for webcams). Therefore, most of the
algorithms that are written to monitor respiration require heavy processing and com-
putation power to run effectively.

A paper by Massaroni et al. (2018) shows a viable algorithm solution for detecting
respiration rate using a standard web camera, most commonly found in laptops and
computers. The method focuses on extracting the data from ”intensity variations of
reflected light at the level of the collar bones and above the sternum”(Massaroni et al.,
2018) by using a standard 720 pixel webcam. This algorithm hence make it easier to
allow for direct measurement of respiration over video calls. The algorithm was tested
on multiple different types of webcams with the best results of ± 2 BPM.

A commercial company Xim developed similar technology called lifelight that utilises
image processing to take fast reading of many vitals over a laptop camera. A video
demonstrated on their website shows a quick demonstration of the speed in which
metrics such as respiration can be gathered in 40 seconds (Xim, 2020). No metrics are
available on the accuracy of such algorithm, however the existence of such algorithm
commercially makes using image processing a viable solution in use for home an am-
bulatory patient care.

And recently google released their google fit update which is now capable of measur-
ing vitals through the camera on the phone (Google, 2021). This includes respiration
detection, by the use of the front camera. There is currently no analytical data towards
the accuracy of the application but, this shows clear advancements in image processing
as a potential respiration sensor in less intensive care environments both at home or at
the hospital.

The only downside of using this technique is that when collecting the data the patient
must be stationary towards the camera, which means its not viable towards continuous
respiration monitoring. Nonetheless, using a camera with a good processing algorithm
proves to produce good results for short term data collection/monitoring.

2.12 Flow Sensor

Flow sensors are the sensors that are commonly used in hospitals to directly measure
the output flow of CO2 and inflow of oxygen (Sensirion, 2021). The way the sensor
works makes it extremely accurate in detecting small changes in breaths as well as
other vital information about the lungs. However, this sensor must be enclosed around
the nose and mouth to function properly, in order to create a proper seal for the sensor
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(Sensirion, 2021). Not all forms of the flow sensor need this to function. But nonethe-
less, this causes the sensor to be less portable and more uncomfortable for monitoring
over long periods of time.

There has been many research papers that explored portable versions of it, but due to
the method of construction the sensor has; the cost of manufacturing may contribute
to the final cost. Research by Jiang et al. (2019) shows this in more detail, where a flow
sensor is constructed to be attached underneath the nostrils in order to measure the
changes in heat and airflow around the nose. This type of sensor is less invasive than
hospital masks, and because it is a resistive sensor, its easy to read the output from any
micro controller.

Another research undertaken by Dinh et al. (2020) to construct a new flow sensor,
shows better results when testing the sensor. The sensor is designed to be flexible and
worn underneath the nose and above the mouth. From the tests done for this sensor,
the results show a very good response towards being a good portable solution. Where
standard breathing tests as well as blowing tests were conducted with the respiration
accurately getting picked up. The only downside with this type of sensor and the one
designed by Jiang et al. (2019), is that external interference’s from movement can be a
big factor towards a more portable solution.

The main use case for this sensor is the capnography test which monitors the changes
in carbon dioxide continuously (Kerslake and Kelly, 2017). This is mainly found in
intensive care or for monitoring patients during anaesthesia. The capnography test is
considered to be the gold standard in monitoring respiratory changes, and is much
better than a pneumotachometer. Access to a capnography machine is generally ex-
tremely limited and too costly so the more realistic alternative is the pneumotachome-
ter. Nonetheless, having data to compare against a capnograph is the best way to assess
a sensor.

2.13 Capaciflector Distance Sensor as a Respiration Sensor

The capaciflector sensor is investigated by White et al. (2017) at the University of Southamp-
ton to be capable of monitoring respiration rate, this is the first study that is published
to explore the capaciflector as a respiration sensor. The sensor uses technology re-
searched by Vranish (1991) from NASA. The capaciflector is a 3-electrode proximity-
based capacitance sensor, that works by measuring the variation in capacitance be-
tween the sensor electrode and ground. The sensor plat projects a field out and is done
by exciting the plate and ensuring sure that there is no potential difference between
the reflector and sensor plate. This creates a return path for the field. And as an ob-
ject enters the field the field is disrupted causing the new object material to affect the
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capacitance of the sensor. This field effect is demonstrated in Figure 2.3 more clearly
alongside the model of the sensor.

(A) Shows the capaciflector side view against skin. Red field
lines indicate the field effect from the reflector while the blue

lines are from the sensor plate.
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(B) Shows the model of the capaciflector circuit with how the
layers connect (Note: Cm should be 0 pF in theory).

FIGURE 2.3: Shows the capaciflector sensor layers and the circuit for the sensor model.

To be used as a respiration sensor the capaciflector is scaled down, and the breathing
signal is correlated to the change of the skin thickness due to chest expansion and con-
traction during a respiration cycle, which causes the capacitance to change. The paper
shows that the capaciflector is viable to be used as a respiration sensor, however there
are still many parts of the sensors that can be improved upon. The capaciflector con-
struction consists of three main parts, which is the base, the reflector, and the sensor
plate; the materials for constructing the sensor can be any type of metal separated by
an insulator between each layer as seen in Figure 2.3. This type of construction allows
the sensor to be thin and portable while also lowering the cost significantly compared
to other types of sensors. For example the capaciflector could be directly integrated
into a printed circuit board (PCB) allowing the device to be thinner and much more
cost efficient. Some of the other benefits includes the unnecessary need to be placed on
the skin to work, while also not requiring much electronics to gather the data, as the
only metric that needs to be read is the capacitance.
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2.14 Hardware: Sensor Comparison

Table 2.1 shows the sensor comparison that was done to highlight the existing gap in
the hardware side of the sensor. As can be seen most of the sensors either have one or
two disadvantages, while the capaciflector shows dominance over the other types of
sensors with much more potential to be developed and researched.

Sensor Type/Technology 1Non-Invasive 2Low Cost 3Portable 4Accurate 5Wearable
PPG Sensor ✓ ✕ ✓ ✓ ✕

ECG Sensor ✕ ✕ ✕ ✓ ✕

Piezo Electric Sensor ✕ ✕ ✓ ✓ ✕

Belt Sensor ✓ ✓ ✓ ✓ ✕

Flow Sensor ✕ ✕ ✕ ✓ ✕

Doppler-Radar ✓ ✕ ✕ ✕ N/A
Accelerometer ✓ ✓ ✓ ✕ ✓

Image Processing Sensors ✓ ✓ ✕ ✓ N/A
Capaciflector Sensor ✓ ✓ ✓ ✓ ✓

TABLE 2.1: Comparison table for different commercial and non-commercial respira-
tion sensor technologies.

2.15 Software

Most of the sensors that have been investigated use standard algorithms to measure the
respiration rate, mainly peak detection. Peak detection is done by analysing the highest
points of a signal and classifying the peaks through a threshold that is set either manu-
ally or automatically. And as the information retrieved from peak detection algorithms
are based only on the highest point in a breath cycle, it can cause many issues in the
analysis as sometimes the peaks identified don’t necessarily correlate to a breath from
the signal.

There are many research papers that prioritise the signal processing part, however the
focus of the processing is not for a general solution but only a part of the bigger prob-
lem. An example would be on sleep apnoea which is a disorder that is caused by the
”partial blockage of the upper airway during sleep” (Selvaraj and Narasimhan, 2013);
this disorder requires specific algorithms and detection sequences to accurately detect
when an apnoea event is happening.

Thus peak detection algorithms are only just part of the beginning, where building an
algorithm that can adapt and overcome many of the difficulties in measuring respira-
tion is a goal yet to be accomplished. This is because respiration data contains so much

1Does the sensor require skin contact to function?
2Does the cost of the sensor and the electronics range between £100 - £500?
3Is the sensor easy to use in while moving at home, or at the hospital?
4Is the sensor accurate to within ± 3 BPM over a period of time ( ≥ 60 minutes)?
5Is the sensor comfortable to wear for long periods of time?
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information that can be retrieved and used by the medical professionals. But due to the
drastic change that can happen to the signal in minutes, it poses a challenge as on how
to classify and differentiate between the different forms of the signal. This could also
include noise that is generated from external sources such as walking, running or even
talking. A comparison to existing software developments is in the ECG sensors, where
the algorithms have reached the maturity stage and rarely gets advancements in their
field.

An alternative in which respiration can be detected is by using an FFT, more specifi-
cally a segmented FFT where the respiration data is segmented and then analysed on
the spectral plane to get the frequencies present per segment. Thus by building up the
data from multiple segments of this data a spectrogram can be constructed to inspect
the changes in frequencies. So through the proper post processing and filtration of the
data, respiration could be detected over time. This can be expanded upon by introduc-
ing different forms of segmentation where rather than a standard rectangular window,
different windows could be tested to explore the effectiveness. Some of the most com-
mon windows used in spectrogram analysis are the Kaiser and Hann Window.

2.16 Opportunity in Respiration Sensors Technology

The current opportunity that exists within the respiration sensors technology can be
seen in the capaciflector. This is because there is little work done in the region of devel-
oping the sensor itself into a respiration sensor, with only one short paper that describes
the use case of the sensor as a respiration sensor (White et al., 2017). From the paper
itself the sensor could potentially be developed as a much better respiration sensor
which is very low cost to manufacture, while also being accurate to compete with the
many existing sensor technologies.

The main challenges in detecting and converting respiration data from the sensor into
user readable data, is that the software side mainly uses very basic processing methods
(Lynn and Curry, 2011). The very basic methods of peak detection are used readily
throughout the commercial and researched sensors, in which they have a major setback
in terms of accuracy. A solution could potentially be fusing different sensors, as well as
different algorithms to detect respiration rate accurately and reliably.

Another opportunity that also exists within the respiration sensors technology is ”Home
Monitoring”, where the sensor systems that are designed and researched are mainly
tested to be used in an ideal environment, and do not account for home use cases. The
home monitoring can be a very ideal entry point for the capaciflector due to the low
cost barrier as well as the perceived accuracy from basic results, hence making it much
more viable for this challenge. The challenge that comes from home monitoring can be
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the unpredictable use cases the sensor system has to go through. Which includes move-
ment artefacts. The secondary challenge in home monitoring is how the data could be
presented to the medical professionals, which is important when the data must be then
interpreted into some useful information.
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Chapter 3

Analysis of the Capaciflector in a
Clinical Environment

Research was conducted to test the capaciflector in a clinical environment and on pa-
tients while exercising and while at rest. The aim of this analysis is to evaluate the
potential of the capaciflector and measure its effectiveness. The analysis is split into
two studies that evaluate each data set separately; the first study is done on patients at
rest for a period of 10 minutes using a chest-belt sensor (Go DirectTM Respiration Belt
(Vernier, 2020)), while the second study is done on real patients that are performing a
Cardio Pulmonary Exercise Test (CPET). The first study was conducted by Isobel Jones
who is a medical student studying at the University of Southampton, while study 2
was conducted by Nick Hayward, a former anaesthetist and an academic clinician at
the University Hospital Southampton. Both studies contained 4 capaciflectors at dif-
ferent locations on the chest as seen in Figure 3.1. The analysis was done using a post
processing script that was specifically developed for this research, which used the short
Fourier transform (FFT) method to evaluate the respiration rate.

3.1 Methodology and Post Processing Techniques

The capaciflectors used in both these studies were screen printed devices used in a pre-
vious study by White et al. (2017) to demonstrate the effectiveness of the capaciflector.
They were wrapped in polythene, for cleanliness and interchanged between subjects.
The polythene was replaced for each test and this method was used in both studies.

The studies used a shared hardware and software platform. The capaciflectors used a
relaxation oscillator circuit to convert the change in capacitance to the change in fre-
quency (The circuit diagram can be seen in Appendix A). To capture the frequency
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FIGURE 3.1: Capaciflector Placement in both Study one and Study two

change, a data acquisition device (DAQ) from National Instruments (USB-6003 (Na-
tional Instruments, 2020)) is used. The DAQ’s analogue to digital converter sampling
at 25 kilo samples per second (ksps) is used to convert the relaxation oscillator analogue
output frequency into digital time series data. The speed of sampling is determined by
the number of active channels, with a minimum of 6.25 ksps with 4 active channels and
a maximum of 25 with one. The device and relaxation oscillator were powered through
a laptop USB connection (running at 5V and 10mA) and kept tethered throughout the
entire sampling duration. The raw data is converted into a time series data set by the
use of a custom written LabVIEW (2018) application which samples the data from all 4
channels at a rate of 10Hz and writes it into a text file to be processed later in MATLAB
(2019) version r2019b. The output range for the relaxation oscillator was 3.1kHz with a
fluctuation of ±25% of the base value.

For the first study the Go Direct respiration Belt (Vernier, 2020) data was used as the
comparison between the capaciflector data. The belt is mounted on the chest and is
sampling the raw force output in Newtons from the chest expansion at 10Hz. This data
is converted to a comma separated values (CSV) file which was processed using MAT-
LAB (2019). The testing was conducted with 20 healthy participants that performed
three different exercises: sitting, controlled metronome breathing, and laying tests. This
total number of tests was 60, with each test comprising 4 channels. The method of test-
ing is done by tasking the participant to breath on a predefined metronome frequency
between 6 and 12 BPM, the belt and capaciflector data was synchronised by having
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the participant take two deep breaths at the start before matching the metronome fre-
quency. The metronome test is a test which tasks the participants to breath (inhale/ex-
hale) a full breath on every metronome click, which results in a periodic, sinusoidal
looking breathing signal. This study aims to collect capaciflector signals that are under
a stationary condition hence providing much cleaner data.

For study two, the CPET tests were performed on 50 patients with the data from the
pneumotachometer as the data that is compared to the capaciflector data. The data did
not come in a raw time series format but came in a format where the registered peaks
and their timings are recorded. A peak is registered as a spike in airflow recorded
to the nearest second. The data is then converted to the sum of breaths in a given
minute by summing the total number of peaks in that minute. The resultant data is
then comparable to the capaciflector data but with a reduced resolution of ±1BPM due
to the format it’s in. This test is a test that targets the body movement changes effect on
the capaciflector signal.

The data processing introduced a new and unique method of detecting respiration, by
analysing the signal in the frequency time domain. A short-time Fourier transform
(FFT) is applied with an overlap of 90% and a window of size 60 seconds to convert the
data into the frequency time domain with a resolution of 6 seconds per point. Before
applying the FFT, the raw data is filtered appropriately to ensure movement artefacts
and noise are removed. The data is first filtered using a high pass filter with a 0.02Hz
cut off frequency to remove the DC offset present in the raw signal and to remove low
frequency noises and to remove any breathing signal below 1.2 Breaths Per Minute
(BPM). Secondly a low pass filter with a 1 Hz cutoff frequency is used to remove any
high frequency signals that may be present due to movement artefacts or passive noise.
This is then put into the FFT and the results are averaged per minute to give the final
results in breaths per minute (BPM). The new method allows a higher resolution tracing
of changes in respiration rate, which can be useful in identifying more information
about the signal including the presence of motion artefact.

Other filtering methods were tested in order to find the optimal filter and parameters
used in the pre-filtering stage. The process started by testing selective filters including
Butterworth and Chebyshev type one and two. The choice for these filters were strong
filters that had a steep, flat, or sharp roll off at the pass band stage, in which the But-
terworth and Chebyshev filters performed very well when tuned appropriately. Each
filter was manually tuned and adjusted to fit the data which was not ideal, thus the
choice of using the low pass filter with a high cutoff frequency was selected as it had
the least impact on the signal. The issue that came up with using singular values for
each filter for the entire data-set caused data loss to occur throughout the signal. This
is mainly due to the effect on the different parts of the signal which vary in frequency,
where the filter cutoff frequency causes the signal to be dampened. In order to use these
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filters effectively, they will need to be adaptive filters that change with the frequency of
the noise.

As for the FFT, the window overlap percentage was the most influential parameter
in this as it concluded how much of the data is seen in each block, where the higher
the value the higher the resolution, but the lower the processing speed. Therefore the
90 percent selected, captured all of the important data while also being fast enough
to go through the entire data. The window size chosen is the minimum number of
seconds to accurately read respiration rate, where values of 15, 30, and 120 seconds
were also tested but were not as effective as the 60 second window size which was
fast and accurate. The resolution between each point was determined by the overlap
percentage and window size, and in this case results in a resolution of a data point
every 6 seconds.

The output from the post processing script is converted into a Bland Altman plot for
the ease of analysis. Every Bland Altman plot represents the different channel which
correspond to the locations in Figure 3.1 which are compared against the data collected
from the pneumotachometer.

3.2 Data and Results

After the data sets were collected, the data was manually analysed to ensure that any
invalid data was eliminated using the criteria mentioned above. A test will be marked
as invalid whenever the data output from the relaxation oscillator exceeds the limits
of 3.1 kHz by a margin greater than 25%. A table was formed with all the tests and
channels in order to observe the data patterns on each channel and calculate the total
usable test data.

For the results from the Bland Altman the best result for the bias is to have values equal
or close to zero, while the limit of agreement being ± 1 BPM. The limit of agreement
value selected is the minimum accuracy needed for when comparing against the gold
standards of the industry. In which the FDA apporval for a respiratory monitoring
device is ±3 BPM (Chan et al., 2022).

3.2.1 Study One Results

For the first study the data is separated into three different sets to make it easier while
comparing the data. The data is manually collated into a table to show the usable data.
This helped in identifying the failure points and at which sensors/tests this happened
in. The tests were grouped per type (Laying, Metronome, and Sitting), and the results
for the usable data are seen in Figure 3.2, Figure 3.3, and Figure 3.4.
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FIGURE 3.2: Laying test results which highlights all usable data in Green

FIGURE 3.3: Metronome test results which highlights all usable data in Green
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FIGURE 3.4: Sitting test results which highlights all usable data in Green

3.2.1.1 Metronome Results

The metronome data was post processed in three different groupings, where the first set
of results is to test all channels that are usable, the second is to test all participants with
3 usable channels, and lastly is to test all participants with all 4 usable channels. The
reasoning behind these three choices is to understand the effects of position, as well as
identifying whether or not position matters for the capaciflector to be used effectively.

The first set of results from all usable channels showed good results as the data was very
close to the belt data. Figure 3.5 and Table 3.1 shows the 4 different channel outputs
with a very low bias (0.05 ± 0.04 BPM) as well as low limits of agreement between the
belt and the capaciflector data (0.70 ± 0.20 BPM). As for the test for 3 usable channel
per participant, this resulted in Figure 3.6 and Table 3.2 for a total of 9 participants
(27 tests). The resulting data showed very similar values of 0.10 ± 0.01 BPM for the
bias and 0.84 ± 0.36 BPM for the limits of agreement. Lastly the test which contained
all usable channels per participant resulted in Figure 3.7 and Table 3.3 for a total of
3 participants (12 tests). This test aimed to identify whether or not the position of
the capaciflector affected the accuracy, which resulted in very similar limits and biases
between all channels.
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TABLE 3.1: Results from Study One Metronome Study with all usable channels com-
piled into a table.

Channel Bias (BPM) ULOA (BPM) LLOA (BPM) Difference (± BPM)
1 -0.01 0.49 -0.50 0.50
2 -0.05 0.85 -0.95 0.90
3 -0.05 0.85 -0.95 0.90
4 -0.09 0.62 -0.81 0.71

TABLE 3.2: Results from Study One Metronome Study with 3 usable channels per
participant compiled into a table.

Channel Bias (BPM) ULOA (BPM) LLOA (BPM) Difference (± BPM)
1 0.09 0.57 -0.39 0.48
2 0.09 0.58 -0.39 0.49
3 0.10 0.93 -0.74 0.83

TABLE 3.3: Results from Study One Metronome Study with 4 usable channels per
participant compiled into a table.

Channel Bias (BPM) ULOA (BPM) LLOA (BPM) Difference (± BPM)
1 0.11 0.33 -0.10 0.22
2 0.11 0.34 -0.11 0.23
3 0.11 0.35 -0.12 0.24
4 0.12 0.37 -0.14 0.25

(A) Channel 1 (B) Channel 2

(C) Channel 3 (D) Channel 4

FIGURE 3.5: Shows the results from the Metronome Belt tests for all usable data
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(A) Channel 1

(B) Channel 2 (C) Channel 3

FIGURE 3.6: Shows the results from the Metronome Belt tests for 3 usable channels per
participant

3.2.1.2 Sitting Results

For the sitting tests, little usable data remained after discarding invalid data, which
resulted in a smaller number of tests used in generating the plots. From Figure 3.4 only
a handful of tests were usable out of the 20 tests per channel, which didn’t allow for
a similar processing method as the metronome data-set. So for the sitting tests all the
available tests were used regardless of whether or not the participant had more than
one usable channel. The results can be seen in Figure 3.8, also seen in Table 3.4. The
bias from the plots fluctuated between channels, with values as low as 0.02 BPM and
as high as 0.8 BPM with a limit of agreement that was as high as ±3.1 BPM, which
is close to the limit of error set. The reason why many tests from the sitting portion
of the study were bad is due to the sensor failure or due to high noise which caused
the signal to carry false data. This is apparent in Channel 2 which has a higher bias
and limits of agreement when compared to the other channels. The outliers above the
limits of agreement show that some of the tests have a higher difference in the higher
breathing ranges, which is expected as the sensors on Channel 2 exhibited the highest
failure rate between the other channels.
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(A) Channel 1 (B) Channel 2

(C) Channel 3 (D) Channel 4

FIGURE 3.7: Shows the results from the Metronome Belt tests for all tests which have
4 usable channels per participant

TABLE 3.4: Results from Study One Sitting Study with all usable channels compiled
into a table.

Channel Bias (BPM) ULOA (BPM) LLOA (BPM) Difference (± BPM)
1 -0.16 1.39 -1.72 1.55
2 0.80 3.90 -2.30 3.10
3 -0.02 2.18 -2.22 2.20
4 0.42 2.85 2.00 2.43

3.2.1.3 Laying Results

Similar to the sitting portion, the laying portion of the study was also processed in the
same manner due to the same sensor failure, which can be seen in Figure 3.2. Figure 3.9
shows the Bland Altman’s of the laying portion, also seen in Table 3.5. The results are
very close when compared to the sitting portion, with the laying part performing better.
The bias maintained a value of 0.01 BPM between channel 4 and 2, while channel 1 and
3 had a value of 0.22 BPM and 0.09 BPM respectively. As for the limits of agreement,
channels 1 and 2 performed extremely well with a value of ±0.66, while channel 3 and
4 had higher limits which are greater than 1.
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(A) Channel 1 (B) Channel 2

(C) Channel 3 (D) Channel 4

FIGURE 3.8: Shows the results from the Sitting tests for all usable channels per partic-
ipant

TABLE 3.5: Results from Study One Laying Study with all usable channels compiled
into a table.

Channel Bias (BPM) ULOA (BPM) LLOA (BPM) Difference (± BPM)
1 0.22 0.88 0.43 0.66
2 -0.01 0.66 -0.68 0.67
3 0.09 1.99 -1.81 1.90
4 -0.01 1.58 -1.59 1.59

3.2.2 Study Two Results

For study two the same process is started by constructing a table for all usable data,
this is seen in Figure 3.10. This table was important in identifying the cause of failure,
as when comparing the trend of the failure between channels it seems too sporadic.
This can be attributed to the fact that the sensors for each channel were not the same
throughout the study. As for the failure itself, it is due to the nature of the study which
introduces high moisture buildup causing the sensor layers to separate. This is mostly
visible with channel 2 which showed a trend with the sensor failing continuously at
the last few tests. Exactly as study one the failure is identified by looking at the sharp
change in the relaxation oscillator output frequency. Figure 3.11 shows a raw signal
with a bad capaciflector signal, in which it starts failing at the end of the test. The data
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(A) Channel 1 (B) Channel 2

(C) Channel 3 (D) Channel 4

FIGURE 3.9: Shows the results from the Laying tests for all usable channels per partic-
ipant

does contain some usable information during the first half however due to having the
sensor fail in the end, this data was deemed as unusable.

The results after running the algorithm on all the usable data sets, (Same as sitting
and laying tests in study one) showed promising results for having the participants
undergo physical exercises with body movement, hence the result seen in Figure 3.12
and Table 3.6 are within the limits of agreement of the expected error. The results for
this study is a bias of 0.12± 0.03 BPM and a limit of agreement of 3.02± 0.13 BPM. This
shows that even at extreme scenarios the capaciflector was able to pick up respiration
rate data. However due to the data from the CPET tests being a whole number for the
number of breaths per minute, it caused the data to be less accurate when compared
to the data extracted from the short Fourier transform which contained much higher
resolution data (6 seconds per point). While this data shows potential it does not fairly
assess the capaciflector properly due to the mismatch in the way the data is processed,
which is why the first study was undertaken to provide a fairer comparison.
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(A) First Half of the table (B) Second half of the table

FIGURE 3.10: Shows the tests from the second study with the usable data in Green

FIGURE 3.11: A sample signal from one of the tests from the second study showing
failure at the end of the sampling period, where the frequency spikes to 12kHz
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TABLE 3.6: Results from Study two compiled into a table.

Channel Bias (BPM) ULOA (BPM) LLOA (BPM) Difference (± BPM)
1 0.18 3.07 -2.71 2.89
2 -0.31 2.89 -3.51 3.20
3 0.32 3.36 -2.71 3.04
4 0.27 3.23 -2.69 2.96

(A) Channel 1 (B) Channel 2

(C) Channel 3 (D) Channel 4

FIGURE 3.12: Shows the results from the post processing done on the data from the
second study

3.3 Analysis

A short analysis is done on the data in order to answer the hypothesis and identify the
main point regarding the usability and effectiveness of the capaciflector as a respiration
sensor. As well as assess the effectiveness of the capaciflector as a sensor in both a
stationary and high movement setting.

3.3.1 Data and Channel Usability

As the data was manually checked after using an automated script, this poses a slight
limitation to the data quality as some data may be deemed unusable due to the low
signal to noise ratio. This however, is only done for study two as the results from the
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study contained high amounts of noise due to the bicycle movement, thus requiring a
more thorough look on the signal quality. This results in a slightly lower number of
usable channels per participant as they cause the data points to be low hence providing
a slightly biased result towards the only good results. This can be justified by running
a proper analysis on the first study by fully automating the script to avoid any bias in
the results.

3.3.2 Study One

The data for the metronome portion of the study contained a large amount of usable
tests which helps in building a more solid set of results. The results show that a tuned
system with no movement can easily follow along the breathing in a stationary posi-
tion. This data was used to evaluate the effectiveness and maximum accuracy of the
capaciflector for a stationary position, while also helping calibrate the post processing
algorithm to detect these repeating breathing frequencies. This is not the best method
to calibrate, in which a more valid test would be sitting at rest for a long period of time
or variably changing the breaths per minute over time. All the data contained biases
which are less than 0.1 breaths per minute, with limits of agreement that are as high
as 0.8 breaths per minute. Where the tests for the 3 channels and all channels are done
in order to ask questions related to the number of capaciflectors needed as well as the
position to accurately get all the information. And from this we can see that there is no
visible difference between all of the channels.

The results from the sitting tests are more inaccurate when compared to the metronome
tests, this was due to the large amount of noise which was surprising as there was no
movement in the human body. This noise originated from the sensors failing as well
as the shallow breathing that was done and not picked up by the relaxation oscillators.
This is an issue as most of the home use cases are going to be either sitting or laying
down, and will breath shallower as time passes. And even though many data sets were
unusable, the results are still within the limits of agreement chosen, causing this test to
be a successful one.

Lastly for the laying tests these were closer to the expected values from stationary tests,
where the results are within the range of expected values. However there are some
slight noticeable changes between channels 1 and 2 and channels 3 and 4 where there
is a bigger change in the limits between the two (≈ 1 BPM). This means that in a lay-
ing position the capaciflector attached to the sides was able to capture less of the data
and introduced more error into the system, and hence the location for the capaciflec-
tor is preferably placed in the upper chest area. This was an interesting point as the
metronome tests which were also stationary tests did not have any noticeable differ-
ences between the two sets of channels.
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Overall, the first study showed very promising results in assessing the capaciflector as
a usable sensor in detecting respiration during a stationary scenario.

3.3.3 Study Two

When analysing Figure 3.10 a trend for the data loss can be seen due to the failure of the
sensors after continuous use. And because the sensors were interchanged between each
other for every participant this makes tracking the faulty sensor a bit more difficult,
hence why the bad sensors kept switching between different channels.

Looking at the bias of the system in Figure 3.12 shows that the average breathing rate is
very close between each channel, where a value of less than or equal to 0.12 breaths per
minute is seen on average, this value is calculated from averaging the biases between
all 4 channels (Table 3.6). The difference in values was identified as a timing error in
the Lab View App which sampled the data. The problem originated from the DAC
(Digital to Analogue Converter) which was sampling at 100ms but with a small error
of ±1ms. However, this error scaled over a period of time escalating into a bigger data
shift. This was identified later during the processing stage, after the data was collected,
which means the data wasn’t sampled at the exact 10Hz but at a different rate, which
was found to be a constant of 10.4Hz by averaging the total sample rate change from
multiple samples. This change was applied to the rest of the data collected through
the Lab View Application, which provided better results from the original sample rate.
A comparison of the before and after can be seen in Figure 3.13 where the shift that is
constant is seen, the figures are outputs from the post processing that were run with
the 10Hz sample rate and the 10.4 Hz respectively. The increase in the sample rate for
analysis accommodated the average bias throughout all the signals, fixing the results
to be closer to the actual sample rate collected during the tests.

This shows that even under extreme scenarios the capaciflector was able to capture
the data accurately. Even if at some cases there are outliers between the two signals
compared. This is seen more clearly in Figure 3.12b where there are three points that
have a positive difference of 6 BPM.

Overall, study two is a success and helped answer the question to whether or not posi-
tion matters. The answer is that no position matters for when performing an exercise,
as all channels performed equally well, when accounting for the sensor failure that
occurred throughout the testing.
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(A) Metronome Test Results for Channel 1 with 10Hz Sample Rate

(B) Metronome Test Results for Channel 1 with 10.4Hz Sample Rate

FIGURE 3.13: Results from adjusting the sample rate of the processing algorithm, from
10Hz to 10.4Hz

3.4 Chapter Summary

In the end both studies helped provide a very good insight on the way the sensors are
designed as well as how important the hardware and software used matters for the ca-
paciflector to successfully capture the respiration signal. Where study one managed to
verify that the capaciflector is well suited for stationary situations, whereas study two
is more focused on body movement and is more extreme. Nonetheless study two man-
aged to stay within the limits of agreement as well as properly detecting the respiration
in a reliable manner. The results from these tests are important towards developing
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a newer system which is more reliable and accurate. And the next set of steps are to
investigate the capaciflector and identify if there is a more easier and reliable way of
manufacturing as well as having the system be untethered and battery powered for
longer sample lengths.
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Chapter 4

Capaciflector Sensor Configuration
Analysis

Finding the best configuration for the capaciflector is vital towards building a system
that is more compact and easily adapted between different systems and environments.
Thus by assessing the different ways the capaciflector can be used, it can help maximise
the capaciflector’s effectiveness for detecting respiratory rate (RR). This chapter focuses
on the limitation found in Chapter 3, which is the continuous failure of the sensor
during exercise due to layer separation. Another key aspect that this chapter tackles is
the different modes in which the capaciflector can be constructed and used in detecting
RR.

4.1 Introduction

Seven designs were designed, manufactured, and tested under a set of different meth-
ods (modes) and materials in order to compare the effectiveness of each design for
detecting RR. Three of the sensors are rigid sensors while the other four sensors were
flexible sensors. The sensor designs selected allowed a wide range of tests to be con-
ducted to explore the different methods the sensor can be used and the type of data
that is expected from it.

The sensors were compared against each other in order to see the effects of changing
the frequency and method of connection in detecting RR. The assessment of all the sen-
sor designs is done by performing a short a breathing exercise (25-30 seconds long).
Two main modes are tested, the capaciflector mode and the capacitance mode. The
capacitance mode was also tested with two different methods of connection in order
to find the best method that yields the best accuracy. The results from the sensor were
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compared against a belt sensor which provided the force exerted from the chest move-
ment.

The study compared both the maximum capacitance change as well as the maximum
force change from the belt sensor. The analysis ended up with the capacitance mode
outperforming the capaciflector mode. With the best sensor being the flexible sensor
design one.

4.2 Methodology

Seven different designs were adapted and scaled from the work done by White et al.
(2017). The capaciflector’s were designed in KiCad (KiCad Development Team, 2021) a
PCB design software, whereas the testing hardware and software used is an evaluation
board and its accompanying software for the capacitance to digital converter (CDC) IC
(FDC2214) from Texas Instruments. The FDC2214 evaluation module board allows the
user to prototype the system with easy access to the FDC2114 IC through a computer
interface with data logging capabilities. The choice of using the module over custom
hardware is due to the already existing solution with good support from Texas Instru-
ment, while also having all the features needed for this type of testing already built in
onto the accompanying software.

Two different modes of operation were tested: capaciflector mode and capacitance
mode. The key differences between them is the use of the reflector plate as part of
the stack-up to build the sensor, in which the capaciflector mode requires a buffer to
operate the sensor properly while the capacitance mode does not. With each mode, dif-
ferent configurations were also tested with different inputs between the IC and the sen-
sor. Different frequencies were also tested for all sensors: 100kHz, 1MHz, and 10MHz.

The data collected from the tests is compared against a belt sensor (GO DirectTM Respi-
ration Belt) by Vernier (2020) with the same method of testing, this resulted in the truth
vs measured values. Further processing was done on all the data collected in order to
compare the different sensor designs through the use of MATLAB (2019).

4.2.1 Capacitance to Digital Converter IC

The FDC2214 IC is a capacitance to digital IC manufactured by Texas Instruments
which uses an LC tank to measure the capacitance of the target (Texas Instruments
Incorporated., 2015). The sensor allows measurement of capacitance values with res-
olution’s of up to 28-bit, which is more than enough to capture all the signals needed
for this experiment and for any future development. And in conjunction with the eval-
uation module board, all the necessary starting software to data log and modify the
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hardware is available for purchase. This made matching the testing conditions be-
tween all the sensor designs from a hardware perspective to be the same. One of the
key features of this IC is the ability to read from multiple channels (up to 4 channels)
which helped speed the process of testing by having each channel tuned to a separate
tank frequency. The IC uses an external Inductor Capacitor (LC) tank which can be
seen in the schematics in Figure C.3 in the Appendix which allow the IC to be config-
ured at different frequencies. In order to adjust the LC tank frequency, the inductor
and capacitor pair were tuned to output a frequency as close as possible to the target
frequency needed. A list of the inductor capacitor pairs can be seen in Table 4.1 along-
side the measured frequencies. One thing to note is the capacitor inductor used for the
100kHz frequency which required extreme values in order to lower the frequency, this
is due to the nature of the IC and the limitations on the evaluation module board which
had a small footprint for the inductor. The results from the desired frequencies are all
calculated based on the resonant frequency of an LC circuit in parallel (4.1).

TABLE 4.1: Outlines all the channels used and the appropriate calculated and mea-
sured frequencies.

Channel Calculated Frequency Measured Frequency (Unconnected) Inductor (L) Capacitor (C)
1 100kHz 98kHz 680uH 3.3nF
2 1MHz 550kHz 470uH 47pF
3 10MHz 3.2MHz 18uH 12pF

f =
1

2π
√

LC
(4.1)

The IC uses two inputs per channel to measure the capacitance, this allows for multi-
ple different methods of connection to the sensor. The only thing to account for when
switching between different sensors and different frequencies is the drive current of
the sensor IC. The value can be changed through the software provided, however each
value differs between different settings as the IC will not measure the capacitance prop-
erly if the current drive value is not calibrated per sensor. The method of calibration is
done by ensuring that the output value from the LC tank oscillates between 1.2V and
1.8V while the sensor is attached to the skin as values that go beyond or lower than
these volatges generates flags that indicate overflow and underflow in the IC registers.
A representation of valid calibration voltage can be seen in Figure 4.1.

4.2.2 Capaciflector Mode

The capaciflector mode is a mode of operation in which the sensor operates as origi-
nally designed by Vranish (1991) and can be seen in Figure 4.2. In the original patent
the proposed method of reading the capacitance value is by the use of a relaxation
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Within the range of the CDC Out of Range

FIGURE 4.1: Valid and Invalid calibration voltages for the CDC.

oscillator and a buffer to drive the reflector plate of the sensor. The operation princi-
ple of this mode stays the same as the original design, where the main change is the
method of measurement, in which a more accurate sensor IC was chosen to drive the
sensor and the reflector plate through the buffer. The same CDC IC used in series with
a buffer (BUF602 IC) from Texas Instruments makes the capaciflector behave the same
way as the original proposed method. The buffer selected has a wide bandwidth of 1
GHz which is more than enough for the operating frequencies of the the CDC which
is between (100kHz - 10 MHz). The key advantages to using the capaciflector mode
is the reduction of interference and directionality of the field generated when driving
the sensor plate. This configuration makes the sensor less prone to external capacitive
interference’s, as the field’s directionality reduces the chance of the sensor picking up
any external movements/interference such as touching .

Skin

Sensor

Reflector

Base

FIGURE 4.2: Capacitor in capaciflector mode showing the field lines between all layers.
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4.2.3 Capacitance Mode

The capacitance mode when compared to the capaciflector mode is similar in structure
with the main difference being the removal of the reflector plate. This makes the ca-
pacitance mode a two plate sensor consisting of a ground and sensor layer. The key
difference in the operation of the sensor is the reduction of directionality of the sensor,
but by reducing the plate count and removing the buffer, the drive electronics become
simpler as fewer components are needed. With the removal of the reflector plate, the
sensor is more prone to external interference depending on the different ways the sen-
sor is connected (Capacitance mode seen in Figure 4.3).

Skin

Sensor

Sensor

Base

FIGURE 4.3: Capacitor in capacitance mode showing the field lines between all layers.

For this mode two different configurations were tested by utilising the different meth-
ods of connection to the CDC IC. The different connections can be seen in Figure 4.4
with inputs A and B being the inputs to the channel. One of the methods of connection
uses a standard ground and signal pair while the other drives both the ground and
signal plate with the inputs from the channel. Different configurations were also tested
with different layer pairs however these designs were omitted out of this test as the test-
ing introduced too many parameters to fairly compare the sensors. The configurations
for these tests can still be seen in Appendix B.

4.2.4 Sensor Specifications and Manufacturing

The sensors were manufactured by two PCB manufacturer’s in two different materi-
als, one is a standard FR-4 material while the other is a flexible polymide material for
PCB’s. Three designs were manufactured for the rigid material and 4 designs were
manufactured for the flexible material. Figure 4.5 shows the seven different designs.
The choice for these sizes and ratios is based off the initial work done by White et al.
(2017), which provides a starting ratio which already works for detecting respiration,
and was modified to assess slight variations of the design.
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Mode 1

Mode 2

FIGURE 4.4: Modes used for the capacitance mode, where Mode 1 is using both the
sensor and ground layer while Mode 2 uses only the sensor layer.

Design 1 Design 2 Design 3

Rigid PCB

Design 1 Design 2 Design 3 Design 4

Flexible
PCB

FIGURE 4.5: All sensor designs used, with 3 rigid sensors and 4 flexible sensors tested
(Rigid PCB’s are 50mm in diameter while the Flexible PCB’s are 40mm).

For the rigid sensors three designs were manufactured with a diameter of 55mm and a
thickness of 1.6mm using standard FR-4 PCB materials (TG130 (JLCPCB (2021))) with a
dielectric constant of 4.6. While the flexible sensors were manufactured with a smaller
diameter of 40mm and a thickness of 0.1mm using polymide flex material from PCB-
Way with a dielectric constant between 3.3 and 3.5 (PCBWay (2022)). The rigid sensors
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are 4 layer PCB’s with a sensor, reflector and base plate being in a separate layers while
also allowing one extra layer for any electronics. The flexible PCB’s were manufactured
with 2 layers and contained the sensor and base layer only.

The ratios between the sensor and base layer are seen in Table 4.2. For the flexible
sensors the diameter stepped up by 5mm per design with a starting sensor diameter of
10mm, while the rigid sensors used the ratios from the patent (Vranish (1991)) with a
base diameter of 50mm.

To connect both sensors for testing, the rigid sensors were connected with the base and
sensor layer for the capacitance mode, while the capaciflector mode uses all layers. The
other configurations mentioned previously are to connect the different layer pairs for
example, the sensor layer and the reflector layer, in which the reflector layer acts as the
base layer in this configuration. This was not possible for the flexible PCB’s hence were
left out of the results in this chapter.

The flexible PCB’s were connected as normal with a sensor and base layer as manufac-
tured. However to test the sensor in capaciflector mode two sensors were stuck to each
other through double sided tape in which the base layer used in the bigger sensor is
used as a reflector while the new sensor attached becomes the base layer. This allowed
the sensor to be tested in capaciflector mode even though the sensor was only manu-
factured with 2 layers. A side view and top view of the sensor can be seen in Figure 4.6
below. Thus making the sensors have a configuration with a base and reflector plate of
equal diameters, with only the sensor plate changing between the sensors.

TABLE 4.2: Ratios and layer sizes for all the sensor designs.

Design Base Diameter (mm) Refelector Diameter (mm) Sensor Diameter (mm) Ratio (Base:Sensor)
Rigid Design 1 50 40 40 1:5
Rigid Design 2 50 40 30 3:5
Rigid Design 3 50 40 10 4:5

Flexible Design 1 40 - 25 5:8
Flexible Design 2 40 - 20 1:2
Flexible Design 3 40 - 15 3:8
Flexible Design 4 40 - 10 1:4

4.2.5 Testing Method

To test the sensors, the method needs to be a fair test between all the sensors in order to
effectively compare the results. So the choice of testing the sensors on the skin by the
use of a TENS (Transcutaneous electrical nerve stimulation) electrode gel pad gives a
more realistic output of what is expected from the sensor as well as providing a repeat-
able method of attaching the sensor to the skin. Due to the way the CDC works, each
sensor frequency and design requires its own setting that is tuned manually to allow
the sensor to read the capacitance properly. A small portion of this list can be seen in
Table 4.3 while the full list for all the frequencies and designs can be seen in Appendix
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Top View

Upside Down Sensor

Side View

Sensor 2

Sensor 1

FIGURE 4.6: Side view and top view of the flexible sensors modified to allow the
sensor to run in capaciflector mode.

B. The TENS gel pad used was modified from a generic reusable pad, where the sen-
sors were attached face down onto the pad using double sided sticky tape. The sensors
were all mounted on the top right side of the chest during this test for consistency.

TABLE 4.3: A sample of one of the current settings per mode for some of the designs.

Design Mode Frequency Sensor Calibration (uA)
1 1 1MHz 38-60
2 1 10MHz 264-356
3 2 100kHz 264

As part of the testing the evaluation module needed to be isolated due to interference
issues whenever the module was connected to a device which is connected to mains
power (Issues mentioned in Texas Instruments Forums Page Texas Instruments Incor-
porated. (2021)). To avoid this issue an unplugged laptop was used, while also having
the belt sensor plugged in through USB to ensure that no data loss occurs. The data col-
lected is saved as a csv file for both the belt sensor and the capaciflector sensor, where
the belt outputted the values as force in Newtons (N), and the evaluation module is
capacitance in pico Farads (pF).

Each test had a single sensor connected at a time with a different frequency, at the same
time the belt sensor was collecting data to compare against the capacitance data. The
data was collected at 50 Hz for a duration of 20-30 seconds for each test for both the
belt and the capaciflector.

The test sequence is completed by breathing hard for the first few breaths, then breath-
ing normally for a few breaths and finally ending it with more deep breaths. Figure 4.7
shows an example of this sequence output from the belt sensor where the y-axis rep-
resents how hard the breath was, as well as the belt data for reference. This sequence
was selected as it allows the sensor to be tested for maximum change during both light
and heavy breaths. While the detection of the type of breath is not important in the
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respiration rate measurement its useful to identify which sensor design allows the dif-
ferentiation between breathing depths.

4.2.6 Processing and Analysis Method

After collecting the data, MATLAB (2019) was used to process the data into coher-
ent figures which show the capaciflector mode against the capacitance mode. The key
points between the figures is that the capaciflector mode only has one data-set per fre-
quency as the design uses all three plates for the sensor. The analysis is compiled into a
maximum change of capacitance table which allows the sensor modes to be compared.
The change of capacitance is used as the capacitance value is not important as only the
relative change is useful in identifying chest movement. As for the maximum change
of force, the point in which the maximum capacitance change is found, the same time
instance is used to calculate the equivalent change in force. Thus the capacitance and
force changes are synchronised by the same time.

For the analysis of the data, the highest sensitivity sensor with the smallest current
calibration constant will be selected as the best sensor. This is done in order to optimise
the amount of current the sensor needs for when the hardware is to be developed. An
example of these calibration currents used can be seen in Table 4.3.

4.3 Results and Analysis

The results for each mode and configuration is combined into a single table with the
maximum change in capacitance and force. The results from the capaciflector configu-
ration only has a short table for the different frequencies as only one method of connec-
tion can be used. While the capacitance configuration has multiple tables representing
the different modes and frequencies used in the test.

4.3.1 Capaciflector Mode Results

Table 4.4 and Table 4.5 shows the results from the rigid PCB’s and flexible PCB’s re-
spectively. The best results are represented as the maximum change with respect to the
force, this changes with the design as the capacitance is not linear with the force. Which
is why the deciding factor is the lowest current drive.

Looking at the results we can see that the capaciflector data in the rigid PCB’s has a
decreasing maximum change as the frequency increases. This however does not indi-
cate poor performance in higher frequencies as the difference between the frequencies
is the signal cleanliness and the stability. An example can be demonstrated in Figure 4.8
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TABLE 4.4: Results from the testing the rigid sensors Designs with the capaciflector
mode.

Design Frequency (Hz) ∆C (pF) ∆F (N)

Rigid Design 1 100k 1.060 10.83
Rigid Design 1 1M 0.012 10.56
Rigid Design 1 10M 0.093 14.21

Rigid Design 2 100k N/A 22.83
Rigid Design 2 1M 0.066 11.89
Rigid Design 2 10M 0.166 10.18

Rigid Design 3 100k 0.700 16.18
Rigid Design 3 1M 0.233 13.48
Rigid Design 3 10M 0.0381 20.27

TABLE 4.5: Results from testing the flexible sensors with the capaciflector mode.

Design Frequency (Hz) ∆C (pF) ∆F (N)

Flexible Design 1 100k 0.202 35.46
Flexible Design 1 1M 0.195 37.14
Flexible Design 1 10M 2.409 30.89

Flexible Design 2 100k 0.312 34.10
Flexible Design 2 1M 0.868 31.12
Flexible Design 2 10M 0.092 36.77

Flexible Design 3 100k 0.546 33.02
Flexible Design 3 1M 1.651 36.10
Flexible Design 3 10M 0.630 29.34

Flexible Design 4 100k 0.212 40.13
Flexible Design 4 1M 0.076 39.59
Flexible Design 4 10M 2.045 31.66

which shows the difference between the different frequencies for the capaciflector rigid
design 1. And even though the maximum change in the sensor is minimal it s much
smoother and has little noise in the captured data.

As for the flexible sensors, they performed slightly better with higher changes over-
all throughout all the sensor designs. The sensor output varied between designs and
frequencies with fluctuations between the results from the 1MHz and 10MHz, where
one will outperform each other across different designs. A clear case of this is between
design 4 and design 3 in which the results between the two frequencies are exact op-
posite. A key point as well is the maximum force change which is higher overall for
the flexible sensors. This is due to the mounting method of the belt sensor which was
tighter for these tests.

Overall this shows that the sensors in capaciflector mode perform in a stable manner
and have very good sensor responses at the higher frequencies of 1MHz and 10MHz.
And equally so, the flexible and rigid PCB’s both had much cleaner signals at the higher
frequencies while also exhibiting higher capacitance changes when compared to the
lower frequency of 100kHz.
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4.3.2 Capacitance Mode Results

Table 4.6 shows the results from the rigid PCB’s for both modes. While Table 4.7 shows
the results for the flexible PCB’s.

TABLE 4.6: Results for the rigid sensor designs in capacitance mode.

Design Mode Frequency (Hz) ∆C (pF) ∆F (N)

Rigid Design 1 1 100k 0.590 11.36
Rigid Design 1 1 1M 0.370 7.98
Rigid Design 1 1 10M 0.220 7.40
Rigid Design 1 2 100k 1.180 14.72
Rigid Design 1 2 1M 0.231 15.38
Rigid Design 1 2 10M 0.088 12.02

Rigid Design 2 1 100k N/A 15.02
Rigid Design 2 1 1M 0.180 10.38
Rigid Design 2 1 10M 0.148 9.49
Rigid Design 2 2 100k 0.220 14.85
Rigid Design 2 2 1M 0.084 13.05
Rigid Design 2 2 10M 0.319 16.88

Rigid Design 3 1 100k 0.240 7.28
Rigid Design 3 1 1M 0.266 16.63
Rigid Design 3 1 10M 0.479 17.50
Rigid Design 3 2 100k 0.370 14.20
Rigid Design 3 2 1M 0.069 14.51
Rigid Design 3 2 10M 0.169 14.56

As for the capacitance mode the results from the rigid sensors exhibit similar behaviour
between each other in mode 2 especially designs 2 and 3 while design 1 follows the
same patterns of decreasing capacitive changes as the frequency increases. For mode 1
the results from design 1 initially started with decreasing capacitance values, however
as designs 2 and 3 are tested an inverted behaviour is seen on design 3 with an increase
in the capacitive changes as the frequency increases.

Between the three frequencies the 1MHz performed the lowest in terms of capacitive
change across mode 2 and in mode 1. And the 100kHz performed poorly which can
be seen in the results of design 2 where there was little to no signal making the results
closer to zero. This behaviour was seen in the flexible sensors however the results from
this type of sensor are much better than the rigid sensors, as the maximum change is
also higher ( 4pF higher). This is due to the flexibility of the sensor which forces the
sensor to change shape, which in turn affects the capacitance value greatly. This is good
as it makes the sensor much better at picking up changes in the chest but also has the
disadvantage of picking up any other movement due to the flexibility of the sensor.

Overall both sensors performed equally well between the capaciflector and capacitance
mode, where the clear difference between both sensor modes is the amount of noise the
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TABLE 4.7: Results from testing the flexible sensor designs in capacitance mode.

Design Mode Frequency (Hz) ∆C (pF) ∆F (N)

Felxible Design 1 1 100k 5.630 33.24
Felxible Design 1 1 1M 4.179 33.17
Felxible Design 1 1 10M 4.036 40.23
Felxible Design 1 2 100k 0.610 25.41
Felxible Design 1 2 1M 3.789 27.64
Felxible Design 1 2 10M 0.444 30.45

Felxible Design 2 1 100k 2.230 27.57
Felxible Design 2 1 1M 1.628 33.38
Felxible Design 2 1 10M 2.776 34.69
Felxible Design 2 2 100k 0.530 35.77
Felxible Design 2 2 1M N/A 29.63
Felxible Design 2 2 10M 0.188 32.82

Felxible Design 3 1 100k 0.540 34.26
Felxible Design 3 1 1M 0.821 30.31
Felxible Design 3 1 10M 0.792 38.08
Felxible Design 3 2 100k 0.260 41.62
Felxible Design 3 2 1M 0.244 42.95
Felxible Design 3 2 10M 2.465 30.9

Felxible Design 4 1 100k 0.530 32.01
Felxible Design 4 1 1M 1.434 29.86
Felxible Design 4 1 10M 0.459 35.80
Felxible Design 4 2 100k N/A 50.55
Felxible Design 4 2 1M 0.070 36.27
Felxible Design 4 2 10M 1.112 33.00

capaciflector mode omits out of the signal, as well as the maximum change of capaci-
tance detected. Nonetheless, the flexible sensor design one performed the best between
all the other sensors, due to the method of construction (PCB manufacturing). The con-
struction method is more accessible with the benefits of being resilient to wear and tear.
This does not apply just for the flexible sensors, but also for the rigid PCB’s. This com-
parative analysis shows that the capacitance mode which is much easier to implement,
and also performs the best, while also requiring a lower number of layers to manufac-
ture. Thus making it more suitable to be used in a low cost wearable systems. The
main advantages to using the capacitance mode is the cost and scalability of the device,
as the capacitance mode requires far less components in the sensor system in order to
let it run, while the capaciflector mode requires additional passive and driven compo-
nents to make it work. As for the cost factor, the ability to manufacture 2 layer PCB’s
make the price of the capacitance mode much cheaper to manufacture on a large scale,
while the capaciflector mode requires at least 3 layers hence making the manufacturing
process more expensive, especially with flexible materials. While the capaciflector does
make the sensor more resilient to noise, it doesn’t justify increasing the complexity of
the system in order to achieve minimal performance gains.
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4.4 Chapter Summary

Summing up the work done, four main points are to be gained from this analysis. One
is the benefit of the CDC in detecting RR, making it a prime target to be used in the
sensor system. The second point is that the capacitance mode performs better than the
capaciflector mode which requires more components. And the last point is that the
sensor designs which use a sensor plate closer in size to the base plate generally gives
better performance, with the best sensor design being the first flexible sensor design
in capacitance mode. And finally the CDC IC performs better at the higher frequency
range (1MHz - 10MHz) for all the sensor designs.

This makes the next steps of developing the wearable sensor system to be clear as the
type of sensor and CDC IC are already examined and tested in this chapter. The next
chapter goes through the process of developing and testing a wearable respiration sens-
ing system which is capable of continuously monitoring RR for long periods of time.
The sensor system will be designed to utilise the sensors explored in this chapter, with
the sensors being designed to run in capacitance mode.
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(A) Shows the results from Flexible Design 4 for the capacitance mode.
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(B) Shows the results from Flexible Design 4 for the capacitance mode.
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FIGURE 4.7: Compares the belt against the capaciflector and capacitance mode for a
selected design, showing the light and heavy breaths as part of the test. The signal
is inverted from the capaciflector due to the calculation from the CDC, however the

negative peaks of the capaciflector match the positive peaks from the belt.
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FIGURE 4.8: An example comparing two signals from design 1 but with a different
frequency in capaciflector mode (100kHz and 10MHz).
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Chapter 5

Wearable PCB and Software
Development

Chapter 4 and Chapter 3 findings gave insight on the direction in which the sensor
system needs to be developed. Where the hardware was developed with the aim of
creating an untethered solution that can data log capacitance data from the sensor at the
highest resolution possible. While also being small enough to be comfortably worn for
long periods of time. To effectively test this system, it will be power tested, case tested
and data integrity tested. The sensor system will be power optimised to get the longest
run time for the system. And lastly run the sensor system through a series series of
short tests to be compared against a belt sensor (Go DirectTM Belt Sensor) while under
a known metronome frequency to compare the data. A more extensive set of testing is
done in the next chapter in which both the software and hardware are assessed against
participants. The sensor design used will be both the rigid sensor design 2 and the
flexible design 1 in capacitance mode as mentioned in the results of Chapter 4.

5.1 Hardware and Software Development

Four iteration’s of the PCB hardware underwent development with slight changes be-
tween the components, and the main change being the size and compactness, as well
as connection changes to accommodate for different features. The main development
of the PCB’s and the schematics was done in KiCad (KiCad Development Team (2021)),
while the micro controller software was developed in Code Composer Studio and Sen-
sor Controller Studio from Texas Instruments (Texas Instruments Incorporated. (2020)).
Finally the testing of the data was done by building a graphical user interface (GUI) in
MATLAB (2019) which included the data processing scripts to convert the capacitance
data to respiration rate through extracting data from a spectrogram. For this chapter
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the development of the two final iteration’s will be discussed, the rest of the design’s
schematics and dimensions can be found in Appendix C.

5.1.1 Hardware Development and Testing

The initial design which contained the same components was designed with efficiency
and longevity over size, which resulted in a large diameter of 70mm, this size felt much
larger in person due to the large surface area. This was further scaled down to 32mm
in the final version.

5.1.1.1 Components and Sensors

The main component of this hardware design is the use of a capacitance IC (integrated
circuit) to measure the capacitance from the sensor. The IC used is the FDC2214 from
Texas Instruments, which is the same 28-bit Capacitance to digital converter IC used in
Chapter 4.

As for the main micro controller unit (MCU), the CC2640R2F chip from Texas Instru-
ments was used due to the versatility of the chip itself and the family of that chip.
The family of this MCU allows drop in replacements which are pin to pin compatible,
hence provides the flexibility of choice in case more flash space or different features are
needed. The main feature for this chip is that they come with a built in Bluetooth Low
Energy (BLE) RF (Radio Frequency) core, which allows for future upgrades by the use
of this wireless connectivity to allow for newer features to be developed.

Two other sensors were added, mainly the accelerometer IC (LIS331HHTR), which is
going to be used in addition with the capacitance data for the exploration of better post
processing techniques. This is a key point from Chapter 3 where the second study faced
many issues due to the motion artefacts from the body movement. The other sensor is
a real time clock (RTC), which is used for the time keeping of the system while its in
a shutdown state. The M41T62LC6F chip is used due to the low power requirements
and small scale.

For power, two options were used for the final two designs. One design used a single
coin cell (CR2032) with a capacity of 220mAh to power all the electronics. While the
other final design used a rechargeable 190mAh Lithium Polymer (Li-Po) battery. In
the previous designs there was an extra coin cell battery (CR1225) that was used for
the timekeeping of the RTC in case the main battery is disconnected, but this was later
removed due to the space requirements and the practicality of having two batteries in
a small system.
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The inputs for the system are two components, the small push button and the micro-SD
card. The micro-SD card is used to data log the sensor data, with two LED indicators
(red and green) to indicate whether or not the device is active or in sleep mode. And the
push button is used to start and stop the sampling as well as restart the device. Table 5.1
shows the overall specification of the hardware used for both designs, while Figure 5.2
shows the two iteration’s assembled side by side. The key difference is that the hard-
ware side is flipped to the top side for the Li-Po version when compared against the
CR2032 version, as the battery is protected in a 3D-printed case and sandwiched by the
PCB. The schematic for both PCB designs can be seen in Appendix C.

Both sensor systems were mounted on a 3D printed case that served to house the elec-
tronics and protect them. This is one of the risks this sensor system has as the Li-Po
battery design must protect the battery from both damage and shorts. As looking back
at the experiments done in Chapter 3, sweat was a big problem for the sensors. And it
could still pose a higher risk for the battery. Thus the case design was built to protect
the battery rather than just house it. Figure 5.1 shows a render of the 3D design of the
case.

FIGURE 5.1: Render of the 3D printed case used for the Li-Po battery system.

5.1.1.2 Data Integrity and Timing Testing

The data integrity tests are done to ensure that data loss is minimal, which includes the
data which is influenced by noise from the system (normally happens at low voltage
levels). It also aims to test the timing of the device and ensures its accuracy. The tests
conducted are seen below:
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TABLE 5.1: Sensor system specification, detailing the main components used in the
design.

Specification for the Sensor System PCB

Processor
Main micro controller is CC2640R2F Bluetooth
LE micro controller (128kB Flash Memory run-
ning at 24MHz).

Sensors
FDC2214 Capacitance IC, M41T62LC6F Real
Time Clock, and LIS331HHTR as an accelerom-
eter.

Power Input
CR2032 coin cell battery (Capacity of 200-220
mAh) or 190 mAh Rechargeable Li-Po Battery.

User Inputs
One Button for control, and a micro-SD card for
data storage (up to 16 GB in size).

Dimensions 32mm in diameter with a thickness of 0.8mm.

Weight
10 grams (With the battery and sensor installed)
6 grams without.

Li-Po VersionCR2032 Version

FIGURE 5.2: Final sensor systems developed with sensors attached to them. On the
left is the rigid sensor design 2, and on the right is the flexible sensor design 1.

• The first test is the ADC test which will run a signal generator at a specified fre-
quency for a ten minutes to make sure that the frequency captured is the same as
the one generated.

• The second test will have the Testing the system against a metronome to test the
data accuracy in a controlled scenario. The test will be 5 minutes long and the
results will be compared against a belt sensor for validation.

• The third set of tests is the walk test which is done with a belt sensor to compare
signals captured alongside the sensor system data. The test will be 5 minutes
long.



5.1. Hardware and Software Development 61

• The final tests are long duration tests that run till the device runs out of battery
(Sampling both respiration and accelerometer data). This test will be conducted
for a minimum of 6 hours. No belt will be used for comparison as the belt is
uncomfortable to wear for more than a few hours.

For the first test, the ADC test, it is the simplest test to perform out of all the other tests.
It is done by connecting a single ADC pin in the sensor system MCU to the output of
a signal generator. The signal generator was set to output a 0.3Hz sine wave signal
simulating a person breathing at 18 breaths per minute. The data from the signal gen-
erator was sampled on the hardware at a rate of 20Hz. Figure 5.3 shows the output data
over the span of 10 minutes to check for any data loss. The processed signal showed
a frequency which was equal to 0.3Hz, hence proving the timing of the system is well
within the required accuracy for sampling at 20Hz. The data was processed by having
the signal generate a spectrogram with a window size of 60 seconds and a 90 percent
overlap. And by tracing the maximum strength at each point a trace of the frequency
changes can be extracted. A more detailed explanation is found in the software section
of this chapter which details both the hardware firmware and the processing software
and method used.

For the rest of the three tests, the results can be seen in the results section of this chapter.
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FIGURE 5.3: ADC test results, tested over the span of ten minutes.

5.1.1.3 Use-case Testing

The use case testing is a list of possible scenarios that the user will be preforming. This
allows for predictable behaviour and proper assessment of what went wrong if the
device fails at any instance. This allows for the software to have fail safe measures in
case any of these scenarios are met during the testing phase.
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TABLE 5.2: Use Case Testing Table

Use Case Expected Result Implemented?

SD card is ejected while sampling.

Sampling should stop and flash a
red-light indicating failure in writ-
ing data. And hence waits for the
SD card to be reinserted to restart
sampling.

✓

SD card is not inserted when click-
ing the sample button.

A quick flash of the red light to in-
dicate that something is not con-
nected, or an error has occurred.

✓

SD card is inserted, and the sample
button is pressed once.

A green light will flash every sec-
ond to indicate that the device is
sampling, and no error has oc-
curred.

✓

Power is lost while the device
is sampling (battery disconnected),
and is then reconnected.

Device will fully restart as well as
the RTC module which will need to
be re synced. The device will start
as normal just with the RTC mod-
ule being out of sync (i.e 0 hrs 0
mins).

✓

Battery voltage drops below oper-
ating voltage of sensors.

Data will fail to sample, and a red
light will flash instead of a green
one.

✓

SD card fills up while sampling.

Red light will flash while sampling
to indicate that the SD card is full.
This will also safely stop sampling
and go to sleep mode.

✓

Sample Button is pressed for 5 sec-
onds while sampling.

The device will safely close the file
and stops sampling. The device en-
ters sleep mode.

✓

Currently the list in Table 5.2 are the only implemented fail safe scenarios, however,
they are more than enough for the sensor system to sample data continuously and
accurately for long periods of time. The implementation strategy is to focus on the
behaviours from the software side, which means there are no hardware fail safes im-
plemented and only software ones.

5.1.1.4 Power Testing

For the power testing three different tests are used in testing to ensure that the sensor
system adheres within the specifications needed. These tests target the maximum and
average power draw of the sensor system, failure points and battery life tests for both
the coin cell battery and the Li-Po. A list of all the tests is outlined below:

• The first test tests the current consumption of the sensor system without having
any input connected (micro-SD card) and the device is not in data logging mode.
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• The second test is the minimum voltage test which finds the failure point of the
device (i.e The point at which the device does not start or the data is no longer
getting logged) by slowly reducing the input voltage .

• Lastly a long term test is conducted by letting the device run on a new battery/-
fully recharged battery to test the total run time of the device until the device or
data logging stops or fails. The test’s conclusion is indicated by the flashing LED
light which stops flashing when the battery is drained.

The tests were conducted in a lab with the battery voltage monitored and stored through
a digital multi meter over the entire duration of the test. The data is stored in a comma
separated values (CSV) file and is compiled into the results table found below (Ta-
ble 5.3) though the use of MATLAB (2019).

TABLE 5.3: Power testing results for both the CR2032 coin cell PCB and the Li-Po
battery PCB.

CR2032 Battery Li-Po Battery
Average Current Draw 2.45 mA 2.45 mA
Minimum System Voltage 2.5 V 3.0 V
Total run time of the system 45 Hours 70 Hours

The results from Table 5.3, shows that the average current draw for the system is ap-
proximately 2.45 mA rounded up for both the PCB’s which is expected as the hardware
is exactly the same. This means that with a CR2032 cell which has a capacity of 220
mAh (Panasonic, 2005) the system will have an average run time of approximately 90
hours. And a Li-Po battery with a capacity of 190 mAh will have an average run time of
approximately 78 hours. However the actual value does not match the expected results
due to sharp current spikes in the system whenever the data is written to the micro-SD
card, which according to the data sheet for most micro-SD cards are upwards of 100
mA when writing large files (SanDisk Corporation, 2015). Nonetheless, this is more
than good enough as the data captured is better and longer. And from the results of
the tests the value of 45 hours was found to be the limit at which the device can sample
continuously for the CR2032 battery while the Li-Po battery resulted in 70 hours. The
main reason for this is that Li-Po batteries have a much higher current limit that the
battery can supply. And with a high current component such as a micro-SD card the
CR2032 struggled to supply that much current, even in bursts. Thus by recalculating
the current of the coin cell from the results, it gives out a capacity of 110 mAh which is
more reasonable considering the current draws.

As for the minimum system voltage it is tested by finding the failure point, in which the
micro-SD card failed to write the data properly, this was tested to be at voltages below
2.5V for the CR2032 system. During the total run time test the actual voltage dropped
below 2.5V however this was during the writing cycle, while the data acquisition from
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the sensors had the battery maintained a voltage of 2.9V. This can be seen in Figure 5.4
where the hardware was run for 20 hours using a CR2032 battery. The battery voltage
did not start from 3V as the battery was used from the previous testing and because
it was closer to the minimum voltage needed. This test ran till the device failed to
write to the micro-SD card by itself. As for the Li-Po battery system, the battery did
not have sharp spikes in the voltage as the maximum current drained by the system
was being supplied by the battery. Thus resulting in a sharp cutoff at 3.0V due to the
battery management IC in the battery stopping the cells from discharging in order to
not damage the batteries.
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FIGURE 5.4: Battery Voltage test results for a duration of 20 hours with the CR2032
battery.

5.1.2 Software Development

The software aspect of this paper is split into two parts, the processing algorithms and
the accompanying micro controller firmware that will do the main data logging. The
post processing is done in MATLAB (2019) and will expand upon the work developed
in Chapter 3. While the micro controller firmware is programmed through Texas In-
strument’s proprietary software, Code Composer Studio and Sensor Controller Studio
(Texas Instruments Incorporated., 2020)

5.1.2.1 Micro Controller Firmware

The current micro controller hardware, supports both local storage using the micro-SD
card connector, and the use of Bluetooth Low Energy (BLE) for connectivity and data
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logging. However, for the current prototype the data logging is implemented in a more
refined manner to allow reliable acquisition of respiration data for further processing,
and the Bluetooth only works for demonstration as there is no application to interface
with it yet.

The micro controller code was written in C while also making use of TI-RTOS which is
a (Real time operating system) RTOS provided by Texas Instruments. This allowed for
the code to be more structured as well as utilising many of the features the MCU offers.
The main feature with this MCU is the sensor controller, which is a smaller MCU that is
interconnected with the main CPU internally. This controller can run separately from
the main CPU allowing for higher power optimisations while also ensuring that the
sensors will always be sampled even if the main CPU is busy.

To utilise this feature a task operation diagram is constructed to show the appropriate
timeline for when the user starts logging data. This diagram helps when coding the
actual code and for testing and debugging in case of any failures. This diagram can be
seen in Figure 5.5. This is done only for the data logging part, where the other parts of
the code are simple to implement and do not need a task diagram.

The main part of this diagram is the initial start and the repeating tasks. For the initial-
isation the Datalogger task turns the micro-SD card on, initialises a file name, creates
the file, and finally return a boolean indicating success or failure. Internal checks in
the function check if there is space in the micro-SD card, and if the file name is a du-
plicate and if so creates a new file incremented by two digits starting from zero. Parts
of this code can be seen in Appendix D. During the repeating task portion of the code,
semaphores are used to send the interrupts from the sensor controller indicating that
the data is ready to be written to the micro-SD card file. This section is critical as the
maximum sampling rate is determined from the CPU side and not the sensor controller
side, where the timing is calculated on the higher resolution timer of the main CPU. Af-
ter many iterations a timing method was selected to ensure that the sample rate does
not drift throughout long data logging sessions. The method calculates the amount of
time the sensor controller takes to take one sample, and then based on the sample rate
finds the amount of time remaining for the task to start another sample. Thus putting
the task into sleep mode for the remainder of time for that one sample. This method
ensures that even if the sample rate from the sensor controller studio fluctuates the
resulting sample rate from the sensor system is stable while data logging.

The data coming from the sensor controller goes through the Datalogger task which in
turns stores it in a global buffer which is shared by the SD write task and the Datalogger
task. This buffer has two states to ensure that at no instance of time the data that is
written to the micro-SD card is overwritten by the sensor controller. The SD write task
uses a FATFS file system to write the data into a .TXT file. The file written prints a
header showing the sample rate as well as the other sensor data.
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Finally during the run time state, the LED task is continuously reading a global volatile
variable which checks if the device is sampling, or if there is any error flag from any of
the other tasks. This allows independent control of the LED’s to allow for custom error
led messages.

Once the main tasks are coded, a flow chart is constructed to represent the full flow
of the system and can be seen in Figure 5.6. The firmware was developed over many
iterations and changed throughout many hardware changes.

Future upgrades are relatively straight forward with extra additional tasks to be imple-
mented in order to turn on the BLE and communicate with external devices. The code
was left in a state where the framework was written but not implemented completely.

The sensor controller code initialises the sensors to be in the highest resolution possible.
This is mainly for the CDC IC which is sampling 28-bit data at a sample rate of 10Hz
and up to 40Hz that can be configured in the firmware. This mode makes the sensor IC
sample without a power limit hence the sensor was power cycled per sample to reduce
the current consumption.

Datalogger 
Task SD Write Task LED Task Sensor 

Controller

Priority: 3 Priority: 2 Priority: 1

Runs in
Parallel

to
the CPU

Short Press
File Opens Task Sleep

Sem_post(Data)

Sem_post(Write)Data 
Received
Write to
Buffer

FIGURE 5.5: RTOS task diagram during the operation of the data logging. The tasks
are repeating for the entirety of the data logging.

5.1.2.2 Processing Software

For the processing of the data, a GUI was built in MATLAB (2019) to allow the data
gathered from the sensor system to be easily processed into readable data. The scripts
also allows for direct comparison of belt sensor data. The main MATLAB (2019) script
that converts the raw data to respiration rate is used for both the sensor system data
and the belt data. This makes sure that the two different signals are compared fairly.
This is different from the results in Chapter 3 in which the compared respiratory data
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FIGURE 5.6: Flow chart for the sensor system simplified with the main functions
shown.

is already calculated. As for the comparison the same Bland Altman plot will be used
to convey the results from all the tests in this chapter. Direct compare figures are also
going to be plotted to demonstrate the results in the time scale and in the Bland Altman
plot.

The main method developed builds upon the spectrogram method that was initially
explored in Chapter 3 which is more superior than the peak detection method, this is
more apparent in noisy signals. Hence the method of calculating the respiration rate,
is split into three different steps that can be found in Figure 5.7. The first step is to
have the signal trimmed to the appropriate captured signal. This step is to ensure that
any noise captured from the start of the test til the end is not included in the processed
data. The trimming at this stage is manually calculated for each test. The second step
is to apply the filters to the trimmed signals. The first filter applied is a high pass
filter that is configured at a frequency of 0.02 Hz (1.2 BPM) to allow all frequencies
above it to pass, this filter is used to remove any bias that is in the signal. The second
filter is to apply a low pass filter set at a frequency of 1 Hz (60 BPM) to allow only
frequencies up to 1 Hz to remain in the signal. Lastly the resulting filtered and trimmed
signal is then run through a spectrogram with a sampling frequency that is equal to
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the sample rate of the tests, and a window size of 60 seconds (Kaiser Window) with an
overlap of 90% and leakage of 0. The values for the window and overlap used are based
on the resolution needed, in this case the resulting window and overlap result in a 6
seconds interval between each point in the spectrogram in the time axis. The 60 seconds
window size is determined by the minimum amount of signal needed to be present in
order to calculate the frequency at that window. In this case 60 seconds is the minimum
value needed to calculate the frequency of breathing for a person, hence resulting in
minutely frequency windows with the maximum power representing the dominant
frequency in that window. The 90% overlap is the parameter that tunes the resolution
and speed at which the spectrogram is calculated, in this case 90% is a suitable value
that gives a high enough resolution for calculating respiration rate. For a much higher
resolution analysis a value of 99% is used to get a resolution of 0.6 seconds per time
step. An example of this process can be seen in Figure 5.8 below which demonstrates
the signal cleaning process into a spectrogram.

Trim and 
Offset Signals Apply Filters Power 

Spectrogram

FIGURE 5.7: Three step process of cleaning the data into a spectrogram.

Finally to get the respiration rate a trace of the dominant frequency per time step is
calculated and traced in order to get the change of frequency over time. This is con-
verted to BPM by multiplying the frequency by 60 seconds. The process is not perfect
as sometimes the identified dominant frequency at a given time step is abnormally dif-
ferent from the previous and next time step. To solve this issue a limit of change is
introduced to check the next maximum change that is within the given set width, this
process is then repeated for the next set of values until a trace is found. This method
allows calibration of the maximum change that can be present within a signal. This
method already exists as a function in MATLAB (2019) called ”tfridge” which is used
throughout the testing process. Understating the way the function works allows for
future development of the processing software to be filly embedded on to the MCU
side. This process is repeated between both the belt data and the sensor system data
and the results are compared through a Bland Altman Plot with the truth being the data
from the belt sensor. Figure 5.9 presents an example of tracing the frequency from the
spectrogram.
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FIGURE 5.8: Shows the full block diagram of the full system from data acquisition to
generating the respiration rate data.

5.2 Results

For the hardware tests, a series of simple test were conducted to assess the signal qual-
ity and accuracy, mainly for the data integrity tests. All these tests had the sensor sys-
tem with the capaciflector placed on the top left side of the chest, with a single sensor
in place. The sensor system was mounted through the use of a TENS gel pad, the same
pads used in the testing done in Chapter 4. The data was sampled at a rate of 10 Hz
alongside the belt which sampled at the same rate. The same Go DirectTM Respiration
belt was used throughout these tests.

5.2.1 Metronome Test Result

The simplest of these tests is the metronome test which is a controlled breathing ex-
ercise that uses a known metronome frequency. For this hardware validation test,
metronome tests between 2 and 4 minutes were preformed and one of them was eval-
uated against the belt sensor data.
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(A) Resulting spectrogram before the frequency tracing is done,
in this example a clear dominant frequency is seen.
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(B) Spectrogram example of the traced frequency.

FIGURE 5.9: Frequency tracing example before and after.

The four tests were performed with metronome values of 13, 13, 14, and 15 BPM re-
spectively. The 13 BPM tests were sampled in tow different positions: laying down
and sitting upright on a chair. The 14 BPM test was done by sitting upright on a chair
while the 15 BPM test was done by laying down. Figure 5.10 shows the raw data sam-
pled from the sensor from the 13 BPM sitting test, which is then processed through
MATLAB (2019) to get the respiration rate change per minute. Comparison between
the result and the known frequency shows that the 13 BPM test resulted in a value
of 12.91 ± 0.03 BPM. The figure also shows the resulting spectrogram with the traced
signal output. As for the rest of the results (13 BPM Laying and 15 BPM laying) they
can be seen in Figure 5.11 where only the results are shown, and by comparing them
against the known frequencies we get 13 ± 0.1 BPM and 15.05 ± 0.1 BPM respectively.
And even though all of the samples were short tests of less than 5 minutes they still
hold good information on the sampling accuracy. Thus resulting in a good accuracy
against a static known frequency.
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(A) Raw capacitance and accelerometer data from the metronome 13 BPM test.
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(B) Processed data spectrogram for the capaciflector
data.
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(C) Respiration rate plot for the 13 BPM test.

FIGURE 5.10: Raw and processed results for the 13 BPM sitting metronome test.
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(A) Results from the processed 13 BPM laying down metronome test.
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(B) Results from the processed 15 BPM laying down metronome test.

FIGURE 5.11: Processed results for the 13 and 15 BPM laying down metronome tests.

5.2.1.1 Belt Metronome Comparison

The metronome test is performed at 14 BPM with the belt sensor and sensor system was
synchronised manually by starting both of the sensors at the same time. The data is
then processed by the use of the same techniques mentioned previously. The resulting
values are used to create a Bland Altman plot which compares the two resulting signal
values. This can be seen in Figure 5.12b. A direct view can also be seen in Figure 5.12a
which allows for a more visual comparison to be seen . The results from running the
14 BPM test resulted in −0.38 ± 0.11 BPM from the Bland Altman. The results do have
a negative bias which means the sensor values are higher than the belt data, but the
limits of agreement are within 0.11 BPM which is well within the required accuracy
for the sensor system to be compared against a gold standard. Nonetheless, the results
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from this test validate that the timing is within the required accuracy and that the new
hardware is ready for longer and more dynamic tests.
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FIGURE 5.12: Processed results for the 14 BPM metronome test.

5.2.2 Walking Test Result

As for the walking test a single five minute test was conducted which included a couple
of stops where two deep breaths were taken, this allows for a peak to peak synchroni-
sation in software at those time instances. The belt and sensor were mounted in the
same position as the metronome test. The GUI was used to compare both results as
well as generating a Bland Altman Plot.

Figure 5.13 shows the raw captured results as well as a segment of the raw signal from
the sensor system compared against the belt sensor, and also the processed results.
The Bland Altman results in an accuracy of −0.24 ± 0.08 BPM, which can be seen in
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Figure 5.13c and visually in Figure 5.13b. The walking introduced moving artefacts in
the raw signal which are filtered down by the low pas filter which is run throughout
the entire raw signal. The current algorithm does not separate the walking segments
from the non walking segments which means when the signal is filtered a large amount
of data is lost due to the walking noise. For the next steps, an implementation of the
signal segmentation process must be developed to allow segmented processing of the
signal. Overall for the walking test the sensor system demonstrated high accuracy even
for a short term test. Thus even in an un-optimised state it shows promising results for
a sensor system that can be used outside a hospital environment.

5.2.3 Long Term Test Result

For the long term test a sleeping test was conducted for 6 hours. The test was done
without the belt sensor, this is due to the uncomfortability factor which made it hard
to wear the belt for periods more than 1 hour. The sensor system was mounted with
the TENS gel pad on the top left side of the chest. This test is performed to test signal
stability and the capability of continuously monitoring for periods longer than 1 hour.

After acquiring and processing the data the compiled results using the algorithms de-
veloped is seen in Figure 5.14. When looking at the raw data the accelerometer captured
movements during sleep, both in different orientations such as sleeping on the side and
sleeping on the back. The result from running the data through the spectrogram anal-
ysis resulted in a some flat areas in the signal, this corresponds to the minimum and
maximum limits the spectrogram is set at. The limits were set to be from 6 to 48 BMP
(0.1 to 0.8Hz). As for the breathing rate that was captured, the results do have some
noise in the change however, the key point to note is that the x axis scale is 6 hours
which means these changes happen over large portions of time. The resulting signal
was also processed with 6 second points meaning many of these points correspond to
the change of respiration rate every 6 seconds. To cross validate some sections of the
signal which have clear defined breathing data, the peaks were counted and cross veri-
fied. This was only done for a small portion of the signal. The dips in the signal are the
corresponding points in which there was movement present in the data, and with the
current method, data with movement artefacts is not processed differently from clean
breathing data.

Overall the sleeping test demonstrated the capability of the sensor to monitor respira-
tion rate continuously. As well as showing that the sensor system is capable of captur-
ing stable signals in a stable setting.
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(A) Raw capacitance and accelerometer data from the walking test.
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(B) Processed data alongside the spectrograms for the respective sensors.
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FIGURE 5.13: Walking test results and raw data.
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(A) Raw capacitance and accelerometer data for the sleeping test, some sections are zoomed in to show
the actual signal.
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(B) Resulting respiration rate plot for the sleeping test.

FIGURE 5.14: Raw and Processed results for long sleeping test.
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5.3 Analysis

The post processed values from the different tests showed very promising results. Es-
pecially in the long 6 hour sleeping test where the new hardware managed to success-
fully capture the sleeping frequency even with occasional body movement. Even after
manually counting some of the data points to verify, this shows that the new sensor
system hardware is capable of capturing respiration rate continuously.

The metronome data also displayed good results where the values calculated matched
the metronome values closely within a tenth of a breath. This leads to the compar-
ison of the belt and the sensor system where the resulting Bland Altman generated
showed results from the hardware that are as good as the belt sensor. Overall for the
metronome results, they show that a sensor in a controlled test it can be as comparable
as a belt sensor which can be considered close to a gold standard respiration sensor.
But with the advantage of being comfortable to wear, while being small and compact
when compared to the belt style sensors.

For the walking test, even though it is a short test it managed to capture the appro-
priate breathing data from the sensor system during a walking event. The results are
better than expected with the walking test achieving results within ±1 BPM. These re-
sults are processed through a filtration stage which does not target walking segments.
Nonetheless the test managed to show that the data captured from the capaciflector
and the sensor system is good enough for most applications, while also being accurate
enough to be used in a home environment. And for this stage of testing, the results are
expected.

Lastly for the long sleeping test, this test targeted the capability of the sensor system
to continuously monitor respiration rate. And it succeeded in demonstrating that, as
well as showing that the signal quality for the sensor system is good even with basic
filtration. Overall the tests all passed the data integrity and timing testing showing that
the system is ready for more large scale testing.

5.4 Chapter Summary

The chapter successfully demonstrated the process of developing and testing the new
system. The sensor system developed ended up being 32mm in diameter while being
11 mm high in a fully enclosed 3D printed case.

For the developed sensor system, the tests on the system are considered a success as
the system managed to perform well in all of the tests. And when compared against
the initial hardware and the analysis study performed in Chapter 3, the results from
the tests done show better improvements in both accuracy as well as capabilities of
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continuous monitoring of respiration rate. The tests are not perfect in any way and still
have more things to improve upon, especially the processing software and methods.
The key starting point is to conduct a proper study on anonymous participants to test
the device across as many people as possible. This will help gather more data especially
data with movement artefacts, this is to help develop and test the processing side of
data with movement artefacts.
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Chapter 6

Analysis and Verification of the
capaciflector hardware data

The newly constructed sensor system is put to the test against a gold standard belt
sensor to properly assess it in both real world scenarios and in controlled settings. The
tests are done to show the effectiveness of the capaciflector, while also showing the
flexibility of the capaciflector which is easily integrated in a smaller package, with the
benefit of being more convenient to wear when compared to the belt sensor. The same
hardware sensor system developed in Chapter 5 with the sensors selected from Chapter
4 are used for this analysis and assessment. And finally the new data is processed
through the new filtration process which is mentioned at the end of Chapter 5.

6.1 Methodology

Three different studies were performed, comparing the newly developed capaciflector
hardware and the belt sensor by Vernier (Go DirectTM Respiration Belt ). The tests were
conducted on 10 healthy participants which consented on performing all the tests un-
der the ethics approval from the University of Southampton ERGO (ERGO 68839.A1).
The exclusion criteria is that the participant undergoing the tests are healthy and have
no history of respiration illness. All the tests conducted were anonymous and no infor-
mation on the participants is stored except the respiration data from the tests. A simple
representation of the system and the mounting can be seen in Figure 6.1.

6.1.1 Hardware Details and Sensor Mounting

The capaciflector hardware is the same hardware developed in Chapter 5. The device
used is the one powered by a single CR2032 coin-cell battery which allows the device
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FIGURE 6.1: Overview of the respiration sensing system alongside the setup and a
sample output of the comparative comparison of the belt and the capacitance based

system.

to run for up to 45 hours in data logger mode. The sensor of choice is the rigid sensor
design 2 developed and explored in Chapter 4., where the device is placed on top of the
sensor through the use of double sided tape. The device used can be seen in Figure 6.2.
The capacitance data alongside the accelerometer and RTC data is sampled at a 10Hz
sampling rate and is logged onto the micro-SD card continuously once the button on
the device is pressed. The sample rate of the belt sensor is also set at 10Hz. Both the belt
and sensor system were untethered to a computer throughout the tests. The only thing
that was connected was the belt sensor which used a Bluetooth connection to send the
data.

To start the sampling between the belt sensor and the capaciflector hardware, both
sensors were manually timed. However, the capaciflector sensor has a slight delay on
the initial start which can sometimes make the sensor synchronisation harder as this
delay is based off how long it takes the system to create the file in the micro-SD card.
To deal with this problem, the participants would be tasked to hold their breath for a
couple of seconds before pressing the button, which is long enough for both the sensors
to start sampling data. This allows the synchronisation of the data to be easily done by
finding the point in which the participant stopped holding their breath. An example
on that is seen in Figure 6.3 below where the belt data clearly shows a constant force
just before the participant starts breathing again.

The mounting of the sensor system was done by the use of disposable gel pads that
are used for TENS (transcutaneous electrical nerve stimulation) applications (the same



6.1. Methodology 81

FIGURE 6.2: The newly developed Capaciflector Hardware

FIGURE 6.3: Capaciflector and Belt Data alignment

ones used in the tests of Chapters 4 and 5). The actual sensor plate and the gel pad’s
conductive material are both fully insulated to avoid any interference.

The sensor system is placed on the top left side of the chest as seen in Figure 6.4a with
variability in the sensor position being either directly on the skin or the shirt, depend-
ing on the participant’s preferred choice. The sensor system was placed with the button
facing upward. The button alignment is done to ensure that the accelerometer would
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always be in the same orientation as the current sensor system does not have a gyro-
scope or a compass to indicate orientation. The placement position was derived from
the work done in Chapter 3, in which the capaciflector position had little to no effect
on the data acquired. On the other hand the belt sensor was attached around the chest
while ensuring that there is no interference between the sensor system and the belt
sensor, this is show in Figure 6.4b. The data acquisition from the belt sensor is done by
having an Android tablet connected to the device via Bluetooth, to continuously collect
the data.

(A) Capaciflector Placement

(B) Belt Placement

FIGURE 6.4: Figures showing the placement of the sensors on the chest

6.1.2 Study 1: Metronome Tests

Study 1 is a comparative study that aims to measure the difference between the capaci-
flector and a reference standard belt sensor during stationary events. For this study the
participants were tasked to breathe at a predefined metronome rate. The metronome
values ranged from 10-19 breaths per minute. Each participant had a different rate so
as to allow the system to be tested across a variety of breathing ranges. The metronome
values selected were chosen to be between the average human breathing rate of 10-19
BPM (Yuan et al. (2013)). Table 6.1 shows the BPM values selected randomly for all the
different tests. The values used were multiplied by two in order to allow the participant
to perform a full inhale or exhale on each metronome click. This results in a continuous
sinusoidal looking signal.
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The tests were conducted while the participant was sitting upright on a chair, with a
total duration for each test being 5 minutes long, the participant was only tasked to not
speak during the test. The participants were asked to breath a full respiratory cycle on
each metronome click, and are instructed to do it in a normal manner as much as pos-
sible. In cases where the participant finds breathing at the predetermined metronome
rate to be difficult, this is adjusted to avoid having any inconveniences on the partici-
pant throughout the test.

TABLE 6.1: Metronome Values Selected per test

Test Number BPM Value
1 14
2 18
3 16
4 15
5 17
6 13
7 19
8 10
9 11
10 12

6.1.3 Study 2: Walking Tests

Study 2 is also a comparative respiration rate study, but the focus is to have the par-
ticipant produce movement artefacts, which can potentially interfere with the desired
respiration signal. This was achieved by having the same 10 participants from study 1
walk a predefined route wearing the same sensor system and the belt sensor. The par-
ticipants were asked to not talk during the test, but otherwise no further instructions
were provided. The total duration for each test varied per participant from 3-5 minutes
long depending on their walking speed. Two stops were introduced in the test, where
the participant stops walking and were asked to take two deep breaths. These allow
the signals between the belt and capaciflector system to be aligned and synchronised
during the post processing stage. This test is similar to the test conducted in Chapter 5
and an example of the expected raw signal can be seen in Figure 6.5. The route for this
test is done in the High-field campus of the University of Southampton.

6.1.4 Study 3: Speaking Tests

Study 3 is a comparative study that is different from study 1 and 2, the aim of this study
is to explore the differences between normal breathing and breathing while speaking.



84 Chapter 6. Analysis and Verification of the capaciflector hardware data

0 50 100 150 200 250 300 350

Time(s)

-2

0

2

4

g

10 4 Accelerometer

Accelerometer X

Accelerometer Y

Accelerometer Z

50 100 150 200 250 300 350

Time (s) 

122.2

122.4

122.6

122.8

C
ap

ac
ita

nc
e 

(p
F)

Capacitance Data

FIGURE 6.5: Example of the expected output for this part of the study.

The participant is instructed to read a paragraph of text which is the introduction sec-
tion of the confirmation report (found in Appendix E), which should take approxi-
mately 5 minutes to read at a standard pace. The test is conducted with the participant
seated upright on a chair with instructions to read the text out loud at a normal pace.
This study will have a variable duration as each participant can read at a different pace
from each other. Nonetheless, the data from all the participants should be enough to
build an appropriate analysis on speaking data and enough to compare against more
natural breathing data collected from the other studies.

6.1.5 Data Processing

The processing of the data was performed after the collection of the data has been
completed. MATLAB (2019) was used for the data clean-up and digital filtering; an
overview can be seen in Figure 6.6a. The initial step is to align the belt and capaciflector
data. The offset values are the peak timestamps in which the person started the test,
this is identifiable by the large breath taken before beginning the actual test. Thus,
allowing a timestamp matching of both signals. The trim value is a 5 second cut off at
the end of the signal, this was selected as the best value as it eliminated the sharp spike
in data when the sensor was touched.

The second stage is the filtration of the data, which applies a high pass filter with a
cut-off frequency of 0.02 Hz (i.e. 1.2 BPM) to the raw data and the accelerometer data,
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to remove any bias in preparation for the further steps. The third step is the detection
of the walking events in the signal. This is achieved by having the data segmented into
time slots where the accelerometer values have a change in the mean root mean square
value. This change is then identified as a movement when the mean value of the current
segment is above the threshold (0.08 g) which can be seen in Figure 6.6b. This allows
threshold identification of key points mainly the start and end of each sectioned event,
which allows more specific filtering and data separation when generating the results.
If the accelerometer is not available then this step is skipped and the entire signal is
processed in the same way the stationary data is processed.

Once segmented, the signals are filtered differently for each segment. For the walking
event the accelerometer noise signal is extracted and subtracted from the main signal.
This is applicable because the accelerometer is directly in phase with the noise collected
from the capaciflector. The data and noise is first normalised, then the noise is scaled
and then subtracted from the signal. The reason behind doing the normalisation is
to ensure that the scaling of the captured signal is within the same scale as the noise.
Once the noise is reduced a moving average filter is applied with a window size of 10
samples is applied to suppress the higher frequencies further resulting in a clean signal
with minimal loss from the movement artefacts. For the stationary event, a low-pass
filter with a cut-off frequency of 1Hz is applied to the signal to remove frequencies that
are higher than 1 Hz in the signal. Lastly the walking and stationary signals are com-
bined together to form the cleaned signal, in which a power spectrogram is generated.
Figure 6.6b shows the resulting stitched signal before the processing is done.

The power spectrogram used a window size of 60 seconds with an overlap of 99 per-
cent and 0 leakage, the result is a power frequency curve over time that indicates the
strongest frequencies every 0.6 seconds. The window size selected allows the full
minute of the data to be analyzed including the changes that can happen over time
throughout the signal. The overlap percentage used allows for a higher resolution com-
parison between both signals.

To extract the breathing signal, the spectrogram output is traced using MATLAB’s time
frequency ridge tracing function with a defined penalty of 0.05Hz which is the maxi-
mum frequency change between each window point in the spectrogram, this meant a
maximum change of 3 BPM can happen in a span of 0.6 seconds. The result is a time
continuous frequency signal for the strongest frequency within the set penalty. To con-
vert the frequency data into comparable respiration data, the average of the frequency
points per minute is taken to generate a result in breaths per minute.

The belt data was filtered in the same manner as the metronome data described in
study 1 where a low pass-filter was used on both the stationary and walking data as
the raw signal contained high frequency noise from walking. The same power spectro-
gram analysis is applied with the same settings to allow a direct comparison of breaths
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FIGURE 6.6: Is the overview of the signal processing steps.

per minute between the belt and capaciflector sensor. A Bland-Altman plot is then gen-
erated to compare the results from the capaciflector sensor system and the belt sensor.
This allows for a fairer and more visual comparison. An example Bland Altman result
can be seen in Table 6.7.

6.2 Data and Results

The data will be collected and stored according to the ethics (ERGO 68839.A1). All data
will be collected anonymously and cant be linked back to the subject performing the
tests. The data collected from these tests were used to generate comparative Bland-
Altman plots to show the system effectiveness. All studies were conducted with the
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same 10 healthy participants who had a range of age between 21-52 years old, with a
BMI ranging between 18.6 and 33.7.

6.2.1 Study 1: Metronome Results

For study 1, the 10 tests were used to generate a comparative Bland-Altman plot which
resulted in a bias of 0.04 BPM and limits of agreement between 0.58 and -0.50 BPM
(Figure 6.7). A more comparative Figure 6.7a shows the appropriate y=x line with the
different metronome tests plotted along the line.

6.2.2 Study 2: Walking Results

As for Study 2 the process of comparison was split into two, due to the different method
of processing, this allowed a more visual plot to be constructed by separating the re-
sults. Like study 1, all 10 participants tests were used to generate the Bland-Altman
plot with a bias of -0.04 BPM and limits of agreement between 1.44 and -1.52 BPM
(Figure 6.8).

And due to the method of processing, the separation of the stationary and walking
data is possible, in which this can be seen in Figure 6.9. The only reason to do this is
to compare the accuracy of the extraction against a known good accuracy such as the
one in study 1. Where for the case of walking data there is no study at this time that
compares the respiration data from walking separately. The results for the stationary
separated data is much lower when compared to the walking data and it is due to the
way the test was conducted in which the walking segment are more than the stationary
rest segments.

6.2.3 Study 3: Speaking Results

The results from the speaking tests are 10 in total, an example of one of the results will
be used for the discussion and comparison. The rest of the test results raw data can be
seen in Appendix E alongside the belt equivalent.

The results from this study can be seen in one of the tests (test 8) in Figure 6.10, for
which the raw data can be seen as well as the comparative plot between the belt and the
collected sensor data. And by visually inspecting the data shows very good correlation
between the belt and the capaciflector data.



88 Chapter 6. Analysis and Verification of the capaciflector hardware data

(A) Shows the linear relationship between the belt sensor and capaciflector system.

1.96 SD (0.58)

1.96 SD (-0.50) Bias (0.04)

(B) Shows the Bland-Altman of the results.

FIGURE 6.7: Results from study 1 (metronome study).
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(A) Shows the linear relationship between the belt sensor and capaciflector system.

1.96 SD (1.44)

1.96 SD (-1.52)

Bias (-0.04)

(B) Shows the Bland-Altman of the results.

FIGURE 6.8: Is the results from study 2 (walking study).
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1.96 SD (1.18)

1.96 SD (-0.67)

Bias (0.25)

(A) Shows the separated stationary Bland Altman’s.

1.96 SD (1.44)

1.96 SD (-1.52)

Bias (-0.04)

(B) Shows the separated walking Bland Altman’s.

FIGURE 6.9: Results from study 2 (walking study) segmented into stationary and
walking with separate Bland Atman’s.
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(B) Shows the comparison against the belt sensor data.

FIGURE 6.10: Results from study 3 (speaking study) for test 8, which the raw and
compare figures are seen.
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6.3 Discussion

Study 1 results are the results from the more controlled tests in which the sensor sys-
tem is expected to perform the best in. The results in Figure 6.7 show the results to be
within ± 0.54 BPM with a positive bias of 0.04 BPM. The results from study 1 are used
to confirm that the system can accurately be used to measure respiration. The band of
points that are together represent the different set of metronome tests that were taken.
The results indicate a great upper and lower limit with a bias closer to zero, this can be
compared to a study done on a commercially available sensor system by Respirasense
(Subbe and Kinsella, 2018), where they achieved a bias of 0.38 BPM and limits of agree-
ment between 1.0 and 1.8 BPM. These values are much lower (by a factor that is greater
than 1 BPM) when compared to the sensor system constructed using the capaciflec-
tor. And when comparing against the previous work done in Chapter 3, the sensors
did not face any deterioration due to the material used which is much more robust for
these types of tests. There are however limitations to this type of test, and this mainly
comes down to the periodic breathing which the metronome test artificially creates,
where in a real world scenario a person’s breathing will not be as continuous and will
be more spontaneous and sporadic. This is also a very beneficial test towards an FFT in
which the FFT benefits from a periodic signal. To improve upon this test a more relaxed
breathing must be achieved, but its harder to reproduce in a more controlled test.

Study 2 results had higher limits of ± 1.48 BPM but are under the limits of what a res-
piratory system must achieve to be acceptable as a clinical device (±3 BPM (Chan et al.,
2022)); even while measuring during motion, which introduces artefacts. The bias of
the system is close to the metronome tests with a value of -0.04 BPM, which indicates
that the system is repeatable between both studies, which means that its able to repli-
cate the results within the error limits defined in Chapter2. The data from the walking
study is more sporadic due to the changes in respiration in the test, this allows the sys-
tem to be assessed in a more realistic scenario. This also presents a case against some
of the established devices that are not capable of monitoring respiration during walk-
ing events. This mainly applies to commercial solutions such as some types of smart
watches. In this sensor system, no data was left out or discarded while cleaning up
the signal and during the processing stage, making it good at extracting the respiration
signal from the noisy breathing data.

Study 3 results are more comparative in which an assessment against the normal breath-
ing data collected from studies one and two show that study three exhibits a different
pattern. The pattern is more of a saw tooth wave, as when the participant speaks the air
is exhaled and a sharp breath intake happens once the participant is out of air. And with
the sensor being able to pick up the slight changes in the breath even during speaking is
promising towards developing an improved segmentation which accurately represents
the respiration rate of the person. This is a key point toward systems that continuously
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monitor respiration rate while the participant is doing other activities such as speak-
ing or walking. And with most commercial solutions for measuring respiration rate
this data is discarded even if there is any usable data that can correlate to the accurate
respiratory rate. Thus by utilising techniques in signal processing such as comparative
techniques it is possible to build a lightweight approach to detect the different wave
forms. Other methods exists such as machine learning techniques which can be better
in some cases. This potentially can create a more adaptive algorithm that can be used
for detecting respiratory rate.

6.4 Chapter Summary

The results from both studies are good indicators towards an accurate and reliable sys-
tem that can measure respiration continuously in both stationary and walking events,
while also being compact in size. The system overcomes many of the missing factors
in respiration sensor systems, mainly the ability to detect and retrieve respiration data
from signals that have walking noise without discarding any information in the pro-
cess. The technique used to remove the noise from the breathing signal is also simple
enough to be implemented in the hardware itself, making the device even more stan-
dalone. And finally the third study shows a viable direction for developing the algo-
rithm in the future. In which speaking is a uniquely identified waveform making it
possible to be segmented through signal processing or through other techniques such
as machine learning. This has the potential to create a more adaptive algorithm that
is lightweight and easy to implement. Overall, the capaciflector based system shows
promising potential for becoming reliable and low-cost sensing system for respiration
monitoring in ambulatory patients.
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Conclusion

Different sensors are initially explored in this work, in which the capaciflector sensor
was shown to be a viable sensor for use in healthcare, for both home and hospital
care. The different sensor systems and sensors developed throughout this research
helped build upon a more robust system that can be easily integrated and used due
to its simplicity. This chapter helps summarise the outcomes and the new research
developed in the field of respiration monitoring and wearables.

7.1 Chapter 3 Summary

This chapter introduced the capaciflector as a new sensor capable of measuring respi-
ration rate, this was initially introduced in the work done by White et al. (2017), and
was expanded upon in this chapter by introducing new information on the capabil-
ity of using the capaciflector for respiration rate monitoring. The chapter concluded
by showing that the capaciflector can be used in many different positions around the
body with little restriction as long as the sensor is attached to a position which can cor-
relate to the rib cage movement. This includes the interface medium as well, and in
this case the sensor itself does not need to be directly touching the skin to work. The
capaciflector sensor which was developed through screen printing for this chapter ex-
hibited failure due to moisture, while the electronics were tethered making it hard to
use for any other tests that require movement. These conclusions were used as a basis
to develop the next chapters where a more robust untethered system was developed,
alongside a better capaciflector sensor which was manufactured from better materials.
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7.2 Chapter 4 Summary

Different capaciflector sensor designs and materials were explored in this chapter to
find the optimal one for the application of respiration sensing with the capacitance
to digital sensor IC. The tests were conducted through a comparative study against a
belt sensor. Different configurations and modes were tested, mainly the capacitance
and capaciflector mode. The outcome from this chapter showed that the capaciflector
sensor had many changes in behaviour when the frequency or the configuration were
changed. Thus resulting in sensor designs that were effectively assessed by finding the
best response with the least amount of force. Overall the capacitance mode resulted
in being as accurate as the capaciflector mode while also being easier and cheaper to
manufacture and use. The only downside is that the directionality of the sensor is lost
in this mode.

7.3 Chapter 5 Summary

A new sensor system is developed to allow a capaciflector to be utilised for testing. The
sensor system allows the data logging of raw capacitance data from the capaciflector
as well as movement data from the accelerometer. The developed hardware was put
to a series of tests to ensure that the device can be used without failing, especially for
continuous monitoring of respiration rate. The system was also tested for accuracy by
running it through a series of short and long tests to ensure that the data captured from
the sensor system is viable. The sensor system passed all the tests conducted while also
being small and comfortable to wear, with the possibility of continuously monitoring
for periods spanning more than 48 hours.

7.4 Chapter 6 Summary

A new algorithm was developed for the sensor system, that made use of the accelerom-
eter data. The algorithm is tested on a small scale study of 10 participants, which
showed that the algorithm works much better than the conventional processing tech-
niques used for calculating respiration rate. The method used the accelerometer data
to segment and process the different parts of the respiratory signal. The walking seg-
ments were processed in a similar way to noise cancellation in which the noise captured
by the accelerometer is subtracted from the captured signal to result in a much cleaner
signal. Even thought these methods exist outside the scope of respiration detection
(audio noise cancelling), they are not used in the field of research for respiratory anal-
ysis. The three studies conducted also demonstrated the new sensor system with the
new processing techniques, resulted in much higher accuracy’s than current available
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commercial systems. The sensor system serves as part of the process for building a sys-
tem that can be used for respiratory monitoring continuously. And with this chapter
the main aim of building a system that is able to continuously and accurately monitor
respiration rate is done.

7.5 Overall Findings

The overall findings discussed in this work is the new methods and techniques that
were developed and tested to get a working system that is capable of accurately and
continuously collect respiratory data. The resulting algorithms developed demon-
strated that the sensor system developed is as accurate as many of the gold standards
used. With the benefit of being much smaller, lighter, and more comfortable to wear.
This concludes the work done for this thesis in which the low cost wearable respiration
sensor was the capaciflector sensor, to which a proper algorithm and hardware were
developed to completion. Where Chapter 3 completed the aim of identifying whether
the position of the capaciflector matters for respiration detection. While Chapter 4 iden-
tifies the best sensor to be used for respiratory detection through comparison between
seven different designs. Finally Chapters 5 and 6 fulfil the main aim of developing a
new respiratory sensor system that is capable of continuously monitoring respiration
over long periods of time, while also being small enough to comfortably wear. The sen-
sor system boasts an accuracy of 0.04 ± 0.54 BPM for stationary tests, and an accuracy
of −0.04 ± 1.48 BPM for walking tests. This shows that even though the results are
higher for the walking study they are still within the limits of accuracy ±3 BPM that is
needed to be acknowledged as a respiratory sensor for healthcare.

7.6 Future Work

For the future work much more could be done in the software side of things, mainly
the interfacing of the device and the segmentation and processing algorithm. The main
points to to expand upon this work are listed below:

1. The MCU software has the most potential for future work. The current post pro-
cessing is done separately on a different computer, where the data must first be
collected and then processed. And for the sensor system to be a more effective
and self enclosed, the current post processing script must be ported from MAT-
LAB (2019) to the micro controller. This will be a challenge in itself as most of
the functions used in MATLAB (2019) will have to be used in a much more con-
trolled manner in the MCU due to the size of the flash and RAM (Random Access
Memory) of the micro controller. The key benefits to doing this is the reduction
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in power consumption which in turn will create a much better overall system
capable of monitoring respiration rate continuously for long periods of time.

2. The second part of the software is to improve upon the post processing meth-
ods, in which the speaking data alongside the walking data is going to be se-
lectively filtered out. And by processing each of these segments separately the
algorithm will get a much closer representation of the signal captured without
any noise/ This should allow the resulting data to be much more clearer in terms
of conveying the type of data resulting from the algorithm, where the good data
is highlighted and the unusable data is ignored. This will create a more scale-able
solution for the long term.

3. The current hardware developed has access to many features that allow the sen-
sor system to be more versatile, mainly the BLE. And in this case part of the pos-
sibility for the future is the development of this protocol over the existing work
done to allow the data to be easily accessed over Bluetooth. This means both a
BLE application as well as the stack development must be done in order to effec-
tively build the system into a cohesive unit.

4. Lastly the hardware developed has been shrunk down to a small diameter of 32
mm however with the amount of sensors used, this can be scaled further down
to be closer to the original goal of being the size of a 2 pence coin. The challenge
lies within developing the full system without losing out on any of the features.
This should allow the senor system to become much smaller and easier to mount.



99

Appendix A

Schematics for Relaxation Oscillator
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Appendix B

Frequency and Current table for
Chapter 4

B.1 Current Reference Table

TABLE B.1: Reference table for the drive current values, sourced from the data sheet
of the FDC2214 (Texas Instruments Incorporated., 2015).

Value Current (uA)

1 18
2 21
3 25
4 28
5 33
6 38
7 44
8 52
9 60
10 69
11 81
12 93
13 108
14 126
15 146
16 169
17 196
18 228
19 264
20 307
21 356
22 413
23 479
24 555
25 644
26 747
27 867
28 1006
29 1167
30 1354
31 1571

B.2 Sensor Design and Current Drive Value
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Appendix C

Schematics for Developed Sensor
System
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Appendix D

MCU Firmware and MATLAB
Processing Code

This appendix shows the code used for the post processing algorithm as well as the
micro controller firmware.

D.1 MATLAB Code

1 close all;

2

3 DataFormat = readtable(’DataLocation.xlsx’,’PreserveVariableNames ’,true);

4 DataName = readtable(’DataFormat.xlsx’,’PreserveVariableNames ’,true);

5

6 Excluded = DataName {: ,6};

7

8 TestLocation = DataFormat {:,1};

9 TestLocation = string(TestLocation);

10

11 TestString = DataName {:,1};

12 TestString = string(TestString);

13

14 channelTested = 3;

15

16 ChannelInfo = DataName {:,2+ channelTested };

17

18 ridgeWidth = 0.005;

19 timeRatio = 60;

20 freqLimits = [0.1 0.8];

21 overlapPercent = 90;

22 leakage = 0;

23

24 filterHP = designfilt(’highpassiir ’,’FilterOrder ’,2, ...

25 ’PassbandFrequency ’ ,0.02, ...
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26 ’SampleRate ’ ,10);

27

28 % Check if output directory exists

29 if ~exist(strjoin (["Channel", channelTested],’’), ’dir’)

30 mkdir(strjoin (["Channel", channelTested],’’));

31 end

32

33 if ~exist(strjoin (["Channel", channelTested ,’/Output ’],’’), ’dir’)

34 mkdir(strjoin (["Channel", channelTested ,’/Output ’],’’));

35 end

36

37 if ~exist(strjoin (["Channel", channelTested , ’/Output/Spectogram ’],’’), ’

dir’)

38 mkdir(strjoin (["Channel", channelTested ,’/Output/Spectogram ’],’’)

);

39 end

40

41 if ~exist(strjoin (["Channel", channelTested ,’/Output/Compare ’],’’), ’dir’

)

42 mkdir(strjoin (["Channel", channelTested ,’/Output/Compare ’],’’));

43 end

44

45 C_BA = [];

46 B_BA = [];

47

48 for testNum = 5: length(TestLocation)

49 close all;

50

51 if not(Excluded(testNum))

52 continue;

53 end

54

55 if ChannelInfo(testNum) == 0

56 continue;

57 end

58

59 disp([’Testing: ’ TestString(testNum)]);

60

61 fileName = fullfile(pwd ,string(’Data/’ + TestLocation(testNum) + ’.

lvm’));

62 opts = delimitedTextImportOptions("NumVariables", 6);

63 opts.DataLines = [23, Inf];

64 opts.Delimiter = "\t";

65 opts.VariableNames = ["LabVIEWMeasurement", "VarName2", "VarName3", "

VarName4", "VarName5", "Var6"];

66 opts.SelectedVariableNames = ["LabVIEWMeasurement", "VarName2", "

VarName3", "VarName4", "VarName5"];

67 opts.VariableTypes = ["double", "double", "double", "double", "double

", "string"];

68 opts.ExtraColumnsRule = "ignore";

69 opts.EmptyLineRule = "read";
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70 opts = setvaropts(opts , "Var6", "WhitespaceRule", "preserve");

71 opts = setvaropts(opts , "Var6", "EmptyFieldRule", "auto");

72 Data_C = readtable(fileName , opts);

73 clear opts;

74

75 % Load Pnemograph

76 fileToLoad2=strrep(fileName ,’C.lvm’,’P_BPM.xlsx’);%Pnemo_data

77 opts = spreadsheetImportOptions("NumVariables", 1);

78 opts.Sheet = "BPM";

79 opts.DataRange = "F2:F14";

80 opts.VariableNames = "BPM";

81 opts.VariableTypes = "double";

82 PBPMS1 = readtable(fileToLoad2 , opts , "UseExcel", false);

83 PnemoData=table2array(PBPMS1);

84 PnemoData(PnemoData ==0)=NaN;

85 PnemoData = rmmissing(PnemoData);

86 clear opts;

87

88 % Extract Channel data

89 data_C = flipud(table2array(Data_C (2:end ,1:5)));

90 C_data=data_C(:, channelTested +2);

91 t_C=flipud(data_C (:,1));

92

93 % Apply High pass filter and remove offset

94 C_data = filtfilt(filterHP ,C_data);

95

96 % Run Spectogram

97 % [p_c ,f_c ,t_c]= pspectrum(C_data ,seconds(t_C),’spectrogram ’,...

98 % ’TimeResolution ’,timeRatio ,...

99 % ’Reassign ’,false ,...

100 % ’FrequencyLimits ’,freqLimits ,...

101 % ’OverlapPercent ’,overlapPercent ,...

102 % ’Leakage ’,leakage);

103

104 [p_c ,f_c ,t_c]= pspectrum(C_data ,10.4 ,’spectrogram ’ ,...

105 ’TimeResolution ’,timeRatio ,...

106 ’Reassign ’,false ,...

107 ’FrequencyLimits ’,freqLimits ,...

108 ’OverlapPercent ’,overlapPercent ,...

109 ’Leakage ’,leakage);

110

111 % Ridge Detection

112 %[fridge_c ,~,lr_c] = tfridge(p_c ,f_c ,ridgeWidth);

113 [fridge_c ,~,lr_c] = tfridge(p_c ,f_c ,ridgeWidth);

114

115 % Average Data

116 tt_secs_c = array2timetable(fridge_c .*60,’RowTimes ’,seconds(t_c));

117 tt_mins_c=retime(tt_secs_c ,’minutely ’,’mean’);

118 time_av_c = seconds(tt_mins_c.Time);

119

120 % Plot and Save Spectogram and ridge output
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121 Spectogram = figure ();

122 title("Spectogram Output");

123 imagesc(t_c ,f_c ,log(p_c));

124 set(gca , ’YDir’, ’normal ’);

125 colorbar ();

126 xlabel(’Time (Samples)’);

127 ylabel(’Frequency (mHz)’);

128

129 hold on;

130 plot(t_c ,fridge_c ,’r’,’LineWidth ’ ,2);

131 hold off;

132

133 savefile = strjoin (["Channel", channelTested ,’/Output/Spectogram/’,

TestString(testNum), ’_Spectogram.png’],’’);

134 saveas(Spectogram ,savefile)

135

136 % Calculate and Plot BPM comparasion

137 B_BPM = PnemoData (1:end -1);

138 C_BPM = tt_mins_c.Var1 (1: length(B_BPM));

139

140 Compare = figure ();

141

142 C_BA = [C_BA; C_BPM ];

143 B_BA = [B_BA; B_BPM ];

144

145 %

146 % if length(PnemoData)<length(C_BPM)

147 % C_BA = [C_BA; C_BPM (1: length(PnemoData))];

148 % B_BA = [B_BA; B_BPM];

149 % else

150 % C_BA = [C_BA; C_BPM];

151 % B_BA = [B_BA; PnemoData (1: length(C_BPM))];

152 % end

153

154 plot(time_av_c (1: length(C_BPM))./60,C_BPM ,’linewidth ’ ,2);

155 hold on;

156 t_Pnemo = 0:1: length(B_BPM) -1;

157 plot(t_Pnemo ,B_BPM ,’linewidth ’ ,2);

158

159 legend(’Capaciflector ’,’CPET’);

160 title(’CPET BPM vs Capaciflector BPM’);

161 xlabel(’Time (Minutes)’);

162 ylabel(’Breaths Per Minute (BPM)’);

163

164 savefile = strjoin (["Channel", channelTested ,’/Output/Compare/’,

TestString(testNum), ’_Compare.png’],’’);

165 saveas(Compare ,savefile)

166

167 end

168
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169 save(strjoin (["Channel", channelTested ,’/Output/Capaciflector.mat’],’’),’

B_BA’);

170 save(strjoin (["Channel", channelTested ,’/Output/Belt.mat’],’’),’C_BA’);

171

172 % Calculate Bland Altman Plot Values

173 d_dif = B_BA -C_BA;

174 d_mean = [B_BA ,C_BA];

175 d_mean = nanmean(d_mean ,2);

176 d_bias = nanmean(d_dif);

177 d_std = nanstd(d_dif);

178

179 d_LLOA = d_bias - (1.96* d_std);

180 d_ULOA = d_bias + (1.96* d_std);

181

182

183 % Plot Bland Altman Plot

184 BlandAltman = figure ();

185

186 plot(d_mean , d_dif ,’*r’,’MarkerFaceColor ’,’k’,’MarkerSize ’ ,6);

187

188 title(’Bland Altman Plot’);

189 xlabel(’Mean Respiration (BPM)’);

190 ylabel(’RR Difference (BPM)’);

191

192 %Drawing the center line

193 yline(0,’k’,’LineWidth ’ ,2);

194

195 %Drawing the Bias

196 yline(d_bias ,’b’,’Bias (’+string(d_bias)+’)’,’FontSize ’, 18,’LineWidth ’

,2);

197

198 %Drawing Upper and lower Limits

199 yline(d_LLOA ,’--o’,’ -1.96 SD (’+string(d_LLOA)+’)’,’FontSize ’, 18,’

LineWidth ’ ,2);

200 yline(d_ULOA ,’--o’,’+1.96 SD (’+string(d_ULOA)+’)’,’FontSize ’, 18,’

LineWidth ’ ,2);

201

202 % Save Bland Altman Plot

203 savefile = strjoin (["Channel", channelTested , ’_BlandAltman.png’],’’);

204 saveas(BlandAltman ,savefile)

LISTING D.1: Matlab Code used to process the data in Chapter 3

1 close all;

2

3

4 [file ,path] = uigetfile(’*.txt’);

5 if isequal(file ,0)

6 %disp(’User selected Cancel ’);

7 else

8 %disp([’User selected ’, fullfile(path ,file)]);
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9 fileLoc = fullfile(path ,file);

10 end

11

12 %% Filter Settings

13 filterHP = designfilt(’highpassiir ’,’FilterOrder ’,2, ...

14 ’PassbandFrequency ’ ,0.02, ...

15 ’SampleRate ’ ,10);

16

17 %% Settings

18

19 % Spectogram Settings

20 ridgeWidth = 0.005;

21 timeRatio = 60;

22 freqLimits = [0.1 0.8];

23 overlapPercent = 90;

24 leakage = 0;

25

26 divider = 1;

27 twoPow28 = 2^28;

28 fref = 43400000/ divider;

29 C = 33;

30 L = 18;

31

32 belt = 0;

33

34 %% Import Data

35 Data = readData(fileLoc);

36 Data = table2array(Data);

37

38 if(belt)

39 Data_B = readData(fileLoc , true);

40 end

41

42

43 t_raw = str2double(Data (3:end ,1));

44 capRaw = str2double(Data (3:end ,4));

45 accelX = str2double(Data (3:end ,5));

46 accelY = str2double(Data (3:end ,6));

47 accelZ = str2double(Data (3:end ,7));

48 bat = str2double(Data (3:end ,8));

49

50 % t = t(1:2600);

51 % capRaw = capRaw (1:2600);

52 % accelX = accelX (1:2600);

53 % accelY = accelY (1:2600);

54 % accelZ = accelZ (1:2600);

55

56 sampleRate = str2double(regexprep(Data (1:1) ,{’\D*([\d\.]+\d)[^\d]*’, ’

[^\d\.]*’},{’$1 ’, ’ ’}));

57

58 t = (t_raw .*( sampleRate /1000));
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59 capHz = fref.* (capRaw ./ twoPow28);

60 cap = 10E12 * (1./(L*10E-6 .* power(capHz .* 2 .* pi ,2)));

61 cap = cap - C;

62 %cap = capRaw;

63 accelX = accelX ./8192;

64 accelY = accelY ./8192;

65 accelZ = accelZ ./8192;

66 bat = bat ./1000;

67

68 % dur = t;

69 d_t = t_raw.* sampleRate;

70 dur = duration (0,0,0,d_t ,’Format ’,’hh:mm:ss.SSSS’);

71

72 figure ();

73 subplot (2,1,1);

74 plot(dur ,cap ,’LineWidth ’ ,2);

75 title("Capacitance Data");

76 xlabel("Time (hh:mm:ss)");

77 ylabel("Capacitance (pF)");

78

79 subplot (2,1,2);

80 plot(dur ,accelX ,’LineWidth ’ ,2);

81 hold on;

82 plot(dur ,accelY ,’LineWidth ’ ,2);

83 plot(dur ,accelZ ,’LineWidth ’ ,2);

84 title("Accelerometer Data");

85 xlabel("Time (hh:mm:ss)");

86 ylabel("Accelerometer (g)");

87 legend("Accel X", "Accel Y", "Accel Z");

88 hold off;

89

90 %% Testing

91 C_BPM = [];

92 B_BPM = [];

93

94 C_data = filtfilt(filterHP ,cap);

95 %C_data = cap;

96 figure ();

97 plot(C_data ,’LineWidth ’ ,2);

98

99 %C_data = lowpass(C_data , 60, 20);

100 C_data = movmean(C_data ,10);

101

102 figure ();

103 plot(C_data ,’LineWidth ’ ,2)

104

105 if(belt)

106 [p_b ,f_b ,t_b]= pspectrum(Data_B (:,2) ,10,’spectrogram ’,’TimeResolution ’

,timeRatio ,’Reassign ’,false ,’FrequencyLimits ’,freqLimits ,’

OverlapPercent ’,overlapPercent ,’Leakage ’,leakage);

107 [fridge_b ,~,lr_b] = tfridge(p_b ,f_b ,ridgeWidth);
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108

109 figure ();

110 % Capaciflector

111 imagesc(t_b ,f_b ,log(p_b));

112 set(gca , ’YDir’, ’normal ’);

113 colorbar ();

114 xlabel(’Time (Seconds)’);

115 ylabel(’Frequency (Hz)’);

116

117 hold on;

118 plot(t_b ,fridge_b ,’r’,’LineWidth ’ ,2);

119 hold off;

120

121 title("Belt");

122

123 tt_secs_b = array2timetable(fridge_b .*60,’RowTimes ’,seconds(t_b));

124 tt_mins_b=retime(tt_secs_b ,’minutely ’,’mean’);

125 time_av_b = seconds(tt_mins_b.Time);

126

127 B_BPM (:,1) = time_av_b ./60;

128 B_BPM (:,2) = tt_mins_b.Var1;

129

130 % Plot Data Ouput

131 figure ();

132 plot(B_BPM (:,1),B_BPM (:,2),’linewidth ’ ,2);

133 xlabel(’Time (Minutes)’);

134 ylabel(’Respiration Rate (Breaths Per Minute)’);

135 title(’Belt Respiration Rate vs Time’);

136 end

137

138 [p_c ,f_c ,t_c]= pspectrum(C_data ,1000/ sampleRate ,’spectrogram ’,’

TimeResolution ’,timeRatio ,’Reassign ’,false ,’FrequencyLimits ’,

freqLimits ,’OverlapPercent ’,overlapPercent ,’Leakage ’,leakage);

139

140 % Ridge Detection

141 [fridge_c ,~,lr_c] = tfridge(p_c ,f_c ,ridgeWidth);

142

143 % Test = figure ();

144 % % t_m = seconds(t);

145 % % t_m = t_m.Format(’mm ’);

146 % plot(t_m ,bat ,’linewidth ’,2);

147 % title(’Battery Voltage vs Time ’);

148 % xlabel(’Time (Seconds)’);

149 % ylabel(’Battery (V)’);

150

151 % Plot and Save Spectogram and ridge output

152 Spectogram = figure ();

153 % Capaciflector

154 imagesc(t_c ,f_c ,log(p_c));

155 set(gca , ’YDir’, ’normal ’);

156 colorbar ();
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157 xlabel(’Time (Seconds)’);

158 ylabel(’Frequency (Hz)’);

159

160 hold on;

161 plot(t_c ,fridge_c ,’r’,’LineWidth ’ ,2);

162 hold off;

163

164 title("Capaciflector");

165

166 tt_secs_c = array2timetable(fridge_c .*60,’RowTimes ’,seconds(t_c));

167 tt_mins_c=retime(tt_secs_c ,’minutely ’,’mean’);

168 time_av_c = seconds(tt_mins_c.Time);

169

170 C_BPM (:,1) = time_av_c ./60;

171 C_BPM (:,2) = tt_mins_c.Var1;

172

173 % Plot Data Ouput

174 Compare = figure ();

175 plot(C_BPM (:,1),C_BPM (:,2),’linewidth ’ ,2);

176 xlabel(’Time (Minutes)’);

177 ylabel(’Respiration Rate (Breaths Per Minute)’);

178 title(’Capaciflector Respiration Rate vs Time’);

179

180 %%

181 if(belt)

182 % Calculate Bland Altman Plot Values

183 d_dif = B_BPM (:,2)-C_BPM (:,2);

184 d_mean = [B_BPM (:,2),C_BPM (:,2)];

185 d_mean = nanmean(d_mean ,2);

186 d_bias = nanmean(d_dif);

187 d_std = nanstd(d_dif);

188

189 d_LLOA = d_bias - (1.96* d_std);

190 d_ULOA = d_bias + (1.96* d_std);

191

192

193 % Plot Bland Altman Plot

194 BlandAltman = figure ();

195

196 plot(d_mean , d_dif ,’*r’,’MarkerFaceColor ’,’k’,’MarkerSize ’ ,6);

197

198 %ylim([-1 2]);

199

200 title(’Bland Altman Plot’);

201 xlabel(’Mean Respiration (BPM)’);

202 ylabel(’RR Difference (BPM)’);

203

204 %Drawing the center line

205 yline(0,’k’,’LineWidth ’ ,2);

206

207 %Drawing the Bias
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208 yline(d_bias ,’b’,’Bias (’+string(d_bias)+’)’,’FontSize ’, 18,’

LineWidth ’,2, ’LabelVerticalAlignment ’, ’middle ’);

209

210 %Drawing Upper and lower Limits

211 yline(d_LLOA ,’--o’,’ -1.96 SD (’+string(d_LLOA)+’)’,’FontSize ’, 18,’

LineWidth ’,2, ’LabelVerticalAlignment ’, ’bottom ’);

212 yline(d_ULOA ,’--o’,’+1.96 SD (’+string(d_ULOA)+’)’,’FontSize ’, 18,’

LineWidth ’,2, ’LabelVerticalAlignment ’, ’top’);

213 end

LISTING D.2: Matlab Code used to process the data in Chapter 5

D.2 Micro controller Firmware Code

1 // Enable Capacitance Chip

2 gpioClearOutput(AUXIO_O_CONTROL_FDC2214);

3

4 // CAPACITANCE SENSOR Config

5

6 // Init Channel 0

7 i2cDeviceWriteReg16MsbFirst(FDC2214_I2C_ADDR ,FDC2214_SETTLECOUNT_CH0 ,0

x0400);

8

9 // rcount maximized for low power operation

10 i2cDeviceWriteReg16MsbFirst(FDC2214_I2C_ADDR ,FDC2214_RCOUNT_CH0 ,0xFFFF);

11

12 i2cDeviceWriteReg16MsbFirst(FDC2214_I2C_ADDR ,FDC2214_ERROR ,0x0001);

13

14 //no offset

15 i2cDeviceWriteReg16MsbFirst(FDC2214_I2C_ADDR ,FDC2214_OFFSET_CH0 ,0x0000);

16

17 //Set clock dividers

18 i2cDeviceWriteReg16MsbFirst(FDC2214_I2C_ADDR ,FDC2214_CLOCK_DIVIDERS_CH0 ,

0x1001);

19

20 //set drive register

21 i2cDeviceWriteReg16MsbFirst(FDC2214_I2C_ADDR ,FDC2214_DRIVE_CH1 , 0x8C40);

22

23 //Set MUX

24 i2cDeviceWriteReg16MsbFirst(FDC2214_I2C_ADDR ,FDC2214_MUX_CONFIG , 0x020D);

25

26 // Config with Sleep Still enabled

27 i2cDeviceWriteReg16MsbFirst(FDC2214_I2C_ADDR ,FDC2214_CONFIG ,0x1441);

28

29 U16 devId = 0;

30 state.capReady = 0;

31

32 i2cDeviceReadReg16MsbFirst(FDC2214_I2C_ADDR ,FDC2214_DEVICE_ID;devId);

33
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34 if (devId == 0x3055){

35 state.capReady = 1;

36 }

37

38 i2cDeviceWriteReg8(MPU_ADDR ,MPU_GYRO_CONFIG ,0x00);

39 i2cDeviceWriteReg8(MPU_ADDR ,MPU_ACCEL_CONFIG ,0x08);

40

41 if(cfg.gyroEnable == 1){

42 i2cDeviceWriteReg8(MPU_ADDR ,MPU_PWR_MGMT_2 ,0x00);

43 }else{

44 i2cDeviceWriteReg8(MPU_ADDR ,MPU_PWR_MGMT_2 ,0x07);

45 }

46

47 i2cDeviceWriteReg8(MPU_ADDR ,MPU_PWR_MGMT_1 ,0x08);

48

49 i2cDeviceReadReg8(MPU_ADDR ,MPU_DEV_ID;devId);

50

51 if(devId == 104){

52 state.mpuReady = 1;

53 }

LISTING D.3: Initialisation Code for the Sensor Controller Studio Tasks

1 U16 msb = 0;

2 U16 lsb = 0;

3 U16 n = 0;

4 U16 readyBit = 0;

5

6 for(U16 n = 0; n < BUFF_MIN; n++){

7 // RTC READ

8 i2cDeviceReadReg8(RTC_ADDR ,RTC_SEC;output.rtcSec[n]);

9 i2cDeviceReadReg8(RTC_ADDR ,RTC_MIN;output.rtcMin[n]);

10 i2cDeviceReadReg8(RTC_ADDR ,RTC_HRS;output.rtcHrs[n]);

11

12 // CAPACITANCE READ

13 i2cDeviceReadReg16MsbFirst(FDC2214_I2C_ADDR ,FDC2214_DATA_CH0_MSB;

output.capMsb[n]);

14 i2cDeviceReadReg16MsbFirst(FDC2214_I2C_ADDR ,FDC2214_DATA_CH0_LSB;

output.capLsb[n]);

15

16 // MPU READ

17 i2cDeviceReadReg8(MPU_ADDR ,MPU_ACCEL_X_H;msb);

18 i2cDeviceReadReg8(MPU_ADDR ,MPU_ACCEL_X_L;lsb);

19

20 output.accelX[n] = lsb | (msb << 8);

21

22 i2cDeviceReadReg8(MPU_ADDR ,MPU_ACCEL_Y_H;msb);

23 i2cDeviceReadReg8(MPU_ADDR ,MPU_ACCEL_Y_L;lsb);

24

25 output.accelY[n] = lsb | (msb << 8);

26
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27 i2cDeviceReadReg8(MPU_ADDR ,MPU_ACCEL_Z_H;msb);

28 i2cDeviceReadReg8(MPU_ADDR ,MPU_ACCEL_Z_L;lsb);

29

30 output.accelZ[n] = lsb | (msb << 8);

31

32 if(cfg.gyroEnable == 1){

33 i2cDeviceReadReg8(MPU_ADDR ,MPU_GYRO_X_H;msb);

34 i2cDeviceReadReg8(MPU_ADDR ,MPU_GYRO_X_L;lsb);

35

36 output.gyroX[n] = lsb | (msb << 8);

37

38 i2cDeviceReadReg8(MPU_ADDR ,MPU_GYRO_Y_H;msb);

39 i2cDeviceReadReg8(MPU_ADDR ,MPU_GYRO_Y_L;lsb);

40

41 output.gyroY[n] = lsb | (msb << 8);

42

43 i2cDeviceReadReg8(MPU_ADDR ,MPU_GYRO_Z_H;msb);

44 i2cDeviceReadReg8(MPU_ADDR ,MPU_GYRO_Z_L;lsb);

45

46 output.gyroZ[n] = lsb | (msb << 8);

47 }

48

49 // Delay Sample Rate

50 fwDelayUs (50000 , FW_DELAY_RANGE_100_MS);

51 }

52

53 i2cDeviceReadReg8(RTC_ADDR ,RTC_DAY;output.rtcDay);

54 i2cDeviceReadReg8(RTC_ADDR ,RTC_DATE;output.rtcDate);

55 i2cDeviceReadReg8(RTC_ADDR ,RTC_MONTH;msb);

56 i2cDeviceReadReg8(RTC_ADDR ,RTC_YEAR;output.rtcYear);

57

58 output.rtcMonth = msb & 0x7F;

59

60 fwGenAlertInterrupt ();

LISTING D.4: Execution Code for the Sensor Controller Studio Tasks

1 /*

2 * ======== Main function ========

3 */

4 void SD_DataLogger_taskFxn(UArg a0, UArg a1)

5 {

6 SD_DataLogger_init ();

7

8 if (isWakingFromShutdown) {

9 uint32_t sleepUs = 300000;

10 GPIO_write(Board_GPIO_RED_LED , 1);

11 Task_sleep(sleepUs / Clock_tickPeriod);

12 GPIO_write(Board_GPIO_RED_LED , 0);

13 Task_sleep(sleepUs / Clock_tickPeriod);

14 }
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15

16 for (;;){

17 uint32_t events;

18

19 // Waits for an event to be posted associated with the calling

thread.

20 // Note that an event associated with a thread is posted when a

21 // message is queued to the message receive queue of the thread

22 events = Event_pend(syncEvent , Event_Id_NONE , SD_ALL_EVT ,

23 BIOS_WAIT_FOREVER);

24

25 // Process Events

26 if(events){

27

28 // Long Button Press Event

29 if(events & SD_PWR_BTN_LONG_EVT){

30 if(! isSampling){

31 // Do Nothing

32 // stopSampling ();

33 powerOff ();

34 }else{

35 isSampling = false;

36

37 // Close File After Sampling is done and go to sleep

38 stopSampling ();

39 }

40 }

41

42 // Short Button Press Event

43 if(events & SD_PWR_BTN_SHORT_EVT){

44

45 // Check if Sampling Stopped or Started

46 if(isSampling){

47 // Currently Sampling DO NOTHING

48 // isSampling = false;

49 // stopSampling ();

50 }else{

51 isSampling = true;

52

53 // Mount and register the SD Card

54 sdfatfsHandle = SDFatFS_open(Board_SD0 , DRIVE_NUM);

55 if (sdfatfsHandle == NULL) {

56 Display_printf(display , 0, 0, "Error starting the

SD card\n");

57 // HAL_SYSTEM_RESTART ();

58 }

59 else {

60 Display_printf(display , 0, 0, "Drive %u is

mounted\n", DRIVE_NUM);

61 }

62
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63 // SCS Start Task and enter sleep mode

64 // scifStartTasksNbl (1 << SCIF_SENSORS_TASK_ID);

65 // DELAY_MS (100);

66 if (scifWaitOnNbl (1000000) != SCIF_SUCCESS) {

67 Display_printf(display , 0, 0, "Error");

68 } else if (scifStartTasksNbl (1 <<

SCIF_SENSORS_TASK_ID) != SCIF_SUCCESS) {

69 Display_printf(display , 0, 0, "Started Task");

70 }

71

72 // Open a new file for Sampling

73 fileOpen = openFile (& dataFile);

74

75 if(fileOpen){

76 // Start Sampling Timer

77 // Util_startClock (& periodicClock);

78

79 // Run the "Sensors" Execution Code

80 if (scifWaitOnNbl (1000000) != SCIF_SUCCESS) {

81 Display_printf(display , 0, 0, "Error");

82 isSampling = false;

83 if (scifWaitOnNbl (1000000) != SCIF_SUCCESS) {

84 Display_printf(display , 0, 0, "Error");

85 } else if (scifStopTasksNbl (1 <<

SCIF_SENSORS_TASK_ID) != SCIF_SUCCESS) {

86 Display_printf(display , 0, 0, "Error

Stoping Task");

87 }

88 SDFatFS_close(sdfatfsHandle);

89 blinkLed(Board_GPIO_RED_LED ,1);

90 } else if (scifSwTriggerExecutionCodeNbl (1 <<

SCIF_SENSORS_TASK_ID) != SCIF_SUCCESS) {

91 Display_printf(display , 0, 0, "Error Starting

Task");

92 isSampling = false;

93 if (scifWaitOnNbl (1000000) != SCIF_SUCCESS) {

94 Display_printf(display , 0, 0, "Error");

95 } else if (scifStopTasksNbl (1 <<

SCIF_SENSORS_TASK_ID) != SCIF_SUCCESS) {

96 Display_printf(display , 0, 0, "Error

Stopping Task");

97 }

98 SDFatFS_close(sdfatfsHandle);

99 blinkLed(Board_GPIO_RED_LED ,1);

100 }else{

101 blinkLed(Board_GPIO_GREEN_LED ,1);

102 // Util_stopClock (& ledClock);

103 Display_printf(display , 0, 0, "Started

Sampling");

104 }

105 }else{
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106 isSampling = false;

107 if (scifWaitOnNbl (1000000) != SCIF_SUCCESS) {

108 Display_printf(display , 0, 0, "Error");

109 } else if (scifStopTasksNbl (1 <<

SCIF_SENSORS_TASK_ID) != SCIF_SUCCESS) {

110 Display_printf(display , 0, 0, "Error Stoping

Task");

111 }

112 SDFatFS_close(sdfatfsHandle);

113 blinkLed(Board_GPIO_RED_LED ,1);

114 }

115 }

116 }

117

118 // Sampling Event

119 if(( events & SD_PERIODIC_EVT) && isSampling){

120

121 // Run the "Sensors" Execution Code

122 if (scifWaitOnNbl (20000) != SCIF_SUCCESS) {

123 Display_printf(display , 0, 0, "Error Timeout Fail");

124 isSampling = false;

125 if (scifWaitOnNbl (20000) != SCIF_SUCCESS) {

126 Display_printf(display , 0, 0, "Error \n");

127 }else if (scifStopTasksNbl ((1 << SCIF_SENSORS_TASK_ID

)) != SCIF_SUCCESS) {

128 Display_printf(display , 0, 0, "Error Stopping

Task \n");

129 }

130 SDFatFS_close(sdfatfsHandle);

131 Util_stopClock (& periodicClock);

132 blinkLed(Board_GPIO_RED_LED ,1);

133 } else if (scifSwTriggerExecutionCodeNbl (1 <<

SCIF_SENSORS_TASK_ID) != SCIF_SUCCESS) {

134 Display_printf(display , 0, 0, "Error Starting Task");

135 isSampling = false;

136 if (scifWaitOnNbl (20000) != SCIF_SUCCESS) {

137 Display_printf(display , 0, 0, "Error \n");

138 }else if (scifStopTasksNbl ((1 << SCIF_SENSORS_TASK_ID

)) != SCIF_SUCCESS) {

139 Display_printf(display , 0, 0, "Error Stopping

Task \n");

140 }

141 SDFatFS_close(sdfatfsHandle);

142 Util_stopClock (& periodicClock);

143 blinkLed(Board_GPIO_RED_LED ,1);

144 }

145

146 // Start Periodic Clock

147 // Util_startClock (& periodicClock);

148 }

149
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150 // SCS Event

151 if(( events & SD_SCS_SAMPLE_EVT) && isSampling){

152 // Acknowledge Incoming Data

153 processData ();

154

155 Event_post(syncEvent , SD_PERIODIC_EVT);

156

157 // Post Event to write to SD card

158 Event_post(syncEvent ,SD_WRITE_EVT);

159

160

161 }

162

163 if(( events & SD_WRITE_EVT) && isSampling){

164 // Write Event

165 result = writeData (&dataFile ,dataSample);

166

167 if(result){

168 // Do Nothing

169

170 }else{

171 // Stop Sampling and go to Standby Mode

172 isSampling = false;

173 if (scifWaitOnNbl (20000) != SCIF_SUCCESS) {

174 Display_printf(display , 0, 0, "Error \n");

175 }else if (scifStopTasksNbl ((1 << SCIF_SENSORS_TASK_ID

)) != SCIF_SUCCESS) {

176 Display_printf(display , 0, 0, "Error Stopping

Task \n");

177 }

178 SDFatFS_close(sdfatfsHandle);

179 Util_stopClock (& periodicClock);

180 blinkLed(Board_GPIO_RLED , 1);

181 }

182

183 Display_printf(display , 0, 0, "Cap: %d, Accel: %d", cap

[0], accelX [0]);

184 }

185

186 // Event for LED Blinking

187 if(events & SD_LED_EVT){

188 Util_startClock (& ledClock);

189 if(! isSampling){

190 blinkLed(Board_GPIO_RED_LED ,1);

191 }else{

192 // blinkLed(Board_GPIO_GREEN_LED ,1);

193 }

194 }

195

196 }

197 }
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198 }

LISTING D.5: Data Logger Main Code (Simplified View)
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Appendix E

Speaking Tests And Supplementary
Materials

This appendix has the raw test results for all the speaking tests. As well as the docu-
ment read for the work done in Chapter 6. The text is the previous introduction which
was written for the confirmation reveiw.

E.1 Text Read

Breathing is a vital part of every human’s body and is a set of sophisticated processes
that help regulate and clean the incoming gases that we breathe. Breathing has many
forms and rhythmic movement that links it to other organs movement such as the heart
and lungs.

While breathing occurs on a physical level of the human body, respiration occurs at
the cellular level; due to the key functionalities of both, they become part of the full
breathing cycle in a human body (Negro et al., 2018). The speed of this cycle changes
from age to age as a healthy person normally breathes at a standard rate of 12-20 breaths
per minute while an infant can breath 25-40 breaths per minute (Yuan et al., 2013).
Having slight changes in respiration rate can also be an early indicator of deteriorating
health, where respiration rates of ≥ 27 BPM can predict cardiac arrest from up to 72
hours (Kelly, 2018).

In hospitals there are multiple methods for detecting respiration, some of the methods
are in the form of machines such as a pneumotachometer or by manually counting the
number of times the chest rises over a set period of time. This is typically done in 1
minute intervals at set intervals. This become a long and tedious tasks for nurses that
are in charge of this process (Wheatley, 2018). The pneumotachometer is an accurate
machine which can continuously monitor the respiration of a patient, this is considered
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a gold standard machine in respiration detection, due to the accuracy and reliability, as
it measures the amount of airflow and pressure coming from the body (Donnelly et al.,
2013). The only downside is that this method takes time and requires a machine that is
not portable or comfortable to wear.

This shows the need for a respiration monitoring system that is able to continuously
monitor the changes in breathing over long periods of time, while also being easy
to wear and portable. This type of system should allow the detection of many dif-
ferent types of disorders and conditions that are directly related to respiration, such
as obstructive sleep apnoea/hypopnoea (OSAHS), central sleep apnoea (CSA), and
hypoventilation syndromes which are all different forms of sleeping disorders (Riha,
2015). While conditions like sepsis, pneumonia, and cardiac arrest can all be identified
early by looking at a continuous respiration signal (Ginsburg et al., 2018).

In an analysis done by Lynn and Curry (2011) on unexpected hospital deaths, shows
that the early detection of respiration rate changes in disease like sepsis could poten-
tially be avoided if the proper monitoring and alarm systems are set up to identify the
changes. Where one of the main factors that change in a predictable manner is the res-
piratory rate. Figure 1.1 shows an example of an unexpected hospital death signals,
where the respiration rate can be seen to have a steady increase over time in an event
such as sepsis.

FIGURE E.1: Pattern in unexpected deaths, where respiration can be linked to possible
early detection (Sourced and edited from (Lynn and Curry, 2011))
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This need for respiration data is reflected by the many different types of scoring systems
that are developed to prevent many of these unexpected deaths. The widely used one
in the United Kingdom National Health Service (NHS) is the National Early Warning
Score (NEWS) developed the Royal College of Physicians, which was updated recently
in 2017 to NEWS2. The main aim of this system is to create a standardised system for
assessing illness (RCP, 2020). The scoring system uses six physiological parameters
that produces a score representing the risk of the patient (RCP, 2020). The NEWS2
score emphasises the need of respiration as a primary parameter, that is important in
determining the severity of the patient. And recently there is work done on a new
risk score for assessing corona virus patients, which adopts respiration as a primary
parameter due to the effects the virus has on the lungs (Knight et al., 2020).

Similarly, the Quick SOFA score that is used for scoring sepsis patients uses respiration
as one of the primary parameters for assessing a patients health and their appropriate
mortality risk value.

This brings the topic of building such systems that can detect many of these changes
in respiration by continuously monitoring the patient and potentially avoiding these
deaths. An example is towards Figure E.1 where potentially a continuous monitoring
of the respiration could have given an early warning, while potentially preventing the
unexpected death. However, for the system to be effectively used in many environ-
ments such as the home and hospital, as well as potentially be used in low-resource
environments, the system must have a low manufacturing cost while not affecting the
accuracy of the sensor/system. In this paper a low-cost sensor system is attributed
to be in the range of £100 - £500, which was chosen by the exploration of the average
market prices of respiration sensors.

Currently there are sensors that exist in the market to fill the gaps of continuous res-
piration monitoring while also being relatively cheap (between £500 - £1000), however
many of these technologies are not well suited to be easily wearable and portable or
more importantly continuous in monitoring over long periods of time. Hence this re-
search aims to produce a better sensor system that can fill in the gap in which many
sensor technologies could not, while also having the goal of being low cost, continuous
and accurate to be deployed in both home and hospital environments.

The sensor technology that has been decided upon to be used to fill this gap is the ca-
paciflector. The sensor is a essentially a distance sensor that measures respiration by
correlating the distance between the chest and the sensor to be attributed as breathing
data. This capaciflector is evaluated by testing it in a clinical environment with a to-
tal of 70 participants. Two studies were undertaken to assess the effectiveness under
stationary conditions, while the other study is to assess the effectiveness and accuracy
under the movement of the body by the use of a bicycle.
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The results from the studies were used to develop a different form of system that can
utilise the capaciflector sensor effectively.

E.2 Raw Test Results
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FIGURE E.2: Raw results for test 1 in the speaking study.
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FIGURE E.3: Raw results for test 2 in the speaking study.
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FIGURE E.4: Raw results for test 3 in the speaking study.
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FIGURE E.5: Raw results for test 4 in the speaking study.
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FIGURE E.6: Raw results for test 5 in the speaking study.
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FIGURE E.7: Raw results for test 6 in the speaking study.
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FIGURE E.8: Raw results for test 7 in the speaking study.
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FIGURE E.9: Raw results for test 8 in the speaking study.
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FIGURE E.10: Raw results for test 9 in the speaking study.
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FIGURE E.11: Raw results for test 10 in the speaking study.
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Gantt Chart
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Abstract—Respiration rate is the number of breaths per 
minute and is a vital signal that is used readily in the medical 
field. The gold standard that is currently used is the manual 
breath count, while there are other methods, these are not 
suitable for continuous wearable monitoring. Where the need 
for sensors that can continuously measure respiration rate is 
important in the detection of respiratory diseases. We have 
developed a new sensor system capable of measuring 
respiration continuously for a duration spanning more than 24 
hours on a single CR2032 coin cell battery. The system utilities 
a capaciflector sensor which is a 3-electrode proximity-based 
capacitance sensor, that works by measuring the capacitance 
between the sensor electrode and ground. The sensor measures 
the breathing signal as the modulated change of the skin 
thickness as the chest expands due to a respiration cycle. The 
use of a capacitance sensor allowed the device to be more 
compactly designed and suitable for long term measurements, 
as well as being capable of capturing respiration data while 
walking. Two studies were done to measure the accuracy of the 
system. The first study was taken under a predefined 
metronome tone between 10 and 19 breaths per minute, where 
the participants were stationary throughout the test. The second 
study is a walking test in which the participants walk a 
predefined route to introduce motion to the respiration data. 
The tests were compared against a belt sensor by Vernier (Go 
Direct Respiration Belt) and were analyzed by generating a 
Bland Altman of the results. The results from the direct 
comparison of the respiration rate between the two systems in 
the metronome study resulted in an excellent result of ± 0.68 
Breaths Per Minute (BPM) for the variance, with a bias of 0.06 
BPM. The second study resulted in ± 1.32 BPM for the 
variance, and a bias of 0.01 BPM. Concluding the system would 
be viable for long term monitoring. 

Keywords—Respiration, Breathing, Capaciflector, Sensor, 
Wearable Sensor, Capacitance, Continuous Monitoring 

I. INTRODUCTION 
Respiration is a vital parameter in healthcare monitoring, 

in which it is useful in identifying and preventing illnesses 
such as sleep apnea and sepsis [1]. It has been shown that 
respiration is an early indicator of sepsis, where failing to 
detect changes in respiratory rate can often result in poorer 
outcomes for the patient, and in serious cases mortality [2]. In 
some cases where respiratory rates are ≥ 27 Breaths Per 
Minute (BPM), this can be an early indicator of cardiac arrest 
[3]. In a recent study about COVID effects on respiration, the 
respiration rate during COVID correlates with higher 

mortality risk [4]. The current gold standard for measuring 
respiration rate is the manual count, which is not a viable 
option for continuous long-term monitoring, and there are no 
systems suitable for long term monitoring. This brings up the 
importance of continuous respiration monitoring, where 
potentially monitoring the changes in respiration rate can help 
in identifying illness, thus having the ability to monitor 
respiration continuously is very beneficial. Many sensors that 
exist such as force, piezoelectric, ECG, and PPG already are 
capable of continuous respiration monitoring with some 
limitations, however many of these sensors fail to satisfy 
other factors such as comfortability, size, and cost, as well as 
detection of movement events, which is an important factor 
for a more robust monitoring system [5]-[8]. The movement 
events have been a challenge for many sensors as they 
introduce a uniform noise in the signal. The capaciflector has 
been shown to detect and measure respiration rate in previous 
work [9], and for the performance of the sensor under 
exercise conditions it was presented in previous work done 
[10], however, both the system that were tested were not 
wearable and required a tethered connection. We have 
developed a compact sensor system that uses the capaciflector 
and is capable of continuously and accurately measuring 
respiration over long periods of time, while also being 
capable of discerning between walking events and stationary 
breathing events. 

II. RESPIRATION SENSING SYSTEM 
We have developed a new sensor system which can 

accurately capture respiration rate using a 3-electrode 
capacitance-based sensor called a capaciflector. The sensor is 

Fig.  1.  Capaciflector Sensor Cross Section View. 



a proximity-based sensor that works by measuring the 
capacitance between the sense-electrode and ground-
electrode, which is modulated during breathing (Fig. 1). The 
third electrode (reflector) is driven to the same potential as the 
sensor and is used to direct the field into the body [11]. This 
allows the sensor to be manufactured out of basic components 
that are commonly found. The size and shape of the three 
electrodes have a direct impact on the performance of the 
sensor, in which the change of capacitance is based off the 
change in distance between the chest and the sensor plate.  

Using a capacitance-based sensor allows the sensor to be 
compactly designed and suitable for long-term measurements 
unlike many other approaches and in this case an FR-4 PCB 
based version is manufactured on a 4-layer board. Our 
miniature system (see Fig. 4) also contains an IMU (Inertial 
Measurement Unit) for collecting accelerometer data and can 
continuously measure for periods spanning more than 24 
hours using a single CR2032 coin cell battery. The device 
constructed has an overall diameter of 32 mm with a 
thickness of 7mm, this can be seen next to a British 2 pence 
coin for scale in Fig. 4. The sensor can be used wirelessly 
without attaching it to any external components, allowing the 
system to be used untethered. The system works by sampling 

the sensors at a defined sample rate of 10 Hz this data is then 
written to the micro-SD card at a much slower rate (every 20 
samples).  

III. METHODOLGY 
To test the device accuracy, two studies were done to 

assess the sensor under stationary controlled conditions and 
while walking. The tests were done under the ERGO ethics in 
the University of Southampton (ERGO 68839.A1). The first 
study has ten 5-minute-long tests with a controlled 
metronome tone, that was done with the capaciflector based 
system against a gold standard belt sensor by Vernier (Go 
Direct Respiration Belt). The tests contained metronome 
values from 10 to 19 BPM. The sensor system was mounted 
in the top right side of the chest, while the belt sensor was 
strapped across the chest. The second study has ten 5-minute-
tests with the same mounting methods as the first study, 
where the task is to walk across a predefined route which 
contains walking up and down a staircase. The aim of the 
second study is to compare the system performance against 
movement artifacts. 

The processing of the data was done through an algorithm 
that uses spectrogram processing in order to process the data 
into frequency against time data. The data is then averaged for 
that minute to get the minutely breathing data. For study 2, 
the data was segmented with the use of the IMU data. This 
was done to apply pre-processing to the walking signals 
where the noise from the capacitance data is canceled with the 
data collected from the IMU. This segmentation allows the 
detected motion events to be processed differently from the 
stationary events. A block diagram of the overview of the 
signal processing can be seen in Fig. 3. The same data 
extracted from the belt is also processed using the same 
algorithm and parameters for a fair comparison. 

The data from the algorithm is analyzed using the Bland 
Altman statistical method which is a faster way to visually 
compare between large data sets. This allows direct point to 
point comparison of both the gold standard and the 
capaciflector based system. 

The system was also power tested by getting the average 
current consumed during operation, which correlated to 
3.3mAH, and on a CR2032 cell which has 200mAH this 
results in around 60 Hours of theoretical run time. The system 
was further tested with a new coin cell to cross check the 
maximum run time of the sensor system. The system ran a 
total of 45 hours on a fresh battery; the difference is due to the 
capacity of the battery decreasing due to the large current 
consumption from the micro-SD card which shortens the 
lifespan in the process. 

IV. RESULTS AND DISCUSSION 
The results from the tests were processed into respiration 

values which were then compiled into a Bland Altman Plot to 
show the accuracy of the developed system from the gold 
standard belt sensor. An example of the resulting data from 
system and the belt sensor can be seen in Fig. 5, where 
breathing peaks are correlated exactly with the belt data.  Fig.  4. The developed sensor system next to a 2 Pence British Coin. 

Fig.  3. System Block diagram for the sensor running in datalogger mode 
and the signal processing. 



A. Study 1 (Metronome Results) 
Study 1 results are the results from the more controlled 

tests in which the sensor system is expected to perform the 
best in. The results in Fig. 6 show the results to be within ± 
0.68 BPM with a negative bias of 0.06 BPM. The results from 
study 1 are used to confirm that the system can accurately be 
used to measure respiration. The band of points that are 
together represent the different set of metronome tests that 
were taken. The results indicate a great upper and lower limit 
with a bias closer to zero, this can be compared to a study 
done on a sensor system by Respirasense, where they 
achieved a bias of 0.38 BPM and limits of agreement between 
1.0 and 1.8 BPM. These values are much lower (by a factor 
that is greater than 1 BPM) when compared to the sensor 
system constructed using the capaciflector [6].  

 

B. Study 2 (Walking Results) 
Study 2 results had much higher variances of ± 1.32 BPM 

but are within the limits of an accurate system that utilizes the 
movement data to extract the breathing data. The bias of the 

system is similar to the metronome tests with a value of 0.01 
BPM, which indicates that the system is repeatable. This can 
be seen in Fig. 7. The data from the walking study is more 
sporadic due to the changes in respiration in the test, this 
allows the system to be assessed in a more realistic scenario. 
This also presents a case against some of the established 
devices that are not capable of monitoring respiration during 
walking events. This mainly applies to more commercial 
ready solutions such as Apple Watches. And in this sensor 
system no data was left out or discarded while cleaning up the 
signal and during the processing stage, making it better at 
extracting the respiration signal from the noisy breathing data. 

V. CONCLUSION 
The results from both studies are good indicators towards 

an accurate system that can measure respiration continuously 
in both stationary and walking events, while also being 
compact in size. The system utilizes many of the missing 
factors in respiration sensor systems, mainly the ability to 
detect and retrieve respiration data from signals that have 
walking noise without discarding any information in the 
process. The technique used to remove the noise from the 
breathing signal is also simple enough to be implemented in 
the hardware itself, making the device even more compact. 
And with the sensor itself being simple to manufacture the 
cost of the device becomes much lower. 

Overall, the capaciflector based system shows big 
potential in becoming one of the gold standards of respiration 
monitoring due to the simplicity of the sensor as well as the 
ease of use in both home and hospital environments.  
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Fig.  6. Bland Altman for the ten metronome tests, comparing the belt data 
with the new sensor system. Each vertical band represents the different 
metronome value tested. 
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H.1 Consent Forms



 

[28/04/2022] [Version 1.2]  [ERGO/FEPS/68839] 

 
CONSENT FORM  

 
Study title: Investigation of Respiration Signals 
 
Researcher names:   Mahdi Mohamed Saleh Abdulla Ahmed Shaban 

Harry Ackerman 
Isobel Jones 

ERGO number: ERGO/FEPS/68839 
 
 
Please initial the box(es) if you agree with the statement(s):  
 

I have read and understood the information sheet ([28/04/2022] / Version 1.2) and 
have had the opportunity to ask questions about the study. 

 

 
I agree to take part in this research project and agree for my data to be used for the 
purpose of this study. 
 

 

 
I understand my participation is voluntary and I may withdraw for any reason without 
my participation rights being affected. 
 

 

I understand that should I withdraw from the study then the information collected 
about me up to this point may still be used for the purposes of achieving the objectives 
of the study only. 

 

I understand that I will not be directly identified in any reports of the research. 

 

I understand that I am not wearing a pacemaker, and if I do, I am to notify the 
researcher. 

 

I understand that I am happy to be contacted for the 4th Study on a separate date. 

 

I understand that I have the choice on the way I can be contacted for the 4th Study. 

 

 
 
 
Name of participant (print name)…………………………………………………………………………… 
 
 
Signature of participant………………………………………………………………………………………. 
 
 
Date……………………………………………………………………………………….. …………………. 
 
 
 
Name of researcher (print name)…………………………………………………………………………… 



 

[28/04/2022] [Version 1.2]  [ERGO/FEPS/68839] 

 
 
Signature of researcher ………………………………………………………………………………………. 
 
 
Date……………………………………………………………………………………………………………….. 
 
 
------------------------------------------------------------------------------------------------------------------------------- 
 
 



154 Chapter H. Ethics Supplementary Materials and Consent Forms

H.2 Participant Information Sheet



 

 
[28/04/2022] [Version 1.2]  [ERGO/FEPS/68839]  
 

 
Participant Information Sheet 

 
Study Title: Investigation of Respiration Signals 
 
Researchers:  Mahdi Mohamed Saleh Abdulla Ahmed Shaban 

Harry Ackerman 
Isobel Jones 

ERGO number: ERGO/FEPS/68839       
 
You are being invited to take part in the above research study. To help you decide whether you 
would like to take part or not, it is important that you understand why the research is being done 
and what it will involve. Please read the information below carefully and ask questions if anything is 
not clear or you would like more information before you decide to take part in this research.  You 
may like to discuss it with others, but it is up to you to decide whether to take part in the project. If 
you are happy to participate you will be asked to sign a consent form. 
 
What is the research about? 
I’m a PhD Student in Electrical and Electronics Engineering doing a study on a low-cost sensor 
hardware, this study will be part of my work towards completing my thesis. The study is conducted 
to collect enough data to allow the hardware and the software to be optimised and calibrated. The 
objective for this study is to assess the effectiveness and accuracy of the device throughout daily 
activities. The expected outcome of this study is to have the data be used to effectively develop 
newer methods of detection towards the research. 
 
Why have I been asked to participate? 
You have been asked to do this study as you fit the requirement of being healthy and can wear the 
sensor for a full 24-hour period. 
 
What will happen to me if I take part? 
The participation should take a maximum of two days to fully complete with the first day doing 
three short tests, which should last a maximum duration of an hour. And at the end of those tests a 
device will be placed to be used throughout the next day (if possible). No changes in your daily 
activities will change, and all normal activities should be performed as usual except for anything 
involving water, in which the device may be removed for the period. There will be no audio or video 
recording in this study, and everything will be anonymous. The research data collected will be done 
quantitatively. 
 
Are there any benefits in my taking part? 
Taking part in this study will help this research to further understand respiration signals and the 
proper detection methods that can be used to effectively gather respiration data. This study will 
have no reimbursements for participation. 
 
Are there any risks involved? 
No risk is involved in this study as the device is not invasive and only contact the skin indirectly. 
The device may cause discomfort for some people (while wearing it over long periods of time). If in 
any case the device does cause discomfort, the device can be removed easily. 
 
What data will be collected? 
The data collected will be from a sensor that reads respiration data in the form of capacitance, 
while the belt sensor will measure the force on the chest. Weight, height, and age data will be 
collected with no personal information, or any information that links you to the data will be 
collected. The consent data will be stored securely in a locked drawer. The main data from the tests 
will be stored in a password locked USB device. As for during the study where the sensor will be 
collected after the last test; the contact information (email) will be kept in the same USB device in 
the form of an Excel file which will be deleted as soon as the tests are over. The emails are only 
collected to keep in contact until the participant fully completes or withdraws from the study. 



 

 
[28/04/2022] [Version 1.2]  [ERGO/FEPS/68839]  
 

 
 
Will my participation be confidential? 
Your participation and the information we collect about you during the research will be kept strictly 
confidential.  
 
Only members of the research team and responsible members of the University of Southampton 
may be given access to data about you for monitoring purposes and/or to carry out an audit of the 
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